1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2021 Oxide Computer Company
26 */
27
28 /*
29 * Architecture-independent CPU control functions.
30 */
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/var.h>
35 #include <sys/thread.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpu_event.h>
38 #include <sys/kstat.h>
39 #include <sys/uadmin.h>
40 #include <sys/systm.h>
41 #include <sys/errno.h>
42 #include <sys/cmn_err.h>
43 #include <sys/procset.h>
44 #include <sys/processor.h>
45 #include <sys/debug.h>
46 #include <sys/cpupart.h>
47 #include <sys/lgrp.h>
48 #include <sys/pset.h>
49 #include <sys/pghw.h>
50 #include <sys/kmem.h>
51 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */
52 #include <sys/atomic.h>
53 #include <sys/callb.h>
54 #include <sys/vtrace.h>
55 #include <sys/cyclic.h>
56 #include <sys/bitmap.h>
57 #include <sys/nvpair.h>
58 #include <sys/pool_pset.h>
59 #include <sys/msacct.h>
60 #include <sys/time.h>
61 #include <sys/archsystm.h>
62 #include <sys/sdt.h>
63 #include <sys/smt.h>
64 #if defined(__x86)
65 #include <sys/x86_archext.h>
66 #endif
67 #include <sys/callo.h>
68
69 extern int mp_cpu_start(cpu_t *);
70 extern int mp_cpu_stop(cpu_t *);
71 extern int mp_cpu_poweron(cpu_t *);
72 extern int mp_cpu_poweroff(cpu_t *);
73 extern int mp_cpu_configure(int);
74 extern int mp_cpu_unconfigure(int);
75 extern void mp_cpu_faulted_enter(cpu_t *);
76 extern void mp_cpu_faulted_exit(cpu_t *);
77
78 extern int cmp_cpu_to_chip(processorid_t cpuid);
79 #ifdef __sparcv9
80 extern char *cpu_fru_fmri(cpu_t *cp);
81 #endif
82
83 static void cpu_add_active_internal(cpu_t *cp);
84 static void cpu_remove_active(cpu_t *cp);
85 static void cpu_info_kstat_create(cpu_t *cp);
86 static void cpu_info_kstat_destroy(cpu_t *cp);
87 static void cpu_stats_kstat_create(cpu_t *cp);
88 static void cpu_stats_kstat_destroy(cpu_t *cp);
89
90 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
91 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
92 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
93 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
94
95 /*
96 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
97 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with
98 * respect to related locks is:
99 *
100 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock()
101 *
102 * Warning: Certain sections of code do not use the cpu_lock when
103 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since
104 * all cpus are paused during modifications to this list, a solution
105 * to protect the list is too either disable kernel preemption while
106 * walking the list, *or* recheck the cpu_next pointer at each
107 * iteration in the loop. Note that in no cases can any cached
108 * copies of the cpu pointers be kept as they may become invalid.
109 */
110 kmutex_t cpu_lock;
111 cpu_t *cpu_list; /* list of all CPUs */
112 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */
113 cpu_t *cpu_active; /* list of active CPUs */
114 cpuset_t cpu_active_set; /* cached set of active CPUs */
115 static cpuset_t cpu_available; /* set of available CPUs */
116 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */
117
118 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */
119
120 /*
121 * max_ncpus keeps the max cpus the system can have. Initially
122 * it's NCPU, but since most archs scan the devtree for cpus
123 * fairly early on during boot, the real max can be known before
124 * ncpus is set (useful for early NCPU based allocations).
125 */
126 int max_ncpus = NCPU;
127 /*
128 * platforms that set max_ncpus to maxiumum number of cpus that can be
129 * dynamically added will set boot_max_ncpus to the number of cpus found
130 * at device tree scan time during boot.
131 */
132 int boot_max_ncpus = -1;
133 int boot_ncpus = -1;
134 /*
135 * Maximum possible CPU id. This can never be >= NCPU since NCPU is
136 * used to size arrays that are indexed by CPU id.
137 */
138 processorid_t max_cpuid = NCPU - 1;
139
140 /*
141 * Maximum cpu_seqid was given. This number can only grow and never shrink. It
142 * can be used to optimize NCPU loops to avoid going through CPUs which were
143 * never on-line.
144 */
145 processorid_t max_cpu_seqid_ever = 0;
146
147 int ncpus = 1;
148 int ncpus_online = 1;
149 int ncpus_intr_enabled = 1;
150
151 /*
152 * CPU that we're trying to offline. Protected by cpu_lock.
153 */
154 cpu_t *cpu_inmotion;
155
156 /*
157 * Can be raised to suppress further weakbinding, which are instead
158 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock,
159 * while individual thread weakbinding synchronization is done under thread
160 * lock.
161 */
162 int weakbindingbarrier;
163
164 /*
165 * Variables used in pause_cpus().
166 */
167 static volatile char safe_list[NCPU];
168
169 static struct _cpu_pause_info {
170 int cp_spl; /* spl saved in pause_cpus() */
171 volatile int cp_go; /* Go signal sent after all ready */
172 int cp_count; /* # of CPUs to pause */
173 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */
174 kthread_id_t cp_paused;
175 void *(*cp_func)(void *);
176 } cpu_pause_info;
177
178 static kmutex_t pause_free_mutex;
179 static kcondvar_t pause_free_cv;
180
181
182 static struct cpu_sys_stats_ks_data {
183 kstat_named_t cpu_ticks_idle;
184 kstat_named_t cpu_ticks_user;
185 kstat_named_t cpu_ticks_kernel;
186 kstat_named_t cpu_ticks_wait;
187 kstat_named_t cpu_nsec_idle;
188 kstat_named_t cpu_nsec_user;
189 kstat_named_t cpu_nsec_kernel;
190 kstat_named_t cpu_nsec_dtrace;
191 kstat_named_t cpu_nsec_intr;
192 kstat_named_t cpu_load_intr;
193 kstat_named_t wait_ticks_io;
194 kstat_named_t dtrace_probes;
195 kstat_named_t bread;
196 kstat_named_t bwrite;
197 kstat_named_t lread;
198 kstat_named_t lwrite;
199 kstat_named_t phread;
200 kstat_named_t phwrite;
201 kstat_named_t pswitch;
202 kstat_named_t trap;
203 kstat_named_t intr;
204 kstat_named_t syscall;
205 kstat_named_t sysread;
206 kstat_named_t syswrite;
207 kstat_named_t sysfork;
208 kstat_named_t sysvfork;
209 kstat_named_t sysexec;
210 kstat_named_t readch;
211 kstat_named_t writech;
212 kstat_named_t rcvint;
213 kstat_named_t xmtint;
214 kstat_named_t mdmint;
215 kstat_named_t rawch;
216 kstat_named_t canch;
217 kstat_named_t outch;
218 kstat_named_t msg;
219 kstat_named_t sema;
220 kstat_named_t namei;
221 kstat_named_t ufsiget;
222 kstat_named_t ufsdirblk;
223 kstat_named_t ufsipage;
224 kstat_named_t ufsinopage;
225 kstat_named_t procovf;
226 kstat_named_t intrthread;
227 kstat_named_t intrblk;
228 kstat_named_t intrunpin;
229 kstat_named_t idlethread;
230 kstat_named_t inv_swtch;
231 kstat_named_t nthreads;
232 kstat_named_t cpumigrate;
233 kstat_named_t xcalls;
234 kstat_named_t mutex_adenters;
235 kstat_named_t rw_rdfails;
236 kstat_named_t rw_wrfails;
237 kstat_named_t modload;
238 kstat_named_t modunload;
239 kstat_named_t bawrite;
240 kstat_named_t iowait;
241 } cpu_sys_stats_ks_data_template = {
242 { "cpu_ticks_idle", KSTAT_DATA_UINT64 },
243 { "cpu_ticks_user", KSTAT_DATA_UINT64 },
244 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 },
245 { "cpu_ticks_wait", KSTAT_DATA_UINT64 },
246 { "cpu_nsec_idle", KSTAT_DATA_UINT64 },
247 { "cpu_nsec_user", KSTAT_DATA_UINT64 },
248 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 },
249 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 },
