1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/types.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/endian.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #ifdef illumos
100 #include <sys/cred_impl.h>
101 #include <sys/procfs_isa.h>
102 #endif
103 #include <sys/taskq.h>
104 #ifdef illumos
105 #include <sys/mkdev.h>
106 #include <sys/kdi.h>
107 #endif
108 #include <sys/zone.h>
109 #include <sys/socket.h>
110 #include <netinet/in.h>
111 #include "strtolctype.h"
112
113 /* FreeBSD includes: */
114 #ifndef illumos
115 #include <sys/callout.h>
116 #include <sys/ctype.h>
117 #include <sys/eventhandler.h>
118 #include <sys/limits.h>
119 #include <sys/linker.h>
120 #include <sys/kdb.h>
121 #include <sys/jail.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131
132
133 #include <sys/mount.h>
134 #undef AT_UID
135 #undef AT_GID
136 #include <sys/vnode.h>
137 #include <sys/cred.h>
138
139 #include <sys/dtrace_bsd.h>
140
141 #include <netinet/in.h>
142
143 #include "dtrace_cddl.h"
144 #include "dtrace_debug.c"
145 #endif
146
147 #include "dtrace_xoroshiro128_plus.h"
148
149 /*
150 * DTrace Tunable Variables
151 *
152 * The following variables may be tuned by adding a line to /etc/system that
153 * includes both the name of the DTrace module ("dtrace") and the name of the
154 * variable. For example:
155 *
156 * set dtrace:dtrace_destructive_disallow = 1
157 *
158 * In general, the only variables that one should be tuning this way are those
159 * that affect system-wide DTrace behavior, and for which the default behavior
160 * is undesirable. Most of these variables are tunable on a per-consumer
161 * basis using DTrace options, and need not be tuned on a system-wide basis.
162 * When tuning these variables, avoid pathological values; while some attempt
163 * is made to verify the integrity of these variables, they are not considered
164 * part of the supported interface to DTrace, and they are therefore not
165 * checked comprehensively. Further, these variables should not be tuned
166 * dynamically via "mdb -kw" or other means; they should only be tuned via
167 * /etc/system.
168 */
169 int dtrace_destructive_disallow = 0;
170 #ifndef illumos
171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
172 int dtrace_allow_destructive = 1;
173 #endif
174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175 size_t dtrace_difo_maxsize = (256 * 1024);
176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
177 size_t dtrace_statvar_maxsize = (16 * 1024);
178 size_t dtrace_actions_max = (16 * 1024);
179 size_t dtrace_retain_max = 1024;
180 dtrace_optval_t dtrace_helper_actions_max = 128;
181 dtrace_optval_t dtrace_helper_providers_max = 32;
182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
183 size_t dtrace_strsize_default = 256;
184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
191 dtrace_optval_t dtrace_nspec_default = 1;
192 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
193 dtrace_optval_t dtrace_stackframes_default = 20;
194 dtrace_optval_t dtrace_ustackframes_default = 20;
195 dtrace_optval_t dtrace_jstackframes_default = 50;
196 dtrace_optval_t dtrace_jstackstrsize_default = 512;
197 int dtrace_msgdsize_max = 128;
198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
200 int dtrace_devdepth_max = 32;
201 int dtrace_err_verbose;
202 hrtime_t dtrace_deadman_interval = NANOSEC;
203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206 #ifndef illumos
207 int dtrace_memstr_max = 4096;
208 int dtrace_bufsize_max_frac = 128;
209 #endif
210
211 /*
212 * DTrace External Variables
213 *
214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215 * available to DTrace consumers via the backtick (`) syntax. One of these,
216 * dtrace_zero, is made deliberately so: it is provided as a source of
217 * well-known, zero-filled memory. While this variable is not documented,
218 * it is used by some translators as an implementation detail.
219 */
220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
221
222 /*
223 * DTrace Internal Variables
224 */
225 #ifdef illumos
226 static dev_info_t *dtrace_devi; /* device info */
227 #endif
228 #ifdef illumos
229 static vmem_t *dtrace_arena; /* probe ID arena */
230 static vmem_t *dtrace_minor; /* minor number arena */
231 #else
232 static taskq_t *dtrace_taskq; /* task queue */
233 static struct unrhdr *dtrace_arena; /* Probe ID number. */
234 #endif
235 static dtrace_probe_t **dtrace_probes; /* array of all probes */
236 static int dtrace_nprobes; /* number of probes */
237 static dtrace_provider_t *dtrace_provider; /* provider list */
238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
239 static int dtrace_opens; /* number of opens */
240 static int dtrace_helpers; /* number of helpers */
241 static int dtrace_getf; /* number of unpriv getf()s */
242 #ifdef illumos
243 static void *dtrace_softstate; /* softstate pointer */
244 #endif
245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
249 static int dtrace_toxranges; /* number of toxic ranges */
250 static int dtrace_toxranges_max; /* size of toxic range array */
251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
254 static kthread_t *dtrace_panicked; /* panicking thread */
255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
256 static dtrace_genid_t dtrace_probegen; /* current probe generation */
257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
262 #ifndef illumos
263 static struct mtx dtrace_unr_mtx;
264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265 static eventhandler_tag dtrace_kld_load_tag;
266 static eventhandler_tag dtrace_kld_unload_try_tag;
267 #endif
268
269 /*
270 * DTrace Locking
271 * DTrace is protected by three (relatively coarse-grained) locks:
272 *
273 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274 * including enabling state, probes, ECBs, consumer state, helper state,
275 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
276 * probe context is lock-free -- synchronization is handled via the
277 * dtrace_sync() cross call mechanism.
278 *
279 * (2) dtrace_provider_lock is required when manipulating provider state, or
280 * when provider state must be held constant.
281 *
282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283 * when meta provider state must be held constant.
284 *
285 * The lock ordering between these three locks is dtrace_meta_lock before
286 * dtrace_provider_lock before dtrace_lock. (In particular, there are
287 * several places where dtrace_provider_lock is held by the framework as it
288 * calls into the providers -- which then call back into the framework,
289 * grabbing dtrace_lock.)
290 *
291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293 * role as a coarse-grained lock; it is acquired before both of these locks.
294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297 * acquired _between_ dtrace_provider_lock and dtrace_lock.
298 */
299 static kmutex_t dtrace_lock; /* probe state lock */
300 static kmutex_t dtrace_provider_lock; /* provider state lock */
301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
302
303 #ifndef illumos
304 /* XXX FreeBSD hacks. */
305 #define cr_suid cr_svuid
306 #define cr_sgid cr_svgid
307 #define ipaddr_t in_addr_t
308 #define mod_modname pathname
309 #define vuprintf vprintf
310 #ifndef crgetzoneid
311 #define crgetzoneid(_a) 0
312 #endif
313 #define ttoproc(_a) ((_a)->td_proc)
314 #define SNOCD 0
315 #define CPU_ON_INTR(_a) 0
316
317 #define PRIV_EFFECTIVE (1 << 0)
318 #define PRIV_DTRACE_KERNEL (1 << 1)
319 #define PRIV_DTRACE_PROC (1 << 2)
320 #define PRIV_DTRACE_USER (1 << 3)
321 #define PRIV_PROC_OWNER (1 << 4)
322 #define PRIV_PROC_ZONE (1 << 5)
323 #define PRIV_ALL ~0
324
325 SYSCTL_DECL(_debug_dtrace);
326 SYSCTL_DECL(_kern_dtrace);
327 #endif
328
329 #ifdef illumos
330 #define curcpu CPU->cpu_id
331 #endif
332
333
334 /*
335 * DTrace Provider Variables
336 *
337 * These are the variables relating to DTrace as a provider (that is, the
338 * provider of the BEGIN, END, and ERROR probes).
339 */
340 static dtrace_pattr_t dtrace_provider_attr = {
341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 };
347
348 static void
dtrace_nullop(void)349 dtrace_nullop(void)
350 {}
351
352 static dtrace_pops_t dtrace_provider_ops = {
353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop,
355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 .dtps_getargdesc = NULL,
360 .dtps_getargval = NULL,
361 .dtps_usermode = NULL,
362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363 };
364
365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
366 static dtrace_id_t dtrace_probeid_end; /* special END probe */
367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
368
369 /*
370 * DTrace Helper Tracing Variables
371 *
372 * These variables should be set dynamically to enable helper tracing. The
373 * only variables that should be set are dtrace_helptrace_enable (which should
374 * be set to a non-zero value to allocate helper tracing buffers on the next
375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376 * non-zero value to deallocate helper tracing buffers on the next close of
377 * /dev/dtrace). When (and only when) helper tracing is disabled, the
378 * buffer size may also be set via dtrace_helptrace_bufsize.
379 */
380 int dtrace_helptrace_enable = 0;
381 int dtrace_helptrace_disable = 0;
382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383 uint32_t dtrace_helptrace_nlocals;
384 static dtrace_helptrace_t *dtrace_helptrace_buffer;
385 static uint32_t dtrace_helptrace_next = 0;
386 static int dtrace_helptrace_wrapped = 0;
387
388 /*
389 * DTrace Error Hashing
390 *
391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392 * table. This is very useful for checking coverage of tests that are
393 * expected to induce DIF or DOF processing errors, and may be useful for
394 * debugging problems in the DIF code generator or in DOF generation . The
395 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396 */
397 #ifdef DEBUG
398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
399 static const char *dtrace_errlast;
400 static kthread_t *dtrace_errthread;
401 static kmutex_t dtrace_errlock;
402 #endif
403
404 /*
405 * DTrace Macros and Constants
406 *
407 * These are various macros that are useful in various spots in the
408 * implementation, along with a few random constants that have no meaning
409 * outside of the implementation. There is no real structure to this cpp
410 * mishmash -- but is there ever?
411 */
412 #define DTRACE_HASHSTR(hash, probe) \
413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414
415 #define DTRACE_HASHNEXT(hash, probe) \
416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417
418 #define DTRACE_HASHPREV(hash, probe) \
419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420
421 #define DTRACE_HASHEQ(hash, lhs, rhs) \
422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424
425 #define DTRACE_AGGHASHSIZE_SLEW 17
426
427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
428
429 /*
430 * The key for a thread-local variable consists of the lower 61 bits of the
431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433 * equal to a variable identifier. This is necessary (but not sufficient) to
434 * assure that global associative arrays never collide with thread-local
435 * variables. To guarantee that they cannot collide, we must also define the
436 * order for keying dynamic variables. That order is:
437 *
438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439 *
440 * Because the variable-key and the tls-key are in orthogonal spaces, there is
441 * no way for a global variable key signature to match a thread-local key
442 * signature.
443 */
444 #ifdef illumos
445 #define DTRACE_TLS_THRKEY(where) { \
446 uint_t intr = 0; \
447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448 for (; actv; actv >>= 1) \
449 intr++; \
450 ASSERT(intr < (1 << 3)); \
451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #else
455 #define DTRACE_TLS_THRKEY(where) { \
456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457 uint_t intr = 0; \
458 uint_t actv = _c->cpu_intr_actv; \
459 for (; actv; actv >>= 1) \
460 intr++; \
461 ASSERT(intr < (1 << 3)); \
462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464 }
465 #endif
466
467 #define DT_BSWAP_8(x) ((x) & 0xff)
468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471
472 #define DT_MASK_LO 0x00000000FFFFFFFFULL
473
474 #define DTRACE_STORE(type, tomax, offset, what) \
475 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
476
477 #if !defined(__x86) && !defined(__aarch64__)
478 #define DTRACE_ALIGNCHECK(addr, size, flags) \
479 if (addr & (size - 1)) { \
480 *flags |= CPU_DTRACE_BADALIGN; \
481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
482 return (0); \
483 }
484 #else
485 #define DTRACE_ALIGNCHECK(addr, size, flags)
486 #endif
487
488 /*
489 * Test whether a range of memory starting at testaddr of size testsz falls
490 * within the range of memory described by addr, sz. We take care to avoid
491 * problems with overflow and underflow of the unsigned quantities, and
492 * disallow all negative sizes. Ranges of size 0 are allowed.
493 */
494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497 (testaddr) + (testsz) >= (testaddr))
498
499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
500 do { \
501 if ((remp) != NULL) { \
502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
503 } \
504 } while (0)
505
506
507 /*
508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
509 * alloc_sz on the righthand side of the comparison in order to avoid overflow
510 * or underflow in the comparison with it. This is simpler than the INRANGE
511 * check above, because we know that the dtms_scratch_ptr is valid in the
512 * range. Allocations of size zero are allowed.
513 */
514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516 (mstate)->dtms_scratch_ptr >= (alloc_sz))
517
518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519 ((ptr) >= (mstate)->dtms_scratch_base && \
520 (ptr) <= \
521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522
523 #define DTRACE_LOADFUNC(bits) \
524 /*CSTYLED*/ \
525 uint##bits##_t \
526 dtrace_load##bits(uintptr_t addr) \
527 { \
528 size_t size = bits / NBBY; \
529 /*CSTYLED*/ \
530 uint##bits##_t rval; \
531 int i; \
532 volatile uint16_t *flags = (volatile uint16_t *) \
533 &cpu_core[curcpu].cpuc_dtrace_flags; \
534 \
535 DTRACE_ALIGNCHECK(addr, size, flags); \
536 \
537 for (i = 0; i < dtrace_toxranges; i++) { \
538 if (addr >= dtrace_toxrange[i].dtt_limit) \
539 continue; \
540 \
541 if (addr + size <= dtrace_toxrange[i].dtt_base) \
542 continue; \
543 \
544 /* \
545 * This address falls within a toxic region; return 0. \
546 */ \
547 *flags |= CPU_DTRACE_BADADDR; \
548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
549 return (0); \
550 } \
551 \
552 *flags |= CPU_DTRACE_NOFAULT; \
553 /*CSTYLED*/ \
554 rval = *((volatile uint##bits##_t *)addr); \
555 *flags &= ~CPU_DTRACE_NOFAULT; \
556 \
557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
558 }
559
560 #ifdef _LP64
561 #define dtrace_loadptr dtrace_load64
562 #else
563 #define dtrace_loadptr dtrace_load32
564 #endif
565
566 #define DTRACE_DYNHASH_FREE 0
567 #define DTRACE_DYNHASH_SINK 1
568 #define DTRACE_DYNHASH_VALID 2
569
570 #define DTRACE_MATCH_NEXT 0
571 #define DTRACE_MATCH_DONE 1
572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
573 #define DTRACE_STATE_ALIGN 64
574
575 #define DTRACE_FLAGS2FLT(flags) \
576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
585 DTRACEFLT_UNKNOWN)
586
587 #define DTRACEACT_ISSTRING(act) \
588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
590
591 /* Function prototype definitions: */
592 static size_t dtrace_strlen(const char *, size_t);
593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
594 static void dtrace_enabling_provide(dtrace_provider_t *);
595 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
596 static void dtrace_enabling_matchall(void);
597 static void dtrace_enabling_reap(void);
598 static dtrace_state_t *dtrace_anon_grab(void);
599 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
600 dtrace_state_t *, uint64_t, uint64_t);
601 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
602 static void dtrace_buffer_drop(dtrace_buffer_t *);
603 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
604 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
605 dtrace_state_t *, dtrace_mstate_t *);
606 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
607 dtrace_optval_t);
608 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
609 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
610 uint16_t dtrace_load16(uintptr_t);
611 uint32_t dtrace_load32(uintptr_t);
612 uint64_t dtrace_load64(uintptr_t);
613 uint8_t dtrace_load8(uintptr_t);
614 void dtrace_dynvar_clean(dtrace_dstate_t *);
615 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
616 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
617 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
618 static int dtrace_priv_proc(dtrace_state_t *);
619 static void dtrace_getf_barrier(void);
620 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
621 dtrace_mstate_t *, dtrace_vstate_t *);
622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
623 dtrace_mstate_t *, dtrace_vstate_t *);
624
625 /*
626 * DTrace Probe Context Functions
627 *
628 * These functions are called from probe context. Because probe context is
629 * any context in which C may be called, arbitrarily locks may be held,
630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
631 * As a result, functions called from probe context may only call other DTrace
632 * support functions -- they may not interact at all with the system at large.
633 * (Note that the ASSERT macro is made probe-context safe by redefining it in
634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
635 * loads are to be performed from probe context, they _must_ be in terms of
636 * the safe dtrace_load*() variants.
637 *
638 * Some functions in this block are not actually called from probe context;
639 * for these functions, there will be a comment above the function reading
640 * "Note: not called from probe context."
641 */
642 void
dtrace_panic(const char * format,...)643 dtrace_panic(const char *format, ...)
644 {
645 va_list alist;
646
647 va_start(alist, format);
648 #ifdef __FreeBSD__
649 vpanic(format, alist);
650 #else
651 dtrace_vpanic(format, alist);
652 #endif
653 va_end(alist);
654 }
655
656 int
dtrace_assfail(const char * a,const char * f,int l)657 dtrace_assfail(const char *a, const char *f, int l)
658 {
659 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
660
661 /*
662 * We just need something here that even the most clever compiler
663 * cannot optimize away.
664 */
665 return (a[(uintptr_t)f]);
666 }
667
668 /*
669 * Atomically increment a specified error counter from probe context.
670 */
671 static void
dtrace_error(uint32_t * counter)672 dtrace_error(uint32_t *counter)
673 {
674 /*
675 * Most counters stored to in probe context are per-CPU counters.
676 * However, there are some error conditions that are sufficiently
677 * arcane that they don't merit per-CPU storage. If these counters
678 * are incremented concurrently on different CPUs, scalability will be
679 * adversely affected -- but we don't expect them to be white-hot in a
680 * correctly constructed enabling...
681 */
682 uint32_t oval, nval;
683
684 do {
685 oval = *counter;
686
687 if ((nval = oval + 1) == 0) {
688 /*
689 * If the counter would wrap, set it to 1 -- assuring
690 * that the counter is never zero when we have seen
691 * errors. (The counter must be 32-bits because we
692 * aren't guaranteed a 64-bit compare&swap operation.)
693 * To save this code both the infamy of being fingered
694 * by a priggish news story and the indignity of being
695 * the target of a neo-puritan witch trial, we're
696 * carefully avoiding any colorful description of the
697 * likelihood of this condition -- but suffice it to
698 * say that it is only slightly more likely than the
699 * overflow of predicate cache IDs, as discussed in
700 * dtrace_predicate_create().
701 */
702 nval = 1;
703 }
704 } while (dtrace_cas32(counter, oval, nval) != oval);
705 }
706
707 /*
708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
709 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
710 */
711 /* BEGIN CSTYLED */
712 DTRACE_LOADFUNC(8)
713 DTRACE_LOADFUNC(16)
714 DTRACE_LOADFUNC(32)
715 DTRACE_LOADFUNC(64)
716 /* END CSTYLED */
717
718 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)719 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
720 {
721 if (dest < mstate->dtms_scratch_base)
722 return (0);
723
724 if (dest + size < dest)
725 return (0);
726
727 if (dest + size > mstate->dtms_scratch_ptr)
728 return (0);
729
730 return (1);
731 }
732
733 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)734 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
735 dtrace_statvar_t **svars, int nsvars)
736 {
737 int i;
738 size_t maxglobalsize, maxlocalsize;
739
740 if (nsvars == 0)
741 return (0);
742
743 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
744 maxlocalsize = maxglobalsize * (mp_maxid + 1);
745
746 for (i = 0; i < nsvars; i++) {
747 dtrace_statvar_t *svar = svars[i];
748 uint8_t scope;
749 size_t size;
750
751 if (svar == NULL || (size = svar->dtsv_size) == 0)
752 continue;
753
754 scope = svar->dtsv_var.dtdv_scope;
755
756 /*
757 * We verify that our size is valid in the spirit of providing
758 * defense in depth: we want to prevent attackers from using
759 * DTrace to escalate an orthogonal kernel heap corruption bug
760 * into the ability to store to arbitrary locations in memory.
761 */
762 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
763 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
764
765 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
766 svar->dtsv_size)) {
767 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
768 svar->dtsv_size);
769 return (1);
770 }
771 }
772
773 return (0);
774 }
775
776 /*
777 * Check to see if the address is within a memory region to which a store may
778 * be issued. This includes the DTrace scratch areas, and any DTrace variable
779 * region. The caller of dtrace_canstore() is responsible for performing any
780 * alignment checks that are needed before stores are actually executed.
781 */
782 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)783 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
784 dtrace_vstate_t *vstate)
785 {
786 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
787 }
788
789 /*
790 * Implementation of dtrace_canstore which communicates the upper bound of the
791 * allowed memory region.
792 */
793 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)794 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
795 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
796 {
797 /*
798 * First, check to see if the address is in scratch space...
799 */
800 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
801 mstate->dtms_scratch_size)) {
802 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
803 mstate->dtms_scratch_size);
804 return (1);
805 }
806
807 /*
808 * Now check to see if it's a dynamic variable. This check will pick
809 * up both thread-local variables and any global dynamically-allocated
810 * variables.
811 */
812 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
813 vstate->dtvs_dynvars.dtds_size)) {
814 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
815 uintptr_t base = (uintptr_t)dstate->dtds_base +
816 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
817 uintptr_t chunkoffs;
818 dtrace_dynvar_t *dvar;
819
820 /*
821 * Before we assume that we can store here, we need to make
822 * sure that it isn't in our metadata -- storing to our
823 * dynamic variable metadata would corrupt our state. For
824 * the range to not include any dynamic variable metadata,
825 * it must:
826 *
827 * (1) Start above the hash table that is at the base of
828 * the dynamic variable space
829 *
830 * (2) Have a starting chunk offset that is beyond the
831 * dtrace_dynvar_t that is at the base of every chunk
832 *
833 * (3) Not span a chunk boundary
834 *
835 * (4) Not be in the tuple space of a dynamic variable
836 *
837 */
838 if (addr < base)
839 return (0);
840
841 chunkoffs = (addr - base) % dstate->dtds_chunksize;
842
843 if (chunkoffs < sizeof (dtrace_dynvar_t))
844 return (0);
845
846 if (chunkoffs + sz > dstate->dtds_chunksize)
847 return (0);
848
849 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
850
851 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
852 return (0);
853
854 if (chunkoffs < sizeof (dtrace_dynvar_t) +
855 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
856 return (0);
857
858 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
859 return (1);
860 }
861
862 /*
863 * Finally, check the static local and global variables. These checks
864 * take the longest, so we perform them last.
865 */
866 if (dtrace_canstore_statvar(addr, sz, remain,
867 vstate->dtvs_locals, vstate->dtvs_nlocals))
868 return (1);
869
870 if (dtrace_canstore_statvar(addr, sz, remain,
871 vstate->dtvs_globals, vstate->dtvs_nglobals))
872 return (1);
873
874 return (0);
875 }
876
877
878 /*
879 * Convenience routine to check to see if the address is within a memory
880 * region in which a load may be issued given the user's privilege level;
881 * if not, it sets the appropriate error flags and loads 'addr' into the
882 * illegal value slot.
883 *
884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
885 * appropriate memory access protection.
886 */
887 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)888 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
889 dtrace_vstate_t *vstate)
890 {
891 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
892 }
893
894 /*
895 * Implementation of dtrace_canload which communicates the uppoer bound of the
896 * allowed memory region.
897 */
898 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)899 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
900 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
901 {
902 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
903 file_t *fp;
904
905 /*
906 * If we hold the privilege to read from kernel memory, then
907 * everything is readable.
908 */
909 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
910 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
911 return (1);
912 }
913
914 /*
915 * You can obviously read that which you can store.
916 */
917 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
918 return (1);
919
920 /*
921 * We're allowed to read from our own string table.
922 */
923 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
924 mstate->dtms_difo->dtdo_strlen)) {
925 DTRACE_RANGE_REMAIN(remain, addr,
926 mstate->dtms_difo->dtdo_strtab,
927 mstate->dtms_difo->dtdo_strlen);
928 return (1);
929 }
930
931 if (vstate->dtvs_state != NULL &&
932 dtrace_priv_proc(vstate->dtvs_state)) {
933 proc_t *p;
934
935 /*
936 * When we have privileges to the current process, there are
937 * several context-related kernel structures that are safe to
938 * read, even absent the privilege to read from kernel memory.
939 * These reads are safe because these structures contain only
940 * state that (1) we're permitted to read, (2) is harmless or
941 * (3) contains pointers to additional kernel state that we're
942 * not permitted to read (and as such, do not present an
943 * opportunity for privilege escalation). Finally (and
944 * critically), because of the nature of their relation with
945 * the current thread context, the memory associated with these
946 * structures cannot change over the duration of probe context,
947 * and it is therefore impossible for this memory to be
948 * deallocated and reallocated as something else while it's
949 * being operated upon.
950 */
951 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
952 DTRACE_RANGE_REMAIN(remain, addr, curthread,
953 sizeof (kthread_t));
954 return (1);
955 }
956
957 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
958 sz, curthread->t_procp, sizeof (proc_t))) {
959 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
960 sizeof (proc_t));
961 return (1);
962 }
963
964 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
965 curthread->t_cred, sizeof (cred_t))) {
966 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
967 sizeof (cred_t));
968 return (1);
969 }
970
971 #ifdef illumos
972 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
973 &(p->p_pidp->pid_id), sizeof (pid_t))) {
974 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
975 sizeof (pid_t));
976 return (1);
977 }
978
979 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
980 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
981 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
982 offsetof(cpu_t, cpu_pause_thread));
983 return (1);
984 }
985 #endif
986 }
987
988 if ((fp = mstate->dtms_getf) != NULL) {
989 uintptr_t psz = sizeof (void *);
990 vnode_t *vp;
991 vnodeops_t *op;
992
993 /*
994 * When getf() returns a file_t, the enabling is implicitly
995 * granted the (transient) right to read the returned file_t
996 * as well as the v_path and v_op->vnop_name of the underlying
997 * vnode. These accesses are allowed after a successful
998 * getf() because the members that they refer to cannot change
999 * once set -- and the barrier logic in the kernel's closef()
1000 * path assures that the file_t and its referenced vode_t
1001 * cannot themselves be stale (that is, it impossible for
1002 * either dtms_getf itself or its f_vnode member to reference
1003 * freed memory).
1004 */
1005 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1006 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1007 return (1);
1008 }
1009
1010 if ((vp = fp->f_vnode) != NULL) {
1011 size_t slen;
1012 #ifdef illumos
1013 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1014 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1015 psz);
1016 return (1);
1017 }
1018 slen = strlen(vp->v_path) + 1;
1019 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1020 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1021 slen);
1022 return (1);
1023 }
1024 #endif
1025
1026 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1027 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1028 psz);
1029 return (1);
1030 }
1031
1032 #ifdef illumos
1033 if ((op = vp->v_op) != NULL &&
1034 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1035 DTRACE_RANGE_REMAIN(remain, addr,
1036 &op->vnop_name, psz);
1037 return (1);
1038 }
1039
1040 if (op != NULL && op->vnop_name != NULL &&
1041 DTRACE_INRANGE(addr, sz, op->vnop_name,
1042 (slen = strlen(op->vnop_name) + 1))) {
1043 DTRACE_RANGE_REMAIN(remain, addr,
1044 op->vnop_name, slen);
1045 return (1);
1046 }
1047 #endif
1048 }
1049 }
1050
1051 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1052 *illval = addr;
1053 return (0);
1054 }
1055
1056 /*
1057 * Convenience routine to check to see if a given string is within a memory
1058 * region in which a load may be issued given the user's privilege level;
1059 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1060 * calls in the event that the user has all privileges.
1061 */
1062 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1063 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1064 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1065 {
1066 size_t rsize;
1067
1068 /*
1069 * If we hold the privilege to read from kernel memory, then
1070 * everything is readable.
1071 */
1072 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1073 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1074 return (1);
1075 }
1076
1077 /*
1078 * Even if the caller is uninterested in querying the remaining valid
1079 * range, it is required to ensure that the access is allowed.
1080 */
1081 if (remain == NULL) {
1082 remain = &rsize;
1083 }
1084 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1085 size_t strsz;
1086 /*
1087 * Perform the strlen after determining the length of the
1088 * memory region which is accessible. This prevents timing
1089 * information from being used to find NULs in memory which is
1090 * not accessible to the caller.
1091 */
1092 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1093 MIN(sz, *remain));
1094 if (strsz <= *remain) {
1095 return (1);
1096 }
1097 }
1098
1099 return (0);
1100 }
1101
1102 /*
1103 * Convenience routine to check to see if a given variable is within a memory
1104 * region in which a load may be issued given the user's privilege level.
1105 */
1106 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1107 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1108 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1109 {
1110 size_t sz;
1111 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1112
1113 /*
1114 * Calculate the max size before performing any checks since even
1115 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1116 * return the max length via 'remain'.
1117 */
1118 if (type->dtdt_kind == DIF_TYPE_STRING) {
1119 dtrace_state_t *state = vstate->dtvs_state;
1120
1121 if (state != NULL) {
1122 sz = state->dts_options[DTRACEOPT_STRSIZE];
1123 } else {
1124 /*
1125 * In helper context, we have a NULL state; fall back
1126 * to using the system-wide default for the string size
1127 * in this case.
1128 */
1129 sz = dtrace_strsize_default;
1130 }
1131 } else {
1132 sz = type->dtdt_size;
1133 }
1134
1135 /*
1136 * If we hold the privilege to read from kernel memory, then
1137 * everything is readable.
1138 */
1139 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1140 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1141 return (1);
1142 }
1143
1144 if (type->dtdt_kind == DIF_TYPE_STRING) {
1145 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1146 vstate));
1147 }
1148 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1149 vstate));
1150 }
1151
1152 /*
1153 * Convert a string to a signed integer using safe loads.
1154 *
1155 * NOTE: This function uses various macros from strtolctype.h to manipulate
1156 * digit values, etc -- these have all been checked to ensure they make
1157 * no additional function calls.
1158 */
1159 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1160 dtrace_strtoll(char *input, int base, size_t limit)
1161 {
1162 uintptr_t pos = (uintptr_t)input;
1163 int64_t val = 0;
1164 int x;
1165 boolean_t neg = B_FALSE;
1166 char c, cc, ccc;
1167 uintptr_t end = pos + limit;
1168
1169 /*
1170 * Consume any whitespace preceding digits.
1171 */
1172 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1173 pos++;
1174
1175 /*
1176 * Handle an explicit sign if one is present.
1177 */
1178 if (c == '-' || c == '+') {
1179 if (c == '-')
1180 neg = B_TRUE;
1181 c = dtrace_load8(++pos);
1182 }
1183
1184 /*
1185 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1186 * if present.
1187 */
1188 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1189 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1190 pos += 2;
1191 c = ccc;
1192 }
1193
1194 /*
1195 * Read in contiguous digits until the first non-digit character.
1196 */
1197 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1198 c = dtrace_load8(++pos))
1199 val = val * base + x;
1200
1201 return (neg ? -val : val);
1202 }
1203
1204 /*
1205 * Compare two strings using safe loads.
1206 */
1207 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1208 dtrace_strncmp(char *s1, char *s2, size_t limit)
1209 {
1210 uint8_t c1, c2;
1211 volatile uint16_t *flags;
1212
1213 if (s1 == s2 || limit == 0)
1214 return (0);
1215
1216 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1217
1218 do {
1219 if (s1 == NULL) {
1220 c1 = '\0';
1221 } else {
1222 c1 = dtrace_load8((uintptr_t)s1++);
1223 }
1224
1225 if (s2 == NULL) {
1226 c2 = '\0';
1227 } else {
1228 c2 = dtrace_load8((uintptr_t)s2++);
1229 }
1230
1231 if (c1 != c2)
1232 return (c1 - c2);
1233 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1234
1235 return (0);
1236 }
1237
1238 /*
1239 * Compute strlen(s) for a string using safe memory accesses. The additional
1240 * len parameter is used to specify a maximum length to ensure completion.
1241 */
1242 static size_t
dtrace_strlen(const char * s,size_t lim)1243 dtrace_strlen(const char *s, size_t lim)
1244 {
1245 uint_t len;
1246
1247 for (len = 0; len != lim; len++) {
1248 if (dtrace_load8((uintptr_t)s++) == '\0')
1249 break;
1250 }
1251
1252 return (len);
1253 }
1254
1255 /*
1256 * Check if an address falls within a toxic region.
1257 */
1258 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1259 dtrace_istoxic(uintptr_t kaddr, size_t size)
1260 {
1261 uintptr_t taddr, tsize;
1262 int i;
1263
1264 for (i = 0; i < dtrace_toxranges; i++) {
1265 taddr = dtrace_toxrange[i].dtt_base;
1266 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1267
1268 if (kaddr - taddr < tsize) {
1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1270 cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1271 return (1);
1272 }
1273
1274 if (taddr - kaddr < size) {
1275 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1276 cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1277 return (1);
1278 }
1279 }
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1286 * memory specified by the DIF program. The dst is assumed to be safe memory
1287 * that we can store to directly because it is managed by DTrace. As with
1288 * standard bcopy, overlapping copies are handled properly.
1289 */
1290 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1291 dtrace_bcopy(const void *src, void *dst, size_t len)
1292 {
1293 if (len != 0) {
1294 uint8_t *s1 = dst;
1295 const uint8_t *s2 = src;
1296
1297 if (s1 <= s2) {
1298 do {
1299 *s1++ = dtrace_load8((uintptr_t)s2++);
1300 } while (--len != 0);
1301 } else {
1302 s2 += len;
1303 s1 += len;
1304
1305 do {
1306 *--s1 = dtrace_load8((uintptr_t)--s2);
1307 } while (--len != 0);
1308 }
1309 }
1310 }
1311
1312 /*
1313 * Copy src to dst using safe memory accesses, up to either the specified
1314 * length, or the point that a nul byte is encountered. The src is assumed to
1315 * be unsafe memory specified by the DIF program. The dst is assumed to be
1316 * safe memory that we can store to directly because it is managed by DTrace.
1317 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1318 */
1319 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1320 dtrace_strcpy(const void *src, void *dst, size_t len)
1321 {
1322 if (len != 0) {
1323 uint8_t *s1 = dst, c;
1324 const uint8_t *s2 = src;
1325
1326 do {
1327 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1328 } while (--len != 0 && c != '\0');
1329 }
1330 }
1331
1332 /*
1333 * Copy src to dst, deriving the size and type from the specified (BYREF)
1334 * variable type. The src is assumed to be unsafe memory specified by the DIF
1335 * program. The dst is assumed to be DTrace variable memory that is of the
1336 * specified type; we assume that we can store to directly.
1337 */
1338 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1339 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1340 {
1341 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1342
1343 if (type->dtdt_kind == DIF_TYPE_STRING) {
1344 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1345 } else {
1346 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1347 }
1348 }
1349
1350 /*
1351 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1352 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1353 * safe memory that we can access directly because it is managed by DTrace.
1354 */
1355 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1356 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1357 {
1358 volatile uint16_t *flags;
1359
1360 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1361
1362 if (s1 == s2)
1363 return (0);
1364
1365 if (s1 == NULL || s2 == NULL)
1366 return (1);
1367
1368 if (s1 != s2 && len != 0) {
1369 const uint8_t *ps1 = s1;
1370 const uint8_t *ps2 = s2;
1371
1372 do {
1373 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1374 return (1);
1375 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1376 }
1377 return (0);
1378 }
1379
1380 /*
1381 * Zero the specified region using a simple byte-by-byte loop. Note that this
1382 * is for safe DTrace-managed memory only.
1383 */
1384 static void
dtrace_bzero(void * dst,size_t len)1385 dtrace_bzero(void *dst, size_t len)
1386 {
1387 uchar_t *cp;
1388
1389 for (cp = dst; len != 0; len--)
1390 *cp++ = 0;
1391 }
1392
1393 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1394 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1395 {
1396 uint64_t result[2];
1397
1398 result[0] = addend1[0] + addend2[0];
1399 result[1] = addend1[1] + addend2[1] +
1400 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1401
1402 sum[0] = result[0];
1403 sum[1] = result[1];
1404 }
1405
1406 /*
1407 * Shift the 128-bit value in a by b. If b is positive, shift left.
1408 * If b is negative, shift right.
1409 */
1410 static void
dtrace_shift_128(uint64_t * a,int b)1411 dtrace_shift_128(uint64_t *a, int b)
1412 {
1413 uint64_t mask;
1414
1415 if (b == 0)
1416 return;
1417
1418 if (b < 0) {
1419 b = -b;
1420 if (b >= 64) {
1421 a[0] = a[1] >> (b - 64);
1422 a[1] = 0;
1423 } else {
1424 a[0] >>= b;
1425 mask = 1LL << (64 - b);
1426 mask -= 1;
1427 a[0] |= ((a[1] & mask) << (64 - b));
1428 a[1] >>= b;
1429 }
1430 } else {
1431 if (b >= 64) {
1432 a[1] = a[0] << (b - 64);
1433 a[0] = 0;
1434 } else {
1435 a[1] <<= b;
1436 mask = a[0] >> (64 - b);
1437 a[1] |= mask;
1438 a[0] <<= b;
1439 }
1440 }
1441 }
1442
1443 /*
1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1445 * use native multiplication on those, and then re-combine into the
1446 * resulting 128-bit value.
1447 *
1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1449 * hi1 * hi2 << 64 +
1450 * hi1 * lo2 << 32 +
1451 * hi2 * lo1 << 32 +
1452 * lo1 * lo2
1453 */
1454 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1455 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1456 {
1457 uint64_t hi1, hi2, lo1, lo2;
1458 uint64_t tmp[2];
1459
1460 hi1 = factor1 >> 32;
1461 hi2 = factor2 >> 32;
1462
1463 lo1 = factor1 & DT_MASK_LO;
1464 lo2 = factor2 & DT_MASK_LO;
1465
1466 product[0] = lo1 * lo2;
1467 product[1] = hi1 * hi2;
1468
1469 tmp[0] = hi1 * lo2;
1470 tmp[1] = 0;
1471 dtrace_shift_128(tmp, 32);
1472 dtrace_add_128(product, tmp, product);
1473
1474 tmp[0] = hi2 * lo1;
1475 tmp[1] = 0;
1476 dtrace_shift_128(tmp, 32);
1477 dtrace_add_128(product, tmp, product);
1478 }
1479
1480 /*
1481 * This privilege check should be used by actions and subroutines to
1482 * verify that the user credentials of the process that enabled the
1483 * invoking ECB match the target credentials
1484 */
1485 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1486 dtrace_priv_proc_common_user(dtrace_state_t *state)
1487 {
1488 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1489
1490 /*
1491 * We should always have a non-NULL state cred here, since if cred
1492 * is null (anonymous tracing), we fast-path bypass this routine.
1493 */
1494 ASSERT(s_cr != NULL);
1495
1496 if ((cr = CRED()) != NULL &&
1497 s_cr->cr_uid == cr->cr_uid &&
1498 s_cr->cr_uid == cr->cr_ruid &&
1499 s_cr->cr_uid == cr->cr_suid &&
1500 s_cr->cr_gid == cr->cr_gid &&
1501 s_cr->cr_gid == cr->cr_rgid &&
1502 s_cr->cr_gid == cr->cr_sgid)
1503 return (1);
1504
1505 return (0);
1506 }
1507
1508 /*
1509 * This privilege check should be used by actions and subroutines to
1510 * verify that the zone of the process that enabled the invoking ECB
1511 * matches the target credentials
1512 */
1513 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1514 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1515 {
1516 #ifdef illumos
1517 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1518
1519 /*
1520 * We should always have a non-NULL state cred here, since if cred
1521 * is null (anonymous tracing), we fast-path bypass this routine.
1522 */
1523 ASSERT(s_cr != NULL);
1524
1525 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1526 return (1);
1527
1528 return (0);
1529 #else
1530 return (1);
1531 #endif
1532 }
1533
1534 /*
1535 * This privilege check should be used by actions and subroutines to
1536 * verify that the process has not setuid or changed credentials.
1537 */
1538 static int
dtrace_priv_proc_common_nocd(void)1539 dtrace_priv_proc_common_nocd(void)
1540 {
1541 proc_t *proc;
1542
1543 if ((proc = ttoproc(curthread)) != NULL &&
1544 !(proc->p_flag & SNOCD))
1545 return (1);
1546
1547 return (0);
1548 }
1549
1550 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1551 dtrace_priv_proc_destructive(dtrace_state_t *state)
1552 {
1553 int action = state->dts_cred.dcr_action;
1554
1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1556 dtrace_priv_proc_common_zone(state) == 0)
1557 goto bad;
1558
1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1560 dtrace_priv_proc_common_user(state) == 0)
1561 goto bad;
1562
1563 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1564 dtrace_priv_proc_common_nocd() == 0)
1565 goto bad;
1566
1567 return (1);
1568
1569 bad:
1570 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1571
1572 return (0);
1573 }
1574
1575 static int
dtrace_priv_proc_control(dtrace_state_t * state)1576 dtrace_priv_proc_control(dtrace_state_t *state)
1577 {
1578 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1579 return (1);
1580
1581 if (dtrace_priv_proc_common_zone(state) &&
1582 dtrace_priv_proc_common_user(state) &&
1583 dtrace_priv_proc_common_nocd())
1584 return (1);
1585
1586 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1587
1588 return (0);
1589 }
1590
1591 static int
dtrace_priv_proc(dtrace_state_t * state)1592 dtrace_priv_proc(dtrace_state_t *state)
1593 {
1594 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1595 return (1);
1596
1597 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1598
1599 return (0);
1600 }
1601
1602 static int
dtrace_priv_kernel(dtrace_state_t * state)1603 dtrace_priv_kernel(dtrace_state_t *state)
1604 {
1605 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1606 return (1);
1607
1608 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1609
1610 return (0);
1611 }
1612
1613 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1614 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1615 {
1616 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1617 return (1);
1618
1619 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1620
1621 return (0);
1622 }
1623
1624 /*
1625 * Determine if the dte_cond of the specified ECB allows for processing of
1626 * the current probe to continue. Note that this routine may allow continued
1627 * processing, but with access(es) stripped from the mstate's dtms_access
1628 * field.
1629 */
1630 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1631 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1632 dtrace_ecb_t *ecb)
1633 {
1634 dtrace_probe_t *probe = ecb->dte_probe;
1635 dtrace_provider_t *prov = probe->dtpr_provider;
1636 dtrace_pops_t *pops = &prov->dtpv_pops;
1637 int mode = DTRACE_MODE_NOPRIV_DROP;
1638
1639 ASSERT(ecb->dte_cond);
1640
1641 #ifdef illumos
1642 if (pops->dtps_mode != NULL) {
1643 mode = pops->dtps_mode(prov->dtpv_arg,
1644 probe->dtpr_id, probe->dtpr_arg);
1645
1646 ASSERT((mode & DTRACE_MODE_USER) ||
1647 (mode & DTRACE_MODE_KERNEL));
1648 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1649 (mode & DTRACE_MODE_NOPRIV_DROP));
1650 }
1651
1652 /*
1653 * If the dte_cond bits indicate that this consumer is only allowed to
1654 * see user-mode firings of this probe, call the provider's dtps_mode()
1655 * entry point to check that the probe was fired while in a user
1656 * context. If that's not the case, use the policy specified by the
1657 * provider to determine if we drop the probe or merely restrict
1658 * operation.
1659 */
1660 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1661 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1662
1663 if (!(mode & DTRACE_MODE_USER)) {
1664 if (mode & DTRACE_MODE_NOPRIV_DROP)
1665 return (0);
1666
1667 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1668 }
1669 }
1670 #endif
1671
1672 /*
1673 * This is more subtle than it looks. We have to be absolutely certain
1674 * that CRED() isn't going to change out from under us so it's only
1675 * legit to examine that structure if we're in constrained situations.
1676 * Currently, the only times we'll this check is if a non-super-user
1677 * has enabled the profile or syscall providers -- providers that
1678 * allow visibility of all processes. For the profile case, the check
1679 * above will ensure that we're examining a user context.
1680 */
1681 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1682 cred_t *cr;
1683 cred_t *s_cr = state->dts_cred.dcr_cred;
1684 proc_t *proc;
1685
1686 ASSERT(s_cr != NULL);
1687
1688 if ((cr = CRED()) == NULL ||
1689 s_cr->cr_uid != cr->cr_uid ||
1690 s_cr->cr_uid != cr->cr_ruid ||
1691 s_cr->cr_uid != cr->cr_suid ||
1692 s_cr->cr_gid != cr->cr_gid ||
1693 s_cr->cr_gid != cr->cr_rgid ||
1694 s_cr->cr_gid != cr->cr_sgid ||
1695 (proc = ttoproc(curthread)) == NULL ||
1696 (proc->p_flag & SNOCD)) {
1697 if (mode & DTRACE_MODE_NOPRIV_DROP)
1698 return (0);
1699
1700 #ifdef illumos
1701 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1702 #endif
1703 }
1704 }
1705
1706 #ifdef illumos
1707 /*
1708 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1709 * in our zone, check to see if our mode policy is to restrict rather
1710 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1711 * and DTRACE_ACCESS_ARGS
1712 */
1713 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1714 cred_t *cr;
1715 cred_t *s_cr = state->dts_cred.dcr_cred;
1716
1717 ASSERT(s_cr != NULL);
1718
1719 if ((cr = CRED()) == NULL ||
1720 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1721 if (mode & DTRACE_MODE_NOPRIV_DROP)
1722 return (0);
1723
1724 mstate->dtms_access &=
1725 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1726 }
1727 }
1728 #endif
1729
1730 return (1);
1731 }
1732
1733 /*
1734 * Note: not called from probe context. This function is called
1735 * asynchronously (and at a regular interval) from outside of probe context to
1736 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1737 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1738 */
1739 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1740 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1741 {
1742 dtrace_dynvar_t *dirty;
1743 dtrace_dstate_percpu_t *dcpu;
1744 dtrace_dynvar_t **rinsep;
1745 int i, j, work = 0;
1746
1747 CPU_FOREACH(i) {
1748 dcpu = &dstate->dtds_percpu[i];
1749 rinsep = &dcpu->dtdsc_rinsing;
1750
1751 /*
1752 * If the dirty list is NULL, there is no dirty work to do.
1753 */
1754 if (dcpu->dtdsc_dirty == NULL)
1755 continue;
1756
1757 if (dcpu->dtdsc_rinsing != NULL) {
1758 /*
1759 * If the rinsing list is non-NULL, then it is because
1760 * this CPU was selected to accept another CPU's
1761 * dirty list -- and since that time, dirty buffers
1762 * have accumulated. This is a highly unlikely
1763 * condition, but we choose to ignore the dirty
1764 * buffers -- they'll be picked up a future cleanse.
1765 */
1766 continue;
1767 }
1768
1769 if (dcpu->dtdsc_clean != NULL) {
1770 /*
1771 * If the clean list is non-NULL, then we're in a
1772 * situation where a CPU has done deallocations (we
1773 * have a non-NULL dirty list) but no allocations (we
1774 * also have a non-NULL clean list). We can't simply
1775 * move the dirty list into the clean list on this
1776 * CPU, yet we also don't want to allow this condition
1777 * to persist, lest a short clean list prevent a
1778 * massive dirty list from being cleaned (which in
1779 * turn could lead to otherwise avoidable dynamic
1780 * drops). To deal with this, we look for some CPU
1781 * with a NULL clean list, NULL dirty list, and NULL
1782 * rinsing list -- and then we borrow this CPU to
1783 * rinse our dirty list.
1784 */
1785 CPU_FOREACH(j) {
1786 dtrace_dstate_percpu_t *rinser;
1787
1788 rinser = &dstate->dtds_percpu[j];
1789
1790 if (rinser->dtdsc_rinsing != NULL)
1791 continue;
1792
1793 if (rinser->dtdsc_dirty != NULL)
1794 continue;
1795
1796 if (rinser->dtdsc_clean != NULL)
1797 continue;
1798
1799 rinsep = &rinser->dtdsc_rinsing;
1800 break;
1801 }
1802
1803 if (j > mp_maxid) {
1804 /*
1805 * We were unable to find another CPU that
1806 * could accept this dirty list -- we are
1807 * therefore unable to clean it now.
1808 */
1809 dtrace_dynvar_failclean++;
1810 continue;
1811 }
1812 }
1813
1814 work = 1;
1815
1816 /*
1817 * Atomically move the dirty list aside.
1818 */
1819 do {
1820 dirty = dcpu->dtdsc_dirty;
1821
1822 /*
1823 * Before we zap the dirty list, set the rinsing list.
1824 * (This allows for a potential assertion in
1825 * dtrace_dynvar(): if a free dynamic variable appears
1826 * on a hash chain, either the dirty list or the
1827 * rinsing list for some CPU must be non-NULL.)
1828 */
1829 *rinsep = dirty;
1830 dtrace_membar_producer();
1831 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1832 dirty, NULL) != dirty);
1833 }
1834
1835 if (!work) {
1836 /*
1837 * We have no work to do; we can simply return.
1838 */
1839 return;
1840 }
1841
1842 dtrace_sync();
1843
1844 CPU_FOREACH(i) {
1845 dcpu = &dstate->dtds_percpu[i];
1846
1847 if (dcpu->dtdsc_rinsing == NULL)
1848 continue;
1849
1850 /*
1851 * We are now guaranteed that no hash chain contains a pointer
1852 * into this dirty list; we can make it clean.
1853 */
1854 ASSERT(dcpu->dtdsc_clean == NULL);
1855 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1856 dcpu->dtdsc_rinsing = NULL;
1857 }
1858
1859 /*
1860 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1861 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1862 * This prevents a race whereby a CPU incorrectly decides that
1863 * the state should be something other than DTRACE_DSTATE_CLEAN
1864 * after dtrace_dynvar_clean() has completed.
1865 */
1866 dtrace_sync();
1867
1868 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1869 }
1870
1871 /*
1872 * Depending on the value of the op parameter, this function looks-up,
1873 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1874 * allocation is requested, this function will return a pointer to a
1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1876 * variable can be allocated. If NULL is returned, the appropriate counter
1877 * will be incremented.
1878 */
1879 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1880 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1881 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1882 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1883 {
1884 uint64_t hashval = DTRACE_DYNHASH_VALID;
1885 dtrace_dynhash_t *hash = dstate->dtds_hash;
1886 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1887 processorid_t me = curcpu, cpu = me;
1888 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1889 size_t bucket, ksize;
1890 size_t chunksize = dstate->dtds_chunksize;
1891 uintptr_t kdata, lock, nstate;
1892 uint_t i;
1893
1894 ASSERT(nkeys != 0);
1895
1896 /*
1897 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1898 * algorithm. For the by-value portions, we perform the algorithm in
1899 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1900 * bit, and seems to have only a minute effect on distribution. For
1901 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1902 * over each referenced byte. It's painful to do this, but it's much
1903 * better than pathological hash distribution. The efficacy of the
1904 * hashing algorithm (and a comparison with other algorithms) may be
1905 * found by running the ::dtrace_dynstat MDB dcmd.
1906 */
1907 for (i = 0; i < nkeys; i++) {
1908 if (key[i].dttk_size == 0) {
1909 uint64_t val = key[i].dttk_value;
1910
1911 hashval += (val >> 48) & 0xffff;
1912 hashval += (hashval << 10);
1913 hashval ^= (hashval >> 6);
1914
1915 hashval += (val >> 32) & 0xffff;
1916 hashval += (hashval << 10);
1917 hashval ^= (hashval >> 6);
1918
1919 hashval += (val >> 16) & 0xffff;
1920 hashval += (hashval << 10);
1921 hashval ^= (hashval >> 6);
1922
1923 hashval += val & 0xffff;
1924 hashval += (hashval << 10);
1925 hashval ^= (hashval >> 6);
1926 } else {
1927 /*
1928 * This is incredibly painful, but it beats the hell
1929 * out of the alternative.
1930 */
1931 uint64_t j, size = key[i].dttk_size;
1932 uintptr_t base = (uintptr_t)key[i].dttk_value;
1933
1934 if (!dtrace_canload(base, size, mstate, vstate))
1935 break;
1936
1937 for (j = 0; j < size; j++) {
1938 hashval += dtrace_load8(base + j);
1939 hashval += (hashval << 10);
1940 hashval ^= (hashval >> 6);
1941 }
1942 }
1943 }
1944
1945 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1946 return (NULL);
1947
1948 hashval += (hashval << 3);
1949 hashval ^= (hashval >> 11);
1950 hashval += (hashval << 15);
1951
1952 /*
1953 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1954 * comes out to be one of our two sentinel hash values. If this
1955 * actually happens, we set the hashval to be a value known to be a
1956 * non-sentinel value.
1957 */
1958 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1959 hashval = DTRACE_DYNHASH_VALID;
1960
1961 /*
1962 * Yes, it's painful to do a divide here. If the cycle count becomes
1963 * important here, tricks can be pulled to reduce it. (However, it's
1964 * critical that hash collisions be kept to an absolute minimum;
1965 * they're much more painful than a divide.) It's better to have a
1966 * solution that generates few collisions and still keeps things
1967 * relatively simple.
1968 */
1969 bucket = hashval % dstate->dtds_hashsize;
1970
1971 if (op == DTRACE_DYNVAR_DEALLOC) {
1972 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1973
1974 for (;;) {
1975 while ((lock = *lockp) & 1)
1976 continue;
1977
1978 if (dtrace_casptr((volatile void *)lockp,
1979 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1980 break;
1981 }
1982
1983 dtrace_membar_producer();
1984 }
1985
1986 top:
1987 prev = NULL;
1988 lock = hash[bucket].dtdh_lock;
1989
1990 dtrace_membar_consumer();
1991
1992 start = hash[bucket].dtdh_chain;
1993 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1994 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1995 op != DTRACE_DYNVAR_DEALLOC));
1996
1997 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1998 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1999 dtrace_key_t *dkey = &dtuple->dtt_key[0];
2000
2001 if (dvar->dtdv_hashval != hashval) {
2002 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2003 /*
2004 * We've reached the sink, and therefore the
2005 * end of the hash chain; we can kick out of
2006 * the loop knowing that we have seen a valid
2007 * snapshot of state.
2008 */
2009 ASSERT(dvar->dtdv_next == NULL);
2010 ASSERT(dvar == &dtrace_dynhash_sink);
2011 break;
2012 }
2013
2014 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2015 /*
2016 * We've gone off the rails: somewhere along
2017 * the line, one of the members of this hash
2018 * chain was deleted. Note that we could also
2019 * detect this by simply letting this loop run
2020 * to completion, as we would eventually hit
2021 * the end of the dirty list. However, we
2022 * want to avoid running the length of the
2023 * dirty list unnecessarily (it might be quite
2024 * long), so we catch this as early as
2025 * possible by detecting the hash marker. In
2026 * this case, we simply set dvar to NULL and
2027 * break; the conditional after the loop will
2028 * send us back to top.
2029 */
2030 dvar = NULL;
2031 break;
2032 }
2033
2034 goto next;
2035 }
2036
2037 if (dtuple->dtt_nkeys != nkeys)
2038 goto next;
2039
2040 for (i = 0; i < nkeys; i++, dkey++) {
2041 if (dkey->dttk_size != key[i].dttk_size)
2042 goto next; /* size or type mismatch */
2043
2044 if (dkey->dttk_size != 0) {
2045 if (dtrace_bcmp(
2046 (void *)(uintptr_t)key[i].dttk_value,
2047 (void *)(uintptr_t)dkey->dttk_value,
2048 dkey->dttk_size))
2049 goto next;
2050 } else {
2051 if (dkey->dttk_value != key[i].dttk_value)
2052 goto next;
2053 }
2054 }
2055
2056 if (op != DTRACE_DYNVAR_DEALLOC)
2057 return (dvar);
2058
2059 ASSERT(dvar->dtdv_next == NULL ||
2060 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2061
2062 if (prev != NULL) {
2063 ASSERT(hash[bucket].dtdh_chain != dvar);
2064 ASSERT(start != dvar);
2065 ASSERT(prev->dtdv_next == dvar);
2066 prev->dtdv_next = dvar->dtdv_next;
2067 } else {
2068 if (dtrace_casptr(&hash[bucket].dtdh_chain,
2069 start, dvar->dtdv_next) != start) {
2070 /*
2071 * We have failed to atomically swing the
2072 * hash table head pointer, presumably because
2073 * of a conflicting allocation on another CPU.
2074 * We need to reread the hash chain and try
2075 * again.
2076 */
2077 goto top;
2078 }
2079 }
2080
2081 dtrace_membar_producer();
2082
2083 /*
2084 * Now set the hash value to indicate that it's free.
2085 */
2086 ASSERT(hash[bucket].dtdh_chain != dvar);
2087 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2088
2089 dtrace_membar_producer();
2090
2091 /*
2092 * Set the next pointer to point at the dirty list, and
2093 * atomically swing the dirty pointer to the newly freed dvar.
2094 */
2095 do {
2096 next = dcpu->dtdsc_dirty;
2097 dvar->dtdv_next = next;
2098 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2099
2100 /*
2101 * Finally, unlock this hash bucket.
2102 */
2103 ASSERT(hash[bucket].dtdh_lock == lock);
2104 ASSERT(lock & 1);
2105 hash[bucket].dtdh_lock++;
2106
2107 return (NULL);
2108 next:
2109 prev = dvar;
2110 continue;
2111 }
2112
2113 if (dvar == NULL) {
2114 /*
2115 * If dvar is NULL, it is because we went off the rails:
2116 * one of the elements that we traversed in the hash chain
2117 * was deleted while we were traversing it. In this case,
2118 * we assert that we aren't doing a dealloc (deallocs lock
2119 * the hash bucket to prevent themselves from racing with
2120 * one another), and retry the hash chain traversal.
2121 */
2122 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2123 goto top;
2124 }
2125
2126 if (op != DTRACE_DYNVAR_ALLOC) {
2127 /*
2128 * If we are not to allocate a new variable, we want to
2129 * return NULL now. Before we return, check that the value
2130 * of the lock word hasn't changed. If it has, we may have
2131 * seen an inconsistent snapshot.
2132 */
2133 if (op == DTRACE_DYNVAR_NOALLOC) {
2134 if (hash[bucket].dtdh_lock != lock)
2135 goto top;
2136 } else {
2137 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2138 ASSERT(hash[bucket].dtdh_lock == lock);
2139 ASSERT(lock & 1);
2140 hash[bucket].dtdh_lock++;
2141 }
2142
2143 return (NULL);
2144 }
2145
2146 /*
2147 * We need to allocate a new dynamic variable. The size we need is the
2148 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2149 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2150 * the size of any referred-to data (dsize). We then round the final
2151 * size up to the chunksize for allocation.
2152 */
2153 for (ksize = 0, i = 0; i < nkeys; i++)
2154 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2155
2156 /*
2157 * This should be pretty much impossible, but could happen if, say,
2158 * strange DIF specified the tuple. Ideally, this should be an
2159 * assertion and not an error condition -- but that requires that the
2160 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2161 * bullet-proof. (That is, it must not be able to be fooled by
2162 * malicious DIF.) Given the lack of backwards branches in DIF,
2163 * solving this would presumably not amount to solving the Halting
2164 * Problem -- but it still seems awfully hard.
2165 */
2166 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2167 ksize + dsize > chunksize) {
2168 dcpu->dtdsc_drops++;
2169 return (NULL);
2170 }
2171
2172 nstate = DTRACE_DSTATE_EMPTY;
2173
2174 do {
2175 retry:
2176 free = dcpu->dtdsc_free;
2177
2178 if (free == NULL) {
2179 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2180 void *rval;
2181
2182 if (clean == NULL) {
2183 /*
2184 * We're out of dynamic variable space on
2185 * this CPU. Unless we have tried all CPUs,
2186 * we'll try to allocate from a different
2187 * CPU.
2188 */
2189 switch (dstate->dtds_state) {
2190 case DTRACE_DSTATE_CLEAN: {
2191 void *sp = &dstate->dtds_state;
2192
2193 if (++cpu > mp_maxid)
2194 cpu = 0;
2195
2196 if (dcpu->dtdsc_dirty != NULL &&
2197 nstate == DTRACE_DSTATE_EMPTY)
2198 nstate = DTRACE_DSTATE_DIRTY;
2199
2200 if (dcpu->dtdsc_rinsing != NULL)
2201 nstate = DTRACE_DSTATE_RINSING;
2202
2203 dcpu = &dstate->dtds_percpu[cpu];
2204
2205 if (cpu != me)
2206 goto retry;
2207
2208 (void) dtrace_cas32(sp,
2209 DTRACE_DSTATE_CLEAN, nstate);
2210
2211 /*
2212 * To increment the correct bean
2213 * counter, take another lap.
2214 */
2215 goto retry;
2216 }
2217
2218 case DTRACE_DSTATE_DIRTY:
2219 dcpu->dtdsc_dirty_drops++;
2220 break;
2221
2222 case DTRACE_DSTATE_RINSING:
2223 dcpu->dtdsc_rinsing_drops++;
2224 break;
2225
2226 case DTRACE_DSTATE_EMPTY:
2227 dcpu->dtdsc_drops++;
2228 break;
2229 }
2230
2231 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2232 return (NULL);
2233 }
2234
2235 /*
2236 * The clean list appears to be non-empty. We want to
2237 * move the clean list to the free list; we start by
2238 * moving the clean pointer aside.
2239 */
2240 if (dtrace_casptr(&dcpu->dtdsc_clean,
2241 clean, NULL) != clean) {
2242 /*
2243 * We are in one of two situations:
2244 *
2245 * (a) The clean list was switched to the
2246 * free list by another CPU.
2247 *
2248 * (b) The clean list was added to by the
2249 * cleansing cyclic.
2250 *
2251 * In either of these situations, we can
2252 * just reattempt the free list allocation.
2253 */
2254 goto retry;
2255 }
2256
2257 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2258
2259 /*
2260 * Now we'll move the clean list to our free list.
2261 * It's impossible for this to fail: the only way
2262 * the free list can be updated is through this
2263 * code path, and only one CPU can own the clean list.
2264 * Thus, it would only be possible for this to fail if
2265 * this code were racing with dtrace_dynvar_clean().
2266 * (That is, if dtrace_dynvar_clean() updated the clean
2267 * list, and we ended up racing to update the free
2268 * list.) This race is prevented by the dtrace_sync()
2269 * in dtrace_dynvar_clean() -- which flushes the
2270 * owners of the clean lists out before resetting
2271 * the clean lists.
2272 */
2273 dcpu = &dstate->dtds_percpu[me];
2274 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2275 ASSERT(rval == NULL);
2276 goto retry;
2277 }
2278
2279 dvar = free;
2280 new_free = dvar->dtdv_next;
2281 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2282
2283 /*
2284 * We have now allocated a new chunk. We copy the tuple keys into the
2285 * tuple array and copy any referenced key data into the data space
2286 * following the tuple array. As we do this, we relocate dttk_value
2287 * in the final tuple to point to the key data address in the chunk.
2288 */
2289 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2290 dvar->dtdv_data = (void *)(kdata + ksize);
2291 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2292
2293 for (i = 0; i < nkeys; i++) {
2294 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2295 size_t kesize = key[i].dttk_size;
2296
2297 if (kesize != 0) {
2298 dtrace_bcopy(
2299 (const void *)(uintptr_t)key[i].dttk_value,
2300 (void *)kdata, kesize);
2301 dkey->dttk_value = kdata;
2302 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2303 } else {
2304 dkey->dttk_value = key[i].dttk_value;
2305 }
2306
2307 dkey->dttk_size = kesize;
2308 }
2309
2310 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2311 dvar->dtdv_hashval = hashval;
2312 dvar->dtdv_next = start;
2313
2314 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2315 return (dvar);
2316
2317 /*
2318 * The cas has failed. Either another CPU is adding an element to
2319 * this hash chain, or another CPU is deleting an element from this
2320 * hash chain. The simplest way to deal with both of these cases
2321 * (though not necessarily the most efficient) is to free our
2322 * allocated block and re-attempt it all. Note that the free is
2323 * to the dirty list and _not_ to the free list. This is to prevent
2324 * races with allocators, above.
2325 */
2326 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2327
2328 dtrace_membar_producer();
2329
2330 do {
2331 free = dcpu->dtdsc_dirty;
2332 dvar->dtdv_next = free;
2333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2334
2335 goto top;
2336 }
2337
2338 /*ARGSUSED*/
2339 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2340 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2341 {
2342 if ((int64_t)nval < (int64_t)*oval)
2343 *oval = nval;
2344 }
2345
2346 /*ARGSUSED*/
2347 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2348 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2349 {
2350 if ((int64_t)nval > (int64_t)*oval)
2351 *oval = nval;
2352 }
2353
2354 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2355 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2356 {
2357 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2358 int64_t val = (int64_t)nval;
2359
2360 if (val < 0) {
2361 for (i = 0; i < zero; i++) {
2362 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2363 quanta[i] += incr;
2364 return;
2365 }
2366 }
2367 } else {
2368 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2369 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2370 quanta[i - 1] += incr;
2371 return;
2372 }
2373 }
2374
2375 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2376 return;
2377 }
2378
2379 ASSERT(0);
2380 }
2381
2382 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2383 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2384 {
2385 uint64_t arg = *lquanta++;
2386 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2387 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2388 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2389 int32_t val = (int32_t)nval, level;
2390
2391 ASSERT(step != 0);
2392 ASSERT(levels != 0);
2393
2394 if (val < base) {
2395 /*
2396 * This is an underflow.
2397 */
2398 lquanta[0] += incr;
2399 return;
2400 }
2401
2402 level = (val - base) / step;
2403
2404 if (level < levels) {
2405 lquanta[level + 1] += incr;
2406 return;
2407 }
2408
2409 /*
2410 * This is an overflow.
2411 */
2412 lquanta[levels + 1] += incr;
2413 }
2414
2415 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2416 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2417 uint16_t high, uint16_t nsteps, int64_t value)
2418 {
2419 int64_t this = 1, last, next;
2420 int base = 1, order;
2421
2422 ASSERT(factor <= nsteps);
2423 ASSERT(nsteps % factor == 0);
2424
2425 for (order = 0; order < low; order++)
2426 this *= factor;
2427
2428 /*
2429 * If our value is less than our factor taken to the power of the
2430 * low order of magnitude, it goes into the zeroth bucket.
2431 */
2432 if (value < (last = this))
2433 return (0);
2434
2435 for (this *= factor; order <= high; order++) {
2436 int nbuckets = this > nsteps ? nsteps : this;
2437
2438 if ((next = this * factor) < this) {
2439 /*
2440 * We should not generally get log/linear quantizations
2441 * with a high magnitude that allows 64-bits to
2442 * overflow, but we nonetheless protect against this
2443 * by explicitly checking for overflow, and clamping
2444 * our value accordingly.
