1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "X86TargetStreamer.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/TargetParser/Host.h"
32 #include "llvm/TargetParser/Triple.h"
33
34 using namespace llvm;
35
36 #define GET_REGINFO_MC_DESC
37 #include "X86GenRegisterInfo.inc"
38
39 #define GET_INSTRINFO_MC_DESC
40 #define GET_INSTRINFO_MC_HELPERS
41 #define ENABLE_INSTR_PREDICATE_VERIFIER
42 #include "X86GenInstrInfo.inc"
43
44 #define GET_SUBTARGETINFO_MC_DESC
45 #include "X86GenSubtargetInfo.inc"
46
ParseX86Triple(const Triple & TT)47 std::string X86_MC::ParseX86Triple(const Triple &TT) {
48 std::string FS;
49 // SSE2 should default to enabled in 64-bit mode, but can be turned off
50 // explicitly.
51 if (TT.isArch64Bit())
52 FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
53 else if (TT.getEnvironment() != Triple::CODE16)
54 FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55 else
56 FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57
58 return FS;
59 }
60
getDwarfRegFlavour(const Triple & TT,bool isEH)61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62 if (TT.getArch() == Triple::x86_64)
63 return DWARFFlavour::X86_64;
64
65 if (TT.isOSDarwin())
66 return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67 if (TT.isOSCygMing())
68 // Unsupported by now, just quick fallback
69 return DWARFFlavour::X86_32_Generic;
70 return DWARFFlavour::X86_32_Generic;
71 }
72
hasLockPrefix(const MCInst & MI)73 bool X86_MC::hasLockPrefix(const MCInst &MI) {
74 return MI.getFlags() & X86::IP_HAS_LOCK;
75 }
76
isMemOperand(const MCInst & MI,unsigned Op,unsigned RegClassID)77 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
78 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
79 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
80 const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
81
82 return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) ||
83 (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg()));
84 }
85
is16BitMemOperand(const MCInst & MI,unsigned Op,const MCSubtargetInfo & STI)86 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
87 const MCSubtargetInfo &STI) {
88 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
89 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
90
91 if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 &&
92 Index.isReg() && Index.getReg() == 0)
93 return true;
94 return isMemOperand(MI, Op, X86::GR16RegClassID);
95 }
96
is32BitMemOperand(const MCInst & MI,unsigned Op)97 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
98 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
99 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
100 if (Base.isReg() && Base.getReg() == X86::EIP) {
101 assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address");
102 return true;
103 }
104 if (Index.isReg() && Index.getReg() == X86::EIZ)
105 return true;
106 return isMemOperand(MI, Op, X86::GR32RegClassID);
107 }
108
109 #ifndef NDEBUG
is64BitMemOperand(const MCInst & MI,unsigned Op)110 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
111 return isMemOperand(MI, Op, X86::GR64RegClassID);
112 }
113 #endif
114
needsAddressSizeOverride(const MCInst & MI,const MCSubtargetInfo & STI,int MemoryOperand,uint64_t TSFlags)115 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
116 const MCSubtargetInfo &STI,
117 int MemoryOperand, uint64_t TSFlags) {
118 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
119 bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
120 bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
121 bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
122 if ((Is16BitMode && AdSize == X86II::AdSize32) ||
123 (Is32BitMode && AdSize == X86II::AdSize16) ||
124 (Is64BitMode && AdSize == X86II::AdSize32))
125 return true;
126 uint64_t Form = TSFlags & X86II::FormMask;
127 switch (Form) {
128 default:
129 break;
130 case X86II::RawFrmDstSrc: {
131 unsigned siReg = MI.getOperand(1).getReg();
132 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
133 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
134 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
135 "SI and DI register sizes do not match");
136 return (!Is32BitMode && siReg == X86::ESI) ||
137 (Is32BitMode && siReg == X86::SI);
138 }
139 case X86II::RawFrmSrc: {
140 unsigned siReg = MI.getOperand(0).getReg();
141 return (!Is32BitMode && siReg == X86::ESI) ||
142 (Is32BitMode && siReg == X86::SI);
143 }
144 case X86II::RawFrmDst: {
145 unsigned siReg = MI.getOperand(0).getReg();
146 return (!Is32BitMode && siReg == X86::EDI) ||
147 (Is32BitMode && siReg == X86::DI);
148 }
149 }
150
151 // Determine where the memory operand starts, if present.