250 { "cpu_nsec_intr", KSTAT_DATA_UINT64 },
251 { "cpu_load_intr", KSTAT_DATA_UINT64 },
252 { "wait_ticks_io", KSTAT_DATA_UINT64 },
253 { "dtrace_probes", KSTAT_DATA_UINT64 },
254 { "bread", KSTAT_DATA_UINT64 },
255 { "bwrite", KSTAT_DATA_UINT64 },
256 { "lread", KSTAT_DATA_UINT64 },
257 { "lwrite", KSTAT_DATA_UINT64 },
258 { "phread", KSTAT_DATA_UINT64 },
259 { "phwrite", KSTAT_DATA_UINT64 },
260 { "pswitch", KSTAT_DATA_UINT64 },
261 { "trap", KSTAT_DATA_UINT64 },
262 { "intr", KSTAT_DATA_UINT64 },
263 { "syscall", KSTAT_DATA_UINT64 },
264 { "sysread", KSTAT_DATA_UINT64 },
265 { "syswrite", KSTAT_DATA_UINT64 },
266 { "sysfork", KSTAT_DATA_UINT64 },
267 { "sysvfork", KSTAT_DATA_UINT64 },
268 { "sysexec", KSTAT_DATA_UINT64 },
269 { "readch", KSTAT_DATA_UINT64 },
270 { "writech", KSTAT_DATA_UINT64 },
271 { "rcvint", KSTAT_DATA_UINT64 },
272 { "xmtint", KSTAT_DATA_UINT64 },
273 { "mdmint", KSTAT_DATA_UINT64 },
274 { "rawch", KSTAT_DATA_UINT64 },
275 { "canch", KSTAT_DATA_UINT64 },
276 { "outch", KSTAT_DATA_UINT64 },
277 { "msg", KSTAT_DATA_UINT64 },
278 { "sema", KSTAT_DATA_UINT64 },
279 { "namei", KSTAT_DATA_UINT64 },
280 { "ufsiget", KSTAT_DATA_UINT64 },
281 { "ufsdirblk", KSTAT_DATA_UINT64 },
282 { "ufsipage", KSTAT_DATA_UINT64 },
283 { "ufsinopage", KSTAT_DATA_UINT64 },
284 { "procovf", KSTAT_DATA_UINT64 },
285 { "intrthread", KSTAT_DATA_UINT64 },
286 { "intrblk", KSTAT_DATA_UINT64 },
287 { "intrunpin", KSTAT_DATA_UINT64 },
288 { "idlethread", KSTAT_DATA_UINT64 },
289 { "inv_swtch", KSTAT_DATA_UINT64 },
290 { "nthreads", KSTAT_DATA_UINT64 },
291 { "cpumigrate", KSTAT_DATA_UINT64 },
292 { "xcalls", KSTAT_DATA_UINT64 },
293 { "mutex_adenters", KSTAT_DATA_UINT64 },
294 { "rw_rdfails", KSTAT_DATA_UINT64 },
295 { "rw_wrfails", KSTAT_DATA_UINT64 },
296 { "modload", KSTAT_DATA_UINT64 },
297 { "modunload", KSTAT_DATA_UINT64 },
298 { "bawrite", KSTAT_DATA_UINT64 },
299 { "iowait", KSTAT_DATA_UINT64 },
300 };
301
302 static struct cpu_vm_stats_ks_data {
303 kstat_named_t pgrec;
304 kstat_named_t pgfrec;
305 kstat_named_t pgin;
306 kstat_named_t pgpgin;
307 kstat_named_t pgout;
308 kstat_named_t pgpgout;
309 kstat_named_t swapin;
310 kstat_named_t pgswapin;
311 kstat_named_t swapout;
312 kstat_named_t pgswapout;
313 kstat_named_t zfod;
314 kstat_named_t dfree;
315 kstat_named_t scan;
316 kstat_named_t rev;
317 kstat_named_t hat_fault;
318 kstat_named_t as_fault;
319 kstat_named_t maj_fault;
320 kstat_named_t cow_fault;
321 kstat_named_t prot_fault;
322 kstat_named_t softlock;
323 kstat_named_t kernel_asflt;
324 kstat_named_t pgrrun;
325 kstat_named_t execpgin;
326 kstat_named_t execpgout;
327 kstat_named_t execfree;
328 kstat_named_t anonpgin;
329 kstat_named_t anonpgout;
330 kstat_named_t anonfree;
331 kstat_named_t fspgin;
332 kstat_named_t fspgout;
333 kstat_named_t fsfree;
334 } cpu_vm_stats_ks_data_template = {
335 { "pgrec", KSTAT_DATA_UINT64 },
336 { "pgfrec", KSTAT_DATA_UINT64 },
337 { "pgin", KSTAT_DATA_UINT64 },
338 { "pgpgin", KSTAT_DATA_UINT64 },
339 { "pgout", KSTAT_DATA_UINT64 },
340 { "pgpgout", KSTAT_DATA_UINT64 },
341 { "swapin", KSTAT_DATA_UINT64 },
342 { "pgswapin", KSTAT_DATA_UINT64 },
343 { "swapout", KSTAT_DATA_UINT64 },
344 { "pgswapout", KSTAT_DATA_UINT64 },
345 { "zfod", KSTAT_DATA_UINT64 },
346 { "dfree", KSTAT_DATA_UINT64 },
347 { "scan", KSTAT_DATA_UINT64 },
348 { "rev", KSTAT_DATA_UINT64 },
349 { "hat_fault", KSTAT_DATA_UINT64 },
350 { "as_fault", KSTAT_DATA_UINT64 },
351 { "maj_fault", KSTAT_DATA_UINT64 },
352 { "cow_fault", KSTAT_DATA_UINT64 },
353 { "prot_fault", KSTAT_DATA_UINT64 },
354 { "softlock", KSTAT_DATA_UINT64 },
355 { "kernel_asflt", KSTAT_DATA_UINT64 },
356 { "pgrrun", KSTAT_DATA_UINT64 },
357 { "execpgin", KSTAT_DATA_UINT64 },
358 { "execpgout", KSTAT_DATA_UINT64 },
359 { "execfree", KSTAT_DATA_UINT64 },
360 { "anonpgin", KSTAT_DATA_UINT64 },
361 { "anonpgout", KSTAT_DATA_UINT64 },
362 { "anonfree", KSTAT_DATA_UINT64 },
363 { "fspgin", KSTAT_DATA_UINT64 },
364 { "fspgout", KSTAT_DATA_UINT64 },
365 { "fsfree", KSTAT_DATA_UINT64 },
366 };
367
368 /*
369 * Force the specified thread to migrate to the appropriate processor.
370 * Called with thread lock held, returns with it dropped.
371 */
372 static void
force_thread_migrate(kthread_id_t tp)373 force_thread_migrate(kthread_id_t tp)
374 {
375 ASSERT(THREAD_LOCK_HELD(tp));
376 if (tp == curthread) {
377 THREAD_TRANSITION(tp);
378 CL_SETRUN(tp);
379 thread_unlock_nopreempt(tp);
380 swtch();
381 } else {
382 if (tp->t_state == TS_ONPROC) {
383 cpu_surrender(tp);
384 } else if (tp->t_state == TS_RUN) {
385 (void) dispdeq(tp);
386 setbackdq(tp);
387 }
388 thread_unlock(tp);
389 }
390 }
391
392 /*
393 * Set affinity for a specified CPU.
394 *
395 * Specifying a cpu_id of CPU_CURRENT, allowed _only_ when setting affinity for
396 * curthread, will set affinity to the CPU on which the thread is currently
397 * running. For other cpu_id values, the caller must ensure that the
398 * referenced CPU remains valid, which can be done by holding cpu_lock across
399 * this call.
400 *
401 * CPU affinity is guaranteed after return of thread_affinity_set(). If a
402 * caller setting affinity to CPU_CURRENT requires that its thread not migrate
403 * CPUs prior to a successful return, it should take extra precautions (such as
404 * their own call to kpreempt_disable) to ensure that safety.
405 *
406 * CPU_BEST can be used to pick a "best" CPU to migrate to, including
407 * potentially the current CPU.
408 *
409 * A CPU affinity reference count is maintained by thread_affinity_set and
410 * thread_affinity_clear (incrementing and decrementing it, respectively),
411 * maintaining CPU affinity while the count is non-zero, and allowing regions
412 * of code which require affinity to be nested.
413 */
414 void
thread_affinity_set(kthread_id_t t,int cpu_id)415 thread_affinity_set(kthread_id_t t, int cpu_id)
416 {
417 cpu_t *cp;
418
419 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
420
421 if (cpu_id == CPU_CURRENT) {
422 VERIFY3P(t, ==, curthread);
423 kpreempt_disable();
424 cp = CPU;
425 } else if (cpu_id == CPU_BEST) {
426 VERIFY3P(t, ==, curthread);
427 kpreempt_disable();
428 cp = disp_choose_best_cpu();
429 } else {
430 /*
431 * We should be asserting that cpu_lock is held here, but
432 * the NCA code doesn't acquire it. The following assert
433 * should be uncommented when the NCA code is fixed.
434 *
435 * ASSERT(MUTEX_HELD(&cpu_lock));
436 */
437 VERIFY((cpu_id >= 0) && (cpu_id < NCPU));
438 cp = cpu[cpu_id];
439
440 /* user must provide a good cpu_id */
441 VERIFY(cp != NULL);
442 }
443
444 /*
445 * If there is already a hard affinity requested, and this affinity
446 * conflicts with that, panic.
447 */
448 thread_lock(t);
449 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
450 panic("affinity_set: setting %p but already bound to %p",
451 (void *)cp, (void *)t->t_bound_cpu);
452 }
453 t->t_affinitycnt++;
454 t->t_bound_cpu = cp;
455
456 /*
457 * Make sure we're running on the right CPU.
458 */
459 if (cp != t->t_cpu || t != curthread) {
460 ASSERT(cpu_id != CPU_CURRENT);
461 force_thread_migrate(t); /* drops thread lock */
462 } else {
463 thread_unlock(t);
464 }
465
466 if (cpu_id == CPU_CURRENT || cpu_id == CPU_BEST)
467 kpreempt_enable();
468 }
469
470 /*
471 * Wrapper for backward compatibility.