2445 */
2446 value = this - 1;
2447 }
2448
2449 if (value < this) {
2450 /*
2451 * If our value lies within this order of magnitude,
2452 * determine its position by taking the offset within
2453 * the order of magnitude, dividing by the bucket
2454 * width, and adding to our (accumulated) base.
2455 */
2456 return (base + (value - last) / (this / nbuckets));
2457 }
2458
2459 base += nbuckets - (nbuckets / factor);
2460 last = this;
2461 this = next;
2462 }
2463
2464 /*
2465 * Our value is greater than or equal to our factor taken to the
2466 * power of one plus the high magnitude -- return the top bucket.
2467 */
2468 return (base);
2469 }
2470
2471 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2472 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2473 {
2474 uint64_t arg = *llquanta++;
2475 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2476 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2477 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2478 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2479
2480 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2481 low, high, nsteps, nval)] += incr;
2482 }
2483
2484 /*ARGSUSED*/
2485 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2486 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2487 {
2488 data[0]++;
2489 data[1] += nval;
2490 }
2491
2492 /*ARGSUSED*/
2493 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2494 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2495 {
2496 int64_t snval = (int64_t)nval;
2497 uint64_t tmp[2];
2498
2499 data[0]++;
2500 data[1] += nval;
2501
2502 /*
2503 * What we want to say here is:
2504 *
2505 * data[2] += nval * nval;
2506 *
2507 * But given that nval is 64-bit, we could easily overflow, so
2508 * we do this as 128-bit arithmetic.
2509 */
2510 if (snval < 0)
2511 snval = -snval;
2512
2513 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2514 dtrace_add_128(data + 2, tmp, data + 2);
2515 }
2516
2517 /*ARGSUSED*/
2518 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2519 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2520 {
2521 *oval = *oval + 1;
2522 }
2523
2524 /*ARGSUSED*/
2525 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2526 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2527 {
2528 *oval += nval;
2529 }
2530
2531 /*
2532 * Aggregate given the tuple in the principal data buffer, and the aggregating
2533 * action denoted by the specified dtrace_aggregation_t. The aggregation
2534 * buffer is specified as the buf parameter. This routine does not return
2535 * failure; if there is no space in the aggregation buffer, the data will be
2536 * dropped, and a corresponding counter incremented.
2537 */
2538 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2539 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2540 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2541 {
2542 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2543 uint32_t i, ndx, size, fsize;
2544 uint32_t align = sizeof (uint64_t) - 1;
2545 dtrace_aggbuffer_t *agb;
2546 dtrace_aggkey_t *key;
2547 uint32_t hashval = 0, limit, isstr;
2548 caddr_t tomax, data, kdata;
2549 dtrace_actkind_t action;
2550 dtrace_action_t *act;
2551 uintptr_t offs;
2552
2553 if (buf == NULL)
2554 return;
2555
2556 if (!agg->dtag_hasarg) {
2557 /*
2558 * Currently, only quantize() and lquantize() take additional
2559 * arguments, and they have the same semantics: an increment
2560 * value that defaults to 1 when not present. If additional
2561 * aggregating actions take arguments, the setting of the
2562 * default argument value will presumably have to become more
2563 * sophisticated...
2564 */
2565 arg = 1;
2566 }
2567
2568 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2569 size = rec->dtrd_offset - agg->dtag_base;
2570 fsize = size + rec->dtrd_size;
2571
2572 ASSERT(dbuf->dtb_tomax != NULL);
2573 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2574
2575 if ((tomax = buf->dtb_tomax) == NULL) {
2576 dtrace_buffer_drop(buf);
2577 return;
2578 }
2579
2580 /*
2581 * The metastructure is always at the bottom of the buffer.
2582 */
2583 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2584 sizeof (dtrace_aggbuffer_t));
2585
2586 if (buf->dtb_offset == 0) {
2587 /*
2588 * We just kludge up approximately 1/8th of the size to be
2589 * buckets. If this guess ends up being routinely
2590 * off-the-mark, we may need to dynamically readjust this
2591 * based on past performance.
2592 */
2593 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2594
2595 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2596 (uintptr_t)tomax || hashsize == 0) {
2597 /*
2598 * We've been given a ludicrously small buffer;
2599 * increment our drop count and leave.
2600 */
2601 dtrace_buffer_drop(buf);
2602 return;
2603 }
2604
2605 /*
2606 * And now, a pathetic attempt to try to get a an odd (or
2607 * perchance, a prime) hash size for better hash distribution.
2608 */
2609 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2610 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2611
2612 agb->dtagb_hashsize = hashsize;
2613 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2614 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2615 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2616
2617 for (i = 0; i < agb->dtagb_hashsize; i++)
2618 agb->dtagb_hash[i] = NULL;
2619 }
2620
2621 ASSERT(agg->dtag_first != NULL);
2622 ASSERT(agg->dtag_first->dta_intuple);
2623
2624 /*
2625 * Calculate the hash value based on the key. Note that we _don't_
2626 * include the aggid in the hashing (but we will store it as part of
2627 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2628 * algorithm: a simple, quick algorithm that has no known funnels, and
2629 * gets good distribution in practice. The efficacy of the hashing
2630 * algorithm (and a comparison with other algorithms) may be found by
2631 * running the ::dtrace_aggstat MDB dcmd.
2632 */
2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2634 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2635 limit = i + act->dta_rec.dtrd_size;
2636 ASSERT(limit <= size);
2637 isstr = DTRACEACT_ISSTRING(act);
2638
2639 for (; i < limit; i++) {
2640 hashval += data[i];
2641 hashval += (hashval << 10);
2642 hashval ^= (hashval >> 6);
2643
2644 if (isstr && data[i] == '\0')
2645 break;
2646 }
2647 }
2648
2649 hashval += (hashval << 3);
2650 hashval ^= (hashval >> 11);
2651 hashval += (hashval << 15);
2652
2653 /*
2654 * Yes, the divide here is expensive -- but it's generally the least
2655 * of the performance issues given the amount of data that we iterate
2656 * over to compute hash values, compare data, etc.
2657 */
2658 ndx = hashval % agb->dtagb_hashsize;
2659
2660 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2661 ASSERT((caddr_t)key >= tomax);
2662 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2663
2664 if (hashval != key->dtak_hashval || key->dtak_size != size)
2665 continue;
2666
2667 kdata = key->dtak_data;
2668 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2669
2670 for (act = agg->dtag_first; act->dta_intuple;
2671 act = act->dta_next) {
2672 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2673 limit = i + act->dta_rec.dtrd_size;
2674 ASSERT(limit <= size);
2675 isstr = DTRACEACT_ISSTRING(act);
2676
2677 for (; i < limit; i++) {
2678 if (kdata[i] != data[i])
2679 goto next;
2680
2681 if (isstr && data[i] == '\0')
2682 break;
2683 }
2684 }
2685
2686 if (action != key->dtak_action) {
2687 /*
2688 * We are aggregating on the same value in the same
2689 * aggregation with two different aggregating actions.
2690 * (This should have been picked up in the compiler,
2691 * so we may be dealing with errant or devious DIF.)
2692 * This is an error condition; we indicate as much,
2693 * and return.
2694 */
2695 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2696 return;
2697 }
2698
2699 /*
2700 * This is a hit: we need to apply the aggregator to
2701 * the value at this key.
2702 */
2703 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2704 return;
2705 next:
2706 continue;
2707 }
2708
2709 /*
2710 * We didn't find it. We need to allocate some zero-filled space,
2711 * link it into the hash table appropriately, and apply the aggregator
2712 * to the (zero-filled) value.
2713 */
2714 offs = buf->dtb_offset;
2715 while (offs & (align - 1))
2716 offs += sizeof (uint32_t);
2717
2718 /*
2719 * If we don't have enough room to both allocate a new key _and_
2720 * its associated data, increment the drop count and return.
2721 */
2722 if ((uintptr_t)tomax + offs + fsize >
2723 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2724 dtrace_buffer_drop(buf);
2725 return;
2726 }
2727
2728 /*CONSTCOND*/
2729 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2730 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2731 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2732
2733 key->dtak_data = kdata = tomax + offs;
2734 buf->dtb_offset = offs + fsize;
2735
2736 /*
2737 * Now copy the data across.
2738 */
2739 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2740
2741 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2742 kdata[i] = data[i];
2743
2744 /*
2745 * Because strings are not zeroed out by default, we need to iterate
2746 * looking for actions that store strings, and we need to explicitly
2747 * pad these strings out with zeroes.
2748 */
2749 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2750 int nul;
2751
2752 if (!DTRACEACT_ISSTRING(act))
2753 continue;
2754
2755 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2756 limit = i + act->dta_rec.dtrd_size;
2757 ASSERT(limit <= size);
2758
2759 for (nul = 0; i < limit; i++) {
2760 if (nul) {
2761 kdata[i] = '\0';
2762 continue;
2763 }
2764
2765 if (data[i] != '\0')
2766 continue;
2767
2768 nul = 1;
2769 }
2770 }
2771
2772 for (i = size; i < fsize; i++)
2773 kdata[i] = 0;
2774
2775 key->dtak_hashval = hashval;
2776 key->dtak_size = size;
2777 key->dtak_action = action;
2778 key->dtak_next = agb->dtagb_hash[ndx];
2779 agb->dtagb_hash[ndx] = key;
2780
2781 /*
2782 * Finally, apply the aggregator.
2783 */
2784 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2785 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2786 }
2787
2788 /*
2789 * Given consumer state, this routine finds a speculation in the INACTIVE
2790 * state and transitions it into the ACTIVE state. If there is no speculation
2791 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2792 * incremented -- it is up to the caller to take appropriate action.
2793 */
2794 static int
dtrace_speculation(dtrace_state_t * state)2795 dtrace_speculation(dtrace_state_t *state)
2796 {
2797 int i = 0;
2798 dtrace_speculation_state_t curstate;
2799 uint32_t *stat = &state->dts_speculations_unavail, count;
2800
2801 while (i < state->dts_nspeculations) {
2802 dtrace_speculation_t *spec = &state->dts_speculations[i];
2803
2804 curstate = spec->dtsp_state;
2805
2806 if (curstate != DTRACESPEC_INACTIVE) {
2807 if (curstate == DTRACESPEC_COMMITTINGMANY ||
2808 curstate == DTRACESPEC_COMMITTING ||
2809 curstate == DTRACESPEC_DISCARDING)
2810 stat = &state->dts_speculations_busy;
2811 i++;
2812 continue;
2813 }
2814
2815 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2816 curstate, DTRACESPEC_ACTIVE) == curstate)
2817 return (i + 1);
2818 }
2819
2820 /*
2821 * We couldn't find a speculation. If we found as much as a single
2822 * busy speculation buffer, we'll attribute this failure as "busy"
2823 * instead of "unavail".
2824 */
2825 do {
2826 count = *stat;
2827 } while (dtrace_cas32(stat, count, count + 1) != count);
2828
2829 return (0);
2830 }
2831
2832 /*
2833 * This routine commits an active speculation. If the specified speculation
2834 * is not in a valid state to perform a commit(), this routine will silently do
2835 * nothing. The state of the specified speculation is transitioned according
2836 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2837 */
2838 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2839 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2840 dtrace_specid_t which)
2841 {
2842 dtrace_speculation_t *spec;
2843 dtrace_buffer_t *src, *dest;
2844 uintptr_t daddr, saddr, dlimit, slimit;
2845 dtrace_speculation_state_t curstate, new = 0;
2846 intptr_t offs;
2847 uint64_t timestamp;
2848
2849 if (which == 0)
2850 return;
2851
2852 if (which > state->dts_nspeculations) {
2853 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2854 return;
2855 }
2856
2857 spec = &state->dts_speculations[which - 1];
2858 src = &spec->dtsp_buffer[cpu];
2859 dest = &state->dts_buffer[cpu];
2860
2861 do {
2862 curstate = spec->dtsp_state;
2863
2864 if (curstate == DTRACESPEC_COMMITTINGMANY)
2865 break;
2866
2867 switch (curstate) {
2868 case DTRACESPEC_INACTIVE:
2869 case DTRACESPEC_DISCARDING:
2870 return;
2871
2872 case DTRACESPEC_COMMITTING:
2873 /*
2874 * This is only possible if we are (a) commit()'ing
2875 * without having done a prior speculate() on this CPU
2876 * and (b) racing with another commit() on a different
2877 * CPU. There's nothing to do -- we just assert that
2878 * our offset is 0.
2879 */
2880 ASSERT(src->dtb_offset == 0);
2881 return;
2882
2883 case DTRACESPEC_ACTIVE:
2884 new = DTRACESPEC_COMMITTING;
2885 break;
2886
2887 case DTRACESPEC_ACTIVEONE:
2888 /*
2889 * This speculation is active on one CPU. If our
2890 * buffer offset is non-zero, we know that the one CPU
2891 * must be us. Otherwise, we are committing on a
2892 * different CPU from the speculate(), and we must
2893 * rely on being asynchronously cleaned.
2894 */
2895 if (src->dtb_offset != 0) {
2896 new = DTRACESPEC_COMMITTING;
2897 break;
2898 }
2899 /*FALLTHROUGH*/
2900
2901 case DTRACESPEC_ACTIVEMANY:
2902 new = DTRACESPEC_COMMITTINGMANY;
2903 break;
2904
2905 default:
2906 ASSERT(0);
2907 }
2908 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2909 curstate, new) != curstate);
2910
2911 /*
2912 * We have set the state to indicate that we are committing this
2913 * speculation. Now reserve the necessary space in the destination
2914 * buffer.
2915 */
2916 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2917 sizeof (uint64_t), state, NULL)) < 0) {
2918 dtrace_buffer_drop(dest);
2919 goto out;
2920 }
2921
2922 /*
2923 * We have sufficient space to copy the speculative buffer into the
2924 * primary buffer. First, modify the speculative buffer, filling
2925 * in the timestamp of all entries with the curstate time. The data
2926 * must have the commit() time rather than the time it was traced,
2927 * so that all entries in the primary buffer are in timestamp order.
2928 */
2929 timestamp = dtrace_gethrtime();
2930 saddr = (uintptr_t)src->dtb_tomax;
2931 slimit = saddr + src->dtb_offset;
2932 while (saddr < slimit) {
2933 size_t size;
2934 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2935
2936 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2937 saddr += sizeof (dtrace_epid_t);
2938 continue;
2939 }
2940 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2941 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2942
2943 ASSERT3U(saddr + size, <=, slimit);
2944 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2945 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2946
2947 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2948
2949 saddr += size;
2950 }
2951
2952 /*
2953 * Copy the buffer across. (Note that this is a
2954 * highly subobtimal bcopy(); in the unlikely event that this becomes
2955 * a serious performance issue, a high-performance DTrace-specific
2956 * bcopy() should obviously be invented.)
2957 */
2958 daddr = (uintptr_t)dest->dtb_tomax + offs;
2959 dlimit = daddr + src->dtb_offset;
2960 saddr = (uintptr_t)src->dtb_tomax;
2961
2962 /*
2963 * First, the aligned portion.
2964 */
2965 while (dlimit - daddr >= sizeof (uint64_t)) {
2966 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2967
2968 daddr += sizeof (uint64_t);
2969 saddr += sizeof (uint64_t);
2970 }
2971
2972 /*
2973 * Now any left-over bit...
2974 */
2975 while (dlimit - daddr)
2976 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2977
2978 /*
2979 * Finally, commit the reserved space in the destination buffer.
2980 */
2981 dest->dtb_offset = offs + src->dtb_offset;
2982
2983 out:
2984 /*
2985 * If we're lucky enough to be the only active CPU on this speculation
2986 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2987 */
2988 if (curstate == DTRACESPEC_ACTIVE ||
2989 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2990 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2991 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2992
2993 ASSERT(rval == DTRACESPEC_COMMITTING);
2994 }
2995
2996 src->dtb_offset = 0;
2997 src->dtb_xamot_drops += src->dtb_drops;
2998 src->dtb_drops = 0;
2999 }
3000
3001 /*
3002 * This routine discards an active speculation. If the specified speculation
3003 * is not in a valid state to perform a discard(), this routine will silently
3004 * do nothing. The state of the specified speculation is transitioned
3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3006 */
3007 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)3008 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3009 dtrace_specid_t which)
3010 {
3011 dtrace_speculation_t *spec;
3012 dtrace_speculation_state_t curstate, new = 0;
3013 dtrace_buffer_t *buf;
3014
3015 if (which == 0)
3016 return;
3017
3018 if (which > state->dts_nspeculations) {
3019 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3020 return;
3021 }
3022
3023 spec = &state->dts_speculations[which - 1];
3024 buf = &spec->dtsp_buffer[cpu];
3025
3026 do {
3027 curstate = spec->dtsp_state;
3028
3029 switch (curstate) {
3030 case DTRACESPEC_INACTIVE:
3031 case DTRACESPEC_COMMITTINGMANY:
3032 case DTRACESPEC_COMMITTING:
3033 case DTRACESPEC_DISCARDING:
3034 return;
3035
3036 case DTRACESPEC_ACTIVE:
3037 case DTRACESPEC_ACTIVEMANY:
3038 new = DTRACESPEC_DISCARDING;
3039 break;
3040
3041 case DTRACESPEC_ACTIVEONE:
3042 if (buf->dtb_offset != 0) {
3043 new = DTRACESPEC_INACTIVE;
3044 } else {
3045 new = DTRACESPEC_DISCARDING;
3046 }
3047 break;
3048
3049 default:
3050 ASSERT(0);
3051 }
3052 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3053 curstate, new) != curstate);
3054
3055 buf->dtb_offset = 0;
3056 buf->dtb_drops = 0;
3057 }
3058
3059 /*
3060 * Note: not called from probe context. This function is called
3061 * asynchronously from cross call context to clean any speculations that are
3062 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3064 * speculation.
3065 */
3066 static void
dtrace_speculation_clean_here(dtrace_state_t * state)3067 dtrace_speculation_clean_here(dtrace_state_t *state)
3068 {
3069 dtrace_icookie_t cookie;
3070 processorid_t cpu = curcpu;
3071 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3072 dtrace_specid_t i;
3073
3074 cookie = dtrace_interrupt_disable();
3075
3076 if (dest->dtb_tomax == NULL) {
3077 dtrace_interrupt_enable(cookie);
3078 return;
3079 }
3080
3081 for (i = 0; i < state->dts_nspeculations; i++) {
3082 dtrace_speculation_t *spec = &state->dts_speculations[i];
3083 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3084
3085 if (src->dtb_tomax == NULL)
3086 continue;
3087
3088 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3089 src->dtb_offset = 0;
3090 continue;
3091 }
3092
3093 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3094 continue;
3095
3096 if (src->dtb_offset == 0)
3097 continue;
3098
3099 dtrace_speculation_commit(state, cpu, i + 1);
3100 }
3101
3102 dtrace_interrupt_enable(cookie);
3103 }
3104
3105 /*
3106 * Note: not called from probe context. This function is called
3107 * asynchronously (and at a regular interval) to clean any speculations that
3108 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3109 * is work to be done, it cross calls all CPUs to perform that work;
3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3111 * INACTIVE state until they have been cleaned by all CPUs.
3112 */
3113 static void
dtrace_speculation_clean(dtrace_state_t * state)3114 dtrace_speculation_clean(dtrace_state_t *state)
3115 {
3116 int work = 0, rv;
3117 dtrace_specid_t i;
3118
3119 for (i = 0; i < state->dts_nspeculations; i++) {
3120 dtrace_speculation_t *spec = &state->dts_speculations[i];
3121
3122 ASSERT(!spec->dtsp_cleaning);
3123
3124 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3125 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3126 continue;
3127
3128 work++;
3129 spec->dtsp_cleaning = 1;
3130 }
3131
3132 if (!work)
3133 return;
3134
3135 dtrace_xcall(DTRACE_CPUALL,
3136 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3137
3138 /*
3139 * We now know that all CPUs have committed or discarded their
3140 * speculation buffers, as appropriate. We can now set the state
3141 * to inactive.
3142 */
3143 for (i = 0; i < state->dts_nspeculations; i++) {
3144 dtrace_speculation_t *spec = &state->dts_speculations[i];
3145 dtrace_speculation_state_t curstate, new;
3146
3147 if (!spec->dtsp_cleaning)
3148 continue;
3149
3150 curstate = spec->dtsp_state;
3151 ASSERT(curstate == DTRACESPEC_DISCARDING ||
3152 curstate == DTRACESPEC_COMMITTINGMANY);
3153
3154 new = DTRACESPEC_INACTIVE;
3155
3156 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3157 ASSERT(rv == curstate);
3158 spec->dtsp_cleaning = 0;
3159 }
3160 }
3161
3162 /*
3163 * Called as part of a speculate() to get the speculative buffer associated
3164 * with a given speculation. Returns NULL if the specified speculation is not
3165 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3166 * the active CPU is not the specified CPU -- the speculation will be
3167 * atomically transitioned into the ACTIVEMANY state.
3168 */
3169 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3170 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3171 dtrace_specid_t which)
3172 {
3173 dtrace_speculation_t *spec;
3174 dtrace_speculation_state_t curstate, new = 0;
3175 dtrace_buffer_t *buf;
3176
3177 if (which == 0)
3178 return (NULL);
3179
3180 if (which > state->dts_nspeculations) {
3181 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3182 return (NULL);
3183 }
3184
3185 spec = &state->dts_speculations[which - 1];
3186 buf = &spec->dtsp_buffer[cpuid];
3187
3188 do {
3189 curstate = spec->dtsp_state;
3190
3191 switch (curstate) {
3192 case DTRACESPEC_INACTIVE:
3193 case DTRACESPEC_COMMITTINGMANY:
3194 case DTRACESPEC_DISCARDING:
3195 return (NULL);
3196
3197 case DTRACESPEC_COMMITTING:
3198 ASSERT(buf->dtb_offset == 0);
3199 return (NULL);
3200
3201 case DTRACESPEC_ACTIVEONE:
3202 /*
3203 * This speculation is currently active on one CPU.
3204 * Check the offset in the buffer; if it's non-zero,
3205 * that CPU must be us (and we leave the state alone).
3206 * If it's zero, assume that we're starting on a new
3207 * CPU -- and change the state to indicate that the
3208 * speculation is active on more than one CPU.
3209 */
3210 if (buf->dtb_offset != 0)
3211 return (buf);
3212
3213 new = DTRACESPEC_ACTIVEMANY;
3214 break;
3215
3216 case DTRACESPEC_ACTIVEMANY:
3217 return (buf);
3218
3219 case DTRACESPEC_ACTIVE:
3220 new = DTRACESPEC_ACTIVEONE;
3221 break;
3222
3223 default:
3224 ASSERT(0);
3225 }
3226 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3227 curstate, new) != curstate);
3228
3229 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3230 return (buf);
3231 }
3232
3233 /*
3234 * Return a string. In the event that the user lacks the privilege to access
3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3236 * don't fail access checking.
3237 *
3238 * dtrace_dif_variable() uses this routine as a helper for various
3239 * builtin values such as 'execname' and 'probefunc.'
3240 */
3241 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3242 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3243 dtrace_mstate_t *mstate)
3244 {
3245 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3246 uintptr_t ret;
3247 size_t strsz;
3248
3249 /*
3250 * The easy case: this probe is allowed to read all of memory, so
3251 * we can just return this as a vanilla pointer.
3252 */
3253 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3254 return (addr);
3255
3256 /*
3257 * This is the tougher case: we copy the string in question from
3258 * kernel memory into scratch memory and return it that way: this
3259 * ensures that we won't trip up when access checking tests the
3260 * BYREF return value.
3261 */
3262 strsz = dtrace_strlen((char *)addr, size) + 1;
3263
3264 if (mstate->dtms_scratch_ptr + strsz >
3265 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3267 return (0);
3268 }
3269
3270 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3271 strsz);
3272 ret = mstate->dtms_scratch_ptr;
3273 mstate->dtms_scratch_ptr += strsz;
3274 return (ret);
3275 }
3276
3277 /*
3278 * Return a string from a memoy address which is known to have one or
3279 * more concatenated, individually zero terminated, sub-strings.
3280 * In the event that the user lacks the privilege to access
3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3282 * don't fail access checking.
3283 *
3284 * dtrace_dif_variable() uses this routine as a helper for various
3285 * builtin values such as 'execargs'.
3286 */
3287 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)3288 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3289 dtrace_mstate_t *mstate)
3290 {
3291 char *p;
3292 size_t i;
3293 uintptr_t ret;
3294
3295 if (mstate->dtms_scratch_ptr + strsz >
3296 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3298 return (0);
3299 }
3300
3301 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3302 strsz);
3303
3304 /* Replace sub-string termination characters with a space. */
3305 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3306 p++, i++)
3307 if (*p == '\0')
3308 *p = ' ';
3309
3310 ret = mstate->dtms_scratch_ptr;
3311 mstate->dtms_scratch_ptr += strsz;
3312 return (ret);
3313 }
3314
3315 /*
3316 * This function implements the DIF emulator's variable lookups. The emulator
3317 * passes a reserved variable identifier and optional built-in array index.
3318 */
3319 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3320 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3321 uint64_t ndx)
3322 {
3323 /*
3324 * If we're accessing one of the uncached arguments, we'll turn this
3325 * into a reference in the args array.
3326 */
3327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3328 ndx = v - DIF_VAR_ARG0;
3329 v = DIF_VAR_ARGS;
3330 }
3331
3332 switch (v) {
3333 case DIF_VAR_ARGS:
3334 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3335 if (ndx >= sizeof (mstate->dtms_arg) /
3336 sizeof (mstate->dtms_arg[0])) {
3337 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3338 dtrace_provider_t *pv;
3339 uint64_t val;
3340
3341 pv = mstate->dtms_probe->dtpr_provider;
3342 if (pv->dtpv_pops.dtps_getargval != NULL)
3343 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3344 mstate->dtms_probe->dtpr_id,
3345 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3346 else
3347 val = dtrace_getarg(ndx, aframes);
3348
3349 /*
3350 * This is regrettably required to keep the compiler
3351 * from tail-optimizing the call to dtrace_getarg().
3352 * The condition always evaluates to true, but the
3353 * compiler has no way of figuring that out a priori.
3354 * (None of this would be necessary if the compiler
3355 * could be relied upon to _always_ tail-optimize
3356 * the call to dtrace_getarg() -- but it can't.)
3357 */
3358 if (mstate->dtms_probe != NULL)
3359 return (val);
3360
3361 ASSERT(0);
3362 }
3363
3364 return (mstate->dtms_arg[ndx]);
3365
3366 case DIF_VAR_REGS:
3367 case DIF_VAR_UREGS: {
3368 struct trapframe *tframe;
3369
3370 if (!dtrace_priv_proc(state))
3371 return (0);
3372
3373 if (v == DIF_VAR_REGS)
3374 tframe = curthread->t_dtrace_trapframe;
3375 else
3376 tframe = curthread->td_frame;
3377
3378 if (tframe == NULL) {
3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3380 cpu_core[curcpu].cpuc_dtrace_illval = 0;
3381 return (0);
3382 }
3383
3384 return (dtrace_getreg(tframe, ndx));
3385 }
3386
3387 case DIF_VAR_CURTHREAD:
3388 if (!dtrace_priv_proc(state))
3389 return (0);
3390 return ((uint64_t)(uintptr_t)curthread);
3391
3392 case DIF_VAR_TIMESTAMP:
3393 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3394 mstate->dtms_timestamp = dtrace_gethrtime();
3395 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3396 }
3397 return (mstate->dtms_timestamp);
3398
3399 case DIF_VAR_VTIMESTAMP:
3400 ASSERT(dtrace_vtime_references != 0);
3401 return (curthread->t_dtrace_vtime);
3402
3403 case DIF_VAR_WALLTIMESTAMP:
3404 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3405 mstate->dtms_walltimestamp = dtrace_gethrestime();
3406 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3407 }
3408 return (mstate->dtms_walltimestamp);
3409
3410 #ifdef illumos
3411 case DIF_VAR_IPL:
3412 if (!dtrace_priv_kernel(state))
3413 return (0);
3414 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3415 mstate->dtms_ipl = dtrace_getipl();
3416 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3417 }
3418 return (mstate->dtms_ipl);
3419 #endif
3420
3421 case DIF_VAR_EPID:
3422 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3423 return (mstate->dtms_epid);
3424
3425 case DIF_VAR_ID:
3426 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3427 return (mstate->dtms_probe->dtpr_id);
3428
3429 case DIF_VAR_STACKDEPTH:
3430 if (!dtrace_priv_kernel(state))
3431 return (0);
3432 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3433 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3434
3435 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3436 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3437 }
3438 return (mstate->dtms_stackdepth);
3439
3440 case DIF_VAR_USTACKDEPTH:
3441 if (!dtrace_priv_proc(state))
3442 return (0);
3443 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3444 /*
3445 * See comment in DIF_VAR_PID.
3446 */
3447 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3448 CPU_ON_INTR(CPU)) {
3449 mstate->dtms_ustackdepth = 0;
3450 } else {
3451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3452 mstate->dtms_ustackdepth =
3453 dtrace_getustackdepth();
3454 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3455 }
3456 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3457 }
3458 return (mstate->dtms_ustackdepth);
3459
3460 case DIF_VAR_CALLER:
3461 if (!dtrace_priv_kernel(state))
3462 return (0);
3463 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3464 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3465
3466 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3467 /*
3468 * If this is an unanchored probe, we are
3469 * required to go through the slow path:
3470 * dtrace_caller() only guarantees correct
3471 * results for anchored probes.
3472 */
3473 pc_t caller[2] = {0, 0};
3474
3475 dtrace_getpcstack(caller, 2, aframes,
3476 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3477 mstate->dtms_caller = caller[1];
3478 } else if ((mstate->dtms_caller =
3479 dtrace_caller(aframes)) == -1) {
3480 /*
3481 * We have failed to do this the quick way;
3482 * we must resort to the slower approach of
3483 * calling dtrace_getpcstack().
3484 */
3485 pc_t caller = 0;
3486
3487 dtrace_getpcstack(&caller, 1, aframes, NULL);
3488 mstate->dtms_caller = caller;
3489 }
3490
3491 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3492 }
3493 return (mstate->dtms_caller);
3494
3495 case DIF_VAR_UCALLER:
3496 if (!dtrace_priv_proc(state))
3497 return (0);
3498
3499 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3500 uint64_t ustack[3];
3501
3502 /*
3503 * dtrace_getupcstack() fills in the first uint64_t
3504 * with the current PID. The second uint64_t will
3505 * be the program counter at user-level. The third
3506 * uint64_t will contain the caller, which is what
3507 * we're after.
3508 */
3509 ustack[2] = 0;
3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3511 dtrace_getupcstack(ustack, 3);
3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3513 mstate->dtms_ucaller = ustack[2];
3514 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3515 }
3516
3517 return (mstate->dtms_ucaller);
3518
3519 case DIF_VAR_PROBEPROV:
3520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3521 return (dtrace_dif_varstr(
3522 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3523 state, mstate));
3524
3525 case DIF_VAR_PROBEMOD:
3526 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3527 return (dtrace_dif_varstr(
3528 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3529 state, mstate));
3530
3531 case DIF_VAR_PROBEFUNC:
3532 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3533 return (dtrace_dif_varstr(
3534 (uintptr_t)mstate->dtms_probe->dtpr_func,
3535 state, mstate));
3536
3537 case DIF_VAR_PROBENAME:
3538 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3539 return (dtrace_dif_varstr(
3540 (uintptr_t)mstate->dtms_probe->dtpr_name,
3541 state, mstate));
3542
3543 case DIF_VAR_PID:
3544 if (!dtrace_priv_proc(state))
3545 return (0);
3546
3547 #ifdef illumos
3548 /*
3549 * Note that we are assuming that an unanchored probe is
3550 * always due to a high-level interrupt. (And we're assuming
3551 * that there is only a single high level interrupt.)
3552 */
3553 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3554 return (pid0.pid_id);
3555
3556 /*
3557 * It is always safe to dereference one's own t_procp pointer:
3558 * it always points to a valid, allocated proc structure.
3559 * Further, it is always safe to dereference the p_pidp member
3560 * of one's own proc structure. (These are truisms becuase
3561 * threads and processes don't clean up their own state --
3562 * they leave that task to whomever reaps them.)
3563 */
3564 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3565 #else
3566 return ((uint64_t)curproc->p_pid);
3567 #endif
3568
3569 case DIF_VAR_PPID:
3570 if (!dtrace_priv_proc(state))
3571 return (0);
3572
3573 #ifdef illumos
3574 /*
3575 * See comment in DIF_VAR_PID.
3576 */
3577 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3578 return (pid0.pid_id);
3579
3580 /*
3581 * It is always safe to dereference one's own t_procp pointer:
3582 * it always points to a valid, allocated proc structure.
3583 * (This is true because threads don't clean up their own
3584 * state -- they leave that task to whomever reaps them.)
3585 */
3586 return ((uint64_t)curthread->t_procp->p_ppid);
3587 #else
3588 if (curproc->p_pid == proc0.p_pid)
3589 return (curproc->p_pid);
3590 else
3591 return (curproc->p_pptr->p_pid);
3592 #endif
3593
3594 case DIF_VAR_TID:
3595 #ifdef illumos
3596 /*
3597 * See comment in DIF_VAR_PID.
3598 */
3599 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3600 return (0);
3601 #endif
3602
3603 return ((uint64_t)curthread->t_tid);
3604
3605 case DIF_VAR_EXECARGS: {
3606 struct pargs *p_args = curthread->td_proc->p_args;
3607
3608 if (p_args == NULL)
3609 return(0);
3610
3611 return (dtrace_dif_varstrz(
3612 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3613 }
3614
3615 case DIF_VAR_EXECNAME:
3616 #ifdef illumos
3617 if (!dtrace_priv_proc(state))
3618 return (0);
3619
3620 /*
3621 * See comment in DIF_VAR_PID.
3622 */
3623 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3624 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3625
3626 /*
3627 * It is always safe to dereference one's own t_procp pointer:
3628 * it always points to a valid, allocated proc structure.
3629 * (This is true because threads don't clean up their own
3630 * state -- they leave that task to whomever reaps them.)
3631 */
3632 return (dtrace_dif_varstr(
3633 (uintptr_t)curthread->t_procp->p_user.u_comm,
3634 state, mstate));
3635 #else
3636 return (dtrace_dif_varstr(
3637 (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3638 #endif
3639
3640 case DIF_VAR_ZONENAME:
3641 #ifdef illumos
3642 if (!dtrace_priv_proc(state))
3643 return (0);
3644
3645 /*
3646 * See comment in DIF_VAR_PID.
3647 */
3648 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3649 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3650
3651 /*
3652 * It is always safe to dereference one's own t_procp pointer:
3653 * it always points to a valid, allocated proc structure.
3654 * (This is true because threads don't clean up their own
3655 * state -- they leave that task to whomever reaps them.)
3656 */
3657 return (dtrace_dif_varstr(
3658 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3659 state, mstate));
3660 #elif defined(__FreeBSD__)
3661 /*
3662 * On FreeBSD, we introduce compatibility to zonename by falling through
3663 * into jailname.
3664 */
3665 case DIF_VAR_JAILNAME:
3666 if (!dtrace_priv_kernel(state))
3667 return (0);
3668
3669 return (dtrace_dif_varstr(
3670 (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3671 state, mstate));
3672
3673 case DIF_VAR_JID:
3674 if (!dtrace_priv_kernel(state))
3675 return (0);
3676
3677 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3678 #else
3679 return (0);
3680 #endif
3681
3682 case DIF_VAR_UID:
3683 if (!dtrace_priv_proc(state))
3684 return (0);
3685
3686 #ifdef illumos
3687 /*
3688 * See comment in DIF_VAR_PID.
3689 */
3690 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3691 return ((uint64_t)p0.p_cred->cr_uid);
3692
3693 /*
3694 * It is always safe to dereference one's own t_procp pointer:
3695 * it always points to a valid, allocated proc structure.
3696 * (This is true because threads don't clean up their own
3697 * state -- they leave that task to whomever reaps them.)
3698 *
3699 * Additionally, it is safe to dereference one's own process
3700 * credential, since this is never NULL after process birth.
3701 */
3702 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3703 #else
3704 return ((uint64_t)curthread->td_ucred->cr_uid);
3705 #endif
3706
3707 case DIF_VAR_GID:
3708 if (!dtrace_priv_proc(state))
3709 return (0);
3710
3711 #ifdef illumos
3712 /*
3713 * See comment in DIF_VAR_PID.
3714 */
3715 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3716 return ((uint64_t)p0.p_cred->cr_gid);
3717
3718 /*
3719 * It is always safe to dereference one's own t_procp pointer:
3720 * it always points to a valid, allocated proc structure.
3721 * (This is true because threads don't clean up their own
3722 * state -- they leave that task to whomever reaps them.)
3723 *
3724 * Additionally, it is safe to dereference one's own process
3725 * credential, since this is never NULL after process birth.
3726 */
3727 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3728 #else
3729 return ((uint64_t)curthread->td_ucred->cr_gid);
3730 #endif
3731
3732 case DIF_VAR_ERRNO: {
3733 #ifdef illumos
3734 klwp_t *lwp;
3735 if (!dtrace_priv_proc(state))
3736 return (0);
3737
3738 /*
3739 * See comment in DIF_VAR_PID.
3740 */
3741 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3742 return (0);
3743
3744 /*
3745 * It is always safe to dereference one's own t_lwp pointer in
3746 * the event that this pointer is non-NULL. (This is true
3747 * because threads and lwps don't clean up their own state --
3748 * they leave that task to whomever reaps them.)
3749 */
3750 if ((lwp = curthread->t_lwp) == NULL)
3751 return (0);
3752
3753 return ((uint64_t)lwp->lwp_errno);
3754 #else
3755 return (curthread->td_errno);
3756 #endif
3757 }
3758 #ifndef illumos
3759 case DIF_VAR_CPU: {
3760 return curcpu;
3761 }
3762 #endif
3763 default:
3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3765 return (0);
3766 }
3767 }
3768
3769
3770 typedef enum dtrace_json_state {
3771 DTRACE_JSON_REST = 1,
3772 DTRACE_JSON_OBJECT,
3773 DTRACE_JSON_STRING,
3774 DTRACE_JSON_STRING_ESCAPE,
3775 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3776 DTRACE_JSON_COLON,
3777 DTRACE_JSON_COMMA,
3778 DTRACE_JSON_VALUE,
3779 DTRACE_JSON_IDENTIFIER,
3780 DTRACE_JSON_NUMBER,
3781 DTRACE_JSON_NUMBER_FRAC,
3782 DTRACE_JSON_NUMBER_EXP,
3783 DTRACE_JSON_COLLECT_OBJECT
3784 } dtrace_json_state_t;
3785
3786 /*
3787 * This function possesses just enough knowledge about JSON to extract a single
3788 * value from a JSON string and store it in the scratch buffer. It is able
3789 * to extract nested object values, and members of arrays by index.
3790 *
3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3792 * be looked up as we descend into the object tree. e.g.
3793 *
3794 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3795 * with nelems = 5.
3796 *
3797 * The run time of this function must be bounded above by strsize to limit the
3798 * amount of work done in probe context. As such, it is implemented as a
3799 * simple state machine, reading one character at a time using safe loads
3800 * until we find the requested element, hit a parsing error or run off the
3801 * end of the object or string.
3802 *
3803 * As there is no way for a subroutine to return an error without interrupting
3804 * clause execution, we simply return NULL in the event of a missing key or any
3805 * other error condition. Each NULL return in this function is commented with
3806 * the error condition it represents -- parsing or otherwise.
3807 *
3808 * The set of states for the state machine closely matches the JSON
3809 * specification (http://json.org/). Briefly:
3810 *
3811 * DTRACE_JSON_REST:
3812 * Skip whitespace until we find either a top-level Object, moving
3813 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3814 *
3815 * DTRACE_JSON_OBJECT:
3816 * Locate the next key String in an Object. Sets a flag to denote
3817 * the next String as a key string and moves to DTRACE_JSON_STRING.
3818 *
3819 * DTRACE_JSON_COLON:
3820 * Skip whitespace until we find the colon that separates key Strings
3821 * from their values. Once found, move to DTRACE_JSON_VALUE.
3822 *
3823 * DTRACE_JSON_VALUE:
3824 * Detects the type of the next value (String, Number, Identifier, Object
3825 * or Array) and routes to the states that process that type. Here we also
3826 * deal with the element selector list if we are requested to traverse down
3827 * into the object tree.
3828 *
3829 * DTRACE_JSON_COMMA:
3830 * Skip whitespace until we find the comma that separates key-value pairs
3831 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3832 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3833 * states return to this state at the end of their value, unless otherwise
3834 * noted.
3835 *
3836 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3837 * Processes a Number literal from the JSON, including any exponent
3838 * component that may be present. Numbers are returned as strings, which
3839 * may be passed to strtoll() if an integer is required.
3840 *
3841 * DTRACE_JSON_IDENTIFIER:
3842 * Processes a "true", "false" or "null" literal in the JSON.
3843 *
3844 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3845 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3846 * Processes a String literal from the JSON, whether the String denotes
3847 * a key, a value or part of a larger Object. Handles all escape sequences
3848 * present in the specification, including four-digit unicode characters,
3849 * but merely includes the escape sequence without converting it to the
3850 * actual escaped character. If the String is flagged as a key, we
3851 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3852 *
3853 * DTRACE_JSON_COLLECT_OBJECT:
3854 * This state collects an entire Object (or Array), correctly handling
3855 * embedded strings. If the full element selector list matches this nested
3856 * object, we return the Object in full as a string. If not, we use this
3857 * state to skip to the next value at this level and continue processing.
3858 *
3859 * NOTE: This function uses various macros from strtolctype.h to manipulate
3860 * digit values, etc -- these have all been checked to ensure they make
3861 * no additional function calls.
3862 */
3863 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3864 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3865 char *dest)
3866 {
3867 dtrace_json_state_t state = DTRACE_JSON_REST;
3868 int64_t array_elem = INT64_MIN;
3869 int64_t array_pos = 0;
3870 uint8_t escape_unicount = 0;
3871 boolean_t string_is_key = B_FALSE;
3872 boolean_t collect_object = B_FALSE;
3873 boolean_t found_key = B_FALSE;
3874 boolean_t in_array = B_FALSE;
3875 uint32_t braces = 0, brackets = 0;
3876 char *elem = elemlist;
3877 char *dd = dest;
3878 uintptr_t cur;
3879
3880 for (cur = json; cur < json + size; cur++) {
3881 char cc = dtrace_load8(cur);
3882 if (cc == '\0')
3883 return (NULL);
3884
3885 switch (state) {
3886 case DTRACE_JSON_REST:
3887 if (isspace(cc))
3888 break;
3889
3890 if (cc == '{') {
3891 state = DTRACE_JSON_OBJECT;
3892 break;
3893 }
3894
3895 if (cc == '[') {
3896 in_array = B_TRUE;
3897 array_pos = 0;
3898 array_elem = dtrace_strtoll(elem, 10, size);
3899 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3900 state = DTRACE_JSON_VALUE;
3901 break;
3902 }
3903
3904 /*
3905 * ERROR: expected to find a top-level object or array.
3906 */
3907 return (NULL);
3908 case DTRACE_JSON_OBJECT:
3909 if (isspace(cc))
3910 break;
3911
3912 if (cc == '"') {
3913 state = DTRACE_JSON_STRING;
3914 string_is_key = B_TRUE;
3915 break;
3916 }
3917
3918 /*
3919 * ERROR: either the object did not start with a key
3920 * string, or we've run off the end of the object
3921 * without finding the requested key.
3922 */
3923 return (NULL);
3924 case DTRACE_JSON_STRING:
3925 if (cc == '\\') {
3926 *dd++ = '\\';
3927 state = DTRACE_JSON_STRING_ESCAPE;
3928 break;
3929 }
3930
3931 if (cc == '"') {
3932 if (collect_object) {
3933 /*
3934 * We don't reset the dest here, as
3935 * the string is part of a larger
3936 * object being collected.
3937 */
3938 *dd++ = cc;
3939 collect_object = B_FALSE;
3940 state = DTRACE_JSON_COLLECT_OBJECT;
3941 break;
3942 }
3943 *dd = '\0';
3944 dd = dest; /* reset string buffer */
3945 if (string_is_key) {
3946 if (dtrace_strncmp(dest, elem,
3947 size) == 0)
3948 found_key = B_TRUE;
3949 } else if (found_key) {
3950 if (nelems > 1) {
3951 /*
3952 * We expected an object, not
3953 * this string.
3954 */
3955 return (NULL);
3956 }
3957 return (dest);
3958 }
3959 state = string_is_key ? DTRACE_JSON_COLON :
3960 DTRACE_JSON_COMMA;
3961 string_is_key = B_FALSE;
3962 break;
3963 }
3964
3965 *dd++ = cc;
3966 break;
3967 case DTRACE_JSON_STRING_ESCAPE:
3968 *dd++ = cc;
3969 if (cc == 'u') {
3970 escape_unicount = 0;
3971 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3972 } else {
3973 state = DTRACE_JSON_STRING;
3974 }
3975 break;
3976 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3977 if (!isxdigit(cc)) {
3978 /*
3979 * ERROR: invalid unicode escape, expected
3980 * four valid hexidecimal digits.
3981 */
3982 return (NULL);
3983 }
3984
3985 *dd++ = cc;
3986 if (++escape_unicount == 4)
3987 state = DTRACE_JSON_STRING;
3988 break;
3989 case DTRACE_JSON_COLON:
3990 if (isspace(cc))
3991 break;
3992
3993 if (cc == ':') {
3994 state = DTRACE_JSON_VALUE;
3995 break;
3996 }
3997
3998 /*
3999 * ERROR: expected a colon.
4000 */
4001 return (NULL);
4002 case DTRACE_JSON_COMMA:
4003 if (isspace(cc))
4004 break;
4005
4006 if (cc == ',') {
4007 if (in_array) {
4008 state = DTRACE_JSON_VALUE;
4009 if (++array_pos == array_elem)
4010 found_key = B_TRUE;
4011 } else {
4012 state = DTRACE_JSON_OBJECT;
4013 }
4014 break;
4015 }
4016
4017 /*
4018 * ERROR: either we hit an unexpected character, or
4019 * we reached the end of the object or array without
4020 * finding the requested key.
4021 */
4022 return (NULL);
4023 case DTRACE_JSON_IDENTIFIER:
4024 if (islower(cc)) {
4025 *dd++ = cc;
4026 break;
4027 }
4028
4029 *dd = '\0';
4030 dd = dest; /* reset string buffer */
4031
4032 if (dtrace_strncmp(dest, "true", 5) == 0 ||
4033 dtrace_strncmp(dest, "false", 6) == 0 ||
4034 dtrace_strncmp(dest, "null", 5) == 0) {
4035 if (found_key) {
4036 if (nelems > 1) {
4037 /*
4038 * ERROR: We expected an object,
4039 * not this identifier.
4040 */
4041 return (NULL);
4042 }
4043 return (dest);
4044 } else {
4045 cur--;
4046 state = DTRACE_JSON_COMMA;
4047 break;
4048 }
4049 }
4050
4051 /*
4052 * ERROR: we did not recognise the identifier as one
4053 * of those in the JSON specification.
4054 */
4055 return (NULL);
4056 case DTRACE_JSON_NUMBER:
4057 if (cc == '.') {
4058 *dd++ = cc;
4059 state = DTRACE_JSON_NUMBER_FRAC;
4060 break;
4061 }
4062
4063 if (cc == 'x' || cc == 'X') {
4064 /*
4065 * ERROR: specification explicitly excludes
4066 * hexidecimal or octal numbers.
4067 */
4068 return (NULL);
4069 }
4070
4071 /* FALLTHRU */
4072 case DTRACE_JSON_NUMBER_FRAC:
4073 if (cc == 'e' || cc == 'E') {
4074 *dd++ = cc;
4075 state = DTRACE_JSON_NUMBER_EXP;
4076 break;
4077 }
4078
4079 if (cc == '+' || cc == '-') {
4080 /*
4081 * ERROR: expect sign as part of exponent only.
4082 */
4083 return (NULL);
4084 }
4085 /* FALLTHRU */
4086 case DTRACE_JSON_NUMBER_EXP:
4087 if (isdigit(cc) || cc == '+' || cc == '-') {
4088 *dd++ = cc;
4089 break;
4090 }
4091
4092 *dd = '\0';
4093 dd = dest; /* reset string buffer */
4094 if (found_key) {
4095 if (nelems > 1) {
4096 /*
4097 * ERROR: We expected an object, not
4098 * this number.
4099 */
4100 return (NULL);
4101 }
4102 return (dest);
4103 }
4104
4105 cur--;
4106 state = DTRACE_JSON_COMMA;
4107 break;
4108 case DTRACE_JSON_VALUE:
4109 if (isspace(cc))
4110 break;
4111
4112 if (cc == '{' || cc == '[') {
4113 if (nelems > 1 && found_key) {
4114 in_array = cc == '[' ? B_TRUE : B_FALSE;
4115 /*
4116 * If our element selector directs us
4117 * to descend into this nested object,
4118 * then move to the next selector
4119 * element in the list and restart the
4120 * state machine.
4121 */
4122 while (*elem != '\0')
4123 elem++;
4124 elem++; /* skip the inter-element NUL */
4125 nelems--;
4126 dd = dest;
4127 if (in_array) {
4128 state = DTRACE_JSON_VALUE;
4129 array_pos = 0;
4130 array_elem = dtrace_strtoll(
4131 elem, 10, size);
4132 found_key = array_elem == 0 ?
4133 B_TRUE : B_FALSE;
4134 } else {
4135 found_key = B_FALSE;
4136 state = DTRACE_JSON_OBJECT;
4137 }
4138 break;
4139 }
4140
4141 /*
4142 * Otherwise, we wish to either skip this
4143 * nested object or return it in full.
4144 */
4145 if (cc == '[')
4146 brackets = 1;
4147 else
4148 braces = 1;
4149 *dd++ = cc;
4150 state = DTRACE_JSON_COLLECT_OBJECT;
4151 break;
4152 }
4153
4154 if (cc == '"') {
4155 state = DTRACE_JSON_STRING;
4156 break;
4157 }
4158
4159 if (islower(cc)) {
4160 /*
4161 * Here we deal with true, false and null.
4162 */
4163 *dd++ = cc;
4164 state = DTRACE_JSON_IDENTIFIER;
4165 break;
4166 }
4167
4168 if (cc == '-' || isdigit(cc)) {
4169 *dd++ = cc;
4170 state = DTRACE_JSON_NUMBER;
4171 break;
4172 }
4173
4174 /*
4175 * ERROR: unexpected character at start of value.
4176 */
4177 return (NULL);
4178 case DTRACE_JSON_COLLECT_OBJECT:
4179 if (cc == '\0')
4180 /*
4181 * ERROR: unexpected end of input.
4182 */
4183 return (NULL);
4184
4185 *dd++ = cc;
4186 if (cc == '"') {
4187 collect_object = B_TRUE;
4188 state = DTRACE_JSON_STRING;
4189 break;
4190 }
4191
4192 if (cc == ']') {
4193 if (brackets-- == 0) {
4194 /*
4195 * ERROR: unbalanced brackets.
4196 */
4197 return (NULL);
4198 }
4199 } else if (cc == '}') {
4200 if (braces-- == 0) {
4201 /*
4202 * ERROR: unbalanced braces.
4203 */
4204 return (NULL);
4205 }
4206 } else if (cc == '{') {
4207 braces++;
4208 } else if (cc == '[') {
4209 brackets++;
4210 }
4211
4212 if (brackets == 0 && braces == 0) {
4213 if (found_key) {
4214 *dd = '\0';
4215 return (dest);
4216 }
4217 dd = dest; /* reset string buffer */
4218 state = DTRACE_JSON_COMMA;
4219 }
4220 break;
4221 }
4222 }
4223 return (NULL);
4224 }
4225
4226 /*
4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4228 * Notice that we don't bother validating the proper number of arguments or
4229 * their types in the tuple stack. This isn't needed because all argument
4230 * interpretation is safe because of our load safety -- the worst that can
4231 * happen is that a bogus program can obtain bogus results.
4232 */
4233 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4235 dtrace_key_t *tupregs, int nargs,
4236 dtrace_mstate_t *mstate, dtrace_state_t *state)
4237 {
4238 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4239 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4240 dtrace_vstate_t *vstate = &state->dts_vstate;
4241
4242 #ifdef illumos
4243 union {
4244 mutex_impl_t mi;
4245 uint64_t mx;
4246 } m;
4247
4248 union {
4249 krwlock_t ri;
4250 uintptr_t rw;
4251 } r;
4252 #else
4253 struct thread *lowner;
4254 union {
4255 struct lock_object *li;
4256 uintptr_t lx;
4257 } l;
4258 #endif
4259
4260 switch (subr) {
4261 case DIF_SUBR_RAND:
4262 regs[rd] = dtrace_xoroshiro128_plus_next(
4263 state->dts_rstate[curcpu]);
4264 break;
4265
4266 #ifdef illumos
4267 case DIF_SUBR_MUTEX_OWNED:
4268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4269 mstate, vstate)) {
4270 regs[rd] = 0;
4271 break;
4272 }
4273
4274 m.mx = dtrace_load64(tupregs[0].dttk_value);
4275 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4276 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4277 else
4278 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4279 break;
4280
4281 case DIF_SUBR_MUTEX_OWNER:
4282 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4283 mstate, vstate)) {
4284 regs[rd] = 0;
4285 break;
4286 }
4287
4288 m.mx = dtrace_load64(tupregs[0].dttk_value);
4289 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4290 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4291 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4292 else
4293 regs[rd] = 0;
4294 break;
4295
4296 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4297 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4298 mstate, vstate)) {
4299 regs[rd] = 0;
4300 break;
4301 }
4302
4303 m.mx = dtrace_load64(tupregs[0].dttk_value);
4304 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4305 break;
4306
4307 case DIF_SUBR_MUTEX_TYPE_SPIN:
4308 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4309 mstate, vstate)) {
4310 regs[rd] = 0;
4311 break;
4312 }
4313
4314 m.mx = dtrace_load64(tupregs[0].dttk_value);
4315 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4316 break;
4317
4318 case DIF_SUBR_RW_READ_HELD: {
4319 uintptr_t tmp;
4320
4321 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4322 mstate, vstate)) {
4323 regs[rd] = 0;
4324 break;
4325 }
4326
4327 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4328 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4329 break;
4330 }
4331
4332 case DIF_SUBR_RW_WRITE_HELD:
4333 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4334 mstate, vstate)) {
4335 regs[rd] = 0;
4336 break;
4337 }
4338
4339 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4340 regs[rd] = _RW_WRITE_HELD(&r.ri);
4341 break;
4342
4343 case DIF_SUBR_RW_ISWRITER:
4344 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4345 mstate, vstate)) {
4346 regs[rd] = 0;
4347 break;
4348 }
4349
4350 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4351 regs[rd] = _RW_ISWRITER(&r.ri);
4352 break;
4353
4354 #else /* !illumos */
4355 case DIF_SUBR_MUTEX_OWNED:
4356 if (!dtrace_canload(tupregs[0].dttk_value,
4357 sizeof (struct lock_object), mstate, vstate)) {
4358 regs[rd] = 0;
4359 break;
4360 }
4361 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4362 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4363 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4365 break;
4366
4367 case DIF_SUBR_MUTEX_OWNER:
4368 if (!dtrace_canload(tupregs[0].dttk_value,
4369 sizeof (struct lock_object), mstate, vstate)) {
4370 regs[rd] = 0;
4371 break;
4372 }
4373 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4375 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4377 regs[rd] = (uintptr_t)lowner;
4378 break;
4379
4380 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4381 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4382 mstate, vstate)) {
4383 regs[rd] = 0;
4384 break;
4385 }
4386 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4388 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4389 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4390 break;
4391
4392 case DIF_SUBR_MUTEX_TYPE_SPIN:
4393 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4394 mstate, vstate)) {
4395 regs[rd] = 0;
4396 break;
4397 }
4398 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4400 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4402 break;
4403
4404 case DIF_SUBR_RW_READ_HELD:
4405 case DIF_SUBR_SX_SHARED_HELD:
4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4407 mstate, vstate)) {
4408 regs[rd] = 0;
4409 break;
4410 }
4411 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4413 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4414 lowner == NULL;
4415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4416 break;
4417
4418 case DIF_SUBR_RW_WRITE_HELD:
4419 case DIF_SUBR_SX_EXCLUSIVE_HELD:
4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4421 mstate, vstate)) {
4422 regs[rd] = 0;
4423 break;
4424 }
4425 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4426 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4427 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4428 lowner != NULL;
4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4430 break;
4431
4432 case DIF_SUBR_RW_ISWRITER:
4433 case DIF_SUBR_SX_ISEXCLUSIVE:
4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4435 mstate, vstate)) {
4436 regs[rd] = 0;
4437 break;
4438 }
4439 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4441 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4442 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4443 regs[rd] = (lowner == curthread);
4444 break;
4445 #endif /* illumos */
4446
4447 case DIF_SUBR_BCOPY: {
4448 /*
4449 * We need to be sure that the destination is in the scratch
4450 * region -- no other region is allowed.
4451 */
4452 uintptr_t src = tupregs[0].dttk_value;
4453 uintptr_t dest = tupregs[1].dttk_value;
4454 size_t size = tupregs[2].dttk_value;
4455
4456 if (!dtrace_inscratch(dest, size, mstate)) {
4457 *flags |= CPU_DTRACE_BADADDR;
4458 *illval = regs[rd];
4459 break;
4460 }
4461
4462 if (!dtrace_canload(src, size, mstate, vstate)) {
4463 regs[rd] = 0;
4464 break;
4465 }
4466
4467 dtrace_bcopy((void *)src, (void *)dest, size);
4468 break;
4469 }
4470
4471 case DIF_SUBR_ALLOCA:
4472 case DIF_SUBR_COPYIN: {
4473 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4474 uint64_t size =
4475 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4476 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4477
4478 /*
4479 * This action doesn't require any credential checks since
4480 * probes will not activate in user contexts to which the
4481 * enabling user does not have permissions.
4482 */
4483
4484 /*
4485 * Rounding up the user allocation size could have overflowed
4486 * a large, bogus allocation (like -1ULL) to 0.
4487 */
4488 if (scratch_size < size ||
4489 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4490 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4491 regs[rd] = 0;
4492 break;
4493 }
4494
4495 if (subr == DIF_SUBR_COPYIN) {
4496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4497 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4498 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4499 }
4500
4501 mstate->dtms_scratch_ptr += scratch_size;
4502 regs[rd] = dest;
4503 break;
4504 }
4505
4506 case DIF_SUBR_COPYINTO: {
4507 uint64_t size = tupregs[1].dttk_value;
4508 uintptr_t dest = tupregs[2].dttk_value;
4509
4510 /*
4511 * This action doesn't require any credential checks since
4512 * probes will not activate in user contexts to which the
4513 * enabling user does not have permissions.
4514 */
4515 if (!dtrace_inscratch(dest, size, mstate)) {
4516 *flags |= CPU_DTRACE_BADADDR;
4517 *illval = regs[rd];
4518 break;
4519 }
4520
4521 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4522 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4523 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4524 break;
4525 }
4526
4527 case DIF_SUBR_COPYINSTR: {
4528 uintptr_t dest = mstate->dtms_scratch_ptr;
4529 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4530
4531 if (nargs > 1 && tupregs[1].dttk_value < size)
4532 size = tupregs[1].dttk_value + 1;
4533
4534 /*
4535 * This action doesn't require any credential checks since
4536 * probes will not activate in user contexts to which the
4537 * enabling user does not have permissions.
4538 */
4539 if (!DTRACE_INSCRATCH(mstate, size)) {
4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4541 regs[rd] = 0;
4542 break;
4543 }
4544
4545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4546 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4547 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4548
4549 ((char *)dest)[size - 1] = '\0';
4550 mstate->dtms_scratch_ptr += size;
4551 regs[rd] = dest;
4552 break;
4553 }
4554
4555 #ifdef illumos
4556 case DIF_SUBR_MSGSIZE:
4557 case DIF_SUBR_MSGDSIZE: {
4558 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4559 uintptr_t wptr, rptr;
4560 size_t count = 0;
4561 int cont = 0;
4562
4563 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4564
4565 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4566 vstate)) {
4567 regs[rd] = 0;
4568 break;
4569 }
4570
4571 wptr = dtrace_loadptr(baddr +
4572 offsetof(mblk_t, b_wptr));
4573
4574 rptr = dtrace_loadptr(baddr +
4575 offsetof(mblk_t, b_rptr));
4576
4577 if (wptr < rptr) {
4578 *flags |= CPU_DTRACE_BADADDR;
4579 *illval = tupregs[0].dttk_value;
4580 break;
4581 }
4582
4583 daddr = dtrace_loadptr(baddr +
4584 offsetof(mblk_t, b_datap));
4585
4586 baddr = dtrace_loadptr(baddr +
4587 offsetof(mblk_t, b_cont));
4588
4589 /*
4590 * We want to prevent against denial-of-service here,
4591 * so we're only going to search the list for
4592 * dtrace_msgdsize_max mblks.
4593 */
4594 if (cont++ > dtrace_msgdsize_max) {
4595 *flags |= CPU_DTRACE_ILLOP;
4596 break;
4597 }
4598
4599 if (subr == DIF_SUBR_MSGDSIZE) {
4600 if (dtrace_load8(daddr +
4601 offsetof(dblk_t, db_type)) != M_DATA)
4602 continue;
4603 }
4604
4605 count += wptr - rptr;
4606 }
4607
4608 if (!(*flags & CPU_DTRACE_FAULT))
4609 regs[rd] = count;
4610
4611 break;
4612 }
4613 #endif
4614
4615 case DIF_SUBR_PROGENYOF: {
4616 pid_t pid = tupregs[0].dttk_value;
4617 proc_t *p;
4618 int rval = 0;
4619
4620 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4621
4622 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4623 #ifdef illumos
4624 if (p->p_pidp->pid_id == pid) {
4625 #else
4626 if (p->p_pid == pid) {
4627 #endif
4628 rval = 1;
4629 break;
4630 }
4631 }
4632
4633 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4634
4635 regs[rd] = rval;
4636 break;
4637 }
4638
4639 case DIF_SUBR_SPECULATION:
4640 regs[rd] = dtrace_speculation(state);
4641 break;
4642
4643 case DIF_SUBR_COPYOUT: {
4644 uintptr_t kaddr = tupregs[0].dttk_value;
4645 uintptr_t uaddr = tupregs[1].dttk_value;
4646 uint64_t size = tupregs[2].dttk_value;
4647
4648 if (!dtrace_destructive_disallow &&
4649 dtrace_priv_proc_control(state) &&
4650 !dtrace_istoxic(kaddr, size) &&
4651 dtrace_canload(kaddr, size, mstate, vstate)) {
4652 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4653 dtrace_copyout(kaddr, uaddr, size, flags);
4654 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4655 }
4656 break;
4657 }
4658
4659 case DIF_SUBR_COPYOUTSTR: {
4660 uintptr_t kaddr = tupregs[0].dttk_value;
4661 uintptr_t uaddr = tupregs[1].dttk_value;
4662 uint64_t size = tupregs[2].dttk_value;
4663 size_t lim;
4664
4665 if (!dtrace_destructive_disallow &&
4666 dtrace_priv_proc_control(state) &&
4667 !dtrace_istoxic(kaddr, size) &&
4668 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4670 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4672 }
4673 break;
4674 }
4675
4676 case DIF_SUBR_STRLEN: {
4677 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4679 size_t lim;
4680
4681 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4682 regs[rd] = 0;
4683 break;
4684 }
4685
4686 regs[rd] = dtrace_strlen((char *)addr, lim);
4687 break;
4688 }
4689
4690 case DIF_SUBR_STRCHR:
4691 case DIF_SUBR_STRRCHR: {
4692 /*
4693 * We're going to iterate over the string looking for the
4694 * specified character. We will iterate until we have reached
4695 * the string length or we have found the character. If this
4696 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4697 * of the specified character instead of the first.
4698 */
4699 uintptr_t addr = tupregs[0].dttk_value;
4700 uintptr_t addr_limit;
4701 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4702 size_t lim;
4703 char c, target = (char)tupregs[1].dttk_value;
4704
4705 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4706 regs[rd] = 0;
4707 break;
4708 }
4709 addr_limit = addr + lim;
4710
4711 for (regs[rd] = 0; addr < addr_limit; addr++) {
4712 if ((c = dtrace_load8(addr)) == target) {
4713 regs[rd] = addr;
4714
4715 if (subr == DIF_SUBR_STRCHR)
4716 break;
4717 }
4718
4719 if (c == '\0')
4720 break;
4721 }
4722 break;
4723 }
4724
4725 case DIF_SUBR_STRSTR:
4726 case DIF_SUBR_INDEX:
4727 case DIF_SUBR_RINDEX: {
4728 /*
4729 * We're going to iterate over the string looking for the
4730 * specified string. We will iterate until we have reached
4731 * the string length or we have found the string. (Yes, this
4732 * is done in the most naive way possible -- but considering
4733 * that the string we're searching for is likely to be
4734 * relatively short, the complexity of Rabin-Karp or similar
4735 * hardly seems merited.)
4736 */
4737 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4738 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4739 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4740 size_t len = dtrace_strlen(addr, size);
4741 size_t sublen = dtrace_strlen(substr, size);
4742 char *limit = addr + len, *orig = addr;
4743 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4744 int inc = 1;
4745
4746 regs[rd] = notfound;
4747
4748 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4749 regs[rd] = 0;
4750 break;
4751 }
4752
4753 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4754 vstate)) {
4755 regs[rd] = 0;
4756 break;
4757 }
4758
4759 /*
4760 * strstr() and index()/rindex() have similar semantics if
4761 * both strings are the empty string: strstr() returns a
4762 * pointer to the (empty) string, and index() and rindex()
4763 * both return index 0 (regardless of any position argument).
4764 */
4765 if (sublen == 0 && len == 0) {
4766 if (subr == DIF_SUBR_STRSTR)
4767 regs[rd] = (uintptr_t)addr;
4768 else
4769 regs[rd] = 0;
4770 break;
4771 }
4772
4773 if (subr != DIF_SUBR_STRSTR) {
4774 if (subr == DIF_SUBR_RINDEX) {
4775 limit = orig - 1;
4776 addr += len;
4777 inc = -1;
4778 }
4779
4780 /*
4781 * Both index() and rindex() take an optional position
4782 * argument that denotes the starting position.