152 if (MemoryOperand < 0)
153 return false;
154
155 if (STI.hasFeature(X86::Is64Bit)) {
156 assert(!is16BitMemOperand(MI, MemoryOperand, STI));
157 return is32BitMemOperand(MI, MemoryOperand);
158 }
159 if (STI.hasFeature(X86::Is32Bit)) {
160 assert(!is64BitMemOperand(MI, MemoryOperand));
161 return is16BitMemOperand(MI, MemoryOperand, STI);
162 }
163 assert(STI.hasFeature(X86::Is16Bit));
164 assert(!is64BitMemOperand(MI, MemoryOperand));
165 return !is16BitMemOperand(MI, MemoryOperand, STI);
166 }
167
initLLVMToSEHAndCVRegMapping(MCRegisterInfo * MRI)168 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
169 // FIXME: TableGen these.
170 for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
171 unsigned SEH = MRI->getEncodingValue(Reg);
172 MRI->mapLLVMRegToSEHReg(Reg, SEH);
173 }
174
175 // Mapping from CodeView to MC register id.
176 static const struct {
177 codeview::RegisterId CVReg;
178 MCPhysReg Reg;
179 } RegMap[] = {
180 {codeview::RegisterId::AL, X86::AL},
181 {codeview::RegisterId::CL, X86::CL},
182 {codeview::RegisterId::DL, X86::DL},
183 {codeview::RegisterId::BL, X86::BL},
184 {codeview::RegisterId::AH, X86::AH},
185 {codeview::RegisterId::CH, X86::CH},
186 {codeview::RegisterId::DH, X86::DH},
187 {codeview::RegisterId::BH, X86::BH},
188 {codeview::RegisterId::AX, X86::AX},
189 {codeview::RegisterId::CX, X86::CX},
190 {codeview::RegisterId::DX, X86::DX},
191 {codeview::RegisterId::BX, X86::BX},
192 {codeview::RegisterId::SP, X86::SP},
193 {codeview::RegisterId::BP, X86::BP},
194 {codeview::RegisterId::SI, X86::SI},
195 {codeview::RegisterId::DI, X86::DI},
196 {codeview::RegisterId::EAX, X86::EAX},
197 {codeview::RegisterId::ECX, X86::ECX},
198 {codeview::RegisterId::EDX, X86::EDX},
199 {codeview::RegisterId::EBX, X86::EBX},
200 {codeview::RegisterId::ESP, X86::ESP},
201 {codeview::RegisterId::EBP, X86::EBP},
202 {codeview::RegisterId::ESI, X86::ESI},
203 {codeview::RegisterId::EDI, X86::EDI},
204
205 {codeview::RegisterId::EFLAGS, X86::EFLAGS},
206
207 {codeview::RegisterId::ST0, X86::ST0},
208 {codeview::RegisterId::ST1, X86::ST1},
209 {codeview::RegisterId::ST2, X86::ST2},
210 {codeview::RegisterId::ST3, X86::ST3},
211 {codeview::RegisterId::ST4, X86::ST4},
212 {codeview::RegisterId::ST5, X86::ST5},
213 {codeview::RegisterId::ST6, X86::ST6},
214 {codeview::RegisterId::ST7, X86::ST7},
215
216 {codeview::RegisterId::ST0, X86::FP0},
217 {codeview::RegisterId::ST1, X86::FP1},
218 {codeview::RegisterId::ST2, X86::FP2},
219 {codeview::RegisterId::ST3, X86::FP3},
220 {codeview::RegisterId::ST4, X86::FP4},
221 {codeview::RegisterId::ST5, X86::FP5},
222 {codeview::RegisterId::ST6, X86::FP6},
223 {codeview::RegisterId::ST7, X86::FP7},
224
225 {codeview::RegisterId::MM0, X86::MM0},
226 {codeview::RegisterId::MM1, X86::MM1},
227 {codeview::RegisterId::MM2, X86::MM2},
228 {codeview::RegisterId::MM3, X86::MM3},
229 {codeview::RegisterId::MM4, X86::MM4},
230 {codeview::RegisterId::MM5, X86::MM5},
231 {codeview::RegisterId::MM6, X86::MM6},
232 {codeview::RegisterId::MM7, X86::MM7},
233
234 {codeview::RegisterId::XMM0, X86::XMM0},
235 {codeview::RegisterId::XMM1, X86::XMM1},
236 {codeview::RegisterId::XMM2, X86::XMM2},
237 {codeview::RegisterId::XMM3, X86::XMM3},
238 {codeview::RegisterId::XMM4, X86::XMM4},
239 {codeview::RegisterId::XMM5, X86::XMM5},
240 {codeview::RegisterId::XMM6, X86::XMM6},
241 {codeview::RegisterId::XMM7, X86::XMM7},
242
243 {codeview::RegisterId::XMM8, X86::XMM8},
244 {codeview::RegisterId::XMM9, X86::XMM9},
245 {codeview::RegisterId::XMM10, X86::XMM10},
246 {codeview::RegisterId::XMM11, X86::XMM11},
247 {codeview::RegisterId::XMM12, X86::XMM12},
248 {codeview::RegisterId::XMM13, X86::XMM13},
249 {codeview::RegisterId::XMM14, X86::XMM14},
250 {codeview::RegisterId::XMM15, X86::XMM15},
251
252 {codeview::RegisterId::SIL, X86::SIL},
253 {codeview::RegisterId::DIL, X86::DIL},
254 {codeview::RegisterId::BPL, X86::BPL},
255 {codeview::RegisterId::SPL, X86::SPL},
256 {codeview::RegisterId::RAX, X86::RAX},
257 {codeview::RegisterId::RBX, X86::RBX},
258 {codeview::RegisterId::RCX, X86::RCX},
259 {codeview::RegisterId::RDX, X86::RDX},
260 {codeview::RegisterId::RSI, X86::RSI},
261 {codeview::RegisterId::RDI, X86::RDI},
262 {codeview::RegisterId::RBP, X86::RBP},
263 {codeview::RegisterId::RSP, X86::RSP},
264 {codeview::RegisterId::R8, X86::R8},
265 {codeview::RegisterId::R9, X86::R9},
266 {codeview::RegisterId::R10, X86::R10},
267 {codeview::RegisterId::R11, X86::R11},
268 {codeview::RegisterId::R12, X86::R12},
269 {codeview::RegisterId::R13, X86::R13},
270 {codeview::RegisterId::R14, X86::R14},
271 {codeview::RegisterId::R15, X86::R15},
