1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2009-2010, Intel Corporation.
27 * All rights reserved.
28 */
29
30 #include <sys/x86_archext.h>
31 #include <sys/machsystm.h>
32 #include <sys/x_call.h>
33 #include <sys/stat.h>
34 #include <sys/acpi/acpi.h>
35 #include <sys/acpica.h>
36 #include <sys/cpu_acpi.h>
37 #include <sys/cpu_idle.h>
38 #include <sys/cpupm.h>
39 #include <sys/cpu_event.h>
40 #include <sys/hpet.h>
41 #include <sys/archsystm.h>
42 #include <vm/hat_i86.h>
43 #include <sys/dtrace.h>
44 #include <sys/sdt.h>
45 #include <sys/callb.h>
46
47 #define CSTATE_USING_HPET 1
48 #define CSTATE_USING_LAT 2
49
50 #define CPU_IDLE_STOP_TIMEOUT 1000
51
52 extern void cpu_idle_adaptive(void);
53 extern uint32_t cpupm_next_cstate(cma_c_state_t *cs_data,
54 cpu_acpi_cstate_t *cstates, uint32_t cs_count, hrtime_t start);
55
56 static int cpu_idle_init(cpu_t *);
57 static void cpu_idle_fini(cpu_t *);
58 static void cpu_idle_stop(cpu_t *);
59 static boolean_t cpu_deep_idle_callb(void *arg, int code);
60 static boolean_t cpu_idle_cpr_callb(void *arg, int code);
61 static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate);
62
63 static boolean_t cstate_use_timer(hrtime_t *lapic_expire, int timer);
64
65 /*
66 * the flag of always-running local APIC timer.
67 * the flag of HPET Timer use in deep cstate.
68 */
69 static boolean_t cpu_cstate_arat = B_FALSE;
70 static boolean_t cpu_cstate_hpet = B_FALSE;
71
72 /*
73 * Interfaces for modules implementing Intel's deep c-state.
74 */
75 cpupm_state_ops_t cpu_idle_ops = {
76 "Generic ACPI C-state Support",
77 cpu_idle_init,
78 cpu_idle_fini,
79 NULL,
80 cpu_idle_stop
81 };
82
83 static kmutex_t cpu_idle_callb_mutex;
84 static callb_id_t cpu_deep_idle_callb_id;
85 static callb_id_t cpu_idle_cpr_callb_id;
86 static uint_t cpu_idle_cfg_state;
87
88 static kmutex_t cpu_idle_mutex;
89
90 cpu_idle_kstat_t cpu_idle_kstat = {
91 { "address_space_id", KSTAT_DATA_STRING },
92 { "latency", KSTAT_DATA_UINT32 },
93 { "power", KSTAT_DATA_UINT32 },
94 };
95
96 /*
97 * kstat update function of the c-state info
98 */
99 static int
cpu_idle_kstat_update(kstat_t * ksp,int flag)100 cpu_idle_kstat_update(kstat_t *ksp, int flag)
101 {
102 cpu_acpi_cstate_t *cstate = ksp->ks_private;
103
104 if (flag == KSTAT_WRITE) {
105 return (EACCES);
106 }
107
108 if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
109 kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
110 "FFixedHW");
111 } else if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_SYSTEM_IO) {
112 kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
113 "SystemIO");
114 } else {
115 kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
116 "Unsupported");
117 }
118
119 cpu_idle_kstat.cs_latency.value.ui32 = cstate->cs_latency;
120 cpu_idle_kstat.cs_power.value.ui32 = cstate->cs_power;
121
122 return (0);
123 }
124
125 /*
126 * Used during configuration callbacks to manage implementation specific
127 * details of the hardware timer used during Deep C-state.
128 */
129 boolean_t
cstate_timer_callback(int code)130 cstate_timer_callback(int code)
131 {
132 if (cpu_cstate_arat) {
133 return (B_TRUE);
134 } else if (cpu_cstate_hpet) {
135 return (hpet.callback(code));
136 }
137 return (B_FALSE);
138 }
139
140 /*
141 * Some Local APIC Timers do not work during Deep C-states.
142 * The Deep C-state idle function uses this function to ensure it is using a
143 * hardware timer that works during Deep C-states. This function also
144 * switches the timer back to the LACPI Timer after Deep C-state.