4783 */
4784 if (nargs == 3) {
4785 int64_t pos = (int64_t)tupregs[2].dttk_value;
4786
4787 /*
4788 * If the position argument to index() is
4789 * negative, Perl implicitly clamps it at
4790 * zero. This semantic is a little surprising
4791 * given the special meaning of negative
4792 * positions to similar Perl functions like
4793 * substr(), but it appears to reflect a
4794 * notion that index() can start from a
4795 * negative index and increment its way up to
4796 * the string. Given this notion, Perl's
4797 * rindex() is at least self-consistent in
4798 * that it implicitly clamps positions greater
4799 * than the string length to be the string
4800 * length. Where Perl completely loses
4801 * coherence, however, is when the specified
4802 * substring is the empty string (""). In
4803 * this case, even if the position is
4804 * negative, rindex() returns 0 -- and even if
4805 * the position is greater than the length,
4806 * index() returns the string length. These
4807 * semantics violate the notion that index()
4808 * should never return a value less than the
4809 * specified position and that rindex() should
4810 * never return a value greater than the
4811 * specified position. (One assumes that
4812 * these semantics are artifacts of Perl's
4813 * implementation and not the results of
4814 * deliberate design -- it beggars belief that
4815 * even Larry Wall could desire such oddness.)
4816 * While in the abstract one would wish for
4817 * consistent position semantics across
4818 * substr(), index() and rindex() -- or at the
4819 * very least self-consistent position
4820 * semantics for index() and rindex() -- we
4821 * instead opt to keep with the extant Perl
4822 * semantics, in all their broken glory. (Do
4823 * we have more desire to maintain Perl's
4824 * semantics than Perl does? Probably.)
4825 */
4826 if (subr == DIF_SUBR_RINDEX) {
4827 if (pos < 0) {
4828 if (sublen == 0)
4829 regs[rd] = 0;
4830 break;
4831 }
4832
4833 if (pos > len)
4834 pos = len;
4835 } else {
4836 if (pos < 0)
4837 pos = 0;
4838
4839 if (pos >= len) {
4840 if (sublen == 0)
4841 regs[rd] = len;
4842 break;
4843 }
4844 }
4845
4846 addr = orig + pos;
4847 }
4848 }
4849
4850 for (regs[rd] = notfound; addr != limit; addr += inc) {
4851 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4852 if (subr != DIF_SUBR_STRSTR) {
4853 /*
4854 * As D index() and rindex() are
4855 * modeled on Perl (and not on awk),
4856 * we return a zero-based (and not a
4857 * one-based) index. (For you Perl
4858 * weenies: no, we're not going to add
4859 * $[ -- and shouldn't you be at a con
4860 * or something?)
4861 */
4862 regs[rd] = (uintptr_t)(addr - orig);
4863 break;
4864 }
4865
4866 ASSERT(subr == DIF_SUBR_STRSTR);
4867 regs[rd] = (uintptr_t)addr;
4868 break;
4869 }
4870 }
4871
4872 break;
4873 }
4874
4875 case DIF_SUBR_STRTOK: {
4876 uintptr_t addr = tupregs[0].dttk_value;
4877 uintptr_t tokaddr = tupregs[1].dttk_value;
4878 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4879 uintptr_t limit, toklimit;
4880 size_t clim;
4881 uint8_t c = 0, tokmap[32]; /* 256 / 8 */
4882 char *dest = (char *)mstate->dtms_scratch_ptr;
4883 int i;
4884
4885 /*
4886 * Check both the token buffer and (later) the input buffer,
4887 * since both could be non-scratch addresses.
4888 */
4889 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4890 regs[rd] = 0;
4891 break;
4892 }
4893 toklimit = tokaddr + clim;
4894
4895 if (!DTRACE_INSCRATCH(mstate, size)) {
4896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4897 regs[rd] = 0;
4898 break;
4899 }
4900
4901 if (addr == 0) {
4902 /*
4903 * If the address specified is NULL, we use our saved
4904 * strtok pointer from the mstate. Note that this
4905 * means that the saved strtok pointer is _only_
4906 * valid within multiple enablings of the same probe --
4907 * it behaves like an implicit clause-local variable.
4908 */
4909 addr = mstate->dtms_strtok;
4910 limit = mstate->dtms_strtok_limit;
4911 } else {
4912 /*
4913 * If the user-specified address is non-NULL we must
4914 * access check it. This is the only time we have
4915 * a chance to do so, since this address may reside
4916 * in the string table of this clause-- future calls
4917 * (when we fetch addr from mstate->dtms_strtok)
4918 * would fail this access check.
4919 */
4920 if (!dtrace_strcanload(addr, size, &clim, mstate,
4921 vstate)) {
4922 regs[rd] = 0;
4923 break;
4924 }
4925 limit = addr + clim;
4926 }
4927
4928 /*
4929 * First, zero the token map, and then process the token
4930 * string -- setting a bit in the map for every character
4931 * found in the token string.
4932 */
4933 for (i = 0; i < sizeof (tokmap); i++)
4934 tokmap[i] = 0;
4935
4936 for (; tokaddr < toklimit; tokaddr++) {
4937 if ((c = dtrace_load8(tokaddr)) == '\0')
4938 break;
4939
4940 ASSERT((c >> 3) < sizeof (tokmap));
4941 tokmap[c >> 3] |= (1 << (c & 0x7));
4942 }
4943
4944 for (; addr < limit; addr++) {
4945 /*
4946 * We're looking for a character that is _not_
4947 * contained in the token string.
4948 */
4949 if ((c = dtrace_load8(addr)) == '\0')
4950 break;
4951
4952 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4953 break;
4954 }
4955
4956 if (c == '\0') {
4957 /*
4958 * We reached the end of the string without finding
4959 * any character that was not in the token string.
4960 * We return NULL in this case, and we set the saved
4961 * address to NULL as well.
4962 */
4963 regs[rd] = 0;
4964 mstate->dtms_strtok = 0;
4965 mstate->dtms_strtok_limit = 0;
4966 break;
4967 }
4968
4969 /*
4970 * From here on, we're copying into the destination string.
4971 */
4972 for (i = 0; addr < limit && i < size - 1; addr++) {
4973 if ((c = dtrace_load8(addr)) == '\0')
4974 break;
4975
4976 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4977 break;
4978
4979 ASSERT(i < size);
4980 dest[i++] = c;
4981 }
4982
4983 ASSERT(i < size);
4984 dest[i] = '\0';
4985 regs[rd] = (uintptr_t)dest;
4986 mstate->dtms_scratch_ptr += size;
4987 mstate->dtms_strtok = addr;
4988 mstate->dtms_strtok_limit = limit;
4989 break;
4990 }
4991
4992 case DIF_SUBR_SUBSTR: {
4993 uintptr_t s = tupregs[0].dttk_value;
4994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4995 char *d = (char *)mstate->dtms_scratch_ptr;
4996 int64_t index = (int64_t)tupregs[1].dttk_value;
4997 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4998 size_t len = dtrace_strlen((char *)s, size);
4999 int64_t i;
5000
5001 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5002 regs[rd] = 0;
5003 break;
5004 }
5005
5006 if (!DTRACE_INSCRATCH(mstate, size)) {
5007 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5008 regs[rd] = 0;
5009 break;
5010 }
5011
5012 if (nargs <= 2)
5013 remaining = (int64_t)size;
5014
5015 if (index < 0) {
5016 index += len;
5017
5018 if (index < 0 && index + remaining > 0) {
5019 remaining += index;
5020 index = 0;
5021 }
5022 }
5023
5024 if (index >= len || index < 0) {
5025 remaining = 0;
5026 } else if (remaining < 0) {
5027 remaining += len - index;
5028 } else if (index + remaining > size) {
5029 remaining = size - index;
5030 }
5031
5032 for (i = 0; i < remaining; i++) {
5033 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5034 break;
5035 }
5036
5037 d[i] = '\0';
5038
5039 mstate->dtms_scratch_ptr += size;
5040 regs[rd] = (uintptr_t)d;
5041 break;
5042 }
5043
5044 case DIF_SUBR_JSON: {
5045 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5046 uintptr_t json = tupregs[0].dttk_value;
5047 size_t jsonlen = dtrace_strlen((char *)json, size);
5048 uintptr_t elem = tupregs[1].dttk_value;
5049 size_t elemlen = dtrace_strlen((char *)elem, size);
5050
5051 char *dest = (char *)mstate->dtms_scratch_ptr;
5052 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5053 char *ee = elemlist;
5054 int nelems = 1;
5055 uintptr_t cur;
5056
5057 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5058 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5059 regs[rd] = 0;
5060 break;
5061 }
5062
5063 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5065 regs[rd] = 0;
5066 break;
5067 }
5068
5069 /*
5070 * Read the element selector and split it up into a packed list
5071 * of strings.
5072 */
5073 for (cur = elem; cur < elem + elemlen; cur++) {
5074 char cc = dtrace_load8(cur);
5075
5076 if (cur == elem && cc == '[') {
5077 /*
5078 * If the first element selector key is
5079 * actually an array index then ignore the
5080 * bracket.
5081 */
5082 continue;
5083 }
5084
5085 if (cc == ']')
5086 continue;
5087
5088 if (cc == '.' || cc == '[') {
5089 nelems++;
5090 cc = '\0';
5091 }
5092
5093 *ee++ = cc;
5094 }
5095 *ee++ = '\0';
5096
5097 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5098 nelems, dest)) != 0)
5099 mstate->dtms_scratch_ptr += jsonlen + 1;
5100 break;
5101 }
5102
5103 case DIF_SUBR_TOUPPER:
5104 case DIF_SUBR_TOLOWER: {
5105 uintptr_t s = tupregs[0].dttk_value;
5106 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5107 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5108 size_t len = dtrace_strlen((char *)s, size);
5109 char lower, upper, convert;
5110 int64_t i;
5111
5112 if (subr == DIF_SUBR_TOUPPER) {
5113 lower = 'a';
5114 upper = 'z';
5115 convert = 'A';
5116 } else {
5117 lower = 'A';
5118 upper = 'Z';
5119 convert = 'a';
5120 }
5121
5122 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5123 regs[rd] = 0;
5124 break;
5125 }
5126
5127 if (!DTRACE_INSCRATCH(mstate, size)) {
5128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5129 regs[rd] = 0;
5130 break;
5131 }
5132
5133 for (i = 0; i < size - 1; i++) {
5134 if ((c = dtrace_load8(s + i)) == '\0')
5135 break;
5136
5137 if (c >= lower && c <= upper)
5138 c = convert + (c - lower);
5139
5140 dest[i] = c;
5141 }
5142
5143 ASSERT(i < size);
5144 dest[i] = '\0';
5145 regs[rd] = (uintptr_t)dest;
5146 mstate->dtms_scratch_ptr += size;
5147 break;
5148 }
5149
5150 #ifdef illumos
5151 case DIF_SUBR_GETMAJOR:
5152 #ifdef _LP64
5153 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5154 #else
5155 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5156 #endif
5157 break;
5158
5159 case DIF_SUBR_GETMINOR:
5160 #ifdef _LP64
5161 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5162 #else
5163 regs[rd] = tupregs[0].dttk_value & MAXMIN;
5164 #endif
5165 break;
5166
5167 case DIF_SUBR_DDI_PATHNAME: {
5168 /*
5169 * This one is a galactic mess. We are going to roughly
5170 * emulate ddi_pathname(), but it's made more complicated
5171 * by the fact that we (a) want to include the minor name and
5172 * (b) must proceed iteratively instead of recursively.
5173 */
5174 uintptr_t dest = mstate->dtms_scratch_ptr;
5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5176 char *start = (char *)dest, *end = start + size - 1;
5177 uintptr_t daddr = tupregs[0].dttk_value;
5178 int64_t minor = (int64_t)tupregs[1].dttk_value;
5179 char *s;
5180 int i, len, depth = 0;
5181
5182 /*
5183 * Due to all the pointer jumping we do and context we must
5184 * rely upon, we just mandate that the user must have kernel
5185 * read privileges to use this routine.
5186 */
5187 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5188 *flags |= CPU_DTRACE_KPRIV;
5189 *illval = daddr;
5190 regs[rd] = 0;
5191 }
5192
5193 if (!DTRACE_INSCRATCH(mstate, size)) {
5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5195 regs[rd] = 0;
5196 break;
5197 }
5198
5199 *end = '\0';
5200
5201 /*
5202 * We want to have a name for the minor. In order to do this,
5203 * we need to walk the minor list from the devinfo. We want
5204 * to be sure that we don't infinitely walk a circular list,
5205 * so we check for circularity by sending a scout pointer
5206 * ahead two elements for every element that we iterate over;
5207 * if the list is circular, these will ultimately point to the
5208 * same element. You may recognize this little trick as the
5209 * answer to a stupid interview question -- one that always
5210 * seems to be asked by those who had to have it laboriously
5211 * explained to them, and who can't even concisely describe
5212 * the conditions under which one would be forced to resort to
5213 * this technique. Needless to say, those conditions are
5214 * found here -- and probably only here. Is this the only use
5215 * of this infamous trick in shipping, production code? If it
5216 * isn't, it probably should be...
5217 */
5218 if (minor != -1) {
5219 uintptr_t maddr = dtrace_loadptr(daddr +
5220 offsetof(struct dev_info, devi_minor));
5221
5222 uintptr_t next = offsetof(struct ddi_minor_data, next);
5223 uintptr_t name = offsetof(struct ddi_minor_data,
5224 d_minor) + offsetof(struct ddi_minor, name);
5225 uintptr_t dev = offsetof(struct ddi_minor_data,
5226 d_minor) + offsetof(struct ddi_minor, dev);
5227 uintptr_t scout;
5228
5229 if (maddr != NULL)
5230 scout = dtrace_loadptr(maddr + next);
5231
5232 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5233 uint64_t m;
5234 #ifdef _LP64
5235 m = dtrace_load64(maddr + dev) & MAXMIN64;
5236 #else
5237 m = dtrace_load32(maddr + dev) & MAXMIN;
5238 #endif
5239 if (m != minor) {
5240 maddr = dtrace_loadptr(maddr + next);
5241
5242 if (scout == NULL)
5243 continue;
5244
5245 scout = dtrace_loadptr(scout + next);
5246
5247 if (scout == NULL)
5248 continue;
5249
5250 scout = dtrace_loadptr(scout + next);
5251
5252 if (scout == NULL)
5253 continue;
5254
5255 if (scout == maddr) {
5256 *flags |= CPU_DTRACE_ILLOP;
5257 break;
5258 }
5259
5260 continue;
5261 }
5262
5263 /*
5264 * We have the minor data. Now we need to
5265 * copy the minor's name into the end of the
5266 * pathname.
5267 */
5268 s = (char *)dtrace_loadptr(maddr + name);
5269 len = dtrace_strlen(s, size);
5270
5271 if (*flags & CPU_DTRACE_FAULT)
5272 break;
5273
5274 if (len != 0) {
5275 if ((end -= (len + 1)) < start)
5276 break;
5277
5278 *end = ':';
5279 }
5280
5281 for (i = 1; i <= len; i++)
5282 end[i] = dtrace_load8((uintptr_t)s++);
5283 break;
5284 }
5285 }
5286
5287 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5288 ddi_node_state_t devi_state;
5289
5290 devi_state = dtrace_load32(daddr +
5291 offsetof(struct dev_info, devi_node_state));
5292
5293 if (*flags & CPU_DTRACE_FAULT)
5294 break;
5295
5296 if (devi_state >= DS_INITIALIZED) {
5297 s = (char *)dtrace_loadptr(daddr +
5298 offsetof(struct dev_info, devi_addr));
5299 len = dtrace_strlen(s, size);
5300
5301 if (*flags & CPU_DTRACE_FAULT)
5302 break;
5303
5304 if (len != 0) {
5305 if ((end -= (len + 1)) < start)
5306 break;
5307
5308 *end = '@';
5309 }
5310
5311 for (i = 1; i <= len; i++)
5312 end[i] = dtrace_load8((uintptr_t)s++);
5313 }
5314
5315 /*
5316 * Now for the node name...
5317 */
5318 s = (char *)dtrace_loadptr(daddr +
5319 offsetof(struct dev_info, devi_node_name));
5320
5321 daddr = dtrace_loadptr(daddr +
5322 offsetof(struct dev_info, devi_parent));
5323
5324 /*
5325 * If our parent is NULL (that is, if we're the root
5326 * node), we're going to use the special path
5327 * "devices".
5328 */
5329 if (daddr == 0)
5330 s = "devices";
5331
5332 len = dtrace_strlen(s, size);
5333 if (*flags & CPU_DTRACE_FAULT)
5334 break;
5335
5336 if ((end -= (len + 1)) < start)
5337 break;
5338
5339 for (i = 1; i <= len; i++)
5340 end[i] = dtrace_load8((uintptr_t)s++);
5341 *end = '/';
5342
5343 if (depth++ > dtrace_devdepth_max) {
5344 *flags |= CPU_DTRACE_ILLOP;
5345 break;
5346 }
5347 }
5348
5349 if (end < start)
5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5351
5352 if (daddr == 0) {
5353 regs[rd] = (uintptr_t)end;
5354 mstate->dtms_scratch_ptr += size;
5355 }
5356
5357 break;
5358 }
5359 #endif
5360
5361 case DIF_SUBR_STRJOIN: {
5362 char *d = (char *)mstate->dtms_scratch_ptr;
5363 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5364 uintptr_t s1 = tupregs[0].dttk_value;
5365 uintptr_t s2 = tupregs[1].dttk_value;
5366 int i = 0, j = 0;
5367 size_t lim1, lim2;
5368 char c;
5369
5370 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5371 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5372 regs[rd] = 0;
5373 break;
5374 }
5375
5376 if (!DTRACE_INSCRATCH(mstate, size)) {
5377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5378 regs[rd] = 0;
5379 break;
5380 }
5381
5382 for (;;) {
5383 if (i >= size) {
5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5385 regs[rd] = 0;
5386 break;
5387 }
5388 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5389 if ((d[i++] = c) == '\0') {
5390 i--;
5391 break;
5392 }
5393 }
5394
5395 for (;;) {
5396 if (i >= size) {
5397 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5398 regs[rd] = 0;
5399 break;
5400 }
5401
5402 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5403 if ((d[i++] = c) == '\0')
5404 break;
5405 }
5406
5407 if (i < size) {
5408 mstate->dtms_scratch_ptr += i;
5409 regs[rd] = (uintptr_t)d;
5410 }
5411
5412 break;
5413 }
5414
5415 case DIF_SUBR_STRTOLL: {
5416 uintptr_t s = tupregs[0].dttk_value;
5417 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5418 size_t lim;
5419 int base = 10;
5420
5421 if (nargs > 1) {
5422 if ((base = tupregs[1].dttk_value) <= 1 ||
5423 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5424 *flags |= CPU_DTRACE_ILLOP;
5425 break;
5426 }
5427 }
5428
5429 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5430 regs[rd] = INT64_MIN;
5431 break;
5432 }
5433
5434 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5435 break;
5436 }
5437
5438 case DIF_SUBR_LLTOSTR: {
5439 int64_t i = (int64_t)tupregs[0].dttk_value;
5440 uint64_t val, digit;
5441 uint64_t size = 65; /* enough room for 2^64 in binary */
5442 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5443 int base = 10;
5444
5445 if (nargs > 1) {
5446 if ((base = tupregs[1].dttk_value) <= 1 ||
5447 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5448 *flags |= CPU_DTRACE_ILLOP;
5449 break;
5450 }
5451 }
5452
5453 val = (base == 10 && i < 0) ? i * -1 : i;
5454
5455 if (!DTRACE_INSCRATCH(mstate, size)) {
5456 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5457 regs[rd] = 0;
5458 break;
5459 }
5460
5461 for (*end-- = '\0'; val; val /= base) {
5462 if ((digit = val % base) <= '9' - '0') {
5463 *end-- = '0' + digit;
5464 } else {
5465 *end-- = 'a' + (digit - ('9' - '0') - 1);
5466 }
5467 }
5468
5469 if (i == 0 && base == 16)
5470 *end-- = '0';
5471
5472 if (base == 16)
5473 *end-- = 'x';
5474
5475 if (i == 0 || base == 8 || base == 16)
5476 *end-- = '0';
5477
5478 if (i < 0 && base == 10)
5479 *end-- = '-';
5480
5481 regs[rd] = (uintptr_t)end + 1;
5482 mstate->dtms_scratch_ptr += size;
5483 break;
5484 }
5485
5486 case DIF_SUBR_HTONS:
5487 case DIF_SUBR_NTOHS:
5488 #if BYTE_ORDER == BIG_ENDIAN
5489 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5490 #else
5491 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5492 #endif
5493 break;
5494
5495
5496 case DIF_SUBR_HTONL:
5497 case DIF_SUBR_NTOHL:
5498 #if BYTE_ORDER == BIG_ENDIAN
5499 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5500 #else
5501 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5502 #endif
5503 break;
5504
5505
5506 case DIF_SUBR_HTONLL:
5507 case DIF_SUBR_NTOHLL:
5508 #if BYTE_ORDER == BIG_ENDIAN
5509 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5510 #else
5511 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5512 #endif
5513 break;
5514
5515
5516 case DIF_SUBR_DIRNAME:
5517 case DIF_SUBR_BASENAME: {
5518 char *dest = (char *)mstate->dtms_scratch_ptr;
5519 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5520 uintptr_t src = tupregs[0].dttk_value;
5521 int i, j, len = dtrace_strlen((char *)src, size);
5522 int lastbase = -1, firstbase = -1, lastdir = -1;
5523 int start, end;
5524
5525 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5526 regs[rd] = 0;
5527 break;
5528 }
5529
5530 if (!DTRACE_INSCRATCH(mstate, size)) {
5531 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5532 regs[rd] = 0;
5533 break;
5534 }
5535
5536 /*
5537 * The basename and dirname for a zero-length string is
5538 * defined to be "."
5539 */
5540 if (len == 0) {
5541 len = 1;
5542 src = (uintptr_t)".";
5543 }
5544
5545 /*
5546 * Start from the back of the string, moving back toward the
5547 * front until we see a character that isn't a slash. That
5548 * character is the last character in the basename.
5549 */
5550 for (i = len - 1; i >= 0; i--) {
5551 if (dtrace_load8(src + i) != '/')
5552 break;
5553 }
5554
5555 if (i >= 0)
5556 lastbase = i;
5557
5558 /*
5559 * Starting from the last character in the basename, move
5560 * towards the front until we find a slash. The character
5561 * that we processed immediately before that is the first
5562 * character in the basename.
5563 */
5564 for (; i >= 0; i--) {
5565 if (dtrace_load8(src + i) == '/')
5566 break;
5567 }
5568
5569 if (i >= 0)
5570 firstbase = i + 1;
5571
5572 /*
5573 * Now keep going until we find a non-slash character. That
5574 * character is the last character in the dirname.
5575 */
5576 for (; i >= 0; i--) {
5577 if (dtrace_load8(src + i) != '/')
5578 break;
5579 }
5580
5581 if (i >= 0)
5582 lastdir = i;
5583
5584 ASSERT(!(lastbase == -1 && firstbase != -1));
5585 ASSERT(!(firstbase == -1 && lastdir != -1));
5586
5587 if (lastbase == -1) {
5588 /*
5589 * We didn't find a non-slash character. We know that
5590 * the length is non-zero, so the whole string must be
5591 * slashes. In either the dirname or the basename
5592 * case, we return '/'.
5593 */
5594 ASSERT(firstbase == -1);
5595 firstbase = lastbase = lastdir = 0;
5596 }
5597
5598 if (firstbase == -1) {
5599 /*
5600 * The entire string consists only of a basename
5601 * component. If we're looking for dirname, we need
5602 * to change our string to be just "."; if we're
5603 * looking for a basename, we'll just set the first
5604 * character of the basename to be 0.
5605 */
5606 if (subr == DIF_SUBR_DIRNAME) {
5607 ASSERT(lastdir == -1);
5608 src = (uintptr_t)".";
5609 lastdir = 0;
5610 } else {
5611 firstbase = 0;
5612 }
5613 }
5614
5615 if (subr == DIF_SUBR_DIRNAME) {
5616 if (lastdir == -1) {
5617 /*
5618 * We know that we have a slash in the name --
5619 * or lastdir would be set to 0, above. And
5620 * because lastdir is -1, we know that this
5621 * slash must be the first character. (That
5622 * is, the full string must be of the form
5623 * "/basename".) In this case, the last
5624 * character of the directory name is 0.
5625 */
5626 lastdir = 0;
5627 }
5628
5629 start = 0;
5630 end = lastdir;
5631 } else {
5632 ASSERT(subr == DIF_SUBR_BASENAME);
5633 ASSERT(firstbase != -1 && lastbase != -1);
5634 start = firstbase;
5635 end = lastbase;
5636 }
5637
5638 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5639 dest[j] = dtrace_load8(src + i);
5640
5641 dest[j] = '\0';
5642 regs[rd] = (uintptr_t)dest;
5643 mstate->dtms_scratch_ptr += size;
5644 break;
5645 }
5646
5647 case DIF_SUBR_GETF: {
5648 uintptr_t fd = tupregs[0].dttk_value;
5649 struct filedesc *fdp;
5650 file_t *fp;
5651
5652 if (!dtrace_priv_proc(state)) {
5653 regs[rd] = 0;
5654 break;
5655 }
5656 fdp = curproc->p_fd;
5657 FILEDESC_SLOCK(fdp);
5658 /*
5659 * XXXMJG this looks broken as no ref is taken.
5660 */
5661 fp = fget_noref(fdp, fd);
5662 mstate->dtms_getf = fp;
5663 regs[rd] = (uintptr_t)fp;
5664 FILEDESC_SUNLOCK(fdp);
5665 break;
5666 }
5667
5668 case DIF_SUBR_CLEANPATH: {
5669 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5671 uintptr_t src = tupregs[0].dttk_value;
5672 size_t lim;
5673 int i = 0, j = 0;
5674 #ifdef illumos
5675 zone_t *z;
5676 #endif
5677
5678 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5679 regs[rd] = 0;
5680 break;
5681 }
5682
5683 if (!DTRACE_INSCRATCH(mstate, size)) {
5684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5685 regs[rd] = 0;
5686 break;
5687 }
5688
5689 /*
5690 * Move forward, loading each character.
5691 */
5692 do {
5693 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5694 next:
5695 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5696 break;
5697
5698 if (c != '/') {
5699 dest[j++] = c;
5700 continue;
5701 }
5702
5703 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5704
5705 if (c == '/') {
5706 /*
5707 * We have two slashes -- we can just advance
5708 * to the next character.
5709 */
5710 goto next;
5711 }
5712
5713 if (c != '.') {
5714 /*
5715 * This is not "." and it's not ".." -- we can
5716 * just store the "/" and this character and
5717 * drive on.
5718 */
5719 dest[j++] = '/';
5720 dest[j++] = c;
5721 continue;
5722 }
5723
5724 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5725
5726 if (c == '/') {
5727 /*
5728 * This is a "/./" component. We're not going
5729 * to store anything in the destination buffer;
5730 * we're just going to go to the next component.
5731 */
5732 goto next;
5733 }
5734
5735 if (c != '.') {
5736 /*
5737 * This is not ".." -- we can just store the
5738 * "/." and this character and continue
5739 * processing.
5740 */
5741 dest[j++] = '/';
5742 dest[j++] = '.';
5743 dest[j++] = c;
5744 continue;
5745 }
5746
5747 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5748
5749 if (c != '/' && c != '\0') {
5750 /*
5751 * This is not ".." -- it's "..[mumble]".
5752 * We'll store the "/.." and this character
5753 * and continue processing.
5754 */
5755 dest[j++] = '/';
5756 dest[j++] = '.';
5757 dest[j++] = '.';
5758 dest[j++] = c;
5759 continue;
5760 }
5761
5762 /*
5763 * This is "/../" or "/..\0". We need to back up
5764 * our destination pointer until we find a "/".
5765 */
5766 i--;
5767 while (j != 0 && dest[--j] != '/')
5768 continue;
5769
5770 if (c == '\0')
5771 dest[++j] = '/';
5772 } while (c != '\0');
5773
5774 dest[j] = '\0';
5775
5776 #ifdef illumos
5777 if (mstate->dtms_getf != NULL &&
5778 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5779 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5780 /*
5781 * If we've done a getf() as a part of this ECB and we
5782 * don't have kernel access (and we're not in the global
5783 * zone), check if the path we cleaned up begins with
5784 * the zone's root path, and trim it off if so. Note
5785 * that this is an output cleanliness issue, not a
5786 * security issue: knowing one's zone root path does
5787 * not enable privilege escalation.
5788 */
5789 if (strstr(dest, z->zone_rootpath) == dest)
5790 dest += strlen(z->zone_rootpath) - 1;
5791 }
5792 #endif
5793
5794 regs[rd] = (uintptr_t)dest;
5795 mstate->dtms_scratch_ptr += size;
5796 break;
5797 }
5798
5799 case DIF_SUBR_INET_NTOA:
5800 case DIF_SUBR_INET_NTOA6:
5801 case DIF_SUBR_INET_NTOP: {
5802 size_t size;
5803 int af, argi, i;
5804 char *base, *end;
5805
5806 if (subr == DIF_SUBR_INET_NTOP) {
5807 af = (int)tupregs[0].dttk_value;
5808 argi = 1;
5809 } else {
5810 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5811 argi = 0;
5812 }
5813
5814 if (af == AF_INET) {
5815 ipaddr_t ip4;
5816 uint8_t *ptr8, val;
5817
5818 if (!dtrace_canload(tupregs[argi].dttk_value,
5819 sizeof (ipaddr_t), mstate, vstate)) {
5820 regs[rd] = 0;
5821 break;
5822 }
5823
5824 /*
5825 * Safely load the IPv4 address.
5826 */
5827 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5828
5829 /*
5830 * Check an IPv4 string will fit in scratch.
5831 */
5832 size = INET_ADDRSTRLEN;
5833 if (!DTRACE_INSCRATCH(mstate, size)) {
5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5835 regs[rd] = 0;
5836 break;
5837 }
5838 base = (char *)mstate->dtms_scratch_ptr;
5839 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5840
5841 /*
5842 * Stringify as a dotted decimal quad.
5843 */
5844 *end-- = '\0';
5845 ptr8 = (uint8_t *)&ip4;
5846 for (i = 3; i >= 0; i--) {
5847 val = ptr8[i];
5848
5849 if (val == 0) {
5850 *end-- = '0';
5851 } else {
5852 for (; val; val /= 10) {
5853 *end-- = '0' + (val % 10);
5854 }
5855 }
5856
5857 if (i > 0)
5858 *end-- = '.';
5859 }
5860 ASSERT(end + 1 >= base);
5861
5862 } else if (af == AF_INET6) {
5863 struct in6_addr ip6;
5864 int firstzero, tryzero, numzero, v6end;
5865 uint16_t val;
5866 const char digits[] = "0123456789abcdef";
5867
5868 /*
5869 * Stringify using RFC 1884 convention 2 - 16 bit
5870 * hexadecimal values with a zero-run compression.
5871 * Lower case hexadecimal digits are used.
5872 * eg, fe80::214:4fff:fe0b:76c8.
5873 * The IPv4 embedded form is returned for inet_ntop,
5874 * just the IPv4 string is returned for inet_ntoa6.
5875 */
5876
5877 if (!dtrace_canload(tupregs[argi].dttk_value,
5878 sizeof (struct in6_addr), mstate, vstate)) {
5879 regs[rd] = 0;
5880 break;
5881 }
5882
5883 /*
5884 * Safely load the IPv6 address.
5885 */
5886 dtrace_bcopy(
5887 (void *)(uintptr_t)tupregs[argi].dttk_value,
5888 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5889
5890 /*
5891 * Check an IPv6 string will fit in scratch.
5892 */
5893 size = INET6_ADDRSTRLEN;
5894 if (!DTRACE_INSCRATCH(mstate, size)) {
5895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5896 regs[rd] = 0;
5897 break;
5898 }
5899 base = (char *)mstate->dtms_scratch_ptr;
5900 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5901 *end-- = '\0';
5902
5903 /*
5904 * Find the longest run of 16 bit zero values
5905 * for the single allowed zero compression - "::".
5906 */
5907 firstzero = -1;
5908 tryzero = -1;
5909 numzero = 1;
5910 for (i = 0; i < sizeof (struct in6_addr); i++) {
5911 #ifdef illumos
5912 if (ip6._S6_un._S6_u8[i] == 0 &&
5913 #else
5914 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5915 #endif
5916 tryzero == -1 && i % 2 == 0) {
5917 tryzero = i;
5918 continue;
5919 }
5920
5921 if (tryzero != -1 &&
5922 #ifdef illumos
5923 (ip6._S6_un._S6_u8[i] != 0 ||
5924 #else
5925 (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5926 #endif
5927 i == sizeof (struct in6_addr) - 1)) {
5928
5929 if (i - tryzero <= numzero) {
5930 tryzero = -1;
5931 continue;
5932 }
5933
5934 firstzero = tryzero;
5935 numzero = i - i % 2 - tryzero;
5936 tryzero = -1;
5937
5938 #ifdef illumos
5939 if (ip6._S6_un._S6_u8[i] == 0 &&
5940 #else
5941 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5942 #endif
5943 i == sizeof (struct in6_addr) - 1)
5944 numzero += 2;
5945 }
5946 }
5947 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5948
5949 /*
5950 * Check for an IPv4 embedded address.
5951 */
5952 v6end = sizeof (struct in6_addr) - 2;
5953 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5954 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5955 for (i = sizeof (struct in6_addr) - 1;
5956 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5957 ASSERT(end >= base);
5958
5959 #ifdef illumos
5960 val = ip6._S6_un._S6_u8[i];
5961 #else
5962 val = ip6.__u6_addr.__u6_addr8[i];
5963 #endif
5964
5965 if (val == 0) {
5966 *end-- = '0';
5967 } else {
5968 for (; val; val /= 10) {
5969 *end-- = '0' + val % 10;
5970 }
5971 }
5972
5973 if (i > DTRACE_V4MAPPED_OFFSET)
5974 *end-- = '.';
5975 }
5976
5977 if (subr == DIF_SUBR_INET_NTOA6)
5978 goto inetout;
5979
5980 /*
5981 * Set v6end to skip the IPv4 address that
5982 * we have already stringified.
5983 */
5984 v6end = 10;
5985 }
5986
5987 /*
5988 * Build the IPv6 string by working through the
5989 * address in reverse.
5990 */
5991 for (i = v6end; i >= 0; i -= 2) {
5992 ASSERT(end >= base);
5993
5994 if (i == firstzero + numzero - 2) {
5995 *end-- = ':';
5996 *end-- = ':';
5997 i -= numzero - 2;
5998 continue;
5999 }
6000
6001 if (i < 14 && i != firstzero - 2)
6002 *end-- = ':';
6003
6004 #ifdef illumos
6005 val = (ip6._S6_un._S6_u8[i] << 8) +
6006 ip6._S6_un._S6_u8[i + 1];
6007 #else
6008 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6009 ip6.__u6_addr.__u6_addr8[i + 1];
6010 #endif
6011
6012 if (val == 0) {
6013 *end-- = '0';
6014 } else {
6015 for (; val; val /= 16) {
6016 *end-- = digits[val % 16];
6017 }
6018 }
6019 }
6020 ASSERT(end + 1 >= base);
6021
6022 } else {
6023 /*
6024 * The user didn't use AH_INET or AH_INET6.
6025 */
6026 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6027 regs[rd] = 0;
6028 break;
6029 }
6030
6031 inetout: regs[rd] = (uintptr_t)end + 1;
6032 mstate->dtms_scratch_ptr += size;
6033 break;
6034 }
6035
6036 case DIF_SUBR_MEMREF: {
6037 uintptr_t size = 2 * sizeof(uintptr_t);
6038 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6039 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6040
6041 /* address and length */
6042 memref[0] = tupregs[0].dttk_value;
6043 memref[1] = tupregs[1].dttk_value;
6044
6045 regs[rd] = (uintptr_t) memref;
6046 mstate->dtms_scratch_ptr += scratch_size;
6047 break;
6048 }
6049
6050 #ifndef illumos
6051 case DIF_SUBR_MEMSTR: {
6052 char *str = (char *)mstate->dtms_scratch_ptr;
6053 uintptr_t mem = tupregs[0].dttk_value;
6054 char c = tupregs[1].dttk_value;
6055 size_t size = tupregs[2].dttk_value;
6056 uint8_t n;
6057 int i;
6058
6059 regs[rd] = 0;
6060
6061 if (size == 0)
6062 break;
6063
6064 if (!dtrace_canload(mem, size - 1, mstate, vstate))
6065 break;
6066
6067 if (!DTRACE_INSCRATCH(mstate, size)) {
6068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6069 break;
6070 }
6071
6072 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6073 *flags |= CPU_DTRACE_ILLOP;
6074 break;
6075 }
6076
6077 for (i = 0; i < size - 1; i++) {
6078 n = dtrace_load8(mem++);
6079 str[i] = (n == 0) ? c : n;
6080 }
6081 str[size - 1] = 0;
6082
6083 regs[rd] = (uintptr_t)str;
6084 mstate->dtms_scratch_ptr += size;
6085 break;
6086 }
6087 #endif
6088 }
6089 }
6090
6091 /*
6092 * Emulate the execution of DTrace IR instructions specified by the given
6093 * DIF object. This function is deliberately void of assertions as all of
6094 * the necessary checks are handled by a call to dtrace_difo_validate().
6095 */
6096 static uint64_t
6097 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6098 dtrace_vstate_t *vstate, dtrace_state_t *state)
6099 {
6100 const dif_instr_t *text = difo->dtdo_buf;
6101 const uint_t textlen = difo->dtdo_len;
6102 const char *strtab = difo->dtdo_strtab;
6103 const uint64_t *inttab = difo->dtdo_inttab;
6104
6105 uint64_t rval = 0;
6106 dtrace_statvar_t *svar;
6107 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6108 dtrace_difv_t *v;
6109 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6110 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6111
6112 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6113 uint64_t regs[DIF_DIR_NREGS];
6114 uint64_t *tmp;
6115
6116 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6117 int64_t cc_r;
6118 uint_t pc = 0, id, opc = 0;
6119 uint8_t ttop = 0;
6120 dif_instr_t instr;
6121 uint_t r1, r2, rd;
6122
6123 /*
6124 * We stash the current DIF object into the machine state: we need it
6125 * for subsequent access checking.
6126 */
6127 mstate->dtms_difo = difo;
6128
6129 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
6130
6131 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6132 opc = pc;
6133
6134 instr = text[pc++];
6135 r1 = DIF_INSTR_R1(instr);
6136 r2 = DIF_INSTR_R2(instr);
6137 rd = DIF_INSTR_RD(instr);
6138
6139 switch (DIF_INSTR_OP(instr)) {
6140 case DIF_OP_OR:
6141 regs[rd] = regs[r1] | regs[r2];
6142 break;
6143 case DIF_OP_XOR:
6144 regs[rd] = regs[r1] ^ regs[r2];
6145 break;
6146 case DIF_OP_AND:
6147 regs[rd] = regs[r1] & regs[r2];
6148 break;
6149 case DIF_OP_SLL:
6150 regs[rd] = regs[r1] << regs[r2];
6151 break;
6152 case DIF_OP_SRL:
6153 regs[rd] = regs[r1] >> regs[r2];
6154 break;
6155 case DIF_OP_SUB:
6156 regs[rd] = regs[r1] - regs[r2];
6157 break;
6158 case DIF_OP_ADD:
6159 regs[rd] = regs[r1] + regs[r2];
6160 break;
6161 case DIF_OP_MUL:
6162 regs[rd] = regs[r1] * regs[r2];
6163 break;
6164 case DIF_OP_SDIV:
6165 if (regs[r2] == 0) {
6166 regs[rd] = 0;
6167 *flags |= CPU_DTRACE_DIVZERO;
6168 } else {
6169 regs[rd] = (int64_t)regs[r1] /
6170 (int64_t)regs[r2];
6171 }
6172 break;
6173
6174 case DIF_OP_UDIV:
6175 if (regs[r2] == 0) {
6176 regs[rd] = 0;
6177 *flags |= CPU_DTRACE_DIVZERO;
6178 } else {
6179 regs[rd] = regs[r1] / regs[r2];
6180 }
6181 break;
6182
6183 case DIF_OP_SREM:
6184 if (regs[r2] == 0) {
6185 regs[rd] = 0;
6186 *flags |= CPU_DTRACE_DIVZERO;
6187 } else {
6188 regs[rd] = (int64_t)regs[r1] %
6189 (int64_t)regs[r2];
6190 }
6191 break;
6192
6193 case DIF_OP_UREM:
6194 if (regs[r2] == 0) {
6195 regs[rd] = 0;
6196 *flags |= CPU_DTRACE_DIVZERO;
6197 } else {
6198 regs[rd] = regs[r1] % regs[r2];
6199 }
6200 break;
6201
6202 case DIF_OP_NOT:
6203 regs[rd] = ~regs[r1];
6204 break;
6205 case DIF_OP_MOV:
6206 regs[rd] = regs[r1];
6207 break;
6208 case DIF_OP_CMP:
6209 cc_r = regs[r1] - regs[r2];
6210 cc_n = cc_r < 0;
6211 cc_z = cc_r == 0;
6212 cc_v = 0;
6213 cc_c = regs[r1] < regs[r2];
6214 break;
6215 case DIF_OP_TST:
6216 cc_n = cc_v = cc_c = 0;
6217 cc_z = regs[r1] == 0;
6218 break;
6219 case DIF_OP_BA:
6220 pc = DIF_INSTR_LABEL(instr);
6221 break;
6222 case DIF_OP_BE:
6223 if (cc_z)
6224 pc = DIF_INSTR_LABEL(instr);
6225 break;
6226 case DIF_OP_BNE:
6227 if (cc_z == 0)
6228 pc = DIF_INSTR_LABEL(instr);
6229 break;
6230 case DIF_OP_BG:
6231 if ((cc_z | (cc_n ^ cc_v)) == 0)
6232 pc = DIF_INSTR_LABEL(instr);
6233 break;
6234 case DIF_OP_BGU:
6235 if ((cc_c | cc_z) == 0)
6236 pc = DIF_INSTR_LABEL(instr);
6237 break;
6238 case DIF_OP_BGE:
6239 if ((cc_n ^ cc_v) == 0)
6240 pc = DIF_INSTR_LABEL(instr);
6241 break;
6242 case DIF_OP_BGEU:
6243 if (cc_c == 0)
6244 pc = DIF_INSTR_LABEL(instr);
6245 break;
6246 case DIF_OP_BL:
6247 if (cc_n ^ cc_v)
6248 pc = DIF_INSTR_LABEL(instr);
6249 break;
6250 case DIF_OP_BLU:
6251 if (cc_c)
6252 pc = DIF_INSTR_LABEL(instr);
6253 break;
6254 case DIF_OP_BLE:
6255 if (cc_z | (cc_n ^ cc_v))
6256 pc = DIF_INSTR_LABEL(instr);
6257 break;
6258 case DIF_OP_BLEU:
6259 if (cc_c | cc_z)
6260 pc = DIF_INSTR_LABEL(instr);
6261 break;
6262 case DIF_OP_RLDSB:
6263 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6264 break;
6265 /*FALLTHROUGH*/
6266 case DIF_OP_LDSB:
6267 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6268 break;
6269 case DIF_OP_RLDSH:
6270 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6271 break;
6272 /*FALLTHROUGH*/
6273 case DIF_OP_LDSH:
6274 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6275 break;
6276 case DIF_OP_RLDSW:
6277 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6278 break;
6279 /*FALLTHROUGH*/
6280 case DIF_OP_LDSW:
6281 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6282 break;
6283 case DIF_OP_RLDUB:
6284 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6285 break;
6286 /*FALLTHROUGH*/
6287 case DIF_OP_LDUB:
6288 regs[rd] = dtrace_load8(regs[r1]);
6289 break;
6290 case DIF_OP_RLDUH:
6291 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6292 break;
6293 /*FALLTHROUGH*/
6294 case DIF_OP_LDUH:
6295 regs[rd] = dtrace_load16(regs[r1]);
6296 break;
6297 case DIF_OP_RLDUW:
6298 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6299 break;
6300 /*FALLTHROUGH*/
6301 case DIF_OP_LDUW:
6302 regs[rd] = dtrace_load32(regs[r1]);
6303 break;
6304 case DIF_OP_RLDX:
6305 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6306 break;
6307 /*FALLTHROUGH*/
6308 case DIF_OP_LDX:
6309 regs[rd] = dtrace_load64(regs[r1]);
6310 break;
6311 case DIF_OP_ULDSB:
6312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313 regs[rd] = (int8_t)
6314 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6315 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316 break;
6317 case DIF_OP_ULDSH:
6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319 regs[rd] = (int16_t)
6320 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322 break;
6323 case DIF_OP_ULDSW:
6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325 regs[rd] = (int32_t)
6326 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328 break;
6329 case DIF_OP_ULDUB:
6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331 regs[rd] =
6332 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334 break;
6335 case DIF_OP_ULDUH:
6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337 regs[rd] =
6338 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340 break;
6341 case DIF_OP_ULDUW:
6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343 regs[rd] =
6344 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346 break;
6347 case DIF_OP_ULDX:
6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6349 regs[rd] =
6350 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6352 break;
6353 case DIF_OP_RET:
6354 rval = regs[rd];
6355 pc = textlen;
6356 break;
6357 case DIF_OP_NOP:
6358 break;
6359 case DIF_OP_SETX:
6360 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6361 break;
6362 case DIF_OP_SETS:
6363 regs[rd] = (uint64_t)(uintptr_t)
6364 (strtab + DIF_INSTR_STRING(instr));
6365 break;
6366 case DIF_OP_SCMP: {
6367 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6368 uintptr_t s1 = regs[r1];
6369 uintptr_t s2 = regs[r2];
6370 size_t lim1, lim2;
6371
6372 /*
6373 * If one of the strings is NULL then the limit becomes
6374 * 0 which compares 0 characters in dtrace_strncmp()
6375 * resulting in a false positive. dtrace_strncmp()
6376 * treats a NULL as an empty 1-char string.
6377 */
6378 lim1 = lim2 = 1;
6379
6380 if (s1 != 0 &&
6381 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6382 break;
6383 if (s2 != 0 &&
6384 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6385 break;
6386
6387 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6388 MIN(lim1, lim2));
6389
6390 cc_n = cc_r < 0;
6391 cc_z = cc_r == 0;
6392 cc_v = cc_c = 0;
6393 break;
6394 }
6395 case DIF_OP_LDGA:
6396 regs[rd] = dtrace_dif_variable(mstate, state,
6397 r1, regs[r2]);
6398 break;
6399 case DIF_OP_LDGS:
6400 id = DIF_INSTR_VAR(instr);
6401
6402 if (id >= DIF_VAR_OTHER_UBASE) {
6403 uintptr_t a;
6404
6405 id -= DIF_VAR_OTHER_UBASE;
6406 svar = vstate->dtvs_globals[id];
6407 ASSERT(svar != NULL);
6408 v = &svar->dtsv_var;
6409
6410 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6411 regs[rd] = svar->dtsv_data;
6412 break;
6413 }
6414
6415 a = (uintptr_t)svar->dtsv_data;
6416
6417 if (*(uint8_t *)a == UINT8_MAX) {
6418 /*
6419 * If the 0th byte is set to UINT8_MAX
6420 * then this is to be treated as a
6421 * reference to a NULL variable.
6422 */
6423 regs[rd] = 0;
6424 } else {
6425 regs[rd] = a + sizeof (uint64_t);
6426 }
6427
6428 break;
6429 }
6430
6431 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6432 break;
6433
6434 case DIF_OP_STGS:
6435 id = DIF_INSTR_VAR(instr);
6436
6437 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6438 id -= DIF_VAR_OTHER_UBASE;
6439
6440 VERIFY(id < vstate->dtvs_nglobals);
6441 svar = vstate->dtvs_globals[id];
6442 ASSERT(svar != NULL);
6443 v = &svar->dtsv_var;
6444
6445 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6446 uintptr_t a = (uintptr_t)svar->dtsv_data;
6447 size_t lim;
6448
6449 ASSERT(a != 0);
6450 ASSERT(svar->dtsv_size != 0);
6451
6452 if (regs[rd] == 0) {
6453 *(uint8_t *)a = UINT8_MAX;
6454 break;
6455 } else {
6456 *(uint8_t *)a = 0;
6457 a += sizeof (uint64_t);
6458 }
6459 if (!dtrace_vcanload(
6460 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6461 &lim, mstate, vstate))
6462 break;
6463
6464 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6465 (void *)a, &v->dtdv_type, lim);
6466 break;
6467 }
6468
6469 svar->dtsv_data = regs[rd];
6470 break;
6471
6472 case DIF_OP_LDTA:
6473 /*
6474 * There are no DTrace built-in thread-local arrays at
6475 * present. This opcode is saved for future work.
6476 */
6477 *flags |= CPU_DTRACE_ILLOP;
6478 regs[rd] = 0;
6479 break;
6480
6481 case DIF_OP_LDLS:
6482 id = DIF_INSTR_VAR(instr);
6483
6484 if (id < DIF_VAR_OTHER_UBASE) {
6485 /*
6486 * For now, this has no meaning.
6487 */
6488 regs[rd] = 0;
6489 break;
6490 }
6491
6492 id -= DIF_VAR_OTHER_UBASE;
6493
6494 ASSERT(id < vstate->dtvs_nlocals);
6495 ASSERT(vstate->dtvs_locals != NULL);
6496
6497 svar = vstate->dtvs_locals[id];
6498 ASSERT(svar != NULL);
6499 v = &svar->dtsv_var;
6500
6501 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6502 uintptr_t a = (uintptr_t)svar->dtsv_data;
6503 size_t sz = v->dtdv_type.dtdt_size;
6504 size_t lim;
6505
6506 sz += sizeof (uint64_t);
6507 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6508 a += curcpu * sz;
6509
6510 if (*(uint8_t *)a == UINT8_MAX) {
6511 /*
6512 * If the 0th byte is set to UINT8_MAX
6513 * then this is to be treated as a
6514 * reference to a NULL variable.
6515 */
6516 regs[rd] = 0;
6517 } else {
6518 regs[rd] = a + sizeof (uint64_t);
6519 }
6520
6521 break;
6522 }
6523
6524 ASSERT(svar->dtsv_size ==
6525 (mp_maxid + 1) * sizeof (uint64_t));
6526 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6527 regs[rd] = tmp[curcpu];
6528 break;
6529
6530 case DIF_OP_STLS:
6531 id = DIF_INSTR_VAR(instr);
6532
6533 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6534 id -= DIF_VAR_OTHER_UBASE;
6535 VERIFY(id < vstate->dtvs_nlocals);
6536
6537 ASSERT(vstate->dtvs_locals != NULL);
6538 svar = vstate->dtvs_locals[id];
6539 ASSERT(svar != NULL);
6540 v = &svar->dtsv_var;
6541
6542 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6543 uintptr_t a = (uintptr_t)svar->dtsv_data;
6544 size_t sz = v->dtdv_type.dtdt_size;
6545 size_t lim;
6546
6547 sz += sizeof (uint64_t);
6548 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6549 a += curcpu * sz;
6550
6551 if (regs[rd] == 0) {
6552 *(uint8_t *)a = UINT8_MAX;
6553 break;
6554 } else {
6555 *(uint8_t *)a = 0;
6556 a += sizeof (uint64_t);
6557 }
6558
6559 if (!dtrace_vcanload(
6560 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6561 &lim, mstate, vstate))
6562 break;
6563
6564 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6565 (void *)a, &v->dtdv_type, lim);
6566 break;
6567 }
6568
6569 ASSERT(svar->dtsv_size ==
6570 (mp_maxid + 1) * sizeof (uint64_t));
6571 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6572 tmp[curcpu] = regs[rd];
6573 break;
6574
6575 case DIF_OP_LDTS: {
6576 dtrace_dynvar_t *dvar;
6577 dtrace_key_t *key;
6578
6579 id = DIF_INSTR_VAR(instr);
6580 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6581 id -= DIF_VAR_OTHER_UBASE;
6582 v = &vstate->dtvs_tlocals[id];
6583
6584 key = &tupregs[DIF_DTR_NREGS];
6585 key[0].dttk_value = (uint64_t)id;
6586 key[0].dttk_size = 0;
6587 DTRACE_TLS_THRKEY(key[1].dttk_value);
6588 key[1].dttk_size = 0;
6589
6590 dvar = dtrace_dynvar(dstate, 2, key,
6591 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6592 mstate, vstate);
6593
6594 if (dvar == NULL) {
6595 regs[rd] = 0;
6596 break;
6597 }
6598
6599 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6600 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6601 } else {
6602 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6603 }
6604
6605 break;
6606 }
6607
6608 case DIF_OP_STTS: {
6609 dtrace_dynvar_t *dvar;
6610 dtrace_key_t *key;
6611
6612 id = DIF_INSTR_VAR(instr);
6613 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6614 id -= DIF_VAR_OTHER_UBASE;
6615 VERIFY(id < vstate->dtvs_ntlocals);
6616
6617 key = &tupregs[DIF_DTR_NREGS];
6618 key[0].dttk_value = (uint64_t)id;
6619 key[0].dttk_size = 0;
6620 DTRACE_TLS_THRKEY(key[1].dttk_value);
6621 key[1].dttk_size = 0;
6622 v = &vstate->dtvs_tlocals[id];
6623
6624 dvar = dtrace_dynvar(dstate, 2, key,
6625 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6626 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6627 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6628 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6629
6630 /*
6631 * Given that we're storing to thread-local data,
6632 * we need to flush our predicate cache.
6633 */
6634 curthread->t_predcache = 0;
6635
6636 if (dvar == NULL)
6637 break;
6638
6639 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6640 size_t lim;
6641
6642 if (!dtrace_vcanload(
6643 (void *)(uintptr_t)regs[rd],
6644 &v->dtdv_type, &lim, mstate, vstate))
6645 break;
6646
6647 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6648 dvar->dtdv_data, &v->dtdv_type, lim);
6649 } else {
6650 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6651 }
6652
6653 break;
6654 }
6655
6656 case DIF_OP_SRA:
6657 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6658 break;
6659
6660 case DIF_OP_CALL:
6661 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6662 regs, tupregs, ttop, mstate, state);
6663 break;
6664
6665 case DIF_OP_PUSHTR:
6666 if (ttop == DIF_DTR_NREGS) {
6667 *flags |= CPU_DTRACE_TUPOFLOW;
6668 break;
6669 }
6670
6671 if (r1 == DIF_TYPE_STRING) {
6672 /*
6673 * If this is a string type and the size is 0,
6674 * we'll use the system-wide default string
6675 * size. Note that we are _not_ looking at
6676 * the value of the DTRACEOPT_STRSIZE option;
6677 * had this been set, we would expect to have
6678 * a non-zero size value in the "pushtr".
6679 */
6680 tupregs[ttop].dttk_size =
6681 dtrace_strlen((char *)(uintptr_t)regs[rd],
6682 regs[r2] ? regs[r2] :
6683 dtrace_strsize_default) + 1;
6684 } else {
6685 if (regs[r2] > LONG_MAX) {
6686 *flags |= CPU_DTRACE_ILLOP;
6687 break;
6688 }
6689
6690 tupregs[ttop].dttk_size = regs[r2];
6691 }
6692
6693 tupregs[ttop++].dttk_value = regs[rd];
6694 break;
6695
6696 case DIF_OP_PUSHTV:
6697 if (ttop == DIF_DTR_NREGS) {
6698 *flags |= CPU_DTRACE_TUPOFLOW;
6699 break;
6700 }
6701
6702 tupregs[ttop].dttk_value = regs[rd];
6703 tupregs[ttop++].dttk_size = 0;
6704 break;
6705
6706 case DIF_OP_POPTS:
6707 if (ttop != 0)
6708 ttop--;
6709 break;
6710
6711 case DIF_OP_FLUSHTS:
6712 ttop = 0;
6713 break;
6714
6715 case DIF_OP_LDGAA:
6716 case DIF_OP_LDTAA: {
6717 dtrace_dynvar_t *dvar;
6718 dtrace_key_t *key = tupregs;
6719 uint_t nkeys = ttop;
6720
6721 id = DIF_INSTR_VAR(instr);
6722 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6723 id -= DIF_VAR_OTHER_UBASE;
6724
6725 key[nkeys].dttk_value = (uint64_t)id;
6726 key[nkeys++].dttk_size = 0;
6727
6728 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6729 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6730 key[nkeys++].dttk_size = 0;
6731 VERIFY(id < vstate->dtvs_ntlocals);
6732 v = &vstate->dtvs_tlocals[id];
6733 } else {
6734 VERIFY(id < vstate->dtvs_nglobals);
6735 v = &vstate->dtvs_globals[id]->dtsv_var;
6736 }
6737
6738 dvar = dtrace_dynvar(dstate, nkeys, key,
6739 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6740 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6741 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6742
6743 if (dvar == NULL) {
6744 regs[rd] = 0;
6745 break;
6746 }
6747
6748 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6749 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6750 } else {
6751 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6752 }
6753
6754 break;
6755 }
6756
6757 case DIF_OP_STGAA:
6758 case DIF_OP_STTAA: {
6759 dtrace_dynvar_t *dvar;
6760 dtrace_key_t *key = tupregs;
6761 uint_t nkeys = ttop;
6762
6763 id = DIF_INSTR_VAR(instr);
6764 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6765 id -= DIF_VAR_OTHER_UBASE;
6766
6767 key[nkeys].dttk_value = (uint64_t)id;
6768 key[nkeys++].dttk_size = 0;
6769
6770 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6771 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6772 key[nkeys++].dttk_size = 0;
6773 VERIFY(id < vstate->dtvs_ntlocals);
6774 v = &vstate->dtvs_tlocals[id];
6775 } else {
6776 VERIFY(id < vstate->dtvs_nglobals);
6777 v = &vstate->dtvs_globals[id]->dtsv_var;
6778 }
6779
6780 dvar = dtrace_dynvar(dstate, nkeys, key,
6781 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6782 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6783 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6784 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6785
6786 if (dvar == NULL)
6787 break;
6788
6789 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6790 size_t lim;
6791
6792 if (!dtrace_vcanload(
6793 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6794 &lim, mstate, vstate))
6795 break;
6796
6797 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6798 dvar->dtdv_data, &v->dtdv_type, lim);
6799 } else {
6800 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6801 }
6802
6803 break;
6804 }
6805
6806 case DIF_OP_ALLOCS: {
6807 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6808 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6809
6810 /*
6811 * Rounding up the user allocation size could have
6812 * overflowed large, bogus allocations (like -1ULL) to
6813 * 0.
6814 */
6815 if (size < regs[r1] ||
6816 !DTRACE_INSCRATCH(mstate, size)) {
6817 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6818 regs[rd] = 0;
6819 break;
6820 }
6821
6822 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6823 mstate->dtms_scratch_ptr += size;
6824 regs[rd] = ptr;
6825 break;
6826 }
6827
6828 case DIF_OP_COPYS:
6829 if (!dtrace_canstore(regs[rd], regs[r2],
6830 mstate, vstate)) {
6831 *flags |= CPU_DTRACE_BADADDR;
6832 *illval = regs[rd];
6833 break;
6834 }
6835
6836 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6837 break;
6838
6839 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6840 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6841 break;
6842
6843 case DIF_OP_STB:
6844 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6845 *flags |= CPU_DTRACE_BADADDR;
6846 *illval = regs[rd];
6847 break;
6848 }
6849 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6850 break;
6851
6852 case DIF_OP_STH:
6853 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6854 *flags |= CPU_DTRACE_BADADDR;
6855 *illval = regs[rd];
6856 break;
6857 }
6858 if (regs[rd] & 1) {
6859 *flags |= CPU_DTRACE_BADALIGN;
6860 *illval = regs[rd];
6861 break;
6862 }
6863 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6864 break;
6865
6866 case DIF_OP_STW:
6867 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6868 *flags |= CPU_DTRACE_BADADDR;
6869 *illval = regs[rd];
6870 break;
6871 }
6872 if (regs[rd] & 3) {
6873 *flags |= CPU_DTRACE_BADALIGN;
6874 *illval = regs[rd];
6875 break;
6876 }
6877 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6878 break;
6879
6880 case DIF_OP_STX:
6881 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6882 *flags |= CPU_DTRACE_BADADDR;
6883 *illval = regs[rd];
6884 break;
6885 }
6886 if (regs[rd] & 7) {
6887 *flags |= CPU_DTRACE_BADALIGN;
6888 *illval = regs[rd];
6889 break;
6890 }
6891 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6892 break;
6893 }
6894 }
6895
6896 if (!(*flags & CPU_DTRACE_FAULT))
6897 return (rval);
6898
6899 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6900 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6901
6902 return (0);
6903 }
6904
6905 static void
6906 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6907 {
6908 dtrace_probe_t *probe = ecb->dte_probe;
6909 dtrace_provider_t *prov = probe->dtpr_provider;
6910 char c[DTRACE_FULLNAMELEN + 80], *str;
6911 char *msg = "dtrace: breakpoint action at probe ";
6912 char *ecbmsg = " (ecb ";
6913 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6914 uintptr_t val = (uintptr_t)ecb;
6915 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6916
6917 if (dtrace_destructive_disallow)
6918 return;
6919
6920 /*
6921 * It's impossible to be taking action on the NULL probe.
6922 */
6923 ASSERT(probe != NULL);
6924
6925 /*
6926 * This is a poor man's (destitute man's?) sprintf(): we want to
6927 * print the provider name, module name, function name and name of
6928 * the probe, along with the hex address of the ECB with the breakpoint
6929 * action -- all of which we must place in the character buffer by
6930 * hand.
6931 */
6932 while (*msg != '\0')
6933 c[i++] = *msg++;
6934
6935 for (str = prov->dtpv_name; *str != '\0'; str++)
6936 c[i++] = *str;
6937 c[i++] = ':';
6938
6939 for (str = probe->dtpr_mod; *str != '\0'; str++)
6940 c[i++] = *str;
6941 c[i++] = ':';
6942
6943 for (str = probe->dtpr_func; *str != '\0'; str++)
6944 c[i++] = *str;
6945 c[i++] = ':';
6946
6947 for (str = probe->dtpr_name; *str != '\0'; str++)
6948 c[i++] = *str;
6949
6950 while (*ecbmsg != '\0')
6951 c[i++] = *ecbmsg++;
6952
6953 while (shift >= 0) {
6954 mask = (uintptr_t)0xf << shift;
6955
6956 if (val >= ((uintptr_t)1 << shift))
6957 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6958 shift -= 4;
6959 }
6960
6961 c[i++] = ')';
6962 c[i] = '\0';
6963
6964 #ifdef illumos
6965 debug_enter(c);
6966 #else
6967 kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6968 #endif
6969 }
6970
6971 static void
6972 dtrace_action_panic(dtrace_ecb_t *ecb)
6973 {
6974 dtrace_probe_t *probe = ecb->dte_probe;
6975
6976 /*
6977 * It's impossible to be taking action on the NULL probe.
6978 */
6979 ASSERT(probe != NULL);
6980
6981 if (dtrace_destructive_disallow)
6982 return;
6983
6984 if (dtrace_panicked != NULL)
6985 return;
6986
6987 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6988 return;
6989
6990 /*
6991 * We won the right to panic. (We want to be sure that only one
6992 * thread calls panic() from dtrace_probe(), and that panic() is
6993 * called exactly once.)
6994 */
6995 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6996 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6997 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6998 }
6999
7000 static void
7001 dtrace_action_raise(uint64_t sig)
7002 {
7003 if (dtrace_destructive_disallow)
7004 return;
7005
7006 if (sig >= NSIG) {
7007 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7008 return;
7009 }
7010
7011 #ifdef illumos
7012 /*
7013 * raise() has a queue depth of 1 -- we ignore all subsequent
7014 * invocations of the raise() action.
7015 */
7016 if (curthread->t_dtrace_sig == 0)
7017 curthread->t_dtrace_sig = (uint8_t)sig;
7018
7019 curthread->t_sig_check = 1;
7020 aston(curthread);
7021 #else
7022 struct proc *p = curproc;
7023 PROC_LOCK(p);
7024 kern_psignal(p, sig);
7025 PROC_UNLOCK(p);
7026 #endif
7027 }
7028
7029 static void
7030 dtrace_action_stop(void)
7031 {
7032 if (dtrace_destructive_disallow)
7033 return;
7034
7035 #ifdef illumos
7036 if (!curthread->t_dtrace_stop) {
7037 curthread->t_dtrace_stop = 1;
7038 curthread->t_sig_check = 1;
7039 aston(curthread);
7040 }
7041 #else
7042 struct proc *p = curproc;
7043 PROC_LOCK(p);
7044 kern_psignal(p, SIGSTOP);
7045 PROC_UNLOCK(p);
7046 #endif
7047 }
7048
7049 static void
7050 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7051 {
7052 hrtime_t now;
7053 volatile uint16_t *flags;
7054 #ifdef illumos
7055 cpu_t *cpu = CPU;
7056 #else
7057 cpu_t *cpu = &solaris_cpu[curcpu];
7058 #endif
7059
7060 if (dtrace_destructive_disallow)
7061 return;
7062
7063 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7064
7065 now = dtrace_gethrtime();
7066
7067 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7068 /*
7069 * We need to advance the mark to the current time.
7070 */
7071 cpu->cpu_dtrace_chillmark = now;
7072 cpu->cpu_dtrace_chilled = 0;
7073 }
7074
7075 /*
7076 * Now check to see if the requested chill time would take us over
7077 * the maximum amount of time allowed in the chill interval. (Or
7078 * worse, if the calculation itself induces overflow.)
7079 */
7080 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7081 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7082 *flags |= CPU_DTRACE_ILLOP;
7083 return;
7084 }
7085
7086 while (dtrace_gethrtime() - now < val)
7087 continue;
7088
7089 /*
7090 * Normally, we assure that the value of the variable "timestamp" does
7091 * not change within an ECB. The presence of chill() represents an
7092 * exception to this rule, however.
7093 */
7094 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7095 cpu->cpu_dtrace_chilled += val;
7096 }
7097
7098 static void
7099 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7100 uint64_t *buf, uint64_t arg)
7101 {
7102 int nframes = DTRACE_USTACK_NFRAMES(arg);
7103 int strsize = DTRACE_USTACK_STRSIZE(arg);
7104 uint64_t *pcs = &buf[1], *fps;
7105 char *str = (char *)&pcs[nframes];
7106 int size, offs = 0, i, j;
7107 size_t rem;
7108 uintptr_t old = mstate->dtms_scratch_ptr, saved;
7109 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7110 char *sym;
7111
7112 /*
7113 * Should be taking a faster path if string space has not been
7114 * allocated.
