xref: /linux/include/linux/crypto.h (revision fce8b8d5986b76a4fdd062e3eec1bb6420fee6c5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/completion.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/refcount.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 
22 /*
23  * Algorithm masks and types.
24  */
25 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
26 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
27 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
28 #define CRYPTO_ALG_TYPE_LSKCIPHER	0x00000004
29 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
30 #define CRYPTO_ALG_TYPE_AKCIPHER	0x00000006
31 #define CRYPTO_ALG_TYPE_SIG		0x00000007
32 #define CRYPTO_ALG_TYPE_KPP		0x00000008
33 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
34 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
35 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
36 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
37 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
38 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
39 
40 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
41 
42 #define CRYPTO_ALG_LARVAL		0x00000010
43 #define CRYPTO_ALG_DEAD			0x00000020
44 #define CRYPTO_ALG_DYING		0x00000040
45 #define CRYPTO_ALG_ASYNC		0x00000080
46 
47 /*
48  * Set if the algorithm (or an algorithm which it uses) requires another
49  * algorithm of the same type to handle corner cases.
50  */
51 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
52 
53 /*
54  * Set if the algorithm has passed automated run-time testing.  Note that
55  * if there is no run-time testing for a given algorithm it is considered
56  * to have passed.
57  */
58 
59 #define CRYPTO_ALG_TESTED		0x00000400
60 
61 /*
62  * Set if the algorithm is an instance that is built from templates.
63  */
64 #define CRYPTO_ALG_INSTANCE		0x00000800
65 
66 /* Set this bit if the algorithm provided is hardware accelerated but
67  * not available to userspace via instruction set or so.
68  */
69 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
70 
71 /*
72  * Mark a cipher as a service implementation only usable by another
73  * cipher and never by a normal user of the kernel crypto API
74  */
75 #define CRYPTO_ALG_INTERNAL		0x00002000
76 
77 /*
78  * Set if the algorithm has a ->setkey() method but can be used without
79  * calling it first, i.e. there is a default key.
80  */
81 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
82 
83 /*
84  * Don't trigger module loading
85  */
86 #define CRYPTO_NOLOAD			0x00008000
87 
88 /*
89  * The algorithm may allocate memory during request processing, i.e. during
90  * encryption, decryption, or hashing.  Users can request an algorithm with this
91  * flag unset if they can't handle memory allocation failures.
92  *
93  * This flag is currently only implemented for algorithms of type "skcipher",
94  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
95  * have this flag set even if they allocate memory.
96  *
97  * In some edge cases, algorithms can allocate memory regardless of this flag.
98  * To avoid these cases, users must obey the following usage constraints:
99  *    skcipher:
100  *	- The IV buffer and all scatterlist elements must be aligned to the
101  *	  algorithm's alignmask.
102  *	- If the data were to be divided into chunks of size
103  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
104  *	  chunk can cross a page boundary or a scatterlist element boundary.
105  *    aead:
106  *	- The IV buffer and all scatterlist elements must be aligned to the
107  *	  algorithm's alignmask.
108  *	- The first scatterlist element must contain all the associated data,
109  *	  and its pages must be !PageHighMem.
110  *	- If the plaintext/ciphertext were to be divided into chunks of size
111  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
112  *	  can cross a page boundary or a scatterlist element boundary.
113  *    ahash:
114  *	- crypto_ahash_finup() must not be used unless the algorithm implements
115  *	  ->finup() natively.
116  */
117 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
118 
119 /*
120  * Mark an algorithm as a service implementation only usable by a
121  * template and never by a normal user of the kernel crypto API.
122  * This is intended to be used by algorithms that are themselves
123  * not FIPS-approved but may instead be used to implement parts of
124  * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
125  */
126 #define CRYPTO_ALG_FIPS_INTERNAL	0x00020000
127 
128 /* Set if the algorithm supports request chains and virtual addresses. */
129 #define CRYPTO_ALG_REQ_CHAIN		0x00040000
130 
131 /*
132  * Transform masks and values (for crt_flags).