472 */
473 void
affinity_set(int cpu_id)474 affinity_set(int cpu_id)
475 {
476 thread_affinity_set(curthread, cpu_id);
477 }
478
479 /*
480 * Decrement the affinity reservation count and if it becomes zero,
481 * clear the CPU affinity for the current thread, or set it to the user's
482 * software binding request.
483 */
484 void
thread_affinity_clear(kthread_id_t t)485 thread_affinity_clear(kthread_id_t t)
486 {
487 register processorid_t binding;
488
489 thread_lock(t);
490 if (--t->t_affinitycnt == 0) {
491 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
492 /*
493 * Adjust disp_max_unbound_pri if necessary.
494 */
495 disp_adjust_unbound_pri(t);
496 t->t_bound_cpu = NULL;
497 if (t->t_cpu->cpu_part != t->t_cpupart) {
498 force_thread_migrate(t);
499 return;
500 }
501 } else {
502 t->t_bound_cpu = cpu[binding];
503 /*
504 * Make sure the thread is running on the bound CPU.
505 */
506 if (t->t_cpu != t->t_bound_cpu) {
507 force_thread_migrate(t);
508 return; /* already dropped lock */
509 }
510 }
511 }
512 thread_unlock(t);
513 }
514
515 /*
516 * Wrapper for backward compatibility.
517 */
518 void
affinity_clear(void)519 affinity_clear(void)
520 {
521 thread_affinity_clear(curthread);
522 }
523
524 /*
525 * Weak cpu affinity. Bind to the "current" cpu for short periods
526 * of time during which the thread must not block (but may be preempted).
527 * Use this instead of kpreempt_disable() when it is only "no migration"
528 * rather than "no preemption" semantics that are required - disabling
529 * preemption holds higher priority threads off of cpu and if the
530 * operation that is protected is more than momentary this is not good
531 * for realtime etc.
532 *
533 * Weakly bound threads will not prevent a cpu from being offlined -
534 * we'll only run them on the cpu to which they are weakly bound but
535 * (because they do not block) we'll always be able to move them on to
536 * another cpu at offline time if we give them just a short moment to
537 * run during which they will unbind. To give a cpu a chance of offlining,
538 * however, we require a barrier to weak bindings that may be raised for a
539 * given cpu (offline/move code may set this and then wait a short time for
540 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
541 *
542 * There are few restrictions on the calling context of thread_nomigrate.
543 * The caller must not hold the thread lock. Calls may be nested.
544 *
545 * After weakbinding a thread must not perform actions that may block.
546 * In particular it must not call thread_affinity_set; calling that when
547 * already weakbound is nonsensical anyway.
548 *
549 * If curthread is prevented from migrating for other reasons
550 * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
551 * then the weak binding will succeed even if this cpu is the target of an
552 * offline/move request.
553 */
554 void
thread_nomigrate(void)555 thread_nomigrate(void)
556 {
557 cpu_t *cp;
558 kthread_id_t t = curthread;
559
560 again:
561 kpreempt_disable();
562 cp = CPU;
563
564 /*
565 * A highlevel interrupt must not modify t_nomigrate or
566 * t_weakbound_cpu of the thread it has interrupted. A lowlevel
567 * interrupt thread cannot migrate and we can avoid the
568 * thread_lock call below by short-circuiting here. In either
569 * case we can just return since no migration is possible and
570 * the condition will persist (ie, when we test for these again
571 * in thread_allowmigrate they can't have changed). Migration
572 * is also impossible if we're at or above DISP_LEVEL pil.
573 */
574 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
575 getpil() >= DISP_LEVEL) {
576 kpreempt_enable();
577 return;
578 }
579
580 /*
581 * We must be consistent with existing weak bindings. Since we
582 * may be interrupted between the increment of t_nomigrate and
583 * the store to t_weakbound_cpu below we cannot assume that
584 * t_weakbound_cpu will be set if t_nomigrate is. Note that we
585 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
586 * always the case.
587 */
588 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
589 if (!panicstr)
590 panic("thread_nomigrate: binding to %p but already "
591 "bound to %p", (void *)cp,
592 (void *)t->t_weakbound_cpu);
593 }
594
595 /*
596 * At this point we have preemption disabled and we don't yet hold
597 * the thread lock. So it's possible that somebody else could
598 * set t_bind_cpu here and not be able to force us across to the
599 * new cpu (since we have preemption disabled).
600 */
601 thread_lock(curthread);
602
603 /*
604 * If further weak bindings are being (temporarily) suppressed then
605 * we'll settle for disabling kernel preemption (which assures
606 * no migration provided the thread does not block which it is
607 * not allowed to if using thread_nomigrate). We must remember
608 * this disposition so we can take appropriate action in
609 * thread_allowmigrate. If this is a nested call and the
610 * thread is already weakbound then fall through as normal.
611 * We remember the decision to settle for kpreempt_disable through
612 * negative nesting counting in t_nomigrate. Once a thread has had one
613 * weakbinding request satisfied in this way any further (nested)
614 * requests will continue to be satisfied in the same way,
615 * even if weak bindings have recommenced.
616 */
617 if (t->t_nomigrate < 0 || (weakbindingbarrier && t->t_nomigrate == 0)) {
618 --t->t_nomigrate;
619 thread_unlock(curthread);
620 return; /* with kpreempt_disable still active */
621 }
622
623 /*
624 * We hold thread_lock so t_bind_cpu cannot change. We could,
625 * however, be running on a different cpu to which we are t_bound_cpu
626 * to (as explained above). If we grant the weak binding request
627 * in that case then the dispatcher must favour our weak binding
628 * over our strong (in which case, just as when preemption is
629 * disabled, we can continue to run on a cpu other than the one to
630 * which we are strongbound; the difference in this case is that
631 * this thread can be preempted and so can appear on the dispatch
632 * queues of a cpu other than the one it is strongbound to).
633 *
634 * If the cpu we are running on does not appear to be a current
635 * offline target (we check cpu_inmotion to determine this - since
636 * we don't hold cpu_lock we may not see a recent store to that,
637 * so it's possible that we at times can grant a weak binding to a
638 * cpu that is an offline target, but that one request will not
639 * prevent the offline from succeeding) then we will always grant
640 * the weak binding request. This includes the case above where
641 * we grant a weakbinding not commensurate with our strong binding.
642 *
643 * If our cpu does appear to be an offline target then we're inclined
644 * not to grant the weakbinding request just yet - we'd prefer to
645 * migrate to another cpu and grant the request there. The
646 * exceptions are those cases where going through preemption code
647 * will not result in us changing cpu:
648 *
649 * . interrupts have already bypassed this case (see above)
650 * . we are already weakbound to this cpu (dispatcher code will
651 * always return us to the weakbound cpu)
652 * . preemption was disabled even before we disabled it above
653 * . we are strongbound to this cpu (if we're strongbound to
654 * another and not yet running there the trip through the
655 * dispatcher will move us to the strongbound cpu and we
656 * will grant the weak binding there)
657 */
658 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
659 t->t_bound_cpu == cp) {
660 /*
661 * Don't be tempted to store to t_weakbound_cpu only on
662 * the first nested bind request - if we're interrupted
663 * after the increment of t_nomigrate and before the
664 * store to t_weakbound_cpu and the interrupt calls
665 * thread_nomigrate then the assertion in thread_allowmigrate
666 * would fail.
667 */
668 t->t_nomigrate++;
669 t->t_weakbound_cpu = cp;
670 membar_producer();
671 thread_unlock(curthread);
672 /*
673 * Now that we have dropped the thread_lock another thread
674 * can set our t_weakbound_cpu, and will try to migrate us
675 * to the strongbound cpu (which will not be prevented by
676 * preemption being disabled since we're about to enable
677 * preemption). We have granted the weakbinding to the current
678 * cpu, so again we are in the position that is is is possible
679 * that our weak and strong bindings differ. Again this
680 * is catered for by dispatcher code which will favour our
681 * weak binding.
682 */
683 kpreempt_enable();
684 } else {
685 /*
686 * Move to another cpu before granting the request by
687 * forcing this thread through preemption code. When we
688 * get to set{front,back}dq called from CL_PREEMPT()
689 * cpu_choose() will be used to select a cpu to queue
690 * us on - that will see cpu_inmotion and take
691 * steps to avoid returning us to this cpu.
692 */
693 cp->cpu_kprunrun = 1;
694 thread_unlock(curthread);
695 kpreempt_enable(); /* will call preempt() */
696 goto again;
697 }
698 }
699
700 void
thread_allowmigrate(void)701 thread_allowmigrate(void)
702 {
703 kthread_id_t t = curthread;
704
705 ASSERT(t->t_weakbound_cpu == CPU ||
706 (t->t_nomigrate < 0 && t->t_preempt > 0) ||
707 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
708 getpil() >= DISP_LEVEL);
709
710 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
711 getpil() >= DISP_LEVEL)
712 return;
713
714 if (t->t_nomigrate < 0) {
715 /*
716 * This thread was granted "weak binding" in the
717 * stronger form of kernel preemption disabling.
