1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * STREAMS Crypto Module
6 *
7 * This module is used to facilitate Kerberos encryption
8 * operations for the telnet daemon and rlogin daemon.
9 * Because the Solaris telnet and rlogin daemons run mostly
10 * in-kernel via 'telmod' and 'rlmod', this module must be
11 * pushed on the STREAM *below* telmod or rlmod.
12 *
13 * Parts of the 3DES key derivation code are covered by the
14 * following copyright.
15 *
16 * Copyright (C) 1998 by the FundsXpress, INC.
17 *
18 * All rights reserved.
19 *
20 * Export of this software from the United States of America may require
21 * a specific license from the United States Government. It is the
22 * responsibility of any person or organization contemplating export to
23 * obtain such a license before exporting.
24 *
25 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
26 * distribute this software and its documentation for any purpose and
27 * without fee is hereby granted, provided that the above copyright
28 * notice appear in all copies and that both that copyright notice and
29 * this permission notice appear in supporting documentation, and that
30 * the name of FundsXpress. not be used in advertising or publicity pertaining
31 * to distribution of the software without specific, written prior
32 * permission. FundsXpress makes no representations about the suitability of
33 * this software for any purpose. It is provided "as is" without express
34 * or implied warranty.
35 *
36 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
37 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
38 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
39 */
40
41 #include <sys/types.h>
42 #include <sys/sysmacros.h>
43 #include <sys/errno.h>
44 #include <sys/debug.h>
45 #include <sys/time.h>
46 #include <sys/stropts.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strlog.h>
50 #include <sys/cmn_err.h>
51 #include <sys/conf.h>
52 #include <sys/sunddi.h>
53 #include <sys/kmem.h>
54 #include <sys/strsun.h>
55 #include <sys/random.h>
56 #include <sys/types.h>
57 #include <sys/byteorder.h>
58 #include <sys/cryptmod.h>
59 #include <sys/crc32.h>
60 #include <sys/policy.h>
61
62 #include <sys/crypto/api.h>
63
64 /*
65 * Function prototypes.
66 */
67 static int cryptmodopen(queue_t *, dev_t *, int, int, cred_t *);
68 static void cryptmodrput(queue_t *, mblk_t *);
69 static void cryptmodwput(queue_t *, mblk_t *);
70 static int cryptmodclose(queue_t *);
71 static int cryptmodwsrv(queue_t *);
72 static int cryptmodrsrv(queue_t *);
73
74 static mblk_t *do_encrypt(queue_t *q, mblk_t *mp);
75 static mblk_t *do_decrypt(queue_t *q, mblk_t *mp);
76
77 #define CRYPTMOD_ID 5150
78
79 #define CFB_BLKSZ 8
80
81 #define K5CLENGTH 5
82
83 static struct module_info cryptmod_minfo = {
84 CRYPTMOD_ID, /* mi_idnum */
85 "cryptmod", /* mi_idname */
86 0, /* mi_minpsz */
87 INFPSZ, /* mi_maxpsz */
88 65536, /* mi_hiwat */
89 1024 /* mi_lowat */
90 };
91
92 static struct qinit cryptmod_rinit = {
93 (int (*)())cryptmodrput, /* qi_putp */
94 cryptmodrsrv, /* qi_svc */
95 cryptmodopen, /* qi_qopen */
96 cryptmodclose, /* qi_qclose */
97 NULL, /* qi_qadmin */
98 &cryptmod_minfo, /* qi_minfo */
99 NULL /* qi_mstat */
100 };
101
102 static struct qinit cryptmod_winit = {
103 (int (*)())cryptmodwput, /* qi_putp */
104 cryptmodwsrv, /* qi_srvp */
105 NULL, /* qi_qopen */
106 NULL, /* qi_qclose */
107 NULL, /* qi_qadmin */
108 &cryptmod_minfo, /* qi_minfo */
109 NULL /* qi_mstat */
110 };
111
112 static struct streamtab cryptmod_info = {
113 &cryptmod_rinit, /* st_rdinit */
114 &cryptmod_winit, /* st_wrinit */
115 NULL, /* st_muxrinit */
116 NULL /* st_muxwinit */
117 };
118
119 typedef struct {
120 uint_t hash_len;
121 uint_t confound_len;
122 int (*hashfunc)();
123 } hash_info_t;
124
125 #define MAX_CKSUM_LEN 20
126 #define CONFOUNDER_LEN 8
127
128 #define SHA1_HASHSIZE 20
129 #define MD5_HASHSIZE 16
130 #define CRC32_HASHSIZE 4
131 #define MSGBUF_SIZE 4096
132 #define CONFOUNDER_BYTES 128
133
134
135 static int crc32_calc(uchar_t *, uchar_t *, uint_t);
136 static int md5_calc(uchar_t *, uchar_t *, uint_t);
137 static int sha1_calc(uchar_t *, uchar_t *, uint_t);
138
139 static hash_info_t null_hash = {0, 0, NULL};
140 static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc};
141 static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc};
142 static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc};
143
144 static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID;
145 static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID;
146 static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID;
147 static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID;
148
149 static int kef_crypt(struct cipher_data_t *, void *,
150 crypto_data_format_t, size_t, int);
151 static mblk_t *
152 arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *,
153 mblk_t *, hash_info_t *);
154 static mblk_t *
155 arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *,
156 mblk_t *, hash_info_t *);
157
158 static int
159 do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int);
160
161 /*
162 * This is the loadable module wrapper.
163 */
164 #include <sys/modctl.h>
165
166 static struct fmodsw fsw = {
167 "cryptmod",
168 &cryptmod_info,
169 D_MP | D_MTQPAIR
170 };
171
172 /*
173 * Module linkage information for the kernel.
174 */
175 static struct modlstrmod modlstrmod = {
176 &mod_strmodops,
177 "STREAMS encryption module",
178 &fsw
179 };
180
181 static struct modlinkage modlinkage = {
182 MODREV_1,
183 &modlstrmod,
184 NULL
185 };
186
187 int
_init(void)188 _init(void)
189 {
190 return (mod_install(&modlinkage));
191 }
192
193 int
_fini(void)194 _fini(void)
195 {
196 return (mod_remove(&modlinkage));
197 }
198
199 int
_info(struct modinfo * modinfop)200 _info(struct modinfo *modinfop)
201 {
202 return (mod_info(&modlinkage, modinfop));
203 }
204
205 static void
cleanup(struct cipher_data_t * cd)206 cleanup(struct cipher_data_t *cd)
207 {
208 if (cd->key != NULL) {
209 bzero(cd->key, cd->keylen);
210 kmem_free(cd->key, cd->keylen);
211 cd->key = NULL;
212 }
213
214 if (cd->ckey != NULL) {
215 /*
216 * ckey is a crypto_key_t structure which references
217 * "cd->key" for its raw key data. Since that was already
218 * cleared out, we don't need another "bzero" here.
219 */
220 kmem_free(cd->ckey, sizeof (crypto_key_t));
221 cd->ckey = NULL;
222 }
223
224 if (cd->block != NULL) {
225 kmem_free(cd->block, cd->blocklen);
226 cd->block = NULL;
227 }
228
229 if (cd->saveblock != NULL) {
230 kmem_free(cd->saveblock, cd->blocklen);
231 cd->saveblock = NULL;
232 }
233
234 if (cd->ivec != NULL) {
235 kmem_free(cd->ivec, cd->ivlen);
236 cd->ivec = NULL;
237 }
238
239 if (cd->d_encr_key.ck_data != NULL) {
240 bzero(cd->d_encr_key.ck_data, cd->keylen);
241 kmem_free(cd->d_encr_key.ck_data, cd->keylen);
242 }
243
244 if (cd->d_hmac_key.ck_data != NULL) {
245 bzero(cd->d_hmac_key.ck_data, cd->keylen);
246 kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
247 }
248
249 if (cd->enc_tmpl != NULL)
250 (void) crypto_destroy_ctx_template(cd->enc_tmpl);
251
252 if (cd->hmac_tmpl != NULL)
253 (void) crypto_destroy_ctx_template(cd->hmac_tmpl);
254
255 if (cd->ctx != NULL) {
256 crypto_cancel_ctx(cd->ctx);
257 cd->ctx = NULL;
258 }
259 }
260
261 /* ARGSUSED */
262 static int
cryptmodopen(queue_t * rq,dev_t * dev,int oflag,int sflag,cred_t * crp)263 cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp)
264 {
265 struct tmodinfo *tmi;
266 ASSERT(rq);
267
268 if (sflag != MODOPEN)
269 return (EINVAL);
270
271 (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
272 "cryptmodopen: opening module(PID %d)",
273 ddi_get_pid()));
274
275 if (rq->q_ptr != NULL) {
276 cmn_err(CE_WARN, "cryptmodopen: already opened");
277 return (0);
278 }
279
280 /*
281 * Allocate and initialize per-Stream structure.
282 */
283 tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo),
284 KM_SLEEP);
285
286 tmi->enc_data.method = CRYPT_METHOD_NONE;
287 tmi->dec_data.method = CRYPT_METHOD_NONE;
288
289 tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY);
290
291 rq->q_ptr = WR(rq)->q_ptr = tmi;
292
293 sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC);
294 md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC);
295 sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1);
296 md5_hash_mech = crypto_mech2id(SUN_CKM_MD5);
297
298 qprocson(rq);
299
300 return (0);
301 }
302
303 static int
cryptmodclose(queue_t * rq)304 cryptmodclose(queue_t *rq)
305 {
306 struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr;
307 ASSERT(tmi);
308
309 qprocsoff(rq);
310
311 cleanup(&tmi->enc_data);
312 cleanup(&tmi->dec_data);
313
314 kmem_free(tmi, sizeof (struct tmodinfo));
315 rq->q_ptr = WR(rq)->q_ptr = NULL;
316
317 return (0);
318 }
319
320 /*
321 * plaintext_offset
322 *
323 * Calculate exactly how much space is needed in front
324 * of the "plaintext" in an mbuf so it can be positioned
325 * 1 time instead of potentially moving the data multiple
326 * times.
327 */
328 static int
plaintext_offset(struct cipher_data_t * cd)329 plaintext_offset(struct cipher_data_t *cd)
330 {
331 int headspace = 0;
332
333 /* 4 byte length prepended to all RCMD msgs */
334 if (ANY_RCMD_MODE(cd->option_mask))
335 headspace += RCMD_LEN_SZ;
336
337 /* RCMD V2 mode adds an additional 4 byte plaintext length */
338 if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2)
339 headspace += RCMD_LEN_SZ;
340
341 /* Need extra space for hash and counfounder */
342 switch (cd->method) {
343 case CRYPT_METHOD_DES_CBC_NULL:
344 headspace += null_hash.hash_len + null_hash.confound_len;
345 break;
346 case CRYPT_METHOD_DES_CBC_CRC:
347 headspace += crc32_hash.hash_len + crc32_hash.confound_len;
348 break;
349 case CRYPT_METHOD_DES_CBC_MD5:
350 headspace += md5_hash.hash_len + md5_hash.confound_len;
351 break;
352 case CRYPT_METHOD_DES3_CBC_SHA1:
353 headspace += sha1_hash.confound_len;
354 break;
355 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
356 headspace += md5_hash.hash_len + md5_hash.confound_len;
357 break;
358 case CRYPT_METHOD_AES128:
359 case CRYPT_METHOD_AES256:
360 headspace += DEFAULT_AES_BLOCKLEN;
361 break;
362 case CRYPT_METHOD_DES_CFB:
363 case CRYPT_METHOD_NONE:
364 break;
365 }
366
367 return (headspace);
368 }
369 /*
370 * encrypt_size
371 *
372 * Calculate the resulting size when encrypting 'plainlen' bytes
373 * of data.
374 */
375 static size_t
encrypt_size(struct cipher_data_t * cd,size_t plainlen)376 encrypt_size(struct cipher_data_t *cd, size_t plainlen)
377 {
378 size_t cipherlen;
379
380 switch (cd->method) {
381 case CRYPT_METHOD_DES_CBC_NULL:
382 cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len +
383 plainlen, 8);
384 break;
385 case CRYPT_METHOD_DES_CBC_MD5:
386 cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len +
387 md5_hash.confound_len +
388 plainlen, 8);
389 break;
390 case CRYPT_METHOD_DES_CBC_CRC:
391 cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len +
392 crc32_hash.confound_len +
393 plainlen, 8);
394 break;
395 case CRYPT_METHOD_DES3_CBC_SHA1:
396 cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len +
397 plainlen, 8) +
398 sha1_hash.hash_len;
399 break;
400 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
401 cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len +
402 plainlen, 1) + md5_hash.hash_len;
403 break;
404 case CRYPT_METHOD_AES128:
405 case CRYPT_METHOD_AES256:
406 /* No roundup for AES-CBC-CTS */
407 cipherlen = DEFAULT_AES_BLOCKLEN + plainlen +
408 AES_TRUNCATED_HMAC_LEN;
409 break;
410 case CRYPT_METHOD_DES_CFB:
411 case CRYPT_METHOD_NONE:
412 cipherlen = plainlen;
413 break;
414 }
415
416 return (cipherlen);
417 }
418
419 /*
420 * des_cfb_encrypt
421 *
422 * Encrypt the mblk data using DES with cipher feedback.
423 *
424 * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit
425 * vector, D[n] is the nth chunk of 64 bits of data to encrypt
426 * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted
427 * (decrypted) data, then:
428 *
429 * V[0] = DES(V[i], key)
430 * O[n] = D[n] <exclusive or > V[n]
431 * V[n+1] = DES(O[n], key)
432 *
433 * The size of the message being encrypted does not change in this
434 * algorithm, num_bytes in == num_bytes out.
435 */
436 static mblk_t *
des_cfb_encrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp)437 des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
438 {
439 int savedbytes;
440 char *iptr, *optr, *lastoutput;
441
442 lastoutput = optr = (char *)mp->b_rptr;
443 iptr = (char *)mp->b_rptr;
444 savedbytes = tmi->enc_data.bytes % CFB_BLKSZ;
445
446 while (iptr < (char *)mp->b_wptr) {
447 /*
448 * Do DES-ECB.
449 * The first time this runs, the 'tmi->enc_data.block' will
450 * contain the initialization vector that should have been
451 * passed in with the SETUP ioctl.
452 *
453 * V[n] = DES(V[n-1], key)
454 */
455 if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
456 int retval = 0;
457 retval = kef_crypt(&tmi->enc_data,
458 tmi->enc_data.block,
459 CRYPTO_DATA_RAW,
460 tmi->enc_data.blocklen,
461 CRYPT_ENCRYPT);
462
463 if (retval != CRYPTO_SUCCESS) {
464 #ifdef DEBUG
465 cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt "
466 "failed - error 0x%0x", retval);
467 #endif
468 mp->b_datap->db_type = M_ERROR;
469 mp->b_rptr = mp->b_datap->db_base;
470 *mp->b_rptr = EIO;
471 mp->b_wptr = mp->b_rptr + sizeof (char);
472 freemsg(mp->b_cont);
473 mp->b_cont = NULL;
474 qreply(WR(q), mp);
475 return (NULL);
476 }
477 }
478
479 /* O[n] = I[n] ^ V[n] */
480 *(optr++) = *(iptr++) ^
481 tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ];
482
483 tmi->enc_data.bytes++;
484 /*
485 * Feedback the encrypted output as the input to next DES call.
486 */
487 if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
488 char *dbptr = tmi->enc_data.block;
489 /*
490 * Get the last bits of input from the previous
491 * msg block that we haven't yet used as feedback input.
492 */
493 if (savedbytes > 0) {
494 bcopy(tmi->enc_data.saveblock,
495 dbptr, (size_t)savedbytes);
496 dbptr += savedbytes;
497 }
498
499 /*
500 * Now copy the correct bytes from the current input
501 * stream and update the 'lastoutput' ptr
502 */
503 bcopy(lastoutput, dbptr,
504 (size_t)(CFB_BLKSZ - savedbytes));
505
506 lastoutput += (CFB_BLKSZ - savedbytes);
507 savedbytes = 0;
508 }
509 }
510 /*
511 * If there are bytes of input here that we need in the next
512 * block to build an ivec, save them off here.
513 */
514 if (lastoutput < optr) {
515 bcopy(lastoutput,
516 tmi->enc_data.saveblock + savedbytes,
517 (uint_t)(optr - lastoutput));
518 }
519 return (mp);
520 }
521
522 /*
523 * des_cfb_decrypt
524 *
525 * Decrypt the data in the mblk using DES in Cipher Feedback mode
526 *
527 * # bytes in == # bytes out, no padding, confounding, or hashing
528 * is added.