7115 */
7116 ASSERT(strsize != 0);
7117
7118 /*
7119 * We will first allocate some temporary space for the frame pointers.
7120 */
7121 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7122 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7123 (nframes * sizeof (uint64_t));
7124
7125 if (!DTRACE_INSCRATCH(mstate, size)) {
7126 /*
7127 * Not enough room for our frame pointers -- need to indicate
7128 * that we ran out of scratch space.
7129 */
7130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7131 return;
7132 }
7133
7134 mstate->dtms_scratch_ptr += size;
7135 saved = mstate->dtms_scratch_ptr;
7136
7137 /*
7138 * Now get a stack with both program counters and frame pointers.
7139 */
7140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7141 dtrace_getufpstack(buf, fps, nframes + 1);
7142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7143
7144 /*
7145 * If that faulted, we're cooked.
7146 */
7147 if (*flags & CPU_DTRACE_FAULT)
7148 goto out;
7149
7150 /*
7151 * Now we want to walk up the stack, calling the USTACK helper. For
7152 * each iteration, we restore the scratch pointer.
7153 */
7154 for (i = 0; i < nframes; i++) {
7155 mstate->dtms_scratch_ptr = saved;
7156
7157 if (offs >= strsize)
7158 break;
7159
7160 sym = (char *)(uintptr_t)dtrace_helper(
7161 DTRACE_HELPER_ACTION_USTACK,
7162 mstate, state, pcs[i], fps[i]);
7163
7164 /*
7165 * If we faulted while running the helper, we're going to
7166 * clear the fault and null out the corresponding string.
7167 */
7168 if (*flags & CPU_DTRACE_FAULT) {
7169 *flags &= ~CPU_DTRACE_FAULT;
7170 str[offs++] = '\0';
7171 continue;
7172 }
7173
7174 if (sym == NULL) {
7175 str[offs++] = '\0';
7176 continue;
7177 }
7178
7179 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7180 &(state->dts_vstate))) {
7181 str[offs++] = '\0';
7182 continue;
7183 }
7184
7185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7186
7187 /*
7188 * Now copy in the string that the helper returned to us.
7189 */
7190 for (j = 0; offs + j < strsize && j < rem; j++) {
7191 if ((str[offs + j] = sym[j]) == '\0')
7192 break;
7193 }
7194
7195 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7196
7197 offs += j + 1;
7198 }
7199
7200 if (offs >= strsize) {
7201 /*
7202 * If we didn't have room for all of the strings, we don't
7203 * abort processing -- this needn't be a fatal error -- but we
7204 * still want to increment a counter (dts_stkstroverflows) to
7205 * allow this condition to be warned about. (If this is from
7206 * a jstack() action, it is easily tuned via jstackstrsize.)
7207 */
7208 dtrace_error(&state->dts_stkstroverflows);
7209 }
7210
7211 while (offs < strsize)
7212 str[offs++] = '\0';
7213
7214 out:
7215 mstate->dtms_scratch_ptr = old;
7216 }
7217
7218 static void
7219 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7220 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7221 {
7222 volatile uint16_t *flags;
7223 uint64_t val = *valp;
7224 size_t valoffs = *valoffsp;
7225
7226 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7227 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7228
7229 /*
7230 * If this is a string, we're going to only load until we find the zero
7231 * byte -- after which we'll store zero bytes.
7232 */
7233 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7234 char c = '\0' + 1;
7235 size_t s;
7236
7237 for (s = 0; s < size; s++) {
7238 if (c != '\0' && dtkind == DIF_TF_BYREF) {
7239 c = dtrace_load8(val++);
7240 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7241 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7242 c = dtrace_fuword8((void *)(uintptr_t)val++);
7243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7244 if (*flags & CPU_DTRACE_FAULT)
7245 break;
7246 }
7247
7248 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7249
7250 if (c == '\0' && intuple)
7251 break;
7252 }
7253 } else {
7254 uint8_t c;
7255 while (valoffs < end) {
7256 if (dtkind == DIF_TF_BYREF) {
7257 c = dtrace_load8(val++);
7258 } else if (dtkind == DIF_TF_BYUREF) {
7259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7260 c = dtrace_fuword8((void *)(uintptr_t)val++);
7261 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7262 if (*flags & CPU_DTRACE_FAULT)
7263 break;
7264 }
7265
7266 DTRACE_STORE(uint8_t, tomax,
7267 valoffs++, c);
7268 }
7269 }
7270
7271 *valp = val;
7272 *valoffsp = valoffs;
7273 }
7274
7275 /*
7276 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7277 * defined, we also assert that we are not recursing unless the probe ID is an
7278 * error probe.
7279 */
7280 static dtrace_icookie_t
7281 dtrace_probe_enter(dtrace_id_t id)
7282 {
7283 dtrace_icookie_t cookie;
7284
7285 cookie = dtrace_interrupt_disable();
7286
7287 /*
7288 * Unless this is an ERROR probe, we are not allowed to recurse in
7289 * dtrace_probe(). Recursing into DTrace probe usually means that a
7290 * function is instrumented that should not have been instrumented or
7291 * that the ordering guarantee of the records will be violated,
7292 * resulting in unexpected output. If there is an exception to this
7293 * assertion, a new case should be added.
7294 */
7295 ASSERT(curthread->t_dtrace_inprobe == 0 ||
7296 id == dtrace_probeid_error);
7297 curthread->t_dtrace_inprobe = 1;
7298
7299 return (cookie);
7300 }
7301
7302 /*
7303 * Clears the per-thread inprobe flag and enables interrupts.
7304 */
7305 static void
7306 dtrace_probe_exit(dtrace_icookie_t cookie)
7307 {
7308
7309 curthread->t_dtrace_inprobe = 0;
7310 dtrace_interrupt_enable(cookie);
7311 }
7312
7313 /*
7314 * If you're looking for the epicenter of DTrace, you just found it. This
7315 * is the function called by the provider to fire a probe -- from which all
7316 * subsequent probe-context DTrace activity emanates.
7317 */
7318 void
7319 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7320 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7321 {
7322 processorid_t cpuid;
7323 dtrace_icookie_t cookie;
7324 dtrace_probe_t *probe;
7325 dtrace_mstate_t mstate;
7326 dtrace_ecb_t *ecb;
7327 dtrace_action_t *act;
7328 intptr_t offs;
7329 size_t size;
7330 int vtime, onintr;
7331 volatile uint16_t *flags;
7332 hrtime_t now;
7333
7334 if (KERNEL_PANICKED())
7335 return;
7336
7337 #ifdef illumos
7338 /*
7339 * Kick out immediately if this CPU is still being born (in which case
7340 * curthread will be set to -1) or the current thread can't allow
7341 * probes in its current context.
7342 */
7343 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7344 return;
7345 #endif
7346
7347 cookie = dtrace_probe_enter(id);
7348 probe = dtrace_probes[id - 1];
7349 cpuid = curcpu;
7350 onintr = CPU_ON_INTR(CPU);
7351
7352 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7353 probe->dtpr_predcache == curthread->t_predcache) {
7354 /*
7355 * We have hit in the predicate cache; we know that
7356 * this predicate would evaluate to be false.
7357 */
7358 dtrace_probe_exit(cookie);
7359 return;
7360 }
7361
7362 #ifdef illumos
7363 if (panic_quiesce) {
7364 #else
7365 if (KERNEL_PANICKED()) {
7366 #endif
7367 /*
7368 * We don't trace anything if we're panicking.
7369 */
7370 dtrace_probe_exit(cookie);
7371 return;
7372 }
7373
7374 now = mstate.dtms_timestamp = dtrace_gethrtime();
7375 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7376 vtime = dtrace_vtime_references != 0;
7377
7378 if (vtime && curthread->t_dtrace_start)
7379 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7380
7381 mstate.dtms_difo = NULL;
7382 mstate.dtms_probe = probe;
7383 mstate.dtms_strtok = 0;
7384 mstate.dtms_arg[0] = arg0;
7385 mstate.dtms_arg[1] = arg1;
7386 mstate.dtms_arg[2] = arg2;
7387 mstate.dtms_arg[3] = arg3;
7388 mstate.dtms_arg[4] = arg4;
7389
7390 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7391
7392 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7393 dtrace_predicate_t *pred = ecb->dte_predicate;
7394 dtrace_state_t *state = ecb->dte_state;
7395 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7396 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7397 dtrace_vstate_t *vstate = &state->dts_vstate;
7398 dtrace_provider_t *prov = probe->dtpr_provider;
7399 uint64_t tracememsize = 0;
7400 int committed = 0;
7401 caddr_t tomax;
7402
7403 /*
7404 * A little subtlety with the following (seemingly innocuous)
7405 * declaration of the automatic 'val': by looking at the
7406 * code, you might think that it could be declared in the
7407 * action processing loop, below. (That is, it's only used in
7408 * the action processing loop.) However, it must be declared
7409 * out of that scope because in the case of DIF expression
7410 * arguments to aggregating actions, one iteration of the
7411 * action loop will use the last iteration's value.
7412 */
7413 uint64_t val = 0;
7414
7415 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7416 mstate.dtms_getf = NULL;
7417
7418 *flags &= ~CPU_DTRACE_ERROR;
7419
7420 if (prov == dtrace_provider) {
7421 /*
7422 * If dtrace itself is the provider of this probe,
7423 * we're only going to continue processing the ECB if
7424 * arg0 (the dtrace_state_t) is equal to the ECB's
7425 * creating state. (This prevents disjoint consumers
7426 * from seeing one another's metaprobes.)
7427 */
7428 if (arg0 != (uint64_t)(uintptr_t)state)
7429 continue;
7430 }
7431
7432 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7433 /*
7434 * We're not currently active. If our provider isn't
7435 * the dtrace pseudo provider, we're not interested.
7436 */
7437 if (prov != dtrace_provider)
7438 continue;
7439
7440 /*
7441 * Now we must further check if we are in the BEGIN
7442 * probe. If we are, we will only continue processing
7443 * if we're still in WARMUP -- if one BEGIN enabling
7444 * has invoked the exit() action, we don't want to
7445 * evaluate subsequent BEGIN enablings.
7446 */
7447 if (probe->dtpr_id == dtrace_probeid_begin &&
7448 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7449 ASSERT(state->dts_activity ==
7450 DTRACE_ACTIVITY_DRAINING);
7451 continue;
7452 }
7453 }
7454
7455 if (ecb->dte_cond) {
7456 /*
7457 * If the dte_cond bits indicate that this
7458 * consumer is only allowed to see user-mode firings
7459 * of this probe, call the provider's dtps_usermode()
7460 * entry point to check that the probe was fired
7461 * while in a user context. Skip this ECB if that's
7462 * not the case.
7463 */
7464 if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7465 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7466 probe->dtpr_id, probe->dtpr_arg) == 0)
7467 continue;
7468
7469 #ifdef illumos
7470 /*
7471 * This is more subtle than it looks. We have to be
7472 * absolutely certain that CRED() isn't going to
7473 * change out from under us so it's only legit to
7474 * examine that structure if we're in constrained
7475 * situations. Currently, the only times we'll this
7476 * check is if a non-super-user has enabled the
7477 * profile or syscall providers -- providers that
7478 * allow visibility of all processes. For the
7479 * profile case, the check above will ensure that
7480 * we're examining a user context.
7481 */
7482 if (ecb->dte_cond & DTRACE_COND_OWNER) {
7483 cred_t *cr;
7484 cred_t *s_cr =
7485 ecb->dte_state->dts_cred.dcr_cred;
7486 proc_t *proc;
7487
7488 ASSERT(s_cr != NULL);
7489
7490 if ((cr = CRED()) == NULL ||
7491 s_cr->cr_uid != cr->cr_uid ||
7492 s_cr->cr_uid != cr->cr_ruid ||
7493 s_cr->cr_uid != cr->cr_suid ||
7494 s_cr->cr_gid != cr->cr_gid ||
7495 s_cr->cr_gid != cr->cr_rgid ||
7496 s_cr->cr_gid != cr->cr_sgid ||
7497 (proc = ttoproc(curthread)) == NULL ||
7498 (proc->p_flag & SNOCD))
7499 continue;
7500 }
7501
7502 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7503 cred_t *cr;
7504 cred_t *s_cr =
7505 ecb->dte_state->dts_cred.dcr_cred;
7506
7507 ASSERT(s_cr != NULL);
7508
7509 if ((cr = CRED()) == NULL ||
7510 s_cr->cr_zone->zone_id !=
7511 cr->cr_zone->zone_id)
7512 continue;
7513 }
7514 #endif
7515 }
7516
7517 if (now - state->dts_alive > dtrace_deadman_timeout) {
7518 /*
7519 * We seem to be dead. Unless we (a) have kernel
7520 * destructive permissions (b) have explicitly enabled
7521 * destructive actions and (c) destructive actions have
7522 * not been disabled, we're going to transition into
7523 * the KILLED state, from which no further processing
7524 * on this state will be performed.
7525 */
7526 if (!dtrace_priv_kernel_destructive(state) ||
7527 !state->dts_cred.dcr_destructive ||
7528 dtrace_destructive_disallow) {
7529 void *activity = &state->dts_activity;
7530 dtrace_activity_t curstate;
7531
7532 do {
7533 curstate = state->dts_activity;
7534 } while (dtrace_cas32(activity, curstate,
7535 DTRACE_ACTIVITY_KILLED) != curstate);
7536
7537 continue;
7538 }
7539 }
7540
7541 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7542 ecb->dte_alignment, state, &mstate)) < 0)
7543 continue;
7544
7545 tomax = buf->dtb_tomax;
7546 ASSERT(tomax != NULL);
7547
7548 if (ecb->dte_size != 0) {
7549 dtrace_rechdr_t dtrh;
7550 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7551 mstate.dtms_timestamp = dtrace_gethrtime();
7552 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7553 }
7554 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7555 dtrh.dtrh_epid = ecb->dte_epid;
7556 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7557 mstate.dtms_timestamp);
7558 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7559 }
7560
7561 mstate.dtms_epid = ecb->dte_epid;
7562 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7563
7564 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7565 mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7566 else
7567 mstate.dtms_access = 0;
7568
7569 if (pred != NULL) {
7570 dtrace_difo_t *dp = pred->dtp_difo;
7571 uint64_t rval;
7572
7573 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7574
7575 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7576 dtrace_cacheid_t cid = probe->dtpr_predcache;
7577
7578 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7579 /*
7580 * Update the predicate cache...
7581 */
7582 ASSERT(cid == pred->dtp_cacheid);
7583 curthread->t_predcache = cid;
7584 }
7585
7586 continue;
7587 }
7588 }
7589
7590 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7591 act != NULL; act = act->dta_next) {
7592 size_t valoffs;
7593 dtrace_difo_t *dp;
7594 dtrace_recdesc_t *rec = &act->dta_rec;
7595
7596 size = rec->dtrd_size;
7597 valoffs = offs + rec->dtrd_offset;
7598
7599 if (DTRACEACT_ISAGG(act->dta_kind)) {
7600 uint64_t v = 0xbad;
7601 dtrace_aggregation_t *agg;
7602
7603 agg = (dtrace_aggregation_t *)act;
7604
7605 if ((dp = act->dta_difo) != NULL)
7606 v = dtrace_dif_emulate(dp,
7607 &mstate, vstate, state);
7608
7609 if (*flags & CPU_DTRACE_ERROR)
7610 continue;
7611
7612 /*
7613 * Note that we always pass the expression
7614 * value from the previous iteration of the
7615 * action loop. This value will only be used
7616 * if there is an expression argument to the
7617 * aggregating action, denoted by the
7618 * dtag_hasarg field.
7619 */
7620 dtrace_aggregate(agg, buf,
7621 offs, aggbuf, v, val);
7622 continue;
7623 }
7624
7625 switch (act->dta_kind) {
7626 case DTRACEACT_STOP:
7627 if (dtrace_priv_proc_destructive(state))
7628 dtrace_action_stop();
7629 continue;
7630
7631 case DTRACEACT_BREAKPOINT:
7632 if (dtrace_priv_kernel_destructive(state))
7633 dtrace_action_breakpoint(ecb);
7634 continue;
7635
7636 case DTRACEACT_PANIC:
7637 if (dtrace_priv_kernel_destructive(state))
7638 dtrace_action_panic(ecb);
7639 continue;
7640
7641 case DTRACEACT_STACK:
7642 if (!dtrace_priv_kernel(state))
7643 continue;
7644
7645 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7646 size / sizeof (pc_t), probe->dtpr_aframes,
7647 DTRACE_ANCHORED(probe) ? NULL :
7648 (uint32_t *)arg0);
7649 continue;
7650
7651 case DTRACEACT_JSTACK:
7652 case DTRACEACT_USTACK:
7653 if (!dtrace_priv_proc(state))
7654 continue;
7655
7656 /*
7657 * See comment in DIF_VAR_PID.
7658 */
7659 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7660 CPU_ON_INTR(CPU)) {
7661 int depth = DTRACE_USTACK_NFRAMES(
7662 rec->dtrd_arg) + 1;
7663
7664 dtrace_bzero((void *)(tomax + valoffs),
7665 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7666 + depth * sizeof (uint64_t));
7667
7668 continue;
7669 }
7670
7671 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7672 curproc->p_dtrace_helpers != NULL) {
7673 /*
7674 * This is the slow path -- we have
7675 * allocated string space, and we're
7676 * getting the stack of a process that
7677 * has helpers. Call into a separate
7678 * routine to perform this processing.
7679 */
7680 dtrace_action_ustack(&mstate, state,
7681 (uint64_t *)(tomax + valoffs),
7682 rec->dtrd_arg);
7683 continue;
7684 }
7685
7686 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7687 dtrace_getupcstack((uint64_t *)
7688 (tomax + valoffs),
7689 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7690 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7691 continue;
7692
7693 default:
7694 break;
7695 }
7696
7697 dp = act->dta_difo;
7698 ASSERT(dp != NULL);
7699
7700 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7701
7702 if (*flags & CPU_DTRACE_ERROR)
7703 continue;
7704
7705 switch (act->dta_kind) {
7706 case DTRACEACT_SPECULATE: {
7707 dtrace_rechdr_t *dtrh;
7708
7709 ASSERT(buf == &state->dts_buffer[cpuid]);
7710 buf = dtrace_speculation_buffer(state,
7711 cpuid, val);
7712
7713 if (buf == NULL) {
7714 *flags |= CPU_DTRACE_DROP;
7715 continue;
7716 }
7717
7718 offs = dtrace_buffer_reserve(buf,
7719 ecb->dte_needed, ecb->dte_alignment,
7720 state, NULL);
7721
7722 if (offs < 0) {
7723 *flags |= CPU_DTRACE_DROP;
7724 continue;
7725 }
7726
7727 tomax = buf->dtb_tomax;
7728 ASSERT(tomax != NULL);
7729
7730 if (ecb->dte_size == 0)
7731 continue;
7732
7733 ASSERT3U(ecb->dte_size, >=,
7734 sizeof (dtrace_rechdr_t));
7735 dtrh = ((void *)(tomax + offs));
7736 dtrh->dtrh_epid = ecb->dte_epid;
7737 /*
7738 * When the speculation is committed, all of
7739 * the records in the speculative buffer will
7740 * have their timestamps set to the commit
7741 * time. Until then, it is set to a sentinel
7742 * value, for debugability.
7743 */
7744 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7745 continue;
7746 }
7747
7748 case DTRACEACT_PRINTM: {
7749 /*
7750 * printm() assumes that the DIF returns a
7751 * pointer returned by memref(). memref() is a
7752 * subroutine that is used to get around the
7753 * single-valued returns of DIF and is assumed
7754 * to always be allocated in the scratch space.
7755 * Therefore, we need to validate that the
7756 * pointer given to printm() is in the scratch
7757 * space in order to avoid a potential panic.
7758 */
7759 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7760
7761 if (!DTRACE_INSCRATCHPTR(&mstate,
7762 (uintptr_t)memref, 2 * sizeof(uintptr_t))) {
7763 *flags |= CPU_DTRACE_BADADDR;
7764 continue;
7765 }
7766
7767 /* Get the size from the memref. */
7768 size = memref[1];
7769
7770 /*
7771 * Check if the size exceeds the allocated
7772 * buffer size.
7773 */
7774 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7775 /* Flag a drop! */
7776 *flags |= CPU_DTRACE_DROP;
7777 continue;
7778 }
7779
7780 /* Store the size in the buffer first. */
7781 DTRACE_STORE(uintptr_t, tomax,
7782 valoffs, size);
7783
7784 /*
7785 * Offset the buffer address to the start
7786 * of the data.
7787 */
7788 valoffs += sizeof(uintptr_t);
7789
7790 /*
7791 * Reset to the memory address rather than
7792 * the memref array, then let the BYREF
7793 * code below do the work to store the
7794 * memory data in the buffer.
7795 */
7796 val = memref[0];
7797 break;
7798 }
7799
7800 case DTRACEACT_CHILL:
7801 if (dtrace_priv_kernel_destructive(state))
7802 dtrace_action_chill(&mstate, val);
7803 continue;
7804
7805 case DTRACEACT_RAISE:
7806 if (dtrace_priv_proc_destructive(state))
7807 dtrace_action_raise(val);
7808 continue;
7809
7810 case DTRACEACT_COMMIT:
7811 ASSERT(!committed);
7812
7813 /*
7814 * We need to commit our buffer state.
7815 */
7816 if (ecb->dte_size)
7817 buf->dtb_offset = offs + ecb->dte_size;
7818 buf = &state->dts_buffer[cpuid];
7819 dtrace_speculation_commit(state, cpuid, val);
7820 committed = 1;
7821 continue;
7822
7823 case DTRACEACT_DISCARD:
7824 dtrace_speculation_discard(state, cpuid, val);
7825 continue;
7826
7827 case DTRACEACT_DIFEXPR:
7828 case DTRACEACT_LIBACT:
7829 case DTRACEACT_PRINTF:
7830 case DTRACEACT_PRINTA:
7831 case DTRACEACT_SYSTEM:
7832 case DTRACEACT_FREOPEN:
7833 case DTRACEACT_TRACEMEM:
7834 break;
7835
7836 case DTRACEACT_TRACEMEM_DYNSIZE:
7837 tracememsize = val;
7838 break;
7839
7840 case DTRACEACT_SYM:
7841 case DTRACEACT_MOD:
7842 if (!dtrace_priv_kernel(state))
7843 continue;
7844 break;
7845
7846 case DTRACEACT_USYM:
7847 case DTRACEACT_UMOD:
7848 case DTRACEACT_UADDR: {
7849 #ifdef illumos
7850 struct pid *pid = curthread->t_procp->p_pidp;
7851 #endif
7852
7853 if (!dtrace_priv_proc(state))
7854 continue;
7855
7856 DTRACE_STORE(uint64_t, tomax,
7857 #ifdef illumos
7858 valoffs, (uint64_t)pid->pid_id);
7859 #else
7860 valoffs, (uint64_t) curproc->p_pid);
7861 #endif
7862 DTRACE_STORE(uint64_t, tomax,
7863 valoffs + sizeof (uint64_t), val);
7864
7865 continue;
7866 }
7867
7868 case DTRACEACT_EXIT: {
7869 /*
7870 * For the exit action, we are going to attempt
7871 * to atomically set our activity to be
7872 * draining. If this fails (either because
7873 * another CPU has beat us to the exit action,
7874 * or because our current activity is something
7875 * other than ACTIVE or WARMUP), we will
7876 * continue. This assures that the exit action
7877 * can be successfully recorded at most once
7878 * when we're in the ACTIVE state. If we're
7879 * encountering the exit() action while in
7880 * COOLDOWN, however, we want to honor the new
7881 * status code. (We know that we're the only
7882 * thread in COOLDOWN, so there is no race.)
7883 */
7884 void *activity = &state->dts_activity;
7885 dtrace_activity_t curstate = state->dts_activity;
7886
7887 if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7888 break;
7889
7890 if (curstate != DTRACE_ACTIVITY_WARMUP)
7891 curstate = DTRACE_ACTIVITY_ACTIVE;
7892
7893 if (dtrace_cas32(activity, curstate,
7894 DTRACE_ACTIVITY_DRAINING) != curstate) {
7895 *flags |= CPU_DTRACE_DROP;
7896 continue;
7897 }
7898
7899 break;
7900 }
7901
7902 default:
7903 ASSERT(0);
7904 }
7905
7906 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7907 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7908 uintptr_t end = valoffs + size;
7909
7910 if (tracememsize != 0 &&
7911 valoffs + tracememsize < end) {
7912 end = valoffs + tracememsize;
7913 tracememsize = 0;
7914 }
7915
7916 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7917 !dtrace_vcanload((void *)(uintptr_t)val,
7918 &dp->dtdo_rtype, NULL, &mstate, vstate))
7919 continue;
7920
7921 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7922 &val, end, act->dta_intuple,
7923 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7924 DIF_TF_BYREF: DIF_TF_BYUREF);
7925 continue;
7926 }
7927
7928 switch (size) {
7929 case 0:
7930 break;
7931
7932 case sizeof (uint8_t):
7933 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7934 break;
7935 case sizeof (uint16_t):
7936 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7937 break;
7938 case sizeof (uint32_t):
7939 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7940 break;
7941 case sizeof (uint64_t):
7942 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7943 break;
7944 default:
7945 /*
7946 * Any other size should have been returned by
7947 * reference, not by value.
7948 */
7949 ASSERT(0);
7950 break;
7951 }
7952 }
7953
7954 if (*flags & CPU_DTRACE_DROP)
7955 continue;
7956
7957 if (*flags & CPU_DTRACE_FAULT) {
7958 int ndx;
7959 dtrace_action_t *err;
7960
7961 buf->dtb_errors++;
7962
7963 if (probe->dtpr_id == dtrace_probeid_error) {
7964 /*
7965 * There's nothing we can do -- we had an
7966 * error on the error probe. We bump an
7967 * error counter to at least indicate that
7968 * this condition happened.
7969 */
7970 dtrace_error(&state->dts_dblerrors);
7971 continue;
7972 }
7973
7974 if (vtime) {
7975 /*
7976 * Before recursing on dtrace_probe(), we
7977 * need to explicitly clear out our start
7978 * time to prevent it from being accumulated
7979 * into t_dtrace_vtime.
7980 */
7981 curthread->t_dtrace_start = 0;
7982 }
7983
7984 /*
7985 * Iterate over the actions to figure out which action
7986 * we were processing when we experienced the error.
7987 * Note that act points _past_ the faulting action; if
7988 * act is ecb->dte_action, the fault was in the
7989 * predicate, if it's ecb->dte_action->dta_next it's
7990 * in action #1, and so on.
7991 */
7992 for (err = ecb->dte_action, ndx = 0;
7993 err != act; err = err->dta_next, ndx++)
7994 continue;
7995
7996 dtrace_probe_error(state, ecb->dte_epid, ndx,
7997 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7998 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7999 cpu_core[cpuid].cpuc_dtrace_illval);
8000
8001 continue;
8002 }
8003
8004 if (!committed)
8005 buf->dtb_offset = offs + ecb->dte_size;
8006 }
8007
8008 if (vtime)
8009 curthread->t_dtrace_start = dtrace_gethrtime();
8010
8011 dtrace_probe_exit(cookie);
8012 }
8013
8014 /*
8015 * DTrace Probe Hashing Functions
8016 *
8017 * The functions in this section (and indeed, the functions in remaining
8018 * sections) are not _called_ from probe context. (Any exceptions to this are
8019 * marked with a "Note:".) Rather, they are called from elsewhere in the
8020 * DTrace framework to look-up probes in, add probes to and remove probes from
8021 * the DTrace probe hashes. (Each probe is hashed by each element of the
8022 * probe tuple -- allowing for fast lookups, regardless of what was
8023 * specified.)
8024 */
8025 static uint_t
8026 dtrace_hash_str(const char *p)
8027 {
8028 unsigned int g;
8029 uint_t hval = 0;
8030
8031 while (*p) {
8032 hval = (hval << 4) + *p++;
8033 if ((g = (hval & 0xf0000000)) != 0)
8034 hval ^= g >> 24;
8035 hval &= ~g;
8036 }
8037 return (hval);
8038 }
8039
8040 static dtrace_hash_t *
8041 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8042 {
8043 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8044
8045 hash->dth_stroffs = stroffs;
8046 hash->dth_nextoffs = nextoffs;
8047 hash->dth_prevoffs = prevoffs;
8048
8049 hash->dth_size = 1;
8050 hash->dth_mask = hash->dth_size - 1;
8051
8052 hash->dth_tab = kmem_zalloc(hash->dth_size *
8053 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8054
8055 return (hash);
8056 }
8057
8058 static void
8059 dtrace_hash_destroy(dtrace_hash_t *hash)
8060 {
8061 #ifdef DEBUG
8062 int i;
8063
8064 for (i = 0; i < hash->dth_size; i++)
8065 ASSERT(hash->dth_tab[i] == NULL);
8066 #endif
8067
8068 kmem_free(hash->dth_tab,
8069 hash->dth_size * sizeof (dtrace_hashbucket_t *));
8070 kmem_free(hash, sizeof (dtrace_hash_t));
8071 }
8072
8073 static void
8074 dtrace_hash_resize(dtrace_hash_t *hash)
8075 {
8076 int size = hash->dth_size, i, ndx;
8077 int new_size = hash->dth_size << 1;
8078 int new_mask = new_size - 1;
8079 dtrace_hashbucket_t **new_tab, *bucket, *next;
8080
8081 ASSERT((new_size & new_mask) == 0);
8082
8083 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8084
8085 for (i = 0; i < size; i++) {
8086 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8087 dtrace_probe_t *probe = bucket->dthb_chain;
8088
8089 ASSERT(probe != NULL);
8090 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8091
8092 next = bucket->dthb_next;
8093 bucket->dthb_next = new_tab[ndx];
8094 new_tab[ndx] = bucket;
8095 }
8096 }
8097
8098 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8099 hash->dth_tab = new_tab;
8100 hash->dth_size = new_size;
8101 hash->dth_mask = new_mask;
8102 }
8103
8104 static void
8105 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8106 {
8107 int hashval = DTRACE_HASHSTR(hash, new);
8108 int ndx = hashval & hash->dth_mask;
8109 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8110 dtrace_probe_t **nextp, **prevp;
8111
8112 for (; bucket != NULL; bucket = bucket->dthb_next) {
8113 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8114 goto add;
8115 }
8116
8117 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8118 dtrace_hash_resize(hash);
8119 dtrace_hash_add(hash, new);
8120 return;
8121 }
8122
8123 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8124 bucket->dthb_next = hash->dth_tab[ndx];
8125 hash->dth_tab[ndx] = bucket;
8126 hash->dth_nbuckets++;
8127
8128 add:
8129 nextp = DTRACE_HASHNEXT(hash, new);
8130 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8131 *nextp = bucket->dthb_chain;
8132
8133 if (bucket->dthb_chain != NULL) {
8134 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8135 ASSERT(*prevp == NULL);
8136 *prevp = new;
8137 }
8138
8139 bucket->dthb_chain = new;
8140 bucket->dthb_len++;
8141 }
8142
8143 static dtrace_probe_t *
8144 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8145 {
8146 int hashval = DTRACE_HASHSTR(hash, template);
8147 int ndx = hashval & hash->dth_mask;
8148 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8149
8150 for (; bucket != NULL; bucket = bucket->dthb_next) {
8151 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8152 return (bucket->dthb_chain);
8153 }
8154
8155 return (NULL);
8156 }
8157
8158 static int
8159 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8160 {
8161 int hashval = DTRACE_HASHSTR(hash, template);
8162 int ndx = hashval & hash->dth_mask;
8163 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8164
8165 for (; bucket != NULL; bucket = bucket->dthb_next) {
8166 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8167 return (bucket->dthb_len);
8168 }
8169
8170 return (0);
8171 }
8172
8173 static void
8174 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8175 {
8176 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8177 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8178
8179 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8180 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8181
8182 /*
8183 * Find the bucket that we're removing this probe from.
8184 */
8185 for (; bucket != NULL; bucket = bucket->dthb_next) {
8186 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8187 break;
8188 }
8189
8190 ASSERT(bucket != NULL);
8191
8192 if (*prevp == NULL) {
8193 if (*nextp == NULL) {
8194 /*
8195 * The removed probe was the only probe on this
8196 * bucket; we need to remove the bucket.
8197 */
8198 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8199
8200 ASSERT(bucket->dthb_chain == probe);
8201 ASSERT(b != NULL);
8202
8203 if (b == bucket) {
8204 hash->dth_tab[ndx] = bucket->dthb_next;
8205 } else {
8206 while (b->dthb_next != bucket)
8207 b = b->dthb_next;
8208 b->dthb_next = bucket->dthb_next;
8209 }
8210
8211 ASSERT(hash->dth_nbuckets > 0);
8212 hash->dth_nbuckets--;
8213 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8214 return;
8215 }
8216
8217 bucket->dthb_chain = *nextp;
8218 } else {
8219 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8220 }
8221
8222 if (*nextp != NULL)
8223 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8224 }
8225
8226 /*
8227 * DTrace Utility Functions
8228 *
8229 * These are random utility functions that are _not_ called from probe context.
8230 */
8231 static int
8232 dtrace_badattr(const dtrace_attribute_t *a)
8233 {
8234 return (a->dtat_name > DTRACE_STABILITY_MAX ||
8235 a->dtat_data > DTRACE_STABILITY_MAX ||
8236 a->dtat_class > DTRACE_CLASS_MAX);
8237 }
8238
8239 /*
8240 * Return a duplicate copy of a string. If the specified string is NULL,
8241 * this function returns a zero-length string.
8242 */
8243 static char *
8244 dtrace_strdup(const char *str)
8245 {
8246 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8247
8248 if (str != NULL)
8249 (void) strcpy(new, str);
8250
8251 return (new);
8252 }
8253
8254 #define DTRACE_ISALPHA(c) \
8255 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8256
8257 static int
8258 dtrace_badname(const char *s)
8259 {
8260 char c;
8261
8262 if (s == NULL || (c = *s++) == '\0')
8263 return (0);
8264
8265 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8266 return (1);
8267
8268 while ((c = *s++) != '\0') {
8269 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8270 c != '-' && c != '_' && c != '.' && c != '`')
8271 return (1);
8272 }
8273
8274 return (0);
8275 }
8276
8277 static void
8278 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8279 {
8280 uint32_t priv;
8281
8282 #ifdef illumos
8283 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8284 /*
8285 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8286 */
8287 priv = DTRACE_PRIV_ALL;
8288 } else {
8289 *uidp = crgetuid(cr);
8290 *zoneidp = crgetzoneid(cr);
8291
8292 priv = 0;
8293 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8294 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8295 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8296 priv |= DTRACE_PRIV_USER;
8297 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8298 priv |= DTRACE_PRIV_PROC;
8299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8300 priv |= DTRACE_PRIV_OWNER;
8301 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8302 priv |= DTRACE_PRIV_ZONEOWNER;
8303 }
8304 #else
8305 priv = DTRACE_PRIV_ALL;
8306 #endif
8307
8308 *privp = priv;
8309 }
8310
8311 #ifdef DTRACE_ERRDEBUG
8312 static void
8313 dtrace_errdebug(const char *str)
8314 {
8315 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8316 int occupied = 0;
8317
8318 mutex_enter(&dtrace_errlock);
8319 dtrace_errlast = str;
8320 dtrace_errthread = curthread;
8321
8322 while (occupied++ < DTRACE_ERRHASHSZ) {
8323 if (dtrace_errhash[hval].dter_msg == str) {
8324 dtrace_errhash[hval].dter_count++;
8325 goto out;
8326 }
8327
8328 if (dtrace_errhash[hval].dter_msg != NULL) {
8329 hval = (hval + 1) % DTRACE_ERRHASHSZ;
8330 continue;
8331 }
8332
8333 dtrace_errhash[hval].dter_msg = str;
8334 dtrace_errhash[hval].dter_count = 1;
8335 goto out;
8336 }
8337
8338 panic("dtrace: undersized error hash");
8339 out:
8340 mutex_exit(&dtrace_errlock);
8341 }
8342 #endif
8343
8344 /*
8345 * DTrace Matching Functions
8346 *
8347 * These functions are used to match groups of probes, given some elements of
8348 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8349 */
8350 static int
8351 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8352 zoneid_t zoneid)
8353 {
8354 if (priv != DTRACE_PRIV_ALL) {
8355 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8356 uint32_t match = priv & ppriv;
8357
8358 /*
8359 * No PRIV_DTRACE_* privileges...
8360 */
8361 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8362 DTRACE_PRIV_KERNEL)) == 0)
8363 return (0);
8364
8365 /*
8366 * No matching bits, but there were bits to match...
8367 */
8368 if (match == 0 && ppriv != 0)
8369 return (0);
8370
8371 /*
8372 * Need to have permissions to the process, but don't...
8373 */
8374 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8375 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8376 return (0);
8377 }
8378
8379 /*
8380 * Need to be in the same zone unless we possess the
8381 * privilege to examine all zones.
8382 */
8383 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8384 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8385 return (0);
8386 }
8387 }
8388
8389 return (1);
8390 }
8391
8392 /*
8393 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8394 * consists of input pattern strings and an ops-vector to evaluate them.
8395 * This function returns >0 for match, 0 for no match, and <0 for error.
8396 */
8397 static int
8398 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8399 uint32_t priv, uid_t uid, zoneid_t zoneid)
8400 {
8401 dtrace_provider_t *pvp = prp->dtpr_provider;
8402 int rv;
8403
8404 if (pvp->dtpv_defunct)
8405 return (0);
8406
8407 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8408 return (rv);
8409
8410 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8411 return (rv);
8412
8413 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8414 return (rv);
8415
8416 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8417 return (rv);
8418
8419 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8420 return (0);
8421
8422 return (rv);
8423 }
8424
8425 /*
8426 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8427 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
8428 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8429 * In addition, all of the recursion cases except for '*' matching have been
8430 * unwound. For '*', we still implement recursive evaluation, but a depth
8431 * counter is maintained and matching is aborted if we recurse too deep.
8432 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8433 */
8434 static int
8435 dtrace_match_glob(const char *s, const char *p, int depth)
8436 {
8437 const char *olds;
8438 char s1, c;
8439 int gs;
8440
8441 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8442 return (-1);
8443
8444 if (s == NULL)
8445 s = ""; /* treat NULL as empty string */
8446
8447 top:
8448 olds = s;
8449 s1 = *s++;
8450
8451 if (p == NULL)
8452 return (0);
8453
8454 if ((c = *p++) == '\0')
8455 return (s1 == '\0');
8456
8457 switch (c) {
8458 case '[': {
8459 int ok = 0, notflag = 0;
8460 char lc = '\0';
8461
8462 if (s1 == '\0')
8463 return (0);
8464
8465 if (*p == '!') {
8466 notflag = 1;
8467 p++;
8468 }
8469
8470 if ((c = *p++) == '\0')
8471 return (0);
8472
8473 do {
8474 if (c == '-' && lc != '\0' && *p != ']') {
8475 if ((c = *p++) == '\0')
8476 return (0);
8477 if (c == '\\' && (c = *p++) == '\0')
8478 return (0);
8479
8480 if (notflag) {
8481 if (s1 < lc || s1 > c)
8482 ok++;
8483 else
8484 return (0);
8485 } else if (lc <= s1 && s1 <= c)
8486 ok++;
8487
8488 } else if (c == '\\' && (c = *p++) == '\0')
8489 return (0);
8490
8491 lc = c; /* save left-hand 'c' for next iteration */
8492
8493 if (notflag) {
8494 if (s1 != c)
8495 ok++;
8496 else
8497 return (0);
8498 } else if (s1 == c)
8499 ok++;
8500
8501 if ((c = *p++) == '\0')
8502 return (0);
8503
8504 } while (c != ']');
8505
8506 if (ok)
8507 goto top;
8508
8509 return (0);
8510 }
8511
8512 case '\\':
8513 if ((c = *p++) == '\0')
8514 return (0);
8515 /*FALLTHRU*/
8516
8517 default:
8518 if (c != s1)
8519 return (0);
8520 /*FALLTHRU*/
8521
8522 case '?':
8523 if (s1 != '\0')
8524 goto top;
8525 return (0);
8526
8527 case '*':
8528 while (*p == '*')
8529 p++; /* consecutive *'s are identical to a single one */
8530
8531 if (*p == '\0')
8532 return (1);
8533
8534 for (s = olds; *s != '\0'; s++) {
8535 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8536 return (gs);
8537 }
8538
8539 return (0);
8540 }
8541 }
8542
8543 /*ARGSUSED*/
8544 static int
8545 dtrace_match_string(const char *s, const char *p, int depth)
8546 {
8547 return (s != NULL && strcmp(s, p) == 0);
8548 }
8549
8550 /*ARGSUSED*/
8551 static int
8552 dtrace_match_nul(const char *s, const char *p, int depth)
8553 {
8554 return (1); /* always match the empty pattern */
8555 }
8556
8557 /*ARGSUSED*/
8558 static int
8559 dtrace_match_nonzero(const char *s, const char *p, int depth)
8560 {
8561 return (s != NULL && s[0] != '\0');
8562 }
8563
8564 static int
8565 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8566 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8567 {
8568 dtrace_probe_t template, *probe;
8569 dtrace_hash_t *hash = NULL;
8570 int len, best = INT_MAX, nmatched = 0;
8571 dtrace_id_t i;
8572
8573 ASSERT(MUTEX_HELD(&dtrace_lock));
8574
8575 /*
8576 * If the probe ID is specified in the key, just lookup by ID and
8577 * invoke the match callback once if a matching probe is found.
8578 */
8579 if (pkp->dtpk_id != DTRACE_IDNONE) {
8580 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8581 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8582 (void) (*matched)(probe, arg);
8583 nmatched++;
8584 }
8585 return (nmatched);
8586 }
8587
8588 template.dtpr_mod = (char *)pkp->dtpk_mod;
8589 template.dtpr_func = (char *)pkp->dtpk_func;
8590 template.dtpr_name = (char *)pkp->dtpk_name;
8591
8592 /*
8593 * We want to find the most distinct of the module name, function
8594 * name, and name. So for each one that is not a glob pattern or
8595 * empty string, we perform a lookup in the corresponding hash and
8596 * use the hash table with the fewest collisions to do our search.
8597 */
8598 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8599 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8600 best = len;
8601 hash = dtrace_bymod;
8602 }
8603
8604 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8605 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8606 best = len;
8607 hash = dtrace_byfunc;
8608 }
8609
8610 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8611 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8612 best = len;
8613 hash = dtrace_byname;
8614 }
8615
8616 /*
8617 * If we did not select a hash table, iterate over every probe and
8618 * invoke our callback for each one that matches our input probe key.
8619 */
8620 if (hash == NULL) {
8621 for (i = 0; i < dtrace_nprobes; i++) {
8622 if ((probe = dtrace_probes[i]) == NULL ||
8623 dtrace_match_probe(probe, pkp, priv, uid,
8624 zoneid) <= 0)
8625 continue;
8626
8627 nmatched++;
8628
8629 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8630 break;
8631 }
8632
8633 return (nmatched);
8634 }
8635
8636 /*
8637 * If we selected a hash table, iterate over each probe of the same key
8638 * name and invoke the callback for every probe that matches the other
8639 * attributes of our input probe key.
8640 */
8641 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8642 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8643
8644 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8645 continue;
8646
8647 nmatched++;
8648
8649 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8650 break;
8651 }
8652
8653 return (nmatched);
8654 }
8655
8656 /*
8657 * Return the function pointer dtrace_probecmp() should use to compare the
8658 * specified pattern with a string. For NULL or empty patterns, we select
8659 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8660 * For non-empty non-glob strings, we use dtrace_match_string().
8661 */
8662 static dtrace_probekey_f *
8663 dtrace_probekey_func(const char *p)
8664 {
8665 char c;
8666
8667 if (p == NULL || *p == '\0')
8668 return (&dtrace_match_nul);
8669
8670 while ((c = *p++) != '\0') {
8671 if (c == '[' || c == '?' || c == '*' || c == '\\')
8672 return (&dtrace_match_glob);
8673 }
8674
8675 return (&dtrace_match_string);
8676 }
8677
8678 /*
8679 * Build a probe comparison key for use with dtrace_match_probe() from the
8680 * given probe description. By convention, a null key only matches anchored
8681 * probes: if each field is the empty string, reset dtpk_fmatch to
8682 * dtrace_match_nonzero().
8683 */
8684 static void
8685 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8686 {
8687 pkp->dtpk_prov = pdp->dtpd_provider;
8688 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8689
8690 pkp->dtpk_mod = pdp->dtpd_mod;
8691 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8692
8693 pkp->dtpk_func = pdp->dtpd_func;
8694 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8695
8696 pkp->dtpk_name = pdp->dtpd_name;
8697 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8698
8699 pkp->dtpk_id = pdp->dtpd_id;
8700
8701 if (pkp->dtpk_id == DTRACE_IDNONE &&
8702 pkp->dtpk_pmatch == &dtrace_match_nul &&
8703 pkp->dtpk_mmatch == &dtrace_match_nul &&
8704 pkp->dtpk_fmatch == &dtrace_match_nul &&
8705 pkp->dtpk_nmatch == &dtrace_match_nul)
8706 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8707 }
8708
8709 /*
8710 * DTrace Provider-to-Framework API Functions
8711 *
8712 * These functions implement much of the Provider-to-Framework API, as
8713 * described in <sys/dtrace.h>. The parts of the API not in this section are
8714 * the functions in the API for probe management (found below), and
8715 * dtrace_probe() itself (found above).
8716 */
8717
8718 /*
8719 * Register the calling provider with the DTrace framework. This should
8720 * generally be called by DTrace providers in their attach(9E) entry point.
8721 */
8722 int
8723 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8724 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8725 {
8726 dtrace_provider_t *provider;
8727
8728 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8729 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8730 "arguments", name ? name : "<NULL>");
8731 return (EINVAL);
8732 }
8733
8734 if (name[0] == '\0' || dtrace_badname(name)) {
8735 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8736 "provider name", name);
8737 return (EINVAL);
8738 }
8739
8740 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8741 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8742 pops->dtps_destroy == NULL ||
8743 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8744 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8745 "provider ops", name);
8746 return (EINVAL);
8747 }
8748
8749 if (dtrace_badattr(&pap->dtpa_provider) ||
8750 dtrace_badattr(&pap->dtpa_mod) ||
8751 dtrace_badattr(&pap->dtpa_func) ||
8752 dtrace_badattr(&pap->dtpa_name) ||
8753 dtrace_badattr(&pap->dtpa_args)) {
8754 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8755 "provider attributes", name);
8756 return (EINVAL);
8757 }
8758
8759 if (priv & ~DTRACE_PRIV_ALL) {
8760 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8761 "privilege attributes", name);
8762 return (EINVAL);
8763 }
8764
8765 if ((priv & DTRACE_PRIV_KERNEL) &&
8766 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8767 pops->dtps_usermode == NULL) {
8768 cmn_err(CE_WARN, "failed to register provider '%s': need "
8769 "dtps_usermode() op for given privilege attributes", name);
8770 return (EINVAL);
8771 }
8772
8773 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8774 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8775 (void) strcpy(provider->dtpv_name, name);
8776
8777 provider->dtpv_attr = *pap;
8778 provider->dtpv_priv.dtpp_flags = priv;
8779 if (cr != NULL) {
8780 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8781 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8782 }
8783 provider->dtpv_pops = *pops;
8784
8785 if (pops->dtps_provide == NULL) {
8786 ASSERT(pops->dtps_provide_module != NULL);
8787 provider->dtpv_pops.dtps_provide =
8788 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8789 }
8790
8791 if (pops->dtps_provide_module == NULL) {
8792 ASSERT(pops->dtps_provide != NULL);
8793 provider->dtpv_pops.dtps_provide_module =
8794 (void (*)(void *, modctl_t *))dtrace_nullop;
8795 }
8796
8797 if (pops->dtps_suspend == NULL) {
8798 ASSERT(pops->dtps_resume == NULL);
8799 provider->dtpv_pops.dtps_suspend =
8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8801 provider->dtpv_pops.dtps_resume =
8802 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8803 }
8804
8805 provider->dtpv_arg = arg;
8806 *idp = (dtrace_provider_id_t)provider;
8807
8808 if (pops == &dtrace_provider_ops) {
8809 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8810 ASSERT(MUTEX_HELD(&dtrace_lock));
8811 ASSERT(dtrace_anon.dta_enabling == NULL);
8812
8813 /*
8814 * We make sure that the DTrace provider is at the head of
8815 * the provider chain.
8816 */
8817 provider->dtpv_next = dtrace_provider;
8818 dtrace_provider = provider;
8819 return (0);
8820 }
8821
8822 mutex_enter(&dtrace_provider_lock);
8823 mutex_enter(&dtrace_lock);
8824
8825 /*
8826 * If there is at least one provider registered, we'll add this
8827 * provider after the first provider.
8828 */
8829 if (dtrace_provider != NULL) {
8830 provider->dtpv_next = dtrace_provider->dtpv_next;
8831 dtrace_provider->dtpv_next = provider;
8832 } else {
8833 dtrace_provider = provider;
8834 }
8835
8836 if (dtrace_retained != NULL) {
8837 dtrace_enabling_provide(provider);
8838
8839 /*
8840 * Now we need to call dtrace_enabling_matchall() -- which
8841 * will acquire cpu_lock and dtrace_lock. We therefore need
8842 * to drop all of our locks before calling into it...
8843 */
8844 mutex_exit(&dtrace_lock);
8845 mutex_exit(&dtrace_provider_lock);
8846 dtrace_enabling_matchall();
8847
8848 return (0);
8849 }
8850
8851 mutex_exit(&dtrace_lock);
8852 mutex_exit(&dtrace_provider_lock);
8853
8854 return (0);
8855 }
8856
8857 /*
8858 * Unregister the specified provider from the DTrace framework. This should
8859 * generally be called by DTrace providers in their detach(9E) entry point.
8860 */
8861 int
8862 dtrace_unregister(dtrace_provider_id_t id)
8863 {
8864 dtrace_provider_t *old = (dtrace_provider_t *)id;
8865 dtrace_provider_t *prev = NULL;
8866 int i, self = 0, noreap = 0;
8867 dtrace_probe_t *probe, *first = NULL;
8868
8869 if (old->dtpv_pops.dtps_enable ==
8870 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8871 /*
8872 * If DTrace itself is the provider, we're called with locks
8873 * already held.
8874 */
8875 ASSERT(old == dtrace_provider);
8876 #ifdef illumos
8877 ASSERT(dtrace_devi != NULL);
8878 #endif
8879 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8880 ASSERT(MUTEX_HELD(&dtrace_lock));
8881 self = 1;
8882
8883 if (dtrace_provider->dtpv_next != NULL) {
8884 /*
8885 * There's another provider here; return failure.
8886 */
8887 return (EBUSY);
8888 }
8889 } else {
8890 mutex_enter(&dtrace_provider_lock);
8891 #ifdef illumos
8892 mutex_enter(&mod_lock);
8893 #endif
8894 mutex_enter(&dtrace_lock);
8895 }
8896
8897 /*
8898 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8899 * probes, we refuse to let providers slither away, unless this
8900 * provider has already been explicitly invalidated.
8901 */
8902 if (!old->dtpv_defunct &&
8903 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8904 dtrace_anon.dta_state->dts_necbs > 0))) {
8905 if (!self) {
8906 mutex_exit(&dtrace_lock);
8907 #ifdef illumos
8908 mutex_exit(&mod_lock);
8909 #endif
8910 mutex_exit(&dtrace_provider_lock);
8911 }
8912 return (EBUSY);
8913 }
8914
8915 /*
8916 * Attempt to destroy the probes associated with this provider.
8917 */
8918 for (i = 0; i < dtrace_nprobes; i++) {
8919 if ((probe = dtrace_probes[i]) == NULL)
8920 continue;
8921
8922 if (probe->dtpr_provider != old)
8923 continue;
8924
8925 if (probe->dtpr_ecb == NULL)
8926 continue;
8927
8928 /*
8929 * If we are trying to unregister a defunct provider, and the
8930 * provider was made defunct within the interval dictated by
8931 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8932 * attempt to reap our enablings. To denote that the provider
8933 * should reattempt to unregister itself at some point in the
8934 * future, we will return a differentiable error code (EAGAIN
8935 * instead of EBUSY) in this case.
8936 */
8937 if (dtrace_gethrtime() - old->dtpv_defunct >
8938 dtrace_unregister_defunct_reap)
8939 noreap = 1;
8940
8941 if (!self) {
8942 mutex_exit(&dtrace_lock);
8943 #ifdef illumos
8944 mutex_exit(&mod_lock);
8945 #endif
8946 mutex_exit(&dtrace_provider_lock);
8947 }
8948
8949 if (noreap)
8950 return (EBUSY);
8951
8952 (void) taskq_dispatch(dtrace_taskq,
8953 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8954
8955 return (EAGAIN);
8956 }
8957
8958 /*
8959 * All of the probes for this provider are disabled; we can safely
8960 * remove all of them from their hash chains and from the probe array.
8961 */
8962 for (i = 0; i < dtrace_nprobes; i++) {
8963 if ((probe = dtrace_probes[i]) == NULL)
8964 continue;
8965
8966 if (probe->dtpr_provider != old)
8967 continue;
8968
8969 dtrace_probes[i] = NULL;
8970
8971 dtrace_hash_remove(dtrace_bymod, probe);
8972 dtrace_hash_remove(dtrace_byfunc, probe);
8973 dtrace_hash_remove(dtrace_byname, probe);
8974
8975 if (first == NULL) {
8976 first = probe;
8977 probe->dtpr_nextmod = NULL;
8978 } else {
8979 probe->dtpr_nextmod = first;
8980 first = probe;
8981 }
8982 }
8983
8984 /*
8985 * The provider's probes have been removed from the hash chains and
8986 * from the probe array. Now issue a dtrace_sync() to be sure that
8987 * everyone has cleared out from any probe array processing.
8988 */
8989 dtrace_sync();
8990
8991 for (probe = first; probe != NULL; probe = first) {
8992 first = probe->dtpr_nextmod;
8993
8994 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8995 probe->dtpr_arg);
8996 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8997 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8998 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8999 #ifdef illumos
9000 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
9001 #else
9002 free_unr(dtrace_arena, probe->dtpr_id);
9003 #endif
9004 kmem_free(probe, sizeof (dtrace_probe_t));
9005 }
9006
9007 if ((prev = dtrace_provider) == old) {
9008 #ifdef illumos
9009 ASSERT(self || dtrace_devi == NULL);
9010 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9011 #endif
9012 dtrace_provider = old->dtpv_next;
9013 } else {
9014 while (prev != NULL && prev->dtpv_next != old)
9015 prev = prev->dtpv_next;
9016
9017 if (prev == NULL) {
9018 panic("attempt to unregister non-existent "
9019 "dtrace provider %p\n", (void *)id);
9020 }
9021
9022 prev->dtpv_next = old->dtpv_next;
9023 }
9024
9025 if (!self) {
9026 mutex_exit(&dtrace_lock);
9027 #ifdef illumos
9028 mutex_exit(&mod_lock);
9029 #endif
9030 mutex_exit(&dtrace_provider_lock);
9031 }
9032
9033 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9034 kmem_free(old, sizeof (dtrace_provider_t));
9035
9036 return (0);
9037 }
9038
9039 /*
9040 * Invalidate the specified provider. All subsequent probe lookups for the
9041 * specified provider will fail, but its probes will not be removed.
9042 */
9043 void
9044 dtrace_invalidate(dtrace_provider_id_t id)
9045 {
9046 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9047
9048 ASSERT(pvp->dtpv_pops.dtps_enable !=
9049 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9050
9051 mutex_enter(&dtrace_provider_lock);
9052 mutex_enter(&dtrace_lock);
9053
9054 pvp->dtpv_defunct = dtrace_gethrtime();
9055
9056 mutex_exit(&dtrace_lock);
9057 mutex_exit(&dtrace_provider_lock);
9058 }
9059
9060 /*
9061 * Indicate whether or not DTrace has attached.
9062 */
9063 int
9064 dtrace_attached(void)
9065 {
9066 /*
9067 * dtrace_provider will be non-NULL iff the DTrace driver has
9068 * attached. (It's non-NULL because DTrace is always itself a
9069 * provider.)
9070 */
9071 return (dtrace_provider != NULL);
9072 }
9073
9074 /*
9075 * Remove all the unenabled probes for the given provider. This function is
9076 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9077 * -- just as many of its associated probes as it can.
9078 */
9079 int
9080 dtrace_condense(dtrace_provider_id_t id)
9081 {
9082 dtrace_provider_t *prov = (dtrace_provider_t *)id;
9083 int i;
9084 dtrace_probe_t *probe;
9085
9086 /*
9087 * Make sure this isn't the dtrace provider itself.
9088 */
9089 ASSERT(prov->dtpv_pops.dtps_enable !=
9090 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9091
9092 mutex_enter(&dtrace_provider_lock);
9093 mutex_enter(&dtrace_lock);
9094
9095 /*
9096 * Attempt to destroy the probes associated with this provider.
9097 */
9098 for (i = 0; i < dtrace_nprobes; i++) {
9099 if ((probe = dtrace_probes[i]) == NULL)
9100 continue;
9101
9102 if (probe->dtpr_provider != prov)
9103 continue;
9104
9105 if (probe->dtpr_ecb != NULL)
9106 continue;
9107
9108 dtrace_probes[i] = NULL;
9109
9110 dtrace_hash_remove(dtrace_bymod, probe);
9111 dtrace_hash_remove(dtrace_byfunc, probe);
9112 dtrace_hash_remove(dtrace_byname, probe);
9113
9114 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9115 probe->dtpr_arg);
9116 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9117 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9118 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9119 kmem_free(probe, sizeof (dtrace_probe_t));
9120 #ifdef illumos
9121 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9122 #else
9123 free_unr(dtrace_arena, i + 1);
9124 #endif
9125 }
9126
9127 mutex_exit(&dtrace_lock);
9128 mutex_exit(&dtrace_provider_lock);
9129
9130 return (0);
9131 }
9132
9133 /*
9134 * DTrace Probe Management Functions
9135 *
9136 * The functions in this section perform the DTrace probe management,
9137 * including functions to create probes, look-up probes, and call into the
9138 * providers to request that probes be provided. Some of these functions are
9139 * in the Provider-to-Framework API; these functions can be identified by the
9140 * fact that they are not declared "static".
9141 */
9142
9143 /*
9144 * Create a probe with the specified module name, function name, and name.
9145 */
9146 dtrace_id_t
9147 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9148 const char *func, const char *name, int aframes, void *arg)
9149 {
9150 dtrace_probe_t *probe, **probes;
9151 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9152 dtrace_id_t id;
9153
9154 if (provider == dtrace_provider) {
9155 ASSERT(MUTEX_HELD(&dtrace_lock));
9156 } else {
9157 mutex_enter(&dtrace_lock);
9158 }
9159
9160 #ifdef illumos
9161 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9162 VM_BESTFIT | VM_SLEEP);
9163 #else
9164 id = alloc_unr(dtrace_arena);
9165 #endif
9166 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9167
9168 probe->dtpr_id = id;
9169 probe->dtpr_gen = dtrace_probegen++;
9170 probe->dtpr_mod = dtrace_strdup(mod);
9171 probe->dtpr_func = dtrace_strdup(func);
9172 probe->dtpr_name = dtrace_strdup(name);
9173 probe->dtpr_arg = arg;
9174 probe->dtpr_aframes = aframes;
9175 probe->dtpr_provider = provider;
9176
9177 dtrace_hash_add(dtrace_bymod, probe);
9178 dtrace_hash_add(dtrace_byfunc, probe);
9179 dtrace_hash_add(dtrace_byname, probe);
9180
9181 if (id - 1 >= dtrace_nprobes) {
9182 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9183 size_t nsize = osize << 1;
9184
9185 if (nsize == 0) {
9186 ASSERT(osize == 0);
9187 ASSERT(dtrace_probes == NULL);
9188 nsize = sizeof (dtrace_probe_t *);
9189 }
9190
9191 probes = kmem_zalloc(nsize, KM_SLEEP);
9192
9193 if (dtrace_probes == NULL) {
9194 ASSERT(osize == 0);
9195 dtrace_probes = probes;
9196 dtrace_nprobes = 1;
9197 } else {
9198 dtrace_probe_t **oprobes = dtrace_probes;
9199
9200 bcopy(oprobes, probes, osize);
9201 dtrace_membar_producer();
9202 dtrace_probes = probes;
9203
9204 dtrace_sync();
9205
9206 /*
9207 * All CPUs are now seeing the new probes array; we can
9208 * safely free the old array.
9209 */
9210 kmem_free(oprobes, osize);
9211 dtrace_nprobes <<= 1;
9212 }
9213
9214 ASSERT(id - 1 < dtrace_nprobes);
9215 }
9216
9217 ASSERT(dtrace_probes[id - 1] == NULL);
9218 dtrace_probes[id - 1] = probe;
9219
9220 if (provider != dtrace_provider)
9221 mutex_exit(&dtrace_lock);
9222
9223 return (id);
9224 }
9225
9226 static dtrace_probe_t *
9227 dtrace_probe_lookup_id(dtrace_id_t id)
9228 {
9229 ASSERT(MUTEX_HELD(&dtrace_lock));
9230
9231 if (id == 0 || id > dtrace_nprobes)
9232 return (NULL);
9233
9234 return (dtrace_probes[id - 1]);
9235 }
9236
9237 static int
9238 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9239 {
9240 *((dtrace_id_t *)arg) = probe->dtpr_id;
9241
9242 return (DTRACE_MATCH_DONE);
9243 }
9244
9245 /*
9246 * Look up a probe based on provider and one or more of module name, function
9247 * name and probe name.
9248 */
9249 dtrace_id_t
9250 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9251 char *func, char *name)
9252 {
9253 dtrace_probekey_t pkey;
9254 dtrace_id_t id;
9255 int match;
9256
9257 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9258 pkey.dtpk_pmatch = &dtrace_match_string;
9259 pkey.dtpk_mod = mod;
9260 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9261 pkey.dtpk_func = func;
9262 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9263 pkey.dtpk_name = name;
9264 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9265 pkey.dtpk_id = DTRACE_IDNONE;
9266
9267 mutex_enter(&dtrace_lock);
9268 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9269 dtrace_probe_lookup_match, &id);
9270 mutex_exit(&dtrace_lock);
9271
9272 ASSERT(match == 1 || match == 0);
9273 return (match ? id : 0);
9274 }
9275
9276 /*
9277 * Returns the probe argument associated with the specified probe.
9278 */
9279 void *
9280 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9281 {
9282 dtrace_probe_t *probe;
9283 void *rval = NULL;
9284
9285 mutex_enter(&dtrace_lock);
9286
9287 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9288 probe->dtpr_provider == (dtrace_provider_t *)id)
9289 rval = probe->dtpr_arg;
9290
9291 mutex_exit(&dtrace_lock);
9292
9293 return (rval);
9294 }
9295
9296 /*
9297 * Copy a probe into a probe description.
9298 */
9299 static void
9300 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9301 {
9302 bzero(pdp, sizeof (dtrace_probedesc_t));
9303 pdp->dtpd_id = prp->dtpr_id;
9304
9305 (void) strncpy(pdp->dtpd_provider,
9306 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9307
9308 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9309 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9310 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9311 }
9312
9313 /*
9314 * Called to indicate that a probe -- or probes -- should be provided by a
9315 * specfied provider. If the specified description is NULL, the provider will
9316 * be told to provide all of its probes. (This is done whenever a new
9317 * consumer comes along, or whenever a retained enabling is to be matched.) If
9318 * the specified description is non-NULL, the provider is given the
9319 * opportunity to dynamically provide the specified probe, allowing providers
9320 * to support the creation of probes on-the-fly. (So-called _autocreated_
9321 * probes.) If the provider is NULL, the operations will be applied to all
9322 * providers; if the provider is non-NULL the operations will only be applied
9323 * to the specified provider. The dtrace_provider_lock must be held, and the
9324 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9325 * will need to grab the dtrace_lock when it reenters the framework through
9326 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9327 */
9328 static void
9329 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9330 {
9331 #ifdef illumos
9332 modctl_t *ctl;
9333 #endif
9334 int all = 0;
9335
9336 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9337
9338 if (prv == NULL) {
9339 all = 1;
9340 prv = dtrace_provider;
9341 }
9342
9343 do {
9344 /*
9345 * First, call the blanket provide operation.
9346 */
9347 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9348
9349 #ifdef illumos
9350 /*
9351 * Now call the per-module provide operation. We will grab
9352 * mod_lock to prevent the list from being modified. Note
9353 * that this also prevents the mod_busy bits from changing.
9354 * (mod_busy can only be changed with mod_lock held.)
9355 */
9356 mutex_enter(&mod_lock);
9357
9358 ctl = &modules;
9359 do {
9360 if (ctl->mod_busy || ctl->mod_mp == NULL)
9361 continue;
9362
9363 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9364
9365 } while ((ctl = ctl->mod_next) != &modules);
9366
9367 mutex_exit(&mod_lock);
9368 #endif
9369 } while (all && (prv = prv->dtpv_next) != NULL);
9370 }
9371
9372 #ifdef illumos
9373 /*
9374 * Iterate over each probe, and call the Framework-to-Provider API function
9375 * denoted by offs.
9376 */
9377 static void
9378 dtrace_probe_foreach(uintptr_t offs)
9379 {
9380 dtrace_provider_t *prov;
9381 void (*func)(void *, dtrace_id_t, void *);
9382 dtrace_probe_t *probe;
9383 dtrace_icookie_t cookie;
9384 int i;
9385
9386 /*
9387 * We disable interrupts to walk through the probe array. This is
9388 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9389 * won't see stale data.
9390 */
9391 cookie = dtrace_interrupt_disable();
9392
9393 for (i = 0; i < dtrace_nprobes; i++) {
9394 if ((probe = dtrace_probes[i]) == NULL)
9395 continue;
9396
9397 if (probe->dtpr_ecb == NULL) {
9398 /*
9399 * This probe isn't enabled -- don't call the function.
