xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "wasm-reg-stackify"
43 
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
getPassName() const46   StringRef getPassName() const override {
47     return "WebAssembly Register Stackify";
48   }
49 
getAnalysisUsage(AnalysisUsage & AU) const50   void getAnalysisUsage(AnalysisUsage &AU) const override {
51     AU.setPreservesCFG();
52     AU.addRequired<MachineDominatorTreeWrapperPass>();
53     AU.addRequired<LiveIntervalsWrapperPass>();
54     AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
55     AU.addPreserved<SlotIndexesWrapperPass>();
56     AU.addPreserved<LiveIntervalsWrapperPass>();
57     AU.addPreservedID(LiveVariablesID);
58     AU.addPreserved<MachineDominatorTreeWrapperPass>();
59     MachineFunctionPass::getAnalysisUsage(AU);
60   }
61 
62   bool runOnMachineFunction(MachineFunction &MF) override;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify()66   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69 
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72                 "Reorder instructions to use the WebAssembly value stack",
73                 false, false)
74 
createWebAssemblyRegStackify()75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76   return new WebAssemblyRegStackify();
77 }
78 
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
imposeStackOrdering(MachineInstr * MI)82 static void imposeStackOrdering(MachineInstr *MI) {
83   // Write the opaque VALUE_STACK register.
84   if (!MI->definesRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr))
85     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86                                              /*isDef=*/true,
87                                              /*isImp=*/true));
88 
89   // Also read the opaque VALUE_STACK register.
90   if (!MI->readsRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr))
91     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92                                              /*isDef=*/false,
93                                              /*isImp=*/true));
94 }
95 
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
convertImplicitDefToConstZero(MachineInstr * MI,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineFunction & MF,LiveIntervals & LIS)98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99                                           MachineRegisterInfo &MRI,
100                                           const TargetInstrInfo *TII,
101                                           MachineFunction &MF,
102                                           LiveIntervals &LIS) {
103   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104 
105   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106   if (RegClass == &WebAssembly::I32RegClass) {
107     MI->setDesc(TII->get(WebAssembly::CONST_I32));
108     MI->addOperand(MachineOperand::CreateImm(0));
109   } else if (RegClass == &WebAssembly::I64RegClass) {
110     MI->setDesc(TII->get(WebAssembly::CONST_I64));
111     MI->addOperand(MachineOperand::CreateImm(0));
112   } else if (RegClass == &WebAssembly::F32RegClass) {
113     MI->setDesc(TII->get(WebAssembly::CONST_F32));
114     auto *Val = cast<ConstantFP>(Constant::getNullValue(
115         Type::getFloatTy(MF.getFunction().getContext())));
116     MI->addOperand(MachineOperand::CreateFPImm(Val));
117   } else if (RegClass == &WebAssembly::F64RegClass) {
118     MI->setDesc(TII->get(WebAssembly::CONST_F64));
119     auto *Val = cast<ConstantFP>(Constant::getNullValue(
120         Type::getDoubleTy(MF.getFunction().getContext())));
121     MI->addOperand(MachineOperand::CreateFPImm(Val));
122   } else if (RegClass == &WebAssembly::V128RegClass) {
123     MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
124     MI->addOperand(MachineOperand::CreateImm(0));
125     MI->addOperand(MachineOperand::CreateImm(0));
126   } else {
127     llvm_unreachable("Unexpected reg class");
128   }
129 }
130 
131 // Determine whether a call to the callee referenced by
132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
133 // effects.
queryCallee(const MachineInstr & MI,bool & Read,bool & Write,bool & Effects,bool & StackPointer)134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
135                         bool &Effects, bool &StackPointer) {
136   // All calls can use the stack pointer.
137   StackPointer = true;
138 
139   const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
140   if (MO.isGlobal()) {
141     const Constant *GV = MO.getGlobal();
142     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
143       if (!GA->isInterposable())
144         GV = GA->getAliasee();
145 
146     if (const auto *F = dyn_cast<Function>(GV)) {
147       if (!F->doesNotThrow())
148         Effects = true;
149       if (F->doesNotAccessMemory())
150         return;
151       if (F->onlyReadsMemory()) {
152         Read = true;
153         return;
154       }
155     }
156   }
157 
158   // Assume the worst.
