1 /*-
2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
3 * Copyright (c) 2021 The FreeBSD Foundation
4 *
5 * Portions of this software were developed by Ararat River
6 * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 /*
31 * Cryptographic Subsystem.
32 *
33 * This code is derived from the Openbsd Cryptographic Framework (OCF)
34 * that has the copyright shown below. Very little of the original
35 * code remains.
36 */
37
38 /*-
39 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
40 *
41 * This code was written by Angelos D. Keromytis in Athens, Greece, in
42 * February 2000. Network Security Technologies Inc. (NSTI) kindly
43 * supported the development of this code.
44 *
45 * Copyright (c) 2000, 2001 Angelos D. Keromytis
46 *
47 * Permission to use, copy, and modify this software with or without fee
48 * is hereby granted, provided that this entire notice is included in
49 * all source code copies of any software which is or includes a copy or
50 * modification of this software.
51 *
52 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
53 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
54 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
55 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
56 * PURPOSE.
57 */
58
59 #include "opt_ddb.h"
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/counter.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/linker.h>
67 #include <sys/lock.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/malloc.h>
71 #include <sys/mbuf.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78 #include <sys/uio.h>
79
80 #include <ddb/ddb.h>
81
82 #include <machine/vmparam.h>
83 #include <vm/uma.h>
84
85 #include <crypto/intake.h>
86 #include <opencrypto/cryptodev.h>
87 #include <opencrypto/xform_auth.h>
88 #include <opencrypto/xform_enc.h>
89
90 #include <sys/kobj.h>
91 #include <sys/bus.h>
92 #include "cryptodev_if.h"
93
94 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
95 #include <machine/pcb.h>
96 #endif
97
98 SDT_PROVIDER_DEFINE(opencrypto);
99
100 /*
101 * Crypto drivers register themselves by allocating a slot in the
102 * crypto_drivers table with crypto_get_driverid().
103 */
104 static struct mtx crypto_drivers_mtx; /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110 * Crypto device/driver capabilities structure.
111 *
112 * Synchronization:
113 * (d) - protected by CRYPTO_DRIVER_LOCK()
114 * (q) - protected by CRYPTO_Q_LOCK()
115 * Not tagged fields are read-only.
116 */
117 struct cryptocap {
118 device_t cc_dev;
119 uint32_t cc_hid;
120 uint32_t cc_sessions; /* (d) # of sessions */
121
122 int cc_flags; /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
124 int cc_qblocked; /* (q) symmetric q blocked */
125 size_t cc_session_size;
126 volatile int cc_refs;
127 };
128
129 static struct cryptocap **crypto_drivers = NULL;
130 static int crypto_drivers_size = 0;
131
132 struct crypto_session {
133 struct cryptocap *cap;
134 struct crypto_session_params csp;
135 uint64_t id;
136 /* Driver softc follows. */
137 };
138
139 static int crp_sleep = 0;
140 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
141 static struct mtx crypto_q_mtx;
142 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
143 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
144
145 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
146 "In-kernel cryptography");
147
148 /*
149 * Taskqueue used to dispatch the crypto requests submitted with
150 * crypto_dispatch_async .
151 */
152 static struct taskqueue *crypto_tq;
153
154 /*
155 * Crypto seq numbers are operated on with modular arithmetic
156 */
157 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
158
159 struct crypto_ret_worker {
160 struct mtx crypto_ret_mtx;
161
162 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
163 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
164
165 uint32_t reorder_ops; /* total ordered sym jobs received */
166 uint32_t reorder_cur_seq; /* current sym job dispatched */
167
168 struct thread *td;
169 };
170 static struct crypto_ret_worker *crypto_ret_workers = NULL;
171
172 #define CRYPTO_RETW(i) (&crypto_ret_workers[i])
173 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
174 #define FOREACH_CRYPTO_RETW(w) \
175 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
176
177 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
178 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
179
180 static int crypto_workers_num = 0;
181 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
182 &crypto_workers_num, 0,
183 "Number of crypto workers used to dispatch crypto jobs");
184 #ifdef COMPAT_FREEBSD12
185 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
186 &crypto_workers_num, 0,
187 "Number of crypto workers used to dispatch crypto jobs");
188 #endif
189
190 static uma_zone_t cryptop_zone;
191
192 int crypto_devallowsoft = 0;
193 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
194 &crypto_devallowsoft, 0,
195 "Enable use of software crypto by /dev/crypto");
196 #ifdef COMPAT_FREEBSD12
197 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
198 &crypto_devallowsoft, 0,
199 "Enable/disable use of software crypto by /dev/crypto");
200 #endif
201
202 #ifdef DIAGNOSTIC
203 bool crypto_destroyreq_check;
204 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
205 &crypto_destroyreq_check, 0,
206 "Enable checks when destroying a request");
207 #endif
208
209 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
210
211 static void crypto_dispatch_thread(void *arg);
212 static struct thread *cryptotd;
213 static void crypto_ret_thread(void *arg);
214 static void crypto_destroy(void);
215 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
216 static void crypto_task_invoke(void *ctx, int pending);
217 static void crypto_batch_enqueue(struct cryptop *crp);
218
219 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
220 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
221 cryptostats, nitems(cryptostats),
222 "Crypto system statistics");
223
224 #define CRYPTOSTAT_INC(stat) do { \
225 counter_u64_add( \
226 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
227 1); \
228 } while (0)
229
230 static void
cryptostats_init(void * arg __unused)231 cryptostats_init(void *arg __unused)
232 {
233 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
234 }
235 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
236
237 static void
cryptostats_fini(void * arg __unused)238 cryptostats_fini(void *arg __unused)
239 {
240 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
241 }
242 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
243 NULL);
244
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247
248 static struct keybuf empty_keybuf = {
249 .kb_nents = 0
250 };
251
252 /* Obtain the key buffer from boot metadata */
253 static void
keybuf_init(void)254 keybuf_init(void)
255 {
256 caddr_t kmdp;
257
258 kmdp = preload_search_by_type("elf kernel");
259
260 if (kmdp == NULL)
261 kmdp = preload_search_by_type("elf64 kernel");
262
263 keybuf = (struct keybuf *)preload_search_info(kmdp,
264 MODINFO_METADATA | MODINFOMD_KEYBUF);
265
266 if (keybuf == NULL)
267 keybuf = &empty_keybuf;
268 }
269
270 /* It'd be nice if we could store these in some kind of secure memory... */
271 struct keybuf *
get_keybuf(void)272 get_keybuf(void)
273 {
274
275 return (keybuf);
276 }
277
278 static struct cryptocap *
cap_ref(struct cryptocap * cap)279 cap_ref(struct cryptocap *cap)
280 {
281
282 refcount_acquire(&cap->cc_refs);
283 return (cap);
284 }
285
286 static void
cap_rele(struct cryptocap * cap)287 cap_rele(struct cryptocap *cap)
288 {
289
290 if (refcount_release(&cap->cc_refs) == 0)
291 return;
292
293 KASSERT(cap->cc_sessions == 0,
294 ("freeing crypto driver with active sessions"));
295
296 free(cap, M_CRYPTO_DATA);
297 }
298
299 static int
crypto_init(void)300 crypto_init(void)
301 {
302 struct crypto_ret_worker *ret_worker;
303 struct proc *p;
304 int error;
305
306 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
307
308 TAILQ_INIT(&crp_q);
309 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
310
311 cryptop_zone = uma_zcreate("cryptop",
312 sizeof(struct cryptop), NULL, NULL, NULL, NULL,
313 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
314
315 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
316 crypto_drivers = malloc(crypto_drivers_size *
317 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
318
319 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
320 crypto_workers_num = mp_ncpus;
321
322 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
323 taskqueue_thread_enqueue, &crypto_tq);
324
325 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
326 "crypto");
327
328 p = NULL;
329 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
330 0, 0, "crypto", "crypto");
331 if (error) {
332 printf("crypto_init: cannot start crypto thread; error %d",
333 error);
334 goto bad;
335 }
336
337 crypto_ret_workers = mallocarray(crypto_workers_num,
338 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
339
340 FOREACH_CRYPTO_RETW(ret_worker) {
341 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
342 TAILQ_INIT(&ret_worker->crp_ret_q);
343
344 ret_worker->reorder_ops = 0;
345 ret_worker->reorder_cur_seq = 0;
346
347 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
348 NULL, MTX_DEF);
349
350 error = kthread_add(crypto_ret_thread, ret_worker, p,
351 &ret_worker->td, 0, 0, "crypto returns %td",
352 CRYPTO_RETW_ID(ret_worker));
353 if (error) {
354 printf("crypto_init: cannot start cryptoret thread; error %d",
355 error);
356 goto bad;
357 }
358 }
359
360 keybuf_init();
361
362 return 0;
363 bad:
364 crypto_destroy();
365 return error;
366 }
367
368 /*
369 * Signal a crypto thread to terminate. We use the driver
370 * table lock to synchronize the sleep/wakeups so that we
371 * are sure the threads have terminated before we release
372 * the data structures they use. See crypto_finis below
373 * for the other half of this song-and-dance.
