1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27 /*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 */
30
31 #include <ctf_impl.h>
32 #include <sys/mman.h>
33 #include <sys/zmod.h>
34
35 static const ctf_dmodel_t _libctf_models[] = {
36 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38 { NULL, 0, 0, 0, 0, 0, 0 }
39 };
40
41 const char _CTF_SECTION[] = ".SUNW_ctf";
42 const char _CTF_NULLSTR[] = "";
43
44 int _libctf_version = CTF_VERSION; /* library client version */
45 int _libctf_debug = 0; /* debugging messages enabled */
46
47 static ushort_t
get_kind_v1(ushort_t info)48 get_kind_v1(ushort_t info)
49 {
50 return (CTF_INFO_KIND_V1(info));
51 }
52
53 static ushort_t
get_kind_v2(ushort_t info)54 get_kind_v2(ushort_t info)
55 {
56 return (CTF_INFO_KIND(info));
57 }
58
59 static ushort_t
get_root_v1(ushort_t info)60 get_root_v1(ushort_t info)
61 {
62 return (CTF_INFO_ISROOT_V1(info));
63 }
64
65 static ushort_t
get_root_v2(ushort_t info)66 get_root_v2(ushort_t info)
67 {
68 return (CTF_INFO_ISROOT(info));
69 }
70
71 static ushort_t
get_vlen_v1(ushort_t info)72 get_vlen_v1(ushort_t info)
73 {
74 return (CTF_INFO_VLEN_V1(info));
75 }
76
77 static ushort_t
get_vlen_v2(ushort_t info)78 get_vlen_v2(ushort_t info)
79 {
80 return (CTF_INFO_VLEN(info));
81 }
82
83 static const ctf_fileops_t ctf_fileops[] = {
84 { NULL, NULL },
85 { get_kind_v1, get_root_v1, get_vlen_v1 },
86 { get_kind_v2, get_root_v2, get_vlen_v2 },
87 };
88
89 /*
90 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
91 */
92 static Elf64_Sym *
sym_to_gelf(const Elf32_Sym * src,Elf64_Sym * dst)93 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
94 {
95 dst->st_name = src->st_name;
96 dst->st_value = src->st_value;
97 dst->st_size = src->st_size;
98 dst->st_info = src->st_info;
99 dst->st_other = src->st_other;
100 dst->st_shndx = src->st_shndx;
101
102 return (dst);
103 }
104
105 /*
106 * Initialize the symtab translation table by filling each entry with the
107 * offset of the CTF type or function data corresponding to each STT_FUNC or
108 * STT_OBJECT entry in the symbol table.
109 */
110 static int
init_symtab(ctf_file_t * fp,const ctf_header_t * hp,const ctf_sect_t * sp,const ctf_sect_t * strp)111 init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
112 const ctf_sect_t *sp, const ctf_sect_t *strp)
113 {
114 const uchar_t *symp = sp->cts_data;
115 uint_t *xp = fp->ctf_sxlate;
116 uint_t *xend = xp + fp->ctf_nsyms;
117
118 uint_t objtoff = hp->cth_objtoff;
119 uint_t funcoff = hp->cth_funcoff;
120
121 ushort_t info, vlen;
122 Elf64_Sym sym, *gsp;
123 const char *name;
124
125 /*
126 * The CTF data object and function type sections are ordered to match
127 * the relative order of the respective symbol types in the symtab.
128 * If no type information is available for a symbol table entry, a
129 * pad is inserted in the CTF section. As a further optimization,
130 * anonymous or undefined symbols are omitted from the CTF data.
