1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/gpu_scheduler.h>
9 #include <drm/panthor_drm.h>
10
11 #include <linux/build_bug.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-resv.h>
16 #include <linux/firmware.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/iosys-map.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24
25 #include "panthor_devfreq.h"
26 #include "panthor_device.h"
27 #include "panthor_fw.h"
28 #include "panthor_gem.h"
29 #include "panthor_gpu.h"
30 #include "panthor_heap.h"
31 #include "panthor_mmu.h"
32 #include "panthor_regs.h"
33 #include "panthor_sched.h"
34
35 /**
36 * DOC: Scheduler
37 *
38 * Mali CSF hardware adopts a firmware-assisted scheduling model, where
39 * the firmware takes care of scheduling aspects, to some extent.
40 *
41 * The scheduling happens at the scheduling group level, each group
42 * contains 1 to N queues (N is FW/hardware dependent, and exposed
43 * through the firmware interface). Each queue is assigned a command
44 * stream ring buffer, which serves as a way to get jobs submitted to
45 * the GPU, among other things.
46 *
47 * The firmware can schedule a maximum of M groups (M is FW/hardware
48 * dependent, and exposed through the firmware interface). Passed
49 * this maximum number of groups, the kernel must take care of
50 * rotating the groups passed to the firmware so every group gets
51 * a chance to have his queues scheduled for execution.
52 *
53 * The current implementation only supports with kernel-mode queues.
54 * In other terms, userspace doesn't have access to the ring-buffer.
55 * Instead, userspace passes indirect command stream buffers that are
56 * called from the queue ring-buffer by the kernel using a pre-defined
57 * sequence of command stream instructions to ensure the userspace driver
58 * always gets consistent results (cache maintenance,
59 * synchronization, ...).
60 *
61 * We rely on the drm_gpu_scheduler framework to deal with job
62 * dependencies and submission. As any other driver dealing with a
63 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
64 * entity has its own job scheduler. When a job is ready to be executed
65 * (all its dependencies are met), it is pushed to the appropriate
66 * queue ring-buffer, and the group is scheduled for execution if it
67 * wasn't already active.
68 *
69 * Kernel-side group scheduling is timeslice-based. When we have less
70 * groups than there are slots, the periodic tick is disabled and we
71 * just let the FW schedule the active groups. When there are more
72 * groups than slots, we let each group a chance to execute stuff for
73 * a given amount of time, and then re-evaluate and pick new groups
74 * to schedule. The group selection algorithm is based on
75 * priority+round-robin.
76 *
77 * Even though user-mode queues is out of the scope right now, the
78 * current design takes them into account by avoiding any guess on the
79 * group/queue state that would be based on information we wouldn't have
80 * if userspace was in charge of the ring-buffer. That's also one of the
81 * reason we don't do 'cooperative' scheduling (encoding FW group slot
82 * reservation as dma_fence that would be returned from the
83 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
84 * a queue of waiters, ordered by job submission order). This approach
85 * would work for kernel-mode queues, but would make user-mode queues a
86 * lot more complicated to retrofit.
87 */
88
89 #define JOB_TIMEOUT_MS 5000
90
91 #define MIN_CS_PER_CSG 8
92
93 #define MIN_CSGS 3
94 #define MAX_CSG_PRIO 0xf
95
96 struct panthor_group;
97
98 /**
99 * struct panthor_csg_slot - Command stream group slot
100 *
101 * This represents a FW slot for a scheduling group.
102 */
103 struct panthor_csg_slot {
104 /** @group: Scheduling group bound to this slot. */
105 struct panthor_group *group;
106
107 /** @priority: Group priority. */
108 u8 priority;
109
110 /**
111 * @idle: True if the group bound to this slot is idle.
112 *
113 * A group is idle when it has nothing waiting for execution on
114 * all its queues, or when queues are blocked waiting for something
115 * to happen (synchronization object).
116 */
117 bool idle;
118 };
119
120 /**
121 * enum panthor_csg_priority - Group priority
122 */
123 enum panthor_csg_priority {
124 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
125 PANTHOR_CSG_PRIORITY_LOW = 0,
126
127 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
128 PANTHOR_CSG_PRIORITY_MEDIUM,
129
130 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
131 PANTHOR_CSG_PRIORITY_HIGH,
132
133 /**
134 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
135 *
136 * Real-time priority allows one to preempt scheduling of other
137 * non-real-time groups. When such a group becomes executable,
138 * it will evict the group with the lowest non-rt priority if
139 * there's no free group slot available.
140 *
141 * Currently not exposed to userspace.
142 */
143 PANTHOR_CSG_PRIORITY_RT,
144
145 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 PANTHOR_CSG_PRIORITY_COUNT,
147 };
148
149 /**
150 * struct panthor_scheduler - Object used to manage the scheduler
151 */
152 struct panthor_scheduler {
153 /** @ptdev: Device. */
154 struct panthor_device *ptdev;
155
156 /**
157 * @wq: Workqueue used by our internal scheduler logic and
158 * drm_gpu_scheduler.
159 *
160 * Used for the scheduler tick, group update or other kind of FW
161 * event processing that can't be handled in the threaded interrupt
162 * path. Also passed to the drm_gpu_scheduler instances embedded
163 * in panthor_queue.
164 */
165 struct workqueue_struct *wq;
166
167 /**
168 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 *
170 * We have a queue dedicated to heap chunk allocation works to avoid
171 * blocking the rest of the scheduler if the allocation tries to
172 * reclaim memory.
173 */
174 struct workqueue_struct *heap_alloc_wq;
175
176 /** @tick_work: Work executed on a scheduling tick. */
177 struct delayed_work tick_work;
178
179 /**
180 * @sync_upd_work: Work used to process synchronization object updates.
181 *
182 * We use this work to unblock queues/groups that were waiting on a
183 * synchronization object.
184 */
185 struct work_struct sync_upd_work;
186
187 /**
188 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 *
190 * Even if the interrupt is threaded, we need any event processing
191 * that require taking the panthor_scheduler::lock to be processed
192 * outside the interrupt path so we don't block the tick logic when
193 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 * event processing requires taking this lock, we just delegate all
195 * FW event processing to the scheduler workqueue.
196 */
197 struct work_struct fw_events_work;
198
199 /**
200 * @fw_events: Bitmask encoding pending FW events.
201 */
202 atomic_t fw_events;
203
204 /**
205 * @resched_target: When the next tick should occur.
206 *
207 * Expressed in jiffies.
208 */
209 u64 resched_target;
210
211 /**
212 * @last_tick: When the last tick occurred.
213 *
214 * Expressed in jiffies.
215 */
216 u64 last_tick;
217
218 /** @tick_period: Tick period in jiffies. */
219 u64 tick_period;
220
221 /**
222 * @lock: Lock protecting access to all the scheduler fields.
223 *
224 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 * fields are touched.
226 */
227 struct mutex lock;
228
229 /** @groups: Various lists used to classify groups. */
230 struct {
231 /**
232 * @runnable: Runnable group lists.
233 *
234 * When a group has queues that want to execute something,
235 * its panthor_group::run_node should be inserted here.
236 *
237 * One list per-priority.
238 */
239 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240
241 /**
242 * @idle: Idle group lists.
243 *
244 * When all queues of a group are idle (either because they
245 * have nothing to execute, or because they are blocked), the
246 * panthor_group::run_node field should be inserted here.
247 *
248 * One list per-priority.
249 */
250 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251
252 /**
253 * @waiting: List of groups whose queues are blocked on a
254 * synchronization object.
255 *
256 * Insert panthor_group::wait_node here when a group is waiting
257 * for synchronization objects to be signaled.
258 *
259 * This list is evaluated in the @sync_upd_work work.
260 */
261 struct list_head waiting;
262 } groups;
263
264 /**
265 * @csg_slots: FW command stream group slots.
266 */
267 struct panthor_csg_slot csg_slots[MAX_CSGS];
268
269 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 u32 csg_slot_count;
271
272 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 u32 cs_slot_count;
274
275 /** @as_slot_count: Number of address space slots supported by the MMU. */
276 u32 as_slot_count;
277
278 /** @used_csg_slot_count: Number of command stream group slot currently used. */
279 u32 used_csg_slot_count;
280
281 /** @sb_slot_count: Number of scoreboard slots. */
282 u32 sb_slot_count;
283
284 /**
285 * @might_have_idle_groups: True if an active group might have become idle.
286 *
287 * This will force a tick, so other runnable groups can be scheduled if one
288 * or more active groups became idle.
289 */
290 bool might_have_idle_groups;
291
292 /** @pm: Power management related fields. */
293 struct {
294 /** @has_ref: True if the scheduler owns a runtime PM reference. */
295 bool has_ref;
296 } pm;
297
298 /** @reset: Reset related fields. */
299 struct {
300 /** @lock: Lock protecting the other reset fields. */
301 struct mutex lock;
302
303 /**
304 * @in_progress: True if a reset is in progress.
305 *
306 * Set to true in panthor_sched_pre_reset() and back to false in
307 * panthor_sched_post_reset().
308 */
309 atomic_t in_progress;
310
311 /**
312 * @stopped_groups: List containing all groups that were stopped
313 * before a reset.
314 *
315 * Insert panthor_group::run_node in the pre_reset path.
316 */
317 struct list_head stopped_groups;
318 } reset;
319 };
320
321 /**
322 * struct panthor_syncobj_32b - 32-bit FW synchronization object
323 */
324 struct panthor_syncobj_32b {
325 /** @seqno: Sequence number. */
326 u32 seqno;
327
328 /**
329 * @status: Status.
330 *
331 * Not zero on failure.
332 */
333 u32 status;
334 };
335
336 /**
337 * struct panthor_syncobj_64b - 64-bit FW synchronization object
338 */
339 struct panthor_syncobj_64b {
340 /** @seqno: Sequence number. */
341 u64 seqno;
342
343 /**
344 * @status: Status.
345 *
346 * Not zero on failure.
347 */
348 u32 status;
349
350 /** @pad: MBZ. */
351 u32 pad;
352 };
353
354 /**
355 * struct panthor_queue - Execution queue
356 */
357 struct panthor_queue {
358 /** @scheduler: DRM scheduler used for this queue. */
359 struct drm_gpu_scheduler scheduler;
360
361 /** @entity: DRM scheduling entity used for this queue. */
362 struct drm_sched_entity entity;
363
364 /**
365 * @remaining_time: Time remaining before the job timeout expires.
366 *
367 * The job timeout is suspended when the queue is not scheduled by the
368 * FW. Every time we suspend the timer, we need to save the remaining
369 * time so we can restore it later on.
370 */
371 unsigned long remaining_time;
372
373 /** @timeout_suspended: True if the job timeout was suspended. */
374 bool timeout_suspended;
375
376 /**
377 * @doorbell_id: Doorbell assigned to this queue.
378 *
379 * Right now, all groups share the same doorbell, and the doorbell ID
380 * is assigned to group_slot + 1 when the group is assigned a slot. But
381 * we might decide to provide fine grained doorbell assignment at some
382 * point, so don't have to wake up all queues in a group every time one
383 * of them is updated.
384 */
385 u8 doorbell_id;
386
387 /**
388 * @priority: Priority of the queue inside the group.
389 *
390 * Must be less than 16 (Only 4 bits available).
391 */
392 u8 priority;
393 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0)
394
395 /** @ringbuf: Command stream ring-buffer. */
396 struct panthor_kernel_bo *ringbuf;
397
398 /** @iface: Firmware interface. */
399 struct {
400 /** @mem: FW memory allocated for this interface. */
401 struct panthor_kernel_bo *mem;
402
403 /** @input: Input interface. */
404 struct panthor_fw_ringbuf_input_iface *input;
405
406 /** @output: Output interface. */
407 const struct panthor_fw_ringbuf_output_iface *output;
408
409 /** @input_fw_va: FW virtual address of the input interface buffer. */
410 u32 input_fw_va;
411
412 /** @output_fw_va: FW virtual address of the output interface buffer. */
413 u32 output_fw_va;
414 } iface;
415
416 /**
417 * @syncwait: Stores information about the synchronization object this
418 * queue is waiting on.
419 */
420 struct {
421 /** @gpu_va: GPU address of the synchronization object. */
422 u64 gpu_va;
423
424 /** @ref: Reference value to compare against. */
425 u64 ref;
426
427 /** @gt: True if this is a greater-than test. */
428 bool gt;
429
430 /** @sync64: True if this is a 64-bit sync object. */
431 bool sync64;
432
433 /** @bo: Buffer object holding the synchronization object. */
434 struct drm_gem_object *obj;
435
436 /** @offset: Offset of the synchronization object inside @bo. */
437 u64 offset;
438
439 /**
440 * @kmap: Kernel mapping of the buffer object holding the
441 * synchronization object.
442 */
443 void *kmap;
444 } syncwait;
445
446 /** @fence_ctx: Fence context fields. */
447 struct {
448 /** @lock: Used to protect access to all fences allocated by this context. */
449 spinlock_t lock;
450
451 /**
452 * @id: Fence context ID.
453 *
454 * Allocated with dma_fence_context_alloc().
455 */
456 u64 id;
457
458 /** @seqno: Sequence number of the last initialized fence. */
459 atomic64_t seqno;
460
461 /**
462 * @last_fence: Fence of the last submitted job.
463 *
464 * We return this fence when we get an empty command stream.
465 * This way, we are guaranteed that all earlier jobs have completed
466 * when drm_sched_job::s_fence::finished without having to feed
467 * the CS ring buffer with a dummy job that only signals the fence.