529 *
530 */
531 static mblk_t *
des_cfb_decrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp)532 des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
533 {
534 uint_t len;
535 uint_t savedbytes;
536 char *iptr;
537 char *lastinput;
538 uint_t cp;
539
540 len = MBLKL(mp);
541
542 /* decrypted output goes into the new data buffer */
543 lastinput = iptr = (char *)mp->b_rptr;
544
545 savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen;
546
547 /*
548 * Save the input CFB_BLKSZ bytes at a time.
549 * We are trying to decrypt in-place, but need to keep
550 * a small sliding window of encrypted text to be
551 * used to construct the feedback buffer.
552 */
553 cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len :
554 tmi->dec_data.blocklen - savedbytes);
555
556 bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp);
557 savedbytes += cp;
558
559 lastinput += cp;
560
561 while (iptr < (char *)mp->b_wptr) {
562 /*
563 * Do DES-ECB.
564 * The first time this runs, the 'tmi->dec_data.block' will
565 * contain the initialization vector that should have been
566 * passed in with the SETUP ioctl.
567 */
568 if (!(tmi->dec_data.bytes % CFB_BLKSZ)) {
569 int retval;
570 retval = kef_crypt(&tmi->dec_data,
571 tmi->dec_data.block,
572 CRYPTO_DATA_RAW,
573 tmi->dec_data.blocklen,
574 CRYPT_ENCRYPT);
575
576 if (retval != CRYPTO_SUCCESS) {
577 #ifdef DEBUG
578 cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt "
579 "failed - status 0x%0x", retval);
580 #endif
581 mp->b_datap->db_type = M_ERROR;
582 mp->b_rptr = mp->b_datap->db_base;
583 *mp->b_rptr = EIO;
584 mp->b_wptr = mp->b_rptr + sizeof (char);
585 freemsg(mp->b_cont);
586 mp->b_cont = NULL;
587 qreply(WR(q), mp);
588 return (NULL);
589 }
590 }
591
592 /*
593 * To decrypt, XOR the input with the output from the DES call
594 */
595 *(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes %
596 CFB_BLKSZ];
597
598 tmi->dec_data.bytes++;
599
600 /*
601 * Feedback the encrypted input for next DES call.
602 */
603 if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) {
604 char *dbptr = tmi->dec_data.block;
605 /*
606 * Get the last bits of input from the previous block
607 * that we haven't yet processed.
608 */
609 if (savedbytes > 0) {
610 bcopy(tmi->dec_data.saveblock,
611 dbptr, savedbytes);
612 dbptr += savedbytes;
613 }
614
615 savedbytes = 0;
616
617 /*
618 * This block makes sure that our local
619 * buffer of input data is full and can
620 * be accessed from the beginning.
621 */
622 if (lastinput < (char *)mp->b_wptr) {
623
624 /* How many bytes are left in the mblk? */
625 cp = (((char *)mp->b_wptr - lastinput) >
626 tmi->dec_data.blocklen ?
627 tmi->dec_data.blocklen :
628 (char *)mp->b_wptr - lastinput);
629
630 /* copy what we need */
631 bcopy(lastinput, tmi->dec_data.saveblock,
632 cp);
633
634 lastinput += cp;
635 savedbytes = cp;
636 }
637 }
638 }
639
640 return (mp);
641 }
642
643 /*
644 * crc32_calc
645 *
646 * Compute a CRC32 checksum on the input
647 */
648 static int
crc32_calc(uchar_t * buf,uchar_t * input,uint_t len)649 crc32_calc(uchar_t *buf, uchar_t *input, uint_t len)
650 {
651 uint32_t crc;
652
653 CRC32(crc, input, len, 0, crc32_table);
654
655 buf[0] = (uchar_t)(crc & 0xff);
656 buf[1] = (uchar_t)((crc >> 8) & 0xff);
657 buf[2] = (uchar_t)((crc >> 16) & 0xff);
658 buf[3] = (uchar_t)((crc >> 24) & 0xff);
659
660 return (CRYPTO_SUCCESS);
661 }
662
663 static int
kef_digest(crypto_mech_type_t digest_type,uchar_t * input,uint_t inlen,uchar_t * output,uint_t hashlen)664 kef_digest(crypto_mech_type_t digest_type,
665 uchar_t *input, uint_t inlen,
666 uchar_t *output, uint_t hashlen)
667 {
668 iovec_t v1, v2;
669 crypto_data_t d1, d2;
670 crypto_mechanism_t mech;
671 int rv;
672
673 mech.cm_type = digest_type;
674 mech.cm_param = 0;
675 mech.cm_param_len = 0;
676
677 v1.iov_base = (void *)input;
678 v1.iov_len = inlen;
679
680 d1.cd_format = CRYPTO_DATA_RAW;
681 d1.cd_offset = 0;
682 d1.cd_length = v1.iov_len;
683 d1.cd_raw = v1;
684
685 v2.iov_base = (void *)output;
686 v2.iov_len = hashlen;
687
688 d2.cd_format = CRYPTO_DATA_RAW;
689 d2.cd_offset = 0;
690 d2.cd_length = v2.iov_len;
691 d2.cd_raw = v2;
692
693 rv = crypto_digest(&mech, &d1, &d2, NULL);
694
695 return (rv);
696 }
697
698 /*
699 * sha1_calc
700 *
701 * Get a SHA1 hash on the input data.
702 */
703 static int
sha1_calc(uchar_t * output,uchar_t * input,uint_t inlen)704 sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen)
705 {
706 int rv;
707
708 rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE);
709
710 return (rv);
711 }
712
713 /*
714 * Get an MD5 hash on the input data.
715 * md5_calc
716 *
717 */
718 static int
md5_calc(uchar_t * output,uchar_t * input,uint_t inlen)719 md5_calc(uchar_t *output, uchar_t *input, uint_t inlen)
720 {
721 int rv;
722
723 rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE);
724
725 return (rv);
726 }
727
728 /*
729 * nfold
730 * duplicate the functionality of the krb5_nfold function from
731 * the userland kerberos mech.
732 * This is needed to derive keys for use with 3DES/SHA1-HMAC
733 * ciphers.
734 */
735 static void
nfold(int inbits,uchar_t * in,int outbits,uchar_t * out)736 nfold(int inbits, uchar_t *in, int outbits, uchar_t *out)
737 {
738 int a, b, c, lcm;
739 int byte, i, msbit;
740
741 inbits >>= 3;
742 outbits >>= 3;
743
744 /* first compute lcm(n,k) */
745 a = outbits;
746 b = inbits;
747
748 while (b != 0) {
749 c = b;
750 b = a%b;
751 a = c;
752 }
753
754 lcm = outbits*inbits/a;
755
756 /* now do the real work */
757
758 bzero(out, outbits);
759 byte = 0;
760
761 /*
762 * Compute the msbit in k which gets added into this byte
763 * first, start with the msbit in the first, unrotated byte
764 * then, for each byte, shift to the right for each repetition
765 * last, pick out the correct byte within that shifted repetition
766 */
767 for (i = lcm-1; i >= 0; i--) {
768 msbit = (((inbits<<3)-1)
769 +(((inbits<<3)+13)*(i/inbits))
770 +((inbits-(i%inbits))<<3)) %(inbits<<3);
771
772 /* pull out the byte value itself */
773 byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)|
774 (in[((inbits)-(msbit>>3))%inbits]))
775 >>((msbit&7)+1))&0xff;
776
777 /* do the addition */
778 byte += out[i%outbits];
779 out[i%outbits] = byte&0xff;
780
781 byte >>= 8;
782 }
783
784 /* if there's a carry bit left over, add it back in */
785 if (byte) {
786 for (i = outbits-1; i >= 0; i--) {
787 /* do the addition */
788 byte += out[i];
789 out[i] = byte&0xff;
790
791 /* keep around the carry bit, if any */
792 byte >>= 8;
793 }
794 }
795 }
796
797 #define smask(step) ((1<<step)-1)
798 #define pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step)))
799 #define parity_char(x) pstep(pstep(pstep((x), 4), 2), 1)
800
801 /*
802 * Duplicate the functionality of the "dk_derive_key" function
803 * in the Kerberos mechanism.
804 */
805 static int
derive_key(struct cipher_data_t * cdata,uchar_t * constdata,int constlen,char * dkey,int keybytes,int blocklen)806 derive_key(struct cipher_data_t *cdata, uchar_t *constdata,
807 int constlen, char *dkey, int keybytes,
808 int blocklen)
809 {
810 int rv = 0;
811 int n = 0, i;
812 char *inblock;
813 char *rawkey;
814 char *zeroblock;
815 char *saveblock;
816
817 inblock = kmem_zalloc(blocklen, KM_SLEEP);
818 rawkey = kmem_zalloc(keybytes, KM_SLEEP);
819 zeroblock = kmem_zalloc(blocklen, KM_SLEEP);
820
821 if (constlen == blocklen)
822 bcopy(constdata, inblock, blocklen);
823 else
824 nfold(constlen * 8, constdata,
825 blocklen * 8, (uchar_t *)inblock);
826
827 /*
828 * zeroblock is an IV of all 0's.
829 *
830 * The "block" section of the cdata record is used as the
831 * IV for crypto operations in the kef_crypt function.
832 *
833 * We use 'block' as a generic IV data buffer because it
834 * is attached to the stream state data and thus can
835 * be used to hold information that must carry over
836 * from processing of one mblk to another.
837 *
838 * Here, we save the current IV and replace it with
839 * and empty IV (all 0's) for use when deriving the
840 * keys. Once the key derivation is done, we swap the
841 * old IV back into place.
842 */
843 saveblock = cdata->block;
844 cdata->block = zeroblock;
845
846 while (n < keybytes) {
847 rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW,
848 blocklen, CRYPT_ENCRYPT);
849 if (rv != CRYPTO_SUCCESS) {
850 /* put the original IV block back in place */
851 cdata->block = saveblock;
852 cmn_err(CE_WARN, "failed to derive a key: %0x", rv);
853 goto cleanup;
854 }
855
856 if (keybytes - n < blocklen) {
857 bcopy(inblock, rawkey+n, (keybytes-n));
858 break;
859 }
860 bcopy(inblock, rawkey+n, blocklen);
861 n += blocklen;
862 }
863 /* put the original IV block back in place */
864 cdata->block = saveblock;
865
866 /* finally, make the key */
867 if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) {
868 /*
869 * 3DES key derivation requires that we make sure the
870 * key has the proper parity.
871 */
872 for (i = 0; i < 3; i++) {
873 bcopy(rawkey+(i*7), dkey+(i*8), 7);
874
875 /* 'dkey' is our derived key output buffer */
876 dkey[i*8+7] = (((dkey[i*8]&1)<<1) |
877 ((dkey[i*8+1]&1)<<2) |
878 ((dkey[i*8+2]&1)<<3) |
879 ((dkey[i*8+3]&1)<<4) |
880 ((dkey[i*8+4]&1)<<5) |
881 ((dkey[i*8+5]&1)<<6) |
882 ((dkey[i*8+6]&1)<<7));
883
884 for (n = 0; n < 8; n++) {
885 dkey[i*8 + n] &= 0xfe;
886 dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]);
887 }
888 }
889 } else if (IS_AES_METHOD(cdata->method)) {
890 bcopy(rawkey, dkey, keybytes);
891 }
892 cleanup:
893 kmem_free(inblock, blocklen);
894 kmem_free(zeroblock, blocklen);
895 kmem_free(rawkey, keybytes);
896 return (rv);
897 }
898
899 /*
900 * create_derived_keys
901 *
902 * Algorithm for deriving a new key and an HMAC key
903 * before computing the 3DES-SHA1-HMAC operation on the plaintext
904 * This algorithm matches the work done by Kerberos mechanism
905 * in userland.
906 */
907 static int
create_derived_keys(struct cipher_data_t * cdata,uint32_t usage,crypto_key_t * enckey,crypto_key_t * hmackey)908 create_derived_keys(struct cipher_data_t *cdata, uint32_t usage,
909 crypto_key_t *enckey, crypto_key_t *hmackey)
910 {
911 uchar_t constdata[K5CLENGTH];
912 int keybytes;
913 int rv;
914
915 constdata[0] = (usage>>24)&0xff;
916 constdata[1] = (usage>>16)&0xff;
917 constdata[2] = (usage>>8)&0xff;
918 constdata[3] = usage & 0xff;
919 /* Use "0xAA" for deriving encryption key */
920 constdata[4] = 0xAA; /* from MIT Kerberos code */
921
922 enckey->ck_length = cdata->keylen * 8;
923 enckey->ck_format = CRYPTO_KEY_RAW;
924 enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
925
926 switch (cdata->method) {
927 case CRYPT_METHOD_DES_CFB:
928 case CRYPT_METHOD_DES_CBC_NULL:
929 case CRYPT_METHOD_DES_CBC_MD5:
930 case CRYPT_METHOD_DES_CBC_CRC:
931 keybytes = 8;
932 break;
933 case CRYPT_METHOD_DES3_CBC_SHA1:
934 keybytes = CRYPT_DES3_KEYBYTES;
935 break;
936 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
937 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
938 keybytes = CRYPT_ARCFOUR_KEYBYTES;
939 break;
940 case CRYPT_METHOD_AES128:
941 keybytes = CRYPT_AES128_KEYBYTES;
942 break;
943 case CRYPT_METHOD_AES256:
944 keybytes = CRYPT_AES256_KEYBYTES;
945 break;
946 }
947
948 /* derive main crypto key */
949 rv = derive_key(cdata, constdata, sizeof (constdata),
950 enckey->ck_data, keybytes, cdata->blocklen);
951
952 if (rv == CRYPTO_SUCCESS) {
953
954 /* Use "0x55" for deriving mac key */
955 constdata[4] = 0x55;
956
957 hmackey->ck_length = cdata->keylen * 8;
958 hmackey->ck_format = CRYPTO_KEY_RAW;
959 hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
960
961 rv = derive_key(cdata, constdata, sizeof (constdata),
962 hmackey->ck_data, keybytes,
963 cdata->blocklen);
964 } else {
965 cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv);
966 }
967
968 return (rv);
969 }
970
971 /*
972 * Compute 3-DES crypto and HMAC.
973 */
974 static int
kef_decr_hmac(struct cipher_data_t * cdata,mblk_t * mp,int length,char * hmac,int hmaclen)975 kef_decr_hmac(struct cipher_data_t *cdata,
976 mblk_t *mp, int length,
977 char *hmac, int hmaclen)
978 {
979 int rv = CRYPTO_FAILED;
980
981 crypto_mechanism_t encr_mech;
982 crypto_mechanism_t mac_mech;
983 crypto_data_t dd;
984 crypto_data_t mac;
985 iovec_t v1;
986
987 ASSERT(cdata != NULL);
988 ASSERT(mp != NULL);
989 ASSERT(hmac != NULL);
990
991 bzero(&dd, sizeof (dd));
992 dd.cd_format = CRYPTO_DATA_MBLK;
993 dd.cd_offset = 0;
994 dd.cd_length = length;
995 dd.cd_mp = mp;
996
997 v1.iov_base = hmac;
998 v1.iov_len = hmaclen;
999
1000 mac.cd_format = CRYPTO_DATA_RAW;
1001 mac.cd_offset = 0;
1002 mac.cd_length = hmaclen;
1003 mac.cd_raw = v1;
1004
1005 /*
1006 * cdata->block holds the IVEC
1007 */
1008 encr_mech.cm_type = cdata->mech_type;
1009 encr_mech.cm_param = cdata->block;
1010
1011 if (cdata->block != NULL)
1012 encr_mech.cm_param_len = cdata->blocklen;
1013 else
1014 encr_mech.cm_param_len = 0;
1015
1016 rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key,
1017 cdata->enc_tmpl, NULL, NULL);
1018 if (rv != CRYPTO_SUCCESS) {
1019 cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv);
1020 return (rv);
1021 }
1022
1023 mac_mech.cm_type = sha1_hmac_mech;
1024 mac_mech.cm_param = NULL;
1025 mac_mech.cm_param_len = 0;
1026
1027 /*
1028 * Compute MAC of the plaintext decrypted above.
1029 */
1030 rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
1031 cdata->hmac_tmpl, &mac, NULL);
1032
1033 if (rv != CRYPTO_SUCCESS) {
1034 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1035 }
1036
1037 return (rv);
1038 }
1039
1040 /*
1041 * Compute 3-DES crypto and HMAC.