131 */
132 for (; xp < xend; xp++, symp += sp->cts_entsize) {
133 if (sp->cts_entsize == sizeof (Elf32_Sym))
134 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
135 else
136 gsp = (Elf64_Sym *)(uintptr_t)symp;
137
138 if (gsp->st_name < strp->cts_size)
139 name = (const char *)strp->cts_data + gsp->st_name;
140 else
141 name = _CTF_NULLSTR;
142
143 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
144 strcmp(name, "_START_") == 0 ||
145 strcmp(name, "_END_") == 0) {
146 *xp = -1u;
147 continue;
148 }
149
150 switch (ELF64_ST_TYPE(gsp->st_info)) {
151 case STT_OBJECT:
152 if (objtoff >= hp->cth_funcoff ||
153 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
154 *xp = -1u;
155 break;
156 }
157
158 *xp = objtoff;
159 objtoff += sizeof (ushort_t);
160 break;
161
162 case STT_FUNC:
163 if (funcoff >= hp->cth_typeoff) {
164 *xp = -1u;
165 break;
166 }
167
168 *xp = funcoff;
169
170 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
171 vlen = LCTF_INFO_VLEN(fp, info);
172
173 /*
174 * If we encounter a zero pad at the end, just skip it.
175 * Otherwise skip over the function and its return type
176 * (+2) and the argument list (vlen).
177 */
178 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
179 vlen == 0)
180 funcoff += sizeof (ushort_t); /* skip pad */
181 else
182 funcoff += sizeof (ushort_t) * (vlen + 2);
183 break;
184
185 default:
186 *xp = -1u;
187 break;
188 }
189 }
190
191 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
192 return (0);
193 }
194
195 /*
196 * Initialize the type ID translation table with the byte offset of each type,
197 * and initialize the hash tables of each named type.
198 */
199 static int
init_types(ctf_file_t * fp,const ctf_header_t * cth)200 init_types(ctf_file_t *fp, const ctf_header_t *cth)
201 {
202 /* LINTED - pointer alignment */
203 const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
204 /* LINTED - pointer alignment */
205 const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
206
207 ulong_t pop[CTF_K_MAX + 1] = { 0 };
208 const ctf_type_t *tp;
209 ctf_hash_t *hp;
210 ushort_t id, dst;
211 uint_t *xp;
212
213 /*
214 * We initially determine whether the container is a child or a parent
215 * based on the value of cth_parname. To support containers that pre-
216 * date cth_parname, we also scan the types themselves for references
217 * to values in the range reserved for child types in our first pass.
218 */
219 int child = cth->cth_parname != 0;
220 int nlstructs = 0, nlunions = 0;
221 int err;
222
223 /*
224 * We make two passes through the entire type section. In this first
225 * pass, we count the number of each type and the total number of types.
226 */
227 for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
228 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
229 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
230 ssize_t size, increment;
231
232 size_t vbytes;
233 uint_t n;
234
235 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
236
237 switch (kind) {
238 case CTF_K_INTEGER:
239 case CTF_K_FLOAT:
240 vbytes = sizeof (uint_t);
241 break;
242 case CTF_K_ARRAY:
243 vbytes = sizeof (ctf_array_t);
244 break;
245 case CTF_K_FUNCTION:
246 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
247 break;
248 case CTF_K_STRUCT:
249 case CTF_K_UNION:
250 if (fp->ctf_version == CTF_VERSION_1 ||
251 size < CTF_LSTRUCT_THRESH) {
252 ctf_member_t *mp = (ctf_member_t *)
253 ((uintptr_t)tp + increment);
254
255 vbytes = sizeof (ctf_member_t) * vlen;
256 for (n = vlen; n != 0; n--, mp++)
257 child |= CTF_TYPE_ISCHILD(mp->ctm_type);
258 } else {
259 ctf_lmember_t *lmp = (ctf_lmember_t *)
260 ((uintptr_t)tp + increment);
261
262 vbytes = sizeof (ctf_lmember_t) * vlen;
263 for (n = vlen; n != 0; n--, lmp++)
264 child |=
265 CTF_TYPE_ISCHILD(lmp->ctlm_type);
266 }
267 break;
268 case CTF_K_ENUM:
269 vbytes = sizeof (ctf_enum_t) * vlen;
270 break;
271 case CTF_K_FORWARD:
272 /*
273 * For forward declarations, ctt_type is the CTF_K_*
274 * kind for the tag, so bump that population count too.
275 * If ctt_type is unknown, treat the tag as a struct.