718 * Undo a level of nesting for both t_nomigrate
719 * and t_preempt.
720 */
721 ++t->t_nomigrate;
722 kpreempt_enable();
723 } else if (--t->t_nomigrate == 0) {
724 /*
725 * Time to drop the weak binding. We need to cater
726 * for the case where we're weakbound to a different
727 * cpu than that to which we're strongbound (a very
728 * temporary arrangement that must only persist until
729 * weak binding drops). We don't acquire thread_lock
730 * here so even as this code executes t_bound_cpu
731 * may be changing. So we disable preemption and
732 * a) in the case that t_bound_cpu changes while we
733 * have preemption disabled kprunrun will be set
734 * asynchronously, and b) if before disabling
735 * preemption we were already on a different cpu to
736 * our t_bound_cpu then we set kprunrun ourselves
737 * to force a trip through the dispatcher when
738 * preemption is enabled.
739 */
740 kpreempt_disable();
741 if (t->t_bound_cpu &&
742 t->t_weakbound_cpu != t->t_bound_cpu)
743 CPU->cpu_kprunrun = 1;
744 t->t_weakbound_cpu = NULL;
745 membar_producer();
746 kpreempt_enable();
747 }
748 }
749
750 /*
751 * weakbinding_stop can be used to temporarily cause weakbindings made
752 * with thread_nomigrate to be satisfied through the stronger action of
753 * kpreempt_disable. weakbinding_start recommences normal weakbinding.
754 */
755
756 void
weakbinding_stop(void)757 weakbinding_stop(void)
758 {
759 ASSERT(MUTEX_HELD(&cpu_lock));
760 weakbindingbarrier = 1;
761 membar_producer(); /* make visible before subsequent thread_lock */
762 }
763
764 void
weakbinding_start(void)765 weakbinding_start(void)
766 {
767 ASSERT(MUTEX_HELD(&cpu_lock));
768 weakbindingbarrier = 0;
769 }
770
771 void
null_xcall(void)772 null_xcall(void)
773 {
774 }
775
776 /*
777 * This routine is called to place the CPUs in a safe place so that
778 * one of them can be taken off line or placed on line. What we are
779 * trying to do here is prevent a thread from traversing the list
780 * of active CPUs while we are changing it or from getting placed on
781 * the run queue of a CPU that has just gone off line. We do this by
782 * creating a thread with the highest possible prio for each CPU and
783 * having it call this routine. The advantage of this method is that
784 * we can eliminate all checks for CPU_ACTIVE in the disp routines.
785 * This makes disp faster at the expense of making p_online() slower
786 * which is a good trade off.
787 */
788 static void
cpu_pause(int index)789 cpu_pause(int index)
790 {
791 int s;
792 struct _cpu_pause_info *cpi = &cpu_pause_info;
793 volatile char *safe = &safe_list[index];
794 long lindex = index;
795
796 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
797
798 while (*safe != PAUSE_DIE) {
799 *safe = PAUSE_READY;
800 membar_enter(); /* make sure stores are flushed */
801 sema_v(&cpi->cp_sem); /* signal requesting thread */
802
803 /*
804 * Wait here until all pause threads are running. That
805 * indicates that it's safe to do the spl. Until
806 * cpu_pause_info.cp_go is set, we don't want to spl
807 * because that might block clock interrupts needed
808 * to preempt threads on other CPUs.
809 */
810 while (cpi->cp_go == 0)
811 ;
812 /*
813 * Even though we are at the highest disp prio, we need
814 * to block out all interrupts below LOCK_LEVEL so that
815 * an intr doesn't come in, wake up a thread, and call
816 * setbackdq/setfrontdq.
817 */
818 s = splhigh();
819 /*
820 * if cp_func has been set then call it using index as the
821 * argument, currently only used by cpr_suspend_cpus().
822 * This function is used as the code to execute on the
823 * "paused" cpu's when a machine comes out of a sleep state
824 * and CPU's were powered off. (could also be used for
825 * hotplugging CPU's).
826 */
827 if (cpi->cp_func != NULL)
828 (*cpi->cp_func)((void *)lindex);
829
830 mach_cpu_pause(safe);
831
832 splx(s);
833 /*
834 * Waiting is at an end. Switch out of cpu_pause
835 * loop and resume useful work.
836 */
837 swtch();
838 }
839
840 mutex_enter(&pause_free_mutex);
841 *safe = PAUSE_DEAD;
842 cv_broadcast(&pause_free_cv);
843 mutex_exit(&pause_free_mutex);
844 }
845
846 /*
847 * Allow the cpus to start running again.
848 */
849 void
start_cpus()850 start_cpus()
851 {
852 int i;
853
854 ASSERT(MUTEX_HELD(&cpu_lock));
855 ASSERT(cpu_pause_info.cp_paused);
856 cpu_pause_info.cp_paused = NULL;
857 for (i = 0; i < NCPU; i++)
858 safe_list[i] = PAUSE_IDLE;
859 membar_enter(); /* make sure stores are flushed */
860 affinity_clear();
861 splx(cpu_pause_info.cp_spl);
862 kpreempt_enable();
863 }
864
865 /*
866 * Allocate a pause thread for a CPU.
867 */
868 static void
cpu_pause_alloc(cpu_t * cp)869 cpu_pause_alloc(cpu_t *cp)
870 {
871 kthread_id_t t;
872 long cpun = cp->cpu_id;
873
874 /*
875 * Note, v.v_nglobpris will not change value as long as I hold
876 * cpu_lock.
877 */
878 t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
879 0, &p0, TS_STOPPED, v.v_nglobpris - 1);
880 thread_lock(t);
881 t->t_bound_cpu = cp;
882 t->t_disp_queue = cp->cpu_disp;
883 t->t_affinitycnt = 1;
884 t->t_preempt = 1;
885 thread_unlock(t);
886 cp->cpu_pause_thread = t;
887 /*
888 * Registering a thread in the callback table is usually done
889 * in the initialization code of the thread. In this
890 * case, we do it right after thread creation because the
891 * thread itself may never run, and we need to register the
892 * fact that it is safe for cpr suspend.
893 */
894 CALLB_CPR_INIT_SAFE(t, "cpu_pause");
895 }
896
897 /*
898 * Free a pause thread for a CPU.
899 */
900 static void
cpu_pause_free(cpu_t * cp)901 cpu_pause_free(cpu_t *cp)
902 {
903 kthread_id_t t;
904 int cpun = cp->cpu_id;
905
906 ASSERT(MUTEX_HELD(&cpu_lock));
907 /*
908 * We have to get the thread and tell it to die.
909 */
910 if ((t = cp->cpu_pause_thread) == NULL) {
911 ASSERT(safe_list[cpun] == PAUSE_IDLE);
912 return;
913 }
914 thread_lock(t);
915 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */
916 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */
917 t->t_pri = v.v_nglobpris - 1;
918 ASSERT(safe_list[cpun] == PAUSE_IDLE);
919 safe_list[cpun] = PAUSE_DIE;
920 THREAD_TRANSITION(t);
921 setbackdq(t);
922 thread_unlock_nopreempt(t);
923
924 /*
925 * If we don't wait for the thread to actually die, it may try to
926 * run on the wrong cpu as part of an actual call to pause_cpus().
927 */
928 mutex_enter(&pause_free_mutex);
929 while (safe_list[cpun] != PAUSE_DEAD) {
930 cv_wait(&pause_free_cv, &pause_free_mutex);
931 }
932 mutex_exit(&pause_free_mutex);
933 safe_list[cpun] = PAUSE_IDLE;
934
935 cp->cpu_pause_thread = NULL;
936 }
937
938 /*
939 * Initialize basic structures for pausing CPUs.
940 */
941 void
cpu_pause_init()942 cpu_pause_init()
943 {
944 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
945 /*
946 * Create initial CPU pause thread.
947 */
948 cpu_pause_alloc(CPU);
949 }
950
951 /*
952 * Start the threads used to pause another CPU.
953 */
954 static int
cpu_pause_start(processorid_t cpu_id)955 cpu_pause_start(processorid_t cpu_id)
956 {
957 int i;
958 int cpu_count = 0;
959
960 for (i = 0; i < NCPU; i++) {
961 cpu_t *cp;
962 kthread_id_t t;
963
964 cp = cpu[i];
965 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
966 safe_list[i] = PAUSE_WAIT;
967 continue;
968 }
969
970 /*
971 * Skip CPU if it is quiesced or not yet started.
972 */
973 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
974 safe_list[i] = PAUSE_WAIT;
975 continue;
976 }
977
978 /*
979 * Start this CPU's pause thread.
980 */
981 t = cp->cpu_pause_thread;
982 thread_lock(t);
983 /*
984 * Reset the priority, since nglobpris may have
985 * changed since the thread was created, if someone
986 * has loaded the RT (or some other) scheduling
987 * class.