1042 */
1043 static int
kef_encr_hmac(struct cipher_data_t * cdata,mblk_t * mp,int length,char * hmac,int hmaclen)1044 kef_encr_hmac(struct cipher_data_t *cdata,
1045 mblk_t *mp, int length,
1046 char *hmac, int hmaclen)
1047 {
1048 int rv = CRYPTO_FAILED;
1049
1050 crypto_mechanism_t encr_mech;
1051 crypto_mechanism_t mac_mech;
1052 crypto_data_t dd;
1053 crypto_data_t mac;
1054 iovec_t v1;
1055
1056 ASSERT(cdata != NULL);
1057 ASSERT(mp != NULL);
1058 ASSERT(hmac != NULL);
1059
1060 bzero(&dd, sizeof (dd));
1061 dd.cd_format = CRYPTO_DATA_MBLK;
1062 dd.cd_offset = 0;
1063 dd.cd_length = length;
1064 dd.cd_mp = mp;
1065
1066 v1.iov_base = hmac;
1067 v1.iov_len = hmaclen;
1068
1069 mac.cd_format = CRYPTO_DATA_RAW;
1070 mac.cd_offset = 0;
1071 mac.cd_length = hmaclen;
1072 mac.cd_raw = v1;
1073
1074 /*
1075 * cdata->block holds the IVEC
1076 */
1077 encr_mech.cm_type = cdata->mech_type;
1078 encr_mech.cm_param = cdata->block;
1079
1080 if (cdata->block != NULL)
1081 encr_mech.cm_param_len = cdata->blocklen;
1082 else
1083 encr_mech.cm_param_len = 0;
1084
1085 mac_mech.cm_type = sha1_hmac_mech;
1086 mac_mech.cm_param = NULL;
1087 mac_mech.cm_param_len = 0;
1088
1089 rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
1090 cdata->hmac_tmpl, &mac, NULL);
1091
1092 if (rv != CRYPTO_SUCCESS) {
1093 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1094 return (rv);
1095 }
1096
1097 rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key,
1098 cdata->enc_tmpl, NULL, NULL);
1099 if (rv != CRYPTO_SUCCESS) {
1100 cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv);
1101 }
1102
1103 return (rv);
1104 }
1105
1106 /*
1107 * kef_crypt
1108 *
1109 * Use the Kernel encryption framework to provide the
1110 * crypto operations for the indicated data.
1111 */
1112 static int
kef_crypt(struct cipher_data_t * cdata,void * indata,crypto_data_format_t fmt,size_t length,int mode)1113 kef_crypt(struct cipher_data_t *cdata,
1114 void *indata, crypto_data_format_t fmt,
1115 size_t length, int mode)
1116 {
1117 int rv = CRYPTO_FAILED;
1118
1119 crypto_mechanism_t mech;
1120 crypto_key_t crkey;
1121 iovec_t v1;
1122 crypto_data_t d1;
1123
1124 ASSERT(cdata != NULL);
1125 ASSERT(indata != NULL);
1126 ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK);
1127
1128 bzero(&crkey, sizeof (crkey));
1129 bzero(&d1, sizeof (d1));
1130
1131 crkey.ck_format = CRYPTO_KEY_RAW;
1132 crkey.ck_data = cdata->key;
1133
1134 /* keys are measured in bits, not bytes, so multiply by 8 */
1135 crkey.ck_length = cdata->keylen * 8;
1136
1137 if (fmt == CRYPTO_DATA_RAW) {
1138 v1.iov_base = (char *)indata;
1139 v1.iov_len = length;
1140 }
1141
1142 d1.cd_format = fmt;
1143 d1.cd_offset = 0;
1144 d1.cd_length = length;
1145 if (fmt == CRYPTO_DATA_RAW)
1146 d1.cd_raw = v1;
1147 else if (fmt == CRYPTO_DATA_MBLK)
1148 d1.cd_mp = (mblk_t *)indata;
1149
1150 mech.cm_type = cdata->mech_type;
1151 mech.cm_param = cdata->block;
1152 /*
1153 * cdata->block holds the IVEC
1154 */
1155 if (cdata->block != NULL)
1156 mech.cm_param_len = cdata->blocklen;
1157 else
1158 mech.cm_param_len = 0;
1159
1160 /*
1161 * encrypt and decrypt in-place
1162 */
1163 if (mode == CRYPT_ENCRYPT)
1164 rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
1165 else
1166 rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
1167
1168 if (rv != CRYPTO_SUCCESS) {
1169 cmn_err(CE_WARN, "%s returned error %08x",
1170 (mode == CRYPT_ENCRYPT ? "crypto_encrypt" :
1171 "crypto_decrypt"), rv);
1172 return (CRYPTO_FAILED);
1173 }
1174
1175 return (rv);
1176 }
1177
1178 static int
do_hmac(crypto_mech_type_t mech,crypto_key_t * key,char * data,int datalen,char * hmac,int hmaclen)1179 do_hmac(crypto_mech_type_t mech,
1180 crypto_key_t *key,
1181 char *data, int datalen,
1182 char *hmac, int hmaclen)
1183 {
1184 int rv = 0;
1185 crypto_mechanism_t mac_mech;
1186 crypto_data_t dd;
1187 crypto_data_t mac;
1188 iovec_t vdata, vmac;
1189
1190 mac_mech.cm_type = mech;
1191 mac_mech.cm_param = NULL;
1192 mac_mech.cm_param_len = 0;
1193
1194 vdata.iov_base = data;
1195 vdata.iov_len = datalen;
1196
1197 bzero(&dd, sizeof (dd));
1198 dd.cd_format = CRYPTO_DATA_RAW;
1199 dd.cd_offset = 0;
1200 dd.cd_length = datalen;
1201 dd.cd_raw = vdata;
1202
1203 vmac.iov_base = hmac;
1204 vmac.iov_len = hmaclen;
1205
1206 mac.cd_format = CRYPTO_DATA_RAW;
1207 mac.cd_offset = 0;
1208 mac.cd_length = hmaclen;
1209 mac.cd_raw = vmac;
1210
1211 /*
1212 * Compute MAC of the plaintext decrypted above.
1213 */
1214 rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL);
1215
1216 if (rv != CRYPTO_SUCCESS) {
1217 cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1218 }
1219
1220 return (rv);
1221 }
1222
1223 #define XOR_BLOCK(src, dst) \
1224 (dst)[0] ^= (src)[0]; \
1225 (dst)[1] ^= (src)[1]; \
1226 (dst)[2] ^= (src)[2]; \
1227 (dst)[3] ^= (src)[3]; \
1228 (dst)[4] ^= (src)[4]; \
1229 (dst)[5] ^= (src)[5]; \
1230 (dst)[6] ^= (src)[6]; \
1231 (dst)[7] ^= (src)[7]; \
1232 (dst)[8] ^= (src)[8]; \
1233 (dst)[9] ^= (src)[9]; \
1234 (dst)[10] ^= (src)[10]; \
1235 (dst)[11] ^= (src)[11]; \
1236 (dst)[12] ^= (src)[12]; \
1237 (dst)[13] ^= (src)[13]; \
1238 (dst)[14] ^= (src)[14]; \
1239 (dst)[15] ^= (src)[15]
1240
1241 #define xorblock(x, y) XOR_BLOCK(y, x)
1242
1243 static int
aes_cbc_cts_encrypt(struct tmodinfo * tmi,uchar_t * plain,size_t length)1244 aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length)
1245 {
1246 int result = CRYPTO_SUCCESS;
1247 unsigned char tmp[DEFAULT_AES_BLOCKLEN];
1248 unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
1249 unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
1250 int nblocks = 0, blockno;
1251 crypto_data_t ct, pt;
1252 crypto_mechanism_t mech;
1253
1254 mech.cm_type = tmi->enc_data.mech_type;
1255 if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) {
1256 bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
1257 } else {
1258 bzero(tmp, sizeof (tmp));
1259 }
1260 mech.cm_param = NULL;
1261 mech.cm_param_len = 0;
1262
1263 nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
1264
1265 bzero(&ct, sizeof (crypto_data_t));
1266 bzero(&pt, sizeof (crypto_data_t));
1267
1268 if (nblocks == 1) {
1269 pt.cd_format = CRYPTO_DATA_RAW;
1270 pt.cd_length = length;
1271 pt.cd_raw.iov_base = (char *)plain;
1272 pt.cd_raw.iov_len = length;
1273
1274 result = crypto_encrypt(&mech, &pt,
1275 &tmi->enc_data.d_encr_key, NULL, NULL, NULL);
1276
1277 if (result != CRYPTO_SUCCESS) {
1278 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1279 "crypto_encrypt failed: %0x", result);
1280 }
1281 } else {
1282 size_t nleft;
1283
1284 ct.cd_format = CRYPTO_DATA_RAW;
1285 ct.cd_offset = 0;
1286 ct.cd_length = DEFAULT_AES_BLOCKLEN;
1287
1288 pt.cd_format = CRYPTO_DATA_RAW;
1289 pt.cd_offset = 0;
1290 pt.cd_length = DEFAULT_AES_BLOCKLEN;
1291
1292 result = crypto_encrypt_init(&mech,
1293 &tmi->enc_data.d_encr_key,
1294 tmi->enc_data.enc_tmpl,
1295 &tmi->enc_data.ctx, NULL);
1296
1297 if (result != CRYPTO_SUCCESS) {
1298 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1299 "crypto_encrypt_init failed: %0x", result);
1300 goto cleanup;
1301 }
1302
1303 for (blockno = 0; blockno < nblocks - 2; blockno++) {
1304 xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN);
1305
1306 pt.cd_raw.iov_base = (char *)tmp;
1307 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1308
1309 ct.cd_raw.iov_base = (char *)plain +
1310 blockno * DEFAULT_AES_BLOCKLEN;
1311 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1312
1313 result = crypto_encrypt_update(tmi->enc_data.ctx,
1314 &pt, &ct, NULL);
1315
1316 if (result != CRYPTO_SUCCESS) {
1317 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1318 "crypto_encrypt_update failed: %0x",
1319 result);
1320 goto cleanup;
1321 }
1322 /* copy result over original bytes */
1323 /* make another copy for the next XOR step */
1324 bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN,
1325 tmp, DEFAULT_AES_BLOCKLEN);
1326 }
1327 /* XOR cipher text from n-3 with plain text from n-2 */
1328 xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN);
1329
1330 pt.cd_raw.iov_base = (char *)tmp;
1331 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1332
1333 ct.cd_raw.iov_base = (char *)tmp2;
1334 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1335
1336 /* encrypt XOR-ed block N-2 */
1337 result = crypto_encrypt_update(tmi->enc_data.ctx,
1338 &pt, &ct, NULL);
1339 if (result != CRYPTO_SUCCESS) {
1340 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1341 "crypto_encrypt_update(2) failed: %0x",
1342 result);
1343 goto cleanup;
1344 }
1345 nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN;
1346
1347 bzero(tmp3, sizeof (tmp3));
1348 /* Save final plaintext bytes from n-1 */
1349 bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
1350 nleft);
1351
1352 /* Overwrite n-1 with cipher text from n-2 */
1353 bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
1354 nleft);
1355
1356 bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN);
1357 /* XOR cipher text from n-1 with plain text from n-1 */
1358 xorblock(tmp, tmp3);
1359
1360 pt.cd_raw.iov_base = (char *)tmp;
1361 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1362
1363 ct.cd_raw.iov_base = (char *)tmp2;
1364 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1365
1366 /* encrypt block N-2 */
1367 result = crypto_encrypt_update(tmi->enc_data.ctx,
1368 &pt, &ct, NULL);
1369
1370 if (result != CRYPTO_SUCCESS) {
1371 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1372 "crypto_encrypt_update(3) failed: %0x",
1373 result);
1374 goto cleanup;
1375 }
1376
1377 bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1378 DEFAULT_AES_BLOCKLEN);
1379
1380
1381 ct.cd_raw.iov_base = (char *)tmp2;
1382 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1383
1384 /*
1385 * Ignore the output on the final step.
1386 */
1387 result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL);
1388 if (result != CRYPTO_SUCCESS) {
1389 cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1390 "crypto_encrypt_final(3) failed: %0x",
1391 result);
1392 }
1393 tmi->enc_data.ctx = NULL;
1394 }
1395 cleanup:
1396 bzero(tmp, sizeof (tmp));
1397 bzero(tmp2, sizeof (tmp));
1398 bzero(tmp3, sizeof (tmp));
1399 bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
1400 return (result);
1401 }
1402
1403 static int
aes_cbc_cts_decrypt(struct tmodinfo * tmi,uchar_t * buff,size_t length)1404 aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length)
1405 {
1406 int result = CRYPTO_SUCCESS;
1407 unsigned char tmp[DEFAULT_AES_BLOCKLEN];
1408 unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
1409 unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
1410 int nblocks = 0, blockno;
1411 crypto_data_t ct, pt;
1412 crypto_mechanism_t mech;
1413
1414 mech.cm_type = tmi->enc_data.mech_type;
1415
1416 if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1417 tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) {
1418 bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
1419 } else {
1420 bzero(tmp, sizeof (tmp));
1421 }
1422 mech.cm_param_len = 0;
1423 mech.cm_param = NULL;
1424
1425 nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
1426
1427 bzero(&pt, sizeof (pt));
1428 bzero(&ct, sizeof (ct));
1429
1430 if (nblocks == 1) {
1431 ct.cd_format = CRYPTO_DATA_RAW;
1432 ct.cd_length = length;
1433 ct.cd_raw.iov_base = (char *)buff;
1434 ct.cd_raw.iov_len = length;
1435
1436 result = crypto_decrypt(&mech, &ct,
1437 &tmi->dec_data.d_encr_key, NULL, NULL, NULL);
1438
1439 if (result != CRYPTO_SUCCESS) {
1440 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1441 "crypto_decrypt failed: %0x", result);
1442 goto cleanup;
1443 }
1444 } else {
1445 ct.cd_format = CRYPTO_DATA_RAW;
1446 ct.cd_offset = 0;
1447 ct.cd_length = DEFAULT_AES_BLOCKLEN;
1448
1449 pt.cd_format = CRYPTO_DATA_RAW;
1450 pt.cd_offset = 0;
1451 pt.cd_length = DEFAULT_AES_BLOCKLEN;
1452
1453 result = crypto_decrypt_init(&mech,
1454 &tmi->dec_data.d_encr_key,
1455 tmi->dec_data.enc_tmpl,
1456 &tmi->dec_data.ctx, NULL);
1457
1458 if (result != CRYPTO_SUCCESS) {
1459 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1460 "crypto_decrypt_init failed: %0x", result);
1461 goto cleanup;
1462 }
1463 for (blockno = 0; blockno < nblocks - 2; blockno++) {
1464 ct.cd_raw.iov_base = (char *)buff +
1465 (blockno * DEFAULT_AES_BLOCKLEN);
1466 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1467
1468 pt.cd_raw.iov_base = (char *)tmp2;
1469 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1470
1471 /*
1472 * Save the input to the decrypt so it can
1473 * be used later for an XOR operation
1474 */
1475 bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN),
1476 tmi->dec_data.block, DEFAULT_AES_BLOCKLEN);
1477
1478 result = crypto_decrypt_update(tmi->dec_data.ctx,
1479 &ct, &pt, NULL);
1480 if (result != CRYPTO_SUCCESS) {
1481 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1482 "crypto_decrypt_update(1) error - "
1483 "result = 0x%08x", result);
1484 goto cleanup;
1485 }
1486 xorblock(tmp2, tmp);
1487 bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN,
1488 DEFAULT_AES_BLOCKLEN);
1489 /*
1490 * The original cipher text is used as the xor
1491 * for the next block, save it here.