276 */
277 if (tp->ctt_type == CTF_K_UNKNOWN ||
278 tp->ctt_type >= CTF_K_MAX)
279 pop[CTF_K_STRUCT]++;
280 else
281 pop[tp->ctt_type]++;
282 /*FALLTHRU*/
283 case CTF_K_UNKNOWN:
284 vbytes = 0;
285 break;
286 case CTF_K_POINTER:
287 case CTF_K_TYPEDEF:
288 case CTF_K_VOLATILE:
289 case CTF_K_CONST:
290 case CTF_K_RESTRICT:
291 child |= CTF_TYPE_ISCHILD(tp->ctt_type);
292 vbytes = 0;
293 break;
294 default:
295 ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
296 return (ECTF_CORRUPT);
297 }
298 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
299 pop[kind]++;
300 }
301
302 /*
303 * If we detected a reference to a child type ID, then we know this
304 * container is a child and may have a parent's types imported later.
305 */
306 if (child) {
307 ctf_dprintf("CTF container %p is a child\n", (void *)fp);
308 fp->ctf_flags |= LCTF_CHILD;
309 } else
310 ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
311
312 /*
313 * Now that we've counted up the number of each type, we can allocate
314 * the hash tables, type translation table, and pointer table.
315 */
316 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
317 return (err);
318
319 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
320 return (err);
321
322 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
323 return (err);
324
325 if ((err = ctf_hash_create(&fp->ctf_names,
326 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
327 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
328 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
329 return (err);
330
331 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
332 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
333
334 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
335 return (EAGAIN); /* memory allocation failed */
336
337 xp = fp->ctf_txlate;
338 *xp++ = 0; /* type id 0 is used as a sentinel value */
339
340 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
341 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
342
343 /*
344 * In the second pass through the types, we fill in each entry of the
345 * type and pointer tables and add names to the appropriate hashes.
346 */
347 for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
348 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
349 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
350 ssize_t size, increment;
351
352 const char *name;
353 size_t vbytes;
354 ctf_helem_t *hep;
355 ctf_encoding_t cte;
356
357 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
358 name = ctf_strptr(fp, tp->ctt_name);
359
360 switch (kind) {
361 case CTF_K_INTEGER:
362 case CTF_K_FLOAT:
363 /*
364 * Only insert a new integer base type definition if
365 * this type name has not been defined yet. We re-use
366 * the names with different encodings for bit-fields.
367 */
368 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
369 name, strlen(name))) == NULL) {
370 err = ctf_hash_insert(&fp->ctf_names, fp,
371 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
372 if (err != 0 && err != ECTF_STRTAB)
373 return (err);
374 } else if (ctf_type_encoding(fp, hep->h_type,
375 &cte) == 0 && cte.cte_bits == 0) {
376 /*
377 * Work-around SOS8 stabs bug: replace existing
378 * intrinsic w/ same name if it was zero bits.
379 */
380 hep->h_type = CTF_INDEX_TO_TYPE(id, child);
381 }
382 vbytes = sizeof (uint_t);
383 break;
384
385 case CTF_K_ARRAY:
386 vbytes = sizeof (ctf_array_t);
387 break;
388
389 case CTF_K_FUNCTION:
390 err = ctf_hash_insert(&fp->ctf_names, fp,
391 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
392 if (err != 0 && err != ECTF_STRTAB)
393 return (err);
394 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
395 break;
396
397 case CTF_K_STRUCT:
398 err = ctf_hash_define(&fp->ctf_structs, fp,
399 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
400
401 if (err != 0 && err != ECTF_STRTAB)
402 return (err);
403
404 if (fp->ctf_version == CTF_VERSION_1 ||
405 size < CTF_LSTRUCT_THRESH)
406 vbytes = sizeof (ctf_member_t) * vlen;
407 else {
408 vbytes = sizeof (ctf_lmember_t) * vlen;
409 nlstructs++;
410 }
411 break;
412
413 case CTF_K_UNION:
414 err = ctf_hash_define(&fp->ctf_unions, fp,
415 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
416
417 if (err != 0 && err != ECTF_STRTAB)
418 return (err);
419
420 if (fp->ctf_version == CTF_VERSION_1 ||
421 size < CTF_LSTRUCT_THRESH)
422 vbytes = sizeof (ctf_member_t) * vlen;
423 else {
424 vbytes = sizeof (ctf_lmember_t) * vlen;
425 nlunions++;
426 }
427 break;
428
429 case CTF_K_ENUM:
430 err = ctf_hash_define(&fp->ctf_enums, fp,
431 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
432
433 if (err != 0 && err != ECTF_STRTAB)
434 return (err);
435
436 vbytes = sizeof (ctf_enum_t) * vlen;
437 break;
438
439 case CTF_K_TYPEDEF:
440 err = ctf_hash_insert(&fp->ctf_names, fp,
441 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
442 if (err != 0 && err != ECTF_STRTAB)
443 return (err);
444 vbytes = 0;
445 break;
446
447 case CTF_K_FORWARD:
448 /*
449 * Only insert forward tags into the given hash if the
450 * type or tag name is not already present.