145 */
146 static boolean_t
cstate_use_timer(hrtime_t * lapic_expire,int timer)147 cstate_use_timer(hrtime_t *lapic_expire, int timer)
148 {
149 if (cpu_cstate_arat)
150 return (B_TRUE);
151
152 /*
153 * We have to return B_FALSE if no arat or hpet support
154 */
155 if (!cpu_cstate_hpet)
156 return (B_FALSE);
157
158 switch (timer) {
159 case CSTATE_USING_HPET:
160 return (hpet.use_hpet_timer(lapic_expire));
161 case CSTATE_USING_LAT:
162 hpet.use_lapic_timer(*lapic_expire);
163 return (B_TRUE);
164 default:
165 return (B_FALSE);
166 }
167 }
168
169 /*
170 * c-state wakeup function.
171 * Similar to cpu_wakeup and cpu_wakeup_mwait except this function deals
172 * with CPUs asleep in MWAIT, HLT, or ACPI Deep C-State.
173 */
174 void
cstate_wakeup(cpu_t * cp,int bound)175 cstate_wakeup(cpu_t *cp, int bound)
176 {
177 struct machcpu *mcpu = &(cp->cpu_m);
178 volatile uint32_t *mcpu_mwait = mcpu->mcpu_mwait;
179 cpupart_t *cpu_part;
180 uint_t cpu_found;
181 processorid_t cpu_sid;
182
183 cpu_part = cp->cpu_part;
184 cpu_sid = cp->cpu_seqid;
185 /*
186 * Clear the halted bit for that CPU since it will be woken up
187 * in a moment.
188 */
189 if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
190 /*
191 * Clear the halted bit for that CPU since it will be
192 * poked in a moment.
193 */
194 bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
195
196 /*
197 * We may find the current CPU present in the halted cpuset
198 * if we're in the context of an interrupt that occurred
199 * before we had a chance to clear our bit in cpu_idle().
200 * Waking ourself is obviously unnecessary, since if
201 * we're here, we're not halted.
202 */
203 if (cp != CPU) {
204 /*
205 * Use correct wakeup mechanism
206 */
207 if ((mcpu_mwait != NULL) &&
208 (*mcpu_mwait == MWAIT_HALTED))
209 MWAIT_WAKEUP(cp);
210 else
211 poke_cpu(cp->cpu_id);
212 }
213 return;
214 } else {
215 /*
216 * This cpu isn't halted, but it's idle or undergoing a
217 * context switch. No need to awaken anyone else.
218 */
219 if (cp->cpu_thread == cp->cpu_idle_thread ||
220 cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
221 return;
222 }
223
224 /*
225 * No need to wake up other CPUs if the thread we just enqueued
226 * is bound.
227 */
228 if (bound)
229 return;
230
231
232 /*
233 * See if there's any other halted CPUs. If there are, then
234 * select one, and awaken it.
235 * It's possible that after we find a CPU, somebody else
236 * will awaken it before we get the chance.
237 * In that case, look again.
238 */
239 do {
240 cpu_found = bitset_find(&cpu_part->cp_haltset);
241 if (cpu_found == (uint_t)-1)
242 return;
243
244 } while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
245 cpu_found) < 0);
246
247 /*
248 * Must use correct wakeup mechanism to avoid lost wakeup of
249 * alternate cpu.
250 */
251 if (cpu_found != CPU->cpu_seqid) {
252 mcpu_mwait = cpu_seq[cpu_found]->cpu_m.mcpu_mwait;
253 if ((mcpu_mwait != NULL) && (*mcpu_mwait == MWAIT_HALTED))
254 MWAIT_WAKEUP(cpu_seq[cpu_found]);
255 else
256 poke_cpu(cpu_seq[cpu_found]->cpu_id);
257 }
258 }
259
260 /*
261 * Function called by CPU idle notification framework to check whether CPU
262 * has been awakened. It will be called with interrupt disabled.
263 * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
264 * notification framework.
265 */
266 static void
acpi_cpu_mwait_check_wakeup(void * arg)267 acpi_cpu_mwait_check_wakeup(void *arg)
268 {
269 volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
270
271 ASSERT(arg != NULL);
272 if (*mcpu_mwait != MWAIT_HALTED) {
273 /*
274 * CPU has been awakened, notify CPU idle notification system.
275 */
276 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
277 } else {
278 /*
279 * Toggle interrupt flag to detect pending interrupts.