133  */
134 #define CRYPTO_TFM_NEED_KEY		0x00000001
135 
136 #define CRYPTO_TFM_REQ_MASK		0x000fff00
137 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
138 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
139 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
140 #define CRYPTO_TFM_REQ_ON_STACK		0x00000800
141 
142 /*
143  * Miscellaneous stuff.
144  */
145 #define CRYPTO_MAX_ALG_NAME		128
146 
147 /*
148  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
149  * declaration) is used to ensure that the crypto_tfm context structure is
150  * aligned correctly for the given architecture so that there are no alignment
151  * faults for C data types.  On architectures that support non-cache coherent
152  * DMA, such as ARM or arm64, it also takes into account the minimal alignment
153  * that is required to ensure that the context struct member does not share any
154  * cachelines with the rest of the struct. This is needed to ensure that cache
155  * maintenance for non-coherent DMA (cache invalidation in particular) does not
156  * affect data that may be accessed by the CPU concurrently.
157  */
158 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
159 
160 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
161 
162 struct crypto_tfm;
163 struct crypto_type;
164 struct module;
165 
166 typedef void (*crypto_completion_t)(void *req, int err);
167 
168 /**
169  * DOC: Block Cipher Context Data Structures
170  *
171  * These data structures define the operating context for each block cipher
172  * type.
173  */
174 
175 struct crypto_async_request {
176 	struct list_head list;
177 	crypto_completion_t complete;
178 	void *data;
179 	struct crypto_tfm *tfm;
180 
181 	u32 flags;
182 	int err;
183 };
184 
185 /**
186  * DOC: Block Cipher Algorithm Definitions
187  *
188  * These data structures define modular crypto algorithm implementations,
189  * managed via crypto_register_alg() and crypto_unregister_alg().
190  */
191 
192 /**
193  * struct cipher_alg - single-block symmetric ciphers definition
194  * @cia_min_keysize: Minimum key size supported by the transformation. This is
195  *		     the smallest key length supported by this transformation
196  *		     algorithm. This must be set to one of the pre-defined
197  *		     values as this is not hardware specific. Possible values
198  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
199  *		     include/crypto/
200  * @cia_max_keysize: Maximum key size supported by the transformation. This is
201  *		    the largest key length supported by this transformation
202  *		    algorithm. This must be set to one of the pre-defined values
203  *		    as this is not hardware specific. Possible values for this
204  *		    field can be found via git grep "_MAX_KEY_SIZE"
205  *		    include/crypto/
206  * @cia_setkey: Set key for the transformation. This function is used to either
207  *	        program a supplied key into the hardware or store the key in the
208  *	        transformation context for programming it later. Note that this
209  *	        function does modify the transformation context. This function
210  *	        can be called multiple times during the existence of the
211  *	        transformation object, so one must make sure the key is properly
212  *	        reprogrammed into the hardware. This function is also
213  *	        responsible for checking the key length for validity.
214  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
215  *		 single block of data, which must be @cra_blocksize big. This
216  *		 always operates on a full @cra_blocksize and it is not possible
217  *		 to encrypt a block of smaller size. The supplied buffers must
218  *		 therefore also be at least of @cra_blocksize size. Both the
219  *		 input and output buffers are always aligned to @cra_alignmask.
220  *		 In case either of the input or output buffer supplied by user
221  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
222  *		 API will re-align the buffers. The re-alignment means that a
223  *		 new buffer will be allocated, the data will be copied into the
224  *		 new buffer, then the processing will happen on the new buffer,
225  *		 then the data will be copied back into the original buffer and
226  *		 finally the new buffer will be freed. In case a software
227  *		 fallback was put in place in the @cra_init call, this function
228  *		 might need to use the fallback if the algorithm doesn't support
229  *		 all of the key sizes. In case the key was stored in
230  *		 transformation context, the key might need to be re-programmed
231  *		 into the hardware in this function. This function shall not
232  *		 modify the transformation context, as this function may be
233  *		 called in parallel with the same transformation object.
234  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
235  *		 @cia_encrypt, and the conditions are exactly the same.
236  *
237  * All fields are mandatory and must be filled.