1492 */
1493 bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN);
1494 }
1495 ct.cd_raw.iov_base = (char *)buff +
1496 ((nblocks - 2) * DEFAULT_AES_BLOCKLEN);
1497 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1498 pt.cd_raw.iov_base = (char *)tmp2;
1499 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1500
1501 result = crypto_decrypt_update(tmi->dec_data.ctx,
1502 &ct, &pt, NULL);
1503 if (result != CRYPTO_SUCCESS) {
1504 cmn_err(CE_WARN,
1505 "aes_cbc_cts_decrypt: "
1506 "crypto_decrypt_update(2) error -"
1507 " result = 0x%08x", result);
1508 goto cleanup;
1509 }
1510 bzero(tmp3, sizeof (tmp3));
1511 bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
1512 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1513
1514 xorblock(tmp2, tmp3);
1515 bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
1516 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1517
1518 /* 2nd to last block ... */
1519 bcopy(tmp3, tmp2,
1520 length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1521
1522 ct.cd_raw.iov_base = (char *)tmp2;
1523 ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1524 pt.cd_raw.iov_base = (char *)tmp3;
1525 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1526
1527 result = crypto_decrypt_update(tmi->dec_data.ctx,
1528 &ct, &pt, NULL);
1529 if (result != CRYPTO_SUCCESS) {
1530 cmn_err(CE_WARN,
1531 "aes_cbc_cts_decrypt: "
1532 "crypto_decrypt_update(3) error - "
1533 "result = 0x%08x", result);
1534 goto cleanup;
1535 }
1536 xorblock(tmp3, tmp);
1537
1538
1539 /* Finally, update the 2nd to last block and we are done. */
1540 bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1541 DEFAULT_AES_BLOCKLEN);
1542
1543 /* Do Final step, but ignore output */
1544 pt.cd_raw.iov_base = (char *)tmp2;
1545 pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1546 result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL);
1547 if (result != CRYPTO_SUCCESS) {
1548 cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1549 "crypto_decrypt_final error - "
1550 "result = 0x%0x", result);
1551 }
1552 tmi->dec_data.ctx = NULL;
1553 }
1554
1555 cleanup:
1556 bzero(tmp, sizeof (tmp));
1557 bzero(tmp2, sizeof (tmp));
1558 bzero(tmp3, sizeof (tmp));
1559 bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
1560 return (result);
1561 }
1562
1563 /*
1564 * AES decrypt
1565 *
1566 * format of ciphertext when using AES
1567 * +-------------+------------+------------+
1568 * | confounder | msg-data | hmac |
1569 * +-------------+------------+------------+
1570 */
1571 static mblk_t *
aes_decrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)1572 aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1573 hash_info_t *hash)
1574 {
1575 int result;
1576 size_t enclen;
1577 size_t inlen;
1578 uchar_t hmacbuff[64];
1579 uchar_t tmpiv[DEFAULT_AES_BLOCKLEN];
1580
1581 inlen = (size_t)MBLKL(mp);
1582
1583 enclen = inlen - AES_TRUNCATED_HMAC_LEN;
1584 if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1585 tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) {
1586 int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) /
1587 DEFAULT_AES_BLOCKLEN;
1588 bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2),
1589 tmpiv, DEFAULT_AES_BLOCKLEN);
1590 }
1591
1592 /* AES Decrypt */
1593 result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen);
1594
1595 if (result != CRYPTO_SUCCESS) {
1596 cmn_err(CE_WARN,
1597 "aes_decrypt: aes_cbc_cts_decrypt "
1598 "failed - error %0x", result);
1599 goto cleanup;
1600 }
1601
1602 /* Verify the HMAC */
1603 result = do_hmac(sha1_hmac_mech,
1604 &tmi->dec_data.d_hmac_key,
1605 (char *)mp->b_rptr, enclen,
1606 (char *)hmacbuff, hash->hash_len);
1607
1608 if (result != CRYPTO_SUCCESS) {
1609 cmn_err(CE_WARN,
1610 "aes_decrypt: do_hmac failed - error %0x", result);
1611 goto cleanup;
1612 }
1613
1614 if (bcmp(hmacbuff, mp->b_rptr + enclen,
1615 AES_TRUNCATED_HMAC_LEN) != 0) {
1616 result = -1;
1617 cmn_err(CE_WARN, "aes_decrypt: checksum verification failed");
1618 goto cleanup;
1619 }
1620
1621 /* truncate the mblk at the end of the decrypted text */
1622 mp->b_wptr = mp->b_rptr + enclen;
1623
1624 /* Adjust the beginning of the buffer to skip the confounder */
1625 mp->b_rptr += DEFAULT_AES_BLOCKLEN;
1626
1627 if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1628 tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0)
1629 bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN);
1630
1631 cleanup:
1632 if (result != CRYPTO_SUCCESS) {
1633 mp->b_datap->db_type = M_ERROR;
1634 mp->b_rptr = mp->b_datap->db_base;
1635 *mp->b_rptr = EIO;
1636 mp->b_wptr = mp->b_rptr + sizeof (char);
1637 freemsg(mp->b_cont);
1638 mp->b_cont = NULL;
1639 qreply(WR(q), mp);
1640 return (NULL);
1641 }
1642 return (mp);
1643 }
1644
1645 /*
1646 * AES encrypt
1647 *
1648 * format of ciphertext when using AES
1649 * +-------------+------------+------------+
1650 * | confounder | msg-data | hmac |
1651 * +-------------+------------+------------+
1652 */
1653 static mblk_t *
aes_encrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)1654 aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1655 hash_info_t *hash)
1656 {
1657 int result;
1658 size_t cipherlen;
1659 size_t inlen;
1660 uchar_t hmacbuff[64];
1661
1662 inlen = (size_t)MBLKL(mp);
1663
1664 cipherlen = encrypt_size(&tmi->enc_data, inlen);
1665
1666 ASSERT(MBLKSIZE(mp) >= cipherlen);
1667
1668 /*
1669 * Shift the rptr back enough to insert the confounder.
1670 */
1671 mp->b_rptr -= DEFAULT_AES_BLOCKLEN;
1672
1673 /* Get random data for confounder */
1674 (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
1675 DEFAULT_AES_BLOCKLEN);
1676
1677 /*
1678 * Because we encrypt in-place, we need to calculate
1679 * the HMAC of the plaintext now, then stick it on
1680 * the end of the ciphertext down below.
1681 */
1682 result = do_hmac(sha1_hmac_mech,
1683 &tmi->enc_data.d_hmac_key,
1684 (char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen,
1685 (char *)hmacbuff, hash->hash_len);
1686
1687 if (result != CRYPTO_SUCCESS) {
1688 cmn_err(CE_WARN, "aes_encrypt: do_hmac failed - error %0x",
1689 result);
1690 goto cleanup;
1691 }
1692 /* Encrypt using AES-CBC-CTS */
1693 result = aes_cbc_cts_encrypt(tmi, mp->b_rptr,
1694 inlen + DEFAULT_AES_BLOCKLEN);
1695
1696 if (result != CRYPTO_SUCCESS) {
1697 cmn_err(CE_WARN, "aes_encrypt: aes_cbc_cts_encrypt "
1698 "failed - error %0x", result);
1699 goto cleanup;
1700 }
1701
1702 /* copy the truncated HMAC to the end of the mblk */
1703 bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen,
1704 AES_TRUNCATED_HMAC_LEN);
1705
1706 mp->b_wptr = mp->b_rptr + cipherlen;
1707
1708 /*
1709 * The final block of cipher text (not the HMAC) is used
1710 * as the next IV.
1711 */
1712 if (tmi->enc_data.ivec_usage != IVEC_NEVER &&
1713 tmi->enc_data.ivec != NULL) {
1714 int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) /
1715 DEFAULT_AES_BLOCKLEN;
1716
1717 bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1718 tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN);
1719 }
1720
1721 cleanup:
1722 if (result != CRYPTO_SUCCESS) {
1723 mp->b_datap->db_type = M_ERROR;
1724 mp->b_rptr = mp->b_datap->db_base;
1725 *mp->b_rptr = EIO;
1726 mp->b_wptr = mp->b_rptr + sizeof (char);
1727 freemsg(mp->b_cont);
1728 mp->b_cont = NULL;
1729 qreply(WR(q), mp);
1730 return (NULL);
1731 }
1732 return (mp);
1733 }
1734
1735 /*
1736 * ARCFOUR-HMAC-MD5 decrypt
1737 *
1738 * format of ciphertext when using ARCFOUR-HMAC-MD5
1739 * +-----------+------------+------------+
1740 * | hmac | confounder | msg-data |
1741 * +-----------+------------+------------+
1742 *
1743 */
1744 static mblk_t *
arcfour_hmac_md5_decrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)1745 arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1746 hash_info_t *hash)
1747 {
1748 int result;
1749 size_t cipherlen;
1750 size_t inlen;
1751 size_t saltlen;
1752 crypto_key_t k1, k2;
1753 crypto_data_t indata;
1754 iovec_t v1;
1755 uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
1756 0xab, 0xab, 0xab, 0xab };
1757 uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
1758 uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
1759 uchar_t cksum[MD5_HASHSIZE];
1760 uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
1761 crypto_mechanism_t mech;
1762 int usage;
1763
1764 bzero(&indata, sizeof (indata));
1765
1766 /* The usage constant is 1026 for all "old" rcmd mode operations */
1767 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
1768 usage = RCMDV1_USAGE;
1769 else
1770 usage = ARCFOUR_DECRYPT_USAGE;
1771
1772 /*
1773 * The size at this point should be the size of
1774 * all the plaintext plus the optional plaintext length
1775 * needed for RCMD V2 mode. There should also be room
1776 * at the head of the mblk for the confounder and hash info.
1777 */
1778 inlen = (size_t)MBLKL(mp);
1779
1780 /*
1781 * The cipherlen does not include the HMAC at the
1782 * head of the buffer.
1783 */
1784 cipherlen = inlen - hash->hash_len;
1785
1786 ASSERT(MBLKSIZE(mp) >= cipherlen);
1787 if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
1788 bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
1789 saltdata[9] = 0;
1790 saltdata[10] = usage & 0xff;
1791 saltdata[11] = (usage >> 8) & 0xff;
1792 saltdata[12] = (usage >> 16) & 0xff;
1793 saltdata[13] = (usage >> 24) & 0xff;
1794 saltlen = 14;
1795 } else {
1796 saltdata[0] = usage & 0xff;
1797 saltdata[1] = (usage >> 8) & 0xff;
1798 saltdata[2] = (usage >> 16) & 0xff;
1799 saltdata[3] = (usage >> 24) & 0xff;
1800 saltlen = 4;
1801 }
1802 /*
1803 * Use the salt value to create a key to be used
1804 * for subsequent HMAC operations.
1805 */
1806 result = do_hmac(md5_hmac_mech,
1807 tmi->dec_data.ckey,
1808 (char *)saltdata, saltlen,
1809 (char *)k1data, sizeof (k1data));
1810 if (result != CRYPTO_SUCCESS) {
1811 cmn_err(CE_WARN,
1812 "arcfour_hmac_md5_decrypt: do_hmac(k1)"
1813 "failed - error %0x", result);
1814 goto cleanup;
1815 }
1816 bcopy(k1data, k2data, sizeof (k1data));
1817
1818 /*
1819 * For the neutered MS RC4 encryption type,
1820 * set the trailing 9 bytes to 0xab per the
1821 * RC4-HMAC spec.
1822 */
1823 if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
1824 bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
1825 }
1826
1827 mech.cm_type = tmi->dec_data.mech_type;
1828 mech.cm_param = NULL;
1829 mech.cm_param_len = 0;
1830
1831 /*
1832 * If we have not yet initialized the decryption key,
1833 * context, and template, do it now.
1834 */
1835 if (tmi->dec_data.ctx == NULL ||
1836 (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
1837 k1.ck_format = CRYPTO_KEY_RAW;
1838 k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8;
1839 k1.ck_data = k1data;
1840
1841 tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW;
1842 tmi->dec_data.d_encr_key.ck_length = k1.ck_length;
1843 if (tmi->dec_data.d_encr_key.ck_data == NULL)
1844 tmi->dec_data.d_encr_key.ck_data = kmem_zalloc(
1845 CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
1846
1847 /*
1848 * HMAC operation creates the encryption
1849 * key to be used for the decrypt operations.
1850 */
1851 result = do_hmac(md5_hmac_mech, &k1,
1852 (char *)mp->b_rptr, hash->hash_len,
1853 (char *)tmi->dec_data.d_encr_key.ck_data,
1854 CRYPT_ARCFOUR_KEYBYTES);
1855
1856
1857 if (result != CRYPTO_SUCCESS) {
1858 cmn_err(CE_WARN,
1859 "arcfour_hmac_md5_decrypt: do_hmac(k3)"
1860 "failed - error %0x", result);
1861 goto cleanup;
1862 }
1863 }
1864
1865 tmi->dec_data.enc_tmpl = NULL;
1866
1867 if (tmi->dec_data.ctx == NULL &&
1868 (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
1869 /*
1870 * Only create a template if we are doing
1871 * chaining from block to block.
1872 */
1873 result = crypto_create_ctx_template(&mech,
1874 &tmi->dec_data.d_encr_key,
1875 &tmi->dec_data.enc_tmpl,
1876 KM_SLEEP);
1877 if (result == CRYPTO_NOT_SUPPORTED) {
1878 tmi->dec_data.enc_tmpl = NULL;
1879 } else if (result != CRYPTO_SUCCESS) {
1880 cmn_err(CE_WARN,
1881 "arcfour_hmac_md5_decrypt: "
1882 "failed to create dec template "
1883 "for RC4 encrypt: %0x", result);
1884 goto cleanup;
1885 }
1886
1887 result = crypto_decrypt_init(&mech,
1888 &tmi->dec_data.d_encr_key,
1889 tmi->dec_data.enc_tmpl,
1890 &tmi->dec_data.ctx, NULL);
1891
1892 if (result != CRYPTO_SUCCESS) {
1893 cmn_err(CE_WARN, "crypto_decrypt_init failed:"
1894 " %0x", result);
1895 goto cleanup;
1896 }
1897 }
1898
1899 /* adjust the rptr so we don't decrypt the original hmac field */
1900
1901 v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
1902 v1.iov_len = cipherlen;
1903
1904 indata.cd_format = CRYPTO_DATA_RAW;
1905 indata.cd_offset = 0;
1906 indata.cd_length = cipherlen;
1907 indata.cd_raw = v1;
1908
1909 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
1910 result = crypto_decrypt_update(tmi->dec_data.ctx,
1911 &indata, NULL, NULL);
1912 else
1913 result = crypto_decrypt(&mech, &indata,
1914 &tmi->dec_data.d_encr_key, NULL, NULL, NULL);
1915
1916 if (result != CRYPTO_SUCCESS) {
1917 cmn_err(CE_WARN, "crypto_decrypt_update failed:"
1918 " %0x", result);
1919 goto cleanup;
1920 }
1921
1922 k2.ck_format = CRYPTO_KEY_RAW;
1923 k2.ck_length = sizeof (k2data) * 8;
1924 k2.ck_data = k2data;
1925
1926 result = do_hmac(md5_hmac_mech,
1927 &k2,
1928 (char *)mp->b_rptr + hash->hash_len, cipherlen,
1929 (char *)cksum, hash->hash_len);
1930
1931 if (result != CRYPTO_SUCCESS) {
1932 cmn_err(CE_WARN,
1933 "arcfour_hmac_md5_decrypt: do_hmac(k2)"
1934 "failed - error %0x", result);
1935 goto cleanup;
1936 }
1937
1938 if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) {
1939 cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed");
1940 result = -1;
1941 goto cleanup;
1942 }
1943
1944 /*
1945 * adjust the start of the mblk to skip over the
1946 * hash and confounder.
1947 */
1948 mp->b_rptr += hash->hash_len + hash->confound_len;
1949
1950 cleanup:
1951 bzero(k1data, sizeof (k1data));
1952 bzero(k2data, sizeof (k2data));
1953 bzero(cksum, sizeof (cksum));
1954 bzero(saltdata, sizeof (saltdata));
1955 if (result != CRYPTO_SUCCESS) {
1956 mp->b_datap->db_type = M_ERROR;
1957 mp->b_rptr = mp->b_datap->db_base;
1958 *mp->b_rptr = EIO;
1959 mp->b_wptr = mp->b_rptr + sizeof (char);
1960 freemsg(mp->b_cont);
1961 mp->b_cont = NULL;
1962 qreply(WR(q), mp);
1963 return (NULL);
1964 }
1965 return (mp);
1966 }
1967
1968 /*
1969 * ARCFOUR-HMAC-MD5 encrypt
1970 *
1971 * format of ciphertext when using ARCFOUR-HMAC-MD5
1972 * +-----------+------------+------------+
1973 * | hmac | confounder | msg-data |
1974 * +-----------+------------+------------+
1975 *
1976 */
1977 static mblk_t *
arcfour_hmac_md5_encrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)1978 arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1979 hash_info_t *hash)
1980 {
1981 int result;
1982 size_t cipherlen;
1983 size_t inlen;
1984 size_t saltlen;
1985 crypto_key_t k1, k2;
1986 crypto_data_t indata;
1987 iovec_t v1;
1988 uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
1989 0xab, 0xab, 0xab, 0xab };
1990 uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
1991 uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
1992 uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
1993 crypto_mechanism_t mech;
1994 int usage;
1995
1996 bzero(&indata, sizeof (indata));
1997
1998 /* The usage constant is 1026 for all "old" rcmd mode operations */
1999 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
2000 usage = RCMDV1_USAGE;
2001 else
2002 usage = ARCFOUR_ENCRYPT_USAGE;
2003
2004 mech.cm_type = tmi->enc_data.mech_type;
2005 mech.cm_param = NULL;
2006 mech.cm_param_len = 0;
2007
2008 /*
2009 * The size at this point should be the size of
2010 * all the plaintext plus the optional plaintext length
2011 * needed for RCMD V2 mode. There should also be room
2012 * at the head of the mblk for the confounder and hash info.