988 */
989 t->t_pri = v.v_nglobpris - 1;
990 THREAD_TRANSITION(t);
991 setbackdq(t);
992 thread_unlock_nopreempt(t);
993 ++cpu_count;
994 }
995 return (cpu_count);
996 }
997
998
999 /*
1000 * Pause all of the CPUs except the one we are on by creating a high
1001 * priority thread bound to those CPUs.
1002 *
1003 * Note that one must be extremely careful regarding code
1004 * executed while CPUs are paused. Since a CPU may be paused
1005 * while a thread scheduling on that CPU is holding an adaptive
1006 * lock, code executed with CPUs paused must not acquire adaptive
1007 * (or low-level spin) locks. Also, such code must not block,
1008 * since the thread that is supposed to initiate the wakeup may
1009 * never run.
1010 *
1011 * With a few exceptions, the restrictions on code executed with CPUs
1012 * paused match those for code executed at high-level interrupt
1013 * context.
1014 */
1015 void
pause_cpus(cpu_t * off_cp,void * (* func)(void *))1016 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
1017 {
1018 processorid_t cpu_id;
1019 int i;
1020 struct _cpu_pause_info *cpi = &cpu_pause_info;
1021
1022 ASSERT(MUTEX_HELD(&cpu_lock));
1023 ASSERT(cpi->cp_paused == NULL);
1024 cpi->cp_count = 0;
1025 cpi->cp_go = 0;
1026 for (i = 0; i < NCPU; i++)
1027 safe_list[i] = PAUSE_IDLE;
1028 kpreempt_disable();
1029
1030 cpi->cp_func = func;
1031
1032 /*
1033 * If running on the cpu that is going offline, get off it.
1034 * This is so that it won't be necessary to rechoose a CPU
1035 * when done.
1036 */
1037 if (CPU == off_cp)
1038 cpu_id = off_cp->cpu_next_part->cpu_id;
1039 else
1040 cpu_id = CPU->cpu_id;
1041 affinity_set(cpu_id);
1042
1043 /*
1044 * Start the pause threads and record how many were started
1045 */
1046 cpi->cp_count = cpu_pause_start(cpu_id);
1047
1048 /*
1049 * Now wait for all CPUs to be running the pause thread.
1050 */
1051 while (cpi->cp_count > 0) {
1052 /*
1053 * Spin reading the count without grabbing the disp
1054 * lock to make sure we don't prevent the pause
1055 * threads from getting the lock.
1056 */
1057 while (sema_held(&cpi->cp_sem))
1058 ;
1059 if (sema_tryp(&cpi->cp_sem))
1060 --cpi->cp_count;
1061 }
1062 cpi->cp_go = 1; /* all have reached cpu_pause */
1063
1064 /*
1065 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1066 * to PAUSE_WAIT.)
1067 */
1068 for (i = 0; i < NCPU; i++) {
1069 while (safe_list[i] != PAUSE_WAIT)
1070 ;
1071 }
1072 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */
1073 cpi->cp_paused = curthread;
1074 }
1075
1076 /*
1077 * Check whether the current thread has CPUs paused
1078 */
1079 int
cpus_paused(void)1080 cpus_paused(void)
1081 {
1082 if (cpu_pause_info.cp_paused != NULL) {
1083 ASSERT(cpu_pause_info.cp_paused == curthread);
1084 return (1);
1085 }
1086 return (0);
1087 }
1088
1089 static cpu_t *
cpu_get_all(processorid_t cpun)1090 cpu_get_all(processorid_t cpun)
1091 {
1092 ASSERT(MUTEX_HELD(&cpu_lock));
1093
1094 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1095 return (NULL);
1096 return (cpu[cpun]);
1097 }
1098
1099 /*
1100 * Check whether cpun is a valid processor id and whether it should be
1101 * visible from the current zone. If it is, return a pointer to the
1102 * associated CPU structure.
1103 */
1104 cpu_t *
cpu_get(processorid_t cpun)1105 cpu_get(processorid_t cpun)
1106 {
1107 cpu_t *c;
1108
1109 ASSERT(MUTEX_HELD(&cpu_lock));
1110 c = cpu_get_all(cpun);
1111 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1112 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1113 return (NULL);
1114 return (c);
1115 }
1116
1117 /*
1118 * The following functions should be used to check CPU states in the kernel.
1119 * They should be invoked with cpu_lock held. Kernel subsystems interested
1120 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1121 * states. Those are for user-land (and system call) use only.
1122 */
1123
1124 /*
1125 * Determine whether the CPU is online and handling interrupts.
1126 */
1127 int
cpu_is_online(cpu_t * cpu)1128 cpu_is_online(cpu_t *cpu)
1129 {
1130 ASSERT(MUTEX_HELD(&cpu_lock));
1131 return (cpu_flagged_online(cpu->cpu_flags));
1132 }
1133
1134 /*
1135 * Determine whether the CPU is offline (this includes spare and faulted).
1136 */
1137 int
cpu_is_offline(cpu_t * cpu)1138 cpu_is_offline(cpu_t *cpu)
1139 {
1140 ASSERT(MUTEX_HELD(&cpu_lock));
1141 return (cpu_flagged_offline(cpu->cpu_flags));
1142 }
1143
1144 /*
1145 * Determine whether the CPU is powered off.
1146 */
1147 int
cpu_is_poweredoff(cpu_t * cpu)1148 cpu_is_poweredoff(cpu_t *cpu)
1149 {
1150 ASSERT(MUTEX_HELD(&cpu_lock));
1151 return (cpu_flagged_poweredoff(cpu->cpu_flags));
1152 }
1153
1154 /*
1155 * Determine whether the CPU is handling interrupts.
1156 */
1157 int
cpu_is_nointr(cpu_t * cpu)1158 cpu_is_nointr(cpu_t *cpu)
1159 {
1160 ASSERT(MUTEX_HELD(&cpu_lock));
1161 return (cpu_flagged_nointr(cpu->cpu_flags));
1162 }
1163
1164 /*
1165 * Determine whether the CPU is active (scheduling threads).
1166 */
1167 int
cpu_is_active(cpu_t * cpu)1168 cpu_is_active(cpu_t *cpu)
1169 {
1170 ASSERT(MUTEX_HELD(&cpu_lock));
1171 return (cpu_flagged_active(cpu->cpu_flags));
1172 }
1173
1174 /*
1175 * Same as above, but these require cpu_flags instead of cpu_t pointers.
1176 */
1177 int
cpu_flagged_online(cpu_flag_t cpu_flags)1178 cpu_flagged_online(cpu_flag_t cpu_flags)
1179 {
1180 return (cpu_flagged_active(cpu_flags) &&
1181 (cpu_flags & CPU_ENABLE));
1182 }
1183
1184 int
cpu_flagged_offline(cpu_flag_t cpu_flags)1185 cpu_flagged_offline(cpu_flag_t cpu_flags)
1186 {
1187 return (((cpu_flags & CPU_POWEROFF) == 0) &&
1188 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1189 }
1190
1191 int
cpu_flagged_poweredoff(cpu_flag_t cpu_flags)1192 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1193 {
1194 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1195 }
1196
1197 int
cpu_flagged_nointr(cpu_flag_t cpu_flags)1198 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1199 {
1200 return (cpu_flagged_active(cpu_flags) &&
1201 (cpu_flags & CPU_ENABLE) == 0);
1202 }
1203
1204 int
cpu_flagged_active(cpu_flag_t cpu_flags)1205 cpu_flagged_active(cpu_flag_t cpu_flags)
1206 {
1207 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1208 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1209 }
1210
1211 /*
1212 * Bring the indicated CPU online.
1213 */
1214 int
cpu_online(cpu_t * cp,int flags)1215 cpu_online(cpu_t *cp, int flags)
1216 {
1217 int error = 0;
1218
1219 /*
1220 * Handle on-line request.
1221 * This code must put the new CPU on the active list before
1222 * starting it because it will not be paused, and will start
1223 * using the active list immediately. The real start occurs
1224 * when the CPU_QUIESCED flag is turned off.
1225 */
1226
1227 ASSERT(MUTEX_HELD(&cpu_lock));
1228
1229 if ((cp->cpu_flags & CPU_DISABLED) && !smt_can_enable(cp, flags))
1230 return (EINVAL);
1231
1232 /*
1233 * Put all the cpus into a known safe place.
1234 * No mutexes can be entered while CPUs are paused.
1235 */
1236 error = mp_cpu_start(cp); /* arch-dep hook */
1237 if (error == 0) {
1238 pg_cpupart_in(cp, cp->cpu_part);
1239 pause_cpus(NULL, NULL);
1240 cpu_add_active_internal(cp);
1241 if (cp->cpu_flags & CPU_FAULTED) {
1242 cp->cpu_flags &= ~CPU_FAULTED;
1243 mp_cpu_faulted_exit(cp);
1244 }
1245
1246 if (cp->cpu_flags & CPU_DISABLED)
1247 smt_force_enabled();
1248
1249 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1250 CPU_SPARE | CPU_DISABLED);
1251 CPU_NEW_GENERATION(cp);
1252 start_cpus();
1253 cpu_stats_kstat_create(cp);
1254 cpu_create_intrstat(cp);
1255 lgrp_kstat_create(cp);
1256 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1257 cpu_intr_enable(cp); /* arch-dep hook */
1258 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1259 cpu_set_state(cp);
1260 cyclic_online(cp);
1261 /*
1262 * This has to be called only after cyclic_online(). This
1263 * function uses cyclics.