280 * If interrupt happened, do_interrupt() will notify CPU idle
281 * notification framework so no need to call cpu_idle_exit()
282 * here.
283 */
284 sti();
285 SMT_PAUSE();
286 cli();
287 }
288 }
289
290 static void
acpi_cpu_mwait_ipi_check_wakeup(void * arg)291 acpi_cpu_mwait_ipi_check_wakeup(void *arg)
292 {
293 volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
294
295 ASSERT(arg != NULL);
296 if (*mcpu_mwait != MWAIT_WAKEUP_IPI) {
297 /*
298 * CPU has been awakened, notify CPU idle notification system.
299 */
300 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
301 } else {
302 /*
303 * Toggle interrupt flag to detect pending interrupts.
304 * If interrupt happened, do_interrupt() will notify CPU idle
305 * notification framework so no need to call cpu_idle_exit()
306 * here.
307 */
308 sti();
309 SMT_PAUSE();
310 cli();
311 }
312 }
313
314 /*ARGSUSED*/
315 static void
acpi_cpu_check_wakeup(void * arg)316 acpi_cpu_check_wakeup(void *arg)
317 {
318 /*
319 * Toggle interrupt flag to detect pending interrupts.
320 * If interrupt happened, do_interrupt() will notify CPU idle
321 * notification framework so no need to call cpu_idle_exit() here.
322 */
323 sti();
324 SMT_PAUSE();
325 cli();
326 }
327
328 /*
329 * enter deep c-state handler
330 */
331 static void
acpi_cpu_cstate(cpu_acpi_cstate_t * cstate)332 acpi_cpu_cstate(cpu_acpi_cstate_t *cstate)
333 {
334 volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait;
335 cpu_t *cpup = CPU;
336 processorid_t cpu_sid = cpup->cpu_seqid;
337 cpupart_t *cp = cpup->cpu_part;
338 hrtime_t lapic_expire;
339 uint8_t type = cstate->cs_addrspace_id;
340 uint32_t cs_type = cstate->cs_type;
341 int hset_update = 1;
342 boolean_t using_timer;
343 cpu_idle_check_wakeup_t check_func = &acpi_cpu_check_wakeup;
344
345 /*
346 * Set our mcpu_mwait here, so we can tell if anyone tries to
347 * wake us between now and when we call mwait. No other cpu will
348 * attempt to set our mcpu_mwait until we add ourself to the haltset.
349 */
350 if (mcpu_mwait) {
351 if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
352 *mcpu_mwait = MWAIT_WAKEUP_IPI;
353 check_func = &acpi_cpu_mwait_ipi_check_wakeup;
354 } else {
355 *mcpu_mwait = MWAIT_HALTED;
356 check_func = &acpi_cpu_mwait_check_wakeup;
357 }
358 }
359
360 /*
361 * If this CPU is online, and there are multiple CPUs
362 * in the system, then we should note our halting
363 * by adding ourselves to the partition's halted CPU
364 * bitmap. This allows other CPUs to find/awaken us when
365 * work becomes available.
366 */
367 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
368 hset_update = 0;
369
370 /*
371 * Add ourselves to the partition's halted CPUs bitmask
372 * and set our HALTED flag, if necessary.
373 *
374 * When a thread becomes runnable, it is placed on the queue
375 * and then the halted cpuset is checked to determine who
376 * (if anyone) should be awakened. We therefore need to first
377 * add ourselves to the halted cpuset, and and then check if there
378 * is any work available.
379 *
380 * Note that memory barriers after updating the HALTED flag
381 * are not necessary since an atomic operation (updating the bitmap)
382 * immediately follows. On x86 the atomic operation acts as a
383 * memory barrier for the update of cpu_disp_flags.
384 */
385 if (hset_update) {
386 cpup->cpu_disp_flags |= CPU_DISP_HALTED;
387 bitset_atomic_add(&cp->cp_haltset, cpu_sid);
388 }
389
390 /*
391 * Check to make sure there's really nothing to do.
392 * Work destined for this CPU may become available after
393 * this check. We'll be notified through the clearing of our
394 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
395 *
396 * disp_anywork() checks disp_nrunnable, so we do not have to later.
397 */
398 if (disp_anywork()) {
399 if (hset_update) {
400 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
401 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
402 }
403 return;
404 }
405
406 /*
407 * We're on our way to being halted.