374 */
375 static void
crypto_terminate(struct thread ** tdp,void * q)376 crypto_terminate(struct thread **tdp, void *q)
377 {
378 struct thread *td;
379
380 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
381 td = *tdp;
382 *tdp = NULL;
383 if (td != NULL) {
384 wakeup_one(q);
385 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
386 }
387 }
388
389 static void
hmac_init_pad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx,uint8_t padval)390 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
391 void *auth_ctx, uint8_t padval)
392 {
393 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
394 u_int i;
395
396 KASSERT(axf->blocksize <= sizeof(hmac_key),
397 ("Invalid HMAC block size %d", axf->blocksize));
398
399 /*
400 * If the key is larger than the block size, use the digest of
401 * the key as the key instead.
402 */
403 memset(hmac_key, 0, sizeof(hmac_key));
404 if (klen > axf->blocksize) {
405 axf->Init(auth_ctx);
406 axf->Update(auth_ctx, key, klen);
407 axf->Final(hmac_key, auth_ctx);
408 klen = axf->hashsize;
409 } else
410 memcpy(hmac_key, key, klen);
411
412 for (i = 0; i < axf->blocksize; i++)
413 hmac_key[i] ^= padval;
414
415 axf->Init(auth_ctx);
416 axf->Update(auth_ctx, hmac_key, axf->blocksize);
417 explicit_bzero(hmac_key, sizeof(hmac_key));
418 }
419
420 void
hmac_init_ipad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)421 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
422 void *auth_ctx)
423 {
424
425 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
426 }
427
428 void
hmac_init_opad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)429 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
430 void *auth_ctx)
431 {
432
433 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
434 }
435
436 static void
crypto_destroy(void)437 crypto_destroy(void)
438 {
439 struct crypto_ret_worker *ret_worker;
440 int i;
441
442 /*
443 * Terminate any crypto threads.
444 */
445 if (crypto_tq != NULL)
446 taskqueue_drain_all(crypto_tq);
447 CRYPTO_DRIVER_LOCK();
448 crypto_terminate(&cryptotd, &crp_q);
449 FOREACH_CRYPTO_RETW(ret_worker)
450 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
451 CRYPTO_DRIVER_UNLOCK();
452
453 /* XXX flush queues??? */
454
455 /*
456 * Reclaim dynamically allocated resources.
457 */
458 for (i = 0; i < crypto_drivers_size; i++) {
459 if (crypto_drivers[i] != NULL)
460 cap_rele(crypto_drivers[i]);
461 }
462 free(crypto_drivers, M_CRYPTO_DATA);
463
464 if (cryptop_zone != NULL)
465 uma_zdestroy(cryptop_zone);
466 mtx_destroy(&crypto_q_mtx);
467 FOREACH_CRYPTO_RETW(ret_worker)
468 mtx_destroy(&ret_worker->crypto_ret_mtx);
469 free(crypto_ret_workers, M_CRYPTO_DATA);
470 if (crypto_tq != NULL)
471 taskqueue_free(crypto_tq);
472 mtx_destroy(&crypto_drivers_mtx);
473 }
474
475 uint32_t
crypto_ses2hid(crypto_session_t crypto_session)476 crypto_ses2hid(crypto_session_t crypto_session)
477 {
478 return (crypto_session->cap->cc_hid);
479 }
480
481 uint32_t
crypto_ses2caps(crypto_session_t crypto_session)482 crypto_ses2caps(crypto_session_t crypto_session)
483 {
484 return (crypto_session->cap->cc_flags & 0xff000000);
485 }
486
487 void *
crypto_get_driver_session(crypto_session_t crypto_session)488 crypto_get_driver_session(crypto_session_t crypto_session)
489 {
490 return (crypto_session + 1);
491 }
492
493 const struct crypto_session_params *
crypto_get_params(crypto_session_t crypto_session)494 crypto_get_params(crypto_session_t crypto_session)
495 {
496 return (&crypto_session->csp);
497 }
498
499 const struct auth_hash *
crypto_auth_hash(const struct crypto_session_params * csp)500 crypto_auth_hash(const struct crypto_session_params *csp)
501 {
502
503 switch (csp->csp_auth_alg) {
504 case CRYPTO_SHA1_HMAC:
505 return (&auth_hash_hmac_sha1);
506 case CRYPTO_SHA2_224_HMAC:
507 return (&auth_hash_hmac_sha2_224);
508 case CRYPTO_SHA2_256_HMAC:
509 return (&auth_hash_hmac_sha2_256);
510 case CRYPTO_SHA2_384_HMAC:
511 return (&auth_hash_hmac_sha2_384);
512 case CRYPTO_SHA2_512_HMAC:
513 return (&auth_hash_hmac_sha2_512);
514 case CRYPTO_NULL_HMAC:
515 return (&auth_hash_null);
516 case CRYPTO_RIPEMD160_HMAC:
517 return (&auth_hash_hmac_ripemd_160);
518 case CRYPTO_RIPEMD160:
519 return (&auth_hash_ripemd_160);
520 case CRYPTO_SHA1:
521 return (&auth_hash_sha1);
522 case CRYPTO_SHA2_224:
523 return (&auth_hash_sha2_224);
524 case CRYPTO_SHA2_256:
525 return (&auth_hash_sha2_256);
526 case CRYPTO_SHA2_384:
527 return (&auth_hash_sha2_384);
528 case CRYPTO_SHA2_512:
529 return (&auth_hash_sha2_512);
530 case CRYPTO_AES_NIST_GMAC:
531 switch (csp->csp_auth_klen) {
532 case 128 / 8:
533 return (&auth_hash_nist_gmac_aes_128);
534 case 192 / 8:
535 return (&auth_hash_nist_gmac_aes_192);
536 case 256 / 8:
537 return (&auth_hash_nist_gmac_aes_256);
538 default:
539 return (NULL);
540 }
541 case CRYPTO_BLAKE2B:
542 return (&auth_hash_blake2b);
543 case CRYPTO_BLAKE2S:
544 return (&auth_hash_blake2s);
545 case CRYPTO_POLY1305:
546 return (&auth_hash_poly1305);
547 case CRYPTO_AES_CCM_CBC_MAC:
548 switch (csp->csp_auth_klen) {
549 case 128 / 8:
550 return (&auth_hash_ccm_cbc_mac_128);
551 case 192 / 8:
552 return (&auth_hash_ccm_cbc_mac_192);
553 case 256 / 8:
554 return (&auth_hash_ccm_cbc_mac_256);
555 default:
556 return (NULL);
557 }
558 default:
559 return (NULL);
560 }
561 }
562
563 const struct enc_xform *
crypto_cipher(const struct crypto_session_params * csp)564 crypto_cipher(const struct crypto_session_params *csp)
565 {
566
567 switch (csp->csp_cipher_alg) {
568 case CRYPTO_AES_CBC:
569 return (&enc_xform_aes_cbc);
570 case CRYPTO_AES_XTS:
571 return (&enc_xform_aes_xts);
572 case CRYPTO_AES_ICM:
573 return (&enc_xform_aes_icm);
574 case CRYPTO_AES_NIST_GCM_16:
575 return (&enc_xform_aes_nist_gcm);
576 case CRYPTO_CAMELLIA_CBC:
577 return (&enc_xform_camellia);
578 case CRYPTO_NULL_CBC:
579 return (&enc_xform_null);
580 case CRYPTO_CHACHA20:
581 return (&enc_xform_chacha20);
582 case CRYPTO_AES_CCM_16:
583 return (&enc_xform_ccm);
584 case CRYPTO_CHACHA20_POLY1305:
585 return (&enc_xform_chacha20_poly1305);
586 case CRYPTO_XCHACHA20_POLY1305:
587 return (&enc_xform_xchacha20_poly1305);
588 default:
589 return (NULL);
590 }
591 }
592
593 static struct cryptocap *
crypto_checkdriver(uint32_t hid)594 crypto_checkdriver(uint32_t hid)
595 {
596
597 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
598 }
599
600 /*
601 * Select a driver for a new session that supports the specified
602 * algorithms and, optionally, is constrained according to the flags.