159   Write = true;
160   Read = true;
161   Effects = true;
162 }
163 
164 // Determine whether MI reads memory, writes memory, has side effects,
165 // and/or uses the stack pointer value.
query(const MachineInstr & MI,bool & Read,bool & Write,bool & Effects,bool & StackPointer)166 static void query(const MachineInstr &MI, bool &Read, bool &Write,
167                   bool &Effects, bool &StackPointer) {
168   assert(!MI.isTerminator());
169 
170   if (MI.isDebugInstr() || MI.isPosition())
171     return;
172 
173   // Check for loads.
174   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
175     Read = true;
176 
177   // Check for stores.
178   if (MI.mayStore()) {
179     Write = true;
180   } else if (MI.hasOrderedMemoryRef()) {
181     switch (MI.getOpcode()) {
182     case WebAssembly::DIV_S_I32:
183     case WebAssembly::DIV_S_I64:
184     case WebAssembly::REM_S_I32:
185     case WebAssembly::REM_S_I64:
186     case WebAssembly::DIV_U_I32:
187     case WebAssembly::DIV_U_I64:
188     case WebAssembly::REM_U_I32:
189     case WebAssembly::REM_U_I64:
190     case WebAssembly::I32_TRUNC_S_F32:
191     case WebAssembly::I64_TRUNC_S_F32:
192     case WebAssembly::I32_TRUNC_S_F64:
193     case WebAssembly::I64_TRUNC_S_F64:
194     case WebAssembly::I32_TRUNC_U_F32:
195     case WebAssembly::I64_TRUNC_U_F32:
196     case WebAssembly::I32_TRUNC_U_F64:
197     case WebAssembly::I64_TRUNC_U_F64:
198       // These instruction have hasUnmodeledSideEffects() returning true
199       // because they trap on overflow and invalid so they can't be arbitrarily
200       // moved, however hasOrderedMemoryRef() interprets this plus their lack
201       // of memoperands as having a potential unknown memory reference.
202       break;
203     default:
204       // Record volatile accesses, unless it's a call, as calls are handled
205       // specially below.
206       if (!MI.isCall()) {
207         Write = true;
208         Effects = true;
209       }
210       break;
211     }
212   }
213 
214   // Check for side effects.
215   if (MI.hasUnmodeledSideEffects()) {
216     switch (MI.getOpcode()) {
217     case WebAssembly::DIV_S_I32:
218     case WebAssembly::DIV_S_I64:
219     case WebAssembly::REM_S_I32:
220     case WebAssembly::REM_S_I64:
221     case WebAssembly::DIV_U_I32:
222     case WebAssembly::DIV_U_I64:
223     case WebAssembly::REM_U_I32:
224     case WebAssembly::REM_U_I64:
225     case WebAssembly::I32_TRUNC_S_F32:
226     case WebAssembly::I64_TRUNC_S_F32:
227     case WebAssembly::I32_TRUNC_S_F64:
228     case WebAssembly::I64_TRUNC_S_F64:
229     case WebAssembly::I32_TRUNC_U_F32:
230     case WebAssembly::I64_TRUNC_U_F32:
231     case WebAssembly::I32_TRUNC_U_F64:
232     case WebAssembly::I64_TRUNC_U_F64:
233       // These instructions have hasUnmodeledSideEffects() returning true
234       // because they trap on overflow and invalid so they can't be arbitrarily
235       // moved, however in the specific case of register stackifying, it is safe
236       // to move them because overflow and invalid are Undefined Behavior.
237       break;
238     default:
239       Effects = true;
240       break;
241     }
242   }
243 
244   // Check for writes to __stack_pointer global.
245   if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
246        MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
247       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
248     StackPointer = true;
249 
250   // Analyze calls.
251   if (MI.isCall()) {
252     queryCallee(MI, Read, Write, Effects, StackPointer);
253   }
254 }
255 
256 // Test whether Def is safe and profitable to rematerialize.
shouldRematerialize(const MachineInstr & Def,const WebAssemblyInstrInfo * TII)257 static bool shouldRematerialize(const MachineInstr &Def,
258                                 const WebAssemblyInstrInfo *TII) {
259   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
260 }
261 
262 // Identify the definition for this register at this point. This is a
263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
264 // LiveIntervals to handle complex cases.
getVRegDef(unsigned Reg,const MachineInstr * Insert,const MachineRegisterInfo & MRI,const LiveIntervals & LIS)265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
266                                 const MachineRegisterInfo &MRI,
267                                 const LiveIntervals &LIS) {
268   // Most registers are in SSA form here so we try a quick MRI query first.