238  */
239 struct cipher_alg {
240 	unsigned int cia_min_keysize;
241 	unsigned int cia_max_keysize;
242 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
243 	                  unsigned int keylen);
244 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
245 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
246 };
247 
248 #define cra_cipher	cra_u.cipher
249 
250 /**
251  * struct crypto_alg - definition of a cryptograpic cipher algorithm
252  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
253  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
254  *	       used for fine-tuning the description of the transformation
255  *	       algorithm.
256  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
257  *		   of the smallest possible unit which can be transformed with
258  *		   this algorithm. The users must respect this value.
259  *		   In case of HASH transformation, it is possible for a smaller
260  *		   block than @cra_blocksize to be passed to the crypto API for
261  *		   transformation, in case of any other transformation type, an
262  * 		   error will be returned upon any attempt to transform smaller
263  *		   than @cra_blocksize chunks.
264  * @cra_ctxsize: Size of the operational context of the transformation. This
265  *		 value informs the kernel crypto API about the memory size
266  *		 needed to be allocated for the transformation context.
267  * @cra_alignmask: For cipher, skcipher, lskcipher, and aead algorithms this is
268  *		   1 less than the alignment, in bytes, that the algorithm
269  *		   implementation requires for input and output buffers.  When
270  *		   the crypto API is invoked with buffers that are not aligned
271  *		   to this alignment, the crypto API automatically utilizes
272  *		   appropriately aligned temporary buffers to comply with what
273  *		   the algorithm needs.  (For scatterlists this happens only if
274  *		   the algorithm uses the skcipher_walk helper functions.)  This
275  *		   misalignment handling carries a performance penalty, so it is
276  *		   preferred that algorithms do not set a nonzero alignmask.
277  *		   Also, crypto API users may wish to allocate buffers aligned
278  *		   to the alignmask of the algorithm being used, in order to
279  *		   avoid the API having to realign them.  Note: the alignmask is
280  *		   not supported for hash algorithms and is always 0 for them.
281  * @cra_priority: Priority of this transformation implementation. In case
282  *		  multiple transformations with same @cra_name are available to
283  *		  the Crypto API, the kernel will use the one with highest
284  *		  @cra_priority.
285  * @cra_name: Generic name (usable by multiple implementations) of the
286  *	      transformation algorithm. This is the name of the transformation
287  *	      itself. This field is used by the kernel when looking up the
288  *	      providers of particular transformation.
289  * @cra_driver_name: Unique name of the transformation provider. This is the
290  *		     name of the provider of the transformation. This can be any
291  *		     arbitrary value, but in the usual case, this contains the
292  *		     name of the chip or provider and the name of the
293  *		     transformation algorithm.
294  * @cra_type: Type of the cryptographic transformation. This is a pointer to
295  *	      struct crypto_type, which implements callbacks common for all
296  *	      transformation types. There are multiple options, such as
297  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
298  *	      This field might be empty. In that case, there are no common
299  *	      callbacks. This is the case for: cipher.
300  * @cra_u: Callbacks implementing the transformation. This is a union of
301  *	   multiple structures. Depending on the type of transformation selected
302  *	   by @cra_type and @cra_flags above, the associated structure must be
303  *	   filled with callbacks. This field might be empty. This is the case
304  *	   for ahash, shash.
305  * @cra_init: Initialize the cryptographic transformation object. This function
306  *	      is used to initialize the cryptographic transformation object.
307  *	      This function is called only once at the instantiation time, right
308  *	      after the transformation context was allocated. In case the
309  *	      cryptographic hardware has some special requirements which need to
310  *	      be handled by software, this function shall check for the precise
311  *	      requirement of the transformation and put any software fallbacks
312  *	      in place.
313  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
314  *	      counterpart to @cra_init, used to remove various changes set in
315  *	      @cra_init.
316  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
317  *		  definition. See @struct @cipher_alg.
318  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
319  * @cra_list: internally used
320  * @cra_users: internally used
321  * @cra_refcnt: internally used
322  * @cra_destroy: internally used
323  *
324  * The struct crypto_alg describes a generic Crypto API algorithm and is common
325  * for all of the transformations. Any variable not documented here shall not
326  * be used by a cipher implementation as it is internal to the Crypto API.