1264 */
1265 callout_cpu_online(cp);
1266 poke_cpu(cp->cpu_id);
1267 }
1268
1269 return (error);
1270 }
1271
1272 /*
1273 * Take the indicated CPU offline.
1274 */
1275 int
cpu_offline(cpu_t * cp,int flags)1276 cpu_offline(cpu_t *cp, int flags)
1277 {
1278 cpupart_t *pp;
1279 int error = 0;
1280 cpu_t *ncp;
1281 int intr_enable;
1282 int cyclic_off = 0;
1283 int callout_off = 0;
1284 int loop_count;
1285 int no_quiesce = 0;
1286 int (*bound_func)(struct cpu *, int);
1287 kthread_t *t;
1288 lpl_t *cpu_lpl;
1289 proc_t *p;
1290 int lgrp_diff_lpl;
1291 boolean_t forced = (flags & CPU_FORCED) != 0;
1292
1293 ASSERT(MUTEX_HELD(&cpu_lock));
1294
1295 if (cp->cpu_flags & CPU_DISABLED)
1296 return (EINVAL);
1297
1298 /*
1299 * If we're going from faulted or spare to offline, just
1300 * clear these flags and update CPU state.
1301 */
1302 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1303 if (cp->cpu_flags & CPU_FAULTED) {
1304 cp->cpu_flags &= ~CPU_FAULTED;
1305 mp_cpu_faulted_exit(cp);
1306 }
1307 cp->cpu_flags &= ~CPU_SPARE;
1308 cpu_set_state(cp);
1309 return (0);
1310 }
1311
1312 /*
1313 * Handle off-line request.
1314 */
1315 pp = cp->cpu_part;
1316 /*
1317 * Don't offline last online CPU in partition
1318 */
1319 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1320 return (EBUSY);
1321 /*
1322 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1323 * if we were asked to.
1324 */
1325 error = cpu_unbind(cp->cpu_id, forced);
1326 if (error != 0)
1327 return (error);
1328 /*
1329 * We shouldn't be bound to this CPU ourselves.
1330 */
1331 if (curthread->t_bound_cpu == cp)
1332 return (EBUSY);
1333
1334 /*
1335 * Tell interested parties that this CPU is going offline.
1336 */
1337 CPU_NEW_GENERATION(cp);
1338 cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1339
1340 /*
1341 * Tell the PG subsystem that the CPU is leaving the partition
1342 */
1343 pg_cpupart_out(cp, pp);
1344
1345 /*
1346 * Take the CPU out of interrupt participation so we won't find
1347 * bound kernel threads. If the architecture cannot completely
1348 * shut off interrupts on the CPU, don't quiesce it, but don't
1349 * run anything but interrupt thread... this is indicated by
1350 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1351 * off.
1352 */
1353 intr_enable = cp->cpu_flags & CPU_ENABLE;
1354 if (intr_enable)
1355 no_quiesce = cpu_intr_disable(cp);
1356
1357 /*
1358 * Record that we are aiming to offline this cpu. This acts as
1359 * a barrier to further weak binding requests in thread_nomigrate
1360 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1361 * lean away from this cpu. Further strong bindings are already
1362 * avoided since we hold cpu_lock. Since threads that are set
1363 * runnable around now and others coming off the target cpu are
1364 * directed away from the target, existing strong and weak bindings
1365 * (especially the latter) to the target cpu stand maximum chance of
1366 * being able to unbind during the short delay loop below (if other
1367 * unbound threads compete they may not see cpu in time to unbind
1368 * even if they would do so immediately.
1369 */
1370 cpu_inmotion = cp;
1371 membar_enter();
1372
1373 /*
1374 * Check for kernel threads (strong or weak) bound to that CPU.
1375 * Strongly bound threads may not unbind, and we'll have to return
1376 * EBUSY. Weakly bound threads should always disappear - we've
1377 * stopped more weak binding with cpu_inmotion and existing
1378 * bindings will drain imminently (they may not block). Nonetheless
1379 * we will wait for a fixed period for all bound threads to disappear.
1380 * Inactive interrupt threads are OK (they'll be in TS_FREE
1381 * state). If test finds some bound threads, wait a few ticks
1382 * to give short-lived threads (such as interrupts) chance to
1383 * complete. Note that if no_quiesce is set, i.e. this cpu
1384 * is required to service interrupts, then we take the route
1385 * that permits interrupt threads to be active (or bypassed).
1386 */
1387 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1388
1389 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1390 if (loop_count >= 5) {
1391 error = EBUSY; /* some threads still bound */
1392 break;
1393 }
1394
1395 /*
1396 * If some threads were assigned, give them
1397 * a chance to complete or move.
1398 *
1399 * This assumes that the clock_thread is not bound
1400 * to any CPU, because the clock_thread is needed to
1401 * do the delay(hz/100).
1402 *
1403 * Note: we still hold the cpu_lock while waiting for
1404 * the next clock tick. This is OK since it isn't
1405 * needed for anything else except processor_bind(2),
1406 * and system initialization. If we drop the lock,
1407 * we would risk another p_online disabling the last
1408 * processor.
1409 */
1410 delay(hz/100);
1411 }
1412
1413 if (error == 0 && callout_off == 0) {
1414 callout_cpu_offline(cp);
1415 callout_off = 1;
1416 }
1417
1418 if (error == 0 && cyclic_off == 0) {
1419 if (!cyclic_offline(cp)) {
1420 /*
1421 * We must have bound cyclics...
1422 */
1423 error = EBUSY;
1424 goto out;
1425 }
1426 cyclic_off = 1;
1427 }
1428
1429 /*
1430 * Call mp_cpu_stop() to perform any special operations
1431 * needed for this machine architecture to offline a CPU.
1432 */
1433 if (error == 0)
1434 error = mp_cpu_stop(cp); /* arch-dep hook */
1435
1436 /*
1437 * If that all worked, take the CPU offline and decrement
1438 * ncpus_online.
1439 */
1440 if (error == 0) {
1441 /*
1442 * Put all the cpus into a known safe place.
1443 * No mutexes can be entered while CPUs are paused.
1444 */
1445 pause_cpus(cp, NULL);
1446 /*
1447 * Repeat the operation, if necessary, to make sure that
1448 * all outstanding low-level interrupts run to completion
1449 * before we set the CPU_QUIESCED flag. It's also possible
1450 * that a thread has weak bound to the cpu despite our raising
1451 * cpu_inmotion above since it may have loaded that
1452 * value before the barrier became visible (this would have
1453 * to be the thread that was on the target cpu at the time
1454 * we raised the barrier).
1455 */
1456 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1457 (*bound_func)(cp, 1)) {
1458 start_cpus();
1459 (void) mp_cpu_start(cp);
1460 goto again;
1461 }
1462 ncp = cp->cpu_next_part;
1463 cpu_lpl = cp->cpu_lpl;
1464 ASSERT(cpu_lpl != NULL);
1465
1466 /*
1467 * Remove the CPU from the list of active CPUs.
1468 */
1469 cpu_remove_active(cp);
1470
1471 /*
1472 * Walk the active process list and look for threads
1473 * whose home lgroup needs to be updated, or
1474 * the last CPU they run on is the one being offlined now.
1475 */
1476
1477 ASSERT(curthread->t_cpu != cp);
1478 for (p = practive; p != NULL; p = p->p_next) {
1479
1480 t = p->p_tlist;
1481
1482 if (t == NULL)
1483 continue;
1484
1485 lgrp_diff_lpl = 0;
1486
1487 do {
1488 ASSERT(t->t_lpl != NULL);
1489 /*
1490 * Taking last CPU in lpl offline
1491 * Rehome thread if it is in this lpl
1492 * Otherwise, update the count of how many
1493 * threads are in this CPU's lgroup but have
1494 * a different lpl.
1495 */
1496
1497 if (cpu_lpl->lpl_ncpu == 0) {
1498 if (t->t_lpl == cpu_lpl)
1499 lgrp_move_thread(t,
1500 lgrp_choose(t,
1501 t->t_cpupart), 0);
1502 else if (t->t_lpl->lpl_lgrpid ==
1503 cpu_lpl->lpl_lgrpid)
1504 lgrp_diff_lpl++;
1505 }
1506 ASSERT(t->t_lpl->lpl_ncpu > 0);
1507
1508 /*
1509 * Update CPU last ran on if it was this CPU
1510 */
1511 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1512 t->t_cpu = disp_lowpri_cpu(ncp, t,
1513 t->t_pri);
1514 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1515 t->t_weakbound_cpu == cp);
1516
1517 t = t->t_forw;
1518 } while (t != p->p_tlist);
1519
1520 /*
1521 * Didn't find any threads in the same lgroup as this
1522 * CPU with a different lpl, so remove the lgroup from
1523 * the process lgroup bitmask.