9400 */
9401 continue;
9402 }
9403
9404 prov = probe->dtpr_provider;
9405 func = *((void(**)(void *, dtrace_id_t, void *))
9406 ((uintptr_t)&prov->dtpv_pops + offs));
9407
9408 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9409 }
9410
9411 dtrace_interrupt_enable(cookie);
9412 }
9413 #endif
9414
9415 static int
9416 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9417 {
9418 dtrace_probekey_t pkey;
9419 uint32_t priv;
9420 uid_t uid;
9421 zoneid_t zoneid;
9422
9423 ASSERT(MUTEX_HELD(&dtrace_lock));
9424 dtrace_ecb_create_cache = NULL;
9425
9426 if (desc == NULL) {
9427 /*
9428 * If we're passed a NULL description, we're being asked to
9429 * create an ECB with a NULL probe.
9430 */
9431 (void) dtrace_ecb_create_enable(NULL, enab);
9432 return (0);
9433 }
9434
9435 dtrace_probekey(desc, &pkey);
9436 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9437 &priv, &uid, &zoneid);
9438
9439 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9440 enab));
9441 }
9442
9443 /*
9444 * DTrace Helper Provider Functions
9445 */
9446 static void
9447 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9448 {
9449 attr->dtat_name = DOF_ATTR_NAME(dofattr);
9450 attr->dtat_data = DOF_ATTR_DATA(dofattr);
9451 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9452 }
9453
9454 static void
9455 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9456 const dof_provider_t *dofprov, char *strtab)
9457 {
9458 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9460 dofprov->dofpv_provattr);
9461 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9462 dofprov->dofpv_modattr);
9463 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9464 dofprov->dofpv_funcattr);
9465 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9466 dofprov->dofpv_nameattr);
9467 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9468 dofprov->dofpv_argsattr);
9469 }
9470
9471 static void
9472 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9473 {
9474 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9475 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9476 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9477 dof_provider_t *provider;
9478 dof_probe_t *probe;
9479 uint32_t *off, *enoff;
9480 uint8_t *arg;
9481 char *strtab;
9482 uint_t i, nprobes;
9483 dtrace_helper_provdesc_t dhpv;
9484 dtrace_helper_probedesc_t dhpb;
9485 dtrace_meta_t *meta = dtrace_meta_pid;
9486 dtrace_mops_t *mops = &meta->dtm_mops;
9487 void *parg;
9488
9489 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9490 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9491 provider->dofpv_strtab * dof->dofh_secsize);
9492 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9493 provider->dofpv_probes * dof->dofh_secsize);
9494 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9495 provider->dofpv_prargs * dof->dofh_secsize);
9496 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9497 provider->dofpv_proffs * dof->dofh_secsize);
9498
9499 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9500 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9501 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9502 enoff = NULL;
9503
9504 /*
9505 * See dtrace_helper_provider_validate().
9506 */
9507 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9508 provider->dofpv_prenoffs != DOF_SECT_NONE) {
9509 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9510 provider->dofpv_prenoffs * dof->dofh_secsize);
9511 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9512 }
9513
9514 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9515
9516 /*
9517 * Create the provider.
9518 */
9519 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9520
9521 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9522 return;
9523
9524 meta->dtm_count++;
9525
9526 /*
9527 * Create the probes.
9528 */
9529 for (i = 0; i < nprobes; i++) {
9530 probe = (dof_probe_t *)(uintptr_t)(daddr +
9531 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9532
9533 /* See the check in dtrace_helper_provider_validate(). */
9534 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9535 continue;
9536
9537 dhpb.dthpb_mod = dhp->dofhp_mod;
9538 dhpb.dthpb_func = strtab + probe->dofpr_func;
9539 dhpb.dthpb_name = strtab + probe->dofpr_name;
9540 dhpb.dthpb_base = probe->dofpr_addr;
9541 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9542 dhpb.dthpb_noffs = probe->dofpr_noffs;
9543 if (enoff != NULL) {
9544 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9545 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9546 } else {
9547 dhpb.dthpb_enoffs = NULL;
9548 dhpb.dthpb_nenoffs = 0;
9549 }
9550 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9551 dhpb.dthpb_nargc = probe->dofpr_nargc;
9552 dhpb.dthpb_xargc = probe->dofpr_xargc;
9553 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9554 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9555
9556 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9557 }
9558 }
9559
9560 static void
9561 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9562 {
9563 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9564 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9565 int i;
9566
9567 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9568
9569 for (i = 0; i < dof->dofh_secnum; i++) {
9570 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9571 dof->dofh_secoff + i * dof->dofh_secsize);
9572
9573 if (sec->dofs_type != DOF_SECT_PROVIDER)
9574 continue;
9575
9576 dtrace_helper_provide_one(dhp, sec, pid);
9577 }
9578
9579 /*
9580 * We may have just created probes, so we must now rematch against
9581 * any retained enablings. Note that this call will acquire both
9582 * cpu_lock and dtrace_lock; the fact that we are holding
9583 * dtrace_meta_lock now is what defines the ordering with respect to
9584 * these three locks.
9585 */
9586 dtrace_enabling_matchall();
9587 }
9588
9589 static void
9590 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9591 {
9592 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9593 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9594 dof_sec_t *str_sec;
9595 dof_provider_t *provider;
9596 char *strtab;
9597 dtrace_helper_provdesc_t dhpv;
9598 dtrace_meta_t *meta = dtrace_meta_pid;
9599 dtrace_mops_t *mops = &meta->dtm_mops;
9600
9601 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9602 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9603 provider->dofpv_strtab * dof->dofh_secsize);
9604
9605 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9606
9607 /*
9608 * Create the provider.
9609 */
9610 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9611
9612 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9613
9614 meta->dtm_count--;
9615 }
9616
9617 static void
9618 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9619 {
9620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9621 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9622 int i;
9623
9624 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9625
9626 for (i = 0; i < dof->dofh_secnum; i++) {
9627 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9628 dof->dofh_secoff + i * dof->dofh_secsize);
9629
9630 if (sec->dofs_type != DOF_SECT_PROVIDER)
9631 continue;
9632
9633 dtrace_helper_provider_remove_one(dhp, sec, pid);
9634 }
9635 }
9636
9637 /*
9638 * DTrace Meta Provider-to-Framework API Functions
9639 *
9640 * These functions implement the Meta Provider-to-Framework API, as described
9641 * in <sys/dtrace.h>.
9642 */
9643 int
9644 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9645 dtrace_meta_provider_id_t *idp)
9646 {
9647 dtrace_meta_t *meta;
9648 dtrace_helpers_t *help, *next;
9649 int i;
9650
9651 *idp = DTRACE_METAPROVNONE;
9652
9653 /*
9654 * We strictly don't need the name, but we hold onto it for
9655 * debuggability. All hail error queues!
9656 */
9657 if (name == NULL) {
9658 cmn_err(CE_WARN, "failed to register meta-provider: "
9659 "invalid name");
9660 return (EINVAL);
9661 }
9662
9663 if (mops == NULL ||
9664 mops->dtms_create_probe == NULL ||
9665 mops->dtms_provide_pid == NULL ||
9666 mops->dtms_remove_pid == NULL) {
9667 cmn_err(CE_WARN, "failed to register meta-register %s: "
9668 "invalid ops", name);
9669 return (EINVAL);
9670 }
9671
9672 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9673 meta->dtm_mops = *mops;
9674 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9675 (void) strcpy(meta->dtm_name, name);
9676 meta->dtm_arg = arg;
9677
9678 mutex_enter(&dtrace_meta_lock);
9679 mutex_enter(&dtrace_lock);
9680
9681 if (dtrace_meta_pid != NULL) {
9682 mutex_exit(&dtrace_lock);
9683 mutex_exit(&dtrace_meta_lock);
9684 cmn_err(CE_WARN, "failed to register meta-register %s: "
9685 "user-land meta-provider exists", name);
9686 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9687 kmem_free(meta, sizeof (dtrace_meta_t));
9688 return (EINVAL);
9689 }
9690
9691 dtrace_meta_pid = meta;
9692 *idp = (dtrace_meta_provider_id_t)meta;
9693
9694 /*
9695 * If there are providers and probes ready to go, pass them
9696 * off to the new meta provider now.
9697 */
9698
9699 help = dtrace_deferred_pid;
9700 dtrace_deferred_pid = NULL;
9701
9702 mutex_exit(&dtrace_lock);
9703
9704 while (help != NULL) {
9705 for (i = 0; i < help->dthps_nprovs; i++) {
9706 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9707 help->dthps_pid);
9708 }
9709
9710 next = help->dthps_next;
9711 help->dthps_next = NULL;
9712 help->dthps_prev = NULL;
9713 help->dthps_deferred = 0;
9714 help = next;
9715 }
9716
9717 mutex_exit(&dtrace_meta_lock);
9718
9719 return (0);
9720 }
9721
9722 int
9723 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9724 {
9725 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9726
9727 mutex_enter(&dtrace_meta_lock);
9728 mutex_enter(&dtrace_lock);
9729
9730 if (old == dtrace_meta_pid) {
9731 pp = &dtrace_meta_pid;
9732 } else {
9733 panic("attempt to unregister non-existent "
9734 "dtrace meta-provider %p\n", (void *)old);
9735 }
9736
9737 if (old->dtm_count != 0) {
9738 mutex_exit(&dtrace_lock);
9739 mutex_exit(&dtrace_meta_lock);
9740 return (EBUSY);
9741 }
9742
9743 *pp = NULL;
9744
9745 mutex_exit(&dtrace_lock);
9746 mutex_exit(&dtrace_meta_lock);
9747
9748 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9749 kmem_free(old, sizeof (dtrace_meta_t));
9750
9751 return (0);
9752 }
9753
9754
9755 /*
9756 * DTrace DIF Object Functions
9757 */
9758 static int
9759 dtrace_difo_err(uint_t pc, const char *format, ...)
9760 {
9761 if (dtrace_err_verbose) {
9762 va_list alist;
9763
9764 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9765 va_start(alist, format);
9766 (void) vuprintf(format, alist);
9767 va_end(alist);
9768 }
9769
9770 #ifdef DTRACE_ERRDEBUG
9771 dtrace_errdebug(format);
9772 #endif
9773 return (1);
9774 }
9775
9776 /*
9777 * Validate a DTrace DIF object by checking the IR instructions. The following
9778 * rules are currently enforced by dtrace_difo_validate():
9779 *
9780 * 1. Each instruction must have a valid opcode
9781 * 2. Each register, string, variable, or subroutine reference must be valid
9782 * 3. No instruction can modify register %r0 (must be zero)
9783 * 4. All instruction reserved bits must be set to zero
9784 * 5. The last instruction must be a "ret" instruction
9785 * 6. All branch targets must reference a valid instruction _after_ the branch
9786 */
9787 static int
9788 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9789 cred_t *cr)
9790 {
9791 int err = 0, i;
9792 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9793 int kcheckload;
9794 uint_t pc;
9795 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9796
9797 kcheckload = cr == NULL ||
9798 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9799
9800 dp->dtdo_destructive = 0;
9801
9802 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9803 dif_instr_t instr = dp->dtdo_buf[pc];
9804
9805 uint_t r1 = DIF_INSTR_R1(instr);
9806 uint_t r2 = DIF_INSTR_R2(instr);
9807 uint_t rd = DIF_INSTR_RD(instr);
9808 uint_t rs = DIF_INSTR_RS(instr);
9809 uint_t label = DIF_INSTR_LABEL(instr);
9810 uint_t v = DIF_INSTR_VAR(instr);
9811 uint_t subr = DIF_INSTR_SUBR(instr);
9812 uint_t type = DIF_INSTR_TYPE(instr);
9813 uint_t op = DIF_INSTR_OP(instr);
9814
9815 switch (op) {
9816 case DIF_OP_OR:
9817 case DIF_OP_XOR:
9818 case DIF_OP_AND:
9819 case DIF_OP_SLL:
9820 case DIF_OP_SRL:
9821 case DIF_OP_SRA:
9822 case DIF_OP_SUB:
9823 case DIF_OP_ADD:
9824 case DIF_OP_MUL:
9825 case DIF_OP_SDIV:
9826 case DIF_OP_UDIV:
9827 case DIF_OP_SREM:
9828 case DIF_OP_UREM:
9829 case DIF_OP_COPYS:
9830 if (r1 >= nregs)
9831 err += efunc(pc, "invalid register %u\n", r1);
9832 if (r2 >= nregs)
9833 err += efunc(pc, "invalid register %u\n", r2);
9834 if (rd >= nregs)
9835 err += efunc(pc, "invalid register %u\n", rd);
9836 if (rd == 0)
9837 err += efunc(pc, "cannot write to %%r0\n");
9838 break;
9839 case DIF_OP_NOT:
9840 case DIF_OP_MOV:
9841 case DIF_OP_ALLOCS:
9842 if (r1 >= nregs)
9843 err += efunc(pc, "invalid register %u\n", r1);
9844 if (r2 != 0)
9845 err += efunc(pc, "non-zero reserved bits\n");
9846 if (rd >= nregs)
9847 err += efunc(pc, "invalid register %u\n", rd);
9848 if (rd == 0)
9849 err += efunc(pc, "cannot write to %%r0\n");
9850 break;
9851 case DIF_OP_LDSB:
9852 case DIF_OP_LDSH:
9853 case DIF_OP_LDSW:
9854 case DIF_OP_LDUB:
9855 case DIF_OP_LDUH:
9856 case DIF_OP_LDUW:
9857 case DIF_OP_LDX:
9858 if (r1 >= nregs)
9859 err += efunc(pc, "invalid register %u\n", r1);
9860 if (r2 != 0)
9861 err += efunc(pc, "non-zero reserved bits\n");
9862 if (rd >= nregs)
9863 err += efunc(pc, "invalid register %u\n", rd);
9864 if (rd == 0)
9865 err += efunc(pc, "cannot write to %%r0\n");
9866 if (kcheckload)
9867 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9868 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9869 break;
9870 case DIF_OP_RLDSB:
9871 case DIF_OP_RLDSH:
9872 case DIF_OP_RLDSW:
9873 case DIF_OP_RLDUB:
9874 case DIF_OP_RLDUH:
9875 case DIF_OP_RLDUW:
9876 case DIF_OP_RLDX:
9877 if (r1 >= nregs)
9878 err += efunc(pc, "invalid register %u\n", r1);
9879 if (r2 != 0)
9880 err += efunc(pc, "non-zero reserved bits\n");
9881 if (rd >= nregs)
9882 err += efunc(pc, "invalid register %u\n", rd);
9883 if (rd == 0)
9884 err += efunc(pc, "cannot write to %%r0\n");
9885 break;
9886 case DIF_OP_ULDSB:
9887 case DIF_OP_ULDSH:
9888 case DIF_OP_ULDSW:
9889 case DIF_OP_ULDUB:
9890 case DIF_OP_ULDUH:
9891 case DIF_OP_ULDUW:
9892 case DIF_OP_ULDX:
9893 if (r1 >= nregs)
9894 err += efunc(pc, "invalid register %u\n", r1);
9895 if (r2 != 0)
9896 err += efunc(pc, "non-zero reserved bits\n");
9897 if (rd >= nregs)
9898 err += efunc(pc, "invalid register %u\n", rd);
9899 if (rd == 0)
9900 err += efunc(pc, "cannot write to %%r0\n");
9901 break;
9902 case DIF_OP_STB:
9903 case DIF_OP_STH:
9904 case DIF_OP_STW:
9905 case DIF_OP_STX:
9906 if (r1 >= nregs)
9907 err += efunc(pc, "invalid register %u\n", r1);
9908 if (r2 != 0)
9909 err += efunc(pc, "non-zero reserved bits\n");
9910 if (rd >= nregs)
9911 err += efunc(pc, "invalid register %u\n", rd);
9912 if (rd == 0)
9913 err += efunc(pc, "cannot write to 0 address\n");
9914 break;
9915 case DIF_OP_CMP:
9916 case DIF_OP_SCMP:
9917 if (r1 >= nregs)
9918 err += efunc(pc, "invalid register %u\n", r1);
9919 if (r2 >= nregs)
9920 err += efunc(pc, "invalid register %u\n", r2);
9921 if (rd != 0)
9922 err += efunc(pc, "non-zero reserved bits\n");
9923 break;
9924 case DIF_OP_TST:
9925 if (r1 >= nregs)
9926 err += efunc(pc, "invalid register %u\n", r1);
9927 if (r2 != 0 || rd != 0)
9928 err += efunc(pc, "non-zero reserved bits\n");
9929 break;
9930 case DIF_OP_BA:
9931 case DIF_OP_BE:
9932 case DIF_OP_BNE:
9933 case DIF_OP_BG:
9934 case DIF_OP_BGU:
9935 case DIF_OP_BGE:
9936 case DIF_OP_BGEU:
9937 case DIF_OP_BL:
9938 case DIF_OP_BLU:
9939 case DIF_OP_BLE:
9940 case DIF_OP_BLEU:
9941 if (label >= dp->dtdo_len) {
9942 err += efunc(pc, "invalid branch target %u\n",
9943 label);
9944 }
9945 if (label <= pc) {
9946 err += efunc(pc, "backward branch to %u\n",
9947 label);
9948 }
9949 break;
9950 case DIF_OP_RET:
9951 if (r1 != 0 || r2 != 0)
9952 err += efunc(pc, "non-zero reserved bits\n");
9953 if (rd >= nregs)
9954 err += efunc(pc, "invalid register %u\n", rd);
9955 break;
9956 case DIF_OP_NOP:
9957 case DIF_OP_POPTS:
9958 case DIF_OP_FLUSHTS:
9959 if (r1 != 0 || r2 != 0 || rd != 0)
9960 err += efunc(pc, "non-zero reserved bits\n");
9961 break;
9962 case DIF_OP_SETX:
9963 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9964 err += efunc(pc, "invalid integer ref %u\n",
9965 DIF_INSTR_INTEGER(instr));
9966 }
9967 if (rd >= nregs)
9968 err += efunc(pc, "invalid register %u\n", rd);
9969 if (rd == 0)
9970 err += efunc(pc, "cannot write to %%r0\n");
9971 break;
9972 case DIF_OP_SETS:
9973 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9974 err += efunc(pc, "invalid string ref %u\n",
9975 DIF_INSTR_STRING(instr));
9976 }
9977 if (rd >= nregs)
9978 err += efunc(pc, "invalid register %u\n", rd);
9979 if (rd == 0)
9980 err += efunc(pc, "cannot write to %%r0\n");
9981 break;
9982 case DIF_OP_LDGA:
9983 case DIF_OP_LDTA:
9984 if (r1 > DIF_VAR_ARRAY_MAX)
9985 err += efunc(pc, "invalid array %u\n", r1);
9986 if (r2 >= nregs)
9987 err += efunc(pc, "invalid register %u\n", r2);
9988 if (rd >= nregs)
9989 err += efunc(pc, "invalid register %u\n", rd);
9990 if (rd == 0)
9991 err += efunc(pc, "cannot write to %%r0\n");
9992 break;
9993 case DIF_OP_LDGS:
9994 case DIF_OP_LDTS:
9995 case DIF_OP_LDLS:
9996 case DIF_OP_LDGAA:
9997 case DIF_OP_LDTAA:
9998 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9999 err += efunc(pc, "invalid variable %u\n", v);
10000 if (rd >= nregs)
10001 err += efunc(pc, "invalid register %u\n", rd);
10002 if (rd == 0)
10003 err += efunc(pc, "cannot write to %%r0\n");
10004 break;
10005 case DIF_OP_STGS:
10006 case DIF_OP_STTS:
10007 case DIF_OP_STLS:
10008 case DIF_OP_STGAA:
10009 case DIF_OP_STTAA:
10010 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10011 err += efunc(pc, "invalid variable %u\n", v);
10012 if (rs >= nregs)
10013 err += efunc(pc, "invalid register %u\n", rd);
10014 break;
10015 case DIF_OP_CALL:
10016 if (subr > DIF_SUBR_MAX)
10017 err += efunc(pc, "invalid subr %u\n", subr);
10018 if (rd >= nregs)
10019 err += efunc(pc, "invalid register %u\n", rd);
10020 if (rd == 0)
10021 err += efunc(pc, "cannot write to %%r0\n");
10022
10023 if (subr == DIF_SUBR_COPYOUT ||
10024 subr == DIF_SUBR_COPYOUTSTR) {
10025 dp->dtdo_destructive = 1;
10026 }
10027
10028 if (subr == DIF_SUBR_GETF) {
10029 #ifdef __FreeBSD__
10030 err += efunc(pc, "getf() not supported");
10031 #else
10032 /*
10033 * If we have a getf() we need to record that
10034 * in our state. Note that our state can be
10035 * NULL if this is a helper -- but in that
10036 * case, the call to getf() is itself illegal,
10037 * and will be caught (slightly later) when
10038 * the helper is validated.
10039 */
10040 if (vstate->dtvs_state != NULL)
10041 vstate->dtvs_state->dts_getf++;
10042 #endif
10043 }
10044
10045 break;
10046 case DIF_OP_PUSHTR:
10047 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10048 err += efunc(pc, "invalid ref type %u\n", type);
10049 if (r2 >= nregs)
10050 err += efunc(pc, "invalid register %u\n", r2);
10051 if (rs >= nregs)
10052 err += efunc(pc, "invalid register %u\n", rs);
10053 break;
10054 case DIF_OP_PUSHTV:
10055 if (type != DIF_TYPE_CTF)
10056 err += efunc(pc, "invalid val type %u\n", type);
10057 if (r2 >= nregs)
10058 err += efunc(pc, "invalid register %u\n", r2);
10059 if (rs >= nregs)
10060 err += efunc(pc, "invalid register %u\n", rs);
10061 break;
10062 default:
10063 err += efunc(pc, "invalid opcode %u\n",
10064 DIF_INSTR_OP(instr));
10065 }
10066 }
10067
10068 if (dp->dtdo_len != 0 &&
10069 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10070 err += efunc(dp->dtdo_len - 1,
10071 "expected 'ret' as last DIF instruction\n");
10072 }
10073
10074 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10075 /*
10076 * If we're not returning by reference, the size must be either
10077 * 0 or the size of one of the base types.
10078 */
10079 switch (dp->dtdo_rtype.dtdt_size) {
10080 case 0:
10081 case sizeof (uint8_t):
10082 case sizeof (uint16_t):
10083 case sizeof (uint32_t):
10084 case sizeof (uint64_t):
10085 break;
10086
10087 default:
10088 err += efunc(dp->dtdo_len - 1, "bad return size\n");
10089 }
10090 }
10091
10092 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10093 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10094 dtrace_diftype_t *vt, *et;
10095 uint_t id, ndx;
10096
10097 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10098 v->dtdv_scope != DIFV_SCOPE_THREAD &&
10099 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10100 err += efunc(i, "unrecognized variable scope %d\n",
10101 v->dtdv_scope);
10102 break;
10103 }
10104
10105 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10106 v->dtdv_kind != DIFV_KIND_SCALAR) {
10107 err += efunc(i, "unrecognized variable type %d\n",
10108 v->dtdv_kind);
10109 break;
10110 }
10111
10112 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10113 err += efunc(i, "%d exceeds variable id limit\n", id);
10114 break;
10115 }
10116
10117 if (id < DIF_VAR_OTHER_UBASE)
10118 continue;
10119
10120 /*
10121 * For user-defined variables, we need to check that this
10122 * definition is identical to any previous definition that we
10123 * encountered.
10124 */
10125 ndx = id - DIF_VAR_OTHER_UBASE;
10126
10127 switch (v->dtdv_scope) {
10128 case DIFV_SCOPE_GLOBAL:
10129 if (maxglobal == -1 || ndx > maxglobal)
10130 maxglobal = ndx;
10131
10132 if (ndx < vstate->dtvs_nglobals) {
10133 dtrace_statvar_t *svar;
10134
10135 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10136 existing = &svar->dtsv_var;
10137 }
10138
10139 break;
10140
10141 case DIFV_SCOPE_THREAD:
10142 if (maxtlocal == -1 || ndx > maxtlocal)
10143 maxtlocal = ndx;
10144
10145 if (ndx < vstate->dtvs_ntlocals)
10146 existing = &vstate->dtvs_tlocals[ndx];
10147 break;
10148
10149 case DIFV_SCOPE_LOCAL:
10150 if (maxlocal == -1 || ndx > maxlocal)
10151 maxlocal = ndx;
10152
10153 if (ndx < vstate->dtvs_nlocals) {
10154 dtrace_statvar_t *svar;
10155
10156 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10157 existing = &svar->dtsv_var;
10158 }
10159
10160 break;
10161 }
10162
10163 vt = &v->dtdv_type;
10164
10165 if (vt->dtdt_flags & DIF_TF_BYREF) {
10166 if (vt->dtdt_size == 0) {
10167 err += efunc(i, "zero-sized variable\n");
10168 break;
10169 }
10170
10171 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10172 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10173 vt->dtdt_size > dtrace_statvar_maxsize) {
10174 err += efunc(i, "oversized by-ref static\n");
10175 break;
10176 }
10177 }
10178
10179 if (existing == NULL || existing->dtdv_id == 0)
10180 continue;
10181
10182 ASSERT(existing->dtdv_id == v->dtdv_id);
10183 ASSERT(existing->dtdv_scope == v->dtdv_scope);
10184
10185 if (existing->dtdv_kind != v->dtdv_kind)
10186 err += efunc(i, "%d changed variable kind\n", id);
10187
10188 et = &existing->dtdv_type;
10189
10190 if (vt->dtdt_flags != et->dtdt_flags) {
10191 err += efunc(i, "%d changed variable type flags\n", id);
10192 break;
10193 }
10194
10195 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10196 err += efunc(i, "%d changed variable type size\n", id);
10197 break;
10198 }
10199 }
10200
10201 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10202 dif_instr_t instr = dp->dtdo_buf[pc];
10203
10204 uint_t v = DIF_INSTR_VAR(instr);
10205 uint_t op = DIF_INSTR_OP(instr);
10206
10207 switch (op) {
10208 case DIF_OP_LDGS:
10209 case DIF_OP_LDGAA:
10210 case DIF_OP_STGS:
10211 case DIF_OP_STGAA:
10212 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10213 err += efunc(pc, "invalid variable %u\n", v);
10214 break;
10215 case DIF_OP_LDTS:
10216 case DIF_OP_LDTAA:
10217 case DIF_OP_STTS:
10218 case DIF_OP_STTAA:
10219 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10220 err += efunc(pc, "invalid variable %u\n", v);
10221 break;
10222 case DIF_OP_LDLS:
10223 case DIF_OP_STLS:
10224 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10225 err += efunc(pc, "invalid variable %u\n", v);
10226 break;
10227 default:
10228 break;
10229 }
10230 }
10231
10232 return (err);
10233 }
10234
10235 /*
10236 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
10237 * are much more constrained than normal DIFOs. Specifically, they may
10238 * not:
10239 *
10240 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10241 * miscellaneous string routines
10242 * 2. Access DTrace variables other than the args[] array, and the
10243 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10244 * 3. Have thread-local variables.
10245 * 4. Have dynamic variables.
10246 */
10247 static int
10248 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10249 {
10250 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10251 int err = 0;
10252 uint_t pc;
10253
10254 for (pc = 0; pc < dp->dtdo_len; pc++) {
10255 dif_instr_t instr = dp->dtdo_buf[pc];
10256
10257 uint_t v = DIF_INSTR_VAR(instr);
10258 uint_t subr = DIF_INSTR_SUBR(instr);
10259 uint_t op = DIF_INSTR_OP(instr);
10260
10261 switch (op) {
10262 case DIF_OP_OR:
10263 case DIF_OP_XOR:
10264 case DIF_OP_AND:
10265 case DIF_OP_SLL:
10266 case DIF_OP_SRL:
10267 case DIF_OP_SRA:
10268 case DIF_OP_SUB:
10269 case DIF_OP_ADD:
10270 case DIF_OP_MUL:
10271 case DIF_OP_SDIV:
10272 case DIF_OP_UDIV:
10273 case DIF_OP_SREM:
10274 case DIF_OP_UREM:
10275 case DIF_OP_COPYS:
10276 case DIF_OP_NOT:
10277 case DIF_OP_MOV:
10278 case DIF_OP_RLDSB:
10279 case DIF_OP_RLDSH:
10280 case DIF_OP_RLDSW:
10281 case DIF_OP_RLDUB:
10282 case DIF_OP_RLDUH:
10283 case DIF_OP_RLDUW:
10284 case DIF_OP_RLDX:
10285 case DIF_OP_ULDSB:
10286 case DIF_OP_ULDSH:
10287 case DIF_OP_ULDSW:
10288 case DIF_OP_ULDUB:
10289 case DIF_OP_ULDUH:
10290 case DIF_OP_ULDUW:
10291 case DIF_OP_ULDX:
10292 case DIF_OP_STB:
10293 case DIF_OP_STH:
10294 case DIF_OP_STW:
10295 case DIF_OP_STX:
10296 case DIF_OP_ALLOCS:
10297 case DIF_OP_CMP:
10298 case DIF_OP_SCMP:
10299 case DIF_OP_TST:
10300 case DIF_OP_BA:
10301 case DIF_OP_BE:
10302 case DIF_OP_BNE:
10303 case DIF_OP_BG:
10304 case DIF_OP_BGU:
10305 case DIF_OP_BGE:
10306 case DIF_OP_BGEU:
10307 case DIF_OP_BL:
10308 case DIF_OP_BLU:
10309 case DIF_OP_BLE:
10310 case DIF_OP_BLEU:
10311 case DIF_OP_RET:
10312 case DIF_OP_NOP:
10313 case DIF_OP_POPTS:
10314 case DIF_OP_FLUSHTS:
10315 case DIF_OP_SETX:
10316 case DIF_OP_SETS:
10317 case DIF_OP_LDGA:
10318 case DIF_OP_LDLS:
10319 case DIF_OP_STGS:
10320 case DIF_OP_STLS:
10321 case DIF_OP_PUSHTR:
10322 case DIF_OP_PUSHTV:
10323 break;
10324
10325 case DIF_OP_LDGS:
10326 if (v >= DIF_VAR_OTHER_UBASE)
10327 break;
10328
10329 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10330 break;
10331
10332 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10333 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10334 v == DIF_VAR_EXECARGS ||
10335 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10336 v == DIF_VAR_UID || v == DIF_VAR_GID)
10337 break;
10338
10339 err += efunc(pc, "illegal variable %u\n", v);
10340 break;
10341
10342 case DIF_OP_LDTA:
10343 case DIF_OP_LDTS:
10344 case DIF_OP_LDGAA:
10345 case DIF_OP_LDTAA:
10346 err += efunc(pc, "illegal dynamic variable load\n");
10347 break;
10348
10349 case DIF_OP_STTS:
10350 case DIF_OP_STGAA:
10351 case DIF_OP_STTAA:
10352 err += efunc(pc, "illegal dynamic variable store\n");
10353 break;
10354
10355 case DIF_OP_CALL:
10356 if (subr == DIF_SUBR_ALLOCA ||
10357 subr == DIF_SUBR_BCOPY ||
10358 subr == DIF_SUBR_COPYIN ||
10359 subr == DIF_SUBR_COPYINTO ||
10360 subr == DIF_SUBR_COPYINSTR ||
10361 subr == DIF_SUBR_INDEX ||
10362 subr == DIF_SUBR_INET_NTOA ||
10363 subr == DIF_SUBR_INET_NTOA6 ||
10364 subr == DIF_SUBR_INET_NTOP ||
10365 subr == DIF_SUBR_JSON ||
10366 subr == DIF_SUBR_LLTOSTR ||
10367 subr == DIF_SUBR_STRTOLL ||
10368 subr == DIF_SUBR_RINDEX ||
10369 subr == DIF_SUBR_STRCHR ||
10370 subr == DIF_SUBR_STRJOIN ||
10371 subr == DIF_SUBR_STRRCHR ||
10372 subr == DIF_SUBR_STRSTR ||
10373 subr == DIF_SUBR_HTONS ||
10374 subr == DIF_SUBR_HTONL ||
10375 subr == DIF_SUBR_HTONLL ||
10376 subr == DIF_SUBR_NTOHS ||
10377 subr == DIF_SUBR_NTOHL ||
10378 subr == DIF_SUBR_NTOHLL ||
10379 subr == DIF_SUBR_MEMREF)
10380 break;
10381 #ifdef __FreeBSD__
10382 if (subr == DIF_SUBR_MEMSTR)
10383 break;
10384 #endif
10385
10386 err += efunc(pc, "invalid subr %u\n", subr);
10387 break;
10388
10389 default:
10390 err += efunc(pc, "invalid opcode %u\n",
10391 DIF_INSTR_OP(instr));
10392 }
10393 }
10394
10395 return (err);
10396 }
10397
10398 /*
10399 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10400 * basis; 0 if not.
10401 */
10402 static int
10403 dtrace_difo_cacheable(dtrace_difo_t *dp)
10404 {
10405 int i;
10406
10407 if (dp == NULL)
10408 return (0);
10409
10410 for (i = 0; i < dp->dtdo_varlen; i++) {
10411 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10412
10413 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10414 continue;
10415
10416 switch (v->dtdv_id) {
10417 case DIF_VAR_CURTHREAD:
10418 case DIF_VAR_PID:
10419 case DIF_VAR_TID:
10420 case DIF_VAR_EXECARGS:
10421 case DIF_VAR_EXECNAME:
10422 case DIF_VAR_ZONENAME:
10423 break;
10424
10425 default:
10426 return (0);
10427 }
10428 }
10429
10430 /*
10431 * This DIF object may be cacheable. Now we need to look for any
10432 * array loading instructions, any memory loading instructions, or
10433 * any stores to thread-local variables.
10434 */
10435 for (i = 0; i < dp->dtdo_len; i++) {
10436 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10437
10438 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10439 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10440 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10441 op == DIF_OP_LDGA || op == DIF_OP_STTS)
10442 return (0);
10443 }
10444
10445 return (1);
10446 }
10447
10448 static void
10449 dtrace_difo_hold(dtrace_difo_t *dp)
10450 {
10451 int i;
10452
10453 ASSERT(MUTEX_HELD(&dtrace_lock));
10454
10455 dp->dtdo_refcnt++;
10456 ASSERT(dp->dtdo_refcnt != 0);
10457
10458 /*
10459 * We need to check this DIF object for references to the variable
10460 * DIF_VAR_VTIMESTAMP.
10461 */
10462 for (i = 0; i < dp->dtdo_varlen; i++) {
10463 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10464
10465 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10466 continue;
10467
10468 if (dtrace_vtime_references++ == 0)
10469 dtrace_vtime_enable();
10470 }
10471 }
10472
10473 /*
10474 * This routine calculates the dynamic variable chunksize for a given DIF
10475 * object. The calculation is not fool-proof, and can probably be tricked by
10476 * malicious DIF -- but it works for all compiler-generated DIF. Because this
10477 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10478 * if a dynamic variable size exceeds the chunksize.
10479 */
10480 static void
10481 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10482 {
10483 uint64_t sval = 0;
10484 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10485 const dif_instr_t *text = dp->dtdo_buf;
10486 uint_t pc, srd = 0;
10487 uint_t ttop = 0;
10488 size_t size, ksize;
10489 uint_t id, i;
10490
10491 for (pc = 0; pc < dp->dtdo_len; pc++) {
10492 dif_instr_t instr = text[pc];
10493 uint_t op = DIF_INSTR_OP(instr);
10494 uint_t rd = DIF_INSTR_RD(instr);
10495 uint_t r1 = DIF_INSTR_R1(instr);
10496 uint_t nkeys = 0;
10497 uchar_t scope = 0;
10498
10499 dtrace_key_t *key = tupregs;
10500
10501 switch (op) {
10502 case DIF_OP_SETX:
10503 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10504 srd = rd;
10505 continue;
10506
10507 case DIF_OP_STTS:
10508 key = &tupregs[DIF_DTR_NREGS];
10509 key[0].dttk_size = 0;
10510 key[1].dttk_size = 0;
10511 nkeys = 2;
10512 scope = DIFV_SCOPE_THREAD;
10513 break;
10514
10515 case DIF_OP_STGAA:
10516 case DIF_OP_STTAA:
10517 nkeys = ttop;
10518
10519 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10520 key[nkeys++].dttk_size = 0;
10521
10522 key[nkeys++].dttk_size = 0;
10523
10524 if (op == DIF_OP_STTAA) {
10525 scope = DIFV_SCOPE_THREAD;
10526 } else {
10527 scope = DIFV_SCOPE_GLOBAL;
10528 }
10529
10530 break;
10531
10532 case DIF_OP_PUSHTR:
10533 if (ttop == DIF_DTR_NREGS)
10534 return;
10535
10536 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10537 /*
10538 * If the register for the size of the "pushtr"
10539 * is %r0 (or the value is 0) and the type is
10540 * a string, we'll use the system-wide default
10541 * string size.
10542 */
10543 tupregs[ttop++].dttk_size =
10544 dtrace_strsize_default;
10545 } else {
10546 if (srd == 0)
10547 return;
10548
10549 if (sval > LONG_MAX)
10550 return;
10551
10552 tupregs[ttop++].dttk_size = sval;
10553 }
10554
10555 break;
10556
10557 case DIF_OP_PUSHTV:
10558 if (ttop == DIF_DTR_NREGS)
10559 return;
10560
10561 tupregs[ttop++].dttk_size = 0;
10562 break;
10563
10564 case DIF_OP_FLUSHTS:
10565 ttop = 0;
10566 break;
10567
10568 case DIF_OP_POPTS:
10569 if (ttop != 0)
10570 ttop--;
10571 break;
10572 }
10573
10574 sval = 0;
10575 srd = 0;
10576
10577 if (nkeys == 0)
10578 continue;
10579
10580 /*
10581 * We have a dynamic variable allocation; calculate its size.
10582 */
10583 for (ksize = 0, i = 0; i < nkeys; i++)
10584 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10585
10586 size = sizeof (dtrace_dynvar_t);
10587 size += sizeof (dtrace_key_t) * (nkeys - 1);
10588 size += ksize;
10589
10590 /*
10591 * Now we need to determine the size of the stored data.
10592 */
10593 id = DIF_INSTR_VAR(instr);
10594
10595 for (i = 0; i < dp->dtdo_varlen; i++) {
10596 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10597
10598 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10599 size += v->dtdv_type.dtdt_size;
10600 break;
10601 }
10602 }
10603
10604 if (i == dp->dtdo_varlen)
10605 return;
10606
10607 /*
10608 * We have the size. If this is larger than the chunk size
10609 * for our dynamic variable state, reset the chunk size.
10610 */
10611 size = P2ROUNDUP(size, sizeof (uint64_t));
10612
10613 /*
10614 * Before setting the chunk size, check that we're not going
10615 * to set it to a negative value...
10616 */
10617 if (size > LONG_MAX)
10618 return;
10619
10620 /*
10621 * ...and make certain that we didn't badly overflow.
10622 */
10623 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10624 return;
10625
10626 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10627 vstate->dtvs_dynvars.dtds_chunksize = size;
10628 }
10629 }
10630
10631 static void
10632 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10633 {
10634 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10635 uint_t id;
10636
10637 ASSERT(MUTEX_HELD(&dtrace_lock));
10638 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10639
10640 for (i = 0; i < dp->dtdo_varlen; i++) {
10641 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10642 dtrace_statvar_t *svar, ***svarp = NULL;
10643 size_t dsize = 0;
10644 uint8_t scope = v->dtdv_scope;
10645 int *np = NULL;
10646
10647 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10648 continue;
10649
10650 id -= DIF_VAR_OTHER_UBASE;
10651
10652 switch (scope) {
10653 case DIFV_SCOPE_THREAD:
10654 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10655 dtrace_difv_t *tlocals;
10656
10657 if ((ntlocals = (otlocals << 1)) == 0)
10658 ntlocals = 1;
10659
10660 osz = otlocals * sizeof (dtrace_difv_t);
10661 nsz = ntlocals * sizeof (dtrace_difv_t);
10662
10663 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10664
10665 if (osz != 0) {
10666 bcopy(vstate->dtvs_tlocals,
10667 tlocals, osz);
10668 kmem_free(vstate->dtvs_tlocals, osz);
10669 }
10670
10671 vstate->dtvs_tlocals = tlocals;
10672 vstate->dtvs_ntlocals = ntlocals;
10673 }
10674
10675 vstate->dtvs_tlocals[id] = *v;
10676 continue;
10677
10678 case DIFV_SCOPE_LOCAL:
10679 np = &vstate->dtvs_nlocals;
10680 svarp = &vstate->dtvs_locals;
10681
10682 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10683 dsize = (mp_maxid + 1) *
10684 (v->dtdv_type.dtdt_size +
10685 sizeof (uint64_t));
10686 else
10687 dsize = (mp_maxid + 1) * sizeof (uint64_t);
10688
10689 break;
10690
10691 case DIFV_SCOPE_GLOBAL:
10692 np = &vstate->dtvs_nglobals;
10693 svarp = &vstate->dtvs_globals;
10694
10695 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10696 dsize = v->dtdv_type.dtdt_size +
10697 sizeof (uint64_t);
10698
10699 break;
10700
10701 default:
10702 ASSERT(0);
10703 }
10704
10705 while (id >= (oldsvars = *np)) {
10706 dtrace_statvar_t **statics;
10707 int newsvars, oldsize, newsize;
10708
10709 if ((newsvars = (oldsvars << 1)) == 0)
10710 newsvars = 1;
10711
10712 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10713 newsize = newsvars * sizeof (dtrace_statvar_t *);
10714
10715 statics = kmem_zalloc(newsize, KM_SLEEP);
10716
10717 if (oldsize != 0) {
10718 bcopy(*svarp, statics, oldsize);
10719 kmem_free(*svarp, oldsize);
10720 }
10721
10722 *svarp = statics;
10723 *np = newsvars;
10724 }
10725
10726 if ((svar = (*svarp)[id]) == NULL) {
10727 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10728 svar->dtsv_var = *v;
10729
10730 if ((svar->dtsv_size = dsize) != 0) {
10731 svar->dtsv_data = (uint64_t)(uintptr_t)
10732 kmem_zalloc(dsize, KM_SLEEP);
10733 }
10734
10735 (*svarp)[id] = svar;
10736 }
10737
10738 svar->dtsv_refcnt++;
10739 }
10740
10741 dtrace_difo_chunksize(dp, vstate);
10742 dtrace_difo_hold(dp);
10743 }
10744
10745 static dtrace_difo_t *
10746 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10747 {
10748 dtrace_difo_t *new;
10749 size_t sz;
10750
10751 ASSERT(dp->dtdo_buf != NULL);
10752 ASSERT(dp->dtdo_refcnt != 0);
10753
10754 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10755
10756 ASSERT(dp->dtdo_buf != NULL);
10757 sz = dp->dtdo_len * sizeof (dif_instr_t);
10758 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10759 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10760 new->dtdo_len = dp->dtdo_len;
10761
10762 if (dp->dtdo_strtab != NULL) {
10763 ASSERT(dp->dtdo_strlen != 0);
10764 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10765 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10766 new->dtdo_strlen = dp->dtdo_strlen;
10767 }
10768
10769 if (dp->dtdo_inttab != NULL) {
10770 ASSERT(dp->dtdo_intlen != 0);
10771 sz = dp->dtdo_intlen * sizeof (uint64_t);
10772 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10773 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10774 new->dtdo_intlen = dp->dtdo_intlen;
10775 }
10776
10777 if (dp->dtdo_vartab != NULL) {
10778 ASSERT(dp->dtdo_varlen != 0);
10779 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10780 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10781 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10782 new->dtdo_varlen = dp->dtdo_varlen;
10783 }
10784
10785 dtrace_difo_init(new, vstate);
10786 return (new);
10787 }
10788
10789 static void
10790 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10791 {
10792 int i;
10793
10794 ASSERT(dp->dtdo_refcnt == 0);
10795
10796 for (i = 0; i < dp->dtdo_varlen; i++) {
10797 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10798 dtrace_statvar_t *svar, **svarp = NULL;
10799 uint_t id;
10800 uint8_t scope = v->dtdv_scope;
10801 int *np = NULL;
10802
10803 switch (scope) {
10804 case DIFV_SCOPE_THREAD:
10805 continue;
10806
10807 case DIFV_SCOPE_LOCAL:
10808 np = &vstate->dtvs_nlocals;
10809 svarp = vstate->dtvs_locals;
10810 break;
10811
10812 case DIFV_SCOPE_GLOBAL:
10813 np = &vstate->dtvs_nglobals;
10814 svarp = vstate->dtvs_globals;
10815 break;
10816
10817 default:
10818 ASSERT(0);
10819 }
10820
10821 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10822 continue;
10823
10824 id -= DIF_VAR_OTHER_UBASE;
10825 ASSERT(id < *np);
10826
10827 svar = svarp[id];
10828 ASSERT(svar != NULL);
10829 ASSERT(svar->dtsv_refcnt > 0);
10830
10831 if (--svar->dtsv_refcnt > 0)
10832 continue;
10833
10834 if (svar->dtsv_size != 0) {
10835 ASSERT(svar->dtsv_data != 0);
10836 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10837 svar->dtsv_size);
10838 }
10839
10840 kmem_free(svar, sizeof (dtrace_statvar_t));
10841 svarp[id] = NULL;
10842 }
10843
10844 if (dp->dtdo_buf != NULL)
10845 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10846 if (dp->dtdo_inttab != NULL)
10847 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10848 if (dp->dtdo_strtab != NULL)
10849 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10850 if (dp->dtdo_vartab != NULL)
10851 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10852
10853 kmem_free(dp, sizeof (dtrace_difo_t));
10854 }
10855
10856 static void
10857 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10858 {
10859 int i;
10860
10861 ASSERT(MUTEX_HELD(&dtrace_lock));
10862 ASSERT(dp->dtdo_refcnt != 0);
10863
10864 for (i = 0; i < dp->dtdo_varlen; i++) {
10865 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10866
10867 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10868 continue;
10869
10870 ASSERT(dtrace_vtime_references > 0);
10871 if (--dtrace_vtime_references == 0)
10872 dtrace_vtime_disable();
10873 }
10874
10875 if (--dp->dtdo_refcnt == 0)
10876 dtrace_difo_destroy(dp, vstate);
10877 }
10878
10879 /*
10880 * DTrace Format Functions
10881 */
10882 static uint16_t
10883 dtrace_format_add(dtrace_state_t *state, char *str)
10884 {
10885 char *fmt, **new;
10886 uint16_t ndx, len = strlen(str) + 1;
10887
10888 fmt = kmem_zalloc(len, KM_SLEEP);
10889 bcopy(str, fmt, len);
10890
10891 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10892 if (state->dts_formats[ndx] == NULL) {
10893 state->dts_formats[ndx] = fmt;
10894 return (ndx + 1);
10895 }
10896 }
10897
10898 if (state->dts_nformats == USHRT_MAX) {
10899 /*
10900 * This is only likely if a denial-of-service attack is being
10901 * attempted. As such, it's okay to fail silently here.
10902 */
10903 kmem_free(fmt, len);
10904 return (0);
10905 }
10906
10907 /*
10908 * For simplicity, we always resize the formats array to be exactly the
10909 * number of formats.
10910 */
10911 ndx = state->dts_nformats++;
10912 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10913
10914 if (state->dts_formats != NULL) {
10915 ASSERT(ndx != 0);
10916 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10917 kmem_free(state->dts_formats, ndx * sizeof (char *));
10918 }
10919
10920 state->dts_formats = new;
10921 state->dts_formats[ndx] = fmt;
10922
10923 return (ndx + 1);
10924 }
10925
10926 static void
10927 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10928 {
10929 char *fmt;
10930
10931 ASSERT(state->dts_formats != NULL);
10932 ASSERT(format <= state->dts_nformats);
10933 ASSERT(state->dts_formats[format - 1] != NULL);
10934
10935 fmt = state->dts_formats[format - 1];
10936 kmem_free(fmt, strlen(fmt) + 1);
10937 state->dts_formats[format - 1] = NULL;
10938 }
10939
10940 static void
10941 dtrace_format_destroy(dtrace_state_t *state)
10942 {
10943 int i;
10944
10945 if (state->dts_nformats == 0) {
10946 ASSERT(state->dts_formats == NULL);
10947 return;
10948 }
10949
10950 ASSERT(state->dts_formats != NULL);
10951
10952 for (i = 0; i < state->dts_nformats; i++) {
10953 char *fmt = state->dts_formats[i];
10954
10955 if (fmt == NULL)
10956 continue;
10957
10958 kmem_free(fmt, strlen(fmt) + 1);
10959 }
10960
10961 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10962 state->dts_nformats = 0;
10963 state->dts_formats = NULL;
10964 }
10965
10966 /*
10967 * DTrace Predicate Functions
10968 */
10969 static dtrace_predicate_t *
10970 dtrace_predicate_create(dtrace_difo_t *dp)
10971 {
10972 dtrace_predicate_t *pred;
10973
10974 ASSERT(MUTEX_HELD(&dtrace_lock));
10975 ASSERT(dp->dtdo_refcnt != 0);
10976
10977 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10978 pred->dtp_difo = dp;
10979 pred->dtp_refcnt = 1;
10980
10981 if (!dtrace_difo_cacheable(dp))
10982 return (pred);
10983
10984 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10985 /*
10986 * This is only theoretically possible -- we have had 2^32
10987 * cacheable predicates on this machine. We cannot allow any
10988 * more predicates to become cacheable: as unlikely as it is,
10989 * there may be a thread caching a (now stale) predicate cache
10990 * ID. (N.B.: the temptation is being successfully resisted to
10991 * have this cmn_err() "Holy shit -- we executed this code!")
10992 */
10993 return (pred);
10994 }
10995
10996 pred->dtp_cacheid = dtrace_predcache_id++;
10997
10998 return (pred);
10999 }
11000
11001 static void
11002 dtrace_predicate_hold(dtrace_predicate_t *pred)
11003 {
11004 ASSERT(MUTEX_HELD(&dtrace_lock));
11005 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11006 ASSERT(pred->dtp_refcnt > 0);
11007
11008 pred->dtp_refcnt++;
11009 }
11010
11011 static void
11012 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11013 {
11014 dtrace_difo_t *dp = pred->dtp_difo;
11015
11016 ASSERT(MUTEX_HELD(&dtrace_lock));
11017 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11018 ASSERT(pred->dtp_refcnt > 0);
11019
11020 if (--pred->dtp_refcnt == 0) {
11021 dtrace_difo_release(pred->dtp_difo, vstate);
11022 kmem_free(pred, sizeof (dtrace_predicate_t));
11023 }
11024 }
11025
11026 /*
11027 * DTrace Action Description Functions
11028 */
11029 static dtrace_actdesc_t *
11030 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11031 uint64_t uarg, uint64_t arg)
11032 {
11033 dtrace_actdesc_t *act;
11034
11035 #ifdef illumos
11036 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11037 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11038 #endif
11039
11040 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11041 act->dtad_kind = kind;
11042 act->dtad_ntuple = ntuple;
11043 act->dtad_uarg = uarg;
11044 act->dtad_arg = arg;
11045 act->dtad_refcnt = 1;
11046
11047 return (act);
11048 }
11049
11050 static void
11051 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11052 {
11053 ASSERT(act->dtad_refcnt >= 1);
11054 act->dtad_refcnt++;
11055 }
11056
11057 static void
11058 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11059 {
11060 dtrace_actkind_t kind = act->dtad_kind;
11061 dtrace_difo_t *dp;
11062
11063 ASSERT(act->dtad_refcnt >= 1);
11064
11065 if (--act->dtad_refcnt != 0)
11066 return;
11067
11068 if ((dp = act->dtad_difo) != NULL)
11069 dtrace_difo_release(dp, vstate);
11070
11071 if (DTRACEACT_ISPRINTFLIKE(kind)) {
11072 char *str = (char *)(uintptr_t)act->dtad_arg;
11073
11074 #ifdef illumos
11075 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11076 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11077 #endif
11078
11079 if (str != NULL)
11080 kmem_free(str, strlen(str) + 1);
11081 }
11082
11083 kmem_free(act, sizeof (dtrace_actdesc_t));
11084 }
11085
11086 /*
11087 * DTrace ECB Functions
11088 */
11089 static dtrace_ecb_t *
11090 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11091 {
11092 dtrace_ecb_t *ecb;
11093 dtrace_epid_t epid;
11094
11095 ASSERT(MUTEX_HELD(&dtrace_lock));
11096
11097 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11098 ecb->dte_predicate = NULL;
11099 ecb->dte_probe = probe;
11100
11101 /*
11102 * The default size is the size of the default action: recording
11103 * the header.
11104 */
11105 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11106 ecb->dte_alignment = sizeof (dtrace_epid_t);
11107
11108 epid = state->dts_epid++;
11109
11110 if (epid - 1 >= state->dts_necbs) {
11111 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11112 int necbs = state->dts_necbs << 1;
11113
11114 ASSERT(epid == state->dts_necbs + 1);
11115
11116 if (necbs == 0) {
11117 ASSERT(oecbs == NULL);
11118 necbs = 1;
11119 }
11120
11121 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11122
11123 if (oecbs != NULL)
11124 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11125
11126 dtrace_membar_producer();
11127 state->dts_ecbs = ecbs;
11128
11129 if (oecbs != NULL) {
11130 /*
11131 * If this state is active, we must dtrace_sync()
11132 * before we can free the old dts_ecbs array: we're
11133 * coming in hot, and there may be active ring
11134 * buffer processing (which indexes into the dts_ecbs
11135 * array) on another CPU.
11136 */
11137 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11138 dtrace_sync();
11139
11140 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11141 }
11142
11143 dtrace_membar_producer();
11144 state->dts_necbs = necbs;
11145 }
11146
11147 ecb->dte_state = state;
11148
11149 ASSERT(state->dts_ecbs[epid - 1] == NULL);
11150 dtrace_membar_producer();
11151 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11152
11153 return (ecb);
11154 }
11155
11156 static void
11157 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11158 {
11159 dtrace_probe_t *probe = ecb->dte_probe;
11160
11161 ASSERT(MUTEX_HELD(&cpu_lock));
11162 ASSERT(MUTEX_HELD(&dtrace_lock));
11163 ASSERT(ecb->dte_next == NULL);
11164
11165 if (probe == NULL) {
11166 /*
11167 * This is the NULL probe -- there's nothing to do.
11168 */
11169 return;
11170 }
11171
11172 if (probe->dtpr_ecb == NULL) {
11173 dtrace_provider_t *prov = probe->dtpr_provider;
11174
11175 /*
11176 * We're the first ECB on this probe.
11177 */
11178 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11179
11180 if (ecb->dte_predicate != NULL)
11181 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11182
11183 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11184 probe->dtpr_id, probe->dtpr_arg);
11185 } else {
11186 /*
11187 * This probe is already active. Swing the last pointer to
11188 * point to the new ECB, and issue a dtrace_sync() to assure
11189 * that all CPUs have seen the change.
11190 */
11191 ASSERT(probe->dtpr_ecb_last != NULL);
11192 probe->dtpr_ecb_last->dte_next = ecb;
11193 probe->dtpr_ecb_last = ecb;
11194 probe->dtpr_predcache = 0;
11195
11196 dtrace_sync();
11197 }
11198 }
11199
11200 static int
11201 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11202 {
11203 dtrace_action_t *act;
11204 uint32_t curneeded = UINT32_MAX;
11205 uint32_t aggbase = UINT32_MAX;
11206
11207 /*
11208 * If we record anything, we always record the dtrace_rechdr_t. (And
11209 * we always record it first.)
11210 */
11211 ecb->dte_size = sizeof (dtrace_rechdr_t);
11212 ecb->dte_alignment = sizeof (dtrace_epid_t);
11213
11214 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11215 dtrace_recdesc_t *rec = &act->dta_rec;
11216 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11217
11218 ecb->dte_alignment = MAX(ecb->dte_alignment,
11219 rec->dtrd_alignment);
11220
11221 if (DTRACEACT_ISAGG(act->dta_kind)) {
11222 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11223
11224 ASSERT(rec->dtrd_size != 0);
11225 ASSERT(agg->dtag_first != NULL);
11226 ASSERT(act->dta_prev->dta_intuple);
11227 ASSERT(aggbase != UINT32_MAX);
11228 ASSERT(curneeded != UINT32_MAX);
11229
11230 agg->dtag_base = aggbase;
11231
11232 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11233 rec->dtrd_offset = curneeded;
11234 if (curneeded + rec->dtrd_size < curneeded)
11235 return (EINVAL);
11236 curneeded += rec->dtrd_size;
11237 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11238
11239 aggbase = UINT32_MAX;
11240 curneeded = UINT32_MAX;
11241 } else if (act->dta_intuple) {
11242 if (curneeded == UINT32_MAX) {
11243 /*
11244 * This is the first record in a tuple. Align
11245 * curneeded to be at offset 4 in an 8-byte
11246 * aligned block.
11247 */
11248 ASSERT(act->dta_prev == NULL ||
11249 !act->dta_prev->dta_intuple);
11250 ASSERT3U(aggbase, ==, UINT32_MAX);
11251 curneeded = P2PHASEUP(ecb->dte_size,
11252 sizeof (uint64_t), sizeof (dtrace_aggid_t));
11253
11254 aggbase = curneeded - sizeof (dtrace_aggid_t);
11255 ASSERT(IS_P2ALIGNED(aggbase,
11256 sizeof (uint64_t)));
11257 }
11258 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11259 rec->dtrd_offset = curneeded;
11260 if (curneeded + rec->dtrd_size < curneeded)
11261 return (EINVAL);
11262 curneeded += rec->dtrd_size;
11263 } else {
11264 /* tuples must be followed by an aggregation */
11265 ASSERT(act->dta_prev == NULL ||
11266 !act->dta_prev->dta_intuple);
11267
11268 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11269 rec->dtrd_alignment);
11270 rec->dtrd_offset = ecb->dte_size;
11271 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11272 return (EINVAL);
11273 ecb->dte_size += rec->dtrd_size;
11274 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11275 }
11276 }
11277
11278 if ((act = ecb->dte_action) != NULL &&
11279 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11280 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11281 /*
11282 * If the size is still sizeof (dtrace_rechdr_t), then all
11283 * actions store no data; set the size to 0.
11284 */
11285 ecb->dte_size = 0;
11286 }
11287
11288 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11289 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11290 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11291 ecb->dte_needed);
11292 return (0);
11293 }
11294
11295 static dtrace_action_t *
11296 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11297 {
11298 dtrace_aggregation_t *agg;
11299 size_t size = sizeof (uint64_t);
11300 int ntuple = desc->dtad_ntuple;
11301 dtrace_action_t *act;
11302 dtrace_recdesc_t *frec;
11303 dtrace_aggid_t aggid;
11304 dtrace_state_t *state = ecb->dte_state;
11305
11306 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11307 agg->dtag_ecb = ecb;
11308
11309 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11310
11311 switch (desc->dtad_kind) {
11312 case DTRACEAGG_MIN:
11313 agg->dtag_initial = INT64_MAX;
11314 agg->dtag_aggregate = dtrace_aggregate_min;
11315 break;
11316
11317 case DTRACEAGG_MAX:
11318 agg->dtag_initial = INT64_MIN;
11319 agg->dtag_aggregate = dtrace_aggregate_max;
11320 break;
11321
11322 case DTRACEAGG_COUNT:
11323 agg->dtag_aggregate = dtrace_aggregate_count;
11324 break;
11325
11326 case DTRACEAGG_QUANTIZE:
11327 agg->dtag_aggregate = dtrace_aggregate_quantize;
11328 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11329 sizeof (uint64_t);
11330 break;
11331
11332 case DTRACEAGG_LQUANTIZE: {
11333 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11334 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11335
11336 agg->dtag_initial = desc->dtad_arg;
11337 agg->dtag_aggregate = dtrace_aggregate_lquantize;
11338
11339 if (step == 0 || levels == 0)
11340 goto err;
11341
11342 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11343 break;
11344 }
11345
11346 case DTRACEAGG_LLQUANTIZE: {
11347 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11348 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11349 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11350 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11351 int64_t v;
11352
11353 agg->dtag_initial = desc->dtad_arg;
11354 agg->dtag_aggregate = dtrace_aggregate_llquantize;
11355
11356 if (factor < 2 || low >= high || nsteps < factor)
11357 goto err;
11358
11359 /*
11360 * Now check that the number of steps evenly divides a power
11361 * of the factor. (This assures both integer bucket size and
11362 * linearity within each magnitude.)
11363 */
11364 for (v = factor; v < nsteps; v *= factor)
11365 continue;
11366
11367 if ((v % nsteps) || (nsteps % factor))
11368 goto err;
11369
11370 size = (dtrace_aggregate_llquantize_bucket(factor,
11371 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11372 break;
11373 }
11374
11375 case DTRACEAGG_AVG:
11376 agg->dtag_aggregate = dtrace_aggregate_avg;
11377 size = sizeof (uint64_t) * 2;
11378 break;
11379
11380 case DTRACEAGG_STDDEV:
11381 agg->dtag_aggregate = dtrace_aggregate_stddev;
11382 size = sizeof (uint64_t) * 4;
11383 break;
11384
11385 case DTRACEAGG_SUM:
11386 agg->dtag_aggregate = dtrace_aggregate_sum;
11387 break;
11388
11389 default:
11390 goto err;
11391 }
11392
11393 agg->dtag_action.dta_rec.dtrd_size = size;
11394
11395 if (ntuple == 0)
11396 goto err;
11397
11398 /*
11399 * We must make sure that we have enough actions for the n-tuple.
11400 */
11401 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11402 if (DTRACEACT_ISAGG(act->dta_kind))
11403 break;
11404
11405 if (--ntuple == 0) {
11406 /*
11407 * This is the action with which our n-tuple begins.
11408 */
11409 agg->dtag_first = act;
11410 goto success;
11411 }
11412 }
11413
11414 /*
11415 * This n-tuple is short by ntuple elements. Return failure.
11416 */
11417 ASSERT(ntuple != 0);
11418 err:
11419 kmem_free(agg, sizeof (dtrace_aggregation_t));
11420 return (NULL);
11421
11422 success:
11423 /*
11424 * If the last action in the tuple has a size of zero, it's actually
11425 * an expression argument for the aggregating action.
11426 */
11427 ASSERT(ecb->dte_action_last != NULL);
11428 act = ecb->dte_action_last;
11429
11430 if (act->dta_kind == DTRACEACT_DIFEXPR) {
11431 ASSERT(act->dta_difo != NULL);
11432
11433 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11434 agg->dtag_hasarg = 1;
11435 }
11436
11437 /*
11438 * We need to allocate an id for this aggregation.
11439 */
11440 #ifdef illumos
11441 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11442 VM_BESTFIT | VM_SLEEP);
11443 #else
11444 aggid = alloc_unr(state->dts_aggid_arena);
11445 #endif
11446
11447 if (aggid - 1 >= state->dts_naggregations) {
11448 dtrace_aggregation_t **oaggs = state->dts_aggregations;
11449 dtrace_aggregation_t **aggs;
11450 int naggs = state->dts_naggregations << 1;
11451 int onaggs = state->dts_naggregations;
11452
11453 ASSERT(aggid == state->dts_naggregations + 1);
11454
11455 if (naggs == 0) {
11456 ASSERT(oaggs == NULL);
11457 naggs = 1;
11458 }
11459
11460 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11461
11462 if (oaggs != NULL) {
11463 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11464 kmem_free(oaggs, onaggs * sizeof (*aggs));
11465 }
11466
11467 state->dts_aggregations = aggs;
11468 state->dts_naggregations = naggs;
11469 }
11470
11471 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11472 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11473
11474 frec = &agg->dtag_first->dta_rec;
11475 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11476 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11477
11478 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11479 ASSERT(!act->dta_intuple);
11480 act->dta_intuple = 1;
11481 }
11482
11483 return (&agg->dtag_action);
11484 }
11485
11486 static void
11487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11488 {
11489 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11490 dtrace_state_t *state = ecb->dte_state;
11491 dtrace_aggid_t aggid = agg->dtag_id;
11492
11493 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11494 #ifdef illumos
11495 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11496 #else
11497 free_unr(state->dts_aggid_arena, aggid);
11498 #endif
11499
11500 ASSERT(state->dts_aggregations[aggid - 1] == agg);
11501 state->dts_aggregations[aggid - 1] = NULL;
11502
11503 kmem_free(agg, sizeof (dtrace_aggregation_t));
11504 }
11505
11506 static int
11507 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11508 {
11509 dtrace_action_t *action, *last;
11510 dtrace_difo_t *dp = desc->dtad_difo;
11511 uint32_t size = 0, align = sizeof (uint8_t), mask;
11512 uint16_t format = 0;
11513 dtrace_recdesc_t *rec;
11514 dtrace_state_t *state = ecb->dte_state;
11515 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11516 uint64_t arg = desc->dtad_arg;
11517
11518 ASSERT(MUTEX_HELD(&dtrace_lock));
11519 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11520
11521 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11522 /*
11523 * If this is an aggregating action, there must be neither
11524 * a speculate nor a commit on the action chain.
11525 */
11526 dtrace_action_t *act;
11527
11528 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11529 if (act->dta_kind == DTRACEACT_COMMIT)
11530 return (EINVAL);
11531
11532 if (act->dta_kind == DTRACEACT_SPECULATE)
11533 return (EINVAL);
11534 }
11535
11536 action = dtrace_ecb_aggregation_create(ecb, desc);
11537
11538 if (action == NULL)
11539 return (EINVAL);
11540 } else {
11541 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11542 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11543 dp != NULL && dp->dtdo_destructive)) {
11544 state->dts_destructive = 1;
11545 }
11546
11547 switch (desc->dtad_kind) {
11548 case DTRACEACT_PRINTF:
11549 case DTRACEACT_PRINTA:
11550 case DTRACEACT_SYSTEM:
11551 case DTRACEACT_FREOPEN:
11552 case DTRACEACT_DIFEXPR:
11553 /*
11554 * We know that our arg is a string -- turn it into a
11555 * format.