408 *
409 * The local APIC timer can stop in ACPI C2 and deeper c-states.
410 * Try to program the HPET hardware to substitute for this CPU's
411 * LAPIC timer.
412 * cstate_use_timer() could disable the LAPIC Timer. Make sure
413 * to start the LAPIC Timer again before leaving this function.
414 *
415 * Disable interrupts here so we will awaken immediately after halting
416 * if someone tries to poke us between now and the time we actually
417 * halt.
418 */
419 cli();
420 using_timer = cstate_use_timer(&lapic_expire, CSTATE_USING_HPET);
421
422 /*
423 * We check for the presence of our bit after disabling interrupts.
424 * If it's cleared, we'll return. If the bit is cleared after
425 * we check then the cstate_wakeup() will pop us out of the halted
426 * state.
427 *
428 * This means that the ordering of the cstate_wakeup() and the clearing
429 * of the bit by cpu_wakeup is important.
430 * cpu_wakeup() must clear our mc_haltset bit, and then call
431 * cstate_wakeup().
432 * acpi_cpu_cstate() must disable interrupts, then check for the bit.
433 */
434 if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
435 (void) cstate_use_timer(&lapic_expire,
436 CSTATE_USING_LAT);
437 sti();
438 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
439 return;
440 }
441
442 /*
443 * The check for anything locally runnable is here for performance
444 * and isn't needed for correctness. disp_nrunnable ought to be
445 * in our cache still, so it's inexpensive to check, and if there
446 * is anything runnable we won't have to wait for the poke.
447 */
448 if (cpup->cpu_disp->disp_nrunnable != 0) {
449 (void) cstate_use_timer(&lapic_expire,
450 CSTATE_USING_LAT);
451 sti();
452 if (hset_update) {
453 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
454 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
455 }
456 return;
457 }
458
459 if (using_timer == B_FALSE) {
460
461 (void) cstate_use_timer(&lapic_expire,
462 CSTATE_USING_LAT);
463 sti();
464
465 /*
466 * We are currently unable to program the HPET to act as this
467 * CPU's proxy LAPIC timer. This CPU cannot enter C2 or deeper
468 * because no timer is set to wake it up while its LAPIC timer
469 * stalls in deep C-States.
470 * Enter C1 instead.
471 *
472 * cstate_wake_cpu() will wake this CPU with an IPI which
473 * works with MWAIT.
474 */
475 i86_monitor(mcpu_mwait, 0, 0);
476 if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) == MWAIT_HALTED) {
477 if (cpu_idle_enter(IDLE_STATE_C1, 0,
478 check_func, (void *)mcpu_mwait) == 0) {
479 if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) ==
480 MWAIT_HALTED) {
481 i86_mwait(0, 0);
482 }
483 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
484 }
485 }
486
487 /*
488 * We're no longer halted
489 */
490 if (hset_update) {
491 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
492 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
493 }
494 return;
495 }
496
497 if (type == ACPI_ADR_SPACE_FIXED_HARDWARE) {
498 /*
499 * We're on our way to being halted.
500 * To avoid a lost wakeup, arm the monitor before checking
501 * if another cpu wrote to mcpu_mwait to wake us up.
502 */
503 i86_monitor(mcpu_mwait, 0, 0);
504 if (*mcpu_mwait == MWAIT_HALTED) {
505 if (cpu_idle_enter((uint_t)cs_type, 0,
506 check_func, (void *)mcpu_mwait) == 0) {
507 if (*mcpu_mwait == MWAIT_HALTED) {
508 i86_mwait(cstate->cs_address, 1);
509 }
510 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
511 }
512 }
513 } else if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
514 uint32_t value;
515 ACPI_TABLE_FADT *gbl_FADT;
516
517 if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
518 if (cpu_idle_enter((uint_t)cs_type, 0,
519 check_func, (void *)mcpu_mwait) == 0) {
520 if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
521 (void) cpu_acpi_read_port(
522 cstate->cs_address, &value, 8);
523 acpica_get_global_FADT(&gbl_FADT);
524 (void) cpu_acpi_read_port(
525 gbl_FADT->XPmTimerBlock.Address,
526 &value, 32);
527 }
528 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
529 }
530 }
531 }
532
533 /*
534 * The LAPIC timer may have stopped in deep c-state.