603 */
604 static struct cryptocap *
crypto_select_driver(const struct crypto_session_params * csp,int flags)605 crypto_select_driver(const struct crypto_session_params *csp, int flags)
606 {
607 struct cryptocap *cap, *best;
608 int best_match, error, hid;
609
610 CRYPTO_DRIVER_ASSERT();
611
612 best = NULL;
613 for (hid = 0; hid < crypto_drivers_size; hid++) {
614 /*
615 * If there is no driver for this slot, or the driver
616 * is not appropriate (hardware or software based on
617 * match), then skip.
618 */
619 cap = crypto_drivers[hid];
620 if (cap == NULL ||
621 (cap->cc_flags & flags) == 0)
622 continue;
623
624 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
625 if (error >= 0)
626 continue;
627
628 /*
629 * Use the driver with the highest probe value.
630 * Hardware drivers use a higher probe value than
631 * software. In case of a tie, prefer the driver with
632 * the fewest active sessions.
633 */
634 if (best == NULL || error > best_match ||
635 (error == best_match &&
636 cap->cc_sessions < best->cc_sessions)) {
637 best = cap;
638 best_match = error;
639 }
640 }
641 return best;
642 }
643
644 static enum alg_type {
645 ALG_NONE = 0,
646 ALG_CIPHER,
647 ALG_DIGEST,
648 ALG_KEYED_DIGEST,
649 ALG_COMPRESSION,
650 ALG_AEAD
651 } alg_types[] = {
652 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
653 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
654 [CRYPTO_AES_CBC] = ALG_CIPHER,
655 [CRYPTO_SHA1] = ALG_DIGEST,
656 [CRYPTO_NULL_HMAC] = ALG_DIGEST,
657 [CRYPTO_NULL_CBC] = ALG_CIPHER,
658 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
659 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
660 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
661 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
662 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
663 [CRYPTO_AES_XTS] = ALG_CIPHER,
664 [CRYPTO_AES_ICM] = ALG_CIPHER,
665 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
666 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
667 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
668 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
669 [CRYPTO_CHACHA20] = ALG_CIPHER,
670 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
671 [CRYPTO_RIPEMD160] = ALG_DIGEST,
672 [CRYPTO_SHA2_224] = ALG_DIGEST,
673 [CRYPTO_SHA2_256] = ALG_DIGEST,
674 [CRYPTO_SHA2_384] = ALG_DIGEST,
675 [CRYPTO_SHA2_512] = ALG_DIGEST,
676 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
677 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
678 [CRYPTO_AES_CCM_16] = ALG_AEAD,
679 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
680 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
681 };
682
683 static enum alg_type
alg_type(int alg)684 alg_type(int alg)
685 {
686
687 if (alg < nitems(alg_types))
688 return (alg_types[alg]);
689 return (ALG_NONE);
690 }
691
692 static bool
alg_is_compression(int alg)693 alg_is_compression(int alg)
694 {
695
696 return (alg_type(alg) == ALG_COMPRESSION);
697 }
698
699 static bool
alg_is_cipher(int alg)700 alg_is_cipher(int alg)
701 {
702
703 return (alg_type(alg) == ALG_CIPHER);
704 }
705
706 static bool
alg_is_digest(int alg)707 alg_is_digest(int alg)
708 {
709
710 return (alg_type(alg) == ALG_DIGEST ||
711 alg_type(alg) == ALG_KEYED_DIGEST);
712 }
713
714 static bool
alg_is_keyed_digest(int alg)715 alg_is_keyed_digest(int alg)
716 {
717
718 return (alg_type(alg) == ALG_KEYED_DIGEST);
719 }
720
721 static bool
alg_is_aead(int alg)722 alg_is_aead(int alg)
723 {
724
725 return (alg_type(alg) == ALG_AEAD);
726 }
727
728 static bool
ccm_tag_length_valid(int len)729 ccm_tag_length_valid(int len)
730 {
731 /* RFC 3610 */
732 switch (len) {
733 case 4:
734 case 6:
735 case 8:
736 case 10:
737 case 12:
738 case 14:
739 case 16:
740 return (true);
741 default:
742 return (false);
743 }
744 }
745
746 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
747
748 /* Various sanity checks on crypto session parameters. */
749 static bool
check_csp(const struct crypto_session_params * csp)750 check_csp(const struct crypto_session_params *csp)
751 {
752 const struct auth_hash *axf;
753
754 /* Mode-independent checks. */
755 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
756 return (false);
757 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
758 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
759 return (false);
760 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
761 return (false);
762 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
763 return (false);
764
765 switch (csp->csp_mode) {
766 case CSP_MODE_COMPRESS:
767 if (!alg_is_compression(csp->csp_cipher_alg))
768 return (false);
769 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
770 return (false);
771 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
772 return (false);
773 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
774 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
775 csp->csp_auth_mlen != 0)
776 return (false);
777 break;
778 case CSP_MODE_CIPHER:
779 if (!alg_is_cipher(csp->csp_cipher_alg))
780 return (false);
781 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
782 return (false);
783 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
784 if (csp->csp_cipher_klen == 0)
785 return (false);
786 if (csp->csp_ivlen == 0)
787 return (false);
788 }
789 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
790 return (false);
791 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
792 csp->csp_auth_mlen != 0)
793 return (false);
794 break;
795 case CSP_MODE_DIGEST:
796 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
797 return (false);
798
799 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
800 return (false);
801
802 /* IV is optional for digests (e.g. GMAC). */
803 switch (csp->csp_auth_alg) {
804 case CRYPTO_AES_CCM_CBC_MAC:
805 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
806 return (false);
807 break;
808 case CRYPTO_AES_NIST_GMAC:
809 if (csp->csp_ivlen != AES_GCM_IV_LEN)
810 return (false);
811 break;
812 default:
813 if (csp->csp_ivlen != 0)
814 return (false);
815 break;
816 }
817
818 if (!alg_is_digest(csp->csp_auth_alg))
819 return (false);
820
821 /* Key is optional for BLAKE2 digests. */
822 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
823 csp->csp_auth_alg == CRYPTO_BLAKE2S)
824 ;
825 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
826 if (csp->csp_auth_klen == 0)
827 return (false);
828 } else {
829 if (csp->csp_auth_klen != 0)
830 return (false);
831 }
832 if (csp->csp_auth_mlen != 0) {
833 axf = crypto_auth_hash(csp);
834 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
835 return (false);
836
837 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
838 !ccm_tag_length_valid(csp->csp_auth_mlen))
839 return (false);
840 }
841 break;
842 case CSP_MODE_AEAD:
843 if (!alg_is_aead(csp->csp_cipher_alg))
844 return (false);
845 if (csp->csp_cipher_klen == 0)
846 return (false);
847 if (csp->csp_ivlen == 0 ||
848 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
849 return (false);
850 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
851 return (false);
852
853 switch (csp->csp_cipher_alg) {
854 case CRYPTO_AES_CCM_16:
855 if (csp->csp_auth_mlen != 0 &&
856 !ccm_tag_length_valid(csp->csp_auth_mlen))
857 return (false);
858
859 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
860 return (false);
861 break;
862 case CRYPTO_AES_NIST_GCM_16:
863 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
864 return (false);
865
866 if (csp->csp_ivlen != AES_GCM_IV_LEN)
867 return (false);
868 break;
869 case CRYPTO_CHACHA20_POLY1305:
870 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
871 return (false);
872 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
873 return (false);
874 break;
875 case CRYPTO_XCHACHA20_POLY1305:
876 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
877 return (false);
878 if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
879 return (false);
880 break;
881 }
882 break;
883 case CSP_MODE_ETA:
884 if (!alg_is_cipher(csp->csp_cipher_alg))
885 return (false);
886 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
887 if (csp->csp_cipher_klen == 0)
888 return (false);
889 if (csp->csp_ivlen == 0)
890 return (false);
891 }
892 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
893 return (false);
894 if (!alg_is_digest(csp->csp_auth_alg))
895 return (false);
896
897 /* Key is optional for BLAKE2 digests. */
898 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
899 csp->csp_auth_alg == CRYPTO_BLAKE2S)
900 ;
901 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
902 if (csp->csp_auth_klen == 0)
903 return (false);
904 } else {
905 if (csp->csp_auth_klen != 0)
906 return (false);
907 }
908 if (csp->csp_auth_mlen != 0) {
909 axf = crypto_auth_hash(csp);
910 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
911 return (false);
912 }
913 break;
914 default:
915 return (false);
916 }
917
918 return (true);
919 }
920
921 /*
922 * Delete a session after it has been detached from its driver.
923 */
924 static void
crypto_deletesession(crypto_session_t cses)925 crypto_deletesession(crypto_session_t cses)
926 {
927 struct cryptocap *cap;
928
929 cap = cses->cap;
930
931 zfree(cses, M_CRYPTO_DATA);
932
933 CRYPTO_DRIVER_LOCK();
934 cap->cc_sessions--;
935 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
936 wakeup(cap);
937 CRYPTO_DRIVER_UNLOCK();
938 cap_rele(cap);
939 }
940
941 /*
942 * Create a new session. The crid argument specifies a crypto
943 * driver to use or constraints on a driver to select (hardware
944 * only, software only, either). Whatever driver is selected
945 * must be capable of the requested crypto algorithms.
946 */
947 int
crypto_newsession(crypto_session_t * cses,const struct crypto_session_params * csp,int crid)948 crypto_newsession(crypto_session_t *cses,
949 const struct crypto_session_params *csp, int crid)
950 {
951 static uint64_t sessid = 0;
952 crypto_session_t res;
953 struct cryptocap *cap;
954 int err;
955
956 if (!check_csp(csp))
957 return (EINVAL);
958
959 res = NULL;
960
961 CRYPTO_DRIVER_LOCK();
962 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
963 /*
964 * Use specified driver; verify it is capable.
965 */
966 cap = crypto_checkdriver(crid);
967 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
968 cap = NULL;
969 } else {
970 /*
971 * No requested driver; select based on crid flags.
972 */
973 cap = crypto_select_driver(csp, crid);
974 }
975 if (cap == NULL) {
976 CRYPTO_DRIVER_UNLOCK();
977 CRYPTDEB("no driver");
978 return (EOPNOTSUPP);
979 }
980 cap_ref(cap);
981 cap->cc_sessions++;
982 CRYPTO_DRIVER_UNLOCK();
983
984 /* Allocate a single block for the generic session and driver softc. */
985 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
986 M_WAITOK | M_ZERO);
987 res->cap = cap;
988 res->csp = *csp;
989 res->id = atomic_fetchadd_64(&sessid, 1);
990
991 /* Call the driver initialization routine. */
992 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
993 if (err != 0) {
994 CRYPTDEB("dev newsession failed: %d", err);
995 crypto_deletesession(res);
996 return (err);
997 }
998
999 *cses = res;
1000 return (0);
1001 }
1002
1003 /*
1004 * Delete an existing session (or a reserved session on an unregistered
1005 * driver).
1006 */
1007 void
crypto_freesession(crypto_session_t cses)1008 crypto_freesession(crypto_session_t cses)
1009 {
1010 struct cryptocap *cap;
1011
1012 if (cses == NULL)
1013 return;
1014
1015 cap = cses->cap;
1016
1017 /* Call the driver cleanup routine, if available. */
1018 CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1019
1020 crypto_deletesession(cses);
1021 }
1022
1023 /*
1024 * Return a new driver id. Registers a driver with the system so that
1025 * it can be probed by subsequent sessions.
1026 */
1027 int32_t
crypto_get_driverid(device_t dev,size_t sessionsize,int flags)1028 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1029 {
1030 struct cryptocap *cap, **newdrv;
1031 int i;
1032
1033 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1034 device_printf(dev,
1035 "no flags specified when registering driver\n");
1036 return -1;
1037 }
1038
1039 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1040 cap->cc_dev = dev;
1041 cap->cc_session_size = sessionsize;
1042 cap->cc_flags = flags;
1043 refcount_init(&cap->cc_refs, 1);
1044
1045 CRYPTO_DRIVER_LOCK();
1046 for (;;) {
1047 for (i = 0; i < crypto_drivers_size; i++) {
1048 if (crypto_drivers[i] == NULL)
1049 break;
1050 }
1051
1052 if (i < crypto_drivers_size)
1053 break;
1054
1055 /* Out of entries, allocate some more. */
1056
1057 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1058 CRYPTO_DRIVER_UNLOCK();
1059 printf("crypto: driver count wraparound!\n");
1060 cap_rele(cap);
1061 return (-1);
1062 }
1063 CRYPTO_DRIVER_UNLOCK();
1064
1065 newdrv = malloc(2 * crypto_drivers_size *
1066 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1067
1068 CRYPTO_DRIVER_LOCK();
1069 memcpy(newdrv, crypto_drivers,
1070 crypto_drivers_size * sizeof(*crypto_drivers));
1071
1072 crypto_drivers_size *= 2;
1073
1074 free(crypto_drivers, M_CRYPTO_DATA);
1075 crypto_drivers = newdrv;
1076 }
1077
1078 cap->cc_hid = i;
1079 crypto_drivers[i] = cap;
1080 CRYPTO_DRIVER_UNLOCK();
1081
1082 if (bootverbose)
1083 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1084 device_get_nameunit(dev), i, flags);
1085
1086 return i;
1087 }
1088
1089 /*
1090 * Lookup a driver by name. We match against the full device
1091 * name and unit, and against just the name. The latter gives
1092 * us a simple widlcarding by device name. On success return the
1093 * driver/hardware identifier; otherwise return -1.