11556 */
11557 if (arg == 0) {
11558 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11559 desc->dtad_kind == DTRACEACT_DIFEXPR);
11560 format = 0;
11561 } else {
11562 ASSERT(arg != 0);
11563 #ifdef illumos
11564 ASSERT(arg > KERNELBASE);
11565 #endif
11566 format = dtrace_format_add(state,
11567 (char *)(uintptr_t)arg);
11568 }
11569
11570 /*FALLTHROUGH*/
11571 case DTRACEACT_LIBACT:
11572 case DTRACEACT_TRACEMEM:
11573 case DTRACEACT_TRACEMEM_DYNSIZE:
11574 if (dp == NULL)
11575 return (EINVAL);
11576
11577 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11578 break;
11579
11580 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11581 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11582 return (EINVAL);
11583
11584 size = opt[DTRACEOPT_STRSIZE];
11585 }
11586
11587 break;
11588
11589 case DTRACEACT_STACK:
11590 if ((nframes = arg) == 0) {
11591 nframes = opt[DTRACEOPT_STACKFRAMES];
11592 ASSERT(nframes > 0);
11593 arg = nframes;
11594 }
11595
11596 size = nframes * sizeof (pc_t);
11597 break;
11598
11599 case DTRACEACT_JSTACK:
11600 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11601 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11602
11603 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11604 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11605
11606 arg = DTRACE_USTACK_ARG(nframes, strsize);
11607
11608 /*FALLTHROUGH*/
11609 case DTRACEACT_USTACK:
11610 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11611 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11612 strsize = DTRACE_USTACK_STRSIZE(arg);
11613 nframes = opt[DTRACEOPT_USTACKFRAMES];
11614 ASSERT(nframes > 0);
11615 arg = DTRACE_USTACK_ARG(nframes, strsize);
11616 }
11617
11618 /*
11619 * Save a slot for the pid.
11620 */
11621 size = (nframes + 1) * sizeof (uint64_t);
11622 size += DTRACE_USTACK_STRSIZE(arg);
11623 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11624
11625 break;
11626
11627 case DTRACEACT_SYM:
11628 case DTRACEACT_MOD:
11629 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11630 sizeof (uint64_t)) ||
11631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11632 return (EINVAL);
11633 break;
11634
11635 case DTRACEACT_USYM:
11636 case DTRACEACT_UMOD:
11637 case DTRACEACT_UADDR:
11638 if (dp == NULL ||
11639 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11640 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11641 return (EINVAL);
11642
11643 /*
11644 * We have a slot for the pid, plus a slot for the
11645 * argument. To keep things simple (aligned with
11646 * bitness-neutral sizing), we store each as a 64-bit
11647 * quantity.
11648 */
11649 size = 2 * sizeof (uint64_t);
11650 break;
11651
11652 case DTRACEACT_STOP:
11653 case DTRACEACT_BREAKPOINT:
11654 case DTRACEACT_PANIC:
11655 break;
11656
11657 case DTRACEACT_CHILL:
11658 case DTRACEACT_DISCARD:
11659 case DTRACEACT_RAISE:
11660 if (dp == NULL)
11661 return (EINVAL);
11662 break;
11663
11664 case DTRACEACT_EXIT:
11665 if (dp == NULL ||
11666 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11667 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11668 return (EINVAL);
11669 break;
11670
11671 case DTRACEACT_SPECULATE:
11672 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11673 return (EINVAL);
11674
11675 if (dp == NULL)
11676 return (EINVAL);
11677
11678 state->dts_speculates = 1;
11679 break;
11680
11681 case DTRACEACT_PRINTM:
11682 size = dp->dtdo_rtype.dtdt_size;
11683 break;
11684
11685 case DTRACEACT_COMMIT: {
11686 dtrace_action_t *act = ecb->dte_action;
11687
11688 for (; act != NULL; act = act->dta_next) {
11689 if (act->dta_kind == DTRACEACT_COMMIT)
11690 return (EINVAL);
11691 }
11692
11693 if (dp == NULL)
11694 return (EINVAL);
11695 break;
11696 }
11697
11698 default:
11699 return (EINVAL);
11700 }
11701
11702 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11703 /*
11704 * If this is a data-storing action or a speculate,
11705 * we must be sure that there isn't a commit on the
11706 * action chain.
11707 */
11708 dtrace_action_t *act = ecb->dte_action;
11709
11710 for (; act != NULL; act = act->dta_next) {
11711 if (act->dta_kind == DTRACEACT_COMMIT)
11712 return (EINVAL);
11713 }
11714 }
11715
11716 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11717 action->dta_rec.dtrd_size = size;
11718 }
11719
11720 action->dta_refcnt = 1;
11721 rec = &action->dta_rec;
11722 size = rec->dtrd_size;
11723
11724 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11725 if (!(size & mask)) {
11726 align = mask + 1;
11727 break;
11728 }
11729 }
11730
11731 action->dta_kind = desc->dtad_kind;
11732
11733 if ((action->dta_difo = dp) != NULL)
11734 dtrace_difo_hold(dp);
11735
11736 rec->dtrd_action = action->dta_kind;
11737 rec->dtrd_arg = arg;
11738 rec->dtrd_uarg = desc->dtad_uarg;
11739 rec->dtrd_alignment = (uint16_t)align;
11740 rec->dtrd_format = format;
11741
11742 if ((last = ecb->dte_action_last) != NULL) {
11743 ASSERT(ecb->dte_action != NULL);
11744 action->dta_prev = last;
11745 last->dta_next = action;
11746 } else {
11747 ASSERT(ecb->dte_action == NULL);
11748 ecb->dte_action = action;
11749 }
11750
11751 ecb->dte_action_last = action;
11752
11753 return (0);
11754 }
11755
11756 static void
11757 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11758 {
11759 dtrace_action_t *act = ecb->dte_action, *next;
11760 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11761 dtrace_difo_t *dp;
11762 uint16_t format;
11763
11764 if (act != NULL && act->dta_refcnt > 1) {
11765 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11766 act->dta_refcnt--;
11767 } else {
11768 for (; act != NULL; act = next) {
11769 next = act->dta_next;
11770 ASSERT(next != NULL || act == ecb->dte_action_last);
11771 ASSERT(act->dta_refcnt == 1);
11772
11773 if ((format = act->dta_rec.dtrd_format) != 0)
11774 dtrace_format_remove(ecb->dte_state, format);
11775
11776 if ((dp = act->dta_difo) != NULL)
11777 dtrace_difo_release(dp, vstate);
11778
11779 if (DTRACEACT_ISAGG(act->dta_kind)) {
11780 dtrace_ecb_aggregation_destroy(ecb, act);
11781 } else {
11782 kmem_free(act, sizeof (dtrace_action_t));
11783 }
11784 }
11785 }
11786
11787 ecb->dte_action = NULL;
11788 ecb->dte_action_last = NULL;
11789 ecb->dte_size = 0;
11790 }
11791
11792 static void
11793 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11794 {
11795 /*
11796 * We disable the ECB by removing it from its probe.
11797 */
11798 dtrace_ecb_t *pecb, *prev = NULL;
11799 dtrace_probe_t *probe = ecb->dte_probe;
11800
11801 ASSERT(MUTEX_HELD(&dtrace_lock));
11802
11803 if (probe == NULL) {
11804 /*
11805 * This is the NULL probe; there is nothing to disable.
11806 */
11807 return;
11808 }
11809
11810 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11811 if (pecb == ecb)
11812 break;
11813 prev = pecb;
11814 }
11815
11816 ASSERT(pecb != NULL);
11817
11818 if (prev == NULL) {
11819 probe->dtpr_ecb = ecb->dte_next;
11820 } else {
11821 prev->dte_next = ecb->dte_next;
11822 }
11823
11824 if (ecb == probe->dtpr_ecb_last) {
11825 ASSERT(ecb->dte_next == NULL);
11826 probe->dtpr_ecb_last = prev;
11827 }
11828
11829 /*
11830 * The ECB has been disconnected from the probe; now sync to assure
11831 * that all CPUs have seen the change before returning.
11832 */
11833 dtrace_sync();
11834
11835 if (probe->dtpr_ecb == NULL) {
11836 /*
11837 * That was the last ECB on the probe; clear the predicate
11838 * cache ID for the probe, disable it and sync one more time
11839 * to assure that we'll never hit it again.
11840 */
11841 dtrace_provider_t *prov = probe->dtpr_provider;
11842
11843 ASSERT(ecb->dte_next == NULL);
11844 ASSERT(probe->dtpr_ecb_last == NULL);
11845 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11846 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11847 probe->dtpr_id, probe->dtpr_arg);
11848 dtrace_sync();
11849 } else {
11850 /*
11851 * There is at least one ECB remaining on the probe. If there
11852 * is _exactly_ one, set the probe's predicate cache ID to be
11853 * the predicate cache ID of the remaining ECB.
11854 */
11855 ASSERT(probe->dtpr_ecb_last != NULL);
11856 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11857
11858 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11859 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11860
11861 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11862
11863 if (p != NULL)
11864 probe->dtpr_predcache = p->dtp_cacheid;
11865 }
11866
11867 ecb->dte_next = NULL;
11868 }
11869 }
11870
11871 static void
11872 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11873 {
11874 dtrace_state_t *state = ecb->dte_state;
11875 dtrace_vstate_t *vstate = &state->dts_vstate;
11876 dtrace_predicate_t *pred;
11877 dtrace_epid_t epid = ecb->dte_epid;
11878
11879 ASSERT(MUTEX_HELD(&dtrace_lock));
11880 ASSERT(ecb->dte_next == NULL);
11881 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11882
11883 if ((pred = ecb->dte_predicate) != NULL)
11884 dtrace_predicate_release(pred, vstate);
11885
11886 dtrace_ecb_action_remove(ecb);
11887
11888 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11889 state->dts_ecbs[epid - 1] = NULL;
11890
11891 kmem_free(ecb, sizeof (dtrace_ecb_t));
11892 }
11893
11894 static dtrace_ecb_t *
11895 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11896 dtrace_enabling_t *enab)
11897 {
11898 dtrace_ecb_t *ecb;
11899 dtrace_predicate_t *pred;
11900 dtrace_actdesc_t *act;
11901 dtrace_provider_t *prov;
11902 dtrace_ecbdesc_t *desc = enab->dten_current;
11903
11904 ASSERT(MUTEX_HELD(&dtrace_lock));
11905 ASSERT(state != NULL);
11906
11907 ecb = dtrace_ecb_add(state, probe);
11908 ecb->dte_uarg = desc->dted_uarg;
11909
11910 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11911 dtrace_predicate_hold(pred);
11912 ecb->dte_predicate = pred;
11913 }
11914
11915 if (probe != NULL) {
11916 /*
11917 * If the provider shows more leg than the consumer is old
11918 * enough to see, we need to enable the appropriate implicit
11919 * predicate bits to prevent the ecb from activating at
11920 * revealing times.
11921 *
11922 * Providers specifying DTRACE_PRIV_USER at register time
11923 * are stating that they need the /proc-style privilege
11924 * model to be enforced, and this is what DTRACE_COND_OWNER
11925 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11926 */
11927 prov = probe->dtpr_provider;
11928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11930 ecb->dte_cond |= DTRACE_COND_OWNER;
11931
11932 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11933 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11934 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11935
11936 /*
11937 * If the provider shows us kernel innards and the user
11938 * is lacking sufficient privilege, enable the
11939 * DTRACE_COND_USERMODE implicit predicate.
11940 */
11941 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11942 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11943 ecb->dte_cond |= DTRACE_COND_USERMODE;
11944 }
11945
11946 if (dtrace_ecb_create_cache != NULL) {
11947 /*
11948 * If we have a cached ecb, we'll use its action list instead
11949 * of creating our own (saving both time and space).
11950 */
11951 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11952 dtrace_action_t *act = cached->dte_action;
11953
11954 if (act != NULL) {
11955 ASSERT(act->dta_refcnt > 0);
11956 act->dta_refcnt++;
11957 ecb->dte_action = act;
11958 ecb->dte_action_last = cached->dte_action_last;
11959 ecb->dte_needed = cached->dte_needed;
11960 ecb->dte_size = cached->dte_size;
11961 ecb->dte_alignment = cached->dte_alignment;
11962 }
11963
11964 return (ecb);
11965 }
11966
11967 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11968 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11969 dtrace_ecb_destroy(ecb);
11970 return (NULL);
11971 }
11972 }
11973
11974 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11975 dtrace_ecb_destroy(ecb);
11976 return (NULL);
11977 }
11978
11979 return (dtrace_ecb_create_cache = ecb);
11980 }
11981
11982 static int
11983 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11984 {
11985 dtrace_ecb_t *ecb;
11986 dtrace_enabling_t *enab = arg;
11987 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11988
11989 ASSERT(state != NULL);
11990
11991 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11992 /*
11993 * This probe was created in a generation for which this
11994 * enabling has previously created ECBs; we don't want to
11995 * enable it again, so just kick out.
11996 */
11997 return (DTRACE_MATCH_NEXT);
11998 }
11999
12000 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
12001 return (DTRACE_MATCH_DONE);
12002
12003 dtrace_ecb_enable(ecb);
12004 return (DTRACE_MATCH_NEXT);
12005 }
12006
12007 static dtrace_ecb_t *
12008 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12009 {
12010 dtrace_ecb_t *ecb;
12011
12012 ASSERT(MUTEX_HELD(&dtrace_lock));
12013
12014 if (id == 0 || id > state->dts_necbs)
12015 return (NULL);
12016
12017 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12018 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12019
12020 return (state->dts_ecbs[id - 1]);
12021 }
12022
12023 static dtrace_aggregation_t *
12024 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12025 {
12026 dtrace_aggregation_t *agg;
12027
12028 ASSERT(MUTEX_HELD(&dtrace_lock));
12029
12030 if (id == 0 || id > state->dts_naggregations)
12031 return (NULL);
12032
12033 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12034 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12035 agg->dtag_id == id);
12036
12037 return (state->dts_aggregations[id - 1]);
12038 }
12039
12040 /*
12041 * DTrace Buffer Functions
12042 *
12043 * The following functions manipulate DTrace buffers. Most of these functions
12044 * are called in the context of establishing or processing consumer state;
12045 * exceptions are explicitly noted.
12046 */
12047
12048 /*
12049 * Note: called from cross call context. This function switches the two
12050 * buffers on a given CPU. The atomicity of this operation is assured by
12051 * disabling interrupts while the actual switch takes place; the disabling of
12052 * interrupts serializes the execution with any execution of dtrace_probe() on
12053 * the same CPU.
12054 */
12055 static void
12056 dtrace_buffer_switch(dtrace_buffer_t *buf)
12057 {
12058 caddr_t tomax = buf->dtb_tomax;
12059 caddr_t xamot = buf->dtb_xamot;
12060 dtrace_icookie_t cookie;
12061 hrtime_t now;
12062
12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12064 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12065
12066 cookie = dtrace_interrupt_disable();
12067 now = dtrace_gethrtime();
12068 buf->dtb_tomax = xamot;
12069 buf->dtb_xamot = tomax;
12070 buf->dtb_xamot_drops = buf->dtb_drops;
12071 buf->dtb_xamot_offset = buf->dtb_offset;
12072 buf->dtb_xamot_errors = buf->dtb_errors;
12073 buf->dtb_xamot_flags = buf->dtb_flags;
12074 buf->dtb_offset = 0;
12075 buf->dtb_drops = 0;
12076 buf->dtb_errors = 0;
12077 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12078 buf->dtb_interval = now - buf->dtb_switched;
12079 buf->dtb_switched = now;
12080 dtrace_interrupt_enable(cookie);
12081 }
12082
12083 /*
12084 * Note: called from cross call context. This function activates a buffer
12085 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
12086 * is guaranteed by the disabling of interrupts.
12087 */
12088 static void
12089 dtrace_buffer_activate(dtrace_state_t *state)
12090 {
12091 dtrace_buffer_t *buf;
12092 dtrace_icookie_t cookie = dtrace_interrupt_disable();
12093
12094 buf = &state->dts_buffer[curcpu];
12095
12096 if (buf->dtb_tomax != NULL) {
12097 /*
12098 * We might like to assert that the buffer is marked inactive,
12099 * but this isn't necessarily true: the buffer for the CPU
12100 * that processes the BEGIN probe has its buffer activated
12101 * manually. In this case, we take the (harmless) action
12102 * re-clearing the bit INACTIVE bit.
12103 */
12104 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12105 }
12106
12107 dtrace_interrupt_enable(cookie);
12108 }
12109
12110 #ifdef __FreeBSD__
12111 /*
12112 * Activate the specified per-CPU buffer. This is used instead of
12113 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12114 * activating anonymous state.
12115 */
12116 static void
12117 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12118 {
12119
12120 if (state->dts_buffer[cpu].dtb_tomax != NULL)
12121 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12122 }
12123 #endif
12124
12125 static int
12126 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12127 processorid_t cpu, int *factor)
12128 {
12129 #ifdef illumos
12130 cpu_t *cp;
12131 #endif
12132 dtrace_buffer_t *buf;
12133 int allocated = 0, desired = 0;
12134
12135 #ifdef illumos
12136 ASSERT(MUTEX_HELD(&cpu_lock));
12137 ASSERT(MUTEX_HELD(&dtrace_lock));
12138
12139 *factor = 1;
12140
12141 if (size > dtrace_nonroot_maxsize &&
12142 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12143 return (EFBIG);
12144
12145 cp = cpu_list;
12146
12147 do {
12148 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12149 continue;
12150
12151 buf = &bufs[cp->cpu_id];
12152
12153 /*
12154 * If there is already a buffer allocated for this CPU, it
12155 * is only possible that this is a DR event. In this case,
12156 */
12157 if (buf->dtb_tomax != NULL) {
12158 ASSERT(buf->dtb_size == size);
12159 continue;
12160 }
12161
12162 ASSERT(buf->dtb_xamot == NULL);
12163
12164 if ((buf->dtb_tomax = kmem_zalloc(size,
12165 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12166 goto err;
12167
12168 buf->dtb_size = size;
12169 buf->dtb_flags = flags;
12170 buf->dtb_offset = 0;
12171 buf->dtb_drops = 0;
12172
12173 if (flags & DTRACEBUF_NOSWITCH)
12174 continue;
12175
12176 if ((buf->dtb_xamot = kmem_zalloc(size,
12177 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12178 goto err;
12179 } while ((cp = cp->cpu_next) != cpu_list);
12180
12181 return (0);
12182
12183 err:
12184 cp = cpu_list;
12185
12186 do {
12187 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12188 continue;
12189
12190 buf = &bufs[cp->cpu_id];
12191 desired += 2;
12192
12193 if (buf->dtb_xamot != NULL) {
12194 ASSERT(buf->dtb_tomax != NULL);
12195 ASSERT(buf->dtb_size == size);
12196 kmem_free(buf->dtb_xamot, size);
12197 allocated++;
12198 }
12199
12200 if (buf->dtb_tomax != NULL) {
12201 ASSERT(buf->dtb_size == size);
12202 kmem_free(buf->dtb_tomax, size);
12203 allocated++;
12204 }
12205
12206 buf->dtb_tomax = NULL;
12207 buf->dtb_xamot = NULL;
12208 buf->dtb_size = 0;
12209 } while ((cp = cp->cpu_next) != cpu_list);
12210 #else
12211 int i;
12212
12213 *factor = 1;
12214 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12215 defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12216 /*
12217 * FreeBSD isn't good at limiting the amount of memory we
12218 * ask to malloc, so let's place a limit here before trying
12219 * to do something that might well end in tears at bedtime.
12220 */
12221 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12222 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12223 return (ENOMEM);
12224 #endif
12225
12226 ASSERT(MUTEX_HELD(&dtrace_lock));
12227 CPU_FOREACH(i) {
12228 if (cpu != DTRACE_CPUALL && cpu != i)
12229 continue;
12230
12231 buf = &bufs[i];
12232
12233 /*
12234 * If there is already a buffer allocated for this CPU, it
12235 * is only possible that this is a DR event. In this case,
12236 * the buffer size must match our specified size.
12237 */
12238 if (buf->dtb_tomax != NULL) {
12239 ASSERT(buf->dtb_size == size);
12240 continue;
12241 }
12242
12243 ASSERT(buf->dtb_xamot == NULL);
12244
12245 if ((buf->dtb_tomax = kmem_zalloc(size,
12246 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12247 goto err;
12248
12249 buf->dtb_size = size;
12250 buf->dtb_flags = flags;
12251 buf->dtb_offset = 0;
12252 buf->dtb_drops = 0;
12253
12254 if (flags & DTRACEBUF_NOSWITCH)
12255 continue;
12256
12257 if ((buf->dtb_xamot = kmem_zalloc(size,
12258 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12259 goto err;
12260 }
12261
12262 return (0);
12263
12264 err:
12265 /*
12266 * Error allocating memory, so free the buffers that were
12267 * allocated before the failed allocation.
12268 */
12269 CPU_FOREACH(i) {
12270 if (cpu != DTRACE_CPUALL && cpu != i)
12271 continue;
12272
12273 buf = &bufs[i];
12274 desired += 2;
12275
12276 if (buf->dtb_xamot != NULL) {
12277 ASSERT(buf->dtb_tomax != NULL);
12278 ASSERT(buf->dtb_size == size);
12279 kmem_free(buf->dtb_xamot, size);
12280 allocated++;
12281 }
12282
12283 if (buf->dtb_tomax != NULL) {
12284 ASSERT(buf->dtb_size == size);
12285 kmem_free(buf->dtb_tomax, size);
12286 allocated++;
12287 }
12288
12289 buf->dtb_tomax = NULL;
12290 buf->dtb_xamot = NULL;
12291 buf->dtb_size = 0;
12292
12293 }
12294 #endif
12295 *factor = desired / (allocated > 0 ? allocated : 1);
12296
12297 return (ENOMEM);
12298 }
12299
12300 /*
12301 * Note: called from probe context. This function just increments the drop
12302 * count on a buffer. It has been made a function to allow for the
12303 * possibility of understanding the source of mysterious drop counts. (A
12304 * problem for which one may be particularly disappointed that DTrace cannot
12305 * be used to understand DTrace.)
12306 */
12307 static void
12308 dtrace_buffer_drop(dtrace_buffer_t *buf)
12309 {
12310 buf->dtb_drops++;
12311 }
12312
12313 /*
12314 * Note: called from probe context. This function is called to reserve space
12315 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
12316 * mstate. Returns the new offset in the buffer, or a negative value if an
12317 * error has occurred.
12318 */
12319 static intptr_t
12320 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12321 dtrace_state_t *state, dtrace_mstate_t *mstate)
12322 {
12323 intptr_t offs = buf->dtb_offset, soffs;
12324 intptr_t woffs;
12325 caddr_t tomax;
12326 size_t total;
12327
12328 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12329 return (-1);
12330
12331 if ((tomax = buf->dtb_tomax) == NULL) {
12332 dtrace_buffer_drop(buf);
12333 return (-1);
12334 }
12335
12336 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12337 while (offs & (align - 1)) {
12338 /*
12339 * Assert that our alignment is off by a number which
12340 * is itself sizeof (uint32_t) aligned.
12341 */
12342 ASSERT(!((align - (offs & (align - 1))) &
12343 (sizeof (uint32_t) - 1)));
12344 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12345 offs += sizeof (uint32_t);
12346 }
12347
12348 if ((soffs = offs + needed) > buf->dtb_size) {
12349 dtrace_buffer_drop(buf);
12350 return (-1);
12351 }
12352
12353 if (mstate == NULL)
12354 return (offs);
12355
12356 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12357 mstate->dtms_scratch_size = buf->dtb_size - soffs;
12358 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12359
12360 return (offs);
12361 }
12362
12363 if (buf->dtb_flags & DTRACEBUF_FILL) {
12364 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12365 (buf->dtb_flags & DTRACEBUF_FULL))
12366 return (-1);
12367 goto out;
12368 }
12369
12370 total = needed + (offs & (align - 1));
12371
12372 /*
12373 * For a ring buffer, life is quite a bit more complicated. Before
12374 * we can store any padding, we need to adjust our wrapping offset.
12375 * (If we've never before wrapped or we're not about to, no adjustment
12376 * is required.)
12377 */
12378 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12379 offs + total > buf->dtb_size) {
12380 woffs = buf->dtb_xamot_offset;
12381
12382 if (offs + total > buf->dtb_size) {
12383 /*
12384 * We can't fit in the end of the buffer. First, a
12385 * sanity check that we can fit in the buffer at all.
12386 */
12387 if (total > buf->dtb_size) {
12388 dtrace_buffer_drop(buf);
12389 return (-1);
12390 }
12391
12392 /*
12393 * We're going to be storing at the top of the buffer,
12394 * so now we need to deal with the wrapped offset. We
12395 * only reset our wrapped offset to 0 if it is
12396 * currently greater than the current offset. If it
12397 * is less than the current offset, it is because a
12398 * previous allocation induced a wrap -- but the
12399 * allocation didn't subsequently take the space due
12400 * to an error or false predicate evaluation. In this
12401 * case, we'll just leave the wrapped offset alone: if
12402 * the wrapped offset hasn't been advanced far enough
12403 * for this allocation, it will be adjusted in the
12404 * lower loop.
12405 */
12406 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12407 if (woffs >= offs)
12408 woffs = 0;
12409 } else {
12410 woffs = 0;
12411 }
12412
12413 /*
12414 * Now we know that we're going to be storing to the
12415 * top of the buffer and that there is room for us
12416 * there. We need to clear the buffer from the current
12417 * offset to the end (there may be old gunk there).
12418 */
12419 while (offs < buf->dtb_size)
12420 tomax[offs++] = 0;
12421
12422 /*
12423 * We need to set our offset to zero. And because we
12424 * are wrapping, we need to set the bit indicating as
12425 * much. We can also adjust our needed space back
12426 * down to the space required by the ECB -- we know
12427 * that the top of the buffer is aligned.
12428 */
12429 offs = 0;
12430 total = needed;
12431 buf->dtb_flags |= DTRACEBUF_WRAPPED;
12432 } else {
12433 /*
12434 * There is room for us in the buffer, so we simply
12435 * need to check the wrapped offset.
12436 */
12437 if (woffs < offs) {
12438 /*
12439 * The wrapped offset is less than the offset.
12440 * This can happen if we allocated buffer space
12441 * that induced a wrap, but then we didn't
12442 * subsequently take the space due to an error
12443 * or false predicate evaluation. This is
12444 * okay; we know that _this_ allocation isn't
12445 * going to induce a wrap. We still can't
12446 * reset the wrapped offset to be zero,
12447 * however: the space may have been trashed in
12448 * the previous failed probe attempt. But at
12449 * least the wrapped offset doesn't need to
12450 * be adjusted at all...
12451 */
12452 goto out;
12453 }
12454 }
12455
12456 while (offs + total > woffs) {
12457 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12458 size_t size;
12459
12460 if (epid == DTRACE_EPIDNONE) {
12461 size = sizeof (uint32_t);
12462 } else {
12463 ASSERT3U(epid, <=, state->dts_necbs);
12464 ASSERT(state->dts_ecbs[epid - 1] != NULL);
12465
12466 size = state->dts_ecbs[epid - 1]->dte_size;
12467 }
12468
12469 ASSERT(woffs + size <= buf->dtb_size);
12470 ASSERT(size != 0);
12471
12472 if (woffs + size == buf->dtb_size) {
12473 /*
12474 * We've reached the end of the buffer; we want
12475 * to set the wrapped offset to 0 and break
12476 * out. However, if the offs is 0, then we're
12477 * in a strange edge-condition: the amount of
12478 * space that we want to reserve plus the size
12479 * of the record that we're overwriting is
12480 * greater than the size of the buffer. This
12481 * is problematic because if we reserve the
12482 * space but subsequently don't consume it (due
12483 * to a failed predicate or error) the wrapped
12484 * offset will be 0 -- yet the EPID at offset 0
12485 * will not be committed. This situation is
12486 * relatively easy to deal with: if we're in
12487 * this case, the buffer is indistinguishable
12488 * from one that hasn't wrapped; we need only
12489 * finish the job by clearing the wrapped bit,
12490 * explicitly setting the offset to be 0, and
12491 * zero'ing out the old data in the buffer.
12492 */
12493 if (offs == 0) {
12494 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12495 buf->dtb_offset = 0;
12496 woffs = total;
12497
12498 while (woffs < buf->dtb_size)
12499 tomax[woffs++] = 0;
12500 }
12501
12502 woffs = 0;
12503 break;
12504 }
12505
12506 woffs += size;
12507 }
12508
12509 /*
12510 * We have a wrapped offset. It may be that the wrapped offset
12511 * has become zero -- that's okay.
12512 */
12513 buf->dtb_xamot_offset = woffs;
12514 }
12515
12516 out:
12517 /*
12518 * Now we can plow the buffer with any necessary padding.
12519 */
12520 while (offs & (align - 1)) {
12521 /*
12522 * Assert that our alignment is off by a number which
12523 * is itself sizeof (uint32_t) aligned.
12524 */
12525 ASSERT(!((align - (offs & (align - 1))) &
12526 (sizeof (uint32_t) - 1)));
12527 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12528 offs += sizeof (uint32_t);
12529 }
12530
12531 if (buf->dtb_flags & DTRACEBUF_FILL) {
12532 if (offs + needed > buf->dtb_size - state->dts_reserve) {
12533 buf->dtb_flags |= DTRACEBUF_FULL;
12534 return (-1);
12535 }
12536 }
12537
12538 if (mstate == NULL)
12539 return (offs);
12540
12541 /*
12542 * For ring buffers and fill buffers, the scratch space is always
12543 * the inactive buffer.
12544 */
12545 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12546 mstate->dtms_scratch_size = buf->dtb_size;
12547 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12548
12549 return (offs);
12550 }
12551
12552 static void
12553 dtrace_buffer_polish(dtrace_buffer_t *buf)
12554 {
12555 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12556 ASSERT(MUTEX_HELD(&dtrace_lock));
12557
12558 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12559 return;
12560
12561 /*
12562 * We need to polish the ring buffer. There are three cases:
12563 *
12564 * - The first (and presumably most common) is that there is no gap
12565 * between the buffer offset and the wrapped offset. In this case,
12566 * there is nothing in the buffer that isn't valid data; we can
12567 * mark the buffer as polished and return.
12568 *
12569 * - The second (less common than the first but still more common
12570 * than the third) is that there is a gap between the buffer offset
12571 * and the wrapped offset, and the wrapped offset is larger than the
12572 * buffer offset. This can happen because of an alignment issue, or
12573 * can happen because of a call to dtrace_buffer_reserve() that
12574 * didn't subsequently consume the buffer space. In this case,
12575 * we need to zero the data from the buffer offset to the wrapped
12576 * offset.
12577 *
12578 * - The third (and least common) is that there is a gap between the
12579 * buffer offset and the wrapped offset, but the wrapped offset is
12580 * _less_ than the buffer offset. This can only happen because a
12581 * call to dtrace_buffer_reserve() induced a wrap, but the space
12582 * was not subsequently consumed. In this case, we need to zero the
12583 * space from the offset to the end of the buffer _and_ from the
12584 * top of the buffer to the wrapped offset.
12585 */
12586 if (buf->dtb_offset < buf->dtb_xamot_offset) {
12587 bzero(buf->dtb_tomax + buf->dtb_offset,
12588 buf->dtb_xamot_offset - buf->dtb_offset);
12589 }
12590
12591 if (buf->dtb_offset > buf->dtb_xamot_offset) {
12592 bzero(buf->dtb_tomax + buf->dtb_offset,
12593 buf->dtb_size - buf->dtb_offset);
12594 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12595 }
12596 }
12597
12598 /*
12599 * This routine determines if data generated at the specified time has likely
12600 * been entirely consumed at user-level. This routine is called to determine
12601 * if an ECB on a defunct probe (but for an active enabling) can be safely
12602 * disabled and destroyed.
12603 */
12604 static int
12605 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12606 {
12607 int i;
12608
12609 CPU_FOREACH(i) {
12610 dtrace_buffer_t *buf = &bufs[i];
12611
12612 if (buf->dtb_size == 0)
12613 continue;
12614
12615 if (buf->dtb_flags & DTRACEBUF_RING)
12616 return (0);
12617
12618 if (!buf->dtb_switched && buf->dtb_offset != 0)
12619 return (0);
12620
12621 if (buf->dtb_switched - buf->dtb_interval < when)
12622 return (0);
12623 }
12624
12625 return (1);
12626 }
12627
12628 static void
12629 dtrace_buffer_free(dtrace_buffer_t *bufs)
12630 {
12631 int i;
12632
12633 CPU_FOREACH(i) {
12634 dtrace_buffer_t *buf = &bufs[i];
12635
12636 if (buf->dtb_tomax == NULL) {
12637 ASSERT(buf->dtb_xamot == NULL);
12638 ASSERT(buf->dtb_size == 0);
12639 continue;
12640 }
12641
12642 if (buf->dtb_xamot != NULL) {
12643 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12644 kmem_free(buf->dtb_xamot, buf->dtb_size);
12645 }
12646
12647 kmem_free(buf->dtb_tomax, buf->dtb_size);
12648 buf->dtb_size = 0;
12649 buf->dtb_tomax = NULL;
12650 buf->dtb_xamot = NULL;
12651 }
12652 }
12653
12654 /*
12655 * DTrace Enabling Functions
12656 */
12657 static dtrace_enabling_t *
12658 dtrace_enabling_create(dtrace_vstate_t *vstate)
12659 {
12660 dtrace_enabling_t *enab;
12661
12662 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12663 enab->dten_vstate = vstate;
12664
12665 return (enab);
12666 }
12667
12668 static void
12669 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12670 {
12671 dtrace_ecbdesc_t **ndesc;
12672 size_t osize, nsize;
12673
12674 /*
12675 * We can't add to enablings after we've enabled them, or after we've
12676 * retained them.
12677 */
12678 ASSERT(enab->dten_probegen == 0);
12679 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12680
12681 if (enab->dten_ndesc < enab->dten_maxdesc) {
12682 enab->dten_desc[enab->dten_ndesc++] = ecb;
12683 return;
12684 }
12685
12686 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12687
12688 if (enab->dten_maxdesc == 0) {
12689 enab->dten_maxdesc = 1;
12690 } else {
12691 enab->dten_maxdesc <<= 1;
12692 }
12693
12694 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12695
12696 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12697 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12698 bcopy(enab->dten_desc, ndesc, osize);
12699 if (enab->dten_desc != NULL)
12700 kmem_free(enab->dten_desc, osize);
12701
12702 enab->dten_desc = ndesc;
12703 enab->dten_desc[enab->dten_ndesc++] = ecb;
12704 }
12705
12706 static void
12707 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12708 dtrace_probedesc_t *pd)
12709 {
12710 dtrace_ecbdesc_t *new;
12711 dtrace_predicate_t *pred;
12712 dtrace_actdesc_t *act;
12713
12714 /*
12715 * We're going to create a new ECB description that matches the
12716 * specified ECB in every way, but has the specified probe description.
12717 */
12718 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12719
12720 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12721 dtrace_predicate_hold(pred);
12722
12723 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12724 dtrace_actdesc_hold(act);
12725
12726 new->dted_action = ecb->dted_action;
12727 new->dted_pred = ecb->dted_pred;
12728 new->dted_probe = *pd;
12729 new->dted_uarg = ecb->dted_uarg;
12730
12731 dtrace_enabling_add(enab, new);
12732 }
12733
12734 static void
12735 dtrace_enabling_dump(dtrace_enabling_t *enab)
12736 {
12737 int i;
12738
12739 for (i = 0; i < enab->dten_ndesc; i++) {
12740 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12741
12742 #ifdef __FreeBSD__
12743 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12744 desc->dtpd_provider, desc->dtpd_mod,
12745 desc->dtpd_func, desc->dtpd_name);
12746 #else
12747 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12748 desc->dtpd_provider, desc->dtpd_mod,
12749 desc->dtpd_func, desc->dtpd_name);
12750 #endif
12751 }
12752 }
12753
12754 static void
12755 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12756 {
12757 int i;
12758 dtrace_ecbdesc_t *ep;
12759 dtrace_vstate_t *vstate = enab->dten_vstate;
12760
12761 ASSERT(MUTEX_HELD(&dtrace_lock));
12762
12763 for (i = 0; i < enab->dten_ndesc; i++) {
12764 dtrace_actdesc_t *act, *next;
12765 dtrace_predicate_t *pred;
12766
12767 ep = enab->dten_desc[i];
12768
12769 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12770 dtrace_predicate_release(pred, vstate);
12771
12772 for (act = ep->dted_action; act != NULL; act = next) {
12773 next = act->dtad_next;
12774 dtrace_actdesc_release(act, vstate);
12775 }
12776
12777 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12778 }
12779
12780 if (enab->dten_desc != NULL)
12781 kmem_free(enab->dten_desc,
12782 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12783
12784 /*
12785 * If this was a retained enabling, decrement the dts_nretained count
12786 * and take it off of the dtrace_retained list.
12787 */
12788 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12789 dtrace_retained == enab) {
12790 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12791 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12792 enab->dten_vstate->dtvs_state->dts_nretained--;
12793 dtrace_retained_gen++;
12794 }
12795
12796 if (enab->dten_prev == NULL) {
12797 if (dtrace_retained == enab) {
12798 dtrace_retained = enab->dten_next;
12799
12800 if (dtrace_retained != NULL)
12801 dtrace_retained->dten_prev = NULL;
12802 }
12803 } else {
12804 ASSERT(enab != dtrace_retained);
12805 ASSERT(dtrace_retained != NULL);
12806 enab->dten_prev->dten_next = enab->dten_next;
12807 }
12808
12809 if (enab->dten_next != NULL) {
12810 ASSERT(dtrace_retained != NULL);
12811 enab->dten_next->dten_prev = enab->dten_prev;
12812 }
12813
12814 kmem_free(enab, sizeof (dtrace_enabling_t));
12815 }
12816
12817 static int
12818 dtrace_enabling_retain(dtrace_enabling_t *enab)
12819 {
12820 dtrace_state_t *state;
12821
12822 ASSERT(MUTEX_HELD(&dtrace_lock));
12823 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12824 ASSERT(enab->dten_vstate != NULL);
12825
12826 state = enab->dten_vstate->dtvs_state;
12827 ASSERT(state != NULL);
12828
12829 /*
12830 * We only allow each state to retain dtrace_retain_max enablings.
12831 */
12832 if (state->dts_nretained >= dtrace_retain_max)
12833 return (ENOSPC);
12834
12835 state->dts_nretained++;
12836 dtrace_retained_gen++;
12837
12838 if (dtrace_retained == NULL) {
12839 dtrace_retained = enab;
12840 return (0);
12841 }
12842
12843 enab->dten_next = dtrace_retained;
12844 dtrace_retained->dten_prev = enab;
12845 dtrace_retained = enab;
12846
12847 return (0);
12848 }
12849
12850 static int
12851 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12852 dtrace_probedesc_t *create)
12853 {
12854 dtrace_enabling_t *new, *enab;
12855 int found = 0, err = ENOENT;
12856
12857 ASSERT(MUTEX_HELD(&dtrace_lock));
12858 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12859 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12860 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12861 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12862
12863 new = dtrace_enabling_create(&state->dts_vstate);
12864
12865 /*
12866 * Iterate over all retained enablings, looking for enablings that
12867 * match the specified state.
12868 */
12869 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12870 int i;
12871
12872 /*
12873 * dtvs_state can only be NULL for helper enablings -- and
12874 * helper enablings can't be retained.
12875 */
12876 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12877
12878 if (enab->dten_vstate->dtvs_state != state)
12879 continue;
12880
12881 /*
12882 * Now iterate over each probe description; we're looking for
12883 * an exact match to the specified probe description.
12884 */
12885 for (i = 0; i < enab->dten_ndesc; i++) {
12886 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12887 dtrace_probedesc_t *pd = &ep->dted_probe;
12888
12889 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12890 continue;
12891
12892 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12893 continue;
12894
12895 if (strcmp(pd->dtpd_func, match->dtpd_func))
12896 continue;
12897
12898 if (strcmp(pd->dtpd_name, match->dtpd_name))
12899 continue;
12900
12901 /*
12902 * We have a winning probe! Add it to our growing
12903 * enabling.
12904 */
12905 found = 1;
12906 dtrace_enabling_addlike(new, ep, create);
12907 }
12908 }
12909
12910 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12911 dtrace_enabling_destroy(new);
12912 return (err);
12913 }
12914
12915 return (0);
12916 }
12917
12918 static void
12919 dtrace_enabling_retract(dtrace_state_t *state)
12920 {
12921 dtrace_enabling_t *enab, *next;
12922
12923 ASSERT(MUTEX_HELD(&dtrace_lock));
12924
12925 /*
12926 * Iterate over all retained enablings, destroy the enablings retained
12927 * for the specified state.
12928 */
12929 for (enab = dtrace_retained; enab != NULL; enab = next) {
12930 next = enab->dten_next;
12931
12932 /*
12933 * dtvs_state can only be NULL for helper enablings -- and
12934 * helper enablings can't be retained.
12935 */
12936 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12937
12938 if (enab->dten_vstate->dtvs_state == state) {
12939 ASSERT(state->dts_nretained > 0);
12940 dtrace_enabling_destroy(enab);
12941 }
12942 }
12943
12944 ASSERT(state->dts_nretained == 0);
12945 }
12946
12947 static int
12948 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12949 {
12950 int i = 0;
12951 int matched = 0;
12952
12953 ASSERT(MUTEX_HELD(&cpu_lock));
12954 ASSERT(MUTEX_HELD(&dtrace_lock));
12955
12956 for (i = 0; i < enab->dten_ndesc; i++) {
12957 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12958
12959 enab->dten_current = ep;
12960 enab->dten_error = 0;
12961
12962 matched += dtrace_probe_enable(&ep->dted_probe, enab);
12963
12964 if (enab->dten_error != 0) {
12965 /*
12966 * If we get an error half-way through enabling the
12967 * probes, we kick out -- perhaps with some number of
12968 * them enabled. Leaving enabled probes enabled may
12969 * be slightly confusing for user-level, but we expect
12970 * that no one will attempt to actually drive on in
12971 * the face of such errors. If this is an anonymous
12972 * enabling (indicated with a NULL nmatched pointer),
12973 * we cmn_err() a message. We aren't expecting to
12974 * get such an error -- such as it can exist at all,
12975 * it would be a result of corrupted DOF in the driver
12976 * properties.
12977 */
12978 if (nmatched == NULL) {
12979 cmn_err(CE_WARN, "dtrace_enabling_match() "
12980 "error on %p: %d", (void *)ep,
12981 enab->dten_error);
12982 }
12983
12984 return (enab->dten_error);
12985 }
12986 }
12987
12988 enab->dten_probegen = dtrace_probegen;
12989 if (nmatched != NULL)
12990 *nmatched = matched;
12991
12992 return (0);
12993 }
12994
12995 static void
12996 dtrace_enabling_matchall(void)
12997 {
12998 dtrace_enabling_t *enab;
12999
13000 mutex_enter(&cpu_lock);
13001 mutex_enter(&dtrace_lock);
13002
13003 /*
13004 * Iterate over all retained enablings to see if any probes match
13005 * against them. We only perform this operation on enablings for which
13006 * we have sufficient permissions by virtue of being in the global zone
13007 * or in the same zone as the DTrace client. Because we can be called
13008 * after dtrace_detach() has been called, we cannot assert that there
13009 * are retained enablings. We can safely load from dtrace_retained,
13010 * however: the taskq_destroy() at the end of dtrace_detach() will
13011 * block pending our completion.
13012 */
13013 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13014 #ifdef illumos
13015 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13016
13017 if (INGLOBALZONE(curproc) ||
13018 cr != NULL && getzoneid() == crgetzoneid(cr))
13019 #endif
13020 (void) dtrace_enabling_match(enab, NULL);
13021 }
13022
13023 mutex_exit(&dtrace_lock);
13024 mutex_exit(&cpu_lock);
13025 }
13026
13027 /*
13028 * If an enabling is to be enabled without having matched probes (that is, if
13029 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13030 * enabling must be _primed_ by creating an ECB for every ECB description.
13031 * This must be done to assure that we know the number of speculations, the
13032 * number of aggregations, the minimum buffer size needed, etc. before we
13033 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
13034 * enabling any probes, we create ECBs for every ECB decription, but with a
13035 * NULL probe -- which is exactly what this function does.
13036 */
13037 static void
13038 dtrace_enabling_prime(dtrace_state_t *state)
13039 {
13040 dtrace_enabling_t *enab;
13041 int i;
13042
13043 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13044 ASSERT(enab->dten_vstate->dtvs_state != NULL);
13045
13046 if (enab->dten_vstate->dtvs_state != state)
13047 continue;
13048
13049 /*
13050 * We don't want to prime an enabling more than once, lest
13051 * we allow a malicious user to induce resource exhaustion.
13052 * (The ECBs that result from priming an enabling aren't
13053 * leaked -- but they also aren't deallocated until the
13054 * consumer state is destroyed.)
13055 */
13056 if (enab->dten_primed)
13057 continue;
13058
13059 for (i = 0; i < enab->dten_ndesc; i++) {
13060 enab->dten_current = enab->dten_desc[i];
13061 (void) dtrace_probe_enable(NULL, enab);
13062 }
13063
13064 enab->dten_primed = 1;
13065 }
13066 }
13067
13068 /*
13069 * Called to indicate that probes should be provided due to retained
13070 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
13071 * must take an initial lap through the enabling calling the dtps_provide()
13072 * entry point explicitly to allow for autocreated probes.
13073 */
13074 static void
13075 dtrace_enabling_provide(dtrace_provider_t *prv)
13076 {
13077 int i, all = 0;
13078 dtrace_probedesc_t desc;
13079 dtrace_genid_t gen;
13080
13081 ASSERT(MUTEX_HELD(&dtrace_lock));
13082 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13083
13084 if (prv == NULL) {
13085 all = 1;
13086 prv = dtrace_provider;
13087 }
13088
13089 do {
13090 dtrace_enabling_t *enab;
13091 void *parg = prv->dtpv_arg;
13092
13093 retry:
13094 gen = dtrace_retained_gen;
13095 for (enab = dtrace_retained; enab != NULL;
13096 enab = enab->dten_next) {
13097 for (i = 0; i < enab->dten_ndesc; i++) {
13098 desc = enab->dten_desc[i]->dted_probe;
13099 mutex_exit(&dtrace_lock);
13100 prv->dtpv_pops.dtps_provide(parg, &desc);
13101 mutex_enter(&dtrace_lock);
13102 /*
13103 * Process the retained enablings again if
13104 * they have changed while we weren't holding
13105 * dtrace_lock.
13106 */
13107 if (gen != dtrace_retained_gen)
13108 goto retry;
13109 }
13110 }
13111 } while (all && (prv = prv->dtpv_next) != NULL);
13112
13113 mutex_exit(&dtrace_lock);
13114 dtrace_probe_provide(NULL, all ? NULL : prv);
13115 mutex_enter(&dtrace_lock);
13116 }
13117
13118 /*
13119 * Called to reap ECBs that are attached to probes from defunct providers.
13120 */
13121 static void
13122 dtrace_enabling_reap(void)
13123 {
13124 dtrace_provider_t *prov;
13125 dtrace_probe_t *probe;
13126 dtrace_ecb_t *ecb;
13127 hrtime_t when;
13128 int i;
13129
13130 mutex_enter(&cpu_lock);
13131 mutex_enter(&dtrace_lock);
13132
13133 for (i = 0; i < dtrace_nprobes; i++) {
13134 if ((probe = dtrace_probes[i]) == NULL)
13135 continue;
13136
13137 if (probe->dtpr_ecb == NULL)
13138 continue;
13139
13140 prov = probe->dtpr_provider;
13141
13142 if ((when = prov->dtpv_defunct) == 0)
13143 continue;
13144
13145 /*
13146 * We have ECBs on a defunct provider: we want to reap these
13147 * ECBs to allow the provider to unregister. The destruction
13148 * of these ECBs must be done carefully: if we destroy the ECB
13149 * and the consumer later wishes to consume an EPID that
13150 * corresponds to the destroyed ECB (and if the EPID metadata
13151 * has not been previously consumed), the consumer will abort
13152 * processing on the unknown EPID. To reduce (but not, sadly,
13153 * eliminate) the possibility of this, we will only destroy an
13154 * ECB for a defunct provider if, for the state that
13155 * corresponds to the ECB:
13156 *
13157 * (a) There is no speculative tracing (which can effectively
13158 * cache an EPID for an arbitrary amount of time).
13159 *
13160 * (b) The principal buffers have been switched twice since the
13161 * provider became defunct.
13162 *
13163 * (c) The aggregation buffers are of zero size or have been
13164 * switched twice since the provider became defunct.
13165 *
13166 * We use dts_speculates to determine (a) and call a function
13167 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
13168 * that as soon as we've been unable to destroy one of the ECBs
13169 * associated with the probe, we quit trying -- reaping is only
13170 * fruitful in as much as we can destroy all ECBs associated
13171 * with the defunct provider's probes.
13172 */
13173 while ((ecb = probe->dtpr_ecb) != NULL) {
13174 dtrace_state_t *state = ecb->dte_state;
13175 dtrace_buffer_t *buf = state->dts_buffer;
13176 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13177
13178 if (state->dts_speculates)
13179 break;
13180
13181 if (!dtrace_buffer_consumed(buf, when))
13182 break;
13183
13184 if (!dtrace_buffer_consumed(aggbuf, when))
13185 break;
13186
13187 dtrace_ecb_disable(ecb);
13188 ASSERT(probe->dtpr_ecb != ecb);
13189 dtrace_ecb_destroy(ecb);
13190 }
13191 }
13192
13193 mutex_exit(&dtrace_lock);
13194 mutex_exit(&cpu_lock);
13195 }
13196
13197 /*
13198 * DTrace DOF Functions
13199 */
13200 /*ARGSUSED*/
13201 static void
13202 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13203 {
13204 if (dtrace_err_verbose)
13205 cmn_err(CE_WARN, "failed to process DOF: %s", str);
13206
13207 #ifdef DTRACE_ERRDEBUG
13208 dtrace_errdebug(str);
13209 #endif
13210 }
13211
13212 /*
13213 * Create DOF out of a currently enabled state. Right now, we only create
13214 * DOF containing the run-time options -- but this could be expanded to create
13215 * complete DOF representing the enabled state.
13216 */
13217 static dof_hdr_t *
13218 dtrace_dof_create(dtrace_state_t *state)
13219 {
13220 dof_hdr_t *dof;
13221 dof_sec_t *sec;
13222 dof_optdesc_t *opt;
13223 int i, len = sizeof (dof_hdr_t) +
13224 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13225 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13226
13227 ASSERT(MUTEX_HELD(&dtrace_lock));
13228
13229 dof = kmem_zalloc(len, KM_SLEEP);
13230 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13231 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13232 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13233 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13234
13235 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13236 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13237 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13238 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13239 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13240 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13241
13242 dof->dofh_flags = 0;
13243 dof->dofh_hdrsize = sizeof (dof_hdr_t);
13244 dof->dofh_secsize = sizeof (dof_sec_t);
13245 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
13246 dof->dofh_secoff = sizeof (dof_hdr_t);
13247 dof->dofh_loadsz = len;
13248 dof->dofh_filesz = len;
13249 dof->dofh_pad = 0;
13250
13251 /*
13252 * Fill in the option section header...
13253 */
13254 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13255 sec->dofs_type = DOF_SECT_OPTDESC;
13256 sec->dofs_align = sizeof (uint64_t);
13257 sec->dofs_flags = DOF_SECF_LOAD;
13258 sec->dofs_entsize = sizeof (dof_optdesc_t);
13259
13260 opt = (dof_optdesc_t *)((uintptr_t)sec +
13261 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13262
13263 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13264 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13265
13266 for (i = 0; i < DTRACEOPT_MAX; i++) {
13267 opt[i].dofo_option = i;
13268 opt[i].dofo_strtab = DOF_SECIDX_NONE;
13269 opt[i].dofo_value = state->dts_options[i];
13270 }
13271
13272 return (dof);
13273 }
13274
13275 static dof_hdr_t *
13276 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13277 {
13278 dof_hdr_t hdr, *dof;
13279
13280 ASSERT(!MUTEX_HELD(&dtrace_lock));
13281
13282 /*
13283 * First, we're going to copyin() the sizeof (dof_hdr_t).
13284 */
13285 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13286 dtrace_dof_error(NULL, "failed to copyin DOF header");
13287 *errp = EFAULT;
13288 return (NULL);
13289 }
13290
13291 /*
13292 * Now we'll allocate the entire DOF and copy it in -- provided
13293 * that the length isn't outrageous.
13294 */
13295 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13296 dtrace_dof_error(&hdr, "load size exceeds maximum");
13297 *errp = E2BIG;
13298 return (NULL);
13299 }
13300
13301 if (hdr.dofh_loadsz < sizeof (hdr)) {
13302 dtrace_dof_error(&hdr, "invalid load size");
13303 *errp = EINVAL;
13304 return (NULL);
13305 }
13306
13307 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13308
13309 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13310 dof->dofh_loadsz != hdr.dofh_loadsz) {
13311 kmem_free(dof, hdr.dofh_loadsz);
13312 *errp = EFAULT;
13313 return (NULL);
13314 }
13315
13316 return (dof);
13317 }
13318
13319 #ifdef __FreeBSD__
13320 static dof_hdr_t *
13321 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13322 {
13323 dof_hdr_t hdr, *dof;
13324 struct thread *td;
13325 size_t loadsz;
13326
13327 ASSERT(!MUTEX_HELD(&dtrace_lock));
13328
13329 td = curthread;
13330
13331 /*
13332 * First, we're going to copyin() the sizeof (dof_hdr_t).
13333 */
13334 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13335 dtrace_dof_error(NULL, "failed to copyin DOF header");
13336 *errp = EFAULT;
13337 return (NULL);
13338 }
13339
13340 /*
13341 * Now we'll allocate the entire DOF and copy it in -- provided
13342 * that the length isn't outrageous.
13343 */
13344 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13345 dtrace_dof_error(&hdr, "load size exceeds maximum");
13346 *errp = E2BIG;
13347 return (NULL);
13348 }
13349 loadsz = (size_t)hdr.dofh_loadsz;
13350
13351 if (loadsz < sizeof (hdr)) {
13352 dtrace_dof_error(&hdr, "invalid load size");
13353 *errp = EINVAL;
13354 return (NULL);
13355 }
13356
13357 dof = kmem_alloc(loadsz, KM_SLEEP);
13358
13359 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13360 dof->dofh_loadsz != loadsz) {
13361 kmem_free(dof, hdr.dofh_loadsz);
13362 *errp = EFAULT;
13363 return (NULL);
13364 }
13365
13366 return (dof);
13367 }
13368
13369 static __inline uchar_t
13370 dtrace_dof_char(char c)
13371 {
13372
13373 switch (c) {
13374 case '0':
13375 case '1':
13376 case '2':
13377 case '3':
13378 case '4':
13379 case '5':
13380 case '6':
13381 case '7':
13382 case '8':
13383 case '9':
13384 return (c - '0');
13385 case 'A':
13386 case 'B':
13387 case 'C':
13388 case 'D':
13389 case 'E':
13390 case 'F':
13391 return (c - 'A' + 10);
13392 case 'a':
13393 case 'b':
13394 case 'c':
13395 case 'd':
13396 case 'e':
13397 case 'f':
13398 return (c - 'a' + 10);
13399 }
13400 /* Should not reach here. */
13401 return (UCHAR_MAX);
13402 }
13403 #endif /* __FreeBSD__ */
13404
13405 static dof_hdr_t *
13406 dtrace_dof_property(const char *name)
13407 {
13408 #ifdef __FreeBSD__
13409 uint8_t *dofbuf;
13410 u_char *data, *eol;
13411 caddr_t doffile;
13412 size_t bytes, len, i;
13413 dof_hdr_t *dof;
13414 u_char c1, c2;
13415
13416 dof = NULL;
13417
13418 doffile = preload_search_by_type("dtrace_dof");
13419 if (doffile == NULL)
13420 return (NULL);
13421
13422 data = preload_fetch_addr(doffile);
13423 len = preload_fetch_size(doffile);
13424 for (;;) {
13425 /* Look for the end of the line. All lines end in a newline. */
13426 eol = memchr(data, '\n', len);
13427 if (eol == NULL)
13428 return (NULL);
13429
13430 if (strncmp(name, data, strlen(name)) == 0)
13431 break;
13432
13433 eol++; /* skip past the newline */
13434 len -= eol - data;
13435 data = eol;
13436 }
13437
13438 /* We've found the data corresponding to the specified key. */
13439
13440 data += strlen(name) + 1; /* skip past the '=' */
13441 len = eol - data;
13442 if (len % 2 != 0) {
13443 dtrace_dof_error(NULL, "invalid DOF encoding length");
13444 goto doferr;
13445 }
13446 bytes = len / 2;
13447 if (bytes < sizeof(dof_hdr_t)) {
13448 dtrace_dof_error(NULL, "truncated header");
13449 goto doferr;
13450 }
13451
13452 /*
13453 * Each byte is represented by the two ASCII characters in its hex
13454 * representation.
13455 */
13456 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13457 for (i = 0; i < bytes; i++) {
13458 c1 = dtrace_dof_char(data[i * 2]);
13459 c2 = dtrace_dof_char(data[i * 2 + 1]);
13460 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13461 dtrace_dof_error(NULL, "invalid hex char in DOF");
13462 goto doferr;
13463 }
13464 dofbuf[i] = c1 * 16 + c2;
13465 }
13466
13467 dof = (dof_hdr_t *)dofbuf;
13468 if (bytes < dof->dofh_loadsz) {
13469 dtrace_dof_error(NULL, "truncated DOF");
13470 goto doferr;
13471 }
13472
13473 if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13474 dtrace_dof_error(NULL, "oversized DOF");
13475 goto doferr;
13476 }
13477
13478 return (dof);
13479
13480 doferr:
13481 free(dof, M_SOLARIS);
13482 return (NULL);
13483 #else /* __FreeBSD__ */
13484 uchar_t *buf;
13485 uint64_t loadsz;
13486 unsigned int len, i;
13487 dof_hdr_t *dof;
13488
13489 /*
13490 * Unfortunately, array of values in .conf files are always (and
13491 * only) interpreted to be integer arrays. We must read our DOF
13492 * as an integer array, and then squeeze it into a byte array.
13493 */
13494 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13495 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13496 return (NULL);
13497
13498 for (i = 0; i < len; i++)
13499 buf[i] = (uchar_t)(((int *)buf)[i]);
13500
13501 if (len < sizeof (dof_hdr_t)) {
13502 ddi_prop_free(buf);
13503 dtrace_dof_error(NULL, "truncated header");
13504 return (NULL);
13505 }
13506
13507 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13508 ddi_prop_free(buf);
13509 dtrace_dof_error(NULL, "truncated DOF");
13510 return (NULL);
13511 }
13512
13513 if (loadsz >= dtrace_dof_maxsize) {
13514 ddi_prop_free(buf);
13515 dtrace_dof_error(NULL, "oversized DOF");
13516 return (NULL);
13517 }
13518
13519 dof = kmem_alloc(loadsz, KM_SLEEP);
13520 bcopy(buf, dof, loadsz);
13521 ddi_prop_free(buf);
13522
13523 return (dof);
13524 #endif /* !__FreeBSD__ */
13525 }
13526
13527 static void
13528 dtrace_dof_destroy(dof_hdr_t *dof)
13529 {
13530 kmem_free(dof, dof->dofh_loadsz);
13531 }
13532
13533 /*
13534 * Return the dof_sec_t pointer corresponding to a given section index. If the
13535 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
13536 * a type other than DOF_SECT_NONE is specified, the header is checked against
13537 * this type and NULL is returned if the types do not match.
13538 */
13539 static dof_sec_t *
13540 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13541 {
13542 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13543 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13544
13545 if (i >= dof->dofh_secnum) {
13546 dtrace_dof_error(dof, "referenced section index is invalid");
13547 return (NULL);
13548 }
13549
13550 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13551 dtrace_dof_error(dof, "referenced section is not loadable");
13552 return (NULL);
13553 }
13554
13555 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13556 dtrace_dof_error(dof, "referenced section is the wrong type");
13557 return (NULL);
13558 }
13559
13560 return (sec);
13561 }
13562
13563 static dtrace_probedesc_t *
13564 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13565 {
13566 dof_probedesc_t *probe;
13567 dof_sec_t *strtab;
13568 uintptr_t daddr = (uintptr_t)dof;
13569 uintptr_t str;
13570 size_t size;
13571
13572 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13573 dtrace_dof_error(dof, "invalid probe section");
13574 return (NULL);
13575 }
13576
13577 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13578 dtrace_dof_error(dof, "bad alignment in probe description");
13579 return (NULL);
13580 }
13581
13582 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13583 dtrace_dof_error(dof, "truncated probe description");
13584 return (NULL);
13585 }
13586
13587 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13588 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13589
13590 if (strtab == NULL)
13591 return (NULL);
13592
13593 str = daddr + strtab->dofs_offset;
13594 size = strtab->dofs_size;
13595
13596 if (probe->dofp_provider >= strtab->dofs_size) {
13597 dtrace_dof_error(dof, "corrupt probe provider");
13598 return (NULL);
13599 }
13600
13601 (void) strncpy(desc->dtpd_provider,
13602 (char *)(str + probe->dofp_provider),
13603 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13604
13605 if (probe->dofp_mod >= strtab->dofs_size) {
13606 dtrace_dof_error(dof, "corrupt probe module");
13607 return (NULL);
13608 }
13609
13610 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13611 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13612
13613 if (probe->dofp_func >= strtab->dofs_size) {
13614 dtrace_dof_error(dof, "corrupt probe function");
13615 return (NULL);
13616 }
13617
13618 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13619 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13620
13621 if (probe->dofp_name >= strtab->dofs_size) {
13622 dtrace_dof_error(dof, "corrupt probe name");
13623 return (NULL);
13624 }
13625
13626 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13627 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13628
13629 return (desc);
13630 }
13631
13632 static dtrace_difo_t *
13633 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13634 cred_t *cr)
13635 {
13636 dtrace_difo_t *dp;
13637 size_t ttl = 0;
13638 dof_difohdr_t *dofd;
13639 uintptr_t daddr = (uintptr_t)dof;
13640 size_t max = dtrace_difo_maxsize;
13641 int i, l, n;
13642
13643 static const struct {
13644 int section;
13645 int bufoffs;
13646 int lenoffs;
13647 int entsize;
13648 int align;
13649 const char *msg;
13650 } difo[] = {
13651 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13652 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13653 sizeof (dif_instr_t), "multiple DIF sections" },
13654
13655 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13656 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13657 sizeof (uint64_t), "multiple integer tables" },
13658
13659 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13660 offsetof(dtrace_difo_t, dtdo_strlen), 0,
13661 sizeof (char), "multiple string tables" },
13662
13663 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13664 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13665 sizeof (uint_t), "multiple variable tables" },
13666
13667 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13668 };
13669
13670 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13671 dtrace_dof_error(dof, "invalid DIFO header section");
13672 return (NULL);
13673 }
13674
13675 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13676 dtrace_dof_error(dof, "bad alignment in DIFO header");
13677 return (NULL);
13678 }
13679
13680 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13681 sec->dofs_size % sizeof (dof_secidx_t)) {
13682 dtrace_dof_error(dof, "bad size in DIFO header");
13683 return (NULL);
13684 }
13685
13686 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13687 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13688
13689 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13690 dp->dtdo_rtype = dofd->dofd_rtype;
13691
13692 for (l = 0; l < n; l++) {
13693 dof_sec_t *subsec;
13694 void **bufp;
13695 uint32_t *lenp;
13696
13697 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13698 dofd->dofd_links[l])) == NULL)
13699 goto err; /* invalid section link */
13700
13701 if (ttl + subsec->dofs_size > max) {
13702 dtrace_dof_error(dof, "exceeds maximum size");
13703 goto err;
13704 }
13705
13706 ttl += subsec->dofs_size;
13707
13708 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13709 if (subsec->dofs_type != difo[i].section)
13710 continue;
13711
13712 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13713 dtrace_dof_error(dof, "section not loaded");
13714 goto err;
13715 }
13716
13717 if (subsec->dofs_align != difo[i].align) {
13718 dtrace_dof_error(dof, "bad alignment");
13719 goto err;
13720 }
13721
13722 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13723 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13724
13725 if (*bufp != NULL) {
13726 dtrace_dof_error(dof, difo[i].msg);
13727 goto err;
13728 }
13729
13730 if (difo[i].entsize != subsec->dofs_entsize) {
13731 dtrace_dof_error(dof, "entry size mismatch");
13732 goto err;
13733 }
13734
13735 if (subsec->dofs_entsize != 0 &&
13736 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13737 dtrace_dof_error(dof, "corrupt entry size");
13738 goto err;
13739 }
13740
13741 *lenp = subsec->dofs_size;
13742 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13743 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13744 *bufp, subsec->dofs_size);
13745
13746 if (subsec->dofs_entsize != 0)
13747 *lenp /= subsec->dofs_entsize;
13748
13749 break;
13750 }
13751
13752 /*
13753 * If we encounter a loadable DIFO sub-section that is not
13754 * known to us, assume this is a broken program and fail.
13755 */
13756 if (difo[i].section == DOF_SECT_NONE &&
13757 (subsec->dofs_flags & DOF_SECF_LOAD)) {
13758 dtrace_dof_error(dof, "unrecognized DIFO subsection");
13759 goto err;
13760 }
13761 }
13762
13763 if (dp->dtdo_buf == NULL) {
13764 /*
13765 * We can't have a DIF object without DIF text.
13766 */
13767 dtrace_dof_error(dof, "missing DIF text");
13768 goto err;
13769 }
13770
13771 /*
13772 * Before we validate the DIF object, run through the variable table
13773 * looking for the strings -- if any of their size are under, we'll set
13774 * their size to be the system-wide default string size. Note that
13775 * this should _not_ happen if the "strsize" option has been set --
13776 * in this case, the compiler should have set the size to reflect the
13777 * setting of the option.