451 */
452 switch (tp->ctt_type) {
453 case CTF_K_STRUCT:
454 hp = &fp->ctf_structs;
455 break;
456 case CTF_K_UNION:
457 hp = &fp->ctf_unions;
458 break;
459 case CTF_K_ENUM:
460 hp = &fp->ctf_enums;
461 break;
462 default:
463 hp = &fp->ctf_structs;
464 }
465
466 if (ctf_hash_lookup(hp, fp,
467 name, strlen(name)) == NULL) {
468 err = ctf_hash_insert(hp, fp,
469 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
470 if (err != 0 && err != ECTF_STRTAB)
471 return (err);
472 }
473 vbytes = 0;
474 break;
475
476 case CTF_K_POINTER:
477 /*
478 * If the type referenced by the pointer is in this CTF
479 * container, then store the index of the pointer type
480 * in fp->ctf_ptrtab[ index of referenced type ].
481 */
482 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
483 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
484 fp->ctf_ptrtab[
485 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
486 /*FALLTHRU*/
487
488 case CTF_K_VOLATILE:
489 case CTF_K_CONST:
490 case CTF_K_RESTRICT:
491 err = ctf_hash_insert(&fp->ctf_names, fp,
492 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
493 if (err != 0 && err != ECTF_STRTAB)
494 return (err);
495 /*FALLTHRU*/
496
497 default:
498 vbytes = 0;
499 break;
500 }
501
502 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
503 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
504 }
505
506 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
507 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
508 ctf_dprintf("%u struct names hashed (%d long)\n",
509 ctf_hash_size(&fp->ctf_structs), nlstructs);
510 ctf_dprintf("%u union names hashed (%d long)\n",
511 ctf_hash_size(&fp->ctf_unions), nlunions);
512 ctf_dprintf("%u base type names hashed\n",
513 ctf_hash_size(&fp->ctf_names));
514
515 /*
516 * Make an additional pass through the pointer table to find pointers
517 * that point to anonymous typedef nodes. If we find one, modify the
518 * pointer table so that the pointer is also known to point to the
519 * node that is referenced by the anonymous typedef node.
520 */
521 for (id = 1; id <= fp->ctf_typemax; id++) {
522 if ((dst = fp->ctf_ptrtab[id]) != 0) {
523 tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
524
525 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
526 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
527 CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
528 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
529 fp->ctf_ptrtab[
530 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
531 }
532 }
533
534 return (0);
535 }
536
537 /*
538 * Decode the specified CTF buffer and optional symbol table and create a new
539 * CTF container representing the symbolic debugging information. This code
540 * can be used directly by the debugger, or it can be used as the engine for
541 * ctf_fdopen() or ctf_open(), below.