535 * Reprogram this CPU's LAPIC here before enabling interrupts.
536 */
537 (void) cstate_use_timer(&lapic_expire, CSTATE_USING_LAT);
538 sti();
539
540 /*
541 * We're no longer halted
542 */
543 if (hset_update) {
544 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
545 bitset_atomic_del(&cp->cp_haltset, cpu_sid);
546 }
547 }
548
549 /*
550 * Idle the present CPU, deep c-state is supported
551 */
552 void
cpu_acpi_idle(void)553 cpu_acpi_idle(void)
554 {
555 cpu_t *cp = CPU;
556 cpu_acpi_handle_t handle;
557 cma_c_state_t *cs_data;
558 cpu_acpi_cstate_t *cstates;
559 hrtime_t start, end;
560 int cpu_max_cstates;
561 uint32_t cs_indx;
562 uint16_t cs_type;
563
564 cpupm_mach_state_t *mach_state =
565 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
566 handle = mach_state->ms_acpi_handle;
567 ASSERT(CPU_ACPI_CSTATES(handle) != NULL);
568
569 cs_data = mach_state->ms_cstate.cma_state.cstate;
570 cstates = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
571 ASSERT(cstates != NULL);
572 cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
573 if (cpu_max_cstates > CPU_MAX_CSTATES)
574 cpu_max_cstates = CPU_MAX_CSTATES;
575 if (cpu_max_cstates == 1) { /* no ACPI c-state data */
576 (*non_deep_idle_cpu)();
577 return;
578 }
579
580 start = gethrtime_unscaled();
581
582 cs_indx = cpupm_next_cstate(cs_data, cstates, cpu_max_cstates, start);
583
584 cs_type = cstates[cs_indx].cs_type;
585
586 switch (cs_type) {
587 default:
588 /* FALLTHROUGH */
589 case CPU_ACPI_C1:
590 (*non_deep_idle_cpu)();
591 break;
592
593 case CPU_ACPI_C2:
594 acpi_cpu_cstate(&cstates[cs_indx]);
595 break;
596
597 case CPU_ACPI_C3:
598 /*
599 * All supported Intel processors maintain cache coherency
600 * during C3. Currently when entering C3 processors flush
601 * core caches to higher level shared cache. The shared cache
602 * maintains state and supports probes during C3.
603 * Consequently there is no need to handle cache coherency
604 * and Bus Master activity here with the cache flush, BM_RLD
605 * bit, BM_STS bit, nor PM2_CNT.ARB_DIS mechanisms described
606 * in section 8.1.4 of the ACPI Specification 4.0.
607 */
608 acpi_cpu_cstate(&cstates[cs_indx]);
609 break;
610 }
611
612 end = gethrtime_unscaled();
613
614 /*
615 * Update statistics
616 */
617 cpupm_wakeup_cstate_data(cs_data, end);
618 }
619
620 boolean_t
cpu_deep_cstates_supported(void)621 cpu_deep_cstates_supported(void)
622 {
623 extern int idle_cpu_no_deep_c;
624
625 if (idle_cpu_no_deep_c)
626 return (B_FALSE);
627
628 if (!cpuid_deep_cstates_supported())
629 return (B_FALSE);
630
631 if (cpuid_arat_supported()) {
632 cpu_cstate_arat = B_TRUE;
633 return (B_TRUE);
634 }
635
636 if ((hpet.supported == HPET_FULL_SUPPORT) &&
637 hpet.install_proxy()) {
638 cpu_cstate_hpet = B_TRUE;
639 return (B_TRUE);
640 }
641
642 return (B_FALSE);
643 }
644
645 /*
646 * Validate that this processor supports deep cstate and if so,
647 * get the c-state data from ACPI and cache it.
648 */
649 static int
cpu_idle_init(cpu_t * cp)650 cpu_idle_init(cpu_t *cp)
651 {
652 cpupm_mach_state_t *mach_state =
653 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
654 cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
655 cpu_acpi_cstate_t *cstate;
656 char name[KSTAT_STRLEN];
657 int cpu_max_cstates, i;
658 int ret;
659
660 /*
661 * Cache the C-state specific ACPI data.