1524 */
1525
1526 if (lgrp_diff_lpl == 0)
1527 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1528 }
1529
1530 /*
1531 * Walk thread list looking for threads that need to be
1532 * rehomed, since there are some threads that are not in
1533 * their process's p_tlist.
1534 */
1535
1536 t = curthread;
1537 do {
1538 ASSERT(t != NULL && t->t_lpl != NULL);
1539
1540 /*
1541 * Rehome threads with same lpl as this CPU when this
1542 * is the last CPU in the lpl.
1543 */
1544
1545 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1546 lgrp_move_thread(t,
1547 lgrp_choose(t, t->t_cpupart), 1);
1548
1549 ASSERT(t->t_lpl->lpl_ncpu > 0);
1550
1551 /*
1552 * Update CPU last ran on if it was this CPU
1553 */
1554
1555 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1556 t->t_cpu = disp_lowpri_cpu(ncp, t, t->t_pri);
1557
1558 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1559 t->t_weakbound_cpu == cp);
1560 t = t->t_next;
1561
1562 } while (t != curthread);
1563 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1564 cp->cpu_flags |= CPU_OFFLINE;
1565 disp_cpu_inactive(cp);
1566 if (!no_quiesce)
1567 cp->cpu_flags |= CPU_QUIESCED;
1568 ncpus_online--;
1569 cpu_set_state(cp);
1570 cpu_inmotion = NULL;
1571 start_cpus();
1572 cpu_stats_kstat_destroy(cp);
1573 cpu_delete_intrstat(cp);
1574 lgrp_kstat_destroy(cp);
1575 }
1576
1577 out:
1578 cpu_inmotion = NULL;
1579
1580 /*
1581 * If we failed, re-enable interrupts.
1582 * Do this even if cpu_intr_disable returned an error, because
1583 * it may have partially disabled interrupts.
1584 */
1585 if (error && intr_enable)
1586 cpu_intr_enable(cp);
1587
1588 /*
1589 * If we failed, but managed to offline the cyclic subsystem on this
1590 * CPU, bring it back online.
1591 */
1592 if (error && cyclic_off)
1593 cyclic_online(cp);
1594
1595 /*
1596 * If we failed, but managed to offline callouts on this CPU,
1597 * bring it back online.
1598 */
1599 if (error && callout_off)
1600 callout_cpu_online(cp);
1601
1602 /*
1603 * If we failed, tell the PG subsystem that the CPU is back
1604 */
1605 pg_cpupart_in(cp, pp);
1606
1607 /*
1608 * If we failed, we need to notify everyone that this CPU is back on.
1609 */
1610 if (error != 0) {
1611 CPU_NEW_GENERATION(cp);
1612 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1613 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1614 }
1615
1616 return (error);
1617 }
1618
1619 /*
1620 * Mark the indicated CPU as faulted, taking it offline.
1621 */
1622 int
cpu_faulted(cpu_t * cp,int flags)1623 cpu_faulted(cpu_t *cp, int flags)
1624 {
1625 int error = 0;
1626
1627 ASSERT(MUTEX_HELD(&cpu_lock));
1628 ASSERT(!cpu_is_poweredoff(cp));
1629
1630 if (cp->cpu_flags & CPU_DISABLED)
1631 return (EINVAL);
1632
1633 if (cpu_is_offline(cp)) {
1634 cp->cpu_flags &= ~CPU_SPARE;
1635 cp->cpu_flags |= CPU_FAULTED;
1636 mp_cpu_faulted_enter(cp);
1637 cpu_set_state(cp);
1638 return (0);
1639 }
1640
1641 if ((error = cpu_offline(cp, flags)) == 0) {
1642 cp->cpu_flags |= CPU_FAULTED;
1643 mp_cpu_faulted_enter(cp);
1644 cpu_set_state(cp);
1645 }
1646
1647 return (error);
1648 }
1649
1650 /*
1651 * Mark the indicated CPU as a spare, taking it offline.
1652 */
1653 int
cpu_spare(cpu_t * cp,int flags)1654 cpu_spare(cpu_t *cp, int flags)
1655 {
1656 int error = 0;
1657
1658 ASSERT(MUTEX_HELD(&cpu_lock));
1659 ASSERT(!cpu_is_poweredoff(cp));
1660
1661 if (cp->cpu_flags & CPU_DISABLED)
1662 return (EINVAL);
1663
1664 if (cpu_is_offline(cp)) {
1665 if (cp->cpu_flags & CPU_FAULTED) {
1666 cp->cpu_flags &= ~CPU_FAULTED;
1667 mp_cpu_faulted_exit(cp);
1668 }
1669 cp->cpu_flags |= CPU_SPARE;
1670 cpu_set_state(cp);
1671 return (0);
1672 }
1673
1674 if ((error = cpu_offline(cp, flags)) == 0) {
1675 cp->cpu_flags |= CPU_SPARE;
1676 cpu_set_state(cp);
1677 }
1678
1679 return (error);
1680 }
1681
1682 /*
1683 * Take the indicated CPU from poweroff to offline.
1684 */
1685 int
cpu_poweron(cpu_t * cp)1686 cpu_poweron(cpu_t *cp)
1687 {
1688 int error = ENOTSUP;
1689
1690 ASSERT(MUTEX_HELD(&cpu_lock));
1691 ASSERT(cpu_is_poweredoff(cp));
1692
1693 error = mp_cpu_poweron(cp); /* arch-dep hook */
1694 if (error == 0)
1695 cpu_set_state(cp);
1696
1697 return (error);
1698 }
1699
1700 /*
1701 * Take the indicated CPU from any inactive state to powered off.
1702 */
1703 int
cpu_poweroff(cpu_t * cp)1704 cpu_poweroff(cpu_t *cp)
1705 {
1706 int error = ENOTSUP;
1707
1708 ASSERT(MUTEX_HELD(&cpu_lock));
1709 ASSERT(cpu_is_offline(cp));
1710
1711 if (!(cp->cpu_flags & CPU_QUIESCED))
1712 return (EBUSY); /* not completely idle */
1713
1714 error = mp_cpu_poweroff(cp); /* arch-dep hook */
1715 if (error == 0)
1716 cpu_set_state(cp);
1717
1718 return (error);
1719 }
1720
1721 /*
1722 * Initialize the Sequential CPU id lookup table
1723 */
1724 void
cpu_seq_tbl_init()1725 cpu_seq_tbl_init()
1726 {
1727 cpu_t **tbl;
1728
1729 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1730 tbl[0] = CPU;
1731
1732 cpu_seq = tbl;
1733 }
1734
1735 /*
1736 * Initialize the CPU lists for the first CPU.
1737 */
1738 void
cpu_list_init(cpu_t * cp)1739 cpu_list_init(cpu_t *cp)
1740 {
1741 cp->cpu_next = cp;
1742 cp->cpu_prev = cp;
1743 cpu_list = cp;
1744 clock_cpu_list = cp;
1745
1746 cp->cpu_next_onln = cp;
1747 cp->cpu_prev_onln = cp;
1748 cpu_active = cp;
1749
1750 cp->cpu_seqid = 0;
1751 CPUSET_ADD(cpu_seqid_inuse, 0);
1752
1753 /*
1754 * Bootstrap cpu_seq using cpu_list
1755 * The cpu_seq[] table will be dynamically allocated
1756 * when kmem later becomes available (but before going MP)
1757 */
1758 cpu_seq = &cpu_list;
1759
1760 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1761 cp_default.cp_cpulist = cp;
1762 cp_default.cp_ncpus = 1;
1763 cp->cpu_next_part = cp;
1764 cp->cpu_prev_part = cp;
1765 cp->cpu_part = &cp_default;
1766
1767 CPUSET_ADD(cpu_available, cp->cpu_id);
1768 CPUSET_ADD(cpu_active_set, cp->cpu_id);
1769 }
1770
1771 /*
1772 * Insert a CPU into the list of available CPUs.
1773 */
1774 void
cpu_add_unit(cpu_t * cp)1775 cpu_add_unit(cpu_t *cp)
1776 {
1777 int seqid;
1778
1779 ASSERT(MUTEX_HELD(&cpu_lock));
1780 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1781
1782 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1783
1784 /*
1785 * Note: most users of the cpu_list will grab the
1786 * cpu_lock to insure that it isn't modified. However,
1787 * certain users can't or won't do that. To allow this
1788 * we pause the other cpus. Users who walk the list
1789 * without cpu_lock, must disable kernel preemption
1790 * to insure that the list isn't modified underneath
1791 * them. Also, any cached pointers to cpu structures
1792 * must be revalidated by checking to see if the
1793 * cpu_next pointer points to itself. This check must
1794 * be done with the cpu_lock held or kernel preemption
1795 * disabled. This check relies upon the fact that
1796 * old cpu structures are not free'ed or cleared after
1797 * then are removed from the cpu_list.
1798 *
1799 * Note that the clock code walks the cpu list dereferencing
1800 * the cpu_part pointer, so we need to initialize it before
1801 * adding the cpu to the list.