2013 */
2014 inlen = (size_t)MBLKL(mp);
2015
2016 cipherlen = encrypt_size(&tmi->enc_data, inlen);
2017
2018 ASSERT(MBLKSIZE(mp) >= cipherlen);
2019
2020 /*
2021 * Shift the rptr back enough to insert
2022 * the confounder and hash.
2023 */
2024 mp->b_rptr -= (hash->confound_len + hash->hash_len);
2025
2026 /* zero out the hash area */
2027 bzero(mp->b_rptr, (size_t)hash->hash_len);
2028
2029 if (cipherlen > inlen) {
2030 bzero(mp->b_wptr, MBLKTAIL(mp));
2031 }
2032
2033 if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
2034 bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
2035 saltdata[9] = 0;
2036 saltdata[10] = usage & 0xff;
2037 saltdata[11] = (usage >> 8) & 0xff;
2038 saltdata[12] = (usage >> 16) & 0xff;
2039 saltdata[13] = (usage >> 24) & 0xff;
2040 saltlen = 14;
2041 } else {
2042 saltdata[0] = usage & 0xff;
2043 saltdata[1] = (usage >> 8) & 0xff;
2044 saltdata[2] = (usage >> 16) & 0xff;
2045 saltdata[3] = (usage >> 24) & 0xff;
2046 saltlen = 4;
2047 }
2048 /*
2049 * Use the salt value to create a key to be used
2050 * for subsequent HMAC operations.
2051 */
2052 result = do_hmac(md5_hmac_mech,
2053 tmi->enc_data.ckey,
2054 (char *)saltdata, saltlen,
2055 (char *)k1data, sizeof (k1data));
2056 if (result != CRYPTO_SUCCESS) {
2057 cmn_err(CE_WARN,
2058 "arcfour_hmac_md5_encrypt: do_hmac(k1)"
2059 "failed - error %0x", result);
2060 goto cleanup;
2061 }
2062
2063 bcopy(k1data, k2data, sizeof (k2data));
2064
2065 /*
2066 * For the neutered MS RC4 encryption type,
2067 * set the trailing 9 bytes to 0xab per the
2068 * RC4-HMAC spec.
2069 */
2070 if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
2071 bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
2072 }
2073
2074 /*
2075 * Get the confounder bytes.
2076 */
2077 (void) random_get_pseudo_bytes(
2078 (uint8_t *)(mp->b_rptr + hash->hash_len),
2079 (size_t)hash->confound_len);
2080
2081 k2.ck_data = k2data;
2082 k2.ck_format = CRYPTO_KEY_RAW;
2083 k2.ck_length = sizeof (k2data) * 8;
2084
2085 /*
2086 * This writes the HMAC to the hash area in the
2087 * mblk. The key used is the one just created by
2088 * the previous HMAC operation.
2089 * The data being processed is the confounder bytes
2090 * PLUS the input plaintext.
2091 */
2092 result = do_hmac(md5_hmac_mech, &k2,
2093 (char *)mp->b_rptr + hash->hash_len,
2094 hash->confound_len + inlen,
2095 (char *)mp->b_rptr, hash->hash_len);
2096 if (result != CRYPTO_SUCCESS) {
2097 cmn_err(CE_WARN,
2098 "arcfour_hmac_md5_encrypt: do_hmac(k2)"
2099 "failed - error %0x", result);
2100 goto cleanup;
2101 }
2102 /*
2103 * Because of the odd way that MIT uses RC4 keys
2104 * on the rlogin stream, we only need to create
2105 * this key once.
2106 * However, if using "old" rcmd mode, we need to do
2107 * it every time.
2108 */
2109 if (tmi->enc_data.ctx == NULL ||
2110 (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
2111 crypto_key_t *key = &tmi->enc_data.d_encr_key;
2112
2113 k1.ck_data = k1data;
2114 k1.ck_format = CRYPTO_KEY_RAW;
2115 k1.ck_length = sizeof (k1data) * 8;
2116
2117 key->ck_format = CRYPTO_KEY_RAW;
2118 key->ck_length = k1.ck_length;
2119 if (key->ck_data == NULL)
2120 key->ck_data = kmem_zalloc(
2121 CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
2122
2123 /*
2124 * The final HMAC operation creates the encryption
2125 * key to be used for the encrypt operation.
2126 */
2127 result = do_hmac(md5_hmac_mech, &k1,
2128 (char *)mp->b_rptr, hash->hash_len,
2129 (char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES);
2130
2131 if (result != CRYPTO_SUCCESS) {
2132 cmn_err(CE_WARN,
2133 "arcfour_hmac_md5_encrypt: do_hmac(k3)"
2134 "failed - error %0x", result);
2135 goto cleanup;
2136 }
2137 }
2138
2139 /*
2140 * If the context has not been initialized, do it now.
2141 */
2142 if (tmi->enc_data.ctx == NULL &&
2143 (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
2144 /*
2145 * Only create a template if we are doing
2146 * chaining from block to block.
2147 */
2148 result = crypto_create_ctx_template(&mech,
2149 &tmi->enc_data.d_encr_key,
2150 &tmi->enc_data.enc_tmpl,
2151 KM_SLEEP);
2152 if (result == CRYPTO_NOT_SUPPORTED) {
2153 tmi->enc_data.enc_tmpl = NULL;
2154 } else if (result != CRYPTO_SUCCESS) {
2155 cmn_err(CE_WARN, "failed to create enc template "
2156 "for RC4 encrypt: %0x", result);
2157 goto cleanup;
2158 }
2159
2160 result = crypto_encrypt_init(&mech,
2161 &tmi->enc_data.d_encr_key,
2162 tmi->enc_data.enc_tmpl,
2163 &tmi->enc_data.ctx, NULL);
2164 if (result != CRYPTO_SUCCESS) {
2165 cmn_err(CE_WARN, "crypto_encrypt_init failed:"
2166 " %0x", result);
2167 goto cleanup;
2168 }
2169 }
2170 v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
2171 v1.iov_len = hash->confound_len + inlen;
2172
2173 indata.cd_format = CRYPTO_DATA_RAW;
2174 indata.cd_offset = 0;
2175 indata.cd_length = hash->confound_len + inlen;
2176 indata.cd_raw = v1;
2177
2178 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
2179 result = crypto_encrypt_update(tmi->enc_data.ctx,
2180 &indata, NULL, NULL);
2181 else
2182 result = crypto_encrypt(&mech, &indata,
2183 &tmi->enc_data.d_encr_key, NULL,
2184 NULL, NULL);
2185
2186 if (result != CRYPTO_SUCCESS) {
2187 cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x",
2188 result);
2189 }
2190
2191 cleanup:
2192 bzero(k1data, sizeof (k1data));
2193 bzero(k2data, sizeof (k2data));
2194 bzero(saltdata, sizeof (saltdata));
2195 if (result != CRYPTO_SUCCESS) {
2196 mp->b_datap->db_type = M_ERROR;
2197 mp->b_rptr = mp->b_datap->db_base;
2198 *mp->b_rptr = EIO;
2199 mp->b_wptr = mp->b_rptr + sizeof (char);
2200 freemsg(mp->b_cont);
2201 mp->b_cont = NULL;
2202 qreply(WR(q), mp);
2203 return (NULL);
2204 }
2205 return (mp);
2206 }
2207
2208 /*
2209 * DES-CBC-[HASH] encrypt
2210 *
2211 * Needed to support userland apps that must support Kerberos V5
2212 * encryption DES-CBC encryption modes.
2213 *
2214 * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
2215 *
2216 * format of ciphertext for DES-CBC functions, per RFC1510 is:
2217 * +-----------+----------+-------------+-----+
2218 * |confounder | cksum | msg-data | pad |
2219 * +-----------+----------+-------------+-----+
2220 *
2221 * format of ciphertext when using DES3-SHA1-HMAC
2222 * +-----------+----------+-------------+-----+
2223 * |confounder | msg-data | hmac | pad |
2224 * +-----------+----------+-------------+-----+
2225 *
2226 * The confounder is 8 bytes of random data.
2227 * The cksum depends on the hash being used.
2228 * 4 bytes for CRC32
2229 * 16 bytes for MD5
2230 * 20 bytes for SHA1
2231 * 0 bytes for RAW
2232 *
2233 */
2234 static mblk_t *
des_cbc_encrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)2235 des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
2236 {
2237 int result;
2238 size_t cipherlen;
2239 size_t inlen;
2240 size_t plainlen;
2241
2242 /*
2243 * The size at this point should be the size of
2244 * all the plaintext plus the optional plaintext length
2245 * needed for RCMD V2 mode. There should also be room
2246 * at the head of the mblk for the confounder and hash info.
2247 */
2248 inlen = (size_t)MBLKL(mp);
2249
2250 /*
2251 * The output size will be a multiple of 8 because this algorithm
2252 * only works on 8 byte chunks.
2253 */
2254 cipherlen = encrypt_size(&tmi->enc_data, inlen);
2255
2256 ASSERT(MBLKSIZE(mp) >= cipherlen);
2257
2258 if (cipherlen > inlen) {
2259 bzero(mp->b_wptr, MBLKTAIL(mp));
2260 }
2261
2262 /*
2263 * Shift the rptr back enough to insert
2264 * the confounder and hash.
2265 */
2266 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2267 mp->b_rptr -= hash->confound_len;
2268 } else {
2269 mp->b_rptr -= (hash->confound_len + hash->hash_len);
2270
2271 /* zero out the hash area */
2272 bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len);
2273 }
2274
2275 /* get random confounder from our friend, the 'random' module */
2276 if (hash->confound_len > 0) {
2277 (void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
2278 (size_t)hash->confound_len);
2279 }
2280
2281 /*
2282 * For 3DES we calculate an HMAC later.
2283 */
2284 if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) {
2285 /* calculate chksum of confounder + input */
2286 if (hash->hash_len > 0 && hash->hashfunc != NULL) {
2287 uchar_t cksum[MAX_CKSUM_LEN];
2288
2289 result = hash->hashfunc(cksum, mp->b_rptr,
2290 cipherlen);
2291 if (result != CRYPTO_SUCCESS) {
2292 goto failure;
2293 }
2294
2295 /* put hash in place right after the confounder */
2296 bcopy(cksum, (mp->b_rptr + hash->confound_len),
2297 (size_t)hash->hash_len);
2298 }
2299 }
2300 /*
2301 * In order to support the "old" Kerberos RCMD protocol,
2302 * we must use the IVEC 3 different ways:
2303 * IVEC_REUSE = keep using the same IV each time, this is
2304 * ugly and insecure, but necessary for
2305 * backwards compatibility with existing MIT code.
2306 * IVEC_ONETIME = Use the ivec as initialized when the crypto
2307 * was setup (see setup_crypto routine).
2308 * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
2309 */
2310 if (tmi->enc_data.ivec_usage == IVEC_NEVER) {
2311 bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
2312 } else if (tmi->enc_data.ivec_usage == IVEC_REUSE) {
2313 bcopy(tmi->enc_data.ivec, tmi->enc_data.block,
2314 tmi->enc_data.blocklen);
2315 }
2316
2317 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2318 /*
2319 * The input length already included the hash size,
2320 * don't include this in the plaintext length
2321 * calculations.
2322 */
2323 plainlen = cipherlen - hash->hash_len;
2324
2325 mp->b_wptr = mp->b_rptr + plainlen;
2326
2327 result = kef_encr_hmac(&tmi->enc_data,
2328 (void *)mp, (size_t)plainlen,
2329 (char *)(mp->b_rptr + plainlen),
2330 hash->hash_len);
2331 } else {
2332 ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp));
2333 mp->b_wptr = mp->b_rptr + cipherlen;
2334 result = kef_crypt(&tmi->enc_data, (void *)mp,
2335 CRYPTO_DATA_MBLK, (size_t)cipherlen,
2336 CRYPT_ENCRYPT);
2337 }
2338 failure:
2339 if (result != CRYPTO_SUCCESS) {
2340 #ifdef DEBUG
2341 cmn_err(CE_WARN,
2342 "des_cbc_encrypt: kef_crypt encrypt "
2343 "failed (len: %ld) - error %0x",
2344 cipherlen, result);
2345 #endif
2346 mp->b_datap->db_type = M_ERROR;
2347 mp->b_rptr = mp->b_datap->db_base;
2348 *mp->b_rptr = EIO;
2349 mp->b_wptr = mp->b_rptr + sizeof (char);
2350 freemsg(mp->b_cont);
2351 mp->b_cont = NULL;
2352 qreply(WR(q), mp);
2353 return (NULL);
2354 } else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) {
2355 /*
2356 * Because we are using KEF, we must manually
2357 * update our IV.
2358 */
2359 bcopy(mp->b_wptr - tmi->enc_data.ivlen,
2360 tmi->enc_data.block, tmi->enc_data.ivlen);
2361 }
2362 if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2363 mp->b_wptr = mp->b_rptr + cipherlen;
2364 }
2365
2366 return (mp);
2367 }
2368
2369 /*
2370 * des_cbc_decrypt
2371 *
2372 *
2373 * Needed to support userland apps that must support Kerberos V5
2374 * encryption DES-CBC decryption modes.
2375 *
2376 * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
2377 *
2378 * format of ciphertext for DES-CBC functions, per RFC1510 is:
2379 * +-----------+----------+-------------+-----+
2380 * |confounder | cksum | msg-data | pad |
2381 * +-----------+----------+-------------+-----+
2382 *
2383 * format of ciphertext when using DES3-SHA1-HMAC
2384 * +-----------+----------+-------------+-----+
2385 * |confounder | msg-data | hmac | pad |
2386 * +-----------+----------+-------------+-----+
2387 *
2388 * The confounder is 8 bytes of random data.
2389 * The cksum depends on the hash being used.
2390 * 4 bytes for CRC32
2391 * 16 bytes for MD5
2392 * 20 bytes for SHA1
2393 * 0 bytes for RAW
2394 *
2395 */
2396 static mblk_t *
des_cbc_decrypt(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,hash_info_t * hash)2397 des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
2398 {
2399 uint_t inlen, datalen;
2400 int result = 0;
2401 uchar_t *optr = NULL;
2402 uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN];
2403 uchar_t nextiv[DEFAULT_DES_BLOCKLEN];
2404
2405 /* Compute adjusted size */
2406 inlen = MBLKL(mp);
2407
2408 optr = mp->b_rptr;
2409
2410 /*
2411 * In order to support the "old" Kerberos RCMD protocol,
2412 * we must use the IVEC 3 different ways:
2413 * IVEC_REUSE = keep using the same IV each time, this is
2414 * ugly and insecure, but necessary for
2415 * backwards compatibility with existing MIT code.
2416 * IVEC_ONETIME = Use the ivec as initialized when the crypto
2417 * was setup (see setup_crypto routine).
2418 * IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
2419 */
2420 if (tmi->dec_data.ivec_usage == IVEC_NEVER)
2421 bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
2422 else if (tmi->dec_data.ivec_usage == IVEC_REUSE)
2423 bcopy(tmi->dec_data.ivec, tmi->dec_data.block,
2424 tmi->dec_data.blocklen);
2425
2426 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2427 /*
2428 * Do not decrypt the HMAC at the end
2429 */
2430 int decrypt_len = inlen - hash->hash_len;
2431
2432 /*
2433 * Move the wptr so the mblk appears to end
2434 * BEFORE the HMAC section.
2435 */
2436 mp->b_wptr = mp->b_rptr + decrypt_len;
2437
2438 /*
2439 * Because we are using KEF, we must manually update our
2440 * IV.