468 */
469 struct dma_fence *last_fence;
470
471 /**
472 * @in_flight_jobs: List containing all in-flight jobs.
473 *
474 * Used to keep track and signal panthor_job::done_fence when the
475 * synchronization object attached to the queue is signaled.
476 */
477 struct list_head in_flight_jobs;
478 } fence_ctx;
479 };
480
481 /**
482 * enum panthor_group_state - Scheduling group state.
483 */
484 enum panthor_group_state {
485 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
486 PANTHOR_CS_GROUP_CREATED,
487
488 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
489 PANTHOR_CS_GROUP_ACTIVE,
490
491 /**
492 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
493 * inactive/suspended right now.
494 */
495 PANTHOR_CS_GROUP_SUSPENDED,
496
497 /**
498 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
499 *
500 * Can no longer be scheduled. The only allowed action is a destruction.
501 */
502 PANTHOR_CS_GROUP_TERMINATED,
503
504 /**
505 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
506 *
507 * The FW returned an inconsistent state. The group is flagged unusable
508 * and can no longer be scheduled. The only allowed action is a
509 * destruction.
510 *
511 * When that happens, we also schedule a FW reset, to start from a fresh
512 * state.
513 */
514 PANTHOR_CS_GROUP_UNKNOWN_STATE,
515 };
516
517 /**
518 * struct panthor_group - Scheduling group object
519 */
520 struct panthor_group {
521 /** @refcount: Reference count */
522 struct kref refcount;
523
524 /** @ptdev: Device. */
525 struct panthor_device *ptdev;
526
527 /** @vm: VM bound to the group. */
528 struct panthor_vm *vm;
529
530 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
531 u64 compute_core_mask;
532
533 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
534 u64 fragment_core_mask;
535
536 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
537 u64 tiler_core_mask;
538
539 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
540 u8 max_compute_cores;
541
542 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
543 u8 max_fragment_cores;
544
545 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
546 u8 max_tiler_cores;
547
548 /** @priority: Group priority (check panthor_csg_priority). */
549 u8 priority;
550
551 /** @blocked_queues: Bitmask reflecting the blocked queues. */
552 u32 blocked_queues;
553
554 /** @idle_queues: Bitmask reflecting the idle queues. */
555 u32 idle_queues;
556
557 /** @fatal_lock: Lock used to protect access to fatal fields. */
558 spinlock_t fatal_lock;
559
560 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
561 u32 fatal_queues;
562
563 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
564 atomic_t tiler_oom;
565
566 /** @queue_count: Number of queues in this group. */
567 u32 queue_count;
568
569 /** @queues: Queues owned by this group. */
570 struct panthor_queue *queues[MAX_CS_PER_CSG];
571
572 /**
573 * @csg_id: ID of the FW group slot.
574 *
575 * -1 when the group is not scheduled/active.
576 */
577 int csg_id;
578
579 /**
580 * @destroyed: True when the group has been destroyed.
581 *
582 * If a group is destroyed it becomes useless: no further jobs can be submitted
583 * to its queues. We simply wait for all references to be dropped so we can
584 * release the group object.
585 */
586 bool destroyed;
587
588 /**
589 * @timedout: True when a timeout occurred on any of the queues owned by
590 * this group.
591 *
592 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
593 * and the group can't be suspended, this also leads to a timeout. In any case,
594 * any timeout situation is unrecoverable, and the group becomes useless. We
595 * simply wait for all references to be dropped so we can release the group
596 * object.
597 */
598 bool timedout;
599
600 /**
601 * @syncobjs: Pool of per-queue synchronization objects.
602 *
603 * One sync object per queue. The position of the sync object is
604 * determined by the queue index.
605 */
606 struct panthor_kernel_bo *syncobjs;
607
608 /** @state: Group state. */
609 enum panthor_group_state state;
610
611 /**
612 * @suspend_buf: Suspend buffer.
613 *
614 * Stores the state of the group and its queues when a group is suspended.
615 * Used at resume time to restore the group in its previous state.
616 *
617 * The size of the suspend buffer is exposed through the FW interface.
618 */
619 struct panthor_kernel_bo *suspend_buf;
620
621 /**
622 * @protm_suspend_buf: Protection mode suspend buffer.
623 *
624 * Stores the state of the group and its queues when a group that's in
625 * protection mode is suspended.
626 *
627 * Used at resume time to restore the group in its previous state.
628 *
629 * The size of the protection mode suspend buffer is exposed through the
630 * FW interface.
631 */
632 struct panthor_kernel_bo *protm_suspend_buf;
633
634 /** @sync_upd_work: Work used to check/signal job fences. */
635 struct work_struct sync_upd_work;
636
637 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
638 struct work_struct tiler_oom_work;
639
640 /** @term_work: Work used to finish the group termination procedure. */
641 struct work_struct term_work;
642
643 /**
644 * @release_work: Work used to release group resources.
645 *
646 * We need to postpone the group release to avoid a deadlock when
647 * the last ref is released in the tick work.
648 */
649 struct work_struct release_work;
650
651 /**
652 * @run_node: Node used to insert the group in the
653 * panthor_group::groups::{runnable,idle} and
654 * panthor_group::reset.stopped_groups lists.
655 */
656 struct list_head run_node;
657
658 /**
659 * @wait_node: Node used to insert the group in the
660 * panthor_group::groups::waiting list.
661 */
662 struct list_head wait_node;
663 };
664
665 /**
666 * group_queue_work() - Queue a group work
667 * @group: Group to queue the work for.
668 * @wname: Work name.
669 *
670 * Grabs a ref and queue a work item to the scheduler workqueue. If
671 * the work was already queued, we release the reference we grabbed.
672 *
673 * Work callbacks must release the reference we grabbed here.
674 */
675 #define group_queue_work(group, wname) \
676 do { \
677 group_get(group); \
678 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
679 group_put(group); \
680 } while (0)
681
682 /**
683 * sched_queue_work() - Queue a scheduler work.
684 * @sched: Scheduler object.
685 * @wname: Work name.
686 *
687 * Conditionally queues a scheduler work if no reset is pending/in-progress.
688 */
689 #define sched_queue_work(sched, wname) \
690 do { \
691 if (!atomic_read(&(sched)->reset.in_progress) && \
692 !panthor_device_reset_is_pending((sched)->ptdev)) \
693 queue_work((sched)->wq, &(sched)->wname ## _work); \
694 } while (0)
695
696 /**
697 * sched_queue_delayed_work() - Queue a scheduler delayed work.
698 * @sched: Scheduler object.
699 * @wname: Work name.
700 * @delay: Work delay in jiffies.
701 *
702 * Conditionally queues a scheduler delayed work if no reset is
703 * pending/in-progress.
704 */
705 #define sched_queue_delayed_work(sched, wname, delay) \
706 do { \
707 if (!atomic_read(&sched->reset.in_progress) && \
708 !panthor_device_reset_is_pending((sched)->ptdev)) \
709 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
710 } while (0)
711
712 /*
713 * We currently set the maximum of groups per file to an arbitrary low value.
714 * But this can be updated if we need more.
715 */
716 #define MAX_GROUPS_PER_POOL 128
717
718 /**
719 * struct panthor_group_pool - Group pool
720 *
721 * Each file get assigned a group pool.
722 */
723 struct panthor_group_pool {
724 /** @xa: Xarray used to manage group handles. */
725 struct xarray xa;
726 };
727
728 /**
729 * struct panthor_job - Used to manage GPU job
730 */
731 struct panthor_job {
732 /** @base: Inherit from drm_sched_job. */
733 struct drm_sched_job base;
734
735 /** @refcount: Reference count. */
736 struct kref refcount;
737
738 /** @group: Group of the queue this job will be pushed to. */
739 struct panthor_group *group;
740
741 /** @queue_idx: Index of the queue inside @group. */
742 u32 queue_idx;
743
744 /** @call_info: Information about the userspace command stream call. */
745 struct {
746 /** @start: GPU address of the userspace command stream. */
747 u64 start;
748
749 /** @size: Size of the userspace command stream. */
750 u32 size;
751
752 /**
753 * @latest_flush: Flush ID at the time the userspace command
754 * stream was built.
755 *
756 * Needed for the flush reduction mechanism.
757 */
758 u32 latest_flush;
759 } call_info;
760
761 /** @ringbuf: Position of this job is in the ring buffer. */
762 struct {
763 /** @start: Start offset. */
764 u64 start;
765
766 /** @end: End offset. */
767 u64 end;
768 } ringbuf;
769
770 /**
771 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
772 * list.
773 */
774 struct list_head node;
775
776 /** @done_fence: Fence signaled when the job is finished or cancelled. */
777 struct dma_fence *done_fence;
778 };
779
780 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)781 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
782 {
783 if (queue->syncwait.kmap) {
784 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
785
786 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
787 queue->syncwait.kmap = NULL;
788 }
789
790 drm_gem_object_put(queue->syncwait.obj);
791 queue->syncwait.obj = NULL;
792 }
793
794 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)795 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
796 {
797 struct panthor_device *ptdev = group->ptdev;
798 struct panthor_gem_object *bo;
799 struct iosys_map map;
800 int ret;
801
802 if (queue->syncwait.kmap)
803 return queue->syncwait.kmap + queue->syncwait.offset;
804
805 bo = panthor_vm_get_bo_for_va(group->vm,
806 queue->syncwait.gpu_va,
807 &queue->syncwait.offset);
808 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
809 goto err_put_syncwait_obj;
810
811 queue->syncwait.obj = &bo->base.base;
812 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
813 if (drm_WARN_ON(&ptdev->base, ret))
814 goto err_put_syncwait_obj;
815
816 queue->syncwait.kmap = map.vaddr;
817 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
818 goto err_put_syncwait_obj;
819
820 return queue->syncwait.kmap + queue->syncwait.offset;
821
822 err_put_syncwait_obj:
823 panthor_queue_put_syncwait_obj(queue);
824 return NULL;
825 }
826
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)827 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
828 {
829 if (IS_ERR_OR_NULL(queue))
830 return;
831
832 if (queue->entity.fence_context)
833 drm_sched_entity_destroy(&queue->entity);
834
835 if (queue->scheduler.ops)
836 drm_sched_fini(&queue->scheduler);
837
838 panthor_queue_put_syncwait_obj(queue);
839
840 panthor_kernel_bo_destroy(queue->ringbuf);
841 panthor_kernel_bo_destroy(queue->iface.mem);
842
843 /* Release the last_fence we were holding, if any. */
844 dma_fence_put(queue->fence_ctx.last_fence);
845
846 kfree(queue);
847 }
848
group_release_work(struct work_struct * work)849 static void group_release_work(struct work_struct *work)
850 {
851 struct panthor_group *group = container_of(work,
852 struct panthor_group,
853 release_work);
854 u32 i;
855
856 for (i = 0; i < group->queue_count; i++)
857 group_free_queue(group, group->queues[i]);
858
859 panthor_kernel_bo_destroy(group->suspend_buf);
860 panthor_kernel_bo_destroy(group->protm_suspend_buf);
861 panthor_kernel_bo_destroy(group->syncobjs);
862
863 panthor_vm_put(group->vm);
864 kfree(group);
865 }
866
group_release(struct kref * kref)867 static void group_release(struct kref *kref)
868 {
869 struct panthor_group *group = container_of(kref,
870 struct panthor_group,
871 refcount);
872 struct panthor_device *ptdev = group->ptdev;
873
874 drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
875 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
876 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
877
878 queue_work(panthor_cleanup_wq, &group->release_work);
879 }
880
group_put(struct panthor_group * group)881 static void group_put(struct panthor_group *group)
882 {
883 if (group)
884 kref_put(&group->refcount, group_release);
885 }
886
887 static struct panthor_group *
group_get(struct panthor_group * group)888 group_get(struct panthor_group *group)
889 {
890 if (group)
891 kref_get(&group->refcount);
892
893 return group;
894 }
895
896 /**
897 * group_bind_locked() - Bind a group to a group slot
898 * @group: Group.
899 * @csg_id: Slot.
900 *
901 * Return: 0 on success, a negative error code otherwise.
902 */
903 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)904 group_bind_locked(struct panthor_group *group, u32 csg_id)
905 {
906 struct panthor_device *ptdev = group->ptdev;
907 struct panthor_csg_slot *csg_slot;
908 int ret;
909
910 lockdep_assert_held(&ptdev->scheduler->lock);
911
912 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
913 ptdev->scheduler->csg_slots[csg_id].group))
914 return -EINVAL;
915
916 ret = panthor_vm_active(group->vm);
917 if (ret)
918 return ret;
919
920 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
921 group_get(group);
922 group->csg_id = csg_id;
923
924 /* Dummy doorbell allocation: doorbell is assigned to the group and
925 * all queues use the same doorbell.
926 *
927 * TODO: Implement LRU-based doorbell assignment, so the most often
928 * updated queues get their own doorbell, thus avoiding useless checks
929 * on queues belonging to the same group that are rarely updated.
930 */
931 for (u32 i = 0; i < group->queue_count; i++)
932 group->queues[i]->doorbell_id = csg_id + 1;
933
934 csg_slot->group = group;
935
936 return 0;
937 }
938
939 /**
940 * group_unbind_locked() - Unbind a group from a slot.
941 * @group: Group to unbind.
942 *
943 * Return: 0 on success, a negative error code otherwise.