1094 */
1095 int
crypto_find_driver(const char * match)1096 crypto_find_driver(const char *match)
1097 {
1098 struct cryptocap *cap;
1099 int i, len = strlen(match);
1100
1101 CRYPTO_DRIVER_LOCK();
1102 for (i = 0; i < crypto_drivers_size; i++) {
1103 if (crypto_drivers[i] == NULL)
1104 continue;
1105 cap = crypto_drivers[i];
1106 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1107 strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1108 CRYPTO_DRIVER_UNLOCK();
1109 return (i);
1110 }
1111 }
1112 CRYPTO_DRIVER_UNLOCK();
1113 return (-1);
1114 }
1115
1116 /*
1117 * Return the device_t for the specified driver or NULL
1118 * if the driver identifier is invalid.
1119 */
1120 device_t
crypto_find_device_byhid(int hid)1121 crypto_find_device_byhid(int hid)
1122 {
1123 struct cryptocap *cap;
1124 device_t dev;
1125
1126 dev = NULL;
1127 CRYPTO_DRIVER_LOCK();
1128 cap = crypto_checkdriver(hid);
1129 if (cap != NULL)
1130 dev = cap->cc_dev;
1131 CRYPTO_DRIVER_UNLOCK();
1132 return (dev);
1133 }
1134
1135 /*
1136 * Return the device/driver capabilities.
1137 */
1138 int
crypto_getcaps(int hid)1139 crypto_getcaps(int hid)
1140 {
1141 struct cryptocap *cap;
1142 int flags;
1143
1144 flags = 0;
1145 CRYPTO_DRIVER_LOCK();
1146 cap = crypto_checkdriver(hid);
1147 if (cap != NULL)
1148 flags = cap->cc_flags;
1149 CRYPTO_DRIVER_UNLOCK();
1150 return (flags);
1151 }
1152
1153 /*
1154 * Unregister all algorithms associated with a crypto driver.
1155 * If there are pending sessions using it, leave enough information
1156 * around so that subsequent calls using those sessions will
1157 * correctly detect the driver has been unregistered and reroute
1158 * requests.
1159 */
1160 int
crypto_unregister_all(uint32_t driverid)1161 crypto_unregister_all(uint32_t driverid)
1162 {
1163 struct cryptocap *cap;
1164
1165 CRYPTO_DRIVER_LOCK();
1166 cap = crypto_checkdriver(driverid);
1167 if (cap == NULL) {
1168 CRYPTO_DRIVER_UNLOCK();
1169 return (EINVAL);
1170 }
1171
1172 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1173 crypto_drivers[driverid] = NULL;
1174
1175 /*
1176 * XXX: This doesn't do anything to kick sessions that
1177 * have no pending operations.
1178 */
1179 while (cap->cc_sessions != 0)
1180 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1181 CRYPTO_DRIVER_UNLOCK();
1182 cap_rele(cap);
1183
1184 return (0);
1185 }
1186
1187 /*
1188 * Clear blockage on a driver. The what parameter indicates whether
1189 * the driver is now ready for cryptop's and/or cryptokop's.
1190 */
1191 int
crypto_unblock(uint32_t driverid,int what)1192 crypto_unblock(uint32_t driverid, int what)
1193 {
1194 struct cryptocap *cap;
1195 int err;
1196
1197 CRYPTO_Q_LOCK();
1198 cap = crypto_checkdriver(driverid);
1199 if (cap != NULL) {
1200 if (what & CRYPTO_SYMQ)
1201 cap->cc_qblocked = 0;
1202 if (crp_sleep)
1203 wakeup_one(&crp_q);
1204 err = 0;
1205 } else
1206 err = EINVAL;
1207 CRYPTO_Q_UNLOCK();
1208
1209 return err;
1210 }
1211
1212 size_t
crypto_buffer_len(struct crypto_buffer * cb)1213 crypto_buffer_len(struct crypto_buffer *cb)
1214 {
1215 switch (cb->cb_type) {
1216 case CRYPTO_BUF_CONTIG:
1217 return (cb->cb_buf_len);
1218 case CRYPTO_BUF_MBUF:
1219 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1220 return (cb->cb_mbuf->m_pkthdr.len);
1221 return (m_length(cb->cb_mbuf, NULL));
1222 case CRYPTO_BUF_SINGLE_MBUF:
1223 return (cb->cb_mbuf->m_len);
1224 case CRYPTO_BUF_VMPAGE:
1225 return (cb->cb_vm_page_len);
1226 case CRYPTO_BUF_UIO:
1227 return (cb->cb_uio->uio_resid);
1228 default:
1229 return (0);
1230 }
1231 }
1232
1233 #ifdef INVARIANTS
1234 /* Various sanity checks on crypto requests. */
1235 static void
cb_sanity(struct crypto_buffer * cb,const char * name)1236 cb_sanity(struct crypto_buffer *cb, const char *name)
1237 {
1238 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1239 ("incoming crp with invalid %s buffer type", name));
1240 switch (cb->cb_type) {
1241 case CRYPTO_BUF_CONTIG:
1242 KASSERT(cb->cb_buf_len >= 0,
1243 ("incoming crp with -ve %s buffer length", name));
1244 break;
1245 case CRYPTO_BUF_VMPAGE:
1246 KASSERT(CRYPTO_HAS_VMPAGE,
1247 ("incoming crp uses dmap on supported arch"));
1248 KASSERT(cb->cb_vm_page_len >= 0,
1249 ("incoming crp with -ve %s buffer length", name));
1250 KASSERT(cb->cb_vm_page_offset >= 0,
1251 ("incoming crp with -ve %s buffer offset", name));
1252 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1253 ("incoming crp with %s buffer offset greater than page size"
1254 , name));
1255 break;
1256 default:
1257 break;
1258 }
1259 }
1260
1261 static void
crp_sanity(struct cryptop * crp)1262 crp_sanity(struct cryptop *crp)
1263 {
1264 struct crypto_session_params *csp;
1265 struct crypto_buffer *out;
1266 size_t ilen, len, olen;
1267
1268 KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1269 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1270 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1271 ("incoming crp with invalid output buffer type"));
1272 KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1273 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1274 ("incoming crp already done"));
1275
1276 csp = &crp->crp_session->csp;
1277 cb_sanity(&crp->crp_buf, "input");
1278 ilen = crypto_buffer_len(&crp->crp_buf);
1279 olen = ilen;
1280 out = NULL;
1281 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1282 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1283 cb_sanity(&crp->crp_obuf, "output");
1284 out = &crp->crp_obuf;
1285 olen = crypto_buffer_len(out);
1286 }
1287 } else
1288 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1289 ("incoming crp with separate output buffer "
1290 "but no session support"));
1291
1292 switch (csp->csp_mode) {
1293 case CSP_MODE_COMPRESS:
1294 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1295 crp->crp_op == CRYPTO_OP_DECOMPRESS,
1296 ("invalid compression op %x", crp->crp_op));
1297 break;
1298 case CSP_MODE_CIPHER:
1299 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1300 crp->crp_op == CRYPTO_OP_DECRYPT,
1301 ("invalid cipher op %x", crp->crp_op));
1302 break;
1303 case CSP_MODE_DIGEST:
1304 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1305 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1306 ("invalid digest op %x", crp->crp_op));
1307 break;
1308 case CSP_MODE_AEAD:
1309 KASSERT(crp->crp_op ==
1310 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1311 crp->crp_op ==
1312 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1313 ("invalid AEAD op %x", crp->crp_op));
1314 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315 ("AEAD without a separate IV"));
1316 break;
1317 case CSP_MODE_ETA:
1318 KASSERT(crp->crp_op ==
1319 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1320 crp->crp_op ==
1321 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1322 ("invalid ETA op %x", crp->crp_op));
1323 break;
1324 }
1325 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1326 if (crp->crp_aad == NULL) {
1327 KASSERT(crp->crp_aad_start == 0 ||
1328 crp->crp_aad_start < ilen,
1329 ("invalid AAD start"));