269   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
270     return Def;
271 
272   // MRI doesn't know what the Def is. Try asking LIS.
273   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
274           LIS.getInstructionIndex(*Insert)))
275     return LIS.getInstructionFromIndex(ValNo->def);
276 
277   return nullptr;
278 }
279 
280 // Test whether Reg, as defined at Def, has exactly one use. This is a
281 // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses
282 // LiveIntervals to handle complex cases.
hasOneNonDBGUse(unsigned Reg,MachineInstr * Def,MachineRegisterInfo & MRI,MachineDominatorTree & MDT,LiveIntervals & LIS)283 static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def,
284                             MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
285                             LiveIntervals &LIS) {
286   // Most registers are in SSA form here so we try a quick MRI query first.
287   if (MRI.hasOneNonDBGUse(Reg))
288     return true;
289 
290   bool HasOne = false;
291   const LiveInterval &LI = LIS.getInterval(Reg);
292   const VNInfo *DefVNI =
293       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
294   assert(DefVNI);
295   for (auto &I : MRI.use_nodbg_operands(Reg)) {
296     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
297     if (Result.valueIn() == DefVNI) {
298       if (!Result.isKill())
299         return false;
300       if (HasOne)
301         return false;
302       HasOne = true;
303     }
304   }
305   return HasOne;
306 }
307 
308 // Test whether it's safe to move Def to just before Insert.
309 // TODO: Compute memory dependencies in a way that doesn't require always
310 // walking the block.
311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
312 // more precise.
isSafeToMove(const MachineOperand * Def,const MachineOperand * Use,const MachineInstr * Insert,const WebAssemblyFunctionInfo & MFI,const MachineRegisterInfo & MRI)313 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
314                          const MachineInstr *Insert,
315                          const WebAssemblyFunctionInfo &MFI,
316                          const MachineRegisterInfo &MRI) {
317   const MachineInstr *DefI = Def->getParent();
318   const MachineInstr *UseI = Use->getParent();
319   assert(DefI->getParent() == Insert->getParent());
320   assert(UseI->getParent() == Insert->getParent());
321 
322   // The first def of a multivalue instruction can be stackified by moving,
323   // since the later defs can always be placed into locals if necessary. Later
324   // defs can only be stackified if all previous defs are already stackified
325   // since ExplicitLocals will not know how to place a def in a local if a
326   // subsequent def is stackified. But only one def can be stackified by moving
327   // the instruction, so it must be the first one.
328   //
329   // TODO: This could be loosened to be the first *live* def, but care would
330   // have to be taken to ensure the drops of the initial dead defs can be
331   // placed. This would require checking that no previous defs are used in the
332   // same instruction as subsequent defs.
333   if (Def != DefI->defs().begin())
334     return false;
335 
336   // If any subsequent def is used prior to the current value by the same
337   // instruction in which the current value is used, we cannot
338   // stackify. Stackifying in this case would require that def moving below the
339   // current def in the stack, which cannot be achieved, even with locals.
340   // Also ensure we don't sink the def past any other prior uses.
341   for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
342     auto I = std::next(MachineBasicBlock::const_iterator(DefI));
343     auto E = std::next(MachineBasicBlock::const_iterator(UseI));
344     for (; I != E; ++I) {
345       for (const auto &PriorUse : I->uses()) {
346         if (&PriorUse == Use)
347           break;
348         if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
349           return false;
350       }
351     }
352   }
353 
354   // If moving is a semantic nop, it is always allowed
355   const MachineBasicBlock *MBB = DefI->getParent();
356   auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
357   for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
358     ;
359   if (NextI == Insert)
360     return true;
361 
362   // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
363   // move.
364   if (WebAssembly::isCatch(DefI->getOpcode()))
365     return false;
366 
367   // Check for register dependencies.
368   SmallVector<unsigned, 4> MutableRegisters;
369   for (const MachineOperand &MO : DefI->operands()) {
370     if (!MO.isReg() || MO.isUndef())
371       continue;
372     Register Reg = MO.getReg();
373 
374     // If the register is dead here and at Insert, ignore it.
375     if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) &&
376         !Insert->readsRegister(Reg, /*TRI=*/nullptr))
377       continue;
378 
379     if (Reg.isPhysical()) {
380       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
381       // from moving down, and we've already checked for that.
382       if (Reg == WebAssembly::ARGUMENTS)
383         continue;
384       // If the physical register is never modified, ignore it.