2441 */
2442 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2443 bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen,
2444 nextiv, tmi->dec_data.ivlen);
2445 }
2446
2447 result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len,
2448 (char *)newcksum, hash->hash_len);
2449 } else {
2450 /*
2451 * Because we are using KEF, we must manually update our
2452 * IV.
2453 */
2454 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2455 bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv,
2456 tmi->dec_data.ivlen);
2457 }
2458 result = kef_crypt(&tmi->dec_data, (void *)mp,
2459 CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT);
2460 }
2461 if (result != CRYPTO_SUCCESS) {
2462 #ifdef DEBUG
2463 cmn_err(CE_WARN,
2464 "des_cbc_decrypt: kef_crypt decrypt "
2465 "failed - error %0x", result);
2466 #endif
2467 mp->b_datap->db_type = M_ERROR;
2468 mp->b_rptr = mp->b_datap->db_base;
2469 *mp->b_rptr = EIO;
2470 mp->b_wptr = mp->b_rptr + sizeof (char);
2471 freemsg(mp->b_cont);
2472 mp->b_cont = NULL;
2473 qreply(WR(q), mp);
2474 return (NULL);
2475 }
2476
2477 /*
2478 * Manually update the IV, KEF does not track this for us.
2479 */
2480 if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2481 bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen);
2482 }
2483
2484 /* Verify the checksum(if necessary) */
2485 if (hash->hash_len > 0) {
2486 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2487 bcopy(mp->b_rptr + inlen - hash->hash_len, cksum,
2488 hash->hash_len);
2489 } else {
2490 bcopy(optr + hash->confound_len, cksum, hash->hash_len);
2491
2492 /* zero the cksum in the buffer */
2493 ASSERT(optr + hash->confound_len + hash->hash_len <=
2494 DB_LIM(mp));
2495 bzero(optr + hash->confound_len, hash->hash_len);
2496
2497 /* calculate MD5 chksum of confounder + input */
2498 if (hash->hashfunc) {
2499 (void) hash->hashfunc(newcksum, optr, inlen);
2500 }
2501 }
2502
2503 if (bcmp(cksum, newcksum, hash->hash_len)) {
2504 #ifdef DEBUG
2505 cmn_err(CE_WARN, "des_cbc_decrypt: checksum "
2506 "verification failed");
2507 #endif
2508 mp->b_datap->db_type = M_ERROR;
2509 mp->b_rptr = mp->b_datap->db_base;
2510 *mp->b_rptr = EIO;
2511 mp->b_wptr = mp->b_rptr + sizeof (char);
2512 freemsg(mp->b_cont);
2513 mp->b_cont = NULL;
2514 qreply(WR(q), mp);
2515 return (NULL);
2516 }
2517 }
2518
2519 datalen = inlen - hash->confound_len - hash->hash_len;
2520
2521 /* Move just the decrypted input into place if necessary */
2522 if (hash->confound_len > 0 || hash->hash_len > 0) {
2523 if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1)
2524 mp->b_rptr += hash->confound_len;
2525 else
2526 mp->b_rptr += hash->confound_len + hash->hash_len;
2527 }
2528
2529 ASSERT(mp->b_rptr + datalen <= DB_LIM(mp));
2530 mp->b_wptr = mp->b_rptr + datalen;
2531
2532 return (mp);
2533 }
2534
2535 static mblk_t *
do_decrypt(queue_t * q,mblk_t * mp)2536 do_decrypt(queue_t *q, mblk_t *mp)
2537 {
2538 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
2539 mblk_t *outmp;
2540
2541 switch (tmi->dec_data.method) {
2542 case CRYPT_METHOD_DES_CFB:
2543 outmp = des_cfb_decrypt(q, tmi, mp);
2544 break;
2545 case CRYPT_METHOD_NONE:
2546 outmp = mp;
2547 break;
2548 case CRYPT_METHOD_DES_CBC_NULL:
2549 outmp = des_cbc_decrypt(q, tmi, mp, &null_hash);
2550 break;
2551 case CRYPT_METHOD_DES_CBC_MD5:
2552 outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash);
2553 break;
2554 case CRYPT_METHOD_DES_CBC_CRC:
2555 outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash);
2556 break;
2557 case CRYPT_METHOD_DES3_CBC_SHA1:
2558 outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash);
2559 break;
2560 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2561 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2562 outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash);
2563 break;
2564 case CRYPT_METHOD_AES128:
2565 case CRYPT_METHOD_AES256:
2566 outmp = aes_decrypt(q, tmi, mp, &sha1_hash);
2567 break;
2568 }
2569 return (outmp);
2570 }
2571
2572 /*
2573 * do_encrypt
2574 *
2575 * Generic encryption routine for a single message block.
2576 * The input mblk may be replaced by some encrypt routines
2577 * because they add extra data in some cases that may exceed
2578 * the input mblk_t size limit.
2579 */
2580 static mblk_t *
do_encrypt(queue_t * q,mblk_t * mp)2581 do_encrypt(queue_t *q, mblk_t *mp)
2582 {
2583 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
2584 mblk_t *outmp;
2585
2586 switch (tmi->enc_data.method) {
2587 case CRYPT_METHOD_DES_CFB:
2588 outmp = des_cfb_encrypt(q, tmi, mp);
2589 break;
2590 case CRYPT_METHOD_DES_CBC_NULL:
2591 outmp = des_cbc_encrypt(q, tmi, mp, &null_hash);
2592 break;
2593 case CRYPT_METHOD_DES_CBC_MD5:
2594 outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash);
2595 break;
2596 case CRYPT_METHOD_DES_CBC_CRC:
2597 outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash);
2598 break;
2599 case CRYPT_METHOD_DES3_CBC_SHA1:
2600 outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash);
2601 break;
2602 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2603 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2604 outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash);
2605 break;
2606 case CRYPT_METHOD_AES128:
2607 case CRYPT_METHOD_AES256:
2608 outmp = aes_encrypt(q, tmi, mp, &sha1_hash);
2609 break;
2610 case CRYPT_METHOD_NONE:
2611 outmp = mp;
2612 break;
2613 }
2614 return (outmp);
2615 }
2616
2617 /*
2618 * setup_crypto
2619 *
2620 * This takes the data from the CRYPTIOCSETUP ioctl
2621 * and sets up a cipher_data_t structure for either
2622 * encryption or decryption. This is where the
2623 * key and initialization vector data get stored
2624 * prior to beginning any crypto functions.
2625 *
2626 * Special note:
2627 * Some applications(e.g. telnetd) have ability to switch
2628 * crypto on/off periodically. Thus, the application may call
2629 * the CRYPTIOCSETUP ioctl many times for the same stream.
2630 * If the CRYPTIOCSETUP is called with 0 length key or ivec fields
2631 * assume that the key, block, and saveblock fields that are already
2632 * set from a previous CRIOCSETUP call are still valid. This helps avoid
2633 * a rekeying error that could occur if we overwrite these fields
2634 * with each CRYPTIOCSETUP call.
2635 * In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off
2636 * without resetting the original crypto parameters.
2637 *
2638 */
2639 static int
setup_crypto(struct cr_info_t * ci,struct cipher_data_t * cd,int encrypt)2640 setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt)
2641 {
2642 uint_t newblocklen;
2643 uint32_t enc_usage = 0, dec_usage = 0;
2644 int rv;
2645
2646 /*
2647 * Initial sanity checks
2648 */
2649 if (!CR_METHOD_OK(ci->crypto_method)) {
2650 cmn_err(CE_WARN, "Illegal crypto method (%d)",
2651 ci->crypto_method);
2652 return (EINVAL);
2653 }
2654 if (!CR_OPTIONS_OK(ci->option_mask)) {
2655 cmn_err(CE_WARN, "Illegal crypto options (%d)",
2656 ci->option_mask);
2657 return (EINVAL);
2658 }
2659 if (!CR_IVUSAGE_OK(ci->ivec_usage)) {
2660 cmn_err(CE_WARN, "Illegal ivec usage value (%d)",
2661 ci->ivec_usage);
2662 return (EINVAL);
2663 }
2664
2665 cd->method = ci->crypto_method;
2666 cd->bytes = 0;
2667
2668 if (ci->keylen > 0) {
2669 if (cd->key != NULL) {
2670 kmem_free(cd->key, cd->keylen);
2671 cd->key = NULL;
2672 cd->keylen = 0;
2673 }
2674 /*
2675 * cd->key holds the copy of the raw key bytes passed in
2676 * from the userland app.
2677 */
2678 cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP);
2679
2680 cd->keylen = ci->keylen;
2681 bcopy(ci->key, cd->key, (size_t)ci->keylen);
2682 }
2683
2684 /*
2685 * Configure the block size based on the type of cipher.
2686 */
2687 switch (cd->method) {
2688 case CRYPT_METHOD_NONE:
2689 newblocklen = 0;
2690 break;
2691 case CRYPT_METHOD_DES_CFB:
2692 newblocklen = DEFAULT_DES_BLOCKLEN;
2693 cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB);
2694 break;
2695 case CRYPT_METHOD_DES_CBC_NULL:
2696 case CRYPT_METHOD_DES_CBC_MD5:
2697 case CRYPT_METHOD_DES_CBC_CRC:
2698 newblocklen = DEFAULT_DES_BLOCKLEN;
2699 cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC);
2700 break;
2701 case CRYPT_METHOD_DES3_CBC_SHA1:
2702 newblocklen = DEFAULT_DES_BLOCKLEN;
2703 cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC);
2704 /* 3DES always uses the old usage constant */
2705 enc_usage = RCMDV1_USAGE;
2706 dec_usage = RCMDV1_USAGE;
2707 break;
2708 case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2709 case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2710 newblocklen = 0;
2711 cd->mech_type = crypto_mech2id(SUN_CKM_RC4);
2712 break;
2713 case CRYPT_METHOD_AES128:
2714 case CRYPT_METHOD_AES256:
2715 newblocklen = DEFAULT_AES_BLOCKLEN;
2716 cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB);
2717 enc_usage = AES_ENCRYPT_USAGE;
2718 dec_usage = AES_DECRYPT_USAGE;
2719 break;
2720 }
2721 if (cd->mech_type == CRYPTO_MECH_INVALID) {
2722 return (CRYPTO_FAILED);
2723 }
2724
2725 /*
2726 * If RC4, initialize the master crypto key used by
2727 * the RC4 algorithm to derive the final encrypt and decrypt keys.
2728 */
2729 if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) {
2730 /*
2731 * cd->ckey is a kernel crypto key structure used as the
2732 * master key in the RC4-HMAC crypto operations.
2733 */
2734 if (cd->ckey == NULL) {
2735 cd->ckey = (crypto_key_t *)kmem_zalloc(
2736 sizeof (crypto_key_t), KM_SLEEP);
2737 }
2738
2739 cd->ckey->ck_format = CRYPTO_KEY_RAW;
2740 cd->ckey->ck_data = cd->key;
2741
2742 /* key length for EF is measured in bits */
2743 cd->ckey->ck_length = cd->keylen * 8;
2744 }
2745
2746 /*
2747 * cd->block and cd->saveblock are used as temporary storage for
2748 * data that must be carried over between encrypt/decrypt operations
2749 * in some of the "feedback" modes.
2750 */
2751 if (newblocklen != cd->blocklen) {
2752 if (cd->block != NULL) {
2753 kmem_free(cd->block, cd->blocklen);
2754 cd->block = NULL;
2755 }
2756
2757 if (cd->saveblock != NULL) {
2758 kmem_free(cd->saveblock, cd->blocklen);
2759 cd->saveblock = NULL;
2760 }
2761
2762 cd->blocklen = newblocklen;
2763 if (cd->blocklen) {
2764 cd->block = (char *)kmem_zalloc((size_t)cd->blocklen,
2765 KM_SLEEP);
2766 }
2767
2768 if (cd->method == CRYPT_METHOD_DES_CFB)
2769 cd->saveblock = (char *)kmem_zalloc(cd->blocklen,
2770 KM_SLEEP);
2771 else
2772 cd->saveblock = NULL;
2773 }
2774
2775 if (ci->iveclen != cd->ivlen) {
2776 if (cd->ivec != NULL) {
2777 kmem_free(cd->ivec, cd->ivlen);
2778 cd->ivec = NULL;
2779 }
2780 if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) {
2781 cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen,
2782 KM_SLEEP);
2783 cd->ivlen = ci->iveclen;
2784 } else {
2785 cd->ivlen = 0;
2786 cd->ivec = NULL;
2787 }
2788 }
2789 cd->option_mask = ci->option_mask;
2790
2791 /*
2792 * Old protocol requires a static 'usage' value for
2793 * deriving keys. Yuk.
2794 */
2795 if (cd->option_mask & CRYPTOPT_RCMD_MODE_V1) {
2796 enc_usage = dec_usage = RCMDV1_USAGE;
2797 }
2798
2799 if (cd->ivlen > cd->blocklen) {
2800 cmn_err(CE_WARN, "setup_crypto: IV longer than block size");
2801 return (EINVAL);
2802 }
2803
2804 /*
2805 * If we are using an IVEC "correctly" (i.e. set it once)
2806 * copy it here.
2807 */
2808 if (ci->ivec_usage == IVEC_ONETIME && cd->block != NULL)
2809 bcopy(ci->ivec, cd->block, (size_t)cd->ivlen);
2810
2811 cd->ivec_usage = ci->ivec_usage;
2812 if (cd->ivec != NULL) {
2813 /* Save the original IVEC in case we need it later */
2814 bcopy(ci->ivec, cd->ivec, (size_t)cd->ivlen);
2815 }
2816 /*
2817 * Special handling for 3DES-SHA1-HMAC and AES crypto:
2818 * generate derived keys and context templates
2819 * for better performance.
2820 */
2821 if (cd->method == CRYPT_METHOD_DES3_CBC_SHA1 ||
2822 IS_AES_METHOD(cd->method)) {
2823 crypto_mechanism_t enc_mech;
2824 crypto_mechanism_t hmac_mech;
2825
2826 if (cd->d_encr_key.ck_data != NULL) {
2827 bzero(cd->d_encr_key.ck_data, cd->keylen);
2828 kmem_free(cd->d_encr_key.ck_data, cd->keylen);
2829 }
2830
2831 if (cd->d_hmac_key.ck_data != NULL) {
2832 bzero(cd->d_hmac_key.ck_data, cd->keylen);
2833 kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
2834 }
2835
2836 if (cd->enc_tmpl != NULL)
2837 (void) crypto_destroy_ctx_template(cd->enc_tmpl);
2838
2839 if (cd->hmac_tmpl != NULL)
2840 (void) crypto_destroy_ctx_template(cd->hmac_tmpl);
2841
2842 enc_mech.cm_type = cd->mech_type;
2843 enc_mech.cm_param = cd->ivec;
2844 enc_mech.cm_param_len = cd->ivlen;
2845
2846 hmac_mech.cm_type = sha1_hmac_mech;
2847 hmac_mech.cm_param = NULL;
2848 hmac_mech.cm_param_len = 0;
2849
2850 /*
2851 * Create the derived keys.
2852 */
2853 rv = create_derived_keys(cd,
2854 (encrypt ? enc_usage : dec_usage),
2855 &cd->d_encr_key, &cd->d_hmac_key);
2856
2857 if (rv != CRYPTO_SUCCESS) {
2858 cmn_err(CE_WARN, "failed to create derived "
2859 "keys: %0x", rv);
2860 return (CRYPTO_FAILED);
2861 }
2862
2863 rv = crypto_create_ctx_template(&enc_mech,
2864 &cd->d_encr_key,
2865 &cd->enc_tmpl, KM_SLEEP);
2866 if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
2867 cd->enc_tmpl = NULL;
2868 } else if (rv != CRYPTO_SUCCESS) {
2869 cmn_err(CE_WARN, "failed to create enc template "
2870 "for d_encr_key: %0x", rv);
2871 return (CRYPTO_FAILED);
2872 }
2873
2874 rv = crypto_create_ctx_template(&hmac_mech,
2875 &cd->d_hmac_key,
2876 &cd->hmac_tmpl, KM_SLEEP);
2877 if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
2878 cd->hmac_tmpl = NULL;
2879 } else if (rv != CRYPTO_SUCCESS) {
2880 cmn_err(CE_WARN, "failed to create hmac template:"
2881 " %0x", rv);
2882 return (CRYPTO_FAILED);
2883 }
2884 } else if (IS_RC4_METHOD(cd->method)) {
2885 bzero(&cd->d_encr_key, sizeof (crypto_key_t));
2886 bzero(&cd->d_hmac_key, sizeof (crypto_key_t));
2887 cd->ctx = NULL;
2888 cd->enc_tmpl = NULL;
2889 cd->hmac_tmpl = NULL;
2890 }
2891
2892 /* Final sanity checks, make sure no fields are NULL */
2893 if (cd->method != CRYPT_METHOD_NONE) {
2894 if (cd->block == NULL && cd->blocklen > 0) {
2895 #ifdef DEBUG
2896 cmn_err(CE_WARN,
2897 "setup_crypto: IV block not allocated");
2898 #endif
2899 return (ENOMEM);
2900 }
2901 if (cd->key == NULL && cd->keylen > 0) {
2902 #ifdef DEBUG
2903 cmn_err(CE_WARN,
2904 "setup_crypto: key block not allocated");
2905 #endif
2906 return (ENOMEM);
2907 }
2908 if (cd->method == CRYPT_METHOD_DES_CFB &&
2909 cd->saveblock == NULL && cd->blocklen > 0) {
2910 #ifdef DEBUG
2911 cmn_err(CE_WARN,
2912 "setup_crypto: save block not allocated");
2913 #endif
2914 return (ENOMEM);
2915 }
2916 if (cd->ivec == NULL && cd->ivlen > 0) {
2917 #ifdef DEBUG
2918 cmn_err(CE_WARN,
2919 "setup_crypto: IV not allocated");
2920 #endif
2921 return (ENOMEM);
2922 }
2923 }
2924 return (0);
2925 }
2926
2927 /*
2928 * RCMDS require a 4 byte, clear text
2929 * length field before each message.