944 */
945 static int
group_unbind_locked(struct panthor_group * group)946 group_unbind_locked(struct panthor_group *group)
947 {
948 struct panthor_device *ptdev = group->ptdev;
949 struct panthor_csg_slot *slot;
950
951 lockdep_assert_held(&ptdev->scheduler->lock);
952
953 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
954 return -EINVAL;
955
956 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
957 return -EINVAL;
958
959 slot = &ptdev->scheduler->csg_slots[group->csg_id];
960 panthor_vm_idle(group->vm);
961 group->csg_id = -1;
962
963 /* Tiler OOM events will be re-issued next time the group is scheduled. */
964 atomic_set(&group->tiler_oom, 0);
965 cancel_work(&group->tiler_oom_work);
966
967 for (u32 i = 0; i < group->queue_count; i++)
968 group->queues[i]->doorbell_id = -1;
969
970 slot->group = NULL;
971
972 group_put(group);
973 return 0;
974 }
975
976 /**
977 * cs_slot_prog_locked() - Program a queue slot
978 * @ptdev: Device.
979 * @csg_id: Group slot ID.
980 * @cs_id: Queue slot ID.
981 *
982 * Program a queue slot with the queue information so things can start being
983 * executed on this queue.
984 *
985 * The group slot must have a group bound to it already (group_bind_locked()).
986 */
987 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)988 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
989 {
990 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
991 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
992
993 lockdep_assert_held(&ptdev->scheduler->lock);
994
995 queue->iface.input->extract = queue->iface.output->extract;
996 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
997
998 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
999 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1000 cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1001 cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1002 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1003 CS_CONFIG_DOORBELL(queue->doorbell_id);
1004 cs_iface->input->ack_irq_mask = ~0;
1005 panthor_fw_update_reqs(cs_iface, req,
1006 CS_IDLE_SYNC_WAIT |
1007 CS_IDLE_EMPTY |
1008 CS_STATE_START |
1009 CS_EXTRACT_EVENT,
1010 CS_IDLE_SYNC_WAIT |
1011 CS_IDLE_EMPTY |
1012 CS_STATE_MASK |
1013 CS_EXTRACT_EVENT);
1014 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1015 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1016 queue->timeout_suspended = false;
1017 }
1018 }
1019
1020 /**
1021 * cs_slot_reset_locked() - Reset a queue slot
1022 * @ptdev: Device.
1023 * @csg_id: Group slot.
1024 * @cs_id: Queue slot.
1025 *
1026 * Change the queue slot state to STOP and suspend the queue timeout if
1027 * the queue is not blocked.
1028 *
1029 * The group slot must have a group bound to it (group_bind_locked()).
1030 */
1031 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1032 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1033 {
1034 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1035 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1036 struct panthor_queue *queue = group->queues[cs_id];
1037
1038 lockdep_assert_held(&ptdev->scheduler->lock);
1039
1040 panthor_fw_update_reqs(cs_iface, req,
1041 CS_STATE_STOP,
1042 CS_STATE_MASK);
1043
1044 /* If the queue is blocked, we want to keep the timeout running, so
1045 * we can detect unbounded waits and kill the group when that happens.
1046 */
1047 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1048 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1049 queue->timeout_suspended = true;
1050 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1051 }
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1058 * @ptdev: Device.
1059 * @csg_id: Group slot ID.
1060 *
1061 * Group slot priority update happens asynchronously. When we receive a
1062 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1063 * reflect it to our panthor_csg_slot object.
1064 */
1065 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1066 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1067 {
1068 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1069 struct panthor_fw_csg_iface *csg_iface;
1070
1071 lockdep_assert_held(&ptdev->scheduler->lock);
1072
1073 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1074 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1075 }
1076
1077 /**
1078 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1079 * @ptdev: Device.
1080 * @csg_id: Group slot.
1081 * @cs_id: Queue slot.
1082 *
1083 * Queue state is updated on group suspend or STATUS_UPDATE event.
1084 */
1085 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1086 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1087 {
1088 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1089 struct panthor_queue *queue = group->queues[cs_id];
1090 struct panthor_fw_cs_iface *cs_iface =
1091 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1092
1093 u32 status_wait_cond;
1094
1095 switch (cs_iface->output->status_blocked_reason) {
1096 case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1097 if (queue->iface.input->insert == queue->iface.output->extract &&
1098 cs_iface->output->status_scoreboards == 0)
1099 group->idle_queues |= BIT(cs_id);
1100 break;
1101
1102 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1103 if (list_empty(&group->wait_node)) {
1104 list_move_tail(&group->wait_node,
1105 &group->ptdev->scheduler->groups.waiting);
1106 }
1107
1108 /* The queue is only blocked if there's no deferred operation
1109 * pending, which can be checked through the scoreboard status.
1110 */
1111 if (!cs_iface->output->status_scoreboards)
1112 group->blocked_queues |= BIT(cs_id);
1113
1114 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1115 queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1116 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1117 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1118 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1119 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1120
1121 queue->syncwait.sync64 = true;
1122 queue->syncwait.ref |= sync_val_hi << 32;
1123 } else {
1124 queue->syncwait.sync64 = false;
1125 }
1126 break;
1127
1128 default:
1129 /* Other reasons are not blocking. Consider the queue as runnable
1130 * in those cases.
1131 */
1132 break;
1133 }
1134 }
1135
1136 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1137 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1138 {
1139 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1140 struct panthor_group *group = csg_slot->group;
1141 u32 i;
1142
1143 lockdep_assert_held(&ptdev->scheduler->lock);
1144
1145 group->idle_queues = 0;
1146 group->blocked_queues = 0;
1147
1148 for (i = 0; i < group->queue_count; i++) {
1149 if (group->queues[i])
1150 cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1151 }
1152 }
1153
1154 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1155 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1156 {
1157 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1158 struct panthor_fw_csg_iface *csg_iface;
1159 struct panthor_group *group;
1160 enum panthor_group_state new_state, old_state;
1161 u32 csg_state;
1162
1163 lockdep_assert_held(&ptdev->scheduler->lock);
1164
1165 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1166 group = csg_slot->group;
1167
1168 if (!group)
1169 return;
1170
1171 old_state = group->state;
1172 csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1173 switch (csg_state) {
1174 case CSG_STATE_START:
1175 case CSG_STATE_RESUME:
1176 new_state = PANTHOR_CS_GROUP_ACTIVE;
1177 break;
1178 case CSG_STATE_TERMINATE:
1179 new_state = PANTHOR_CS_GROUP_TERMINATED;
1180 break;
1181 case CSG_STATE_SUSPEND:
1182 new_state = PANTHOR_CS_GROUP_SUSPENDED;
1183 break;
1184 default:
1185 /* The unknown state might be caused by a FW state corruption,
1186 * which means the group metadata can't be trusted anymore, and
1187 * the SUSPEND operation might propagate the corruption to the
1188 * suspend buffers. Flag the group state as unknown to make
1189 * sure it's unusable after that point.
1190 */
1191 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1192 csg_id, csg_state);
1193 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1194 break;
1195 }
1196
1197 if (old_state == new_state)
1198 return;
1199
1200 /* The unknown state might be caused by a FW issue, reset the FW to
1201 * take a fresh start.
1202 */
1203 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1204 panthor_device_schedule_reset(ptdev);
1205
1206 if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1207 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1208
1209 if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1210 u32 i;
1211
1212 /* Reset the queue slots so we start from a clean
1213 * state when starting/resuming a new group on this
1214 * CSG slot. No wait needed here, and no ringbell
1215 * either, since the CS slot will only be re-used
1216 * on the next CSG start operation.
1217 */
1218 for (i = 0; i < group->queue_count; i++) {
1219 if (group->queues[i])
1220 cs_slot_reset_locked(ptdev, csg_id, i);
1221 }
1222 }
1223
1224 group->state = new_state;
1225 }
1226
1227 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1228 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1229 {
1230 struct panthor_fw_csg_iface *csg_iface;
1231 struct panthor_csg_slot *csg_slot;
1232 struct panthor_group *group;
1233 u32 queue_mask = 0, i;
1234
1235 lockdep_assert_held(&ptdev->scheduler->lock);
1236
1237 if (priority > MAX_CSG_PRIO)
1238 return -EINVAL;
1239
1240 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1241 return -EINVAL;
1242
1243 csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1244 group = csg_slot->group;
1245 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1246 return 0;
1247
1248 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1249
1250 for (i = 0; i < group->queue_count; i++) {
1251 if (group->queues[i]) {
1252 cs_slot_prog_locked(ptdev, csg_id, i);
1253 queue_mask |= BIT(i);
1254 }
1255 }
1256
1257 csg_iface->input->allow_compute = group->compute_core_mask;
1258 csg_iface->input->allow_fragment = group->fragment_core_mask;
1259 csg_iface->input->allow_other = group->tiler_core_mask;
1260 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1261 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1262 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1263 CSG_EP_REQ_PRIORITY(priority);
1264 csg_iface->input->config = panthor_vm_as(group->vm);
1265
1266 if (group->suspend_buf)
1267 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1268 else
1269 csg_iface->input->suspend_buf = 0;
1270
1271 if (group->protm_suspend_buf) {
1272 csg_iface->input->protm_suspend_buf =
1273 panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1274 } else {
1275 csg_iface->input->protm_suspend_buf = 0;
1276 }
1277
1278 csg_iface->input->ack_irq_mask = ~0;
1279 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1280 return 0;
1281 }
1282
1283 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1284 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1285 u32 csg_id, u32 cs_id)
1286 {
1287 struct panthor_scheduler *sched = ptdev->scheduler;
1288 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1289 struct panthor_group *group = csg_slot->group;
1290 struct panthor_fw_cs_iface *cs_iface;
1291 u32 fatal;
1292 u64 info;
1293
1294 lockdep_assert_held(&sched->lock);
1295
1296 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1297 fatal = cs_iface->output->fatal;
1298 info = cs_iface->output->fatal_info;
1299
1300 if (group)
1301 group->fatal_queues |= BIT(cs_id);
1302
1303 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1304 /* If this exception is unrecoverable, queue a reset, and make
1305 * sure we stop scheduling groups until the reset has happened.
1306 */
1307 panthor_device_schedule_reset(ptdev);
1308 cancel_delayed_work(&sched->tick_work);
1309 } else {
1310 sched_queue_delayed_work(sched, tick, 0);
1311 }
1312
1313 drm_warn(&ptdev->base,
1314 "CSG slot %d CS slot: %d\n"
1315 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1316 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1317 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1318 csg_id, cs_id,
1319 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1320 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1321 (unsigned int)CS_EXCEPTION_DATA(fatal),
1322 info);
1323 }
1324
1325 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1326 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1327 u32 csg_id, u32 cs_id)
1328 {
1329 struct panthor_scheduler *sched = ptdev->scheduler;
1330 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1331 struct panthor_group *group = csg_slot->group;
1332 struct panthor_queue *queue = group && cs_id < group->queue_count ?
1333 group->queues[cs_id] : NULL;
1334 struct panthor_fw_cs_iface *cs_iface;
1335 u32 fault;
1336 u64 info;
1337
1338 lockdep_assert_held(&sched->lock);
1339
1340 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1341 fault = cs_iface->output->fault;
1342 info = cs_iface->output->fault_info;
1343
1344 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
1345 u64 cs_extract = queue->iface.output->extract;
1346 struct panthor_job *job;
1347
1348 spin_lock(&queue->fence_ctx.lock);
1349 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1350 if (cs_extract >= job->ringbuf.end)
1351 continue;
1352
1353 if (cs_extract < job->ringbuf.start)
1354 break;
1355
1356 dma_fence_set_error(job->done_fence, -EINVAL);
1357 }
1358 spin_unlock(&queue->fence_ctx.lock);
1359 }
1360
1361 drm_warn(&ptdev->base,
1362 "CSG slot %d CS slot: %d\n"
1363 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1364 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1365 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1366 csg_id, cs_id,
1367 (unsigned int)CS_EXCEPTION_TYPE(fault),
1368 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1369 (unsigned int)CS_EXCEPTION_DATA(fault),
1370 info);
1371 }
1372
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1373 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1374 {
1375 struct panthor_device *ptdev = group->ptdev;
1376 struct panthor_scheduler *sched = ptdev->scheduler;
1377 u32 renderpasses_in_flight, pending_frag_count;
1378 struct panthor_heap_pool *heaps = NULL;
1379 u64 heap_address, new_chunk_va = 0;
1380 u32 vt_start, vt_end, frag_end;
1381 int ret, csg_id;
1382
1383 mutex_lock(&sched->lock);
1384 csg_id = group->csg_id;
1385 if (csg_id >= 0) {
1386 struct panthor_fw_cs_iface *cs_iface;
1387
1388 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1389 heaps = panthor_vm_get_heap_pool(group->vm, false);
1390 heap_address = cs_iface->output->heap_address;
1391 vt_start = cs_iface->output->heap_vt_start;
1392 vt_end = cs_iface->output->heap_vt_end;
1393 frag_end = cs_iface->output->heap_frag_end;
1394 renderpasses_in_flight = vt_start - frag_end;
1395 pending_frag_count = vt_end - frag_end;
1396 }
1397 mutex_unlock(&sched->lock);
1398
1399 /* The group got scheduled out, we stop here. We will get a new tiler OOM event
1400 * when it's scheduled again.
1401 */
1402 if (unlikely(csg_id < 0))
1403 return 0;
1404
1405 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1406 ret = -EINVAL;
1407 } else {
1408 /* We do the allocation without holding the scheduler lock to avoid
1409 * blocking the scheduling.
1410 */
1411 ret = panthor_heap_grow(heaps, heap_address,
1412 renderpasses_in_flight,
1413 pending_frag_count, &new_chunk_va);
1414 }
1415
1416 /* If the heap context doesn't have memory for us, we want to let the
1417 * FW try to reclaim memory by waiting for fragment jobs to land or by
1418 * executing the tiler OOM exception handler, which is supposed to
1419 * implement incremental rendering.