385       if (!MRI.isPhysRegModified(Reg))
386         continue;
387       // Otherwise, it's a physical register with unknown liveness.
388       return false;
389     }
390 
391     // If one of the operands isn't in SSA form, it has different values at
392     // different times, and we need to make sure we don't move our use across
393     // a different def.
394     if (!MO.isDef() && !MRI.hasOneDef(Reg))
395       MutableRegisters.push_back(Reg);
396   }
397 
398   bool Read = false, Write = false, Effects = false, StackPointer = false;
399   query(*DefI, Read, Write, Effects, StackPointer);
400 
401   // If the instruction does not access memory and has no side effects, it has
402   // no additional dependencies.
403   bool HasMutableRegisters = !MutableRegisters.empty();
404   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
405     return true;
406 
407   // Scan through the intervening instructions between DefI and Insert.
408   MachineBasicBlock::const_iterator D(DefI), I(Insert);
409   for (--I; I != D; --I) {
410     bool InterveningRead = false;
411     bool InterveningWrite = false;
412     bool InterveningEffects = false;
413     bool InterveningStackPointer = false;
414     query(*I, InterveningRead, InterveningWrite, InterveningEffects,
415           InterveningStackPointer);
416     if (Effects && InterveningEffects)
417       return false;
418     if (Read && InterveningWrite)
419       return false;
420     if (Write && (InterveningRead || InterveningWrite))
421       return false;
422     if (StackPointer && InterveningStackPointer)
423       return false;
424 
425     for (unsigned Reg : MutableRegisters)
426       for (const MachineOperand &MO : I->operands())
427         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
428           return false;
429   }
430 
431   return true;
432 }
433 
434 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
oneUseDominatesOtherUses(unsigned Reg,const MachineOperand & OneUse,const MachineBasicBlock & MBB,const MachineRegisterInfo & MRI,const MachineDominatorTree & MDT,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI)435 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
436                                      const MachineBasicBlock &MBB,
437                                      const MachineRegisterInfo &MRI,
438                                      const MachineDominatorTree &MDT,
439                                      LiveIntervals &LIS,
440                                      WebAssemblyFunctionInfo &MFI) {
441   const LiveInterval &LI = LIS.getInterval(Reg);
442 
443   const MachineInstr *OneUseInst = OneUse.getParent();
444   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
445 
446   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
447     if (&Use == &OneUse)
448       continue;
449 
450     const MachineInstr *UseInst = Use.getParent();
451     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
452 
453     if (UseVNI != OneUseVNI)
454       continue;
455 
456     if (UseInst == OneUseInst) {
457       // Another use in the same instruction. We need to ensure that the one
458       // selected use happens "before" it.
459       if (&OneUse > &Use)
460         return false;
461     } else {
462       // Test that the use is dominated by the one selected use.
463       while (!MDT.dominates(OneUseInst, UseInst)) {
464         // Actually, dominating is over-conservative. Test that the use would
465         // happen after the one selected use in the stack evaluation order.
466         //
467         // This is needed as a consequence of using implicit local.gets for
468         // uses and implicit local.sets for defs.
469         if (UseInst->getDesc().getNumDefs() == 0)
470           return false;
471         const MachineOperand &MO = UseInst->getOperand(0);
472         if (!MO.isReg())
473           return false;
474         Register DefReg = MO.getReg();
475         if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
476           return false;
477         assert(MRI.hasOneNonDBGUse(DefReg));
478         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
479         const MachineInstr *NewUseInst = NewUse.getParent();
480         if (NewUseInst == OneUseInst) {
481           if (&OneUse > &NewUse)
482             return false;
483           break;
484         }
485         UseInst = NewUseInst;
486       }
487     }
488   }
489   return true;
490 }
491 
492 /// Get the appropriate tee opcode for the given register class.
getTeeOpcode(const TargetRegisterClass * RC)493 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
494   if (RC == &WebAssembly::I32RegClass)
495     return WebAssembly::TEE_I32;
496   if (RC == &WebAssembly::I64RegClass)
497     return WebAssembly::TEE_I64;
498   if (RC == &WebAssembly::F32RegClass)
499     return WebAssembly::TEE_F32;
500   if (RC == &WebAssembly::F64RegClass)
501     return WebAssembly::TEE_F64;
502   if (RC == &WebAssembly::V128RegClass)
503     return WebAssembly::TEE_V128;
504   if (RC == &WebAssembly::EXTERNREFRegClass)
505     return WebAssembly::TEE_EXTERNREF;
506   if (RC == &WebAssembly::FUNCREFRegClass)
507     return WebAssembly::TEE_FUNCREF;
508   if (RC == &WebAssembly::EXNREFRegClass)
509     return WebAssembly::TEE_EXNREF;
510   llvm_unreachable("Unexpected register class");
511 }
512 
513 // Shrink LI to its uses, cleaning up LI.