272 {codeview::RegisterId::R8B, X86::R8B},
273 {codeview::RegisterId::R9B, X86::R9B},
274 {codeview::RegisterId::R10B, X86::R10B},
275 {codeview::RegisterId::R11B, X86::R11B},
276 {codeview::RegisterId::R12B, X86::R12B},
277 {codeview::RegisterId::R13B, X86::R13B},
278 {codeview::RegisterId::R14B, X86::R14B},
279 {codeview::RegisterId::R15B, X86::R15B},
280 {codeview::RegisterId::R8W, X86::R8W},
281 {codeview::RegisterId::R9W, X86::R9W},
282 {codeview::RegisterId::R10W, X86::R10W},
283 {codeview::RegisterId::R11W, X86::R11W},
284 {codeview::RegisterId::R12W, X86::R12W},
285 {codeview::RegisterId::R13W, X86::R13W},
286 {codeview::RegisterId::R14W, X86::R14W},
287 {codeview::RegisterId::R15W, X86::R15W},
288 {codeview::RegisterId::R8D, X86::R8D},
289 {codeview::RegisterId::R9D, X86::R9D},
290 {codeview::RegisterId::R10D, X86::R10D},
291 {codeview::RegisterId::R11D, X86::R11D},
292 {codeview::RegisterId::R12D, X86::R12D},
293 {codeview::RegisterId::R13D, X86::R13D},
294 {codeview::RegisterId::R14D, X86::R14D},
295 {codeview::RegisterId::R15D, X86::R15D},
296 {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
297 {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
298 {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
299 {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
300 {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
301 {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
302 {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
303 {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
304 {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
305 {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
306 {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
307 {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
308 {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
309 {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
310 {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
311 {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
312 {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
313 {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
314 {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
315 {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
316 {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
317 {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
318 {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
319 {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
320 {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
321 {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
322 {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
323 {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
324 {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
325 {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
326 {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
327 {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
328 {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
329 {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
330 {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
331 {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
332 {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
333 {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
334 {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
335 {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
336 {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
337 {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
338 {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
339 {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
340 {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
341 {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
342 {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
343 {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
344 {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
345 {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
346 {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
347 {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
348 {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
349 {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
350 {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
351 {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
352 {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
353 {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
354 {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
355 {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
356 {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