1330 KASSERT(crp->crp_aad_length != 0 ||
1331 crp->crp_aad_start == 0,
1332 ("AAD with zero length and non-zero start"));
1333 KASSERT(crp->crp_aad_length == 0 ||
1334 crp->crp_aad_start + crp->crp_aad_length <= ilen,
1335 ("AAD outside input length"));
1336 } else {
1337 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1338 ("session doesn't support separate AAD buffer"));
1339 KASSERT(crp->crp_aad_start == 0,
1340 ("separate AAD buffer with non-zero AAD start"));
1341 KASSERT(crp->crp_aad_length != 0,
1342 ("separate AAD buffer with zero length"));
1343 }
1344 } else {
1345 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1346 crp->crp_aad_length == 0,
1347 ("AAD region in request not supporting AAD"));
1348 }
1349 if (csp->csp_ivlen == 0) {
1350 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1351 ("IV_SEPARATE set when IV isn't used"));
1352 KASSERT(crp->crp_iv_start == 0,
1353 ("crp_iv_start set when IV isn't used"));
1354 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1355 KASSERT(crp->crp_iv_start == 0,
1356 ("IV_SEPARATE used with non-zero IV start"));
1357 } else {
1358 KASSERT(crp->crp_iv_start < ilen,
1359 ("invalid IV start"));
1360 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1361 ("IV outside buffer length"));
1362 }
1363 /* XXX: payload_start of 0 should always be < ilen? */
1364 KASSERT(crp->crp_payload_start == 0 ||
1365 crp->crp_payload_start < ilen,
1366 ("invalid payload start"));
1367 KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1368 ilen, ("payload outside input buffer"));
1369 if (out == NULL) {
1370 KASSERT(crp->crp_payload_output_start == 0,
1371 ("payload output start non-zero without output buffer"));
1372 } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1373 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1374 ("digest verify with separate output buffer"));
1375 KASSERT(crp->crp_payload_output_start == 0,
1376 ("digest operation with non-zero payload output start"));
1377 } else {
1378 KASSERT(crp->crp_payload_output_start == 0 ||
1379 crp->crp_payload_output_start < olen,
1380 ("invalid payload output start"));
1381 KASSERT(crp->crp_payload_output_start +
1382 crp->crp_payload_length <= olen,
1383 ("payload outside output buffer"));
1384 }
1385 if (csp->csp_mode == CSP_MODE_DIGEST ||
1386 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1387 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1388 len = ilen;
1389 else
1390 len = olen;
1391 KASSERT(crp->crp_digest_start == 0 ||
1392 crp->crp_digest_start < len,
1393 ("invalid digest start"));
1394 /* XXX: For the mlen == 0 case this check isn't perfect. */
1395 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1396 ("digest outside buffer"));
1397 } else {
1398 KASSERT(crp->crp_digest_start == 0,
1399 ("non-zero digest start for request without a digest"));
1400 }
1401 if (csp->csp_cipher_klen != 0)
1402 KASSERT(csp->csp_cipher_key != NULL ||
1403 crp->crp_cipher_key != NULL,
1404 ("cipher request without a key"));
1405 if (csp->csp_auth_klen != 0)
1406 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1407 ("auth request without a key"));
1408 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1409 }
1410 #endif
1411
1412 static int
crypto_dispatch_one(struct cryptop * crp,int hint)1413 crypto_dispatch_one(struct cryptop *crp, int hint)
1414 {
1415 struct cryptocap *cap;
1416 int result;
1417
1418 #ifdef INVARIANTS
1419 crp_sanity(crp);
1420 #endif
1421 CRYPTOSTAT_INC(cs_ops);
1422
1423 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1424
1425 /*
1426 * Caller marked the request to be processed immediately; dispatch it
1427 * directly to the driver unless the driver is currently blocked, in
1428 * which case it is queued for deferred dispatch.
1429 */
1430 cap = crp->crp_session->cap;
1431 if (!atomic_load_int(&cap->cc_qblocked)) {
1432 result = crypto_invoke(cap, crp, hint);
1433 if (result != ERESTART)
1434 return (result);
1435
1436 /*
1437 * The driver ran out of resources, put the request on the
1438 * queue.
1439 */
1440 }
1441 crypto_batch_enqueue(crp);
1442 return (0);
1443 }
1444
1445 int
crypto_dispatch(struct cryptop * crp)1446 crypto_dispatch(struct cryptop *crp)
1447 {
1448 return (crypto_dispatch_one(crp, 0));
1449 }
1450
1451 int
crypto_dispatch_async(struct cryptop * crp,int flags)1452 crypto_dispatch_async(struct cryptop *crp, int flags)
1453 {
1454 struct crypto_ret_worker *ret_worker;
1455
1456 if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1457 /*
1458 * The driver issues completions asynchonously, don't bother
1459 * deferring dispatch to a worker thread.
1460 */
1461 return (crypto_dispatch(crp));
1462 }
1463
1464 #ifdef INVARIANTS
1465 crp_sanity(crp);
1466 #endif
1467 CRYPTOSTAT_INC(cs_ops);
1468
1469 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1470 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1471 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1472 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1473 CRYPTO_RETW_LOCK(ret_worker);
1474 crp->crp_seq = ret_worker->reorder_ops++;
1475 CRYPTO_RETW_UNLOCK(ret_worker);
1476 }
1477 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1478 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1479 return (0);
1480 }
1481
1482 void
crypto_dispatch_batch(struct cryptopq * crpq,int flags)1483 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1484 {
1485 struct cryptop *crp;
1486 int hint;
1487
1488 while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1489 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1490 TAILQ_REMOVE(crpq, crp, crp_next);
1491 if (crypto_dispatch_one(crp, hint) != 0)
1492 crypto_batch_enqueue(crp);
1493 }
1494 }
1495
1496 static void
crypto_batch_enqueue(struct cryptop * crp)1497 crypto_batch_enqueue(struct cryptop *crp)
1498 {
1499
1500 CRYPTO_Q_LOCK();
1501 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1502 if (crp_sleep)
1503 wakeup_one(&crp_q);
1504 CRYPTO_Q_UNLOCK();
1505 }
1506
1507 static void
crypto_task_invoke(void * ctx,int pending)1508 crypto_task_invoke(void *ctx, int pending)
1509 {
1510 struct cryptocap *cap;
1511 struct cryptop *crp;
1512 int result;
1513
1514 crp = (struct cryptop *)ctx;
1515 cap = crp->crp_session->cap;
1516 result = crypto_invoke(cap, crp, 0);
1517 if (result == ERESTART)
1518 crypto_batch_enqueue(crp);
1519 }
1520
1521 /*
1522 * Dispatch a crypto request to the appropriate crypto devices.
1523 */
1524 static int
crypto_invoke(struct cryptocap * cap,struct cryptop * crp,int hint)1525 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1526 {
1527 int error;
1528
1529 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1530 KASSERT(crp->crp_callback != NULL,
1531 ("%s: crp->crp_callback == NULL", __func__));
1532 KASSERT(crp->crp_session != NULL,
1533 ("%s: crp->crp_session == NULL", __func__));
1534
1535 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1536 struct crypto_session_params csp;
1537 crypto_session_t nses;
1538
1539 /*
1540 * Driver has unregistered; migrate the session and return
1541 * an error to the caller so they'll resubmit the op.