1420 */
1421 if (ret && ret != -ENOMEM) {
1422 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1423 group->fatal_queues |= BIT(cs_id);
1424 sched_queue_delayed_work(sched, tick, 0);
1425 goto out_put_heap_pool;
1426 }
1427
1428 mutex_lock(&sched->lock);
1429 csg_id = group->csg_id;
1430 if (csg_id >= 0) {
1431 struct panthor_fw_csg_iface *csg_iface;
1432 struct panthor_fw_cs_iface *cs_iface;
1433
1434 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1435 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1436
1437 cs_iface->input->heap_start = new_chunk_va;
1438 cs_iface->input->heap_end = new_chunk_va;
1439 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1440 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1441 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1442 }
1443 mutex_unlock(&sched->lock);
1444
1445 /* We allocated a chunck, but couldn't link it to the heap
1446 * context because the group was scheduled out while we were
1447 * allocating memory. We need to return this chunk to the heap.
1448 */
1449 if (unlikely(csg_id < 0 && new_chunk_va))
1450 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1451
1452 ret = 0;
1453
1454 out_put_heap_pool:
1455 panthor_heap_pool_put(heaps);
1456 return ret;
1457 }
1458
group_tiler_oom_work(struct work_struct * work)1459 static void group_tiler_oom_work(struct work_struct *work)
1460 {
1461 struct panthor_group *group =
1462 container_of(work, struct panthor_group, tiler_oom_work);
1463 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1464
1465 while (tiler_oom) {
1466 u32 cs_id = ffs(tiler_oom) - 1;
1467
1468 group_process_tiler_oom(group, cs_id);
1469 tiler_oom &= ~BIT(cs_id);
1470 }
1471
1472 group_put(group);
1473 }
1474
1475 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1476 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1477 u32 csg_id, u32 cs_id)
1478 {
1479 struct panthor_scheduler *sched = ptdev->scheduler;
1480 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1481 struct panthor_group *group = csg_slot->group;
1482
1483 lockdep_assert_held(&sched->lock);
1484
1485 if (drm_WARN_ON(&ptdev->base, !group))
1486 return;
1487
1488 atomic_or(BIT(cs_id), &group->tiler_oom);
1489
1490 /* We don't use group_queue_work() here because we want to queue the
1491 * work item to the heap_alloc_wq.
1492 */
1493 group_get(group);
1494 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1495 group_put(group);
1496 }
1497
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1498 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1499 u32 csg_id, u32 cs_id)
1500 {
1501 struct panthor_fw_cs_iface *cs_iface;
1502 u32 req, ack, events;
1503
1504 lockdep_assert_held(&ptdev->scheduler->lock);
1505
1506 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1507 req = cs_iface->input->req;
1508 ack = cs_iface->output->ack;
1509 events = (req ^ ack) & CS_EVT_MASK;
1510
1511 if (events & CS_FATAL)
1512 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1513
1514 if (events & CS_FAULT)
1515 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1516
1517 if (events & CS_TILER_OOM)
1518 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1519
1520 /* We don't acknowledge the TILER_OOM event since its handling is
1521 * deferred to a separate work.
1522 */
1523 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1524
1525 return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1526 }
1527
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1528 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1529 {
1530 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1531 struct panthor_fw_csg_iface *csg_iface;
1532
1533 lockdep_assert_held(&ptdev->scheduler->lock);
1534
1535 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1536 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1537 }
1538
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1539 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1540 {
1541 struct panthor_scheduler *sched = ptdev->scheduler;
1542
1543 lockdep_assert_held(&sched->lock);
1544
1545 sched->might_have_idle_groups = true;
1546
1547 /* Schedule a tick so we can evict idle groups and schedule non-idle
1548 * ones. This will also update runtime PM and devfreq busy/idle states,
1549 * so the device can lower its frequency or get suspended.
1550 */
1551 sched_queue_delayed_work(sched, tick, 0);
1552 }
1553
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1554 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1555 u32 csg_id)
1556 {
1557 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1558 struct panthor_group *group = csg_slot->group;
1559
1560 lockdep_assert_held(&ptdev->scheduler->lock);
1561
1562 if (group)
1563 group_queue_work(group, sync_upd);
1564
1565 sched_queue_work(ptdev->scheduler, sync_upd);
1566 }
1567
1568 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1569 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1570 {
1571 struct panthor_scheduler *sched = ptdev->scheduler;
1572 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1573 struct panthor_group *group = csg_slot->group;
1574
1575 lockdep_assert_held(&sched->lock);
1576
1577 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1578
1579 group = csg_slot->group;
1580 if (!drm_WARN_ON(&ptdev->base, !group))
1581 group->timedout = true;
1582
1583 sched_queue_delayed_work(sched, tick, 0);
1584 }
1585
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1586 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1587 {
1588 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1589 struct panthor_fw_csg_iface *csg_iface;
1590 u32 ring_cs_db_mask = 0;
1591
1592 lockdep_assert_held(&ptdev->scheduler->lock);
1593
1594 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1595 return;
1596
1597 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1598 req = READ_ONCE(csg_iface->input->req);
1599 ack = READ_ONCE(csg_iface->output->ack);
1600 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1601 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1602 csg_events = (req ^ ack) & CSG_EVT_MASK;
1603
1604 /* There may not be any pending CSG/CS interrupts to process */
1605 if (req == ack && cs_irq_req == cs_irq_ack)
1606 return;
1607
1608 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1609 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1610 * doesn't miss an interrupt for the CS in the race scenario where
1611 * whilst Host is servicing an interrupt for the CS, firmware sends
1612 * another interrupt for that CS.
1613 */
1614 csg_iface->input->cs_irq_ack = cs_irq_req;
1615
1616 panthor_fw_update_reqs(csg_iface, req, ack,
1617 CSG_SYNC_UPDATE |
1618 CSG_IDLE |
1619 CSG_PROGRESS_TIMER_EVENT);
1620
1621 if (csg_events & CSG_IDLE)
1622 csg_slot_process_idle_event_locked(ptdev, csg_id);
1623
1624 if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1625 csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1626
1627 cs_irqs = cs_irq_req ^ cs_irq_ack;
1628 while (cs_irqs) {
1629 u32 cs_id = ffs(cs_irqs) - 1;
1630
1631 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1632 ring_cs_db_mask |= BIT(cs_id);
1633
1634 cs_irqs &= ~BIT(cs_id);
1635 }
1636
1637 if (csg_events & CSG_SYNC_UPDATE)
1638 csg_slot_sync_update_locked(ptdev, csg_id);
1639
1640 if (ring_cs_db_mask)
1641 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1642
1643 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1644 }
1645
sched_process_idle_event_locked(struct panthor_device * ptdev)1646 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1647 {
1648 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1649
1650 lockdep_assert_held(&ptdev->scheduler->lock);
1651
1652 /* Acknowledge the idle event and schedule a tick. */
1653 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1654 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1655 }
1656
1657 /**
1658 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1659 * @ptdev: Device.
1660 */
sched_process_global_irq_locked(struct panthor_device * ptdev)1661 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1662 {
1663 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1664 u32 req, ack, evts;
1665
1666 lockdep_assert_held(&ptdev->scheduler->lock);
1667
1668 req = READ_ONCE(glb_iface->input->req);
1669 ack = READ_ONCE(glb_iface->output->ack);
1670 evts = (req ^ ack) & GLB_EVT_MASK;
1671
1672 if (evts & GLB_IDLE)
1673 sched_process_idle_event_locked(ptdev);
1674 }
1675
process_fw_events_work(struct work_struct * work)1676 static void process_fw_events_work(struct work_struct *work)
1677 {
1678 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1679 fw_events_work);
1680 u32 events = atomic_xchg(&sched->fw_events, 0);
1681 struct panthor_device *ptdev = sched->ptdev;
1682
1683 mutex_lock(&sched->lock);
1684
1685 if (events & JOB_INT_GLOBAL_IF) {
1686 sched_process_global_irq_locked(ptdev);
1687 events &= ~JOB_INT_GLOBAL_IF;
1688 }
1689
1690 while (events) {
1691 u32 csg_id = ffs(events) - 1;
1692
1693 sched_process_csg_irq_locked(ptdev, csg_id);
1694 events &= ~BIT(csg_id);
1695 }
1696
1697 mutex_unlock(&sched->lock);
1698 }
1699
1700 /**
1701 * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1702 */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1703 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1704 {
1705 if (!ptdev->scheduler)
1706 return;
1707
1708 atomic_or(events, &ptdev->scheduler->fw_events);
1709 sched_queue_work(ptdev->scheduler, fw_events);
1710 }
1711
fence_get_driver_name(struct dma_fence * fence)1712 static const char *fence_get_driver_name(struct dma_fence *fence)
1713 {
1714 return "panthor";
1715 }
1716
queue_fence_get_timeline_name(struct dma_fence * fence)1717 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1718 {
1719 return "queue-fence";
1720 }
1721
1722 static const struct dma_fence_ops panthor_queue_fence_ops = {
1723 .get_driver_name = fence_get_driver_name,
1724 .get_timeline_name = queue_fence_get_timeline_name,
1725 };
1726
1727 struct panthor_csg_slots_upd_ctx {
1728 u32 update_mask;
1729 u32 timedout_mask;
1730 struct {
1731 u32 value;
1732 u32 mask;
1733 } requests[MAX_CSGS];
1734 };
1735
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1736 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1737 {
1738 memset(ctx, 0, sizeof(*ctx));
1739 }
1740
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1741 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1742 struct panthor_csg_slots_upd_ctx *ctx,
1743 u32 csg_id, u32 value, u32 mask)
1744 {
1745 if (drm_WARN_ON(&ptdev->base, !mask) ||
1746 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1747 return;
1748
1749 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1750 ctx->requests[csg_id].mask |= mask;
1751 ctx->update_mask |= BIT(csg_id);
1752 }
1753
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1754 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1755 struct panthor_csg_slots_upd_ctx *ctx)
1756 {
1757 struct panthor_scheduler *sched = ptdev->scheduler;
1758 u32 update_slots = ctx->update_mask;
1759
1760 lockdep_assert_held(&sched->lock);
1761
1762 if (!ctx->update_mask)
1763 return 0;
1764
1765 while (update_slots) {
1766 struct panthor_fw_csg_iface *csg_iface;
1767 u32 csg_id = ffs(update_slots) - 1;
1768
1769 update_slots &= ~BIT(csg_id);
1770 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1771 panthor_fw_update_reqs(csg_iface, req,
1772 ctx->requests[csg_id].value,
1773 ctx->requests[csg_id].mask);
1774 }
1775
1776 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1777
1778 update_slots = ctx->update_mask;
1779 while (update_slots) {
1780 struct panthor_fw_csg_iface *csg_iface;
1781 u32 csg_id = ffs(update_slots) - 1;
1782 u32 req_mask = ctx->requests[csg_id].mask, acked;
1783 int ret;
1784
1785 update_slots &= ~BIT(csg_id);
1786 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1787
1788 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1789
1790 if (acked & CSG_ENDPOINT_CONFIG)
1791 csg_slot_sync_priority_locked(ptdev, csg_id);
1792
1793 if (acked & CSG_STATE_MASK)
1794 csg_slot_sync_state_locked(ptdev, csg_id);
1795
1796 if (acked & CSG_STATUS_UPDATE) {
1797 csg_slot_sync_queues_state_locked(ptdev, csg_id);
1798 csg_slot_sync_idle_state_locked(ptdev, csg_id);
1799 }
1800
1801 if (ret && acked != req_mask &&
1802 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1803 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1804 ctx->timedout_mask |= BIT(csg_id);
1805 }
1806 }
1807
1808 if (ctx->timedout_mask)
1809 return -ETIMEDOUT;
1810
1811 return 0;
1812 }
1813
1814 struct panthor_sched_tick_ctx {
1815 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1816 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1817 u32 idle_group_count;
1818 u32 group_count;
1819 enum panthor_csg_priority min_priority;
1820 struct panthor_vm *vms[MAX_CS_PER_CSG];
1821 u32 as_count;
1822 bool immediate_tick;
1823 u32 csg_upd_failed_mask;
1824 };
1825
1826 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)1827 tick_ctx_is_full(const struct panthor_scheduler *sched,
1828 const struct panthor_sched_tick_ctx *ctx)
1829 {
1830 return ctx->group_count == sched->csg_slot_count;
1831 }
1832
1833 static bool
group_is_idle(struct panthor_group * group)1834 group_is_idle(struct panthor_group *group)
1835 {
1836 struct panthor_device *ptdev = group->ptdev;
1837 u32 inactive_queues;
1838
1839 if (group->csg_id >= 0)
1840 return ptdev->scheduler->csg_slots[group->csg_id].idle;
1841
1842 inactive_queues = group->idle_queues | group->blocked_queues;
1843 return hweight32(inactive_queues) == group->queue_count;
1844 }
1845
1846 static bool
group_can_run(struct panthor_group * group)1847 group_can_run(struct panthor_group *group)
1848 {
1849 return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1850 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1851 !group->destroyed && group->fatal_queues == 0 &&
1852 !group->timedout;
1853 }
1854
1855 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)1856 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1857 struct panthor_sched_tick_ctx *ctx,
1858 struct list_head *queue,
1859 bool skip_idle_groups,
1860 bool owned_by_tick_ctx)
1861 {
1862 struct panthor_group *group, *tmp;
1863
1864 if (tick_ctx_is_full(sched, ctx))
1865 return;
1866
1867 list_for_each_entry_safe(group, tmp, queue, run_node) {
1868 u32 i;
1869
1870 if (!group_can_run(group))
1871 continue;
1872
1873 if (skip_idle_groups && group_is_idle(group))
1874 continue;
1875
1876 for (i = 0; i < ctx->as_count; i++) {
1877 if (ctx->vms[i] == group->vm)
1878 break;
1879 }
1880
1881 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1882 continue;
1883
1884 if (!owned_by_tick_ctx)
1885 group_get(group);
1886
1887 list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1888 ctx->group_count++;
1889 if (group_is_idle(group))
1890 ctx->idle_group_count++;
1891
1892 if (i == ctx->as_count)
1893 ctx->vms[ctx->as_count++] = group->vm;
1894
1895 if (ctx->min_priority > group->priority)
1896 ctx->min_priority = group->priority;
1897
1898 if (tick_ctx_is_full(sched, ctx))
1899 return;
1900 }
1901 }
1902
1903 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)1904 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1905 struct panthor_sched_tick_ctx *ctx,
1906 struct panthor_group *group,
1907 bool full_tick)
1908 {
1909 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1910 struct panthor_group *other_group;
1911
1912 if (!full_tick) {
1913 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1914 return;
1915 }
1916
1917 /* Rotate to make sure groups with lower CSG slot
1918 * priorities have a chance to get a higher CSG slot
1919 * priority next time they get picked. This priority
1920 * has an impact on resource request ordering, so it's
1921 * important to make sure we don't let one group starve
1922 * all other groups with the same group priority.