357 {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
358 {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
359 {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
360 {codeview::RegisterId::AMD64_K0, X86::K0},
361 {codeview::RegisterId::AMD64_K1, X86::K1},
362 {codeview::RegisterId::AMD64_K2, X86::K2},
363 {codeview::RegisterId::AMD64_K3, X86::K3},
364 {codeview::RegisterId::AMD64_K4, X86::K4},
365 {codeview::RegisterId::AMD64_K5, X86::K5},
366 {codeview::RegisterId::AMD64_K6, X86::K6},
367 {codeview::RegisterId::AMD64_K7, X86::K7},
368 {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
369 {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
370 {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
371 {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
372 {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
373 {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
374 {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
375 {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
376 {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
377 {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
378 {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
379 {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
380 {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
381 {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
382 {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
383 {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
384
385 };
386 for (const auto &I : RegMap)
387 MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
388 }
389
createX86MCSubtargetInfo(const Triple & TT,StringRef CPU,StringRef FS)390 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
391 StringRef CPU, StringRef FS) {
392 std::string ArchFS = X86_MC::ParseX86Triple(TT);
393 assert(!ArchFS.empty() && "Failed to parse X86 triple");
394 if (!FS.empty())
395 ArchFS = (Twine(ArchFS) + "," + FS).str();
396
397 if (CPU.empty())
398 CPU = "generic";
399
400 size_t posNoEVEX512 = FS.rfind("-evex512");
401 // Make sure we won't be cheated by "-avx512fp16".
402 size_t posNoAVX512F =
403 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
404 size_t posEVEX512 = FS.rfind("+evex512");
405 size_t posAVX512F = FS.rfind("+avx512"); // Any AVX512XXX will enable AVX512F.
406
407 if (posAVX512F != StringRef::npos &&
408 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
409 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
410 ArchFS += ",+evex512";
411
412 return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
413 }
414
createX86MCInstrInfo()415 static MCInstrInfo *createX86MCInstrInfo() {
416 MCInstrInfo *X = new MCInstrInfo();
417 InitX86MCInstrInfo(X);
418 return X;
419 }
420
createX86MCRegisterInfo(const Triple & TT)421 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
422 unsigned RA = (TT.getArch() == Triple::x86_64)
423 ? X86::RIP // Should have dwarf #16.
424 : X86::EIP; // Should have dwarf #8.
425
426 MCRegisterInfo *X = new MCRegisterInfo();
427 InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
428 X86_MC::getDwarfRegFlavour(TT, true), RA);
429 X86_MC::initLLVMToSEHAndCVRegMapping(X);
430 return X;
431 }
432
createX86MCAsmInfo(const MCRegisterInfo & MRI,const Triple & TheTriple,const MCTargetOptions & Options)433 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
434 const Triple &TheTriple,
435 const MCTargetOptions &Options) {
436 bool is64Bit = TheTriple.getArch() == Triple::x86_64;
437
438 MCAsmInfo *MAI;
439 if (TheTriple.isOSBinFormatMachO()) {
440 if (is64Bit)
441 MAI = new X86_64MCAsmInfoDarwin(TheTriple);
442 else
443 MAI = new X86MCAsmInfoDarwin(TheTriple);
444 } else if (TheTriple.isOSBinFormatELF()) {
445 // Force the use of an ELF container.
446 MAI = new X86ELFMCAsmInfo(TheTriple);
447 } else if (TheTriple.isWindowsMSVCEnvironment() ||
448 TheTriple.isWindowsCoreCLREnvironment()) {
449 if (Options.getAssemblyLanguage().equals_insensitive("masm"))
450 MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
451 else
452 MAI = new X86MCAsmInfoMicrosoft(TheTriple);
453 } else if (TheTriple.isOSCygMing() ||
454 TheTriple.isWindowsItaniumEnvironment()) {
455 MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
456 } else if (TheTriple.isUEFI()) {
457 MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
458 } else {
459 // The default is ELF.
460 MAI = new X86ELFMCAsmInfo(TheTriple);
461 }
462
463 // Initialize initial frame state.
464 // Calculate amount of bytes used for return address storing
465 int stackGrowth = is64Bit ? -8 : -4;
466
467 // Initial state of the frame pointer is esp+stackGrowth.