662 */
663 if ((ret = cpu_acpi_cache_cstate_data(handle)) != 0) {
664 if (ret < 0)
665 cmn_err(CE_NOTE,
666 "!Support for CPU deep idle states is being "
667 "disabled due to errors parsing ACPI C-state "
668 "objects exported by BIOS.");
669 cpu_idle_fini(cp);
670 return (-1);
671 }
672
673 cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
674
675 cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
676
677 for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
678 (void) snprintf(name, KSTAT_STRLEN - 1, "c%d", cstate->cs_type);
679 /*
680 * Allocate, initialize and install cstate kstat
681 */
682 cstate->cs_ksp = kstat_create("cstate", cp->cpu_id,
683 name, "misc",
684 KSTAT_TYPE_NAMED,
685 sizeof (cpu_idle_kstat) / sizeof (kstat_named_t),
686 KSTAT_FLAG_VIRTUAL);
687
688 if (cstate->cs_ksp == NULL) {
689 cmn_err(CE_NOTE, "kstat_create(c_state) fail");
690 } else {
691 cstate->cs_ksp->ks_data = &cpu_idle_kstat;
692 cstate->cs_ksp->ks_lock = &cpu_idle_mutex;
693 cstate->cs_ksp->ks_update = cpu_idle_kstat_update;
694 cstate->cs_ksp->ks_data_size += MAXNAMELEN;
695 cstate->cs_ksp->ks_private = cstate;
696 kstat_install(cstate->cs_ksp);
697 }
698 cstate++;
699 }
700
701 cpupm_alloc_domains(cp, CPUPM_C_STATES);
702 cpupm_alloc_ms_cstate(cp);
703
704 if (cpu_deep_cstates_supported()) {
705 uint32_t value;
706
707 mutex_enter(&cpu_idle_callb_mutex);
708 if (cpu_deep_idle_callb_id == (callb_id_t)0)
709 cpu_deep_idle_callb_id = callb_add(&cpu_deep_idle_callb,
710 (void *)NULL, CB_CL_CPU_DEEP_IDLE, "cpu_deep_idle");
711 if (cpu_idle_cpr_callb_id == (callb_id_t)0)
712 cpu_idle_cpr_callb_id = callb_add(&cpu_idle_cpr_callb,
713 (void *)NULL, CB_CL_CPR_PM, "cpu_idle_cpr");
714 mutex_exit(&cpu_idle_callb_mutex);
715
716
717 /*
718 * All supported CPUs (Nehalem and later) will remain in C3
719 * during Bus Master activity.
720 * All CPUs set ACPI_BITREG_BUS_MASTER_RLD to 0 here if it
721 * is not already 0 before enabling Deeper C-states.
722 */
723 cpu_acpi_get_register(ACPI_BITREG_BUS_MASTER_RLD, &value);
724 if (value & 1)
725 cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
726 }
727
728 return (0);
729 }
730
731 /*
732 * Free resources allocated by cpu_idle_init().
733 */
734 static void
cpu_idle_fini(cpu_t * cp)735 cpu_idle_fini(cpu_t *cp)
736 {
737 cpupm_mach_state_t *mach_state =
738 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state);
739 cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
740 cpu_acpi_cstate_t *cstate;
741 uint_t cpu_max_cstates, i;
742
743 /*
744 * idle cpu points back to the generic one
745 */
746 idle_cpu = cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
747 disp_enq_thread = non_deep_idle_disp_enq_thread;
748
749 cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
750 if (cstate) {
751 cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
752
753 for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
754 if (cstate->cs_ksp != NULL)
755 kstat_delete(cstate->cs_ksp);
756 cstate++;
757 }
758 }
759
760 cpupm_free_ms_cstate(cp);
761 cpupm_free_domains(&cpupm_cstate_domains);
762 cpu_acpi_free_cstate_data(handle);
763
764 mutex_enter(&cpu_idle_callb_mutex);
765 if (cpu_deep_idle_callb_id != (callb_id_t)0) {
766 (void) callb_delete(cpu_deep_idle_callb_id);
767 cpu_deep_idle_callb_id = (callb_id_t)0;
768 }
769 if (cpu_idle_cpr_callb_id != (callb_id_t)0) {
770 (void) callb_delete(cpu_idle_cpr_callb_id);
771 cpu_idle_cpr_callb_id = (callb_id_t)0;
772 }
773 mutex_exit(&cpu_idle_callb_mutex);
774 }
775
776 /*
777 * This function is introduced here to solve a race condition
778 * between the master and the slave to touch c-state data structure.