542 */
543 ctf_file_t *
ctf_bufopen(const ctf_sect_t * ctfsect,const ctf_sect_t * symsect,const ctf_sect_t * strsect,int * errp)544 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
545 const ctf_sect_t *strsect, int *errp)
546 {
547 const ctf_preamble_t *pp;
548 ctf_header_t hp;
549 ctf_file_t *fp;
550 void *buf, *base;
551 size_t size, hdrsz;
552 int err;
553
554 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
555 return (ctf_set_open_errno(errp, EINVAL));
556
557 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
558 symsect->cts_entsize != sizeof (Elf64_Sym))
559 return (ctf_set_open_errno(errp, ECTF_SYMTAB));
560
561 if (symsect != NULL && symsect->cts_data == NULL)
562 return (ctf_set_open_errno(errp, ECTF_SYMBAD));
563
564 if (strsect != NULL && strsect->cts_data == NULL)
565 return (ctf_set_open_errno(errp, ECTF_STRBAD));
566
567 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
568 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
569
570 pp = (const ctf_preamble_t *)ctfsect->cts_data;
571
572 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
573 pp->ctp_magic, pp->ctp_version);
574
575 /*
576 * Validate each part of the CTF header (either V1 or V2).
577 * First, we validate the preamble (common to all versions). At that
578 * point, we know specific header version, and can validate the
579 * version-specific parts including section offsets and alignments.
580 */
581 if (pp->ctp_magic != CTF_MAGIC)
582 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
583
584 if (pp->ctp_version == CTF_VERSION_2) {
585 if (ctfsect->cts_size < sizeof (ctf_header_t))
586 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
587
588 bcopy(ctfsect->cts_data, &hp, sizeof (hp));
589 hdrsz = sizeof (ctf_header_t);
590
591 } else if (pp->ctp_version == CTF_VERSION_1) {
592 const ctf_header_v1_t *h1p =
593 (const ctf_header_v1_t *)ctfsect->cts_data;
594
595 if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
596 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
597
598 bzero(&hp, sizeof (hp));
599 hp.cth_preamble = h1p->cth_preamble;
600 hp.cth_objtoff = h1p->cth_objtoff;
601 hp.cth_funcoff = h1p->cth_funcoff;
602 hp.cth_typeoff = h1p->cth_typeoff;
603 hp.cth_stroff = h1p->cth_stroff;
604 hp.cth_strlen = h1p->cth_strlen;
605
606 hdrsz = sizeof (ctf_header_v1_t);
607 } else
608 return (ctf_set_open_errno(errp, ECTF_CTFVERS));
609
610 size = hp.cth_stroff + hp.cth_strlen;
611
612 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
613
614 if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
615 hp.cth_funcoff > size || hp.cth_typeoff > size ||
616 hp.cth_stroff > size)
617 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
618
619 if (hp.cth_lbloff > hp.cth_objtoff ||
620 hp.cth_objtoff > hp.cth_funcoff ||
621 hp.cth_funcoff > hp.cth_typeoff ||
622 hp.cth_typeoff > hp.cth_stroff)
623 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
624
625 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
626 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
627 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
628
629 /*
630 * Once everything is determined to be valid, attempt to decompress
631 * the CTF data buffer if it is compressed. Otherwise we just put
632 * the data section's buffer pointer into ctf_buf, below.
633 */
634 if (hp.cth_flags & CTF_F_COMPRESS) {
635 size_t srclen, dstlen;
636 const void *src;
637 int rc = Z_OK;
638
639 if (ctf_zopen(errp) == NULL)
640 return (NULL); /* errp is set for us */
641
642 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
643 return (ctf_set_open_errno(errp, ECTF_ZALLOC));
644
645 bcopy(ctfsect->cts_data, base, hdrsz);
646 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
647 buf = (uchar_t *)base + hdrsz;
648
649 src = (uchar_t *)ctfsect->cts_data + hdrsz;
650 srclen = ctfsect->cts_size - hdrsz;
651 dstlen = size;
652
653 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
654 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
655 ctf_data_free(base, size + hdrsz);
656 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
657 }
658
659 if (dstlen != size) {
660 ctf_dprintf("zlib inflate short -- got %lu of %lu "
661 "bytes\n", (ulong_t)dstlen, (ulong_t)size);
662 ctf_data_free(base, size + hdrsz);
663 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
664 }
665
666 ctf_data_protect(base, size + hdrsz);
667
668 } else {
669 base = (void *)ctfsect->cts_data;
670 buf = (uchar_t *)base + hdrsz;
671 }
672
673 /*
674 * Once we have uncompressed and validated the CTF data buffer, we can
675 * proceed with allocating a ctf_file_t and initializing it.