shrinkToUses(LiveInterval & LI,LiveIntervals & LIS)514 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
515   if (LIS.shrinkToUses(&LI)) {
516     SmallVector<LiveInterval *, 4> SplitLIs;
517     LIS.splitSeparateComponents(LI, SplitLIs);
518   }
519 }
520 
521 /// A single-use def in the same block with no intervening memory or register
522 /// dependencies; move the def down and nest it with the current instruction.
moveForSingleUse(unsigned Reg,MachineOperand & Op,MachineInstr * Def,MachineBasicBlock & MBB,MachineInstr * Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI)523 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
524                                       MachineInstr *Def, MachineBasicBlock &MBB,
525                                       MachineInstr *Insert, LiveIntervals &LIS,
526                                       WebAssemblyFunctionInfo &MFI,
527                                       MachineRegisterInfo &MRI) {
528   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
529 
530   WebAssemblyDebugValueManager DefDIs(Def);
531   DefDIs.sink(Insert);
532   LIS.handleMove(*Def);
533 
534   if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) {
535     // No one else is using this register for anything so we can just stackify
536     // it in place.
537     MFI.stackifyVReg(MRI, Reg);
538   } else {
539     // The register may have unrelated uses or defs; create a new register for
540     // just our one def and use so that we can stackify it.
541     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
542     Op.setReg(NewReg);
543     DefDIs.updateReg(NewReg);
544 
545     // Tell LiveIntervals about the new register.
546     LIS.createAndComputeVirtRegInterval(NewReg);
547 
548     // Tell LiveIntervals about the changes to the old register.
549     LiveInterval &LI = LIS.getInterval(Reg);
550     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
551                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
552                      /*RemoveDeadValNo=*/true);
553 
554     MFI.stackifyVReg(MRI, NewReg);
555 
556     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
557   }
558 
559   imposeStackOrdering(Def);
560   return Def;
561 }
562 
getPrevNonDebugInst(MachineInstr * MI)563 static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) {
564   for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode())
565     if (!I->isDebugInstr())
566       return I;
567   return nullptr;
568 }
569 
570 /// A trivially cloneable instruction; clone it and nest the new copy with the
571 /// current instruction.
rematerializeCheapDef(unsigned Reg,MachineOperand & Op,MachineInstr & Def,MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI,const WebAssemblyInstrInfo * TII,const WebAssemblyRegisterInfo * TRI)572 static MachineInstr *rematerializeCheapDef(
573     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
574     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
575     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
576     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
577   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
578   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
579 
580   WebAssemblyDebugValueManager DefDIs(&Def);
581 
582   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
583   DefDIs.cloneSink(&*Insert, NewReg);
584   Op.setReg(NewReg);
585   MachineInstr *Clone = getPrevNonDebugInst(&*Insert);
586   assert(Clone);
587   LIS.InsertMachineInstrInMaps(*Clone);
588   LIS.createAndComputeVirtRegInterval(NewReg);
589   MFI.stackifyVReg(MRI, NewReg);
590   imposeStackOrdering(Clone);
591 
592   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
593 
594   // Shrink the interval.
595   bool IsDead = MRI.use_empty(Reg);
596   if (!IsDead) {
597     LiveInterval &LI = LIS.getInterval(Reg);
598     shrinkToUses(LI, LIS);
599     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
600   }
601 
602   // If that was the last use of the original, delete the original.
603   if (IsDead) {
604     LLVM_DEBUG(dbgs() << " - Deleting original\n");
605     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
606     LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
607     LIS.removeInterval(Reg);
608     LIS.RemoveMachineInstrFromMaps(Def);
609     DefDIs.removeDef();
610   }
611 
612   return Clone;
613 }
614 
615 /// A multiple-use def in the same block with no intervening memory or register
616 /// dependencies; move the def down, nest it with the current instruction, and
617 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
618 /// this:
619 ///
620 ///    Reg = INST ...        // Def
621 ///    INST ..., Reg, ...    // Insert
622 ///    INST ..., Reg, ...