1923 */
1924 list_for_each_entry(other_group,
1925 &ctx->old_groups[csg_slot->group->priority],
1926 run_node) {
1927 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
1928
1929 if (other_csg_slot->priority > csg_slot->priority) {
1930 list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
1931 return;
1932 }
1933 }
1934
1935 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
1936 }
1937
1938 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)1939 tick_ctx_init(struct panthor_scheduler *sched,
1940 struct panthor_sched_tick_ctx *ctx,
1941 bool full_tick)
1942 {
1943 struct panthor_device *ptdev = sched->ptdev;
1944 struct panthor_csg_slots_upd_ctx upd_ctx;
1945 int ret;
1946 u32 i;
1947
1948 memset(ctx, 0, sizeof(*ctx));
1949 csgs_upd_ctx_init(&upd_ctx);
1950
1951 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
1952 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
1953 INIT_LIST_HEAD(&ctx->groups[i]);
1954 INIT_LIST_HEAD(&ctx->old_groups[i]);
1955 }
1956
1957 for (i = 0; i < sched->csg_slot_count; i++) {
1958 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
1959 struct panthor_group *group = csg_slot->group;
1960 struct panthor_fw_csg_iface *csg_iface;
1961
1962 if (!group)
1963 continue;
1964
1965 csg_iface = panthor_fw_get_csg_iface(ptdev, i);
1966 group_get(group);
1967
1968 /* If there was unhandled faults on the VM, force processing of
1969 * CSG IRQs, so we can flag the faulty queue.
1970 */
1971 if (panthor_vm_has_unhandled_faults(group->vm)) {
1972 sched_process_csg_irq_locked(ptdev, i);
1973
1974 /* No fatal fault reported, flag all queues as faulty. */
1975 if (!group->fatal_queues)
1976 group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
1977 }
1978
1979 tick_ctx_insert_old_group(sched, ctx, group, full_tick);
1980 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
1981 csg_iface->output->ack ^ CSG_STATUS_UPDATE,
1982 CSG_STATUS_UPDATE);
1983 }
1984
1985 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
1986 if (ret) {
1987 panthor_device_schedule_reset(ptdev);
1988 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
1989 }
1990 }
1991
1992 #define NUM_INSTRS_PER_SLOT 16
1993
1994 static void
group_term_post_processing(struct panthor_group * group)1995 group_term_post_processing(struct panthor_group *group)
1996 {
1997 struct panthor_job *job, *tmp;
1998 LIST_HEAD(faulty_jobs);
1999 bool cookie;
2000 u32 i = 0;
2001
2002 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2003 return;
2004
2005 cookie = dma_fence_begin_signalling();
2006 for (i = 0; i < group->queue_count; i++) {
2007 struct panthor_queue *queue = group->queues[i];
2008 struct panthor_syncobj_64b *syncobj;
2009 int err;
2010
2011 if (group->fatal_queues & BIT(i))
2012 err = -EINVAL;
2013 else if (group->timedout)
2014 err = -ETIMEDOUT;
2015 else
2016 err = -ECANCELED;
2017
2018 if (!queue)
2019 continue;
2020
2021 spin_lock(&queue->fence_ctx.lock);
2022 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2023 list_move_tail(&job->node, &faulty_jobs);
2024 dma_fence_set_error(job->done_fence, err);
2025 dma_fence_signal_locked(job->done_fence);
2026 }
2027 spin_unlock(&queue->fence_ctx.lock);
2028
2029 /* Manually update the syncobj seqno to unblock waiters. */
2030 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2031 syncobj->status = ~0;
2032 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2033 sched_queue_work(group->ptdev->scheduler, sync_upd);
2034 }
2035 dma_fence_end_signalling(cookie);
2036
2037 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2038 list_del_init(&job->node);
2039 panthor_job_put(&job->base);
2040 }
2041 }
2042
group_term_work(struct work_struct * work)2043 static void group_term_work(struct work_struct *work)
2044 {
2045 struct panthor_group *group =
2046 container_of(work, struct panthor_group, term_work);
2047
2048 group_term_post_processing(group);
2049 group_put(group);
2050 }
2051
2052 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2053 tick_ctx_cleanup(struct panthor_scheduler *sched,
2054 struct panthor_sched_tick_ctx *ctx)
2055 {
2056 struct panthor_device *ptdev = sched->ptdev;
2057 struct panthor_group *group, *tmp;
2058 u32 i;
2059
2060 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2061 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2062 /* If everything went fine, we should only have groups
2063 * to be terminated in the old_groups lists.
2064 */
2065 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2066 group_can_run(group));
2067
2068 if (!group_can_run(group)) {
2069 list_del_init(&group->run_node);
2070 list_del_init(&group->wait_node);
2071 group_queue_work(group, term);
2072 } else if (group->csg_id >= 0) {
2073 list_del_init(&group->run_node);
2074 } else {
2075 list_move(&group->run_node,
2076 group_is_idle(group) ?
2077 &sched->groups.idle[group->priority] :
2078 &sched->groups.runnable[group->priority]);
2079 }
2080 group_put(group);
2081 }
2082 }
2083
2084 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2085 /* If everything went fine, the groups to schedule lists should
2086 * be empty.
2087 */
2088 drm_WARN_ON(&ptdev->base,
2089 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2090
2091 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2092 if (group->csg_id >= 0) {
2093 list_del_init(&group->run_node);
2094 } else {
2095 list_move(&group->run_node,
2096 group_is_idle(group) ?
2097 &sched->groups.idle[group->priority] :
2098 &sched->groups.runnable[group->priority]);
2099 }
2100 group_put(group);
2101 }
2102 }
2103 }
2104
2105 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2106 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2107 {
2108 struct panthor_group *group, *tmp;
2109 struct panthor_device *ptdev = sched->ptdev;
2110 struct panthor_csg_slot *csg_slot;
2111 int prio, new_csg_prio = MAX_CSG_PRIO, i;
2112 u32 free_csg_slots = 0;
2113 struct panthor_csg_slots_upd_ctx upd_ctx;
2114 int ret;
2115
2116 csgs_upd_ctx_init(&upd_ctx);
2117
2118 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2119 /* Suspend or terminate evicted groups. */
2120 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2121 bool term = !group_can_run(group);
2122 int csg_id = group->csg_id;
2123
2124 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2125 continue;
2126
2127 csg_slot = &sched->csg_slots[csg_id];
2128 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2129 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2130 CSG_STATE_MASK);
2131 }
2132
2133 /* Update priorities on already running groups. */
2134 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2135 struct panthor_fw_csg_iface *csg_iface;
2136 int csg_id = group->csg_id;
2137
2138 if (csg_id < 0) {
2139 new_csg_prio--;
2140 continue;
2141 }
2142
2143 csg_slot = &sched->csg_slots[csg_id];
2144 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2145 if (csg_slot->priority == new_csg_prio) {
2146 new_csg_prio--;
2147 continue;
2148 }
2149
2150 panthor_fw_update_reqs(csg_iface, endpoint_req,
2151 CSG_EP_REQ_PRIORITY(new_csg_prio),
2152 CSG_EP_REQ_PRIORITY_MASK);
2153 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2154 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2155 CSG_ENDPOINT_CONFIG);
2156 new_csg_prio--;
2157 }
2158 }
2159
2160 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2161 if (ret) {
2162 panthor_device_schedule_reset(ptdev);
2163 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2164 return;
2165 }
2166
2167 /* Unbind evicted groups. */
2168 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2169 list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2170 /* This group is gone. Process interrupts to clear
2171 * any pending interrupts before we start the new
2172 * group.
2173 */
2174 if (group->csg_id >= 0)
2175 sched_process_csg_irq_locked(ptdev, group->csg_id);
2176
2177 group_unbind_locked(group);
2178 }
2179 }
2180
2181 for (i = 0; i < sched->csg_slot_count; i++) {
2182 if (!sched->csg_slots[i].group)
2183 free_csg_slots |= BIT(i);
2184 }
2185
2186 csgs_upd_ctx_init(&upd_ctx);
2187 new_csg_prio = MAX_CSG_PRIO;
2188
2189 /* Start new groups. */
2190 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2191 list_for_each_entry(group, &ctx->groups[prio], run_node) {
2192 int csg_id = group->csg_id;
2193 struct panthor_fw_csg_iface *csg_iface;
2194
2195 if (csg_id >= 0) {
2196 new_csg_prio--;
2197 continue;
2198 }
2199
2200 csg_id = ffs(free_csg_slots) - 1;
2201 if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2202 break;
2203
2204 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2205 csg_slot = &sched->csg_slots[csg_id];
2206 group_bind_locked(group, csg_id);
2207 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2208 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2209 group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2210 CSG_STATE_RESUME : CSG_STATE_START,
2211 CSG_STATE_MASK);
2212 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2213 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2214 CSG_ENDPOINT_CONFIG);
2215 free_csg_slots &= ~BIT(csg_id);
2216 }
2217 }
2218
2219 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2220 if (ret) {
2221 panthor_device_schedule_reset(ptdev);
2222 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2223 return;
2224 }
2225
2226 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2227 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2228 list_del_init(&group->run_node);
2229
2230 /* If the group has been destroyed while we were
2231 * scheduling, ask for an immediate tick to
2232 * re-evaluate as soon as possible and get rid of
2233 * this dangling group.
2234 */
2235 if (group->destroyed)
2236 ctx->immediate_tick = true;
2237 group_put(group);
2238 }
2239
2240 /* Return evicted groups to the idle or run queues. Groups
2241 * that can no longer be run (because they've been destroyed
2242 * or experienced an unrecoverable error) will be scheduled
2243 * for destruction in tick_ctx_cleanup().
2244 */
2245 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2246 if (!group_can_run(group))
2247 continue;
2248
2249 if (group_is_idle(group))
2250 list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2251 else
2252 list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2253 group_put(group);
2254 }
2255 }
2256
2257 sched->used_csg_slot_count = ctx->group_count;
2258 sched->might_have_idle_groups = ctx->idle_group_count > 0;
2259 }
2260
2261 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2262 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2263 const struct panthor_sched_tick_ctx *ctx)
2264 {
2265 /* We had space left, no need to reschedule until some external event happens. */
2266 if (!tick_ctx_is_full(sched, ctx))
2267 goto no_tick;
2268
2269 /* If idle groups were scheduled, no need to wake up until some external
2270 * event happens (group unblocked, new job submitted, ...).
2271 */
2272 if (ctx->idle_group_count)
2273 goto no_tick;
2274
2275 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2276 goto no_tick;
2277
2278 /* If there are groups of the same priority waiting, we need to
2279 * keep the scheduler ticking, otherwise, we'll just wait for
2280 * new groups with higher priority to be queued.
2281 */
2282 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2283 u64 resched_target = sched->last_tick + sched->tick_period;
2284
2285 if (time_before64(sched->resched_target, sched->last_tick) ||
2286 time_before64(resched_target, sched->resched_target))
2287 sched->resched_target = resched_target;
2288
2289 return sched->resched_target - sched->last_tick;
2290 }
2291
2292 no_tick:
2293 sched->resched_target = U64_MAX;
2294 return U64_MAX;
2295 }
2296
tick_work(struct work_struct * work)2297 static void tick_work(struct work_struct *work)
2298 {
2299 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2300 tick_work.work);
2301 struct panthor_device *ptdev = sched->ptdev;
2302 struct panthor_sched_tick_ctx ctx;
2303 u64 remaining_jiffies = 0, resched_delay;
2304 u64 now = get_jiffies_64();
2305 int prio, ret, cookie;
2306
2307 if (!drm_dev_enter(&ptdev->base, &cookie))
2308 return;
2309
2310 ret = pm_runtime_resume_and_get(ptdev->base.dev);
2311 if (drm_WARN_ON(&ptdev->base, ret))
2312 goto out_dev_exit;
2313
2314 if (time_before64(now, sched->resched_target))
2315 remaining_jiffies = sched->resched_target - now;
2316
2317 mutex_lock(&sched->lock);
2318 if (panthor_device_reset_is_pending(sched->ptdev))
2319 goto out_unlock;
2320
2321 tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2322 if (ctx.csg_upd_failed_mask)
2323 goto out_cleanup_ctx;
2324
2325 if (remaining_jiffies) {
2326 /* Scheduling forced in the middle of a tick. Only RT groups
2327 * can preempt non-RT ones. Currently running RT groups can't be
2328 * preempted.