2930 * Add it now.
2931 */
2932 static mblk_t *
mklenmp(mblk_t * bp,uint32_t len)2933 mklenmp(mblk_t *bp, uint32_t len)
2934 {
2935 mblk_t *lenmp;
2936 uchar_t *ucp;
2937
2938 if (bp->b_rptr - 4 < DB_BASE(bp) || DB_REF(bp) > 1) {
2939 lenmp = allocb(4, BPRI_MED);
2940 if (lenmp != NULL) {
2941 lenmp->b_rptr = lenmp->b_wptr = DB_LIM(lenmp);
2942 linkb(lenmp, bp);
2943 bp = lenmp;
2944 }
2945 }
2946 ucp = bp->b_rptr;
2947 *--ucp = len;
2948 *--ucp = len >> 8;
2949 *--ucp = len >> 16;
2950 *--ucp = len >> 24;
2951
2952 bp->b_rptr = ucp;
2953
2954 return (bp);
2955 }
2956
2957 static mblk_t *
encrypt_block(queue_t * q,struct tmodinfo * tmi,mblk_t * mp,size_t plainlen)2958 encrypt_block(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, size_t plainlen)
2959 {
2960 mblk_t *newmp;
2961 size_t headspace;
2962
2963 mblk_t *cbp;
2964 size_t cipherlen;
2965 size_t extra = 0;
2966 uint32_t ptlen = (uint32_t)plainlen;
2967 /*
2968 * If we are using the "NEW" RCMD mode,
2969 * add 4 bytes to the plaintext for the
2970 * plaintext length that gets prepended
2971 * before encrypting.
2972 */
2973 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
2974 ptlen += 4;
2975
2976 cipherlen = encrypt_size(&tmi->enc_data, (size_t)ptlen);
2977
2978 /*
2979 * if we must allocb, then make sure its enough
2980 * to hold the length field so we dont have to allocb
2981 * again down below in 'mklenmp'
2982 */
2983 if (ANY_RCMD_MODE(tmi->enc_data.option_mask)) {
2984 extra = sizeof (uint32_t);
2985 }
2986
2987 /*
2988 * Calculate how much space is needed in front of
2989 * the data.
2990 */
2991 headspace = plaintext_offset(&tmi->enc_data);
2992
2993 /*
2994 * If the current block is too small, reallocate
2995 * one large enough to hold the hdr, tail, and
2996 * ciphertext.
2997 */
2998 if ((cipherlen + extra >= MBLKSIZE(mp)) || DB_REF(mp) > 1) {
2999 int sz = P2ROUNDUP(cipherlen+extra, 8);
3000
3001 cbp = allocb_tmpl(sz, mp);
3002 if (cbp == NULL) {
3003 cmn_err(CE_WARN,
3004 "allocb (%d bytes) failed", sz);
3005 return (NULL);
3006 }
3007
3008 cbp->b_cont = mp->b_cont;
3009
3010 /*
3011 * headspace includes the length fields needed
3012 * for the RCMD modes (v1 == 4 bytes, V2 = 8)
3013 */
3014 ASSERT(cbp->b_rptr + P2ROUNDUP(plainlen+headspace, 8)
3015 <= DB_LIM(cbp));
3016
3017 cbp->b_rptr = DB_BASE(cbp) + headspace;
3018 bcopy(mp->b_rptr, cbp->b_rptr, plainlen);
3019 cbp->b_wptr = cbp->b_rptr + plainlen;
3020
3021 freeb(mp);
3022 } else {
3023 size_t extra = 0;
3024 cbp = mp;
3025
3026 /*
3027 * Some ciphers add HMAC after the final block
3028 * of the ciphertext, not at the beginning like the
3029 * 1-DES ciphers.
3030 */
3031 if (tmi->enc_data.method ==
3032 CRYPT_METHOD_DES3_CBC_SHA1 ||
3033 IS_AES_METHOD(tmi->enc_data.method)) {
3034 extra = sha1_hash.hash_len;
3035 }
3036
3037 /*
3038 * Make sure the rptr is positioned correctly so that
3039 * routines later do not have to shift this data around
3040 */
3041 if ((cbp->b_rptr + P2ROUNDUP(cipherlen + extra, 8) >
3042 DB_LIM(cbp)) ||
3043 (cbp->b_rptr - headspace < DB_BASE(cbp))) {
3044 ovbcopy(cbp->b_rptr, DB_BASE(cbp) + headspace,
3045 plainlen);
3046 cbp->b_rptr = DB_BASE(cbp) + headspace;
3047 cbp->b_wptr = cbp->b_rptr + plainlen;
3048 }
3049 }
3050
3051 ASSERT(cbp->b_rptr - headspace >= DB_BASE(cbp));
3052 ASSERT(cbp->b_wptr <= DB_LIM(cbp));
3053
3054 /*
3055 * If using RCMD_MODE_V2 (new rcmd mode), prepend
3056 * the plaintext length before the actual plaintext.
3057 */
3058 if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) {
3059 cbp->b_rptr -= RCMD_LEN_SZ;
3060
3061 /* put plaintext length at head of buffer */
3062 *(cbp->b_rptr + 3) = (uchar_t)(plainlen & 0xff);
3063 *(cbp->b_rptr + 2) = (uchar_t)((plainlen >> 8) & 0xff);
3064 *(cbp->b_rptr + 1) = (uchar_t)((plainlen >> 16) & 0xff);
3065 *(cbp->b_rptr) = (uchar_t)((plainlen >> 24) & 0xff);
3066 }
3067
3068 newmp = do_encrypt(q, cbp);
3069
3070 if (newmp != NULL &&
3071 (tmi->enc_data.option_mask &
3072 (CRYPTOPT_RCMD_MODE_V1 | CRYPTOPT_RCMD_MODE_V2))) {
3073 mblk_t *lp;
3074 /*
3075 * Add length field, required when this is
3076 * used to encrypt "r*" commands(rlogin, rsh)
3077 * with Kerberos.
3078 */
3079 lp = mklenmp(newmp, plainlen);
3080
3081 if (lp == NULL) {
3082 freeb(newmp);
3083 return (NULL);
3084 } else {
3085 newmp = lp;
3086 }
3087 }
3088 return (newmp);
3089 }
3090
3091 /*
3092 * encrypt_msgb
3093 *
3094 * encrypt a single message. This routine adds the
3095 * RCMD overhead bytes when necessary.
3096 */
3097 static mblk_t *
encrypt_msgb(queue_t * q,struct tmodinfo * tmi,mblk_t * mp)3098 encrypt_msgb(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
3099 {
3100 size_t plainlen, outlen;
3101 mblk_t *newmp = NULL;
3102
3103 /* If not encrypting, do nothing */
3104 if (tmi->enc_data.method == CRYPT_METHOD_NONE) {
3105 return (mp);
3106 }
3107
3108 plainlen = MBLKL(mp);
3109 if (plainlen == 0)
3110 return (NULL);
3111
3112 /*
3113 * If the block is too big, we encrypt in 4K chunks so that
3114 * older rlogin clients do not choke on the larger buffers.
3115 */
3116 while ((plainlen = MBLKL(mp)) > MSGBUF_SIZE) {
3117 mblk_t *mp1 = NULL;
3118 outlen = MSGBUF_SIZE;
3119 /*
3120 * Allocate a new buffer that is only 4K bytes, the
3121 * extra bytes are for crypto overhead.
3122 */
3123 mp1 = allocb(outlen + CONFOUNDER_BYTES, BPRI_MED);
3124 if (mp1 == NULL) {
3125 cmn_err(CE_WARN,
3126 "allocb (%d bytes) failed",
3127 (int)(outlen + CONFOUNDER_BYTES));
3128 return (NULL);
3129 }
3130 /* Copy the next 4K bytes from the old block. */
3131 bcopy(mp->b_rptr, mp1->b_rptr, outlen);
3132 mp1->b_wptr = mp1->b_rptr + outlen;
3133 /* Advance the old block. */
3134 mp->b_rptr += outlen;
3135
3136 /* encrypt the new block */
3137 newmp = encrypt_block(q, tmi, mp1, outlen);
3138 if (newmp == NULL)
3139 return (NULL);
3140
3141 putnext(q, newmp);
3142 }
3143 newmp = NULL;
3144 /* If there is data left (< MSGBUF_SIZE), encrypt it. */
3145 if ((plainlen = MBLKL(mp)) > 0)
3146 newmp = encrypt_block(q, tmi, mp, plainlen);
3147
3148 return (newmp);
3149 }
3150
3151 /*
3152 * cryptmodwsrv
3153 *
3154 * Service routine for the write queue.
3155 *
3156 * Because data may be placed in the queue to hold between
3157 * the CRYPTIOCSTOP and CRYPTIOCSTART ioctls, the service routine is needed.
3158 */
3159 static int
cryptmodwsrv(queue_t * q)3160 cryptmodwsrv(queue_t *q)
3161 {
3162 mblk_t *mp;
3163 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3164
3165 while ((mp = getq(q)) != NULL) {
3166 switch (mp->b_datap->db_type) {
3167 default:
3168 /*
3169 * wput does not queue anything > QPCTL
3170 */
3171 if (!canputnext(q) ||
3172 !(tmi->ready & CRYPT_WRITE_READY)) {
3173 if (!putbq(q, mp)) {
3174 freemsg(mp);
3175 }
3176 return (0);
3177 }
3178 putnext(q, mp);
3179 break;
3180 case M_DATA:
3181 if (canputnext(q) && (tmi->ready & CRYPT_WRITE_READY)) {
3182 mblk_t *bp;
3183 mblk_t *newmsg = NULL;
3184
3185 /*
3186 * If multiple msgs, concat into 1
3187 * to minimize crypto operations later.
3188 */
3189 if (mp->b_cont != NULL) {
3190 bp = msgpullup(mp, -1);
3191 if (bp != NULL) {
3192 freemsg(mp);
3193 mp = bp;
3194 }
3195 }
3196 newmsg = encrypt_msgb(q, tmi, mp);
3197 if (newmsg != NULL)
3198 putnext(q, newmsg);
3199 } else {
3200 if (!putbq(q, mp)) {
3201 freemsg(mp);
3202 }
3203 return (0);
3204 }
3205 break;
3206 }
3207 }
3208 return (0);
3209 }
3210
3211 static void
start_stream(queue_t * wq,mblk_t * mp,uchar_t dir)3212 start_stream(queue_t *wq, mblk_t *mp, uchar_t dir)
3213 {
3214 mblk_t *newmp = NULL;
3215 struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
3216
3217 if (dir == CRYPT_ENCRYPT) {
3218 tmi->ready |= CRYPT_WRITE_READY;
3219 (void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
3220 "start_stream: restart ENCRYPT/WRITE q"));
3221
3222 enableok(wq);
3223 qenable(wq);
3224 } else if (dir == CRYPT_DECRYPT) {
3225 /*
3226 * put any extra data in the RD
3227 * queue to be processed and
3228 * sent back up.
3229 */
3230 newmp = mp->b_cont;
3231 mp->b_cont = NULL;
3232
3233 tmi->ready |= CRYPT_READ_READY;
3234 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3235 SL_TRACE|SL_NOTE,
3236 "start_stream: restart "
3237 "DECRYPT/READ q"));
3238
3239 if (newmp != NULL)
3240 if (!putbq(RD(wq), newmp))
3241 freemsg(newmp);
3242
3243 enableok(RD(wq));
3244 qenable(RD(wq));
3245 }
3246
3247 miocack(wq, mp, 0, 0);
3248 }
3249
3250 /*
3251 * Write-side put procedure. Its main task is to detect ioctls and
3252 * FLUSH operations. Other message types are passed on through.
3253 */
3254 static void
cryptmodwput(queue_t * wq,mblk_t * mp)3255 cryptmodwput(queue_t *wq, mblk_t *mp)
3256 {
3257 struct iocblk *iocp;
3258 struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
3259 int ret, err;
3260
3261 switch (mp->b_datap->db_type) {
3262 case M_DATA:
3263 if (wq->q_first == NULL && canputnext(wq) &&
3264 (tmi->ready & CRYPT_WRITE_READY) &&
3265 tmi->enc_data.method == CRYPT_METHOD_NONE) {
3266 putnext(wq, mp);
3267 return;
3268 }
3269 /* else, put it in the service queue */
3270 if (!putq(wq, mp)) {
3271 freemsg(mp);
3272 }
3273 break;
3274 case M_FLUSH:
3275 if (*mp->b_rptr & FLUSHW) {
3276 flushq(wq, FLUSHDATA);
3277 }
3278 putnext(wq, mp);
3279 break;
3280 case M_IOCTL:
3281 iocp = (struct iocblk *)mp->b_rptr;
3282 switch (iocp->ioc_cmd) {
3283 case CRYPTIOCSETUP:
3284 ret = 0;
3285 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3286 SL_TRACE | SL_NOTE,
3287 "wput: got CRYPTIOCSETUP "
3288 "ioctl(%d)", iocp->ioc_cmd));
3289
3290 if ((err = miocpullup(mp,
3291 sizeof (struct cr_info_t))) != 0) {
3292 cmn_err(CE_WARN,
3293 "wput: miocpullup failed for cr_info_t");
3294 miocnak(wq, mp, 0, err);
3295 } else {
3296 struct cr_info_t *ci;
3297 ci = (struct cr_info_t *)mp->b_cont->b_rptr;
3298
3299 if (ci->direction_mask & CRYPT_ENCRYPT) {
3300 ret = setup_crypto(ci, &tmi->enc_data, 1);
3301 }
3302
3303 if (ret == 0 &&
3304 (ci->direction_mask & CRYPT_DECRYPT)) {
3305 ret = setup_crypto(ci, &tmi->dec_data, 0);
3306 }
3307 if (ret == 0 &&
3308 (ci->direction_mask & CRYPT_DECRYPT) &&
3309 ANY_RCMD_MODE(tmi->dec_data.option_mask)) {
3310 bzero(&tmi->rcmd_state,
3311 sizeof (tmi->rcmd_state));
3312 }
3313 if (ret == 0) {
3314 miocack(wq, mp, 0, 0);
3315 } else {
3316 cmn_err(CE_WARN,
3317 "wput: setup_crypto failed");
3318 miocnak(wq, mp, 0, ret);
3319 }
3320 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3321 SL_TRACE|SL_NOTE,
3322 "wput: done with SETUP "
3323 "ioctl"));
3324 }
3325 break;
3326 case CRYPTIOCSTOP:
3327 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3328 SL_TRACE|SL_NOTE,
3329 "wput: got CRYPTIOCSTOP "
3330 "ioctl(%d)", iocp->ioc_cmd));
3331
3332 if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) {
3333 cmn_err(CE_WARN,
3334 "wput: CRYPTIOCSTOP ioctl wrong "
3335 "size (%d should be %d)",
3336 (int)iocp->ioc_count,
3337 (int)sizeof (uint32_t));
3338 miocnak(wq, mp, 0, err);
3339 } else {
3340 uint32_t *stopdir;
3341
3342 stopdir = (uint32_t *)mp->b_cont->b_rptr;
3343 if (!CR_DIRECTION_OK(*stopdir)) {
3344 miocnak(wq, mp, 0, EINVAL);
3345 return;
3346 }
3347
3348 /* disable the queues until further notice */
3349 if (*stopdir & CRYPT_ENCRYPT) {
3350 noenable(wq);
3351 tmi->ready &= ~CRYPT_WRITE_READY;
3352 }
3353 if (*stopdir & CRYPT_DECRYPT) {
3354 noenable(RD(wq));
3355 tmi->ready &= ~CRYPT_READ_READY;
3356 }
3357
3358 miocack(wq, mp, 0, 0);
3359 }
3360 break;
3361 case CRYPTIOCSTARTDEC:
3362 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3363 SL_TRACE|SL_NOTE,
3364 "wput: got CRYPTIOCSTARTDEC "
3365 "ioctl(%d)", iocp->ioc_cmd));
3366
3367 start_stream(wq, mp, CRYPT_DECRYPT);
3368 break;
3369 case CRYPTIOCSTARTENC:
3370 (void) (STRLOG(CRYPTMOD_ID, 0, 5,
3371 SL_TRACE|SL_NOTE,
3372 "wput: got CRYPTIOCSTARTENC "
3373 "ioctl(%d)", iocp->ioc_cmd));
3374
3375 start_stream(wq, mp, CRYPT_ENCRYPT);
3376 break;
3377 default:
3378 putnext(wq, mp);
3379 break;
3380 }
3381 break;
3382 default:
3383 if (queclass(mp) < QPCTL) {
3384 if (wq->q_first != NULL || !canputnext(wq)) {
3385 if (!putq(wq, mp))
3386 freemsg(mp);
3387 return;
3388 }
3389 }
3390 putnext(wq, mp);
3391 break;
3392 }
3393 }
3394
3395 /*
3396 * decrypt_rcmd_mblks
3397 *
3398 * Because kerberized r* commands(rsh, rlogin, etc)
3399 * use a 4 byte length field to indicate the # of
3400 * PLAINTEXT bytes that are encrypted in the field
3401 * that follows, we must parse out each message and
3402 * break out the length fields prior to sending them
3403 * upstream to our Solaris r* clients/servers which do
3404 * NOT understand this format.