676 */
677 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
678 return (ctf_set_open_errno(errp, EAGAIN));
679
680 bzero(fp, sizeof (ctf_file_t));
681 fp->ctf_version = hp.cth_version;
682 fp->ctf_fileops = &ctf_fileops[hp.cth_version];
683 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
684
685 if (symsect != NULL) {
686 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
687 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
688 }
689
690 if (fp->ctf_data.cts_name != NULL)
691 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
692 if (fp->ctf_symtab.cts_name != NULL)
693 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
694 if (fp->ctf_strtab.cts_name != NULL)
695 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
696
697 if (fp->ctf_data.cts_name == NULL)
698 fp->ctf_data.cts_name = _CTF_NULLSTR;
699 if (fp->ctf_symtab.cts_name == NULL)
700 fp->ctf_symtab.cts_name = _CTF_NULLSTR;
701 if (fp->ctf_strtab.cts_name == NULL)
702 fp->ctf_strtab.cts_name = _CTF_NULLSTR;
703
704 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
705 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
706
707 if (strsect != NULL) {
708 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
709 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
710 }
711
712 fp->ctf_base = base;
713 fp->ctf_buf = buf;
714 fp->ctf_size = size + hdrsz;
715
716 /*
717 * If we have a parent container name and label, store the relocated
718 * string pointers in the CTF container for easy access later.
719 */
720 if (hp.cth_parlabel != 0)
721 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
722 if (hp.cth_parname != 0)
723 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
724
725 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
726 fp->ctf_parname ? fp->ctf_parname : "<NULL>",
727 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
728
729 /*
730 * If we have a symbol table section, allocate and initialize
731 * the symtab translation table, pointed to by ctf_sxlate.
732 */
733 if (symsect != NULL) {
734 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
735 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
736
737 if (fp->ctf_sxlate == NULL) {
738 (void) ctf_set_open_errno(errp, EAGAIN);
739 goto bad;
740 }
741
742 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
743 (void) ctf_set_open_errno(errp, err);
744 goto bad;
745 }
746 }
747
748 if ((err = init_types(fp, &hp)) != 0) {
749 (void) ctf_set_open_errno(errp, err);
750 goto bad;
751 }
752
753 /*
754 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an
755 * array of type name prefixes and the corresponding ctf_hash to use.
756 * NOTE: This code must be kept in sync with the code in ctf_update().
757 */
758 fp->ctf_lookups[0].ctl_prefix = "struct";
759 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
760 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
761 fp->ctf_lookups[1].ctl_prefix = "union";
762 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
763 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
764 fp->ctf_lookups[2].ctl_prefix = "enum";
765 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
766 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
767 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
768 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
769 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
770 fp->ctf_lookups[4].ctl_prefix = NULL;
771 fp->ctf_lookups[4].ctl_len = 0;
772 fp->ctf_lookups[4].ctl_hash = NULL;
773
774 if (symsect != NULL) {
775 if (symsect->cts_entsize == sizeof (Elf64_Sym))
776 (void) ctf_setmodel(fp, CTF_MODEL_LP64);
777 else
778 (void) ctf_setmodel(fp, CTF_MODEL_ILP32);
779 } else
780 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
781
782 fp->ctf_refcnt = 1;
783 return (fp);
784
785 bad:
786 ctf_close(fp);
787 return (NULL);
788 }
789
790 /*
791 * Dupliate a ctf_file_t and its underlying section information into a new
792 * container. This works by copying the three ctf_sect_t's of the original
793 * container if they exist and passing those into ctf_bufopen. To copy those, we
794 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
795 * the cheapest thing, but it's what we've got.
796 */
797 ctf_file_t *
ctf_dup(ctf_file_t * ofp)798 ctf_dup(ctf_file_t *ofp)
799 {
800 ctf_file_t *fp;
801 ctf_sect_t ctfsect, symsect, strsect;
802 ctf_sect_t *ctp, *symp, *strp;
803 void *cbuf, *symbuf, *strbuf;
804 int err;
805
806 cbuf = symbuf = strbuf = NULL;
807 /*
808 * The ctfsect isn't allowed to not exist, but the symbol and string
809 * section might not. We only need to copy the data of the section, not
810 * the name, as ctf_bufopen will take care of that.