623 ///    INST ..., Reg, ...
624 ///
625 /// to this:
626 ///
627 ///    DefReg = INST ...     // Def (to become the new Insert)
628 ///    TeeReg, Reg = TEE_... DefReg
629 ///    INST ..., TeeReg, ... // Insert
630 ///    INST ..., Reg, ...
631 ///    INST ..., Reg, ...
632 ///
633 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
634 /// resulting code.
moveAndTeeForMultiUse(unsigned Reg,MachineOperand & Op,MachineInstr * Def,MachineBasicBlock & MBB,MachineInstr * Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI,const WebAssemblyInstrInfo * TII)635 static MachineInstr *moveAndTeeForMultiUse(
636     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
637     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
638     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
639   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
640 
641   const auto *RegClass = MRI.getRegClass(Reg);
642   Register TeeReg = MRI.createVirtualRegister(RegClass);
643   Register DefReg = MRI.createVirtualRegister(RegClass);
644 
645   // Move Def into place.
646   WebAssemblyDebugValueManager DefDIs(Def);
647   DefDIs.sink(Insert);
648   LIS.handleMove(*Def);
649 
650   // Create the Tee and attach the registers.
651   MachineOperand &DefMO = Def->getOperand(0);
652   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
653                               TII->get(getTeeOpcode(RegClass)), TeeReg)
654                           .addReg(Reg, RegState::Define)
655                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
656   Op.setReg(TeeReg);
657   DefDIs.updateReg(DefReg);
658   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
659   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
660 
661   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
662   LiveInterval &LI = LIS.getInterval(Reg);
663   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
664   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
665   I->start = TeeIdx;
666   ValNo->def = TeeIdx;
667   shrinkToUses(LI, LIS);
668 
669   // Finish stackifying the new regs.
670   LIS.createAndComputeVirtRegInterval(TeeReg);
671   LIS.createAndComputeVirtRegInterval(DefReg);
672   MFI.stackifyVReg(MRI, DefReg);
673   MFI.stackifyVReg(MRI, TeeReg);
674   imposeStackOrdering(Def);
675   imposeStackOrdering(Tee);
676 
677   // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone
678   // DBG_VALUEs for both of them, given that the latter will cancel the former
679   // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted
680   // to a local index in ExplicitLocals pass.
681   DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false);
682 
683   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
684   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
685   return Def;
686 }
687 
688 namespace {
689 /// A stack for walking the tree of instructions being built, visiting the
690 /// MachineOperands in DFS order.
691 class TreeWalkerState {
692   using mop_iterator = MachineInstr::mop_iterator;
693   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
694   using RangeTy = iterator_range<mop_reverse_iterator>;
695   SmallVector<RangeTy, 4> Worklist;
696 
697 public:
TreeWalkerState(MachineInstr * Insert)698   explicit TreeWalkerState(MachineInstr *Insert) {
699     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
700     if (!Range.empty())
701       Worklist.push_back(reverse(Range));
702   }
703 
done() const704   bool done() const { return Worklist.empty(); }
705 
pop()706   MachineOperand &pop() {
707     RangeTy &Range = Worklist.back();
708     MachineOperand &Op = *Range.begin();
709     Range = drop_begin(Range);
710     if (Range.empty())
711       Worklist.pop_back();
712     assert((Worklist.empty() || !Worklist.back().empty()) &&
713            "Empty ranges shouldn't remain in the worklist");
714     return Op;
715   }
716 
717   /// Push Instr's operands onto the stack to be visited.
pushOperands(MachineInstr * Instr)718   void pushOperands(MachineInstr *Instr) {
719     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
720     if (!Range.empty())
721       Worklist.push_back(reverse(Range));
722   }
723 
724   /// Some of Instr's operands are on the top of the stack; remove them and
725   /// re-insert them starting from the beginning (because we've commuted them).
resetTopOperands(MachineInstr * Instr)726   void resetTopOperands(MachineInstr *Instr) {
727     assert(hasRemainingOperands(Instr) &&
728            "Reseting operands should only be done when the instruction has "
729            "an operand still on the stack");
730     Worklist.back() = reverse(Instr->explicit_uses());
731   }
732 
733   /// Test whether Instr has operands remaining to be visited at the top of
734   /// the stack.
hasRemainingOperands(const MachineInstr * Instr) const735   bool hasRemainingOperands(const MachineInstr *Instr) const {
736     if (Worklist.empty())
737       return false;
738     const RangeTy &Range = Worklist.back();
739     return !Range.empty() && Range.begin()->getParent() == Instr;
740   }
741 
742   /// Test whether the given register is present on the stack, indicating an
743   /// operand in the tree that we haven't visited yet. Moving a definition of
744   /// Reg to a point in the tree after that would change its value.