2329 */
2330 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2331 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2332 prio--) {
2333 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2334 true, true);
2335 if (prio == PANTHOR_CSG_PRIORITY_RT) {
2336 tick_ctx_pick_groups_from_list(sched, &ctx,
2337 &sched->groups.runnable[prio],
2338 true, false);
2339 }
2340 }
2341 }
2342
2343 /* First pick non-idle groups */
2344 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2345 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2346 prio--) {
2347 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2348 true, false);
2349 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2350 }
2351
2352 /* If we have free CSG slots left, pick idle groups */
2353 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2354 prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2355 prio--) {
2356 /* Check the old_group queue first to avoid reprogramming the slots */
2357 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2358 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2359 false, false);
2360 }
2361
2362 tick_ctx_apply(sched, &ctx);
2363 if (ctx.csg_upd_failed_mask)
2364 goto out_cleanup_ctx;
2365
2366 if (ctx.idle_group_count == ctx.group_count) {
2367 panthor_devfreq_record_idle(sched->ptdev);
2368 if (sched->pm.has_ref) {
2369 pm_runtime_put_autosuspend(ptdev->base.dev);
2370 sched->pm.has_ref = false;
2371 }
2372 } else {
2373 panthor_devfreq_record_busy(sched->ptdev);
2374 if (!sched->pm.has_ref) {
2375 pm_runtime_get(ptdev->base.dev);
2376 sched->pm.has_ref = true;
2377 }
2378 }
2379
2380 sched->last_tick = now;
2381 resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2382 if (ctx.immediate_tick)
2383 resched_delay = 0;
2384
2385 if (resched_delay != U64_MAX)
2386 sched_queue_delayed_work(sched, tick, resched_delay);
2387
2388 out_cleanup_ctx:
2389 tick_ctx_cleanup(sched, &ctx);
2390
2391 out_unlock:
2392 mutex_unlock(&sched->lock);
2393 pm_runtime_mark_last_busy(ptdev->base.dev);
2394 pm_runtime_put_autosuspend(ptdev->base.dev);
2395
2396 out_dev_exit:
2397 drm_dev_exit(cookie);
2398 }
2399
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2400 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2401 {
2402 struct panthor_queue *queue = group->queues[queue_idx];
2403 union {
2404 struct panthor_syncobj_64b sync64;
2405 struct panthor_syncobj_32b sync32;
2406 } *syncobj;
2407 bool result;
2408 u64 value;
2409
2410 syncobj = panthor_queue_get_syncwait_obj(group, queue);
2411 if (!syncobj)
2412 return -EINVAL;
2413
2414 value = queue->syncwait.sync64 ?
2415 syncobj->sync64.seqno :
2416 syncobj->sync32.seqno;
2417
2418 if (queue->syncwait.gt)
2419 result = value > queue->syncwait.ref;
2420 else
2421 result = value <= queue->syncwait.ref;
2422
2423 if (result)
2424 panthor_queue_put_syncwait_obj(queue);
2425
2426 return result;
2427 }
2428
sync_upd_work(struct work_struct * work)2429 static void sync_upd_work(struct work_struct *work)
2430 {
2431 struct panthor_scheduler *sched = container_of(work,
2432 struct panthor_scheduler,
2433 sync_upd_work);
2434 struct panthor_group *group, *tmp;
2435 bool immediate_tick = false;
2436
2437 mutex_lock(&sched->lock);
2438 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2439 u32 tested_queues = group->blocked_queues;
2440 u32 unblocked_queues = 0;
2441
2442 while (tested_queues) {
2443 u32 cs_id = ffs(tested_queues) - 1;
2444 int ret;
2445
2446 ret = panthor_queue_eval_syncwait(group, cs_id);
2447 drm_WARN_ON(&group->ptdev->base, ret < 0);
2448 if (ret)
2449 unblocked_queues |= BIT(cs_id);
2450
2451 tested_queues &= ~BIT(cs_id);
2452 }
2453
2454 if (unblocked_queues) {
2455 group->blocked_queues &= ~unblocked_queues;
2456
2457 if (group->csg_id < 0) {
2458 list_move(&group->run_node,
2459 &sched->groups.runnable[group->priority]);
2460 if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2461 immediate_tick = true;
2462 }
2463 }
2464
2465 if (!group->blocked_queues)
2466 list_del_init(&group->wait_node);
2467 }
2468 mutex_unlock(&sched->lock);
2469
2470 if (immediate_tick)
2471 sched_queue_delayed_work(sched, tick, 0);
2472 }
2473
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2474 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2475 {
2476 struct panthor_device *ptdev = group->ptdev;
2477 struct panthor_scheduler *sched = ptdev->scheduler;
2478 struct list_head *queue = &sched->groups.runnable[group->priority];
2479 u64 delay_jiffies = 0;
2480 bool was_idle;
2481 u64 now;
2482
2483 if (!group_can_run(group))
2484 return;
2485
2486 /* All updated queues are blocked, no need to wake up the scheduler. */
2487 if ((queue_mask & group->blocked_queues) == queue_mask)
2488 return;
2489
2490 was_idle = group_is_idle(group);
2491 group->idle_queues &= ~queue_mask;
2492
2493 /* Don't mess up with the lists if we're in a middle of a reset. */
2494 if (atomic_read(&sched->reset.in_progress))
2495 return;
2496
2497 if (was_idle && !group_is_idle(group))
2498 list_move_tail(&group->run_node, queue);
2499
2500 /* RT groups are preemptive. */
2501 if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2502 sched_queue_delayed_work(sched, tick, 0);
2503 return;
2504 }
2505
2506 /* Some groups might be idle, force an immediate tick to
2507 * re-evaluate.
2508 */
2509 if (sched->might_have_idle_groups) {
2510 sched_queue_delayed_work(sched, tick, 0);
2511 return;
2512 }
2513
2514 /* Scheduler is ticking, nothing to do. */
2515 if (sched->resched_target != U64_MAX) {
2516 /* If there are free slots, force immediating ticking. */
2517 if (sched->used_csg_slot_count < sched->csg_slot_count)
2518 sched_queue_delayed_work(sched, tick, 0);
2519
2520 return;
2521 }
2522
2523 /* Scheduler tick was off, recalculate the resched_target based on the
2524 * last tick event, and queue the scheduler work.
2525 */
2526 now = get_jiffies_64();
2527 sched->resched_target = sched->last_tick + sched->tick_period;
2528 if (sched->used_csg_slot_count == sched->csg_slot_count &&
2529 time_before64(now, sched->resched_target))
2530 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2531
2532 sched_queue_delayed_work(sched, tick, delay_jiffies);
2533 }
2534
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2535 static void queue_stop(struct panthor_queue *queue,
2536 struct panthor_job *bad_job)
2537 {
2538 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2539 }
2540
queue_start(struct panthor_queue * queue)2541 static void queue_start(struct panthor_queue *queue)
2542 {
2543 struct panthor_job *job;
2544
2545 /* Re-assign the parent fences. */
2546 list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2547 job->base.s_fence->parent = dma_fence_get(job->done_fence);
2548
2549 drm_sched_start(&queue->scheduler);
2550 }
2551
panthor_group_stop(struct panthor_group * group)2552 static void panthor_group_stop(struct panthor_group *group)
2553 {
2554 struct panthor_scheduler *sched = group->ptdev->scheduler;
2555
2556 lockdep_assert_held(&sched->reset.lock);
2557
2558 for (u32 i = 0; i < group->queue_count; i++)
2559 queue_stop(group->queues[i], NULL);
2560
2561 group_get(group);
2562 list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2563 }
2564
panthor_group_start(struct panthor_group * group)2565 static void panthor_group_start(struct panthor_group *group)
2566 {
2567 struct panthor_scheduler *sched = group->ptdev->scheduler;
2568
2569 lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2570
2571 for (u32 i = 0; i < group->queue_count; i++)
2572 queue_start(group->queues[i]);
2573
2574 if (group_can_run(group)) {
2575 list_move_tail(&group->run_node,
2576 group_is_idle(group) ?
2577 &sched->groups.idle[group->priority] :
2578 &sched->groups.runnable[group->priority]);
2579 } else {
2580 list_del_init(&group->run_node);
2581 list_del_init(&group->wait_node);
2582 group_queue_work(group, term);
2583 }
2584
2585 group_put(group);
2586 }
2587
panthor_sched_immediate_tick(struct panthor_device * ptdev)2588 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2589 {
2590 struct panthor_scheduler *sched = ptdev->scheduler;
2591
2592 sched_queue_delayed_work(sched, tick, 0);
2593 }
2594
2595 /**
2596 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2597 */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2598 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2599 {
2600 /* Force a tick to immediately kill faulty groups. */
2601 if (ptdev->scheduler)
2602 panthor_sched_immediate_tick(ptdev);
2603 }
2604
panthor_sched_resume(struct panthor_device * ptdev)2605 void panthor_sched_resume(struct panthor_device *ptdev)
2606 {
2607 /* Force a tick to re-evaluate after a resume. */
2608 panthor_sched_immediate_tick(ptdev);
2609 }
2610
panthor_sched_suspend(struct panthor_device * ptdev)2611 void panthor_sched_suspend(struct panthor_device *ptdev)
2612 {
2613 struct panthor_scheduler *sched = ptdev->scheduler;
2614 struct panthor_csg_slots_upd_ctx upd_ctx;
2615 struct panthor_group *group;
2616 u32 suspended_slots;
2617 u32 i;
2618
2619 mutex_lock(&sched->lock);
2620 csgs_upd_ctx_init(&upd_ctx);
2621 for (i = 0; i < sched->csg_slot_count; i++) {
2622 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2623
2624 if (csg_slot->group) {
2625 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2626 group_can_run(csg_slot->group) ?
2627 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2628 CSG_STATE_MASK);
2629 }
2630 }
2631
2632 suspended_slots = upd_ctx.update_mask;
2633
2634 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2635 suspended_slots &= ~upd_ctx.timedout_mask;
2636
2637 if (upd_ctx.timedout_mask) {
2638 u32 slot_mask = upd_ctx.timedout_mask;
2639
2640 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2641 csgs_upd_ctx_init(&upd_ctx);
2642 while (slot_mask) {
2643 u32 csg_id = ffs(slot_mask) - 1;
2644 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2645
2646 /* We consider group suspension failures as fatal and flag the
2647 * group as unusable by setting timedout=true.
2648 */
2649 csg_slot->group->timedout = true;
2650
2651 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2652 CSG_STATE_TERMINATE,
2653 CSG_STATE_MASK);
2654 slot_mask &= ~BIT(csg_id);
2655 }
2656
2657 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2658
2659 slot_mask = upd_ctx.timedout_mask;
2660 while (slot_mask) {
2661 u32 csg_id = ffs(slot_mask) - 1;
2662 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2663
2664 /* Terminate command timedout, but the soft-reset will
2665 * automatically terminate all active groups, so let's
2666 * force the state to halted here.
2667 */
2668 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2669 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2670 slot_mask &= ~BIT(csg_id);
2671 }
2672 }
2673
2674 /* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2675 * If the flush fails, flag all queues for termination.
2676 */
2677 if (suspended_slots) {
2678 bool flush_caches_failed = false;
2679 u32 slot_mask = suspended_slots;
2680
2681 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2682 flush_caches_failed = true;
2683
2684 while (slot_mask) {
2685 u32 csg_id = ffs(slot_mask) - 1;
2686 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2687
2688 if (flush_caches_failed)
2689 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2690 else
2691 csg_slot_sync_update_locked(ptdev, csg_id);
2692
2693 slot_mask &= ~BIT(csg_id);
2694 }
2695 }
2696
2697 for (i = 0; i < sched->csg_slot_count; i++) {
2698 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2699
2700 group = csg_slot->group;
2701 if (!group)
2702 continue;
2703
2704 group_get(group);
2705
2706 if (group->csg_id >= 0)
2707 sched_process_csg_irq_locked(ptdev, group->csg_id);
2708
2709 group_unbind_locked(group);
2710
2711 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2712
2713 if (group_can_run(group)) {
2714 list_add(&group->run_node,
2715 &sched->groups.idle[group->priority]);
2716 } else {
2717 /* We don't bother stopping the scheduler if the group is
2718 * faulty, the group termination work will finish the job.
2719 */
2720 list_del_init(&group->wait_node);
2721 group_queue_work(group, term);
2722 }
2723 group_put(group);
2724 }
2725 mutex_unlock(&sched->lock);
2726 }
2727
panthor_sched_pre_reset(struct panthor_device * ptdev)2728 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2729 {
2730 struct panthor_scheduler *sched = ptdev->scheduler;
2731 struct panthor_group *group, *group_tmp;
2732 u32 i;
2733
2734 mutex_lock(&sched->reset.lock);
2735 atomic_set(&sched->reset.in_progress, true);
2736
2737 /* Cancel all scheduler works. Once this is done, these works can't be
2738 * scheduled again until the reset operation is complete.
2739 */
2740 cancel_work_sync(&sched->sync_upd_work);
2741 cancel_delayed_work_sync(&sched->tick_work);
2742
2743 panthor_sched_suspend(ptdev);
2744
2745 /* Stop all groups that might still accept jobs, so we don't get passed
2746 * new jobs while we're resetting.