13778 */
13779 for (i = 0; i < dp->dtdo_varlen; i++) {
13780 dtrace_difv_t *v = &dp->dtdo_vartab[i];
13781 dtrace_diftype_t *t = &v->dtdv_type;
13782
13783 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13784 continue;
13785
13786 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13787 t->dtdt_size = dtrace_strsize_default;
13788 }
13789
13790 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13791 goto err;
13792
13793 dtrace_difo_init(dp, vstate);
13794 return (dp);
13795
13796 err:
13797 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13798 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13799 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13800 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13801
13802 kmem_free(dp, sizeof (dtrace_difo_t));
13803 return (NULL);
13804 }
13805
13806 static dtrace_predicate_t *
13807 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13808 cred_t *cr)
13809 {
13810 dtrace_difo_t *dp;
13811
13812 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13813 return (NULL);
13814
13815 return (dtrace_predicate_create(dp));
13816 }
13817
13818 static dtrace_actdesc_t *
13819 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13820 cred_t *cr)
13821 {
13822 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13823 dof_actdesc_t *desc;
13824 dof_sec_t *difosec;
13825 size_t offs;
13826 uintptr_t daddr = (uintptr_t)dof;
13827 uint64_t arg;
13828 dtrace_actkind_t kind;
13829
13830 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13831 dtrace_dof_error(dof, "invalid action section");
13832 return (NULL);
13833 }
13834
13835 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13836 dtrace_dof_error(dof, "truncated action description");
13837 return (NULL);
13838 }
13839
13840 if (sec->dofs_align != sizeof (uint64_t)) {
13841 dtrace_dof_error(dof, "bad alignment in action description");
13842 return (NULL);
13843 }
13844
13845 if (sec->dofs_size < sec->dofs_entsize) {
13846 dtrace_dof_error(dof, "section entry size exceeds total size");
13847 return (NULL);
13848 }
13849
13850 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13851 dtrace_dof_error(dof, "bad entry size in action description");
13852 return (NULL);
13853 }
13854
13855 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13856 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13857 return (NULL);
13858 }
13859
13860 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13861 desc = (dof_actdesc_t *)(daddr +
13862 (uintptr_t)sec->dofs_offset + offs);
13863 kind = (dtrace_actkind_t)desc->dofa_kind;
13864
13865 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13866 (kind != DTRACEACT_PRINTA ||
13867 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13868 (kind == DTRACEACT_DIFEXPR &&
13869 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13870 dof_sec_t *strtab;
13871 char *str, *fmt;
13872 uint64_t i;
13873
13874 /*
13875 * The argument to these actions is an index into the
13876 * DOF string table. For printf()-like actions, this
13877 * is the format string. For print(), this is the
13878 * CTF type of the expression result.
13879 */
13880 if ((strtab = dtrace_dof_sect(dof,
13881 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13882 goto err;
13883
13884 str = (char *)((uintptr_t)dof +
13885 (uintptr_t)strtab->dofs_offset);
13886
13887 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13888 if (str[i] == '\0')
13889 break;
13890 }
13891
13892 if (i >= strtab->dofs_size) {
13893 dtrace_dof_error(dof, "bogus format string");
13894 goto err;
13895 }
13896
13897 if (i == desc->dofa_arg) {
13898 dtrace_dof_error(dof, "empty format string");
13899 goto err;
13900 }
13901
13902 i -= desc->dofa_arg;
13903 fmt = kmem_alloc(i + 1, KM_SLEEP);
13904 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13905 arg = (uint64_t)(uintptr_t)fmt;
13906 } else {
13907 if (kind == DTRACEACT_PRINTA) {
13908 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13909 arg = 0;
13910 } else {
13911 arg = desc->dofa_arg;
13912 }
13913 }
13914
13915 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13916 desc->dofa_uarg, arg);
13917
13918 if (last != NULL) {
13919 last->dtad_next = act;
13920 } else {
13921 first = act;
13922 }
13923
13924 last = act;
13925
13926 if (desc->dofa_difo == DOF_SECIDX_NONE)
13927 continue;
13928
13929 if ((difosec = dtrace_dof_sect(dof,
13930 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13931 goto err;
13932
13933 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13934
13935 if (act->dtad_difo == NULL)
13936 goto err;
13937 }
13938
13939 ASSERT(first != NULL);
13940 return (first);
13941
13942 err:
13943 for (act = first; act != NULL; act = next) {
13944 next = act->dtad_next;
13945 dtrace_actdesc_release(act, vstate);
13946 }
13947
13948 return (NULL);
13949 }
13950
13951 static dtrace_ecbdesc_t *
13952 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13953 cred_t *cr)
13954 {
13955 dtrace_ecbdesc_t *ep;
13956 dof_ecbdesc_t *ecb;
13957 dtrace_probedesc_t *desc;
13958 dtrace_predicate_t *pred = NULL;
13959
13960 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13961 dtrace_dof_error(dof, "truncated ECB description");
13962 return (NULL);
13963 }
13964
13965 if (sec->dofs_align != sizeof (uint64_t)) {
13966 dtrace_dof_error(dof, "bad alignment in ECB description");
13967 return (NULL);
13968 }
13969
13970 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13971 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13972
13973 if (sec == NULL)
13974 return (NULL);
13975
13976 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13977 ep->dted_uarg = ecb->dofe_uarg;
13978 desc = &ep->dted_probe;
13979
13980 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13981 goto err;
13982
13983 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13984 if ((sec = dtrace_dof_sect(dof,
13985 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13986 goto err;
13987
13988 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13989 goto err;
13990
13991 ep->dted_pred.dtpdd_predicate = pred;
13992 }
13993
13994 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13995 if ((sec = dtrace_dof_sect(dof,
13996 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13997 goto err;
13998
13999 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
14000
14001 if (ep->dted_action == NULL)
14002 goto err;
14003 }
14004
14005 return (ep);
14006
14007 err:
14008 if (pred != NULL)
14009 dtrace_predicate_release(pred, vstate);
14010 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14011 return (NULL);
14012 }
14013
14014 /*
14015 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14016 * specified DOF. SETX relocations are computed using 'ubase', the base load
14017 * address of the object containing the DOF, and DOFREL relocations are relative
14018 * to the relocation offset within the DOF.
14019 */
14020 static int
14021 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14022 uint64_t udaddr)
14023 {
14024 uintptr_t daddr = (uintptr_t)dof;
14025 uintptr_t ts_end;
14026 dof_relohdr_t *dofr =
14027 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14028 dof_sec_t *ss, *rs, *ts;
14029 dof_relodesc_t *r;
14030 uint_t i, n;
14031
14032 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14033 sec->dofs_align != sizeof (dof_secidx_t)) {
14034 dtrace_dof_error(dof, "invalid relocation header");
14035 return (-1);
14036 }
14037
14038 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14039 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14040 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14041 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14042
14043 if (ss == NULL || rs == NULL || ts == NULL)
14044 return (-1); /* dtrace_dof_error() has been called already */
14045
14046 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14047 rs->dofs_align != sizeof (uint64_t)) {
14048 dtrace_dof_error(dof, "invalid relocation section");
14049 return (-1);
14050 }
14051
14052 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14053 n = rs->dofs_size / rs->dofs_entsize;
14054
14055 for (i = 0; i < n; i++) {
14056 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14057
14058 switch (r->dofr_type) {
14059 case DOF_RELO_NONE:
14060 break;
14061 case DOF_RELO_SETX:
14062 case DOF_RELO_DOFREL:
14063 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14064 sizeof (uint64_t) > ts->dofs_size) {
14065 dtrace_dof_error(dof, "bad relocation offset");
14066 return (-1);
14067 }
14068
14069 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14070 dtrace_dof_error(dof, "bad relocation offset");
14071 return (-1);
14072 }
14073
14074 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14075 dtrace_dof_error(dof, "misaligned setx relo");
14076 return (-1);
14077 }
14078
14079 if (r->dofr_type == DOF_RELO_SETX)
14080 *(uint64_t *)taddr += ubase;
14081 else
14082 *(uint64_t *)taddr +=
14083 udaddr + ts->dofs_offset + r->dofr_offset;
14084 break;
14085 default:
14086 dtrace_dof_error(dof, "invalid relocation type");
14087 return (-1);
14088 }
14089
14090 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14091 }
14092
14093 return (0);
14094 }
14095
14096 /*
14097 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14098 * header: it should be at the front of a memory region that is at least
14099 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14100 * size. It need not be validated in any other way.
14101 */
14102 static int
14103 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14104 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14105 {
14106 uint64_t len = dof->dofh_loadsz, seclen;
14107 uintptr_t daddr = (uintptr_t)dof;
14108 dtrace_ecbdesc_t *ep;
14109 dtrace_enabling_t *enab;
14110 uint_t i;
14111
14112 ASSERT(MUTEX_HELD(&dtrace_lock));
14113 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14114
14115 /*
14116 * Check the DOF header identification bytes. In addition to checking
14117 * valid settings, we also verify that unused bits/bytes are zeroed so
14118 * we can use them later without fear of regressing existing binaries.
14119 */
14120 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14121 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14122 dtrace_dof_error(dof, "DOF magic string mismatch");
14123 return (-1);
14124 }
14125
14126 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14127 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14128 dtrace_dof_error(dof, "DOF has invalid data model");
14129 return (-1);
14130 }
14131
14132 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14133 dtrace_dof_error(dof, "DOF encoding mismatch");
14134 return (-1);
14135 }
14136
14137 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14138 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14139 dtrace_dof_error(dof, "DOF version mismatch");
14140 return (-1);
14141 }
14142
14143 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14144 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14145 return (-1);
14146 }
14147
14148 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14149 dtrace_dof_error(dof, "DOF uses too many integer registers");
14150 return (-1);
14151 }
14152
14153 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14154 dtrace_dof_error(dof, "DOF uses too many tuple registers");
14155 return (-1);
14156 }
14157
14158 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14159 if (dof->dofh_ident[i] != 0) {
14160 dtrace_dof_error(dof, "DOF has invalid ident byte set");
14161 return (-1);
14162 }
14163 }
14164
14165 if (dof->dofh_flags & ~DOF_FL_VALID) {
14166 dtrace_dof_error(dof, "DOF has invalid flag bits set");
14167 return (-1);
14168 }
14169
14170 if (dof->dofh_secsize == 0) {
14171 dtrace_dof_error(dof, "zero section header size");
14172 return (-1);
14173 }
14174
14175 /*
14176 * Check that the section headers don't exceed the amount of DOF
14177 * data. Note that we cast the section size and number of sections
14178 * to uint64_t's to prevent possible overflow in the multiplication.
14179 */
14180 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14181
14182 if (dof->dofh_secoff > len || seclen > len ||
14183 dof->dofh_secoff + seclen > len) {
14184 dtrace_dof_error(dof, "truncated section headers");
14185 return (-1);
14186 }
14187
14188 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14189 dtrace_dof_error(dof, "misaligned section headers");
14190 return (-1);
14191 }
14192
14193 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14194 dtrace_dof_error(dof, "misaligned section size");
14195 return (-1);
14196 }
14197
14198 /*
14199 * Take an initial pass through the section headers to be sure that
14200 * the headers don't have stray offsets. If the 'noprobes' flag is
14201 * set, do not permit sections relating to providers, probes, or args.
14202 */
14203 for (i = 0; i < dof->dofh_secnum; i++) {
14204 dof_sec_t *sec = (dof_sec_t *)(daddr +
14205 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14206
14207 if (noprobes) {
14208 switch (sec->dofs_type) {
14209 case DOF_SECT_PROVIDER:
14210 case DOF_SECT_PROBES:
14211 case DOF_SECT_PRARGS:
14212 case DOF_SECT_PROFFS:
14213 dtrace_dof_error(dof, "illegal sections "
14214 "for enabling");
14215 return (-1);
14216 }
14217 }
14218
14219 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14220 !(sec->dofs_flags & DOF_SECF_LOAD)) {
14221 dtrace_dof_error(dof, "loadable section with load "
14222 "flag unset");
14223 return (-1);
14224 }
14225
14226 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14227 continue; /* just ignore non-loadable sections */
14228
14229 if (!ISP2(sec->dofs_align)) {
14230 dtrace_dof_error(dof, "bad section alignment");
14231 return (-1);
14232 }
14233
14234 if (sec->dofs_offset & (sec->dofs_align - 1)) {
14235 dtrace_dof_error(dof, "misaligned section");
14236 return (-1);
14237 }
14238
14239 if (sec->dofs_offset > len || sec->dofs_size > len ||
14240 sec->dofs_offset + sec->dofs_size > len) {
14241 dtrace_dof_error(dof, "corrupt section header");
14242 return (-1);
14243 }
14244
14245 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14246 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14247 dtrace_dof_error(dof, "non-terminating string table");
14248 return (-1);
14249 }
14250 }
14251
14252 /*
14253 * Take a second pass through the sections and locate and perform any
14254 * relocations that are present. We do this after the first pass to
14255 * be sure that all sections have had their headers validated.
14256 */
14257 for (i = 0; i < dof->dofh_secnum; i++) {
14258 dof_sec_t *sec = (dof_sec_t *)(daddr +
14259 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14260
14261 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14262 continue; /* skip sections that are not loadable */
14263
14264 switch (sec->dofs_type) {
14265 case DOF_SECT_URELHDR:
14266 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14267 return (-1);
14268 break;
14269 }
14270 }
14271
14272 if ((enab = *enabp) == NULL)
14273 enab = *enabp = dtrace_enabling_create(vstate);
14274
14275 for (i = 0; i < dof->dofh_secnum; i++) {
14276 dof_sec_t *sec = (dof_sec_t *)(daddr +
14277 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14278
14279 if (sec->dofs_type != DOF_SECT_ECBDESC)
14280 continue;
14281
14282 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14283 dtrace_enabling_destroy(enab);
14284 *enabp = NULL;
14285 return (-1);
14286 }
14287
14288 dtrace_enabling_add(enab, ep);
14289 }
14290
14291 return (0);
14292 }
14293
14294 /*
14295 * Process DOF for any options. This routine assumes that the DOF has been
14296 * at least processed by dtrace_dof_slurp().
14297 */
14298 static int
14299 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14300 {
14301 int i, rval;
14302 uint32_t entsize;
14303 size_t offs;
14304 dof_optdesc_t *desc;
14305
14306 for (i = 0; i < dof->dofh_secnum; i++) {
14307 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14308 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14309
14310 if (sec->dofs_type != DOF_SECT_OPTDESC)
14311 continue;
14312
14313 if (sec->dofs_align != sizeof (uint64_t)) {
14314 dtrace_dof_error(dof, "bad alignment in "
14315 "option description");
14316 return (EINVAL);
14317 }
14318
14319 if ((entsize = sec->dofs_entsize) == 0) {
14320 dtrace_dof_error(dof, "zeroed option entry size");
14321 return (EINVAL);
14322 }
14323
14324 if (entsize < sizeof (dof_optdesc_t)) {
14325 dtrace_dof_error(dof, "bad option entry size");
14326 return (EINVAL);
14327 }
14328
14329 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14330 desc = (dof_optdesc_t *)((uintptr_t)dof +
14331 (uintptr_t)sec->dofs_offset + offs);
14332
14333 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14334 dtrace_dof_error(dof, "non-zero option string");
14335 return (EINVAL);
14336 }
14337
14338 if (desc->dofo_value == DTRACEOPT_UNSET) {
14339 dtrace_dof_error(dof, "unset option");
14340 return (EINVAL);
14341 }
14342
14343 if ((rval = dtrace_state_option(state,
14344 desc->dofo_option, desc->dofo_value)) != 0) {
14345 dtrace_dof_error(dof, "rejected option");
14346 return (rval);
14347 }
14348 }
14349 }
14350
14351 return (0);
14352 }
14353
14354 /*
14355 * DTrace Consumer State Functions
14356 */
14357 static int
14358 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14359 {
14360 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14361 void *base;
14362 uintptr_t limit;
14363 dtrace_dynvar_t *dvar, *next, *start;
14364 int i;
14365
14366 ASSERT(MUTEX_HELD(&dtrace_lock));
14367 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14368
14369 bzero(dstate, sizeof (dtrace_dstate_t));
14370
14371 if ((dstate->dtds_chunksize = chunksize) == 0)
14372 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14373
14374 VERIFY(dstate->dtds_chunksize < LONG_MAX);
14375
14376 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14377 size = min;
14378
14379 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14380 return (ENOMEM);
14381
14382 dstate->dtds_size = size;
14383 dstate->dtds_base = base;
14384 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14385 bzero(dstate->dtds_percpu,
14386 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t));
14387
14388 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14389
14390 if (hashsize != 1 && (hashsize & 1))
14391 hashsize--;
14392
14393 dstate->dtds_hashsize = hashsize;
14394 dstate->dtds_hash = dstate->dtds_base;
14395
14396 /*
14397 * Set all of our hash buckets to point to the single sink, and (if
14398 * it hasn't already been set), set the sink's hash value to be the
14399 * sink sentinel value. The sink is needed for dynamic variable
14400 * lookups to know that they have iterated over an entire, valid hash
14401 * chain.
14402 */
14403 for (i = 0; i < hashsize; i++)
14404 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14405
14406 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14407 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14408
14409 /*
14410 * Determine number of active CPUs. Divide free list evenly among
14411 * active CPUs.
14412 */
14413 start = (dtrace_dynvar_t *)
14414 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14415 limit = (uintptr_t)base + size;
14416
14417 VERIFY((uintptr_t)start < limit);
14418 VERIFY((uintptr_t)start >= (uintptr_t)base);
14419
14420 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1);
14421 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14422
14423 CPU_FOREACH(i) {
14424 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14425
14426 /*
14427 * If we don't even have enough chunks to make it once through
14428 * NCPUs, we're just going to allocate everything to the first
14429 * CPU. And if we're on the last CPU, we're going to allocate
14430 * whatever is left over. In either case, we set the limit to
14431 * be the limit of the dynamic variable space.
14432 */
14433 if (maxper == 0 || i == mp_maxid) {
14434 limit = (uintptr_t)base + size;
14435 start = NULL;
14436 } else {
14437 limit = (uintptr_t)start + maxper;
14438 start = (dtrace_dynvar_t *)limit;
14439 }
14440
14441 VERIFY(limit <= (uintptr_t)base + size);
14442
14443 for (;;) {
14444 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14445 dstate->dtds_chunksize);
14446
14447 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14448 break;
14449
14450 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14451 (uintptr_t)dvar <= (uintptr_t)base + size);
14452 dvar->dtdv_next = next;
14453 dvar = next;
14454 }
14455
14456 if (maxper == 0)
14457 break;
14458 }
14459
14460 return (0);
14461 }
14462
14463 static void
14464 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14465 {
14466 ASSERT(MUTEX_HELD(&cpu_lock));
14467
14468 if (dstate->dtds_base == NULL)
14469 return;
14470
14471 kmem_free(dstate->dtds_base, dstate->dtds_size);
14472 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14473 }
14474
14475 static void
14476 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14477 {
14478 /*
14479 * Logical XOR, where are you?
14480 */
14481 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14482
14483 if (vstate->dtvs_nglobals > 0) {
14484 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14485 sizeof (dtrace_statvar_t *));
14486 }
14487
14488 if (vstate->dtvs_ntlocals > 0) {
14489 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14490 sizeof (dtrace_difv_t));
14491 }
14492
14493 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14494
14495 if (vstate->dtvs_nlocals > 0) {
14496 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14497 sizeof (dtrace_statvar_t *));
14498 }
14499 }
14500
14501 #ifdef illumos
14502 static void
14503 dtrace_state_clean(dtrace_state_t *state)
14504 {
14505 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14506 return;
14507
14508 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14509 dtrace_speculation_clean(state);
14510 }
14511
14512 static void
14513 dtrace_state_deadman(dtrace_state_t *state)
14514 {
14515 hrtime_t now;
14516
14517 dtrace_sync();
14518
14519 now = dtrace_gethrtime();
14520
14521 if (state != dtrace_anon.dta_state &&
14522 now - state->dts_laststatus >= dtrace_deadman_user)
14523 return;
14524
14525 /*
14526 * We must be sure that dts_alive never appears to be less than the
14527 * value upon entry to dtrace_state_deadman(), and because we lack a
14528 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14529 * store INT64_MAX to it, followed by a memory barrier, followed by
14530 * the new value. This assures that dts_alive never appears to be
14531 * less than its true value, regardless of the order in which the
14532 * stores to the underlying storage are issued.
14533 */
14534 state->dts_alive = INT64_MAX;
14535 dtrace_membar_producer();
14536 state->dts_alive = now;
14537 }
14538 #else /* !illumos */
14539 static void
14540 dtrace_state_clean(void *arg)
14541 {
14542 dtrace_state_t *state = arg;
14543 dtrace_optval_t *opt = state->dts_options;
14544
14545 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14546 return;
14547
14548 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14549 dtrace_speculation_clean(state);
14550
14551 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14552 dtrace_state_clean, state);
14553 }
14554
14555 static void
14556 dtrace_state_deadman(void *arg)
14557 {
14558 dtrace_state_t *state = arg;
14559 hrtime_t now;
14560
14561 dtrace_sync();
14562
14563 dtrace_debug_output();
14564
14565 now = dtrace_gethrtime();
14566
14567 if (state != dtrace_anon.dta_state &&
14568 now - state->dts_laststatus >= dtrace_deadman_user)
14569 return;
14570
14571 /*
14572 * We must be sure that dts_alive never appears to be less than the
14573 * value upon entry to dtrace_state_deadman(), and because we lack a
14574 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14575 * store INT64_MAX to it, followed by a memory barrier, followed by
14576 * the new value. This assures that dts_alive never appears to be
14577 * less than its true value, regardless of the order in which the
14578 * stores to the underlying storage are issued.
14579 */
14580 state->dts_alive = INT64_MAX;
14581 dtrace_membar_producer();
14582 state->dts_alive = now;
14583
14584 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14585 dtrace_state_deadman, state);
14586 }
14587 #endif /* illumos */
14588
14589 static dtrace_state_t *
14590 #ifdef illumos
14591 dtrace_state_create(dev_t *devp, cred_t *cr)
14592 #else
14593 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14594 #endif
14595 {
14596 #ifdef illumos
14597 minor_t minor;
14598 major_t major;
14599 #else
14600 cred_t *cr = NULL;
14601 int m = 0;
14602 #endif
14603 char c[30];
14604 dtrace_state_t *state;
14605 dtrace_optval_t *opt;
14606 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i;
14607 int cpu_it;
14608
14609 ASSERT(MUTEX_HELD(&dtrace_lock));
14610 ASSERT(MUTEX_HELD(&cpu_lock));
14611
14612 #ifdef illumos
14613 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14614 VM_BESTFIT | VM_SLEEP);
14615
14616 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14617 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14618 return (NULL);
14619 }
14620
14621 state = ddi_get_soft_state(dtrace_softstate, minor);
14622 #else
14623 if (dev != NULL) {
14624 cr = dev->si_cred;
14625 m = dev2unit(dev);
14626 }
14627
14628 /* Allocate memory for the state. */
14629 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14630 #endif
14631
14632 state->dts_epid = DTRACE_EPIDNONE + 1;
14633
14634 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14635 #ifdef illumos
14636 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14637 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14638
14639 if (devp != NULL) {
14640 major = getemajor(*devp);
14641 } else {
14642 major = ddi_driver_major(dtrace_devi);
14643 }
14644
14645 state->dts_dev = makedevice(major, minor);
14646
14647 if (devp != NULL)
14648 *devp = state->dts_dev;
14649 #else
14650 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14651 state->dts_dev = dev;
14652 #endif
14653
14654 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14655 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14656
14657 /*
14658 * Allocate and initialise the per-process per-CPU random state.
14659 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14660 * assumed to be seeded at this point (if from Fortuna seed file).
14661 */
14662 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14663 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) {
14664 /*
14665 * Each CPU is assigned a 2^64 period, non-overlapping
14666 * subsequence.
14667 */
14668 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1],
14669 state->dts_rstate[cpu_it]);
14670 }
14671
14672 #ifdef illumos
14673 state->dts_cleaner = CYCLIC_NONE;
14674 state->dts_deadman = CYCLIC_NONE;
14675 #else
14676 callout_init(&state->dts_cleaner, 1);
14677 callout_init(&state->dts_deadman, 1);
14678 #endif
14679 state->dts_vstate.dtvs_state = state;
14680
14681 for (i = 0; i < DTRACEOPT_MAX; i++)
14682 state->dts_options[i] = DTRACEOPT_UNSET;
14683
14684 /*
14685 * Set the default options.
14686 */
14687 opt = state->dts_options;
14688 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14689 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14690 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14691 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14692 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14693 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14694 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14695 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14696 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14697 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14698 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14699 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14700 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14701 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14702
14703 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14704
14705 /*
14706 * Depending on the user credentials, we set flag bits which alter probe
14707 * visibility or the amount of destructiveness allowed. In the case of
14708 * actual anonymous tracing, or the possession of all privileges, all of
14709 * the normal checks are bypassed.
14710 */
14711 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14712 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14713 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14714 } else {
14715 /*
14716 * Set up the credentials for this instantiation. We take a
14717 * hold on the credential to prevent it from disappearing on
14718 * us; this in turn prevents the zone_t referenced by this
14719 * credential from disappearing. This means that we can
14720 * examine the credential and the zone from probe context.
14721 */
14722 crhold(cr);
14723 state->dts_cred.dcr_cred = cr;
14724
14725 /*
14726 * CRA_PROC means "we have *some* privilege for dtrace" and
14727 * unlocks the use of variables like pid, zonename, etc.
14728 */
14729 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14730 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14731 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14732 }
14733
14734 /*
14735 * dtrace_user allows use of syscall and profile providers.
14736 * If the user also has proc_owner and/or proc_zone, we
14737 * extend the scope to include additional visibility and
14738 * destructive power.
14739 */
14740 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14741 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14742 state->dts_cred.dcr_visible |=
14743 DTRACE_CRV_ALLPROC;
14744
14745 state->dts_cred.dcr_action |=
14746 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14747 }
14748
14749 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14750 state->dts_cred.dcr_visible |=
14751 DTRACE_CRV_ALLZONE;
14752
14753 state->dts_cred.dcr_action |=
14754 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14755 }
14756
14757 /*
14758 * If we have all privs in whatever zone this is,
14759 * we can do destructive things to processes which
14760 * have altered credentials.
14761 */
14762 #ifdef illumos
14763 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14764 cr->cr_zone->zone_privset)) {
14765 state->dts_cred.dcr_action |=
14766 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14767 }
14768 #endif
14769 }
14770
14771 /*
14772 * Holding the dtrace_kernel privilege also implies that
14773 * the user has the dtrace_user privilege from a visibility
14774 * perspective. But without further privileges, some
14775 * destructive actions are not available.
14776 */
14777 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14778 /*
14779 * Make all probes in all zones visible. However,
14780 * this doesn't mean that all actions become available
14781 * to all zones.
14782 */
14783 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14784 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14785
14786 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14787 DTRACE_CRA_PROC;
14788 /*
14789 * Holding proc_owner means that destructive actions
14790 * for *this* zone are allowed.
14791 */
14792 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14793 state->dts_cred.dcr_action |=
14794 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14795
14796 /*
14797 * Holding proc_zone means that destructive actions
14798 * for this user/group ID in all zones is allowed.
14799 */
14800 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14801 state->dts_cred.dcr_action |=
14802 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14803
14804 #ifdef illumos
14805 /*
14806 * If we have all privs in whatever zone this is,
14807 * we can do destructive things to processes which
14808 * have altered credentials.
14809 */
14810 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14811 cr->cr_zone->zone_privset)) {
14812 state->dts_cred.dcr_action |=
14813 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14814 }
14815 #endif
14816 }
14817
14818 /*
14819 * Holding the dtrace_proc privilege gives control over fasttrap
14820 * and pid providers. We need to grant wider destructive
14821 * privileges in the event that the user has proc_owner and/or
14822 * proc_zone.
14823 */
14824 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14825 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14826 state->dts_cred.dcr_action |=
14827 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14828
14829 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14830 state->dts_cred.dcr_action |=
14831 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14832 }
14833 }
14834
14835 return (state);
14836 }
14837
14838 static int
14839 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14840 {
14841 dtrace_optval_t *opt = state->dts_options, size;
14842 processorid_t cpu = 0;
14843 int flags = 0, rval, factor, divisor = 1;
14844
14845 ASSERT(MUTEX_HELD(&dtrace_lock));
14846 ASSERT(MUTEX_HELD(&cpu_lock));
14847 ASSERT(which < DTRACEOPT_MAX);
14848 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14849 (state == dtrace_anon.dta_state &&
14850 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14851
14852 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14853 return (0);
14854
14855 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14856 cpu = opt[DTRACEOPT_CPU];
14857
14858 if (which == DTRACEOPT_SPECSIZE)
14859 flags |= DTRACEBUF_NOSWITCH;
14860
14861 if (which == DTRACEOPT_BUFSIZE) {
14862 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14863 flags |= DTRACEBUF_RING;
14864
14865 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14866 flags |= DTRACEBUF_FILL;
14867
14868 if (state != dtrace_anon.dta_state ||
14869 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14870 flags |= DTRACEBUF_INACTIVE;
14871 }
14872
14873 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14874 /*
14875 * The size must be 8-byte aligned. If the size is not 8-byte
14876 * aligned, drop it down by the difference.
14877 */
14878 if (size & (sizeof (uint64_t) - 1))
14879 size -= size & (sizeof (uint64_t) - 1);
14880
14881 if (size < state->dts_reserve) {
14882 /*
14883 * Buffers always must be large enough to accommodate
14884 * their prereserved space. We return E2BIG instead
14885 * of ENOMEM in this case to allow for user-level
14886 * software to differentiate the cases.
14887 */
14888 return (E2BIG);
14889 }
14890
14891 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14892
14893 if (rval != ENOMEM) {
14894 opt[which] = size;
14895 return (rval);
14896 }
14897
14898 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14899 return (rval);
14900
14901 for (divisor = 2; divisor < factor; divisor <<= 1)
14902 continue;
14903 }
14904
14905 return (ENOMEM);
14906 }
14907
14908 static int
14909 dtrace_state_buffers(dtrace_state_t *state)
14910 {
14911 dtrace_speculation_t *spec = state->dts_speculations;
14912 int rval, i;
14913
14914 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14915 DTRACEOPT_BUFSIZE)) != 0)
14916 return (rval);
14917
14918 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14919 DTRACEOPT_AGGSIZE)) != 0)
14920 return (rval);
14921
14922 for (i = 0; i < state->dts_nspeculations; i++) {
14923 if ((rval = dtrace_state_buffer(state,
14924 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14925 return (rval);
14926 }
14927
14928 return (0);
14929 }
14930
14931 static void
14932 dtrace_state_prereserve(dtrace_state_t *state)
14933 {
14934 dtrace_ecb_t *ecb;
14935 dtrace_probe_t *probe;
14936
14937 state->dts_reserve = 0;
14938
14939 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14940 return;
14941
14942 /*
14943 * If our buffer policy is a "fill" buffer policy, we need to set the
14944 * prereserved space to be the space required by the END probes.
14945 */
14946 probe = dtrace_probes[dtrace_probeid_end - 1];
14947 ASSERT(probe != NULL);
14948
14949 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14950 if (ecb->dte_state != state)
14951 continue;
14952
14953 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14954 }
14955 }
14956
14957 static int
14958 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14959 {
14960 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14961 dtrace_speculation_t *spec;
14962 dtrace_buffer_t *buf;
14963 #ifdef illumos
14964 cyc_handler_t hdlr;
14965 cyc_time_t when;
14966 #endif
14967 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
14968 dtrace_icookie_t cookie;
14969
14970 mutex_enter(&cpu_lock);
14971 mutex_enter(&dtrace_lock);
14972
14973 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14974 rval = EBUSY;
14975 goto out;
14976 }
14977
14978 /*
14979 * Before we can perform any checks, we must prime all of the
14980 * retained enablings that correspond to this state.
14981 */
14982 dtrace_enabling_prime(state);
14983
14984 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14985 rval = EACCES;
14986 goto out;
14987 }
14988
14989 dtrace_state_prereserve(state);
14990
14991 /*
14992 * Now we want to do is try to allocate our speculations.
14993 * We do not automatically resize the number of speculations; if
14994 * this fails, we will fail the operation.
14995 */
14996 nspec = opt[DTRACEOPT_NSPEC];
14997 ASSERT(nspec != DTRACEOPT_UNSET);
14998
14999 if (nspec > INT_MAX) {
15000 rval = ENOMEM;
15001 goto out;
15002 }
15003
15004 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15005 KM_NOSLEEP | KM_NORMALPRI);
15006
15007 if (spec == NULL) {
15008 rval = ENOMEM;
15009 goto out;
15010 }
15011
15012 state->dts_speculations = spec;
15013 state->dts_nspeculations = (int)nspec;
15014
15015 for (i = 0; i < nspec; i++) {
15016 if ((buf = kmem_zalloc(bufsize,
15017 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15018 rval = ENOMEM;
15019 goto err;
15020 }
15021
15022 spec[i].dtsp_buffer = buf;
15023 }
15024
15025 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15026 if (dtrace_anon.dta_state == NULL) {
15027 rval = ENOENT;
15028 goto out;
15029 }
15030
15031 if (state->dts_necbs != 0) {
15032 rval = EALREADY;
15033 goto out;
15034 }
15035
15036 state->dts_anon = dtrace_anon_grab();
15037 ASSERT(state->dts_anon != NULL);
15038 state = state->dts_anon;
15039
15040 /*
15041 * We want "grabanon" to be set in the grabbed state, so we'll
15042 * copy that option value from the grabbing state into the
15043 * grabbed state.
15044 */
15045 state->dts_options[DTRACEOPT_GRABANON] =
15046 opt[DTRACEOPT_GRABANON];
15047
15048 *cpu = dtrace_anon.dta_beganon;
15049
15050 /*
15051 * If the anonymous state is active (as it almost certainly
15052 * is if the anonymous enabling ultimately matched anything),
15053 * we don't allow any further option processing -- but we
15054 * don't return failure.
15055 */
15056 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15057 goto out;
15058 }
15059
15060 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15061 opt[DTRACEOPT_AGGSIZE] != 0) {
15062 if (state->dts_aggregations == NULL) {
15063 /*
15064 * We're not going to create an aggregation buffer
15065 * because we don't have any ECBs that contain
15066 * aggregations -- set this option to 0.
15067 */
15068 opt[DTRACEOPT_AGGSIZE] = 0;
15069 } else {
15070 /*
15071 * If we have an aggregation buffer, we must also have
15072 * a buffer to use as scratch.
15073 */
15074 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15075 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15076 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15077 }
15078 }
15079 }
15080
15081 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15082 opt[DTRACEOPT_SPECSIZE] != 0) {
15083 if (!state->dts_speculates) {
15084 /*
15085 * We're not going to create speculation buffers
15086 * because we don't have any ECBs that actually
15087 * speculate -- set the speculation size to 0.
15088 */
15089 opt[DTRACEOPT_SPECSIZE] = 0;
15090 }
15091 }
15092
15093 /*
15094 * The bare minimum size for any buffer that we're actually going to
15095 * do anything to is sizeof (uint64_t).
15096 */
15097 sz = sizeof (uint64_t);
15098
15099 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15100 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15101 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15102 /*
15103 * A buffer size has been explicitly set to 0 (or to a size
15104 * that will be adjusted to 0) and we need the space -- we
15105 * need to return failure. We return ENOSPC to differentiate
15106 * it from failing to allocate a buffer due to failure to meet
15107 * the reserve (for which we return E2BIG).
15108 */
15109 rval = ENOSPC;
15110 goto out;
15111 }
15112
15113 if ((rval = dtrace_state_buffers(state)) != 0)
15114 goto err;
15115
15116 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15117 sz = dtrace_dstate_defsize;
15118
15119 do {
15120 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15121
15122 if (rval == 0)
15123 break;
15124
15125 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15126 goto err;
15127 } while (sz >>= 1);
15128
15129 opt[DTRACEOPT_DYNVARSIZE] = sz;
15130
15131 if (rval != 0)
15132 goto err;
15133
15134 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15135 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15136
15137 if (opt[DTRACEOPT_CLEANRATE] == 0)
15138 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15139
15140 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15141 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15142
15143 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15145
15146 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15147 #ifdef illumos
15148 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15149 hdlr.cyh_arg = state;
15150 hdlr.cyh_level = CY_LOW_LEVEL;
15151
15152 when.cyt_when = 0;
15153 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15154
15155 state->dts_cleaner = cyclic_add(&hdlr, &when);
15156
15157 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15158 hdlr.cyh_arg = state;
15159 hdlr.cyh_level = CY_LOW_LEVEL;
15160
15161 when.cyt_when = 0;
15162 when.cyt_interval = dtrace_deadman_interval;
15163
15164 state->dts_deadman = cyclic_add(&hdlr, &when);
15165 #else
15166 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15167 dtrace_state_clean, state);
15168 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15169 dtrace_state_deadman, state);
15170 #endif
15171
15172 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15173
15174 #ifdef illumos
15175 if (state->dts_getf != 0 &&
15176 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15177 /*
15178 * We don't have kernel privs but we have at least one call
15179 * to getf(); we need to bump our zone's count, and (if
15180 * this is the first enabling to have an unprivileged call
15181 * to getf()) we need to hook into closef().
15182 */
15183 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15184
15185 if (dtrace_getf++ == 0) {
15186 ASSERT(dtrace_closef == NULL);
15187 dtrace_closef = dtrace_getf_barrier;
15188 }
15189 }
15190 #endif
15191
15192 /*
15193 * Now it's time to actually fire the BEGIN probe. We need to disable
15194 * interrupts here both to record the CPU on which we fired the BEGIN
15195 * probe (the data from this CPU will be processed first at user
15196 * level) and to manually activate the buffer for this CPU.
15197 */
15198 cookie = dtrace_interrupt_disable();
15199 *cpu = curcpu;
15200 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15201 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15202
15203 dtrace_probe(dtrace_probeid_begin,
15204 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15205 dtrace_interrupt_enable(cookie);
15206 /*
15207 * We may have had an exit action from a BEGIN probe; only change our
15208 * state to ACTIVE if we're still in WARMUP.
15209 */
15210 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15211 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15212
15213 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15214 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15215
15216 #ifdef __FreeBSD__
15217 /*
15218 * We enable anonymous tracing before APs are started, so we must
15219 * activate buffers using the current CPU.
15220 */
15221 if (state == dtrace_anon.dta_state) {
15222 CPU_FOREACH(i)
15223 dtrace_buffer_activate_cpu(state, i);
15224 } else
15225 dtrace_xcall(DTRACE_CPUALL,
15226 (dtrace_xcall_t)dtrace_buffer_activate, state);
15227 #else
15228 /*
15229 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15230 * want each CPU to transition its principal buffer out of the
15231 * INACTIVE state. Doing this assures that no CPU will suddenly begin
15232 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15233 * atomically transition from processing none of a state's ECBs to
15234 * processing all of them.
15235 */
15236 dtrace_xcall(DTRACE_CPUALL,
15237 (dtrace_xcall_t)dtrace_buffer_activate, state);
15238 #endif
15239 goto out;
15240
15241 err:
15242 dtrace_buffer_free(state->dts_buffer);
15243 dtrace_buffer_free(state->dts_aggbuffer);
15244
15245 if ((nspec = state->dts_nspeculations) == 0) {
15246 ASSERT(state->dts_speculations == NULL);
15247 goto out;
15248 }
15249
15250 spec = state->dts_speculations;
15251 ASSERT(spec != NULL);
15252
15253 for (i = 0; i < state->dts_nspeculations; i++) {
15254 if ((buf = spec[i].dtsp_buffer) == NULL)
15255 break;
15256
15257 dtrace_buffer_free(buf);
15258 kmem_free(buf, bufsize);
15259 }
15260
15261 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15262 state->dts_nspeculations = 0;
15263 state->dts_speculations = NULL;
15264
15265 out:
15266 mutex_exit(&dtrace_lock);
15267 mutex_exit(&cpu_lock);
15268
15269 return (rval);
15270 }
15271
15272 static int
15273 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15274 {
15275 dtrace_icookie_t cookie;
15276
15277 ASSERT(MUTEX_HELD(&dtrace_lock));
15278
15279 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15280 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15281 return (EINVAL);
15282
15283 /*
15284 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15285 * to be sure that every CPU has seen it. See below for the details
15286 * on why this is done.
15287 */
15288 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15289 dtrace_sync();
15290
15291 /*
15292 * By this point, it is impossible for any CPU to be still processing
15293 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
15294 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15295 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
15296 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15297 * iff we're in the END probe.
15298 */
15299 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15300 dtrace_sync();
15301 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15302
15303 /*
15304 * Finally, we can release the reserve and call the END probe. We
15305 * disable interrupts across calling the END probe to allow us to
15306 * return the CPU on which we actually called the END probe. This
15307 * allows user-land to be sure that this CPU's principal buffer is
15308 * processed last.
15309 */
15310 state->dts_reserve = 0;
15311
15312 cookie = dtrace_interrupt_disable();
15313 *cpu = curcpu;
15314 dtrace_probe(dtrace_probeid_end,
15315 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15316 dtrace_interrupt_enable(cookie);
15317
15318 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15319 dtrace_sync();
15320
15321 #ifdef illumos
15322 if (state->dts_getf != 0 &&
15323 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15324 /*
15325 * We don't have kernel privs but we have at least one call
15326 * to getf(); we need to lower our zone's count, and (if
15327 * this is the last enabling to have an unprivileged call
15328 * to getf()) we need to clear the closef() hook.
15329 */
15330 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15331 ASSERT(dtrace_closef == dtrace_getf_barrier);
15332 ASSERT(dtrace_getf > 0);
15333
15334 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15335
15336 if (--dtrace_getf == 0)
15337 dtrace_closef = NULL;
15338 }
15339 #endif
15340
15341 return (0);
15342 }
15343
15344 static int
15345 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15346 dtrace_optval_t val)
15347 {
15348 ASSERT(MUTEX_HELD(&dtrace_lock));
15349
15350 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15351 return (EBUSY);
15352
15353 if (option >= DTRACEOPT_MAX)
15354 return (EINVAL);
15355
15356 if (option != DTRACEOPT_CPU && val < 0)
15357 return (EINVAL);
15358
15359 switch (option) {
15360 case DTRACEOPT_DESTRUCTIVE:
15361 if (dtrace_destructive_disallow)
15362 return (EACCES);
15363
15364 state->dts_cred.dcr_destructive = 1;
15365 break;
15366
15367 case DTRACEOPT_BUFSIZE:
15368 case DTRACEOPT_DYNVARSIZE:
15369 case DTRACEOPT_AGGSIZE:
15370 case DTRACEOPT_SPECSIZE:
15371 case DTRACEOPT_STRSIZE:
15372 if (val < 0)
15373 return (EINVAL);
15374
15375 if (val >= LONG_MAX) {
15376 /*
15377 * If this is an otherwise negative value, set it to
15378 * the highest multiple of 128m less than LONG_MAX.
15379 * Technically, we're adjusting the size without
15380 * regard to the buffer resizing policy, but in fact,
15381 * this has no effect -- if we set the buffer size to
15382 * ~LONG_MAX and the buffer policy is ultimately set to
15383 * be "manual", the buffer allocation is guaranteed to
15384 * fail, if only because the allocation requires two
15385 * buffers. (We set the the size to the highest
15386 * multiple of 128m because it ensures that the size
15387 * will remain a multiple of a megabyte when
15388 * repeatedly halved -- all the way down to 15m.)
15389 */
15390 val = LONG_MAX - (1 << 27) + 1;
15391 }
15392 }
15393
15394 state->dts_options[option] = val;
15395
15396 return (0);
15397 }
15398
15399 static void
15400 dtrace_state_destroy(dtrace_state_t *state)
15401 {
15402 dtrace_ecb_t *ecb;
15403 dtrace_vstate_t *vstate = &state->dts_vstate;
15404 #ifdef illumos
15405 minor_t minor = getminor(state->dts_dev);
15406 #endif
15407 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15408 dtrace_speculation_t *spec = state->dts_speculations;
15409 int nspec = state->dts_nspeculations;
15410 uint32_t match;
15411
15412 ASSERT(MUTEX_HELD(&dtrace_lock));
15413 ASSERT(MUTEX_HELD(&cpu_lock));
15414
15415 /*
15416 * First, retract any retained enablings for this state.
15417 */
15418 dtrace_enabling_retract(state);
15419 ASSERT(state->dts_nretained == 0);
15420
15421 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15422 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15423 /*
15424 * We have managed to come into dtrace_state_destroy() on a
15425 * hot enabling -- almost certainly because of a disorderly
15426 * shutdown of a consumer. (That is, a consumer that is
15427 * exiting without having called dtrace_stop().) In this case,
15428 * we're going to set our activity to be KILLED, and then
15429 * issue a sync to be sure that everyone is out of probe
15430 * context before we start blowing away ECBs.
15431 */
15432 state->dts_activity = DTRACE_ACTIVITY_KILLED;
15433 dtrace_sync();
15434 }
15435
15436 /*
15437 * Release the credential hold we took in dtrace_state_create().
15438 */
15439 if (state->dts_cred.dcr_cred != NULL)
15440 crfree(state->dts_cred.dcr_cred);
15441
15442 /*
15443 * Now we can safely disable and destroy any enabled probes. Because
15444 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15445 * (especially if they're all enabled), we take two passes through the
15446 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15447 * in the second we disable whatever is left over.
15448 */
15449 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15450 for (i = 0; i < state->dts_necbs; i++) {
15451 if ((ecb = state->dts_ecbs[i]) == NULL)
15452 continue;
15453
15454 if (match && ecb->dte_probe != NULL) {
15455 dtrace_probe_t *probe = ecb->dte_probe;
15456 dtrace_provider_t *prov = probe->dtpr_provider;
15457
15458 if (!(prov->dtpv_priv.dtpp_flags & match))
15459 continue;
15460 }
15461
15462 dtrace_ecb_disable(ecb);
15463 dtrace_ecb_destroy(ecb);
15464 }
15465
15466 if (!match)
15467 break;
15468 }
15469
15470 /*
15471 * Before we free the buffers, perform one more sync to assure that
15472 * every CPU is out of probe context.
15473 */
15474 dtrace_sync();
15475
15476 dtrace_buffer_free(state->dts_buffer);
15477 dtrace_buffer_free(state->dts_aggbuffer);
15478
15479 for (i = 0; i < nspec; i++)
15480 dtrace_buffer_free(spec[i].dtsp_buffer);
15481
15482 #ifdef illumos
15483 if (state->dts_cleaner != CYCLIC_NONE)
15484 cyclic_remove(state->dts_cleaner);
15485
15486 if (state->dts_deadman != CYCLIC_NONE)
15487 cyclic_remove(state->dts_deadman);
15488 #else
15489 callout_stop(&state->dts_cleaner);
15490 callout_drain(&state->dts_cleaner);
15491 callout_stop(&state->dts_deadman);
15492 callout_drain(&state->dts_deadman);
15493 #endif
15494
15495 dtrace_dstate_fini(&vstate->dtvs_dynvars);
15496 dtrace_vstate_fini(vstate);
15497 if (state->dts_ecbs != NULL)
15498 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15499
15500 if (state->dts_aggregations != NULL) {
15501 #ifdef DEBUG
15502 for (i = 0; i < state->dts_naggregations; i++)
15503 ASSERT(state->dts_aggregations[i] == NULL);
15504 #endif
15505 ASSERT(state->dts_naggregations > 0);
15506 kmem_free(state->dts_aggregations,
15507 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15508 }
15509
15510 kmem_free(state->dts_buffer, bufsize);
15511 kmem_free(state->dts_aggbuffer, bufsize);
15512
15513 for (i = 0; i < nspec; i++)
15514 kmem_free(spec[i].dtsp_buffer, bufsize);
15515
15516 if (spec != NULL)
15517 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15518
15519 dtrace_format_destroy(state);
15520
15521 if (state->dts_aggid_arena != NULL) {
15522 #ifdef illumos
15523 vmem_destroy(state->dts_aggid_arena);
15524 #else
15525 delete_unrhdr(state->dts_aggid_arena);
15526 #endif
15527 state->dts_aggid_arena = NULL;
15528 }
15529 #ifdef illumos
15530 ddi_soft_state_free(dtrace_softstate, minor);
15531 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15532 #endif
15533 }
15534
15535 /*
15536 * DTrace Anonymous Enabling Functions
15537 */
15538 static dtrace_state_t *
15539 dtrace_anon_grab(void)
15540 {
15541 dtrace_state_t *state;
15542
15543 ASSERT(MUTEX_HELD(&dtrace_lock));
15544
15545 if ((state = dtrace_anon.dta_state) == NULL) {
15546 ASSERT(dtrace_anon.dta_enabling == NULL);
15547 return (NULL);
15548 }
15549
15550 ASSERT(dtrace_anon.dta_enabling != NULL);
15551 ASSERT(dtrace_retained != NULL);
15552
15553 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15554 dtrace_anon.dta_enabling = NULL;
15555 dtrace_anon.dta_state = NULL;
15556
15557 return (state);
15558 }
15559
15560 static void
15561 dtrace_anon_property(void)
15562 {
15563 int i, rv;
15564 dtrace_state_t *state;
15565 dof_hdr_t *dof;
15566 char c[32]; /* enough for "dof-data-" + digits */
15567
15568 ASSERT(MUTEX_HELD(&dtrace_lock));
15569 ASSERT(MUTEX_HELD(&cpu_lock));
15570
15571 for (i = 0; ; i++) {
15572 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
15573
15574 dtrace_err_verbose = 1;
15575
15576 if ((dof = dtrace_dof_property(c)) == NULL) {
15577 dtrace_err_verbose = 0;
15578 break;
15579 }
15580
15581 #ifdef illumos
15582 /*
15583 * We want to create anonymous state, so we need to transition
15584 * the kernel debugger to indicate that DTrace is active. If
15585 * this fails (e.g. because the debugger has modified text in
15586 * some way), we won't continue with the processing.
15587 */
15588 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15589 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15590 "enabling ignored.");
15591 dtrace_dof_destroy(dof);
15592 break;
15593 }
15594 #endif
15595
15596 /*
15597 * If we haven't allocated an anonymous state, we'll do so now.
15598 */
15599 if ((state = dtrace_anon.dta_state) == NULL) {
15600 state = dtrace_state_create(NULL, NULL);
15601 dtrace_anon.dta_state = state;
15602
15603 if (state == NULL) {
15604 /*
15605 * This basically shouldn't happen: the only
15606 * failure mode from dtrace_state_create() is a
15607 * failure of ddi_soft_state_zalloc() that
15608 * itself should never happen. Still, the
15609 * interface allows for a failure mode, and
15610 * we want to fail as gracefully as possible:
15611 * we'll emit an error message and cease
15612 * processing anonymous state in this case.
15613 */
15614 cmn_err(CE_WARN, "failed to create "
15615 "anonymous state");
15616 dtrace_dof_destroy(dof);
15617 break;
15618 }
15619 }
15620
15621 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15622 &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15623
15624 if (rv == 0)
15625 rv = dtrace_dof_options(dof, state);
15626
15627 dtrace_err_verbose = 0;
15628 dtrace_dof_destroy(dof);
15629
15630 if (rv != 0) {
15631 /*
15632 * This is malformed DOF; chuck any anonymous state
15633 * that we created.
15634 */
15635 ASSERT(dtrace_anon.dta_enabling == NULL);
15636 dtrace_state_destroy(state);
15637 dtrace_anon.dta_state = NULL;
15638 break;
15639 }
15640
15641 ASSERT(dtrace_anon.dta_enabling != NULL);
15642 }
15643
15644 if (dtrace_anon.dta_enabling != NULL) {
15645 int rval;
15646
15647 /*
15648 * dtrace_enabling_retain() can only fail because we are
15649 * trying to retain more enablings than are allowed -- but
15650 * we only have one anonymous enabling, and we are guaranteed
15651 * to be allowed at least one retained enabling; we assert
15652 * that dtrace_enabling_retain() returns success.
15653 */
15654 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15655 ASSERT(rval == 0);
15656
15657 dtrace_enabling_dump(dtrace_anon.dta_enabling);
15658 }
15659 }
15660
15661 /*
15662 * DTrace Helper Functions
15663 */
15664 static void
15665 dtrace_helper_trace(dtrace_helper_action_t *helper,
15666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15667 {
15668 uint32_t size, next, nnext, i;
15669 dtrace_helptrace_t *ent, *buffer;
15670 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15671
15672 if ((buffer = dtrace_helptrace_buffer) == NULL)
15673 return;
15674
15675 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15676
15677 /*
15678 * What would a tracing framework be without its own tracing
15679 * framework? (Well, a hell of a lot simpler, for starters...)
15680 */
15681 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15682 sizeof (uint64_t) - sizeof (uint64_t);
15683
15684 /*
15685 * Iterate until we can allocate a slot in the trace buffer.
15686 */
15687 do {
15688 next = dtrace_helptrace_next;
15689
15690 if (next + size < dtrace_helptrace_bufsize) {
15691 nnext = next + size;
15692 } else {
15693 nnext = size;
15694 }
15695 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15696
15697 /*
15698 * We have our slot; fill it in.
15699 */
15700 if (nnext == size) {
15701 dtrace_helptrace_wrapped++;
15702 next = 0;
15703 }
15704
15705 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15706 ent->dtht_helper = helper;
15707 ent->dtht_where = where;
15708 ent->dtht_nlocals = vstate->dtvs_nlocals;
15709
15710 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15711 mstate->dtms_fltoffs : -1;
15712 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15713 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15714
15715 for (i = 0; i < vstate->dtvs_nlocals; i++) {
15716 dtrace_statvar_t *svar;
15717
15718 if ((svar = vstate->dtvs_locals[i]) == NULL)
15719 continue;
15720
15721 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t));
15722 ent->dtht_locals[i] =
15723 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15724 }
15725 }
15726
15727 static uint64_t
15728 dtrace_helper(int which, dtrace_mstate_t *mstate,
15729 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15730 {
15731 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15732 uint64_t sarg0 = mstate->dtms_arg[0];
15733 uint64_t sarg1 = mstate->dtms_arg[1];
15734 uint64_t rval = 0;
15735 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15736 dtrace_helper_action_t *helper;
15737 dtrace_vstate_t *vstate;
15738 dtrace_difo_t *pred;
15739 int i, trace = dtrace_helptrace_buffer != NULL;
15740
15741 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15742
15743 if (helpers == NULL)
15744 return (0);
15745
15746 if ((helper = helpers->dthps_actions[which]) == NULL)
15747 return (0);
15748
15749 vstate = &helpers->dthps_vstate;
15750 mstate->dtms_arg[0] = arg0;
15751 mstate->dtms_arg[1] = arg1;
15752
15753 /*
15754 * Now iterate over each helper. If its predicate evaluates to 'true',
15755 * we'll call the corresponding actions. Note that the below calls
15756 * to dtrace_dif_emulate() may set faults in machine state. This is
15757 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
15758 * the stored DIF offset with its own (which is the desired behavior).
15759 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15760 * from machine state; this is okay, too.
15761 */
15762 for (; helper != NULL; helper = helper->dtha_next) {
15763 if ((pred = helper->dtha_predicate) != NULL) {
15764 if (trace)
15765 dtrace_helper_trace(helper, mstate, vstate, 0);
15766
15767 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15768 goto next;
15769
15770 if (*flags & CPU_DTRACE_FAULT)
15771 goto err;
15772 }
15773
15774 for (i = 0; i < helper->dtha_nactions; i++) {
15775 if (trace)
15776 dtrace_helper_trace(helper,
15777 mstate, vstate, i + 1);
15778
15779 rval = dtrace_dif_emulate(helper->dtha_actions[i],
15780 mstate, vstate, state);
15781
15782 if (*flags & CPU_DTRACE_FAULT)
15783 goto err;
15784 }
15785
15786 next:
15787 if (trace)
15788 dtrace_helper_trace(helper, mstate, vstate,
15789 DTRACE_HELPTRACE_NEXT);
15790 }
15791
15792 if (trace)
15793 dtrace_helper_trace(helper, mstate, vstate,
15794 DTRACE_HELPTRACE_DONE);
15795
15796 /*
15797 * Restore the arg0 that we saved upon entry.
15798 */
15799 mstate->dtms_arg[0] = sarg0;
15800 mstate->dtms_arg[1] = sarg1;
15801
15802 return (rval);
15803
15804 err:
15805 if (trace)
15806 dtrace_helper_trace(helper, mstate, vstate,
15807 DTRACE_HELPTRACE_ERR);
15808
15809 /*
15810 * Restore the arg0 that we saved upon entry.
15811 */
15812 mstate->dtms_arg[0] = sarg0;
15813 mstate->dtms_arg[1] = sarg1;
15814
15815 return (0);
15816 }
15817
15818 static void
15819 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15820 dtrace_vstate_t *vstate)
15821 {
15822 int i;
15823
15824 if (helper->dtha_predicate != NULL)
15825 dtrace_difo_release(helper->dtha_predicate, vstate);
15826
15827 for (i = 0; i < helper->dtha_nactions; i++) {
15828 ASSERT(helper->dtha_actions[i] != NULL);
15829 dtrace_difo_release(helper->dtha_actions[i], vstate);
15830 }
15831
15832 kmem_free(helper->dtha_actions,
15833 helper->dtha_nactions * sizeof (dtrace_difo_t *));
15834 kmem_free(helper, sizeof (dtrace_helper_action_t));
15835 }
15836
15837 static int
15838 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15839 {
15840 proc_t *p = curproc;
15841 dtrace_vstate_t *vstate;
15842 int i;
15843
15844 if (help == NULL)
15845 help = p->p_dtrace_helpers;
15846
15847 ASSERT(MUTEX_HELD(&dtrace_lock));
15848
15849 if (help == NULL || gen > help->dthps_generation)
15850 return (EINVAL);
15851
15852 vstate = &help->dthps_vstate;
15853
15854 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15855 dtrace_helper_action_t *last = NULL, *h, *next;
15856
15857 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15858 next = h->dtha_next;
15859
15860 if (h->dtha_generation == gen) {
15861 if (last != NULL) {
15862 last->dtha_next = next;
15863 } else {
15864 help->dthps_actions[i] = next;
15865 }
15866
15867 dtrace_helper_action_destroy(h, vstate);
15868 } else {
15869 last = h;
15870 }
15871 }
15872 }
15873
15874 /*
15875 * Interate until we've cleared out all helper providers with the
15876 * given generation number.
15877 */
15878 for (;;) {
15879 dtrace_helper_provider_t *prov;
15880
15881 /*
15882 * Look for a helper provider with the right generation. We
15883 * have to start back at the beginning of the list each time
15884 * because we drop dtrace_lock. It's unlikely that we'll make
15885 * more than two passes.
15886 */
15887 for (i = 0; i < help->dthps_nprovs; i++) {
15888 prov = help->dthps_provs[i];
15889
15890 if (prov->dthp_generation == gen)
15891 break;
15892 }
15893
15894 /*
15895 * If there were no matches, we're done.
15896 */
15897 if (i == help->dthps_nprovs)
15898 break;
15899
15900 /*
15901 * Move the last helper provider into this slot.
15902 */
15903 help->dthps_nprovs--;
15904 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15905 help->dthps_provs[help->dthps_nprovs] = NULL;
15906
15907 mutex_exit(&dtrace_lock);
15908
15909 /*
15910 * If we have a meta provider, remove this helper provider.
15911 */
15912 mutex_enter(&dtrace_meta_lock);
15913 if (dtrace_meta_pid != NULL) {
15914 ASSERT(dtrace_deferred_pid == NULL);
15915 dtrace_helper_provider_remove(&prov->dthp_prov,
15916 p->p_pid);
15917 }
15918 mutex_exit(&dtrace_meta_lock);
15919
15920 dtrace_helper_provider_destroy(prov);
15921
15922 mutex_enter(&dtrace_lock);
15923 }
15924
15925 return (0);
15926 }
15927
15928 static int
15929 dtrace_helper_validate(dtrace_helper_action_t *helper)
15930 {
15931 int err = 0, i;
15932 dtrace_difo_t *dp;
15933
15934 if ((dp = helper->dtha_predicate) != NULL)
15935 err += dtrace_difo_validate_helper(dp);
15936
15937 for (i = 0; i < helper->dtha_nactions; i++)
15938 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15939
15940 return (err == 0);
15941 }
15942
15943 static int
15944 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15945 dtrace_helpers_t *help)
15946 {
15947 dtrace_helper_action_t *helper, *last;
15948 dtrace_actdesc_t *act;
15949 dtrace_vstate_t *vstate;
15950 dtrace_predicate_t *pred;
15951 int count = 0, nactions = 0, i;
15952
15953 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15954 return (EINVAL);
15955
15956 last = help->dthps_actions[which];
15957 vstate = &help->dthps_vstate;
15958
15959 for (count = 0; last != NULL; last = last->dtha_next) {
15960 count++;
15961 if (last->dtha_next == NULL)
15962 break;
15963 }
15964
15965 /*
15966 * If we already have dtrace_helper_actions_max helper actions for this
15967 * helper action type, we'll refuse to add a new one.
15968 */
15969 if (count >= dtrace_helper_actions_max)
15970 return (ENOSPC);
15971
15972 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15973 helper->dtha_generation = help->dthps_generation;
15974
15975 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15976 ASSERT(pred->dtp_difo != NULL);
15977 dtrace_difo_hold(pred->dtp_difo);
15978 helper->dtha_predicate = pred->dtp_difo;
15979 }
15980
15981 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15982 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15983 goto err;
15984
15985 if (act->dtad_difo == NULL)
15986 goto err;
15987
15988 nactions++;
15989 }
15990
15991 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15992 (helper->dtha_nactions = nactions), KM_SLEEP);
15993
15994 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15995 dtrace_difo_hold(act->dtad_difo);
15996 helper->dtha_actions[i++] = act->dtad_difo;
15997 }
15998
15999 if (!dtrace_helper_validate(helper))
16000 goto err;
16001
16002 if (last == NULL) {
16003 help->dthps_actions[which] = helper;
16004 } else {
16005 last->dtha_next = helper;
16006 }
16007
16008 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16009 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16010 dtrace_helptrace_next = 0;
16011 }
16012
16013 return (0);
16014 err:
16015 dtrace_helper_action_destroy(helper, vstate);
16016 return (EINVAL);
16017 }
16018
16019 static void
16020 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16021 dof_helper_t *dofhp)
16022 {
16023 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16024
16025 mutex_enter(&dtrace_meta_lock);
16026 mutex_enter(&dtrace_lock);
16027
16028 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16029 /*
16030 * If the dtrace module is loaded but not attached, or if
16031 * there aren't isn't a meta provider registered to deal with
16032 * these provider descriptions, we need to postpone creating
16033 * the actual providers until later.
16034 */
16035
16036 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16037 dtrace_deferred_pid != help) {
16038 help->dthps_deferred = 1;
16039 help->dthps_pid = p->p_pid;
16040 help->dthps_next = dtrace_deferred_pid;
16041 help->dthps_prev = NULL;
16042 if (dtrace_deferred_pid != NULL)
16043 dtrace_deferred_pid->dthps_prev = help;
16044 dtrace_deferred_pid = help;
16045 }
16046
16047 mutex_exit(&dtrace_lock);
16048
16049 } else if (dofhp != NULL) {
16050 /*
16051 * If the dtrace module is loaded and we have a particular
16052 * helper provider description, pass that off to the
16053 * meta provider.
16054 */
16055
16056 mutex_exit(&dtrace_lock);
16057
16058 dtrace_helper_provide(dofhp, p->p_pid);
16059
16060 } else {
16061 /*
16062 * Otherwise, just pass all the helper provider descriptions
16063 * off to the meta provider.
16064 */
16065
16066 int i;
16067 mutex_exit(&dtrace_lock);
16068
16069 for (i = 0; i < help->dthps_nprovs; i++) {
16070 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16071 p->p_pid);
16072 }
16073 }
16074
16075 mutex_exit(&dtrace_meta_lock);
16076 }
16077
16078 static int
16079 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16080 {
16081 dtrace_helper_provider_t *hprov, **tmp_provs;
16082 uint_t tmp_maxprovs, i;
16083
16084 ASSERT(MUTEX_HELD(&dtrace_lock));
16085 ASSERT(help != NULL);
16086
16087 /*
16088 * If we already have dtrace_helper_providers_max helper providers,
16089 * we're refuse to add a new one.
16090 */
16091 if (help->dthps_nprovs >= dtrace_helper_providers_max)
16092 return (ENOSPC);
16093
16094 /*
16095 * Check to make sure this isn't a duplicate.
16096 */
16097 for (i = 0; i < help->dthps_nprovs; i++) {
16098 if (dofhp->dofhp_addr ==
16099 help->dthps_provs[i]->dthp_prov.dofhp_addr)
16100 return (EALREADY);
16101 }
16102
16103 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16104 hprov->dthp_prov = *dofhp;
16105 hprov->dthp_ref = 1;
16106 hprov->dthp_generation = gen;
16107
16108 /*
16109 * Allocate a bigger table for helper providers if it's already full.
16110 */
16111 if (help->dthps_maxprovs == help->dthps_nprovs) {
16112 tmp_maxprovs = help->dthps_maxprovs;
16113 tmp_provs = help->dthps_provs;
16114
16115 if (help->dthps_maxprovs == 0)
16116 help->dthps_maxprovs = 2;
16117 else
16118 help->dthps_maxprovs *= 2;
16119 if (help->dthps_maxprovs > dtrace_helper_providers_max)
16120 help->dthps_maxprovs = dtrace_helper_providers_max;
16121
16122 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16123
16124 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16125 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16126
16127 if (tmp_provs != NULL) {
16128 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16129 sizeof (dtrace_helper_provider_t *));
16130 kmem_free(tmp_provs, tmp_maxprovs *
16131 sizeof (dtrace_helper_provider_t *));
16132 }
16133 }
16134
16135 help->dthps_provs[help->dthps_nprovs] = hprov;
16136 help->dthps_nprovs++;
16137
16138 return (0);
16139 }
16140
16141 static void
16142 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16143 {
16144 mutex_enter(&dtrace_lock);
16145
16146 if (--hprov->dthp_ref == 0) {
16147 dof_hdr_t *dof;
16148 mutex_exit(&dtrace_lock);
16149 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16150 dtrace_dof_destroy(dof);
16151 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16152 } else {
16153 mutex_exit(&dtrace_lock);
16154 }
16155 }
16156
16157 static int
16158 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16159 {
16160 uintptr_t daddr = (uintptr_t)dof;
16161 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16162 dof_provider_t *provider;
16163 dof_probe_t *probe;
16164 uint8_t *arg;
16165 char *strtab, *typestr;
16166 dof_stridx_t typeidx;
16167 size_t typesz;
16168 uint_t nprobes, j, k;
16169
16170 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16171
16172 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16173 dtrace_dof_error(dof, "misaligned section offset");
16174 return (-1);
16175 }
16176
16177 /*
16178 * The section needs to be large enough to contain the DOF provider
16179 * structure appropriate for the given version.