779 * After the slave calls this idle function to switch to the non
780 * deep idle function, the master can go on to reclaim the resource.
781 */
782 static void
cpu_idle_stop_sync(void)783 cpu_idle_stop_sync(void)
784 {
785 /* switch to the non deep idle function */
786 CPU->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
787 }
788
789 static void
cpu_idle_stop(cpu_t * cp)790 cpu_idle_stop(cpu_t *cp)
791 {
792 cpupm_mach_state_t *mach_state =
793 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state);
794 cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
795 cpu_acpi_cstate_t *cstate;
796 uint_t cpu_max_cstates, i = 0;
797
798 mutex_enter(&cpu_idle_callb_mutex);
799 if (idle_cpu == cpu_idle_adaptive) {
800 /*
801 * invoke the slave to call synchronous idle function.
802 */
803 cp->cpu_m.mcpu_idle_cpu = cpu_idle_stop_sync;
804 poke_cpu(cp->cpu_id);
805
806 /*
807 * wait until the slave switchs to non deep idle function,
808 * so that the master is safe to go on to reclaim the resource.
809 */
810 while (cp->cpu_m.mcpu_idle_cpu != non_deep_idle_cpu) {
811 drv_usecwait(10);
812 if ((++i % CPU_IDLE_STOP_TIMEOUT) == 0)
813 cmn_err(CE_NOTE, "!cpu_idle_stop: the slave"
814 " idle stop timeout");
815 }
816 }
817 mutex_exit(&cpu_idle_callb_mutex);
818
819 cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
820 if (cstate) {
821 cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
822
823 for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
824 if (cstate->cs_ksp != NULL)
825 kstat_delete(cstate->cs_ksp);
826 cstate++;
827 }
828 }
829 cpupm_free_ms_cstate(cp);
830 cpupm_remove_domains(cp, CPUPM_C_STATES, &cpupm_cstate_domains);
831 cpu_acpi_free_cstate_data(handle);
832 }
833
834 /*ARGSUSED*/
835 static boolean_t
cpu_deep_idle_callb(void * arg,int code)836 cpu_deep_idle_callb(void *arg, int code)
837 {
838 boolean_t rslt = B_TRUE;
839
840 mutex_enter(&cpu_idle_callb_mutex);
841 switch (code) {
842 case PM_DEFAULT_CPU_DEEP_IDLE:
843 /*
844 * Default policy is same as enable
845 */
846 /*FALLTHROUGH*/
847 case PM_ENABLE_CPU_DEEP_IDLE:
848 if ((cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) == 0)
849 break;
850
851 if (cstate_timer_callback(PM_ENABLE_CPU_DEEP_IDLE)) {
852 disp_enq_thread = cstate_wakeup;
853 idle_cpu = cpu_idle_adaptive;
854 cpu_idle_cfg_state &= ~CPU_IDLE_DEEP_CFG;
855 } else {
856 rslt = B_FALSE;
857 }
858 break;
859
860 case PM_DISABLE_CPU_DEEP_IDLE:
861 if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
862 break;
863
864 idle_cpu = non_deep_idle_cpu;
865 if (cstate_timer_callback(PM_DISABLE_CPU_DEEP_IDLE)) {
866 disp_enq_thread = non_deep_idle_disp_enq_thread;
867 cpu_idle_cfg_state |= CPU_IDLE_DEEP_CFG;
868 }
869 break;
870
871 default:
872 cmn_err(CE_NOTE, "!cpu deep_idle_callb: invalid code %d\n",
873 code);
874 break;
875 }
876 mutex_exit(&cpu_idle_callb_mutex);
877 return (rslt);
878 }
879
880 /*ARGSUSED*/
881 static boolean_t
cpu_idle_cpr_callb(void * arg,int code)882 cpu_idle_cpr_callb(void *arg, int code)
883 {
884 boolean_t rslt = B_TRUE;
885
886 mutex_enter(&cpu_idle_callb_mutex);
887 switch (code) {
888 case CB_CODE_CPR_RESUME:
889 if (cstate_timer_callback(CB_CODE_CPR_RESUME)) {
890 /*
891 * Do not enable dispatcher hooks if disabled by user.