2747 */
2748 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2749 /* All groups should be in the idle lists. */
2750 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2751 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2752 panthor_group_stop(group);
2753 }
2754
2755 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2756 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2757 panthor_group_stop(group);
2758 }
2759
2760 mutex_unlock(&sched->reset.lock);
2761 }
2762
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2763 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2764 {
2765 struct panthor_scheduler *sched = ptdev->scheduler;
2766 struct panthor_group *group, *group_tmp;
2767
2768 mutex_lock(&sched->reset.lock);
2769
2770 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2771 /* Consider all previously running group as terminated if the
2772 * reset failed.
2773 */
2774 if (reset_failed)
2775 group->state = PANTHOR_CS_GROUP_TERMINATED;
2776
2777 panthor_group_start(group);
2778 }
2779
2780 /* We're done resetting the GPU, clear the reset.in_progress bit so we can
2781 * kick the scheduler.
2782 */
2783 atomic_set(&sched->reset.in_progress, false);
2784 mutex_unlock(&sched->reset.lock);
2785
2786 /* No need to queue a tick and update syncs if the reset failed. */
2787 if (!reset_failed) {
2788 sched_queue_delayed_work(sched, tick, 0);
2789 sched_queue_work(sched, sync_upd);
2790 }
2791 }
2792
group_sync_upd_work(struct work_struct * work)2793 static void group_sync_upd_work(struct work_struct *work)
2794 {
2795 struct panthor_group *group =
2796 container_of(work, struct panthor_group, sync_upd_work);
2797 struct panthor_job *job, *job_tmp;
2798 LIST_HEAD(done_jobs);
2799 u32 queue_idx;
2800 bool cookie;
2801
2802 cookie = dma_fence_begin_signalling();
2803 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2804 struct panthor_queue *queue = group->queues[queue_idx];
2805 struct panthor_syncobj_64b *syncobj;
2806
2807 if (!queue)
2808 continue;
2809
2810 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2811
2812 spin_lock(&queue->fence_ctx.lock);
2813 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2814 if (syncobj->seqno < job->done_fence->seqno)
2815 break;
2816
2817 list_move_tail(&job->node, &done_jobs);
2818 dma_fence_signal_locked(job->done_fence);
2819 }
2820 spin_unlock(&queue->fence_ctx.lock);
2821 }
2822 dma_fence_end_signalling(cookie);
2823
2824 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2825 list_del_init(&job->node);
2826 panthor_job_put(&job->base);
2827 }
2828
2829 group_put(group);
2830 }
2831
2832 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)2833 queue_run_job(struct drm_sched_job *sched_job)
2834 {
2835 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2836 struct panthor_group *group = job->group;
2837 struct panthor_queue *queue = group->queues[job->queue_idx];
2838 struct panthor_device *ptdev = group->ptdev;
2839 struct panthor_scheduler *sched = ptdev->scheduler;
2840 u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2841 u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1);
2842 u64 addr_reg = ptdev->csif_info.cs_reg_count -
2843 ptdev->csif_info.unpreserved_cs_reg_count;
2844 u64 val_reg = addr_reg + 2;
2845 u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
2846 job->queue_idx * sizeof(struct panthor_syncobj_64b);
2847 u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
2848 struct dma_fence *done_fence;
2849 int ret;
2850
2851 u64 call_instrs[NUM_INSTRS_PER_SLOT] = {
2852 /* MOV32 rX+2, cs.latest_flush */
2853 (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush,
2854
2855 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
2856 (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233,
2857
2858 /* MOV48 rX:rX+1, cs.start */
2859 (1ull << 56) | (addr_reg << 48) | job->call_info.start,
2860
2861 /* MOV32 rX+2, cs.size */
2862 (2ull << 56) | (val_reg << 48) | job->call_info.size,
2863
2864 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */
2865 (3ull << 56) | (1 << 16),
2866
2867 /* CALL rX:rX+1, rX+2 */
2868 (32ull << 56) | (addr_reg << 40) | (val_reg << 32),
2869
2870 /* MOV48 rX:rX+1, sync_addr */
2871 (1ull << 56) | (addr_reg << 48) | sync_addr,
2872
2873 /* MOV48 rX+2, #1 */
2874 (1ull << 56) | (val_reg << 48) | 1,
2875
2876 /* WAIT(all) */
2877 (3ull << 56) | (waitall_mask << 16),
2878
2879 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
2880 (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1,
2881
2882 /* ERROR_BARRIER, so we can recover from faults at job
2883 * boundaries.
2884 */
2885 (47ull << 56),
2886 };
2887
2888 /* Need to be cacheline aligned to please the prefetcher. */
2889 static_assert(sizeof(call_instrs) % 64 == 0,
2890 "call_instrs is not aligned on a cacheline");
2891
2892 /* Stream size is zero, nothing to do except making sure all previously
2893 * submitted jobs are done before we signal the
2894 * drm_sched_job::s_fence::finished fence.
2895 */
2896 if (!job->call_info.size) {
2897 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
2898 return dma_fence_get(job->done_fence);
2899 }
2900
2901 ret = pm_runtime_resume_and_get(ptdev->base.dev);
2902 if (drm_WARN_ON(&ptdev->base, ret))
2903 return ERR_PTR(ret);
2904
2905 mutex_lock(&sched->lock);
2906 if (!group_can_run(group)) {
2907 done_fence = ERR_PTR(-ECANCELED);
2908 goto out_unlock;
2909 }
2910
2911 dma_fence_init(job->done_fence,
2912 &panthor_queue_fence_ops,
2913 &queue->fence_ctx.lock,
2914 queue->fence_ctx.id,
2915 atomic64_inc_return(&queue->fence_ctx.seqno));
2916
2917 memcpy(queue->ringbuf->kmap + ringbuf_insert,
2918 call_instrs, sizeof(call_instrs));
2919
2920 panthor_job_get(&job->base);
2921 spin_lock(&queue->fence_ctx.lock);
2922 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
2923 spin_unlock(&queue->fence_ctx.lock);
2924
2925 job->ringbuf.start = queue->iface.input->insert;
2926 job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs);
2927
2928 /* Make sure the ring buffer is updated before the INSERT
2929 * register.
2930 */
2931 wmb();
2932
2933 queue->iface.input->extract = queue->iface.output->extract;
2934 queue->iface.input->insert = job->ringbuf.end;
2935
2936 if (group->csg_id < 0) {
2937 /* If the queue is blocked, we want to keep the timeout running, so we
2938 * can detect unbounded waits and kill the group when that happens.
2939 * Otherwise, we suspend the timeout so the time we spend waiting for
2940 * a CSG slot is not counted.
2941 */
2942 if (!(group->blocked_queues & BIT(job->queue_idx)) &&
2943 !queue->timeout_suspended) {
2944 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
2945 queue->timeout_suspended = true;
2946 }
2947
2948 group_schedule_locked(group, BIT(job->queue_idx));
2949 } else {
2950 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
2951 if (!sched->pm.has_ref &&
2952 !(group->blocked_queues & BIT(job->queue_idx))) {
2953 pm_runtime_get(ptdev->base.dev);
2954 sched->pm.has_ref = true;
2955 }
2956 panthor_devfreq_record_busy(sched->ptdev);
2957 }
2958
2959 /* Update the last fence. */
2960 dma_fence_put(queue->fence_ctx.last_fence);
2961 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
2962
2963 done_fence = dma_fence_get(job->done_fence);
2964
2965 out_unlock:
2966 mutex_unlock(&sched->lock);
2967 pm_runtime_mark_last_busy(ptdev->base.dev);
2968 pm_runtime_put_autosuspend(ptdev->base.dev);
2969
2970 return done_fence;
2971 }
2972
2973 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)2974 queue_timedout_job(struct drm_sched_job *sched_job)
2975 {
2976 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
2977 struct panthor_group *group = job->group;
2978 struct panthor_device *ptdev = group->ptdev;
2979 struct panthor_scheduler *sched = ptdev->scheduler;
2980 struct panthor_queue *queue = group->queues[job->queue_idx];
2981
2982 drm_warn(&ptdev->base, "job timeout\n");
2983
2984 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
2985
2986 queue_stop(queue, job);
2987
2988 mutex_lock(&sched->lock);
2989 group->timedout = true;
2990 if (group->csg_id >= 0) {
2991 sched_queue_delayed_work(ptdev->scheduler, tick, 0);
2992 } else {
2993 /* Remove from the run queues, so the scheduler can't
2994 * pick the group on the next tick.
2995 */
2996 list_del_init(&group->run_node);
2997 list_del_init(&group->wait_node);
2998
2999 group_queue_work(group, term);
3000 }
3001 mutex_unlock(&sched->lock);
3002
3003 queue_start(queue);
3004
3005 return DRM_GPU_SCHED_STAT_NOMINAL;
3006 }
3007
queue_free_job(struct drm_sched_job * sched_job)3008 static void queue_free_job(struct drm_sched_job *sched_job)
3009 {
3010 drm_sched_job_cleanup(sched_job);
3011 panthor_job_put(sched_job);
3012 }
3013
3014 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3015 .run_job = queue_run_job,
3016 .timedout_job = queue_timedout_job,
3017 .free_job = queue_free_job,
3018 };
3019
3020 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args)3021 group_create_queue(struct panthor_group *group,
3022 const struct drm_panthor_queue_create *args)
3023 {
3024 struct drm_gpu_scheduler *drm_sched;
3025 struct panthor_queue *queue;
3026 int ret;
3027
3028 if (args->pad[0] || args->pad[1] || args->pad[2])
3029 return ERR_PTR(-EINVAL);
3030
3031 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3032 !is_power_of_2(args->ringbuf_size))
3033 return ERR_PTR(-EINVAL);
3034
3035 if (args->priority > CSF_MAX_QUEUE_PRIO)
3036 return ERR_PTR(-EINVAL);
3037
3038 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3039 if (!queue)
3040 return ERR_PTR(-ENOMEM);
3041
3042 queue->fence_ctx.id = dma_fence_context_alloc(1);
3043 spin_lock_init(&queue->fence_ctx.lock);
3044 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3045
3046 queue->priority = args->priority;
3047
3048 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3049 args->ringbuf_size,
3050 DRM_PANTHOR_BO_NO_MMAP,
3051 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3052 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3053 PANTHOR_VM_KERNEL_AUTO_VA);
3054 if (IS_ERR(queue->ringbuf)) {
3055 ret = PTR_ERR(queue->ringbuf);
3056 goto err_free_queue;
3057 }
3058
3059 ret = panthor_kernel_bo_vmap(queue->ringbuf);
3060 if (ret)
3061 goto err_free_queue;
3062
3063 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3064 &queue->iface.input,
3065 &queue->iface.output,
3066 &queue->iface.input_fw_va,
3067 &queue->iface.output_fw_va);
3068 if (IS_ERR(queue->iface.mem)) {
3069 ret = PTR_ERR(queue->iface.mem);
3070 goto err_free_queue;
3071 }
3072
3073 ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
3074 group->ptdev->scheduler->wq, 1,
3075 args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)),
3076 0, msecs_to_jiffies(JOB_TIMEOUT_MS),
3077 group->ptdev->reset.wq,
3078 NULL, "panthor-queue", group->ptdev->base.dev);
3079 if (ret)
3080 goto err_free_queue;
3081
3082 drm_sched = &queue->scheduler;
3083 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3084
3085 return queue;
3086
3087 err_free_queue:
3088 group_free_queue(group, queue);
3089 return ERR_PTR(ret);
3090 }
3091
3092 #define MAX_GROUPS_PER_POOL 128
3093
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args)3094 int panthor_group_create(struct panthor_file *pfile,
3095 const struct drm_panthor_group_create *group_args,
3096 const struct drm_panthor_queue_create *queue_args)
3097 {
3098 struct panthor_device *ptdev = pfile->ptdev;
3099 struct panthor_group_pool *gpool = pfile->groups;
3100 struct panthor_scheduler *sched = ptdev->scheduler;
3101 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3102 struct panthor_group *group = NULL;
3103 u32 gid, i, suspend_size;
3104 int ret;
3105
3106 if (group_args->pad)
3107 return -EINVAL;
3108
3109 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3110 return -EINVAL;
3111
3112 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3113 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3114 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3115 return -EINVAL;
3116
3117 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3118 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3119 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3120 return -EINVAL;
3121
3122 group = kzalloc(sizeof(*group), GFP_KERNEL);
3123 if (!group)
3124 return -ENOMEM;
3125
3126 spin_lock_init(&group->fatal_lock);
3127 kref_init(&group->refcount);
3128 group->state = PANTHOR_CS_GROUP_CREATED;
3129 group->csg_id = -1;
3130
3131 group->ptdev = ptdev;
3132 group->max_compute_cores = group_args->max_compute_cores;
3133 group->compute_core_mask = group_args->compute_core_mask;
3134 group->max_fragment_cores = group_args->max_fragment_cores;
3135 group->fragment_core_mask = group_args->fragment_core_mask;
3136 group->max_tiler_cores = group_args->max_tiler_cores;
3137 group->tiler_core_mask = group_args->tiler_core_mask;
3138 group->priority = group_args->priority;
3139
3140 INIT_LIST_HEAD(&group->wait_node);
3141 INIT_LIST_HEAD(&group->run_node);
3142 INIT_WORK(&group->term_work, group_term_work);
3143 INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3144 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3145 INIT_WORK(&group->release_work, group_release_work);
3146
3147 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3148 if (!group->vm) {
3149 ret = -EINVAL;
3150 goto err_put_group;
3151 }
3152
3153 suspend_size = csg_iface->control->suspend_size;
3154 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3155 if (IS_ERR(group->suspend_buf)) {
3156 ret = PTR_ERR(group->suspend_buf);
3157 group->suspend_buf = NULL;
3158 goto err_put_group;
3159 }
3160
3161 suspend_size = csg_iface->control->protm_suspend_size;
3162 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3163 if (IS_ERR(group->protm_suspend_buf)) {
3164 ret = PTR_ERR(group->protm_suspend_buf);
3165 group->protm_suspend_buf = NULL;
3166 goto err_put_group;
3167 }
3168
3169 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3170 group_args->queues.count *
3171 sizeof(struct panthor_syncobj_64b),
3172 DRM_PANTHOR_BO_NO_MMAP,
3173 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3174 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3175 PANTHOR_VM_KERNEL_AUTO_VA);
3176 if (IS_ERR(group->syncobjs)) {
3177 ret = PTR_ERR(group->syncobjs);
3178 goto err_put_group;
3179 }
3180
3181 ret = panthor_kernel_bo_vmap(group->syncobjs);
3182 if (ret)
3183 goto err_put_group;
3184
3185 memset(group->syncobjs->kmap, 0,
3186 group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3187
3188 for (i = 0; i < group_args->queues.count; i++) {
3189 group->queues[i] = group_create_queue(group, &queue_args[i]);
3190 if (IS_ERR(group->queues[i])) {
3191 ret = PTR_ERR(group->queues[i]);
3192 group->queues[i] = NULL;
3193 goto err_put_group;
3194 }
3195
3196 group->queue_count++;
3197 }
3198
3199 group->idle_queues = GENMASK(group->queue_count - 1, 0);
3200
3201 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3202 if (ret)
3203 goto err_put_group;
3204
3205 mutex_lock(&sched->reset.lock);
3206 if (atomic_read(&sched->reset.in_progress)) {
3207 panthor_group_stop(group);
3208 } else {
3209 mutex_lock(&sched->lock);
3210 list_add_tail(&group->run_node,
3211 &sched->groups.idle[group->priority]);
3212 mutex_unlock(&sched->lock);
3213 }
3214 mutex_unlock(&sched->reset.lock);
3215
3216 return gid;
3217
3218 err_put_group:
3219 group_put(group);
3220 return ret;
3221 }
3222
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3223 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3224 {
3225 struct panthor_group_pool *gpool = pfile->groups;
3226 struct panthor_device *ptdev = pfile->ptdev;
3227 struct panthor_scheduler *sched = ptdev->scheduler;
3228 struct panthor_group *group;
3229
3230 group = xa_erase(&gpool->xa, group_handle);
3231 if (!group)
3232 return -EINVAL;
3233
3234 for (u32 i = 0; i < group->queue_count; i++) {
3235 if (group->queues[i])
3236 drm_sched_entity_destroy(&group->queues[i]->entity);
3237 }
3238
3239 mutex_lock(&sched->reset.lock);
3240 mutex_lock(&sched->lock);
3241 group->destroyed = true;
3242 if (group->csg_id >= 0) {
3243 sched_queue_delayed_work(sched, tick, 0);
3244 } else if (!atomic_read(&sched->reset.in_progress)) {
3245 /* Remove from the run queues, so the scheduler can't
3246 * pick the group on the next tick.