811 */
812 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
813 cbuf = ctf_data_alloc(ctfsect.cts_size);
814 if (cbuf == NULL) {
815 (void) ctf_set_errno(ofp, ECTF_MMAP);
816 return (NULL);
817 }
818
819 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
820 ctf_data_protect(cbuf, ctfsect.cts_size);
821 ctfsect.cts_data = cbuf;
822 ctfsect.cts_offset = 0;
823 ctp = &ctfsect;
824
825 if (ofp->ctf_symtab.cts_data != NULL) {
826 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
827 symbuf = ctf_data_alloc(symsect.cts_size);
828 if (symbuf == NULL) {
829 (void) ctf_set_errno(ofp, ECTF_MMAP);
830 goto err;
831 }
832 bcopy(symsect.cts_data, symbuf, symsect.cts_size);
833 ctf_data_protect(symbuf, symsect.cts_size);
834 symsect.cts_data = symbuf;
835 symsect.cts_offset = 0;
836 symp = &symsect;
837 } else {
838 symp = NULL;
839 }
840
841 if (ofp->ctf_strtab.cts_data != NULL) {
842 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
843 strbuf = ctf_data_alloc(strsect.cts_size);
844 if (strbuf == NULL) {
845 (void) ctf_set_errno(ofp, ECTF_MMAP);
846 goto err;
847 }
848 bcopy(strsect.cts_data, strbuf, strsect.cts_size);
849 ctf_data_protect(strbuf, strsect.cts_size);
850 strsect.cts_data = strbuf;
851 strsect.cts_offset = 0;
852 strp = &strsect;
853 } else {
854 strp = NULL;
855 }
856
857 fp = ctf_bufopen(ctp, symp, strp, &err);
858 if (fp == NULL) {
859 (void) ctf_set_errno(ofp, err);
860 goto err;
861 }
862
863 fp->ctf_flags |= LCTF_MMAP;
864
865 return (fp);
866
867 err:
868 ctf_data_free(cbuf, ctfsect.cts_size);
869 if (symbuf != NULL)
870 ctf_data_free(symbuf, symsect.cts_size);
871 if (strbuf != NULL)
872 ctf_data_free(strbuf, strsect.cts_size);
873 return (NULL);
874 }
875
876 /*
877 * Close the specified CTF container and free associated data structures. Note
878 * that ctf_close() is a reference counted operation: if the specified file is
879 * the parent of other active containers, its reference count will be greater
880 * than one and it will be freed later when no active children exist.
881 */
882 void
ctf_close(ctf_file_t * fp)883 ctf_close(ctf_file_t *fp)
884 {
885 ctf_dtdef_t *dtd, *ntd;
886
887 if (fp == NULL)
888 return; /* allow ctf_close(NULL) to simplify caller code */
889
890 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
891
892 if (fp->ctf_refcnt > 1) {
893 fp->ctf_refcnt--;
894 return;
895 }
896
897 if (fp->ctf_parent != NULL)
898 ctf_close(fp->ctf_parent);
899
900 /*
901 * Note, to work properly with reference counting on the dynamic
902 * section, we must delete the list in reverse.