468 unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
469 MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
470 nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
471 MAI->addInitialFrameState(Inst);
472
473 // Add return address to move list
474 unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
475 MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
476 nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
477 MAI->addInitialFrameState(Inst2);
478
479 return MAI;
480 }
481
createX86MCInstPrinter(const Triple & T,unsigned SyntaxVariant,const MCAsmInfo & MAI,const MCInstrInfo & MII,const MCRegisterInfo & MRI)482 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
483 unsigned SyntaxVariant,
484 const MCAsmInfo &MAI,
485 const MCInstrInfo &MII,
486 const MCRegisterInfo &MRI) {
487 if (SyntaxVariant == 0)
488 return new X86ATTInstPrinter(MAI, MII, MRI);
489 if (SyntaxVariant == 1)
490 return new X86IntelInstPrinter(MAI, MII, MRI);
491 return nullptr;
492 }
493
createX86MCRelocationInfo(const Triple & TheTriple,MCContext & Ctx)494 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
495 MCContext &Ctx) {
496 // Default to the stock relocation info.
497 return llvm::createMCRelocationInfo(TheTriple, Ctx);
498 }
499
500 namespace llvm {
501 namespace X86_MC {
502
503 class X86MCInstrAnalysis : public MCInstrAnalysis {
504 X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
505 X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
506 virtual ~X86MCInstrAnalysis() = default;
507
508 public:
X86MCInstrAnalysis(const MCInstrInfo * MCII)509 X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
510
511 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
512 #include "X86GenSubtargetInfo.inc"
513
514 bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
515 APInt &Mask) const override;
516 std::vector<std::pair<uint64_t, uint64_t>>
517 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
518 const Triple &TargetTriple) const override;
519
520 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
521 uint64_t &Target) const override;
522 std::optional<uint64_t>
523 evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
524 uint64_t Addr, uint64_t Size) const override;
525 std::optional<uint64_t>
526 getMemoryOperandRelocationOffset(const MCInst &Inst,
527 uint64_t Size) const override;
528 };
529
530 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
531 #include "X86GenSubtargetInfo.inc"
532
clearsSuperRegisters(const MCRegisterInfo & MRI,const MCInst & Inst,APInt & Mask) const533 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
534 const MCInst &Inst,
535 APInt &Mask) const {
536 const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
537 unsigned NumDefs = Desc.getNumDefs();
538 unsigned NumImplicitDefs = Desc.implicit_defs().size();
539 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
540 "Unexpected number of bits in the mask!");
541
542 bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
543 bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
544 bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
545
546 const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
547 const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
548 const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
549
550 auto ClearsSuperReg = [=](unsigned RegID) {
551 // On X86-64, a general purpose integer register is viewed as a 64-bit
552 // register internal to the processor.
553 // An update to the lower 32 bits of a 64 bit integer register is
554 // architecturally defined to zero extend the upper 32 bits.
555 if (GR32RC.contains(RegID))
556 return true;
557
558 // Early exit if this instruction has no vex/evex/xop prefix.
559 if (!HasEVEX && !HasVEX && !HasXOP)
560 return false;
561
562 // All VEX and EVEX encoded instructions are defined to zero the high bits
563 // of the destination register up to VLMAX (i.e. the maximum vector register
564 // width pertaining to the instruction).
565 // We assume the same behavior for XOP instructions too.
566 return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
567 };
568
569 Mask.clearAllBits();
570 for (unsigned I = 0, E = NumDefs; I < E; ++I) {
571 const MCOperand &Op = Inst.getOperand(I);
572 if (ClearsSuperReg(Op.getReg()))
573 Mask.setBit(I);
574 }
575
576 for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
577 const MCPhysReg Reg = Desc.implicit_defs()[I];
578 if (ClearsSuperReg(Reg))
579 Mask.setBit(NumDefs + I);
580 }
581
582 return Mask.getBoolValue();
583 }
584
585 static std::vector<std::pair<uint64_t, uint64_t>>
findX86PltEntries(uint64_t PltSectionVA,ArrayRef<uint8_t> PltContents)586 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
587 // Do a lightweight parsing of PLT entries.
588 std::vector<std::pair<uint64_t, uint64_t>> Result;
589 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
590 // Recognize a jmp.