3247 */
3248 list_del_init(&group->run_node);
3249 list_del_init(&group->wait_node);
3250 group_queue_work(group, term);
3251 }
3252 mutex_unlock(&sched->lock);
3253 mutex_unlock(&sched->reset.lock);
3254
3255 group_put(group);
3256 return 0;
3257 }
3258
group_from_handle(struct panthor_group_pool * pool,u32 group_handle)3259 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3260 u32 group_handle)
3261 {
3262 struct panthor_group *group;
3263
3264 xa_lock(&pool->xa);
3265 group = group_get(xa_load(&pool->xa, group_handle));
3266 xa_unlock(&pool->xa);
3267
3268 return group;
3269 }
3270
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3271 int panthor_group_get_state(struct panthor_file *pfile,
3272 struct drm_panthor_group_get_state *get_state)
3273 {
3274 struct panthor_group_pool *gpool = pfile->groups;
3275 struct panthor_device *ptdev = pfile->ptdev;
3276 struct panthor_scheduler *sched = ptdev->scheduler;
3277 struct panthor_group *group;
3278
3279 if (get_state->pad)
3280 return -EINVAL;
3281
3282 group = group_from_handle(gpool, get_state->group_handle);
3283 if (!group)
3284 return -EINVAL;
3285
3286 memset(get_state, 0, sizeof(*get_state));
3287
3288 mutex_lock(&sched->lock);
3289 if (group->timedout)
3290 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3291 if (group->fatal_queues) {
3292 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3293 get_state->fatal_queues = group->fatal_queues;
3294 }
3295 mutex_unlock(&sched->lock);
3296
3297 group_put(group);
3298 return 0;
3299 }
3300
panthor_group_pool_create(struct panthor_file * pfile)3301 int panthor_group_pool_create(struct panthor_file *pfile)
3302 {
3303 struct panthor_group_pool *gpool;
3304
3305 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3306 if (!gpool)
3307 return -ENOMEM;
3308
3309 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3310 pfile->groups = gpool;
3311 return 0;
3312 }
3313
panthor_group_pool_destroy(struct panthor_file * pfile)3314 void panthor_group_pool_destroy(struct panthor_file *pfile)
3315 {
3316 struct panthor_group_pool *gpool = pfile->groups;
3317 struct panthor_group *group;
3318 unsigned long i;
3319
3320 if (IS_ERR_OR_NULL(gpool))
3321 return;
3322
3323 xa_for_each(&gpool->xa, i, group)
3324 panthor_group_destroy(pfile, i);
3325
3326 xa_destroy(&gpool->xa);
3327 kfree(gpool);
3328 pfile->groups = NULL;
3329 }
3330
job_release(struct kref * ref)3331 static void job_release(struct kref *ref)
3332 {
3333 struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3334
3335 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3336
3337 if (job->base.s_fence)
3338 drm_sched_job_cleanup(&job->base);
3339
3340 if (job->done_fence && job->done_fence->ops)
3341 dma_fence_put(job->done_fence);
3342 else
3343 dma_fence_free(job->done_fence);
3344
3345 group_put(job->group);
3346
3347 kfree(job);
3348 }
3349
panthor_job_get(struct drm_sched_job * sched_job)3350 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3351 {
3352 if (sched_job) {
3353 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3354
3355 kref_get(&job->refcount);
3356 }
3357
3358 return sched_job;
3359 }
3360
panthor_job_put(struct drm_sched_job * sched_job)3361 void panthor_job_put(struct drm_sched_job *sched_job)
3362 {
3363 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3364
3365 if (sched_job)
3366 kref_put(&job->refcount, job_release);
3367 }
3368
panthor_job_vm(struct drm_sched_job * sched_job)3369 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3370 {
3371 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3372
3373 return job->group->vm;
3374 }
3375
3376 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit)3377 panthor_job_create(struct panthor_file *pfile,
3378 u16 group_handle,
3379 const struct drm_panthor_queue_submit *qsubmit)
3380 {
3381 struct panthor_group_pool *gpool = pfile->groups;
3382 struct panthor_job *job;
3383 int ret;
3384
3385 if (qsubmit->pad)
3386 return ERR_PTR(-EINVAL);
3387
3388 /* If stream_addr is zero, so stream_size should be. */
3389 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3390 return ERR_PTR(-EINVAL);
3391
3392 /* Make sure the address is aligned on 64-byte (cacheline) and the size is
3393 * aligned on 8-byte (instruction size).
3394 */
3395 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3396 return ERR_PTR(-EINVAL);
3397
3398 /* bits 24:30 must be zero. */
3399 if (qsubmit->latest_flush & GENMASK(30, 24))
3400 return ERR_PTR(-EINVAL);
3401
3402 job = kzalloc(sizeof(*job), GFP_KERNEL);
3403 if (!job)
3404 return ERR_PTR(-ENOMEM);
3405
3406 kref_init(&job->refcount);
3407 job->queue_idx = qsubmit->queue_index;
3408 job->call_info.size = qsubmit->stream_size;
3409 job->call_info.start = qsubmit->stream_addr;
3410 job->call_info.latest_flush = qsubmit->latest_flush;
3411 INIT_LIST_HEAD(&job->node);
3412
3413 job->group = group_from_handle(gpool, group_handle);
3414 if (!job->group) {
3415 ret = -EINVAL;
3416 goto err_put_job;
3417 }
3418
3419 if (!group_can_run(job->group)) {
3420 ret = -EINVAL;
3421 goto err_put_job;
3422 }
3423
3424 if (job->queue_idx >= job->group->queue_count ||
3425 !job->group->queues[job->queue_idx]) {
3426 ret = -EINVAL;
3427 goto err_put_job;
3428 }
3429
3430 /* Empty command streams don't need a fence, they'll pick the one from
3431 * the previously submitted job.
3432 */
3433 if (job->call_info.size) {
3434 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3435 if (!job->done_fence) {
3436 ret = -ENOMEM;
3437 goto err_put_job;
3438 }
3439 }
3440
3441 ret = drm_sched_job_init(&job->base,
3442 &job->group->queues[job->queue_idx]->entity,
3443 1, job->group);
3444 if (ret)
3445 goto err_put_job;
3446
3447 return &job->base;
3448
3449 err_put_job:
3450 panthor_job_put(&job->base);
3451 return ERR_PTR(ret);
3452 }
3453
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)3454 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3455 {
3456 struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3457
3458 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3459 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3460 }
3461
panthor_sched_unplug(struct panthor_device * ptdev)3462 void panthor_sched_unplug(struct panthor_device *ptdev)
3463 {
3464 struct panthor_scheduler *sched = ptdev->scheduler;
3465
3466 cancel_delayed_work_sync(&sched->tick_work);
3467
3468 mutex_lock(&sched->lock);
3469 if (sched->pm.has_ref) {
3470 pm_runtime_put(ptdev->base.dev);
3471 sched->pm.has_ref = false;
3472 }
3473 mutex_unlock(&sched->lock);
3474 }
3475
panthor_sched_fini(struct drm_device * ddev,void * res)3476 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3477 {
3478 struct panthor_scheduler *sched = res;
3479 int prio;
3480
3481 if (!sched || !sched->csg_slot_count)
3482 return;
3483
3484 cancel_delayed_work_sync(&sched->tick_work);
3485
3486 if (sched->wq)
3487 destroy_workqueue(sched->wq);
3488
3489 if (sched->heap_alloc_wq)
3490 destroy_workqueue(sched->heap_alloc_wq);
3491
3492 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3493 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3494 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3495 }
3496
3497 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3498 }
3499
panthor_sched_init(struct panthor_device * ptdev)3500 int panthor_sched_init(struct panthor_device *ptdev)
3501 {
3502 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3503 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3504 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3505 struct panthor_scheduler *sched;
3506 u32 gpu_as_count, num_groups;
3507 int prio, ret;
3508
3509 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3510 if (!sched)
3511 return -ENOMEM;
3512
3513 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3514 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3515 */
3516 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3517
3518 /* The FW-side scheduler might deadlock if two groups with the same
3519 * priority try to access a set of resources that overlaps, with part
3520 * of the resources being allocated to one group and the other part to
3521 * the other group, both groups waiting for the remaining resources to
3522 * be allocated. To avoid that, it is recommended to assign each CSG a
3523 * different priority. In theory we could allow several groups to have
3524 * the same CSG priority if they don't request the same resources, but
3525 * that makes the scheduling logic more complicated, so let's clamp
3526 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3527 */
3528 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3529
3530 /* We need at least one AS for the MCU and one for the GPU contexts. */
3531 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3532 if (!gpu_as_count) {
3533 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3534 gpu_as_count + 1);
3535 return -EINVAL;
3536 }
3537
3538 sched->ptdev = ptdev;
3539 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3540 sched->csg_slot_count = num_groups;
3541 sched->cs_slot_count = csg_iface->control->stream_num;
3542 sched->as_slot_count = gpu_as_count;
3543 ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3544 ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3545 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3546
3547 sched->last_tick = 0;
3548 sched->resched_target = U64_MAX;
3549 sched->tick_period = msecs_to_jiffies(10);
3550 INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3551 INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3552 INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3553
3554 ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3555 if (ret)
3556 return ret;
3557
3558 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3559 INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3560 INIT_LIST_HEAD(&sched->groups.idle[prio]);
3561 }
3562 INIT_LIST_HEAD(&sched->groups.waiting);
3563
3564 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3565 if (ret)
3566 return ret;
3567
3568 INIT_LIST_HEAD(&sched->reset.stopped_groups);
3569
3570 /* sched->heap_alloc_wq will be used for heap chunk allocation on
3571 * tiler OOM events, which means we can't use the same workqueue for
3572 * the scheduler because works queued by the scheduler are in
3573 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3574 * work around this limitation.
3575 *
3576 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3577 * allocation path that we can call when a heap OOM is reported. The
3578 * FW is smart enough to fall back on other methods if the kernel can't
3579 * allocate memory, and fail the tiling job if none of these
3580 * countermeasures worked.
3581 *
3582 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3583 * system is running out of memory.
3584 */
3585 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
3586 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
3587 if (!sched->wq || !sched->heap_alloc_wq) {
3588 panthor_sched_fini(&ptdev->base, sched);
3589 drm_err(&ptdev->base, "Failed to allocate the workqueues");
3590 return -ENOMEM;
3591 }
3592
3593 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
3594 if (ret)
3595 return ret;
3596
3597 ptdev->scheduler = sched;
3598 return 0;
3599 }
3600