745   ///
746   /// This is needed as a consequence of using implicit local.gets for
747   /// uses and implicit local.sets for defs.
isOnStack(unsigned Reg) const748   bool isOnStack(unsigned Reg) const {
749     for (const RangeTy &Range : Worklist)
750       for (const MachineOperand &MO : Range)
751         if (MO.isReg() && MO.getReg() == Reg)
752           return true;
753     return false;
754   }
755 };
756 
757 /// State to keep track of whether commuting is in flight or whether it's been
758 /// tried for the current instruction and didn't work.
759 class CommutingState {
760   /// There are effectively three states: the initial state where we haven't
761   /// started commuting anything and we don't know anything yet, the tentative
762   /// state where we've commuted the operands of the current instruction and are
763   /// revisiting it, and the declined state where we've reverted the operands
764   /// back to their original order and will no longer commute it further.
765   bool TentativelyCommuting = false;
766   bool Declined = false;
767 
768   /// During the tentative state, these hold the operand indices of the commuted
769   /// operands.
770   unsigned Operand0, Operand1;
771 
772 public:
773   /// Stackification for an operand was not successful due to ordering
774   /// constraints. If possible, and if we haven't already tried it and declined
775   /// it, commute Insert's operands and prepare to revisit it.
maybeCommute(MachineInstr * Insert,TreeWalkerState & TreeWalker,const WebAssemblyInstrInfo * TII)776   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
777                     const WebAssemblyInstrInfo *TII) {
778     if (TentativelyCommuting) {
779       assert(!Declined &&
780              "Don't decline commuting until you've finished trying it");
781       // Commuting didn't help. Revert it.
782       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
783       TentativelyCommuting = false;
784       Declined = true;
785     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
786       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
787       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
788       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
789         // Tentatively commute the operands and try again.
790         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
791         TreeWalker.resetTopOperands(Insert);
792         TentativelyCommuting = true;
793         Declined = false;
794       }
795     }
796   }
797 
798   /// Stackification for some operand was successful. Reset to the default
799   /// state.
reset()800   void reset() {
801     TentativelyCommuting = false;
802     Declined = false;
803   }
804 };
805 } // end anonymous namespace
806 
runOnMachineFunction(MachineFunction & MF)807 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
808   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
809                        "********** Function: "
810                     << MF.getName() << '\n');
811 
812   bool Changed = false;
813   MachineRegisterInfo &MRI = MF.getRegInfo();
814   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
815   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
816   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
817   auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
818   auto &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
819 
820   // Walk the instructions from the bottom up. Currently we don't look past
821   // block boundaries, and the blocks aren't ordered so the block visitation
822   // order isn't significant, but we may want to change this in the future.
823   for (MachineBasicBlock &MBB : MF) {
824     // Don't use a range-based for loop, because we modify the list as we're
825     // iterating over it and the end iterator may change.
826     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
827       MachineInstr *Insert = &*MII;
828       // Don't nest anything inside an inline asm, because we don't have
829       // constraints for $push inputs.
830       if (Insert->isInlineAsm())
831         continue;
832 
833       // Ignore debugging intrinsics.
834       if (Insert->isDebugValue())
835         continue;
836 
837       // Iterate through the inputs in reverse order, since we'll be pulling
838       // operands off the stack in LIFO order.
839       CommutingState Commuting;
840       TreeWalkerState TreeWalker(Insert);
841       while (!TreeWalker.done()) {
842         MachineOperand &Use = TreeWalker.pop();
843 
844         // We're only interested in explicit virtual register operands.
845         if (!Use.isReg())
846           continue;
847 
848         Register Reg = Use.getReg();
849         assert(Use.isUse() && "explicit_uses() should only iterate over uses");
850         assert(!Use.isImplicit() &&
851                "explicit_uses() should only iterate over explicit operands");
852         if (Reg.isPhysical())
853           continue;
854 
855         // Identify the definition for this register at this point.
856         MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
857         if (!DefI)
858           continue;
859 
860         // Don't nest an INLINE_ASM def into anything, because we don't have
861         // constraints for $pop outputs.