591 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
592 // The jmp instruction at the beginning of each PLT entry jumps to the
593 // address of the base of the .got.plt section plus the immediate.
594 // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
595 // offset to an address. Imm may be a negative int32_t if the GOT entry is
596 // in .got.
597 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
598 Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32));
599 Byte += 6;
600 } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
601 // The jmp instruction at the beginning of each PLT entry jumps to the
602 // immediate.
603 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
604 Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
605 Byte += 6;
606 } else
607 Byte++;
608 }
609 return Result;
610 }
611
612 static std::vector<std::pair<uint64_t, uint64_t>>
findX86_64PltEntries(uint64_t PltSectionVA,ArrayRef<uint8_t> PltContents)613 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
614 // Do a lightweight parsing of PLT entries.
615 std::vector<std::pair<uint64_t, uint64_t>> Result;
616 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
617 // Recognize a jmp.
618 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
619 // The jmp instruction at the beginning of each PLT entry jumps to the
620 // address of the next instruction plus the immediate.
621 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
622 Result.push_back(
623 std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
624 Byte += 6;
625 } else
626 Byte++;
627 }
628 return Result;
629 }
630
631 std::vector<std::pair<uint64_t, uint64_t>>
findPltEntries(uint64_t PltSectionVA,ArrayRef<uint8_t> PltContents,const Triple & TargetTriple) const632 X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
633 ArrayRef<uint8_t> PltContents,
634 const Triple &TargetTriple) const {
635 switch (TargetTriple.getArch()) {
636 case Triple::x86:
637 return findX86PltEntries(PltSectionVA, PltContents);
638 case Triple::x86_64:
639 return findX86_64PltEntries(PltSectionVA, PltContents);
640 default:
641 return {};
642 }
643 }
644
evaluateBranch(const MCInst & Inst,uint64_t Addr,uint64_t Size,uint64_t & Target) const645 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
646 uint64_t Size, uint64_t &Target) const {
647 if (Inst.getNumOperands() == 0 ||
648 Info->get(Inst.getOpcode()).operands()[0].OperandType !=
649 MCOI::OPERAND_PCREL)
650 return false;
651 Target = Addr + Size + Inst.getOperand(0).getImm();
652 return true;
653 }
654
evaluateMemoryOperandAddress(const MCInst & Inst,const MCSubtargetInfo * STI,uint64_t Addr,uint64_t Size) const655 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
656 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
657 uint64_t Size) const {
658 const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
659 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
660 if (MemOpStart == -1)
661 return std::nullopt;
662 MemOpStart += X86II::getOperandBias(MCID);
663
664 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
665 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
666 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
667 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
668 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
669 if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
670 !Disp.isImm())
671 return std::nullopt;
672
673 // RIP-relative addressing.
674 if (BaseReg.getReg() == X86::RIP)
675 return Addr + Size + Disp.getImm();
676
677 return std::nullopt;
678 }
679
680 std::optional<uint64_t>
getMemoryOperandRelocationOffset(const MCInst & Inst,uint64_t Size) const681 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
682 uint64_t Size) const {
683 if (Inst.getOpcode() != X86::LEA64r)
684 return std::nullopt;
685 const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
686 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
687 if (MemOpStart == -1)
688 return std::nullopt;
689 MemOpStart += X86II::getOperandBias(MCID);
690 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
691 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
692 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
693 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
694 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
695 // Must be a simple rip-relative address.
696 if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
697 IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
698 return std::nullopt;
699 // rip-relative ModR/M immediate is 32 bits.
700 assert(Size > 4 && "invalid instruction size for rip-relative lea");
701 return Size - 4;
702 }
703
704 } // end of namespace X86_MC
705
706 } // end of namespace llvm
707
createX86MCInstrAnalysis(const MCInstrInfo * Info)708 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
709 return new X86_MC::X86MCInstrAnalysis(Info);
710 }
711
712 // Force static initialization.
LLVMInitializeX86TargetMC()713 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
714 for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
715 // Register the MC asm info.
716 RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
717
718 // Register the MC instruction info.
719 TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
720
721 // Register the MC register info.
722 TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
723
724 // Register the MC subtarget info.
725 TargetRegistry::RegisterMCSubtargetInfo(*T,
726 X86_MC::createX86MCSubtargetInfo);
727
728 // Register the MC instruction analyzer.
729 TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
730
731 // Register the code emitter.
732 TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
733
734 // Register the obj target streamer.