16180 */
16181 if (sec->dofs_size <
16182 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16183 offsetof(dof_provider_t, dofpv_prenoffs) :
16184 sizeof (dof_provider_t))) {
16185 dtrace_dof_error(dof, "provider section too small");
16186 return (-1);
16187 }
16188
16189 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16190 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16191 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16192 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16193 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16194
16195 if (str_sec == NULL || prb_sec == NULL ||
16196 arg_sec == NULL || off_sec == NULL)
16197 return (-1);
16198
16199 enoff_sec = NULL;
16200
16201 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16202 provider->dofpv_prenoffs != DOF_SECT_NONE &&
16203 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16204 provider->dofpv_prenoffs)) == NULL)
16205 return (-1);
16206
16207 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16208
16209 if (provider->dofpv_name >= str_sec->dofs_size ||
16210 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16211 dtrace_dof_error(dof, "invalid provider name");
16212 return (-1);
16213 }
16214
16215 if (prb_sec->dofs_entsize == 0 ||
16216 prb_sec->dofs_entsize > prb_sec->dofs_size) {
16217 dtrace_dof_error(dof, "invalid entry size");
16218 return (-1);
16219 }
16220
16221 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16222 dtrace_dof_error(dof, "misaligned entry size");
16223 return (-1);
16224 }
16225
16226 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16227 dtrace_dof_error(dof, "invalid entry size");
16228 return (-1);
16229 }
16230
16231 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16232 dtrace_dof_error(dof, "misaligned section offset");
16233 return (-1);
16234 }
16235
16236 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16237 dtrace_dof_error(dof, "invalid entry size");
16238 return (-1);
16239 }
16240
16241 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16242
16243 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16244
16245 /*
16246 * Take a pass through the probes to check for errors.
16247 */
16248 for (j = 0; j < nprobes; j++) {
16249 probe = (dof_probe_t *)(uintptr_t)(daddr +
16250 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16251
16252 if (probe->dofpr_func >= str_sec->dofs_size) {
16253 dtrace_dof_error(dof, "invalid function name");
16254 return (-1);
16255 }
16256
16257 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16258 dtrace_dof_error(dof, "function name too long");
16259 /*
16260 * Keep going if the function name is too long.
16261 * Unlike provider and probe names, we cannot reasonably
16262 * impose restrictions on function names, since they're
16263 * a property of the code being instrumented. We will
16264 * skip this probe in dtrace_helper_provide_one().
16265 */
16266 }
16267
16268 if (probe->dofpr_name >= str_sec->dofs_size ||
16269 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16270 dtrace_dof_error(dof, "invalid probe name");
16271 return (-1);
16272 }
16273
16274 /*
16275 * The offset count must not wrap the index, and the offsets
16276 * must also not overflow the section's data.
16277 */
16278 if (probe->dofpr_offidx + probe->dofpr_noffs <
16279 probe->dofpr_offidx ||
16280 (probe->dofpr_offidx + probe->dofpr_noffs) *
16281 off_sec->dofs_entsize > off_sec->dofs_size) {
16282 dtrace_dof_error(dof, "invalid probe offset");
16283 return (-1);
16284 }
16285
16286 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16287 /*
16288 * If there's no is-enabled offset section, make sure
16289 * there aren't any is-enabled offsets. Otherwise
16290 * perform the same checks as for probe offsets
16291 * (immediately above).
16292 */
16293 if (enoff_sec == NULL) {
16294 if (probe->dofpr_enoffidx != 0 ||
16295 probe->dofpr_nenoffs != 0) {
16296 dtrace_dof_error(dof, "is-enabled "
16297 "offsets with null section");
16298 return (-1);
16299 }
16300 } else if (probe->dofpr_enoffidx +
16301 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16302 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16303 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16304 dtrace_dof_error(dof, "invalid is-enabled "
16305 "offset");
16306 return (-1);
16307 }
16308
16309 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16310 dtrace_dof_error(dof, "zero probe and "
16311 "is-enabled offsets");
16312 return (-1);
16313 }
16314 } else if (probe->dofpr_noffs == 0) {
16315 dtrace_dof_error(dof, "zero probe offsets");
16316 return (-1);
16317 }
16318
16319 if (probe->dofpr_argidx + probe->dofpr_xargc <
16320 probe->dofpr_argidx ||
16321 (probe->dofpr_argidx + probe->dofpr_xargc) *
16322 arg_sec->dofs_entsize > arg_sec->dofs_size) {
16323 dtrace_dof_error(dof, "invalid args");
16324 return (-1);
16325 }
16326
16327 typeidx = probe->dofpr_nargv;
16328 typestr = strtab + probe->dofpr_nargv;
16329 for (k = 0; k < probe->dofpr_nargc; k++) {
16330 if (typeidx >= str_sec->dofs_size) {
16331 dtrace_dof_error(dof, "bad "
16332 "native argument type");
16333 return (-1);
16334 }
16335
16336 typesz = strlen(typestr) + 1;
16337 if (typesz > DTRACE_ARGTYPELEN) {
16338 dtrace_dof_error(dof, "native "
16339 "argument type too long");
16340 return (-1);
16341 }
16342 typeidx += typesz;
16343 typestr += typesz;
16344 }
16345
16346 typeidx = probe->dofpr_xargv;
16347 typestr = strtab + probe->dofpr_xargv;
16348 for (k = 0; k < probe->dofpr_xargc; k++) {
16349 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16350 dtrace_dof_error(dof, "bad "
16351 "native argument index");
16352 return (-1);
16353 }
16354
16355 if (typeidx >= str_sec->dofs_size) {
16356 dtrace_dof_error(dof, "bad "
16357 "translated argument type");
16358 return (-1);
16359 }
16360
16361 typesz = strlen(typestr) + 1;
16362 if (typesz > DTRACE_ARGTYPELEN) {
16363 dtrace_dof_error(dof, "translated argument "
16364 "type too long");
16365 return (-1);
16366 }
16367
16368 typeidx += typesz;
16369 typestr += typesz;
16370 }
16371 }
16372
16373 return (0);
16374 }
16375
16376 static int
16377 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16378 {
16379 dtrace_helpers_t *help;
16380 dtrace_vstate_t *vstate;
16381 dtrace_enabling_t *enab = NULL;
16382 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16383 uintptr_t daddr = (uintptr_t)dof;
16384
16385 ASSERT(MUTEX_HELD(&dtrace_lock));
16386
16387 if ((help = p->p_dtrace_helpers) == NULL)
16388 help = dtrace_helpers_create(p);
16389
16390 vstate = &help->dthps_vstate;
16391
16392 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16393 dhp->dofhp_dof, B_FALSE)) != 0) {
16394 dtrace_dof_destroy(dof);
16395 return (rv);
16396 }
16397
16398 /*
16399 * Look for helper providers and validate their descriptions.
16400 */
16401 for (i = 0; i < dof->dofh_secnum; i++) {
16402 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16403 dof->dofh_secoff + i * dof->dofh_secsize);
16404
16405 if (sec->dofs_type != DOF_SECT_PROVIDER)
16406 continue;
16407
16408 if (dtrace_helper_provider_validate(dof, sec) != 0) {
16409 dtrace_enabling_destroy(enab);
16410 dtrace_dof_destroy(dof);
16411 return (-1);
16412 }
16413
16414 nprovs++;
16415 }
16416
16417 /*
16418 * Now we need to walk through the ECB descriptions in the enabling.
16419 */
16420 for (i = 0; i < enab->dten_ndesc; i++) {
16421 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16422 dtrace_probedesc_t *desc = &ep->dted_probe;
16423
16424 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16425 continue;
16426
16427 if (strcmp(desc->dtpd_mod, "helper") != 0)
16428 continue;
16429
16430 if (strcmp(desc->dtpd_func, "ustack") != 0)
16431 continue;
16432
16433 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16434 ep, help)) != 0) {
16435 /*
16436 * Adding this helper action failed -- we are now going
16437 * to rip out the entire generation and return failure.
16438 */
16439 (void) dtrace_helper_destroygen(help,
16440 help->dthps_generation);
16441 dtrace_enabling_destroy(enab);
16442 dtrace_dof_destroy(dof);
16443 return (-1);
16444 }
16445
16446 nhelpers++;
16447 }
16448
16449 if (nhelpers < enab->dten_ndesc)
16450 dtrace_dof_error(dof, "unmatched helpers");
16451
16452 gen = help->dthps_generation++;
16453 dtrace_enabling_destroy(enab);
16454
16455 if (nprovs > 0) {
16456 /*
16457 * Now that this is in-kernel, we change the sense of the
16458 * members: dofhp_dof denotes the in-kernel copy of the DOF
16459 * and dofhp_addr denotes the address at user-level.
16460 */
16461 dhp->dofhp_addr = dhp->dofhp_dof;
16462 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16463
16464 if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16465 mutex_exit(&dtrace_lock);
16466 dtrace_helper_provider_register(p, help, dhp);
16467 mutex_enter(&dtrace_lock);
16468
16469 destroy = 0;
16470 }
16471 }
16472
16473 if (destroy)
16474 dtrace_dof_destroy(dof);
16475
16476 return (gen);
16477 }
16478
16479 static dtrace_helpers_t *
16480 dtrace_helpers_create(proc_t *p)
16481 {
16482 dtrace_helpers_t *help;
16483
16484 ASSERT(MUTEX_HELD(&dtrace_lock));
16485 ASSERT(p->p_dtrace_helpers == NULL);
16486
16487 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16488 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16489 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16490
16491 p->p_dtrace_helpers = help;
16492 dtrace_helpers++;
16493
16494 return (help);
16495 }
16496
16497 #ifdef illumos
16498 static
16499 #endif
16500 void
16501 dtrace_helpers_destroy(proc_t *p)
16502 {
16503 dtrace_helpers_t *help;
16504 dtrace_vstate_t *vstate;
16505 #ifdef illumos
16506 proc_t *p = curproc;
16507 #endif
16508 int i;
16509
16510 mutex_enter(&dtrace_lock);
16511
16512 ASSERT(p->p_dtrace_helpers != NULL);
16513 ASSERT(dtrace_helpers > 0);
16514
16515 help = p->p_dtrace_helpers;
16516 vstate = &help->dthps_vstate;
16517
16518 /*
16519 * We're now going to lose the help from this process.
16520 */
16521 p->p_dtrace_helpers = NULL;
16522 dtrace_sync();
16523
16524 /*
16525 * Destory the helper actions.
16526 */
16527 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16528 dtrace_helper_action_t *h, *next;
16529
16530 for (h = help->dthps_actions[i]; h != NULL; h = next) {
16531 next = h->dtha_next;
16532 dtrace_helper_action_destroy(h, vstate);
16533 h = next;
16534 }
16535 }
16536
16537 mutex_exit(&dtrace_lock);
16538
16539 /*
16540 * Destroy the helper providers.
16541 */
16542 if (help->dthps_maxprovs > 0) {
16543 mutex_enter(&dtrace_meta_lock);
16544 if (dtrace_meta_pid != NULL) {
16545 ASSERT(dtrace_deferred_pid == NULL);
16546
16547 for (i = 0; i < help->dthps_nprovs; i++) {
16548 dtrace_helper_provider_remove(
16549 &help->dthps_provs[i]->dthp_prov, p->p_pid);
16550 }
16551 } else {
16552 mutex_enter(&dtrace_lock);
16553 ASSERT(help->dthps_deferred == 0 ||
16554 help->dthps_next != NULL ||
16555 help->dthps_prev != NULL ||
16556 help == dtrace_deferred_pid);
16557
16558 /*
16559 * Remove the helper from the deferred list.
16560 */
16561 if (help->dthps_next != NULL)
16562 help->dthps_next->dthps_prev = help->dthps_prev;
16563 if (help->dthps_prev != NULL)
16564 help->dthps_prev->dthps_next = help->dthps_next;
16565 if (dtrace_deferred_pid == help) {
16566 dtrace_deferred_pid = help->dthps_next;
16567 ASSERT(help->dthps_prev == NULL);
16568 }
16569
16570 mutex_exit(&dtrace_lock);
16571 }
16572
16573 mutex_exit(&dtrace_meta_lock);
16574
16575 for (i = 0; i < help->dthps_nprovs; i++) {
16576 dtrace_helper_provider_destroy(help->dthps_provs[i]);
16577 }
16578
16579 kmem_free(help->dthps_provs, help->dthps_maxprovs *
16580 sizeof (dtrace_helper_provider_t *));
16581 }
16582
16583 mutex_enter(&dtrace_lock);
16584
16585 dtrace_vstate_fini(&help->dthps_vstate);
16586 kmem_free(help->dthps_actions,
16587 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16588 kmem_free(help, sizeof (dtrace_helpers_t));
16589
16590 --dtrace_helpers;
16591 mutex_exit(&dtrace_lock);
16592 }
16593
16594 #ifdef illumos
16595 static
16596 #endif
16597 void
16598 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16599 {
16600 dtrace_helpers_t *help, *newhelp;
16601 dtrace_helper_action_t *helper, *new, *last;
16602 dtrace_difo_t *dp;
16603 dtrace_vstate_t *vstate;
16604 int i, j, sz, hasprovs = 0;
16605
16606 mutex_enter(&dtrace_lock);
16607 ASSERT(from->p_dtrace_helpers != NULL);
16608 ASSERT(dtrace_helpers > 0);
16609
16610 help = from->p_dtrace_helpers;
16611 newhelp = dtrace_helpers_create(to);
16612 ASSERT(to->p_dtrace_helpers != NULL);
16613
16614 newhelp->dthps_generation = help->dthps_generation;
16615 vstate = &newhelp->dthps_vstate;
16616
16617 /*
16618 * Duplicate the helper actions.
16619 */
16620 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16621 if ((helper = help->dthps_actions[i]) == NULL)
16622 continue;
16623
16624 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16625 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16626 KM_SLEEP);
16627 new->dtha_generation = helper->dtha_generation;
16628
16629 if ((dp = helper->dtha_predicate) != NULL) {
16630 dp = dtrace_difo_duplicate(dp, vstate);
16631 new->dtha_predicate = dp;
16632 }
16633
16634 new->dtha_nactions = helper->dtha_nactions;
16635 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16636 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16637
16638 for (j = 0; j < new->dtha_nactions; j++) {
16639 dtrace_difo_t *dp = helper->dtha_actions[j];
16640
16641 ASSERT(dp != NULL);
16642 dp = dtrace_difo_duplicate(dp, vstate);
16643 new->dtha_actions[j] = dp;
16644 }
16645
16646 if (last != NULL) {
16647 last->dtha_next = new;
16648 } else {
16649 newhelp->dthps_actions[i] = new;
16650 }
16651
16652 last = new;
16653 }
16654 }
16655
16656 /*
16657 * Duplicate the helper providers and register them with the
16658 * DTrace framework.
16659 */
16660 if (help->dthps_nprovs > 0) {
16661 newhelp->dthps_nprovs = help->dthps_nprovs;
16662 newhelp->dthps_maxprovs = help->dthps_nprovs;
16663 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16664 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16665 for (i = 0; i < newhelp->dthps_nprovs; i++) {
16666 newhelp->dthps_provs[i] = help->dthps_provs[i];
16667 newhelp->dthps_provs[i]->dthp_ref++;
16668 }
16669
16670 hasprovs = 1;
16671 }
16672
16673 mutex_exit(&dtrace_lock);
16674
16675 if (hasprovs)
16676 dtrace_helper_provider_register(to, newhelp, NULL);
16677 }
16678
16679 /*
16680 * DTrace Hook Functions
16681 */
16682 static void
16683 dtrace_module_loaded(modctl_t *ctl)
16684 {
16685 dtrace_provider_t *prv;
16686
16687 mutex_enter(&dtrace_provider_lock);
16688 #ifdef illumos
16689 mutex_enter(&mod_lock);
16690 #endif
16691
16692 #ifdef illumos
16693 ASSERT(ctl->mod_busy);
16694 #endif
16695
16696 /*
16697 * We're going to call each providers per-module provide operation
16698 * specifying only this module.
16699 */
16700 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16701 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16702
16703 #ifdef illumos
16704 mutex_exit(&mod_lock);
16705 #endif
16706 mutex_exit(&dtrace_provider_lock);
16707
16708 /*
16709 * If we have any retained enablings, we need to match against them.
16710 * Enabling probes requires that cpu_lock be held, and we cannot hold
16711 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16712 * module. (In particular, this happens when loading scheduling
16713 * classes.) So if we have any retained enablings, we need to dispatch
16714 * our task queue to do the match for us.
16715 */
16716 mutex_enter(&dtrace_lock);
16717
16718 if (dtrace_retained == NULL) {
16719 mutex_exit(&dtrace_lock);
16720 return;
16721 }
16722
16723 (void) taskq_dispatch(dtrace_taskq,
16724 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16725
16726 mutex_exit(&dtrace_lock);
16727
16728 /*
16729 * And now, for a little heuristic sleaze: in general, we want to
16730 * match modules as soon as they load. However, we cannot guarantee
16731 * this, because it would lead us to the lock ordering violation
16732 * outlined above. The common case, of course, is that cpu_lock is
16733 * _not_ held -- so we delay here for a clock tick, hoping that that's
16734 * long enough for the task queue to do its work. If it's not, it's
16735 * not a serious problem -- it just means that the module that we
16736 * just loaded may not be immediately instrumentable.
16737 */
16738 delay(1);
16739 }
16740
16741 static void
16742 #ifdef illumos
16743 dtrace_module_unloaded(modctl_t *ctl)
16744 #else
16745 dtrace_module_unloaded(modctl_t *ctl, int *error)
16746 #endif
16747 {
16748 dtrace_probe_t template, *probe, *first, *next;
16749 dtrace_provider_t *prov;
16750 #ifndef illumos
16751 char modname[DTRACE_MODNAMELEN];
16752 size_t len;
16753 #endif
16754
16755 #ifdef illumos
16756 template.dtpr_mod = ctl->mod_modname;
16757 #else
16758 /* Handle the fact that ctl->filename may end in ".ko". */
16759 strlcpy(modname, ctl->filename, sizeof(modname));
16760 len = strlen(ctl->filename);
16761 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16762 modname[len - 3] = '\0';
16763 template.dtpr_mod = modname;
16764 #endif
16765
16766 mutex_enter(&dtrace_provider_lock);
16767 #ifdef illumos
16768 mutex_enter(&mod_lock);
16769 #endif
16770 mutex_enter(&dtrace_lock);
16771
16772 #ifndef illumos
16773 if (ctl->nenabled > 0) {
16774 /* Don't allow unloads if a probe is enabled. */
16775 mutex_exit(&dtrace_provider_lock);
16776 mutex_exit(&dtrace_lock);
16777 *error = -1;
16778 printf(
16779 "kldunload: attempt to unload module that has DTrace probes enabled\n");
16780 return;
16781 }
16782 #endif
16783
16784 if (dtrace_bymod == NULL) {
16785 /*
16786 * The DTrace module is loaded (obviously) but not attached;
16787 * we don't have any work to do.
16788 */
16789 mutex_exit(&dtrace_provider_lock);
16790 #ifdef illumos
16791 mutex_exit(&mod_lock);
16792 #endif
16793 mutex_exit(&dtrace_lock);
16794 return;
16795 }
16796
16797 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16798 probe != NULL; probe = probe->dtpr_nextmod) {
16799 if (probe->dtpr_ecb != NULL) {
16800 mutex_exit(&dtrace_provider_lock);
16801 #ifdef illumos
16802 mutex_exit(&mod_lock);
16803 #endif
16804 mutex_exit(&dtrace_lock);
16805
16806 /*
16807 * This shouldn't _actually_ be possible -- we're
16808 * unloading a module that has an enabled probe in it.
16809 * (It's normally up to the provider to make sure that
16810 * this can't happen.) However, because dtps_enable()
16811 * doesn't have a failure mode, there can be an
16812 * enable/unload race. Upshot: we don't want to
16813 * assert, but we're not going to disable the
16814 * probe, either.
16815 */
16816 if (dtrace_err_verbose) {
16817 #ifdef illumos
16818 cmn_err(CE_WARN, "unloaded module '%s' had "
16819 "enabled probes", ctl->mod_modname);
16820 #else
16821 cmn_err(CE_WARN, "unloaded module '%s' had "
16822 "enabled probes", modname);
16823 #endif
16824 }
16825
16826 return;
16827 }
16828 }
16829
16830 probe = first;
16831
16832 for (first = NULL; probe != NULL; probe = next) {
16833 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16834
16835 dtrace_probes[probe->dtpr_id - 1] = NULL;
16836
16837 next = probe->dtpr_nextmod;
16838 dtrace_hash_remove(dtrace_bymod, probe);
16839 dtrace_hash_remove(dtrace_byfunc, probe);
16840 dtrace_hash_remove(dtrace_byname, probe);
16841
16842 if (first == NULL) {
16843 first = probe;
16844 probe->dtpr_nextmod = NULL;
16845 } else {
16846 probe->dtpr_nextmod = first;
16847 first = probe;
16848 }
16849 }
16850
16851 /*
16852 * We've removed all of the module's probes from the hash chains and
16853 * from the probe array. Now issue a dtrace_sync() to be sure that
16854 * everyone has cleared out from any probe array processing.
16855 */
16856 dtrace_sync();
16857
16858 for (probe = first; probe != NULL; probe = first) {
16859 first = probe->dtpr_nextmod;
16860 prov = probe->dtpr_provider;
16861 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16862 probe->dtpr_arg);
16863 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16864 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16865 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16866 #ifdef illumos
16867 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16868 #else
16869 free_unr(dtrace_arena, probe->dtpr_id);
16870 #endif
16871 kmem_free(probe, sizeof (dtrace_probe_t));
16872 }
16873
16874 mutex_exit(&dtrace_lock);
16875 #ifdef illumos
16876 mutex_exit(&mod_lock);
16877 #endif
16878 mutex_exit(&dtrace_provider_lock);
16879 }
16880
16881 #ifndef illumos
16882 static void
16883 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16884 {
16885
16886 dtrace_module_loaded(lf);
16887 }
16888
16889 static void
16890 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16891 {
16892
16893 if (*error != 0)
16894 /* We already have an error, so don't do anything. */
16895 return;
16896 dtrace_module_unloaded(lf, error);
16897 }
16898 #endif
16899
16900 #ifdef illumos
16901 static void
16902 dtrace_suspend(void)
16903 {
16904 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16905 }
16906
16907 static void
16908 dtrace_resume(void)
16909 {
16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16911 }
16912 #endif
16913
16914 static int
16915 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16916 {
16917 ASSERT(MUTEX_HELD(&cpu_lock));
16918 mutex_enter(&dtrace_lock);
16919
16920 switch (what) {
16921 case CPU_CONFIG: {
16922 dtrace_state_t *state;
16923 dtrace_optval_t *opt, rs, c;
16924
16925 /*
16926 * For now, we only allocate a new buffer for anonymous state.
16927 */
16928 if ((state = dtrace_anon.dta_state) == NULL)
16929 break;
16930
16931 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16932 break;
16933
16934 opt = state->dts_options;
16935 c = opt[DTRACEOPT_CPU];
16936
16937 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16938 break;
16939
16940 /*
16941 * Regardless of what the actual policy is, we're going to
16942 * temporarily set our resize policy to be manual. We're
16943 * also going to temporarily set our CPU option to denote
16944 * the newly configured CPU.
16945 */
16946 rs = opt[DTRACEOPT_BUFRESIZE];
16947 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16948 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16949
16950 (void) dtrace_state_buffers(state);
16951
16952 opt[DTRACEOPT_BUFRESIZE] = rs;
16953 opt[DTRACEOPT_CPU] = c;
16954
16955 break;
16956 }
16957
16958 case CPU_UNCONFIG:
16959 /*
16960 * We don't free the buffer in the CPU_UNCONFIG case. (The
16961 * buffer will be freed when the consumer exits.)
16962 */
16963 break;
16964
16965 default:
16966 break;
16967 }
16968
16969 mutex_exit(&dtrace_lock);
16970 return (0);
16971 }
16972
16973 #ifdef illumos
16974 static void
16975 dtrace_cpu_setup_initial(processorid_t cpu)
16976 {
16977 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16978 }
16979 #endif
16980
16981 static void
16982 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16983 {
16984 if (dtrace_toxranges >= dtrace_toxranges_max) {
16985 int osize, nsize;
16986 dtrace_toxrange_t *range;
16987
16988 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16989
16990 if (osize == 0) {
16991 ASSERT(dtrace_toxrange == NULL);
16992 ASSERT(dtrace_toxranges_max == 0);
16993 dtrace_toxranges_max = 1;
16994 } else {
16995 dtrace_toxranges_max <<= 1;
16996 }
16997
16998 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16999 range = kmem_zalloc(nsize, KM_SLEEP);
17000
17001 if (dtrace_toxrange != NULL) {
17002 ASSERT(osize != 0);
17003 bcopy(dtrace_toxrange, range, osize);
17004 kmem_free(dtrace_toxrange, osize);
17005 }
17006
17007 dtrace_toxrange = range;
17008 }
17009
17010 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17011 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17012
17013 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17014 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17015 dtrace_toxranges++;
17016 }
17017
17018 static void
17019 dtrace_getf_barrier(void)
17020 {
17021 #ifdef illumos
17022 /*
17023 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17024 * that contain calls to getf(), this routine will be called on every
17025 * closef() before either the underlying vnode is released or the
17026 * file_t itself is freed. By the time we are here, it is essential
17027 * that the file_t can no longer be accessed from a call to getf()
17028 * in probe context -- that assures that a dtrace_sync() can be used
17029 * to clear out any enablings referring to the old structures.
17030 */
17031 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17032 kcred->cr_zone->zone_dtrace_getf != 0)
17033 dtrace_sync();
17034 #endif
17035 }
17036
17037 /*
17038 * DTrace Driver Cookbook Functions
17039 */
17040 #ifdef illumos
17041 /*ARGSUSED*/
17042 static int
17043 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17044 {
17045 dtrace_provider_id_t id;
17046 dtrace_state_t *state = NULL;
17047 dtrace_enabling_t *enab;
17048
17049 mutex_enter(&cpu_lock);
17050 mutex_enter(&dtrace_provider_lock);
17051 mutex_enter(&dtrace_lock);
17052
17053 if (ddi_soft_state_init(&dtrace_softstate,
17054 sizeof (dtrace_state_t), 0) != 0) {
17055 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17056 mutex_exit(&cpu_lock);
17057 mutex_exit(&dtrace_provider_lock);
17058 mutex_exit(&dtrace_lock);
17059 return (DDI_FAILURE);
17060 }
17061
17062 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17063 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17064 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17065 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17066 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17067 ddi_remove_minor_node(devi, NULL);
17068 ddi_soft_state_fini(&dtrace_softstate);
17069 mutex_exit(&cpu_lock);
17070 mutex_exit(&dtrace_provider_lock);
17071 mutex_exit(&dtrace_lock);
17072 return (DDI_FAILURE);
17073 }
17074
17075 ddi_report_dev(devi);
17076 dtrace_devi = devi;
17077
17078 dtrace_modload = dtrace_module_loaded;
17079 dtrace_modunload = dtrace_module_unloaded;
17080 dtrace_cpu_init = dtrace_cpu_setup_initial;
17081 dtrace_helpers_cleanup = dtrace_helpers_destroy;
17082 dtrace_helpers_fork = dtrace_helpers_duplicate;
17083 dtrace_cpustart_init = dtrace_suspend;
17084 dtrace_cpustart_fini = dtrace_resume;
17085 dtrace_debugger_init = dtrace_suspend;
17086 dtrace_debugger_fini = dtrace_resume;
17087
17088 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17089
17090 ASSERT(MUTEX_HELD(&cpu_lock));
17091
17092 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17093 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17094 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17095 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17096 VM_SLEEP | VMC_IDENTIFIER);
17097 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17098 1, INT_MAX, 0);
17099
17100 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17101 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17102 NULL, NULL, NULL, NULL, NULL, 0);
17103
17104 ASSERT(MUTEX_HELD(&cpu_lock));
17105 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17106 offsetof(dtrace_probe_t, dtpr_nextmod),
17107 offsetof(dtrace_probe_t, dtpr_prevmod));
17108
17109 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17110 offsetof(dtrace_probe_t, dtpr_nextfunc),
17111 offsetof(dtrace_probe_t, dtpr_prevfunc));
17112
17113 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17114 offsetof(dtrace_probe_t, dtpr_nextname),
17115 offsetof(dtrace_probe_t, dtpr_prevname));
17116
17117 if (dtrace_retain_max < 1) {
17118 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17119 "setting to 1", dtrace_retain_max);
17120 dtrace_retain_max = 1;
17121 }
17122
17123 /*
17124 * Now discover our toxic ranges.
17125 */
17126 dtrace_toxic_ranges(dtrace_toxrange_add);
17127
17128 /*
17129 * Before we register ourselves as a provider to our own framework,
17130 * we would like to assert that dtrace_provider is NULL -- but that's
17131 * not true if we were loaded as a dependency of a DTrace provider.
17132 * Once we've registered, we can assert that dtrace_provider is our
17133 * pseudo provider.
17134 */
17135 (void) dtrace_register("dtrace", &dtrace_provider_attr,
17136 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17137
17138 ASSERT(dtrace_provider != NULL);
17139 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17140
17141 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17142 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17143 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17144 dtrace_provider, NULL, NULL, "END", 0, NULL);
17145 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17146 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17147
17148 dtrace_anon_property();
17149 mutex_exit(&cpu_lock);
17150
17151 /*
17152 * If there are already providers, we must ask them to provide their
17153 * probes, and then match any anonymous enabling against them. Note
17154 * that there should be no other retained enablings at this time:
17155 * the only retained enablings at this time should be the anonymous
17156 * enabling.
17157 */
17158 if (dtrace_anon.dta_enabling != NULL) {
17159 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17160
17161 dtrace_enabling_provide(NULL);
17162 state = dtrace_anon.dta_state;
17163
17164 /*
17165 * We couldn't hold cpu_lock across the above call to
17166 * dtrace_enabling_provide(), but we must hold it to actually
17167 * enable the probes. We have to drop all of our locks, pick
17168 * up cpu_lock, and regain our locks before matching the
17169 * retained anonymous enabling.
17170 */
17171 mutex_exit(&dtrace_lock);
17172 mutex_exit(&dtrace_provider_lock);
17173
17174 mutex_enter(&cpu_lock);
17175 mutex_enter(&dtrace_provider_lock);
17176 mutex_enter(&dtrace_lock);
17177
17178 if ((enab = dtrace_anon.dta_enabling) != NULL)
17179 (void) dtrace_enabling_match(enab, NULL);
17180
17181 mutex_exit(&cpu_lock);
17182 }
17183
17184 mutex_exit(&dtrace_lock);
17185 mutex_exit(&dtrace_provider_lock);
17186
17187 if (state != NULL) {
17188 /*
17189 * If we created any anonymous state, set it going now.
17190 */
17191 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17192 }
17193
17194 return (DDI_SUCCESS);
17195 }
17196 #endif /* illumos */
17197
17198 #ifndef illumos
17199 static void dtrace_dtr(void *);
17200 #endif
17201
17202 /*ARGSUSED*/
17203 static int
17204 #ifdef illumos
17205 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17206 #else
17207 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17208 #endif
17209 {
17210 dtrace_state_t *state;
17211 uint32_t priv;
17212 uid_t uid;
17213 zoneid_t zoneid;
17214
17215 #ifdef illumos
17216 if (getminor(*devp) == DTRACEMNRN_HELPER)
17217 return (0);
17218
17219 /*
17220 * If this wasn't an open with the "helper" minor, then it must be
17221 * the "dtrace" minor.
17222 */
17223 if (getminor(*devp) == DTRACEMNRN_DTRACE)
17224 return (ENXIO);
17225 #else
17226 cred_t *cred_p = NULL;
17227 cred_p = dev->si_cred;
17228
17229 /*
17230 * If no DTRACE_PRIV_* bits are set in the credential, then the
17231 * caller lacks sufficient permission to do anything with DTrace.
17232 */
17233 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17234 if (priv == DTRACE_PRIV_NONE) {
17235 #endif
17236
17237 return (EACCES);
17238 }
17239
17240 /*
17241 * Ask all providers to provide all their probes.
17242 */
17243 mutex_enter(&dtrace_provider_lock);
17244 dtrace_probe_provide(NULL, NULL);
17245 mutex_exit(&dtrace_provider_lock);
17246
17247 mutex_enter(&cpu_lock);
17248 mutex_enter(&dtrace_lock);
17249 dtrace_opens++;
17250 dtrace_membar_producer();
17251
17252 #ifdef illumos
17253 /*
17254 * If the kernel debugger is active (that is, if the kernel debugger
17255 * modified text in some way), we won't allow the open.
17256 */
17257 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17258 dtrace_opens--;
17259 mutex_exit(&cpu_lock);
17260 mutex_exit(&dtrace_lock);
17261 return (EBUSY);
17262 }
17263
17264 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17265 /*
17266 * If DTrace helper tracing is enabled, we need to allocate the
17267 * trace buffer and initialize the values.
17268 */
17269 dtrace_helptrace_buffer =
17270 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17271 dtrace_helptrace_next = 0;
17272 dtrace_helptrace_wrapped = 0;
17273 dtrace_helptrace_enable = 0;
17274 }
17275
17276 state = dtrace_state_create(devp, cred_p);
17277 #else
17278 state = dtrace_state_create(dev, NULL);
17279 devfs_set_cdevpriv(state, dtrace_dtr);
17280 #endif
17281
17282 mutex_exit(&cpu_lock);
17283
17284 if (state == NULL) {
17285 #ifdef illumos
17286 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17287 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17288 #else
17289 --dtrace_opens;
17290 #endif
17291 mutex_exit(&dtrace_lock);
17292 return (EAGAIN);
17293 }
17294
17295 mutex_exit(&dtrace_lock);
17296
17297 return (0);
17298 }
17299
17300 /*ARGSUSED*/
17301 #ifdef illumos
17302 static int
17303 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17304 #else
17305 static void
17306 dtrace_dtr(void *data)
17307 #endif
17308 {
17309 #ifdef illumos
17310 minor_t minor = getminor(dev);
17311 dtrace_state_t *state;
17312 #endif
17313 dtrace_helptrace_t *buf = NULL;
17314
17315 #ifdef illumos
17316 if (minor == DTRACEMNRN_HELPER)
17317 return (0);
17318
17319 state = ddi_get_soft_state(dtrace_softstate, minor);
17320 #else
17321 dtrace_state_t *state = data;
17322 #endif
17323
17324 mutex_enter(&cpu_lock);
17325 mutex_enter(&dtrace_lock);
17326
17327 #ifdef illumos
17328 if (state->dts_anon)
17329 #else
17330 if (state != NULL && state->dts_anon)
17331 #endif
17332 {
17333 /*
17334 * There is anonymous state. Destroy that first.
17335 */
17336 ASSERT(dtrace_anon.dta_state == NULL);
17337 dtrace_state_destroy(state->dts_anon);
17338 }
17339
17340 if (dtrace_helptrace_disable) {
17341 /*
17342 * If we have been told to disable helper tracing, set the
17343 * buffer to NULL before calling into dtrace_state_destroy();
17344 * we take advantage of its dtrace_sync() to know that no
17345 * CPU is in probe context with enabled helper tracing
17346 * after it returns.
17347 */
17348 buf = dtrace_helptrace_buffer;
17349 dtrace_helptrace_buffer = NULL;
17350 }
17351
17352 #ifdef illumos
17353 dtrace_state_destroy(state);
17354 #else
17355 if (state != NULL) {
17356 dtrace_state_destroy(state);
17357 kmem_free(state, 0);
17358 }
17359 #endif
17360 ASSERT(dtrace_opens > 0);
17361
17362 #ifdef illumos
17363 /*
17364 * Only relinquish control of the kernel debugger interface when there
17365 * are no consumers and no anonymous enablings.
17366 */
17367 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17368 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17369 #else
17370 --dtrace_opens;
17371 #endif
17372
17373 if (buf != NULL) {
17374 kmem_free(buf, dtrace_helptrace_bufsize);
17375 dtrace_helptrace_disable = 0;
17376 }
17377
17378 mutex_exit(&dtrace_lock);
17379 mutex_exit(&cpu_lock);
17380
17381 #ifdef illumos
17382 return (0);
17383 #endif
17384 }
17385
17386 #ifdef illumos
17387 /*ARGSUSED*/
17388 static int
17389 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17390 {
17391 int rval;
17392 dof_helper_t help, *dhp = NULL;
17393
17394 switch (cmd) {
17395 case DTRACEHIOC_ADDDOF:
17396 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17397 dtrace_dof_error(NULL, "failed to copyin DOF helper");
17398 return (EFAULT);
17399 }
17400
17401 dhp = &help;
17402 arg = (intptr_t)help.dofhp_dof;
17403 /*FALLTHROUGH*/
17404
17405 case DTRACEHIOC_ADD: {
17406 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17407
17408 if (dof == NULL)
17409 return (rval);
17410
17411 mutex_enter(&dtrace_lock);
17412
17413 /*
17414 * dtrace_helper_slurp() takes responsibility for the dof --
17415 * it may free it now or it may save it and free it later.
17416 */
17417 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17418 *rv = rval;
17419 rval = 0;
17420 } else {
17421 rval = EINVAL;
17422 }
17423
17424 mutex_exit(&dtrace_lock);
17425 return (rval);
17426 }
17427
17428 case DTRACEHIOC_REMOVE: {
17429 mutex_enter(&dtrace_lock);
17430 rval = dtrace_helper_destroygen(NULL, arg);
17431 mutex_exit(&dtrace_lock);
17432
17433 return (rval);
17434 }
17435
17436 default:
17437 break;
17438 }
17439
17440 return (ENOTTY);
17441 }
17442
17443 /*ARGSUSED*/
17444 static int
17445 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17446 {
17447 minor_t minor = getminor(dev);
17448 dtrace_state_t *state;
17449 int rval;
17450
17451 if (minor == DTRACEMNRN_HELPER)
17452 return (dtrace_ioctl_helper(cmd, arg, rv));
17453
17454 state = ddi_get_soft_state(dtrace_softstate, minor);
17455
17456 if (state->dts_anon) {
17457 ASSERT(dtrace_anon.dta_state == NULL);
17458 state = state->dts_anon;
17459 }
17460
17461 switch (cmd) {
17462 case DTRACEIOC_PROVIDER: {
17463 dtrace_providerdesc_t pvd;
17464 dtrace_provider_t *pvp;
17465
17466 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17467 return (EFAULT);
17468
17469 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17470 mutex_enter(&dtrace_provider_lock);
17471
17472 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17473 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17474 break;
17475 }
17476
17477 mutex_exit(&dtrace_provider_lock);
17478
17479 if (pvp == NULL)
17480 return (ESRCH);
17481
17482 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17483 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17484
17485 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17486 return (EFAULT);
17487
17488 return (0);
17489 }
17490
17491 case DTRACEIOC_EPROBE: {
17492 dtrace_eprobedesc_t epdesc;
17493 dtrace_ecb_t *ecb;
17494 dtrace_action_t *act;
17495 void *buf;
17496 size_t size;
17497 uintptr_t dest;
17498 int nrecs;
17499
17500 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17501 return (EFAULT);
17502
17503 mutex_enter(&dtrace_lock);
17504
17505 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17506 mutex_exit(&dtrace_lock);
17507 return (EINVAL);
17508 }
17509
17510 if (ecb->dte_probe == NULL) {
17511 mutex_exit(&dtrace_lock);
17512 return (EINVAL);
17513 }
17514
17515 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17516 epdesc.dtepd_uarg = ecb->dte_uarg;
17517 epdesc.dtepd_size = ecb->dte_size;
17518
17519 nrecs = epdesc.dtepd_nrecs;
17520 epdesc.dtepd_nrecs = 0;
17521 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17522 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17523 continue;
17524
17525 epdesc.dtepd_nrecs++;
17526 }
17527
17528 /*
17529 * Now that we have the size, we need to allocate a temporary
17530 * buffer in which to store the complete description. We need
17531 * the temporary buffer to be able to drop dtrace_lock()
17532 * across the copyout(), below.
17533 */
17534 size = sizeof (dtrace_eprobedesc_t) +
17535 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17536
17537 buf = kmem_alloc(size, KM_SLEEP);
17538 dest = (uintptr_t)buf;
17539
17540 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17541 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17542
17543 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17544 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17545 continue;
17546
17547 if (nrecs-- == 0)
17548 break;
17549
17550 bcopy(&act->dta_rec, (void *)dest,
17551 sizeof (dtrace_recdesc_t));
17552 dest += sizeof (dtrace_recdesc_t);
17553 }
17554
17555 mutex_exit(&dtrace_lock);
17556
17557 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17558 kmem_free(buf, size);
17559 return (EFAULT);
17560 }
17561
17562 kmem_free(buf, size);
17563 return (0);
17564 }
17565
17566 case DTRACEIOC_AGGDESC: {
17567 dtrace_aggdesc_t aggdesc;
17568 dtrace_action_t *act;
17569 dtrace_aggregation_t *agg;
17570 int nrecs;
17571 uint32_t offs;
17572 dtrace_recdesc_t *lrec;
17573 void *buf;
17574 size_t size;
17575 uintptr_t dest;
17576
17577 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17578 return (EFAULT);
17579
17580 mutex_enter(&dtrace_lock);
17581
17582 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17583 mutex_exit(&dtrace_lock);
17584 return (EINVAL);
17585 }
17586
17587 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17588
17589 nrecs = aggdesc.dtagd_nrecs;
17590 aggdesc.dtagd_nrecs = 0;
17591
17592 offs = agg->dtag_base;
17593 lrec = &agg->dtag_action.dta_rec;
17594 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17595
17596 for (act = agg->dtag_first; ; act = act->dta_next) {
17597 ASSERT(act->dta_intuple ||
17598 DTRACEACT_ISAGG(act->dta_kind));
17599
17600 /*
17601 * If this action has a record size of zero, it
17602 * denotes an argument to the aggregating action.
17603 * Because the presence of this record doesn't (or
17604 * shouldn't) affect the way the data is interpreted,
17605 * we don't copy it out to save user-level the
17606 * confusion of dealing with a zero-length record.
17607 */
17608 if (act->dta_rec.dtrd_size == 0) {
17609 ASSERT(agg->dtag_hasarg);
17610 continue;
17611 }
17612
17613 aggdesc.dtagd_nrecs++;
17614
17615 if (act == &agg->dtag_action)
17616 break;
17617 }
17618
17619 /*
17620 * Now that we have the size, we need to allocate a temporary
17621 * buffer in which to store the complete description. We need
17622 * the temporary buffer to be able to drop dtrace_lock()
17623 * across the copyout(), below.
17624 */
17625 size = sizeof (dtrace_aggdesc_t) +
17626 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17627
17628 buf = kmem_alloc(size, KM_SLEEP);
17629 dest = (uintptr_t)buf;
17630
17631 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17632 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17633
17634 for (act = agg->dtag_first; ; act = act->dta_next) {
17635 dtrace_recdesc_t rec = act->dta_rec;
17636
17637 /*
17638 * See the comment in the above loop for why we pass
17639 * over zero-length records.
17640 */
17641 if (rec.dtrd_size == 0) {
17642 ASSERT(agg->dtag_hasarg);
17643 continue;
17644 }
17645
17646 if (nrecs-- == 0)
17647 break;
17648
17649 rec.dtrd_offset -= offs;
17650 bcopy(&rec, (void *)dest, sizeof (rec));
17651 dest += sizeof (dtrace_recdesc_t);
17652
17653 if (act == &agg->dtag_action)
17654 break;
17655 }
17656
17657 mutex_exit(&dtrace_lock);
17658
17659 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17660 kmem_free(buf, size);
17661 return (EFAULT);
17662 }
17663
17664 kmem_free(buf, size);
17665 return (0);
17666 }
17667
17668 case DTRACEIOC_ENABLE: {
17669 dof_hdr_t *dof;
17670 dtrace_enabling_t *enab = NULL;
17671 dtrace_vstate_t *vstate;
17672 int err = 0;
17673
17674 *rv = 0;
17675
17676 /*
17677 * If a NULL argument has been passed, we take this as our
17678 * cue to reevaluate our enablings.
17679 */
17680 if (arg == NULL) {
17681 dtrace_enabling_matchall();
17682
17683 return (0);
17684 }
17685
17686 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17687 return (rval);
17688
17689 mutex_enter(&cpu_lock);
17690 mutex_enter(&dtrace_lock);
17691 vstate = &state->dts_vstate;
17692
17693 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17694 mutex_exit(&dtrace_lock);
17695 mutex_exit(&cpu_lock);
17696 dtrace_dof_destroy(dof);
17697 return (EBUSY);
17698 }
17699
17700 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17701 mutex_exit(&dtrace_lock);
17702 mutex_exit(&cpu_lock);
17703 dtrace_dof_destroy(dof);
17704 return (EINVAL);
17705 }
17706
17707 if ((rval = dtrace_dof_options(dof, state)) != 0) {
17708 dtrace_enabling_destroy(enab);
17709 mutex_exit(&dtrace_lock);
17710 mutex_exit(&cpu_lock);
17711 dtrace_dof_destroy(dof);
17712 return (rval);
17713 }
17714
17715 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17716 err = dtrace_enabling_retain(enab);
17717 } else {
17718 dtrace_enabling_destroy(enab);
17719 }
17720
17721 mutex_exit(&cpu_lock);
17722 mutex_exit(&dtrace_lock);
17723 dtrace_dof_destroy(dof);
17724
17725 return (err);
17726 }
17727
17728 case DTRACEIOC_REPLICATE: {
17729 dtrace_repldesc_t desc;
17730 dtrace_probedesc_t *match = &desc.dtrpd_match;
17731 dtrace_probedesc_t *create = &desc.dtrpd_create;
17732 int err;
17733
17734 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17735 return (EFAULT);
17736
17737 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17738 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17739 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17740 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17741
17742 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17743 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17744 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17745 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17746
17747 mutex_enter(&dtrace_lock);
17748 err = dtrace_enabling_replicate(state, match, create);
17749 mutex_exit(&dtrace_lock);
17750
17751 return (err);
17752 }
17753
17754 case DTRACEIOC_PROBEMATCH:
17755 case DTRACEIOC_PROBES: {
17756 dtrace_probe_t *probe = NULL;
17757 dtrace_probedesc_t desc;
17758 dtrace_probekey_t pkey;
17759 dtrace_id_t i;
17760 int m = 0;
17761 uint32_t priv;
17762 uid_t uid;
17763 zoneid_t zoneid;
17764
17765 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17766 return (EFAULT);
17767
17768 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17769 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17770 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17771 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17772
17773 /*
17774 * Before we attempt to match this probe, we want to give
17775 * all providers the opportunity to provide it.
17776 */
17777 if (desc.dtpd_id == DTRACE_IDNONE) {
17778 mutex_enter(&dtrace_provider_lock);
17779 dtrace_probe_provide(&desc, NULL);
17780 mutex_exit(&dtrace_provider_lock);
17781 desc.dtpd_id++;
17782 }
17783
17784 if (cmd == DTRACEIOC_PROBEMATCH) {
17785 dtrace_probekey(&desc, &pkey);
17786 pkey.dtpk_id = DTRACE_IDNONE;
17787 }
17788
17789 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17790
17791 mutex_enter(&dtrace_lock);
17792
17793 if (cmd == DTRACEIOC_PROBEMATCH) {
17794 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17795 if ((probe = dtrace_probes[i - 1]) != NULL &&
17796 (m = dtrace_match_probe(probe, &pkey,
17797 priv, uid, zoneid)) != 0)
17798 break;
17799 }
17800
17801 if (m < 0) {
17802 mutex_exit(&dtrace_lock);
17803 return (EINVAL);
17804 }
17805
17806 } else {
17807 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17808 if ((probe = dtrace_probes[i - 1]) != NULL &&
17809 dtrace_match_priv(probe, priv, uid, zoneid))
17810 break;
17811 }
17812 }
17813
17814 if (probe == NULL) {
17815 mutex_exit(&dtrace_lock);
17816 return (ESRCH);
17817 }
17818
17819 dtrace_probe_description(probe, &desc);
17820 mutex_exit(&dtrace_lock);
17821
17822 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17823 return (EFAULT);
17824
17825 return (0);
17826 }
17827
17828 case DTRACEIOC_PROBEARG: {
17829 dtrace_argdesc_t desc;
17830 dtrace_probe_t *probe;
17831 dtrace_provider_t *prov;
17832
17833 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17834 return (EFAULT);
17835
17836 if (desc.dtargd_id == DTRACE_IDNONE)
17837 return (EINVAL);
17838
17839 if (desc.dtargd_ndx == DTRACE_ARGNONE)
17840 return (EINVAL);
17841
17842 mutex_enter(&dtrace_provider_lock);
17843 mutex_enter(&mod_lock);
17844 mutex_enter(&dtrace_lock);
17845
17846 if (desc.dtargd_id > dtrace_nprobes) {
17847 mutex_exit(&dtrace_lock);
17848 mutex_exit(&mod_lock);
17849 mutex_exit(&dtrace_provider_lock);
17850 return (EINVAL);
17851 }
17852
17853 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17854 mutex_exit(&dtrace_lock);
17855 mutex_exit(&mod_lock);
17856 mutex_exit(&dtrace_provider_lock);
17857 return (EINVAL);
17858 }
17859
17860 mutex_exit(&dtrace_lock);
17861
17862 prov = probe->dtpr_provider;
17863
17864 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17865 /*
17866 * There isn't any typed information for this probe.
17867 * Set the argument number to DTRACE_ARGNONE.
17868 */
17869 desc.dtargd_ndx = DTRACE_ARGNONE;
17870 } else {
17871 desc.dtargd_native[0] = '\0';
17872 desc.dtargd_xlate[0] = '\0';
17873 desc.dtargd_mapping = desc.dtargd_ndx;
17874
17875 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17876 probe->dtpr_id, probe->dtpr_arg, &desc);
17877 }
17878
17879 mutex_exit(&mod_lock);
17880 mutex_exit(&dtrace_provider_lock);
17881
17882 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17883 return (EFAULT);
17884
17885 return (0);
17886 }
17887
17888 case DTRACEIOC_GO: {
17889 processorid_t cpuid;
17890 rval = dtrace_state_go(state, &cpuid);
17891
17892 if (rval != 0)
17893 return (rval);
17894
17895 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17896 return (EFAULT);
17897
17898 return (0);
17899 }
17900
17901 case DTRACEIOC_STOP: {
17902 processorid_t cpuid;
17903
17904 mutex_enter(&dtrace_lock);
17905 rval = dtrace_state_stop(state, &cpuid);
17906 mutex_exit(&dtrace_lock);
17907
17908 if (rval != 0)
17909 return (rval);
17910
17911 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17912 return (EFAULT);
17913
17914 return (0);
17915 }
17916
17917 case DTRACEIOC_DOFGET: {
17918 dof_hdr_t hdr, *dof;
17919 uint64_t len;
17920
17921 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17922 return (EFAULT);
17923
17924 mutex_enter(&dtrace_lock);
17925 dof = dtrace_dof_create(state);
17926 mutex_exit(&dtrace_lock);
17927
17928 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17929 rval = copyout(dof, (void *)arg, len);
17930 dtrace_dof_destroy(dof);
17931
17932 return (rval == 0 ? 0 : EFAULT);
17933 }
17934
17935 case DTRACEIOC_AGGSNAP:
17936 case DTRACEIOC_BUFSNAP: {
17937 dtrace_bufdesc_t desc;
17938 caddr_t cached;
17939 dtrace_buffer_t *buf;
17940
17941 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17942 return (EFAULT);
17943
17944 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17945 return (EINVAL);
17946
17947 mutex_enter(&dtrace_lock);
17948
17949 if (cmd == DTRACEIOC_BUFSNAP) {
17950 buf = &state->dts_buffer[desc.dtbd_cpu];
17951 } else {
17952 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17953 }
17954
17955 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17956 size_t sz = buf->dtb_offset;
17957
17958 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17959 mutex_exit(&dtrace_lock);
17960 return (EBUSY);
17961 }
17962
17963 /*
17964 * If this buffer has already been consumed, we're
17965 * going to indicate that there's nothing left here
17966 * to consume.
17967 */
17968 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17969 mutex_exit(&dtrace_lock);
17970
17971 desc.dtbd_size = 0;
17972 desc.dtbd_drops = 0;
17973 desc.dtbd_errors = 0;
17974 desc.dtbd_oldest = 0;
17975 sz = sizeof (desc);
17976
17977 if (copyout(&desc, (void *)arg, sz) != 0)
17978 return (EFAULT);
17979
17980 return (0);
17981 }
17982
17983 /*
17984 * If this is a ring buffer that has wrapped, we want
17985 * to copy the whole thing out.
17986 */
17987 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17988 dtrace_buffer_polish(buf);
17989 sz = buf->dtb_size;
17990 }
17991
17992 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17993 mutex_exit(&dtrace_lock);
17994 return (EFAULT);
17995 }
17996
17997 desc.dtbd_size = sz;
17998 desc.dtbd_drops = buf->dtb_drops;
17999 desc.dtbd_errors = buf->dtb_errors;
18000 desc.dtbd_oldest = buf->dtb_xamot_offset;
18001 desc.dtbd_timestamp = dtrace_gethrtime();
18002
18003 mutex_exit(&dtrace_lock);
18004
18005 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18006 return (EFAULT);
18007
18008 buf->dtb_flags |= DTRACEBUF_CONSUMED;
18009
18010 return (0);
18011 }
18012
18013 if (buf->dtb_tomax == NULL) {
18014 ASSERT(buf->dtb_xamot == NULL);
18015 mutex_exit(&dtrace_lock);
18016 return (ENOENT);
18017 }
18018
18019 cached = buf->dtb_tomax;
18020 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18021
18022 dtrace_xcall(desc.dtbd_cpu,
18023 (dtrace_xcall_t)dtrace_buffer_switch, buf);
18024
18025 state->dts_errors += buf->dtb_xamot_errors;
18026
18027 /*
18028 * If the buffers did not actually switch, then the cross call
18029 * did not take place -- presumably because the given CPU is
18030 * not in the ready set. If this is the case, we'll return
18031 * ENOENT.
18032 */
18033 if (buf->dtb_tomax == cached) {
18034 ASSERT(buf->dtb_xamot != cached);
18035 mutex_exit(&dtrace_lock);
18036 return (ENOENT);
18037 }
18038
18039 ASSERT(cached == buf->dtb_xamot);
18040
18041 /*
18042 * We have our snapshot; now copy it out.
18043 */
18044 if (copyout(buf->dtb_xamot, desc.dtbd_data,
18045 buf->dtb_xamot_offset) != 0) {
18046 mutex_exit(&dtrace_lock);
18047 return (EFAULT);
18048 }
18049
18050 desc.dtbd_size = buf->dtb_xamot_offset;
18051 desc.dtbd_drops = buf->dtb_xamot_drops;
18052 desc.dtbd_errors = buf->dtb_xamot_errors;
18053 desc.dtbd_oldest = 0;
18054 desc.dtbd_timestamp = buf->dtb_switched;
18055
18056 mutex_exit(&dtrace_lock);
18057
18058 /*
18059 * Finally, copy out the buffer description.
18060 */
18061 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18062 return (EFAULT);
18063
18064 return (0);
18065 }
18066
18067 case DTRACEIOC_CONF: {
18068 dtrace_conf_t conf;
18069
18070 bzero(&conf, sizeof (conf));
18071 conf.dtc_difversion = DIF_VERSION;
18072 conf.dtc_difintregs = DIF_DIR_NREGS;
18073 conf.dtc_diftupregs = DIF_DTR_NREGS;
18074 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18075
18076 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18077 return (EFAULT);
18078
18079 return (0);
18080 }
18081
18082 case DTRACEIOC_STATUS: {
18083 dtrace_status_t stat;
18084 dtrace_dstate_t *dstate;
18085 int i, j;
18086 uint64_t nerrs;
18087
18088 /*
18089 * See the comment in dtrace_state_deadman() for the reason
18090 * for setting dts_laststatus to INT64_MAX before setting
18091 * it to the correct value.
18092 */
18093 state->dts_laststatus = INT64_MAX;
18094 dtrace_membar_producer();
18095 state->dts_laststatus = dtrace_gethrtime();
18096
18097 bzero(&stat, sizeof (stat));
18098
18099 mutex_enter(&dtrace_lock);
18100
18101 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18102 mutex_exit(&dtrace_lock);
18103 return (ENOENT);
18104 }
18105
18106 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18107 stat.dtst_exiting = 1;
18108
18109 nerrs = state->dts_errors;
18110 dstate = &state->dts_vstate.dtvs_dynvars;
18111
18112 for (i = 0; i < NCPU; i++) {
18113 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18114
18115 stat.dtst_dyndrops += dcpu->dtdsc_drops;
18116 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18117 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18118
18119 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18120 stat.dtst_filled++;
18121
18122 nerrs += state->dts_buffer[i].dtb_errors;
18123
18124 for (j = 0; j < state->dts_nspeculations; j++) {
18125 dtrace_speculation_t *spec;
18126 dtrace_buffer_t *buf;
18127
18128 spec = &state->dts_speculations[j];
18129 buf = &spec->dtsp_buffer[i];
18130 stat.dtst_specdrops += buf->dtb_xamot_drops;
18131 }
18132 }
18133
18134 stat.dtst_specdrops_busy = state->dts_speculations_busy;
18135 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18136 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18137 stat.dtst_dblerrors = state->dts_dblerrors;
18138 stat.dtst_killed =
18139 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18140 stat.dtst_errors = nerrs;
18141
18142 mutex_exit(&dtrace_lock);
18143
18144 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18145 return (EFAULT);
18146
18147 return (0);
18148 }
18149
18150 case DTRACEIOC_FORMAT: {
18151 dtrace_fmtdesc_t fmt;
18152 char *str;
18153 int len;
18154
18155 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18156 return (EFAULT);
18157
18158 mutex_enter(&dtrace_lock);
18159
18160 if (fmt.dtfd_format == 0 ||
18161 fmt.dtfd_format > state->dts_nformats) {
18162 mutex_exit(&dtrace_lock);
18163 return (EINVAL);
18164 }
18165
18166 /*
18167 * Format strings are allocated contiguously and they are
18168 * never freed; if a format index is less than the number
18169 * of formats, we can assert that the format map is non-NULL
18170 * and that the format for the specified index is non-NULL.
18171 */
18172 ASSERT(state->dts_formats != NULL);
18173 str = state->dts_formats[fmt.dtfd_format - 1];
18174 ASSERT(str != NULL);
18175
18176 len = strlen(str) + 1;
18177
18178 if (len > fmt.dtfd_length) {
18179 fmt.dtfd_length = len;
18180
18181 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18182 mutex_exit(&dtrace_lock);
18183 return (EINVAL);
18184 }
18185 } else {
18186 if (copyout(str, fmt.dtfd_string, len) != 0) {
18187 mutex_exit(&dtrace_lock);
18188 return (EINVAL);
18189 }
18190 }
18191
18192 mutex_exit(&dtrace_lock);
18193 return (0);
18194 }
18195
18196 default:
18197 break;
18198 }
18199
18200 return (ENOTTY);
18201 }
18202
18203 /*ARGSUSED*/
18204 static int
18205 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18206 {
18207 dtrace_state_t *state;
18208
18209 switch (cmd) {
18210 case DDI_DETACH:
18211 break;
18212
18213 case DDI_SUSPEND:
18214 return (DDI_SUCCESS);
18215
18216 default:
18217 return (DDI_FAILURE);
18218 }
18219
18220 mutex_enter(&cpu_lock);
18221 mutex_enter(&dtrace_provider_lock);
18222 mutex_enter(&dtrace_lock);
18223
18224 ASSERT(dtrace_opens == 0);
18225
18226 if (dtrace_helpers > 0) {
18227 mutex_exit(&dtrace_provider_lock);
18228 mutex_exit(&dtrace_lock);
18229 mutex_exit(&cpu_lock);
18230 return (DDI_FAILURE);
18231 }
18232
18233 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18234 mutex_exit(&dtrace_provider_lock);
18235 mutex_exit(&dtrace_lock);
18236 mutex_exit(&cpu_lock);
18237 return (DDI_FAILURE);
18238 }
18239
18240 dtrace_provider = NULL;
18241
18242 if ((state = dtrace_anon_grab()) != NULL) {
18243 /*
18244 * If there were ECBs on this state, the provider should
18245 * have not been allowed to detach; assert that there is
18246 * none.
18247 */
18248 ASSERT(state->dts_necbs == 0);
18249 dtrace_state_destroy(state);
18250
18251 /*
18252 * If we're being detached with anonymous state, we need to
18253 * indicate to the kernel debugger that DTrace is now inactive.
18254 */
18255 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18256 }
18257
18258 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18259 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18260 dtrace_cpu_init = NULL;
18261 dtrace_helpers_cleanup = NULL;
18262 dtrace_helpers_fork = NULL;
18263 dtrace_cpustart_init = NULL;
18264 dtrace_cpustart_fini = NULL;
18265 dtrace_debugger_init = NULL;
18266 dtrace_debugger_fini = NULL;
18267 dtrace_modload = NULL;
18268 dtrace_modunload = NULL;
18269
18270 ASSERT(dtrace_getf == 0);
18271 ASSERT(dtrace_closef == NULL);
18272
18273 mutex_exit(&cpu_lock);
18274
18275 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18276 dtrace_probes = NULL;
18277 dtrace_nprobes = 0;
18278
18279 dtrace_hash_destroy(dtrace_bymod);
18280 dtrace_hash_destroy(dtrace_byfunc);
18281 dtrace_hash_destroy(dtrace_byname);
18282 dtrace_bymod = NULL;
18283 dtrace_byfunc = NULL;
18284 dtrace_byname = NULL;
18285
18286 kmem_cache_destroy(dtrace_state_cache);
18287 vmem_destroy(dtrace_minor);
18288 vmem_destroy(dtrace_arena);
18289
18290 if (dtrace_toxrange != NULL) {
18291 kmem_free(dtrace_toxrange,
18292 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18293 dtrace_toxrange = NULL;
18294 dtrace_toxranges = 0;
18295 dtrace_toxranges_max = 0;
18296 }
18297
18298 ddi_remove_minor_node(dtrace_devi, NULL);
18299 dtrace_devi = NULL;
18300
18301 ddi_soft_state_fini(&dtrace_softstate);
18302
18303 ASSERT(dtrace_vtime_references == 0);
18304 ASSERT(dtrace_opens == 0);
18305 ASSERT(dtrace_retained == NULL);
18306
18307 mutex_exit(&dtrace_lock);
18308 mutex_exit(&dtrace_provider_lock);
18309
18310 /*
18311 * We don't destroy the task queue until after we have dropped our
18312 * locks (taskq_destroy() may block on running tasks). To prevent
18313 * attempting to do work after we have effectively detached but before
18314 * the task queue has been destroyed, all tasks dispatched via the
18315 * task queue must check that DTrace is still attached before
18316 * performing any operation.
18317 */
18318 taskq_destroy(dtrace_taskq);
18319 dtrace_taskq = NULL;
18320
18321 return (DDI_SUCCESS);
18322 }
18323 #endif
18324
18325 #ifdef illumos
18326 /*ARGSUSED*/
18327 static int
18328 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18329 {
18330 int error;
18331
18332 switch (infocmd) {
18333 case DDI_INFO_DEVT2DEVINFO:
18334 *result = (void *)dtrace_devi;
18335 error = DDI_SUCCESS;
18336 break;
18337 case DDI_INFO_DEVT2INSTANCE:
18338 *result = (void *)0;
18339 error = DDI_SUCCESS;
18340 break;
18341 default:
18342 error = DDI_FAILURE;
18343 }
18344 return (error);
18345 }
18346 #endif
18347
18348 #ifdef illumos
18349 static struct cb_ops dtrace_cb_ops = {
18350 dtrace_open, /* open */
18351 dtrace_close, /* close */
18352 nulldev, /* strategy */
18353 nulldev, /* print */
18354 nodev, /* dump */
18355 nodev, /* read */
18356 nodev, /* write */
18357 dtrace_ioctl, /* ioctl */
18358 nodev, /* devmap */
18359 nodev, /* mmap */
18360 nodev, /* segmap */
18361 nochpoll, /* poll */
18362 ddi_prop_op, /* cb_prop_op */
18363 0, /* streamtab */
18364 D_NEW | D_MP /* Driver compatibility flag */
18365 };
18366
18367 static struct dev_ops dtrace_ops = {
18368 DEVO_REV, /* devo_rev */
18369 0, /* refcnt */
18370 dtrace_info, /* get_dev_info */
18371 nulldev, /* identify */
18372 nulldev, /* probe */
18373 dtrace_attach, /* attach */
18374 dtrace_detach, /* detach */
18375 nodev, /* reset */
18376 &dtrace_cb_ops, /* driver operations */
18377 NULL, /* bus operations */
18378 nodev /* dev power */
18379 };
18380
18381 static struct modldrv modldrv = {
18382 &mod_driverops, /* module type (this is a pseudo driver) */
18383 "Dynamic Tracing", /* name of module */
18384 &dtrace_ops, /* driver ops */
18385 };
18386
18387 static struct modlinkage modlinkage = {
18388 MODREV_1,
18389 (void *)&modldrv,
18390 NULL
18391 };
18392
18393 int
18394 _init(void)
18395 {
18396 return (mod_install(&modlinkage));
18397 }
18398
18399 int
18400 _info(struct modinfo *modinfop)
18401 {
18402 return (mod_info(&modlinkage, modinfop));
18403 }
18404
18405 int
18406 _fini(void)
18407 {
18408 return (mod_remove(&modlinkage));
18409 }
18410 #else
18411
18412 static d_ioctl_t dtrace_ioctl;
18413 static d_ioctl_t dtrace_ioctl_helper;
18414 static void dtrace_load(void *);
18415 static int dtrace_unload(void);
18416 static struct cdev *dtrace_dev;
18417 static struct cdev *helper_dev;
18418
18419 void dtrace_invop_init(void);
18420 void dtrace_invop_uninit(void);
18421
18422 static struct cdevsw dtrace_cdevsw = {
18423 .d_version = D_VERSION,
18424 .d_ioctl = dtrace_ioctl,
18425 .d_open = dtrace_open,
18426 .d_name = "dtrace",
18427 };
18428
18429 static struct cdevsw helper_cdevsw = {
18430 .d_version = D_VERSION,
18431 .d_ioctl = dtrace_ioctl_helper,
18432 .d_name = "helper",
18433 };
18434
18435 #include <dtrace_anon.c>
18436 #include <dtrace_ioctl.c>
18437 #include <dtrace_load.c>
18438 #include <dtrace_modevent.c>
18439 #include <dtrace_sysctl.c>
18440 #include <dtrace_unload.c>
18441 #include <dtrace_vtime.c>
18442 #include <dtrace_hacks.c>
18443
18444 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18445 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18446 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18447
18448 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18449 MODULE_VERSION(dtrace, 1);
18450 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18451 #endif
18452