862         if (DefI->isInlineAsm())
863           continue;
864 
865         // Argument instructions represent live-in registers and not real
866         // instructions.
867         if (WebAssembly::isArgument(DefI->getOpcode()))
868           continue;
869 
870         MachineOperand *Def =
871             DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr);
872         assert(Def != nullptr);
873 
874         // Decide which strategy to take. Prefer to move a single-use value
875         // over cloning it, and prefer cloning over introducing a tee.
876         // For moving, we require the def to be in the same block as the use;
877         // this makes things simpler (LiveIntervals' handleMove function only
878         // supports intra-block moves) and it's MachineSink's job to catch all
879         // the sinking opportunities anyway.
880         bool SameBlock = DefI->getParent() == &MBB;
881         bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
882                        !TreeWalker.isOnStack(Reg);
883         if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) {
884           Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
885 
886           // If we are removing the frame base reg completely, remove the debug
887           // info as well.
888           // TODO: Encode this properly as a stackified value.
889           if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
890             MFI.clearFrameBaseVreg();
891         } else if (shouldRematerialize(*DefI, TII)) {
892           Insert =
893               rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
894                                     LIS, MFI, MRI, TII, TRI);
895         } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
896                                                        LIS, MFI)) {
897           Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
898                                          MRI, TII);
899         } else {
900           // We failed to stackify the operand. If the problem was ordering
901           // constraints, Commuting may be able to help.
902           if (!CanMove && SameBlock)
903             Commuting.maybeCommute(Insert, TreeWalker, TII);
904           // Proceed to the next operand.
905           continue;
906         }
907 
908         // Stackifying a multivalue def may unlock in-place stackification of
909         // subsequent defs. TODO: Handle the case where the consecutive uses are
910         // not all in the same instruction.
911         auto *SubsequentDef = Insert->defs().begin();
912         auto *SubsequentUse = &Use;
913         while (SubsequentDef != Insert->defs().end() &&
914                SubsequentUse != Use.getParent()->uses().end()) {
915           if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
916             break;
917           Register DefReg = SubsequentDef->getReg();
918           Register UseReg = SubsequentUse->getReg();
919           // TODO: This single-use restriction could be relaxed by using tees
920           if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg))
921             break;
922           MFI.stackifyVReg(MRI, DefReg);
923           ++SubsequentDef;
924           ++SubsequentUse;
925         }
926 
927         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
928         // to a constant 0 so that the def is explicit, and the push/pop
929         // correspondence is maintained.
930         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
931           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
932 
933         // We stackified an operand. Add the defining instruction's operands to
934         // the worklist stack now to continue to build an ever deeper tree.
935         Commuting.reset();
936         TreeWalker.pushOperands(Insert);
937       }
938 
939       // If we stackified any operands, skip over the tree to start looking for
940       // the next instruction we can build a tree on.
941       if (Insert != &*MII) {
942         imposeStackOrdering(&*MII);
943         MII = MachineBasicBlock::iterator(Insert).getReverse();
944         Changed = true;
945       }
946     }
947   }
948 
949   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
950   // that it never looks like a use-before-def.
951   if (Changed) {
952     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
953     for (MachineBasicBlock &MBB : MF)
954       MBB.addLiveIn(WebAssembly::VALUE_STACK);
955   }
956 
957 #ifndef NDEBUG
958   // Verify that pushes and pops are performed in LIFO order.
959   SmallVector<unsigned, 0> Stack;
960   for (MachineBasicBlock &MBB : MF) {
961     for (MachineInstr &MI : MBB) {
962       if (MI.isDebugInstr())
963         continue;
964       for (MachineOperand &MO : reverse(MI.explicit_uses())) {
965         if (!MO.isReg())
966           continue;
967         Register Reg = MO.getReg();
968         if (MFI.isVRegStackified(Reg))
969           assert(Stack.pop_back_val() == Reg &&
970                  "Register stack pop should be paired with a push");
971       }
972       for (MachineOperand &MO : MI.defs()) {
973         if (!MO.isReg())
974           continue;
975         Register Reg = MO.getReg();
976         if (MFI.isVRegStackified(Reg))
977           Stack.push_back(MO.getReg());
978       }
979     }
980     // TODO: Generalize this code to support keeping values on the stack across
981     // basic block boundaries.
982     assert(Stack.empty() &&
983            "Register stack pushes and pops should be balanced");
984   }
985 #endif
986 
987   return Changed;
988 }
989