327  */
328 struct crypto_alg {
329 	struct list_head cra_list;
330 	struct list_head cra_users;
331 
332 	u32 cra_flags;
333 	unsigned int cra_blocksize;
334 	unsigned int cra_ctxsize;
335 	unsigned int cra_alignmask;
336 
337 	int cra_priority;
338 	refcount_t cra_refcnt;
339 
340 	char cra_name[CRYPTO_MAX_ALG_NAME];
341 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
342 
343 	const struct crypto_type *cra_type;
344 
345 	union {
346 		struct cipher_alg cipher;
347 	} cra_u;
348 
349 	int (*cra_init)(struct crypto_tfm *tfm);
350 	void (*cra_exit)(struct crypto_tfm *tfm);
351 	void (*cra_destroy)(struct crypto_alg *alg);
352 
353 	struct module *cra_module;
354 } CRYPTO_MINALIGN_ATTR;
355 
356 /*
357  * A helper struct for waiting for completion of async crypto ops
358  */
359 struct crypto_wait {
360 	struct completion completion;
361 	int err;
362 };
363 
364 /*
365  * Macro for declaring a crypto op async wait object on stack
366  */
367 #define DECLARE_CRYPTO_WAIT(_wait) \
368 	struct crypto_wait _wait = { \
369 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
370 
371 /*
372  * Async ops completion helper functioons
373  */
374 void crypto_req_done(void *req, int err);
375 
376 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
377 {
378 	switch (err) {
379 	case -EINPROGRESS:
380 	case -EBUSY:
381 		wait_for_completion(&wait->completion);
382 		reinit_completion(&wait->completion);
383 		err = wait->err;
384 		break;
385 	}
386 
387 	return err;
388 }
389 
390 static inline void crypto_init_wait(struct crypto_wait *wait)
391 {
392 	init_completion(&wait->completion);
393 }
394 
395 /*
396  * Algorithm query interface.
397  */
398 int crypto_has_alg(const char *name, u32 type, u32 mask);
399 
400 /*
401  * Transforms: user-instantiated objects which encapsulate algorithms
402  * and core processing logic.  Managed via crypto_alloc_*() and
403  * crypto_free_*(), as well as the various helpers below.
404  */
405 
406 struct crypto_tfm {
407 	refcount_t refcnt;
408 
409 	u32 crt_flags;
410 
411 	int node;
412 
413 	void (*exit)(struct crypto_tfm *tfm);
414 
415 	struct crypto_alg *__crt_alg;
416 
417 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
418 };
419 
420 /*
421  * Transform user interface.
422  */
423 
424 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
425 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
426 
427 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
428 {
429 	return crypto_destroy_tfm(tfm, tfm);
430 }
431 
432 /*
433  * Transform helpers which query the underlying algorithm.
434  */
435 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
436 {
437 	return tfm->__crt_alg->cra_name;
438 }
439 
440 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
441 {
442 	return tfm->__crt_alg->cra_driver_name;
443 }
444 
445 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
446 {
447 	return tfm->__crt_alg->cra_blocksize;
448 }
449 
450 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
451 {
452 	return tfm->__crt_alg->cra_alignmask;
453 }
454 
455 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
456 {
457 	return tfm->crt_flags;
458 }
459 
460 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
461 {
462 	tfm->crt_flags |= flags;
463 }
464 
465 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
466 {
467 	tfm->crt_flags &= ~flags;
468 }
469 
470 static inline unsigned int crypto_tfm_ctx_alignment(void)
471 {
472 	struct crypto_tfm *tfm;
473 	return __alignof__(tfm->__crt_ctx);
474 }
475 
476 static inline void crypto_reqchain_init(struct crypto_async_request *req)
477 {
478 	req->err = -EINPROGRESS;
479 	INIT_LIST_HEAD(&req->list);
480 }
481 
482 static inline void crypto_request_chain(struct crypto_async_request *req,
483 					struct crypto_async_request *head)
484 {
485 	req->err = -EINPROGRESS;
486 	list_add_tail(&req->list, &head->list);
487 }
488 
489 static inline bool crypto_tfm_is_async(struct crypto_tfm *tfm)
490 {
491 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
492 }
493 
494 #endif	/* _LINUX_CRYPTO_H */
495 
496