735 TargetRegistry::RegisterObjectTargetStreamer(*T,
736 createX86ObjectTargetStreamer);
737
738 // Register the asm target streamer.
739 TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
740
741 // Register the null streamer.
742 TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer);
743
744 TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
745 TargetRegistry::RegisterELFStreamer(*T, createX86ELFStreamer);
746
747 // Register the MCInstPrinter.
748 TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
749
750 // Register the MC relocation info.
751 TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
752 }
753
754 // Register the asm backend.
755 TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
756 createX86_32AsmBackend);
757 TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
758 createX86_64AsmBackend);
759 }
760
getX86SubSuperRegister(MCRegister Reg,unsigned Size,bool High)761 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size,
762 bool High) {
763 #define DEFAULT_NOREG \
764 default: \
765 return X86::NoRegister;
766 #define SUB_SUPER(R1, R2, R3, R4, R) \
767 case X86::R1: \
768 case X86::R2: \
769 case X86::R3: \
770 case X86::R4: \
771 return X86::R;
772 #define A_SUB_SUPER(R) \
773 case X86::AH: \
774 SUB_SUPER(AL, AX, EAX, RAX, R)
775 #define D_SUB_SUPER(R) \
776 case X86::DH: \
777 SUB_SUPER(DL, DX, EDX, RDX, R)
778 #define C_SUB_SUPER(R) \
779 case X86::CH: \
780 SUB_SUPER(CL, CX, ECX, RCX, R)
781 #define B_SUB_SUPER(R) \
782 case X86::BH: \
783 SUB_SUPER(BL, BX, EBX, RBX, R)
784 #define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
785 #define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
786 #define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
787 #define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
788 #define NO_SUB_SUPER(NO, REG) \
789 SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
790 #define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
791 #define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
792 #define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
793 #define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
794 switch (Size) {
795 default:
796 llvm_unreachable("illegal register size");
797 case 8:
798 if (High) {
799 switch (Reg.id()) {
800 DEFAULT_NOREG
801 A_SUB_SUPER(AH)
802 D_SUB_SUPER(DH)
803 C_SUB_SUPER(CH)
804 B_SUB_SUPER(BH)
805 }
806 } else {
807 switch (Reg.id()) {
808 DEFAULT_NOREG
809 A_SUB_SUPER(AL)
810 D_SUB_SUPER(DL)
811 C_SUB_SUPER(CL)
812 B_SUB_SUPER(BL)
813 SI_SUB_SUPER(SIL)
814 DI_SUB_SUPER(DIL)
815 BP_SUB_SUPER(BPL)
816 SP_SUB_SUPER(SPL)
817 NO_SUB_SUPER_B(8)
818 NO_SUB_SUPER_B(9)
819 NO_SUB_SUPER_B(10)
820 NO_SUB_SUPER_B(11)
821 NO_SUB_SUPER_B(12)
822 NO_SUB_SUPER_B(13)
823 NO_SUB_SUPER_B(14)