903 */
904 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
905 ntd = ctf_list_prev(dtd);
906 ctf_dtd_delete(fp, dtd);
907 }
908
909 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
910
911 if (fp->ctf_flags & LCTF_MMAP) {
912 if (fp->ctf_data.cts_data != NULL)
913 ctf_sect_munmap(&fp->ctf_data);
914 if (fp->ctf_symtab.cts_data != NULL)
915 ctf_sect_munmap(&fp->ctf_symtab);
916 if (fp->ctf_strtab.cts_data != NULL)
917 ctf_sect_munmap(&fp->ctf_strtab);
918 }
919
920 if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
921 fp->ctf_data.cts_name != NULL) {
922 ctf_free((char *)fp->ctf_data.cts_name,
923 strlen(fp->ctf_data.cts_name) + 1);
924 }
925
926 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
927 fp->ctf_symtab.cts_name != NULL) {
928 ctf_free((char *)fp->ctf_symtab.cts_name,
929 strlen(fp->ctf_symtab.cts_name) + 1);
930 }
931
932 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
933 fp->ctf_strtab.cts_name != NULL) {
934 ctf_free((char *)fp->ctf_strtab.cts_name,
935 strlen(fp->ctf_strtab.cts_name) + 1);
936 }
937
938 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
939 ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
940
941 if (fp->ctf_sxlate != NULL)
942 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
943
944 if (fp->ctf_txlate != NULL) {
945 ctf_free(fp->ctf_txlate,
946 sizeof (uint_t) * (fp->ctf_typemax + 1));
947 }
948
949 if (fp->ctf_ptrtab != NULL) {
950 ctf_free(fp->ctf_ptrtab,
951 sizeof (ushort_t) * (fp->ctf_typemax + 1));
952 }
953
954 ctf_hash_destroy(&fp->ctf_structs);
955 ctf_hash_destroy(&fp->ctf_unions);
956 ctf_hash_destroy(&fp->ctf_enums);
957 ctf_hash_destroy(&fp->ctf_names);
958
959 ctf_free(fp, sizeof (ctf_file_t));
960 }
961
962 /*
963 * Return the CTF handle for the parent CTF container, if one exists.
964 * Otherwise return NULL to indicate this container has no imported parent.
965 */
966 ctf_file_t *
ctf_parent_file(ctf_file_t * fp)967 ctf_parent_file(ctf_file_t *fp)
968 {
969 return (fp->ctf_parent);
970 }
971
972 /*
973 * Return the name of the parent CTF container, if one exists. Otherwise
974 * return NULL to indicate this container is a root container.
975 */
976 const char *
ctf_parent_name(ctf_file_t * fp)977 ctf_parent_name(ctf_file_t *fp)
978 {
979 return (fp->ctf_parname);
980 }
981
982 /*
983 * Import the types from the specified parent container by storing a pointer
984 * to it in ctf_parent and incrementing its reference count. Only one parent
985 * is allowed: if a parent already exists, it is replaced by the new parent.
986 */
987 int
ctf_import(ctf_file_t * fp,ctf_file_t * pfp)988 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
989 {
990 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
991 return (ctf_set_errno(fp, EINVAL));
992
993 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
994 return (ctf_set_errno(fp, ECTF_DMODEL));
995
996 if (fp->ctf_parent != NULL)
997 ctf_close(fp->ctf_parent);
998
999 if (pfp != NULL) {
1000 fp->ctf_flags |= LCTF_CHILD;
1001 pfp->ctf_refcnt++;
1002 }
1003
1004 fp->ctf_parent = pfp;
1005 return (0);
1006 }
1007
1008 /*
1009 * Set the data model constant for the CTF container.
1010 */
1011 int
ctf_setmodel(ctf_file_t * fp,int model)1012 ctf_setmodel(ctf_file_t *fp, int model)
1013 {
1014 const ctf_dmodel_t *dp;
1015
1016 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1017 if (dp->ctd_code == model) {
1018 fp->ctf_dmodel = dp;
1019 return (0);
1020 }
1021 }
1022
1023 return (ctf_set_errno(fp, EINVAL));
1024 }
1025
1026 /*
1027 * Return the data model constant for the CTF container.
1028 */
1029 int
ctf_getmodel(ctf_file_t * fp)1030 ctf_getmodel(ctf_file_t *fp)
1031 {
1032 return (fp->ctf_dmodel->ctd_code);
1033 }
1034
1035 void
ctf_setspecific(ctf_file_t * fp,void * data)1036 ctf_setspecific(ctf_file_t *fp, void *data)
1037 {
1038 fp->ctf_specific = data;
1039 }
1040
1041 void *
ctf_getspecific(ctf_file_t * fp)1042 ctf_getspecific(ctf_file_t *fp)
1043 {
1044 return (fp->ctf_specific);
1045 }
1046