3405 *
3406 * Kerberized/encrypted message format:
3407 * -------------------------------
3408 * | XXXX | N bytes of ciphertext|
3409 * -------------------------------
3410 *
3411 * Where: XXXX = number of plaintext bytes that were encrypted in
3412 * to make the ciphertext field. This is done
3413 * because we are using a cipher that pads out to
3414 * an 8 byte boundary. We only want the application
3415 * layer to see the correct number of plain text bytes,
3416 * not plaintext + pad. So, after we decrypt, we
3417 * must trim the output block down to the intended
3418 * plaintext length and eliminate the pad bytes.
3419 *
3420 * This routine takes the entire input message, breaks it into
3421 * a new message that does not contain these length fields and
3422 * returns a message consisting of mblks filled with just ciphertext.
3423 *
3424 */
3425 static mblk_t *
decrypt_rcmd_mblks(queue_t * q,mblk_t * mp)3426 decrypt_rcmd_mblks(queue_t *q, mblk_t *mp)
3427 {
3428 mblk_t *newmp = NULL;
3429 size_t msglen;
3430 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3431
3432 msglen = msgsize(mp);
3433
3434 /*
3435 * If we need the length field, get it here.
3436 * Test the "plaintext length" indicator.
3437 */
3438 if (tmi->rcmd_state.pt_len == 0) {
3439 uint32_t elen;
3440 int tocopy;
3441 mblk_t *nextp;
3442
3443 /*
3444 * Make sure we have recieved all 4 bytes of the
3445 * length field.
3446 */
3447 while (mp != NULL) {
3448 ASSERT(tmi->rcmd_state.cd_len < sizeof (uint32_t));
3449
3450 tocopy = sizeof (uint32_t) -
3451 tmi->rcmd_state.cd_len;
3452 if (tocopy > msglen)
3453 tocopy = msglen;
3454
3455 ASSERT(mp->b_rptr + tocopy <= DB_LIM(mp));
3456 bcopy(mp->b_rptr,
3457 (char *)(&tmi->rcmd_state.next_len +
3458 tmi->rcmd_state.cd_len), tocopy);
3459
3460 tmi->rcmd_state.cd_len += tocopy;
3461
3462 if (tmi->rcmd_state.cd_len >= sizeof (uint32_t)) {
3463 tmi->rcmd_state.next_len =
3464 ntohl(tmi->rcmd_state.next_len);
3465 break;
3466 }
3467
3468 nextp = mp->b_cont;
3469 mp->b_cont = NULL;
3470 freeb(mp);
3471 mp = nextp;
3472 }
3473
3474 if (mp == NULL) {
3475 return (NULL);
3476 }
3477 /*
3478 * recalculate the msglen now that we've read the
3479 * length and adjusted the bufptr (b_rptr).
3480 */
3481 msglen -= tocopy;
3482 mp->b_rptr += tocopy;
3483
3484 tmi->rcmd_state.pt_len = tmi->rcmd_state.next_len;
3485
3486 if (tmi->rcmd_state.pt_len <= 0) {
3487 /*
3488 * Return an IO error to break the connection. there
3489 * is no way to recover from this. Usually it means
3490 * the app has incorrectly requested decryption on
3491 * a non-encrypted stream, thus the "pt_len" field
3492 * is negative.
3493 */
3494 mp->b_datap->db_type = M_ERROR;
3495 mp->b_rptr = mp->b_datap->db_base;
3496 *mp->b_rptr = EIO;
3497 mp->b_wptr = mp->b_rptr + sizeof (char);
3498
3499 freemsg(mp->b_cont);
3500 mp->b_cont = NULL;
3501 qreply(WR(q), mp);
3502 tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
3503 return (NULL);
3504 }
3505
3506 /*
3507 * If this is V2 mode, then the encrypted data is actually
3508 * 4 bytes bigger than the indicated len because the plaintext
3509 * length is encrypted for an additional security check, but
3510 * its not counted as part of the overall length we just read.
3511 * Strange and confusing, but true.
3512 */
3513
3514 if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
3515 elen = tmi->rcmd_state.pt_len + 4;
3516 else
3517 elen = tmi->rcmd_state.pt_len;
3518
3519 tmi->rcmd_state.cd_len = encrypt_size(&tmi->dec_data, elen);
3520
3521 /*
3522 * Allocate an mblk to hold the cipher text until it is
3523 * all ready to be processed.
3524 */
3525 tmi->rcmd_state.c_msg = allocb(tmi->rcmd_state.cd_len,
3526 BPRI_HI);
3527 if (tmi->rcmd_state.c_msg == NULL) {
3528 #ifdef DEBUG
3529 cmn_err(CE_WARN, "decrypt_rcmd_msgb: allocb failed "
3530 "for %d bytes",
3531 (int)tmi->rcmd_state.cd_len);
3532 #endif
3533 /*
3534 * Return an IO error to break the connection.
3535 */
3536 mp->b_datap->db_type = M_ERROR;
3537 mp->b_rptr = mp->b_datap->db_base;
3538 *mp->b_rptr = EIO;
3539 mp->b_wptr = mp->b_rptr + sizeof (char);
3540 freemsg(mp->b_cont);
3541 mp->b_cont = NULL;
3542 tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
3543 qreply(WR(q), mp);
3544 return (NULL);
3545 }
3546 }
3547
3548 /*
3549 * If this entire message was just the length field,
3550 * free and return. The actual data will probably be next.
3551 */
3552 if (msglen == 0) {
3553 freemsg(mp);
3554 return (NULL);
3555 }
3556
3557 /*
3558 * Copy as much of the cipher text as possible into
3559 * the new msgb (c_msg).
3560 *
3561 * Logic: if we got some bytes (msglen) and we still
3562 * "need" some bytes (len-rcvd), get them here.
3563 */
3564 ASSERT(tmi->rcmd_state.c_msg != NULL);
3565 if (msglen > 0 &&
3566 (tmi->rcmd_state.cd_len > MBLKL(tmi->rcmd_state.c_msg))) {
3567 mblk_t *bp, *nextp;
3568 size_t n;
3569
3570 /*
3571 * Walk the mblks and copy just as many bytes as we need
3572 * for this particular block of cipher text.
3573 */
3574 bp = mp;
3575 while (bp != NULL) {
3576 size_t needed;
3577 size_t tocopy;
3578 n = MBLKL(bp);
3579
3580 needed = tmi->rcmd_state.cd_len -
3581 MBLKL(tmi->rcmd_state.c_msg);
3582
3583 tocopy = (needed >= n ? n : needed);
3584
3585 ASSERT(bp->b_rptr + tocopy <= DB_LIM(bp));
3586 ASSERT(tmi->rcmd_state.c_msg->b_wptr + tocopy <=
3587 DB_LIM(tmi->rcmd_state.c_msg));
3588
3589 /* Copy to end of new mblk */
3590 bcopy(bp->b_rptr, tmi->rcmd_state.c_msg->b_wptr,
3591 tocopy);
3592
3593 tmi->rcmd_state.c_msg->b_wptr += tocopy;
3594
3595 bp->b_rptr += tocopy;
3596
3597 nextp = bp->b_cont;
3598
3599 /*
3600 * If we used this whole block, free it and
3601 * move on.
3602 */
3603 if (!MBLKL(bp)) {
3604 freeb(bp);
3605 bp = NULL;
3606 }
3607
3608 /* If we got what we needed, stop the loop */
3609 if (MBLKL(tmi->rcmd_state.c_msg) ==
3610 tmi->rcmd_state.cd_len) {
3611 /*
3612 * If there is more data in the message,
3613 * its for another block of cipher text,
3614 * put it back in the queue for next time.
3615 */
3616 if (bp) {
3617 if (!putbq(q, bp))
3618 freemsg(bp);
3619 } else if (nextp != NULL) {
3620 /*
3621 * If there is more, put it back in the
3622 * queue for another pass thru.
3623 */
3624 if (!putbq(q, nextp))
3625 freemsg(nextp);
3626 }
3627 break;
3628 }
3629 bp = nextp;
3630 }
3631 }
3632 /*
3633 * Finally, if we received all the cipher text data for
3634 * this message, decrypt it into a new msg and send it up
3635 * to the app.
3636 */
3637 if (tmi->rcmd_state.pt_len > 0 &&
3638 MBLKL(tmi->rcmd_state.c_msg) == tmi->rcmd_state.cd_len) {
3639 mblk_t *bp;
3640 mblk_t *newbp;
3641
3642 /*
3643 * Now we can use our msg that we created when the
3644 * initial message boundary was detected.
3645 */
3646 bp = tmi->rcmd_state.c_msg;
3647 tmi->rcmd_state.c_msg = NULL;
3648
3649 newbp = do_decrypt(q, bp);
3650 if (newbp != NULL) {
3651 bp = newbp;
3652 /*
3653 * If using RCMD_MODE_V2 ("new" mode),
3654 * look at the 4 byte plaintext length that
3655 * was just decrypted and compare with the
3656 * original pt_len value that was received.
3657 */
3658 if (tmi->dec_data.option_mask &
3659 CRYPTOPT_RCMD_MODE_V2) {
3660 uint32_t pt_len2;
3661
3662 pt_len2 = *(uint32_t *)bp->b_rptr;
3663 pt_len2 = ntohl(pt_len2);
3664 /*
3665 * Make sure the 2 pt len fields agree.
3666 */
3667 if (pt_len2 != tmi->rcmd_state.pt_len) {
3668 cmn_err(CE_WARN,
3669 "Inconsistent length fields"
3670 " received %d != %d",
3671 (int)tmi->rcmd_state.pt_len,
3672 (int)pt_len2);
3673 bp->b_datap->db_type = M_ERROR;
3674 bp->b_rptr = bp->b_datap->db_base;
3675 *bp->b_rptr = EIO;
3676 bp->b_wptr = bp->b_rptr + sizeof (char);
3677 freemsg(bp->b_cont);
3678 bp->b_cont = NULL;
3679 tmi->rcmd_state.cd_len = 0;
3680 qreply(WR(q), bp);
3681 return (NULL);
3682 }
3683 bp->b_rptr += sizeof (uint32_t);
3684 }
3685
3686 /*
3687 * Trim the decrypted block the length originally
3688 * indicated by the sender. This is to remove any
3689 * padding bytes that the sender added to satisfy
3690 * requirements of the crypto algorithm.
3691 */
3692 bp->b_wptr = bp->b_rptr + tmi->rcmd_state.pt_len;
3693
3694 newmp = bp;
3695
3696 /*
3697 * Reset our state to indicate we are ready
3698 * for a new message.
3699 */
3700 tmi->rcmd_state.pt_len = 0;
3701 tmi->rcmd_state.cd_len = 0;
3702 } else {
3703 #ifdef DEBUG
3704 cmn_err(CE_WARN,
3705 "decrypt_rcmd: do_decrypt on %d bytes failed",
3706 (int)tmi->rcmd_state.cd_len);
3707 #endif
3708 /*
3709 * do_decrypt already handled failures, just
3710 * return NULL.
3711 */
3712 tmi->rcmd_state.pt_len = 0;
3713 tmi->rcmd_state.cd_len = 0;
3714 return (NULL);
3715 }
3716 }
3717
3718 /*
3719 * return the new message with the 'length' fields removed
3720 */
3721 return (newmp);
3722 }
3723
3724 /*
3725 * cryptmodrsrv
3726 *
3727 * Read queue service routine
3728 * Necessary because if the ready flag is not set
3729 * (via CRYPTIOCSTOP/CRYPTIOCSTART ioctls) then the data
3730 * must remain on queue and not be passed along.
3731 */
3732 static int
cryptmodrsrv(queue_t * q)3733 cryptmodrsrv(queue_t *q)
3734 {
3735 mblk_t *mp, *bp;
3736 struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3737
3738 while ((mp = getq(q)) != NULL) {
3739 switch (mp->b_datap->db_type) {
3740 case M_DATA:
3741 if (canputnext(q) && tmi->ready & CRYPT_READ_READY) {
3742 /*
3743 * Process "rcmd" messages differently because
3744 * they contain a 4 byte plaintext length
3745 * id that needs to be removed.
3746 */
3747 if (tmi->dec_data.method != CRYPT_METHOD_NONE &&
3748 (tmi->dec_data.option_mask &
3749 (CRYPTOPT_RCMD_MODE_V1 |
3750 CRYPTOPT_RCMD_MODE_V2))) {
3751 mp = decrypt_rcmd_mblks(q, mp);
3752 if (mp)
3753 putnext(q, mp);
3754 continue;
3755 }
3756 if ((bp = msgpullup(mp, -1)) != NULL) {
3757 freemsg(mp);
3758 if (MBLKL(bp) > 0) {
3759 mp = do_decrypt(q, bp);
3760 if (mp != NULL)
3761 putnext(q, mp);
3762 }
3763 }
3764 } else {
3765 if (!putbq(q, mp)) {
3766 freemsg(mp);
3767 }
3768 return (0);
3769 }
3770 break;
3771 default:
3772 /*
3773 * rput does not queue anything > QPCTL, so we don't
3774 * need to check for it here.
3775 */
3776 if (!canputnext(q)) {
3777 if (!putbq(q, mp))
3778 freemsg(mp);
3779 return (0);
3780 }
3781 putnext(q, mp);
3782 break;
3783 }
3784 }
3785 return (0);
3786 }
3787
3788
3789 /*
3790 * Read-side put procedure.
3791 */
3792 static void
cryptmodrput(queue_t * rq,mblk_t * mp)3793 cryptmodrput(queue_t *rq, mblk_t *mp)
3794 {
3795 switch (mp->b_datap->db_type) {
3796 case M_DATA:
3797 if (!putq(rq, mp)) {
3798 freemsg(mp);
3799 }
3800 break;
3801 case M_FLUSH:
3802 if (*mp->b_rptr & FLUSHR) {
3803 flushq(rq, FLUSHALL);
3804 }
3805 putnext(rq, mp);
3806 break;
3807 default:
3808 if (queclass(mp) < QPCTL) {
3809 if (rq->q_first != NULL || !canputnext(rq)) {
3810 if (!putq(rq, mp))
3811 freemsg(mp);
3812 return;
3813 }
3814 }
3815 putnext(rq, mp);
3816 break;
3817 }
3818 }
3819