824 NO_SUB_SUPER_B(15)
825 NO_SUB_SUPER_B(16)
826 NO_SUB_SUPER_B(17)
827 NO_SUB_SUPER_B(18)
828 NO_SUB_SUPER_B(19)
829 NO_SUB_SUPER_B(20)
830 NO_SUB_SUPER_B(21)
831 NO_SUB_SUPER_B(22)
832 NO_SUB_SUPER_B(23)
833 NO_SUB_SUPER_B(24)
834 NO_SUB_SUPER_B(25)
835 NO_SUB_SUPER_B(26)
836 NO_SUB_SUPER_B(27)
837 NO_SUB_SUPER_B(28)
838 NO_SUB_SUPER_B(29)
839 NO_SUB_SUPER_B(30)
840 NO_SUB_SUPER_B(31)
841 }
842 }
843 case 16:
844 switch (Reg.id()) {
845 DEFAULT_NOREG
846 A_SUB_SUPER(AX)
847 D_SUB_SUPER(DX)
848 C_SUB_SUPER(CX)
849 B_SUB_SUPER(BX)
850 SI_SUB_SUPER(SI)
851 DI_SUB_SUPER(DI)
852 BP_SUB_SUPER(BP)
853 SP_SUB_SUPER(SP)
854 NO_SUB_SUPER_W(8)
855 NO_SUB_SUPER_W(9)
856 NO_SUB_SUPER_W(10)
857 NO_SUB_SUPER_W(11)
858 NO_SUB_SUPER_W(12)
859 NO_SUB_SUPER_W(13)
860 NO_SUB_SUPER_W(14)
861 NO_SUB_SUPER_W(15)
862 NO_SUB_SUPER_W(16)
863 NO_SUB_SUPER_W(17)
864 NO_SUB_SUPER_W(18)
865 NO_SUB_SUPER_W(19)
866 NO_SUB_SUPER_W(20)
867 NO_SUB_SUPER_W(21)
868 NO_SUB_SUPER_W(22)
869 NO_SUB_SUPER_W(23)
870 NO_SUB_SUPER_W(24)
871 NO_SUB_SUPER_W(25)
872 NO_SUB_SUPER_W(26)
873 NO_SUB_SUPER_W(27)
874 NO_SUB_SUPER_W(28)
875 NO_SUB_SUPER_W(29)
876 NO_SUB_SUPER_W(30)
877 NO_SUB_SUPER_W(31)
878 }
879 case 32:
880 switch (Reg.id()) {
881 DEFAULT_NOREG
882 A_SUB_SUPER(EAX)
883 D_SUB_SUPER(EDX)
884 C_SUB_SUPER(ECX)
885 B_SUB_SUPER(EBX)
886 SI_SUB_SUPER(ESI)
887 DI_SUB_SUPER(EDI)
888 BP_SUB_SUPER(EBP)
889 SP_SUB_SUPER(ESP)
890 NO_SUB_SUPER_D(8)
891 NO_SUB_SUPER_D(9)
892 NO_SUB_SUPER_D(10)
893 NO_SUB_SUPER_D(11)
894 NO_SUB_SUPER_D(12)
895 NO_SUB_SUPER_D(13)
896 NO_SUB_SUPER_D(14)
897 NO_SUB_SUPER_D(15)
898 NO_SUB_SUPER_D(16)
899 NO_SUB_SUPER_D(17)
900 NO_SUB_SUPER_D(18)
901 NO_SUB_SUPER_D(19)
902 NO_SUB_SUPER_D(20)
903 NO_SUB_SUPER_D(21)
904 NO_SUB_SUPER_D(22)
905 NO_SUB_SUPER_D(23)
906 NO_SUB_SUPER_D(24)
907 NO_SUB_SUPER_D(25)
908 NO_SUB_SUPER_D(26)
909 NO_SUB_SUPER_D(27)
910 NO_SUB_SUPER_D(28)
911 NO_SUB_SUPER_D(29)
912 NO_SUB_SUPER_D(30)
913 NO_SUB_SUPER_D(31)
914 }
915 case 64:
916 switch (Reg.id()) {
917 DEFAULT_NOREG
918 A_SUB_SUPER(RAX)
919 D_SUB_SUPER(RDX)
920 C_SUB_SUPER(RCX)
921 B_SUB_SUPER(RBX)
922 SI_SUB_SUPER(RSI)
923 DI_SUB_SUPER(RDI)
924 BP_SUB_SUPER(RBP)
925 SP_SUB_SUPER(RSP)
926 NO_SUB_SUPER_Q(8)
927 NO_SUB_SUPER_Q(9)
928 NO_SUB_SUPER_Q(10)
929 NO_SUB_SUPER_Q(11)
930 NO_SUB_SUPER_Q(12)
931 NO_SUB_SUPER_Q(13)
932 NO_SUB_SUPER_Q(14)
933 NO_SUB_SUPER_Q(15)
934 NO_SUB_SUPER_Q(16)
935 NO_SUB_SUPER_Q(17)
936 NO_SUB_SUPER_Q(18)
937 NO_SUB_SUPER_Q(19)
938 NO_SUB_SUPER_Q(20)
939 NO_SUB_SUPER_Q(21)
940 NO_SUB_SUPER_Q(22)
941 NO_SUB_SUPER_Q(23)
942 NO_SUB_SUPER_Q(24)
943 NO_SUB_SUPER_Q(25)
944 NO_SUB_SUPER_Q(26)
945 NO_SUB_SUPER_Q(27)
946 NO_SUB_SUPER_Q(28)
947 NO_SUB_SUPER_Q(29)
948 NO_SUB_SUPER_Q(30)
949 NO_SUB_SUPER_Q(31)
950 }
951 }
952 }
953