1542 *
1543 * XXX: What if there are more already queued requests for this
1544 * session?
1545 *
1546 * XXX: Real solution is to make sessions refcounted
1547 * and force callers to hold a reference when
1548 * assigning to crp_session. Could maybe change
1549 * crypto_getreq to accept a session pointer to make
1550 * that work. Alternatively, we could abandon the
1551 * notion of rewriting crp_session in requests forcing
1552 * the caller to deal with allocating a new session.
1553 * Perhaps provide a method to allow a crp's session to
1554 * be swapped that callers could use.
1555 */
1556 csp = crp->crp_session->csp;
1557 crypto_freesession(crp->crp_session);
1558
1559 /*
1560 * XXX: Key pointers may no longer be valid. If we
1561 * really want to support this we need to define the
1562 * KPI such that 'csp' is required to be valid for the
1563 * duration of a session by the caller perhaps.
1564 *
1565 * XXX: If the keys have been changed this will reuse
1566 * the old keys. This probably suggests making
1567 * rekeying more explicit and updating the key
1568 * pointers in 'csp' when the keys change.
1569 */
1570 if (crypto_newsession(&nses, &csp,
1571 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1572 crp->crp_session = nses;
1573
1574 crp->crp_etype = EAGAIN;
1575 crypto_done(crp);
1576 error = 0;
1577 } else {
1578 /*
1579 * Invoke the driver to process the request. Errors are
1580 * signaled by setting crp_etype before invoking the completion
1581 * callback.
1582 */
1583 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1584 KASSERT(error == 0 || error == ERESTART,
1585 ("%s: invalid error %d from CRYPTODEV_PROCESS",
1586 __func__, error));
1587 }
1588 return (error);
1589 }
1590
1591 void
crypto_destroyreq(struct cryptop * crp)1592 crypto_destroyreq(struct cryptop *crp)
1593 {
1594 #ifdef DIAGNOSTIC
1595 {
1596 struct cryptop *crp2;
1597 struct crypto_ret_worker *ret_worker;
1598
1599 if (!crypto_destroyreq_check)
1600 return;
1601
1602 CRYPTO_Q_LOCK();
1603 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1604 KASSERT(crp2 != crp,
1605 ("Freeing cryptop from the crypto queue (%p).",
1606 crp));
1607 }
1608 CRYPTO_Q_UNLOCK();
1609
1610 FOREACH_CRYPTO_RETW(ret_worker) {
1611 CRYPTO_RETW_LOCK(ret_worker);
1612 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1613 KASSERT(crp2 != crp,
1614 ("Freeing cryptop from the return queue (%p).",
1615 crp));
1616 }
1617 CRYPTO_RETW_UNLOCK(ret_worker);
1618 }
1619 }
1620 #endif
1621 }
1622
1623 void
crypto_freereq(struct cryptop * crp)1624 crypto_freereq(struct cryptop *crp)
1625 {
1626 if (crp == NULL)
1627 return;
1628
1629 crypto_destroyreq(crp);
1630 uma_zfree(cryptop_zone, crp);
1631 }
1632
1633 void
crypto_initreq(struct cryptop * crp,crypto_session_t cses)1634 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1635 {
1636 memset(crp, 0, sizeof(*crp));
1637 crp->crp_session = cses;
1638 }
1639
1640 struct cryptop *
crypto_getreq(crypto_session_t cses,int how)1641 crypto_getreq(crypto_session_t cses, int how)
1642 {
1643 struct cryptop *crp;
1644
1645 MPASS(how == M_WAITOK || how == M_NOWAIT);
1646 crp = uma_zalloc(cryptop_zone, how);
1647 if (crp != NULL)
1648 crypto_initreq(crp, cses);
1649 return (crp);
1650 }
1651
1652 /*
1653 * Clone a crypto request, but associate it with the specified session
1654 * rather than inheriting the session from the original request. The
1655 * fields describing the request buffers are copied, but not the
1656 * opaque field or callback function.
1657 */
1658 struct cryptop *
crypto_clonereq(struct cryptop * crp,crypto_session_t cses,int how)1659 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1660 {
1661 struct cryptop *new;
1662
1663 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1664 new = crypto_getreq(cses, how);
1665 if (new == NULL)
1666 return (NULL);
1667
1668 memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1669 __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1670 return (new);
1671 }
1672
1673 /*
1674 * Invoke the callback on behalf of the driver.
1675 */
1676 void
crypto_done(struct cryptop * crp)1677 crypto_done(struct cryptop *crp)
1678 {
1679 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1680 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1681 crp->crp_flags |= CRYPTO_F_DONE;
1682 if (crp->crp_etype != 0)
1683 CRYPTOSTAT_INC(cs_errs);
1684
1685 /*
1686 * CBIMM means unconditionally do the callback immediately;
1687 * CBIFSYNC means do the callback immediately only if the
1688 * operation was done synchronously. Both are used to avoid
1689 * doing extraneous context switches; the latter is mostly
1690 * used with the software crypto driver.
1691 */
1692 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1693 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1694 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1695 CRYPTO_SESS_SYNC(crp->crp_session)))) {
1696 /*
1697 * Do the callback directly. This is ok when the
1698 * callback routine does very little (e.g. the
1699 * /dev/crypto callback method just does a wakeup).
1700 */
1701 crp->crp_callback(crp);
1702 } else {
1703 struct crypto_ret_worker *ret_worker;
1704 bool wake;
1705
1706 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1707
1708 /*
1709 * Normal case; queue the callback for the thread.
1710 */
1711 CRYPTO_RETW_LOCK(ret_worker);
1712 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1713 struct cryptop *tmp;
1714
1715 TAILQ_FOREACH_REVERSE(tmp,
1716 &ret_worker->crp_ordered_ret_q, cryptop_q,
1717 crp_next) {
1718 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1719 TAILQ_INSERT_AFTER(
1720 &ret_worker->crp_ordered_ret_q, tmp,
1721 crp, crp_next);
1722 break;
1723 }
1724 }
1725 if (tmp == NULL) {
1726 TAILQ_INSERT_HEAD(
1727 &ret_worker->crp_ordered_ret_q, crp,
1728 crp_next);
1729 }
1730
1731 wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1732 } else {
1733 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1734 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1735 crp_next);
1736 }
1737
1738 if (wake)
1739 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
1740 CRYPTO_RETW_UNLOCK(ret_worker);
1741 }
1742 }
1743
1744 /*
1745 * Terminate a thread at module unload. The process that
1746 * initiated this is waiting for us to signal that we're gone;
1747 * wake it up and exit. We use the driver table lock to insure
1748 * we don't do the wakeup before they're waiting. There is no
1749 * race here because the waiter sleeps on the proc lock for the
1750 * thread so it gets notified at the right time because of an
1751 * extra wakeup that's done in exit1().
1752 */
1753 static void
crypto_finis(void * chan)1754 crypto_finis(void *chan)
1755 {
1756 CRYPTO_DRIVER_LOCK();
1757 wakeup_one(chan);
1758 CRYPTO_DRIVER_UNLOCK();
1759 kthread_exit();
1760 }
1761
1762 /*
1763 * Crypto thread, dispatches crypto requests.
1764 */
1765 static void
crypto_dispatch_thread(void * arg __unused)1766 crypto_dispatch_thread(void *arg __unused)
1767 {
1768 struct cryptop *crp, *submit;
1769 struct cryptocap *cap;
1770 int result, hint;
1771
1772 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1773 fpu_kern_thread(FPU_KERN_NORMAL);
1774 #endif
1775
1776 CRYPTO_Q_LOCK();
1777 for (;;) {
1778 /*
1779 * Find the first element in the queue that can be
1780 * processed and look-ahead to see if multiple ops
1781 * are ready for the same driver.