892 */
893 if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
894 break;
895
896 disp_enq_thread = cstate_wakeup;
897 idle_cpu = cpu_idle_adaptive;
898 } else {
899 rslt = B_FALSE;
900 }
901 break;
902
903 case CB_CODE_CPR_CHKPT:
904 idle_cpu = non_deep_idle_cpu;
905 disp_enq_thread = non_deep_idle_disp_enq_thread;
906 (void) cstate_timer_callback(CB_CODE_CPR_CHKPT);
907 break;
908
909 default:
910 cmn_err(CE_NOTE, "!cpudvr cpr_callb: invalid code %d\n", code);
911 break;
912 }
913 mutex_exit(&cpu_idle_callb_mutex);
914 return (rslt);
915 }
916
917 /*
918 * handle _CST notification
919 */
920 void
cpuidle_cstate_instance(cpu_t * cp)921 cpuidle_cstate_instance(cpu_t *cp)
922 {
923 #ifndef __xpv
924 cpupm_mach_state_t *mach_state =
925 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
926 cpu_acpi_handle_t handle;
927 struct machcpu *mcpu;
928 cpuset_t dom_cpu_set;
929 kmutex_t *pm_lock;
930 int result = 0;
931 processorid_t cpu_id;
932
933 if (mach_state == NULL) {
934 return;
935 }
936
937 ASSERT(mach_state->ms_cstate.cma_domain != NULL);
938 dom_cpu_set = mach_state->ms_cstate.cma_domain->pm_cpus;
939 pm_lock = &mach_state->ms_cstate.cma_domain->pm_lock;
940
941 /*
942 * Do for all the CPU's in the domain
943 */
944 mutex_enter(pm_lock);
945 do {
946 CPUSET_FIND(dom_cpu_set, cpu_id);
947 if (cpu_id == CPUSET_NOTINSET)
948 break;
949
950 ASSERT(cpu_id >= 0 && cpu_id < NCPU);
951 cp = cpu[cpu_id];
952 mach_state = (cpupm_mach_state_t *)
953 cp->cpu_m.mcpu_pm_mach_state;
954 if (!(mach_state->ms_caps & CPUPM_C_STATES)) {
955 mutex_exit(pm_lock);
956 return;
957 }
958 handle = mach_state->ms_acpi_handle;
959 ASSERT(handle != NULL);
960
961 /*
962 * re-evaluate cstate object
963 */
964 if (cpu_acpi_cache_cstate_data(handle) != 0) {
965 cmn_err(CE_WARN, "Cannot re-evaluate the cpu c-state"
966 " object Instance: %d", cpu_id);
967 }
968 mcpu = &(cp->cpu_m);
969 mcpu->max_cstates = cpu_acpi_get_max_cstates(handle);
970 if (mcpu->max_cstates > CPU_ACPI_C1) {
971 (void) cstate_timer_callback(
972 CST_EVENT_MULTIPLE_CSTATES);
973 disp_enq_thread = cstate_wakeup;
974 cp->cpu_m.mcpu_idle_cpu = cpu_acpi_idle;
975 } else if (mcpu->max_cstates == CPU_ACPI_C1) {
976 disp_enq_thread = non_deep_idle_disp_enq_thread;
977 cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
978 (void) cstate_timer_callback(CST_EVENT_ONE_CSTATE);
979 }
980
981 CPUSET_ATOMIC_XDEL(dom_cpu_set, cpu_id, result);
982 } while (result < 0);
983 mutex_exit(pm_lock);
984 #endif
985 }
986
987 /*
988 * handle the number or the type of available processor power states change
989 */
990 void
cpuidle_manage_cstates(void * ctx)991 cpuidle_manage_cstates(void *ctx)
992 {
993 cpu_t *cp = ctx;
994 cpupm_mach_state_t *mach_state =
995 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
996 boolean_t is_ready;
997
998 if (mach_state == NULL) {
999 return;
1000 }
1001
1002 /*
1003 * We currently refuse to power manage if the CPU is not ready to
1004 * take cross calls (cross calls fail silently if CPU is not ready
1005 * for it).
1006 *
1007 * Additionally, for x86 platforms we cannot power manage an instance,
1008 * until it has been initialized.
1009 */
1010 is_ready = (cp->cpu_flags & CPU_READY) && cpupm_cstate_ready(cp);
1011 if (!is_ready)
1012 return;
1013
1014 cpuidle_cstate_instance(cp);
1015 }
1016