1782 */
1783 submit = NULL;
1784 hint = 0;
1785 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1786 cap = crp->crp_session->cap;
1787 /*
1788 * Driver cannot disappeared when there is an active
1789 * session.
1790 */
1791 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1792 __func__, __LINE__));
1793 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1794 /* Op needs to be migrated, process it. */
1795 if (submit == NULL)
1796 submit = crp;
1797 break;
1798 }
1799 if (!cap->cc_qblocked) {
1800 if (submit != NULL) {
1801 /*
1802 * We stop on finding another op,
1803 * regardless whether its for the same
1804 * driver or not. We could keep
1805 * searching the queue but it might be
1806 * better to just use a per-driver
1807 * queue instead.
1808 */
1809 if (submit->crp_session->cap == cap)
1810 hint = CRYPTO_HINT_MORE;
1811 } else {
1812 submit = crp;
1813 }
1814 break;
1815 }
1816 }
1817 if (submit != NULL) {
1818 TAILQ_REMOVE(&crp_q, submit, crp_next);
1819 cap = submit->crp_session->cap;
1820 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1821 __func__, __LINE__));
1822 CRYPTO_Q_UNLOCK();
1823 result = crypto_invoke(cap, submit, hint);
1824 CRYPTO_Q_LOCK();
1825 if (result == ERESTART) {
1826 /*
1827 * The driver ran out of resources, mark the
1828 * driver ``blocked'' for cryptop's and put
1829 * the request back in the queue. It would
1830 * best to put the request back where we got
1831 * it but that's hard so for now we put it
1832 * at the front. This should be ok; putting
1833 * it at the end does not work.
1834 */
1835 cap->cc_qblocked = 1;
1836 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1837 CRYPTOSTAT_INC(cs_blocks);
1838 }
1839 } else {
1840 /*
1841 * Nothing more to be processed. Sleep until we're
1842 * woken because there are more ops to process.
1843 * This happens either by submission or by a driver
1844 * becoming unblocked and notifying us through
1845 * crypto_unblock. Note that when we wakeup we
1846 * start processing each queue again from the
1847 * front. It's not clear that it's important to
1848 * preserve this ordering since ops may finish
1849 * out of order if dispatched to different devices
1850 * and some become blocked while others do not.
1851 */
1852 crp_sleep = 1;
1853 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1854 crp_sleep = 0;
1855 if (cryptotd == NULL)
1856 break;
1857 CRYPTOSTAT_INC(cs_intrs);
1858 }
1859 }
1860 CRYPTO_Q_UNLOCK();
1861
1862 crypto_finis(&crp_q);
1863 }
1864
1865 /*
1866 * Crypto returns thread, does callbacks for processed crypto requests.
1867 * Callbacks are done here, rather than in the crypto drivers, because
1868 * callbacks typically are expensive and would slow interrupt handling.
1869 */
1870 static void
crypto_ret_thread(void * arg)1871 crypto_ret_thread(void *arg)
1872 {
1873 struct crypto_ret_worker *ret_worker = arg;
1874 struct cryptop *crpt;
1875
1876 CRYPTO_RETW_LOCK(ret_worker);
1877 for (;;) {
1878 /* Harvest return q's for completed ops */
1879 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1880 if (crpt != NULL) {
1881 if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1882 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1883 ret_worker->reorder_cur_seq++;
1884 } else {
1885 crpt = NULL;
1886 }
1887 }
1888
1889 if (crpt == NULL) {
1890 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1891 if (crpt != NULL)
1892 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1893 }
1894
1895 if (crpt != NULL) {
1896 CRYPTO_RETW_UNLOCK(ret_worker);
1897 /*
1898 * Run callbacks unlocked.
1899 */
1900 if (crpt != NULL)
1901 crpt->crp_callback(crpt);
1902 CRYPTO_RETW_LOCK(ret_worker);
1903 } else {
1904 /*
1905 * Nothing more to be processed. Sleep until we're
1906 * woken because there are more returns to process.
1907 */
1908 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1909 "crypto_ret_wait", 0);
1910 if (ret_worker->td == NULL)
1911 break;
1912 CRYPTOSTAT_INC(cs_rets);
1913 }
1914 }
1915 CRYPTO_RETW_UNLOCK(ret_worker);
1916
1917 crypto_finis(&ret_worker->crp_ret_q);
1918 }
1919
1920 #ifdef DDB
1921 static void
db_show_drivers(void)1922 db_show_drivers(void)
1923 {
1924 int hid;
1925
1926 db_printf("%12s %4s %8s %2s\n"
1927 , "Device"
1928 , "Ses"
1929 , "Flags"
1930 , "QB"
1931 );
1932 for (hid = 0; hid < crypto_drivers_size; hid++) {
1933 const struct cryptocap *cap = crypto_drivers[hid];
1934 if (cap == NULL)
1935 continue;
1936 db_printf("%-12s %4u %08x %2u\n"
1937 , device_get_nameunit(cap->cc_dev)
1938 , cap->cc_sessions
1939 , cap->cc_flags
1940 , cap->cc_qblocked
1941 );
1942 }
1943 }
1944
DB_SHOW_COMMAND_FLAGS(crypto,db_show_crypto,DB_CMD_MEMSAFE)1945 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1946 {
1947 struct cryptop *crp;
1948 struct crypto_ret_worker *ret_worker;
1949
1950 db_show_drivers();
1951 db_printf("\n");
1952
1953 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1954 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1955 "Device", "Callback");
1956 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1957 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1958 , crp->crp_session->cap->cc_hid
1959 , (int) crypto_ses2caps(crp->crp_session)
1960 , crp->crp_olen
1961 , crp->crp_etype
1962 , crp->crp_flags
1963 , device_get_nameunit(crp->crp_session->cap->cc_dev)
1964 , crp->crp_callback
1965 );
1966 }
1967 FOREACH_CRYPTO_RETW(ret_worker) {
1968 db_printf("\n%8s %4s %4s %4s %8s\n",
1969 "ret_worker", "HID", "Etype", "Flags", "Callback");
1970 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1971 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1972 db_printf("%8td %4u %4u %04x %8p\n"
1973 , CRYPTO_RETW_ID(ret_worker)
1974 , crp->crp_session->cap->cc_hid
1975 , crp->crp_etype
1976 , crp->crp_flags
1977 , crp->crp_callback
1978 );
1979 }
1980 }
1981 }
1982 }
1983 #endif
1984
1985 int crypto_modevent(module_t mod, int type, void *unused);
1986
1987 /*
1988 * Initialization code, both for static and dynamic loading.
1989 * Note this is not invoked with the usual MODULE_DECLARE
1990 * mechanism but instead is listed as a dependency by the
1991 * cryptosoft driver. This guarantees proper ordering of
1992 * calls on module load/unload.
1993 */
1994 int
crypto_modevent(module_t mod,int type,void * unused)1995 crypto_modevent(module_t mod, int type, void *unused)
1996 {
1997 int error = EINVAL;
1998
1999 switch (type) {
2000 case MOD_LOAD:
2001 error = crypto_init();
2002 if (error == 0 && bootverbose)
2003 printf("crypto: <crypto core>\n");
2004 break;
2005 case MOD_UNLOAD:
2006 /*XXX disallow if active sessions */
2007 error = 0;
2008 crypto_destroy();
2009 return 0;
2010 }
2011 return error;
2012 }
2013 MODULE_VERSION(crypto, 1);
2014 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2015