1802 */
1803 cp->cpu_part = &cp_default;
1804 pause_cpus(NULL, NULL);
1805 cp->cpu_next = cpu_list;
1806 cp->cpu_prev = cpu_list->cpu_prev;
1807 cpu_list->cpu_prev->cpu_next = cp;
1808 cpu_list->cpu_prev = cp;
1809 start_cpus();
1810
1811 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1812 continue;
1813 CPUSET_ADD(cpu_seqid_inuse, seqid);
1814 cp->cpu_seqid = seqid;
1815
1816 if (seqid > max_cpu_seqid_ever)
1817 max_cpu_seqid_ever = seqid;
1818
1819 ASSERT(ncpus < max_ncpus);
1820 ncpus++;
1821 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1822 cpu[cp->cpu_id] = cp;
1823 CPUSET_ADD(cpu_available, cp->cpu_id);
1824 cpu_seq[cp->cpu_seqid] = cp;
1825
1826 /*
1827 * allocate a pause thread for this CPU.
1828 */
1829 cpu_pause_alloc(cp);
1830
1831 /*
1832 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1833 * link them into a list of just that CPU.
1834 * This is so that disp_lowpri_cpu will work for thread_create in
1835 * pause_cpus() when called from the startup thread in a new CPU.
1836 */
1837 cp->cpu_next_onln = cp;
1838 cp->cpu_prev_onln = cp;
1839 cpu_info_kstat_create(cp);
1840 cp->cpu_next_part = cp;
1841 cp->cpu_prev_part = cp;
1842
1843 init_cpu_mstate(cp, CMS_SYSTEM);
1844
1845 pool_pset_mod = gethrtime();
1846 }
1847
1848 /*
1849 * Do the opposite of cpu_add_unit().
1850 */
1851 void
cpu_del_unit(int cpuid)1852 cpu_del_unit(int cpuid)
1853 {
1854 struct cpu *cp, *cpnext;
1855
1856 ASSERT(MUTEX_HELD(&cpu_lock));
1857 cp = cpu[cpuid];
1858 ASSERT(cp != NULL);
1859
1860 ASSERT(cp->cpu_next_onln == cp);
1861 ASSERT(cp->cpu_prev_onln == cp);
1862 ASSERT(cp->cpu_next_part == cp);
1863 ASSERT(cp->cpu_prev_part == cp);
1864
1865 /*
1866 * Tear down the CPU's physical ID cache, and update any
1867 * processor groups
1868 */
1869 pg_cpu_fini(cp, NULL);
1870 pghw_physid_destroy(cp);
1871
1872 /*
1873 * Destroy kstat stuff.
1874 */
1875 cpu_info_kstat_destroy(cp);
1876 term_cpu_mstate(cp);
1877 /*
1878 * Free up pause thread.
1879 */
1880 cpu_pause_free(cp);
1881 CPUSET_DEL(cpu_available, cp->cpu_id);
1882 cpu[cp->cpu_id] = NULL;
1883 cpu_seq[cp->cpu_seqid] = NULL;
1884
1885 /*
1886 * The clock thread and mutex_vector_enter cannot hold the
1887 * cpu_lock while traversing the cpu list, therefore we pause
1888 * all other threads by pausing the other cpus. These, and any
1889 * other routines holding cpu pointers while possibly sleeping
1890 * must be sure to call kpreempt_disable before processing the
1891 * list and be sure to check that the cpu has not been deleted
1892 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1893 * to keep the deleted cpu structure around.
1894 *
1895 * Note that this MUST be done AFTER cpu_available
1896 * has been updated so that we don't waste time
1897 * trying to pause the cpu we're trying to delete.
1898 */
1899 pause_cpus(NULL, NULL);
1900
1901 cpnext = cp->cpu_next;
1902 cp->cpu_prev->cpu_next = cp->cpu_next;
1903 cp->cpu_next->cpu_prev = cp->cpu_prev;
1904 if (cp == cpu_list)
1905 cpu_list = cpnext;
1906
1907 /*
1908 * Signals that the cpu has been deleted (see above).
1909 */
1910 cp->cpu_next = NULL;
1911 cp->cpu_prev = NULL;
1912
1913 start_cpus();
1914
1915 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1916 ncpus--;
1917 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1918
1919 pool_pset_mod = gethrtime();
1920 }
1921
1922 /*
1923 * Add a CPU to the list of active CPUs.
1924 * This routine must not get any locks, because other CPUs are paused.
1925 */
1926 static void
cpu_add_active_internal(cpu_t * cp)1927 cpu_add_active_internal(cpu_t *cp)
1928 {
1929 cpupart_t *pp = cp->cpu_part;
1930
1931 ASSERT(MUTEX_HELD(&cpu_lock));
1932 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1933
1934 ncpus_online++;
1935 cpu_set_state(cp);
1936 cp->cpu_next_onln = cpu_active;
1937 cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1938 cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1939 cpu_active->cpu_prev_onln = cp;
1940 CPUSET_ADD(cpu_active_set, cp->cpu_id);
1941
1942 if (pp->cp_cpulist) {
1943 cp->cpu_next_part = pp->cp_cpulist;
1944 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1945 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1946 pp->cp_cpulist->cpu_prev_part = cp;
1947 } else {
1948 ASSERT(pp->cp_ncpus == 0);
1949 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1950 }
1951 pp->cp_ncpus++;
1952 if (pp->cp_ncpus == 1) {
1953 cp_numparts_nonempty++;
1954 ASSERT(cp_numparts_nonempty != 0);
1955 }
1956
1957 pg_cpu_active(cp);
1958 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1959
1960 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1961 }
1962
1963 /*
1964 * Add a CPU to the list of active CPUs.
1965 * This is called from machine-dependent layers when a new CPU is started.
1966 */
1967 void
cpu_add_active(cpu_t * cp)1968 cpu_add_active(cpu_t *cp)
1969 {
1970 pg_cpupart_in(cp, cp->cpu_part);
1971
1972 pause_cpus(NULL, NULL);
1973 cpu_add_active_internal(cp);
1974 start_cpus();
1975
1976 cpu_stats_kstat_create(cp);
1977 cpu_create_intrstat(cp);
1978 lgrp_kstat_create(cp);
1979 cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1980 }
1981
1982
1983 /*
1984 * Remove a CPU from the list of active CPUs.
1985 * This routine must not get any locks, because other CPUs are paused.
1986 */
1987 /* ARGSUSED */
1988 static void
cpu_remove_active(cpu_t * cp)1989 cpu_remove_active(cpu_t *cp)
1990 {
1991 cpupart_t *pp = cp->cpu_part;
1992
1993 ASSERT(MUTEX_HELD(&cpu_lock));
1994 ASSERT(cp->cpu_next_onln != cp); /* not the last one */
1995 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */
1996
1997 pg_cpu_inactive(cp);
1998
1999 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
2000
2001 if (cp == clock_cpu_list)
2002 clock_cpu_list = cp->cpu_next_onln;
2003
2004 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
2005 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
2006 if (cpu_active == cp) {
2007 cpu_active = cp->cpu_next_onln;
2008 }
2009 cp->cpu_next_onln = cp;
2010 cp->cpu_prev_onln = cp;
2011 CPUSET_DEL(cpu_active_set, cp->cpu_id);
2012
2013 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
2014 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
2015 if (pp->cp_cpulist == cp) {
2016 pp->cp_cpulist = cp->cpu_next_part;
2017 ASSERT(pp->cp_cpulist != cp);
2018 }
2019 cp->cpu_next_part = cp;
2020 cp->cpu_prev_part = cp;
2021 pp->cp_ncpus--;
2022 if (pp->cp_ncpus == 0) {
2023 cp_numparts_nonempty--;
2024 ASSERT(cp_numparts_nonempty != 0);
2025 }
2026 }
2027
2028 /*
2029 * Routine used to setup a newly inserted CPU in preparation for starting
2030 * it running code.
2031 */
2032 int
cpu_configure(int cpuid)2033 cpu_configure(int cpuid)
2034 {
2035 int retval = 0;
2036
2037 ASSERT(MUTEX_HELD(&cpu_lock));
2038
2039 /*
2040 * Some structures are statically allocated based upon
2041 * the maximum number of cpus the system supports. Do not
2042 * try to add anything beyond this limit.
2043 */
2044 if (cpuid < 0 || cpuid >= NCPU) {
2045 return (EINVAL);
2046 }
2047
2048 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2049 return (EALREADY);
2050 }
2051
2052 if ((retval = mp_cpu_configure(cpuid)) != 0) {
2053 return (retval);
2054 }
2055
2056 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2057 cpu_set_state(cpu[cpuid]);
2058 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2059 if (retval != 0)
2060 (void) mp_cpu_unconfigure(cpuid);
2061
2062 return (retval);
2063 }
2064
2065 /*
2066 * Routine used to cleanup a CPU that has been powered off. This will
2067 * destroy all per-cpu information related to this cpu.
2068 */
2069 int
cpu_unconfigure(int cpuid)2070 cpu_unconfigure(int cpuid)
2071 {
2072 int error;
2073
2074 ASSERT(MUTEX_HELD(&cpu_lock));
2075
2076 if (cpu[cpuid] == NULL) {
2077 return (ENODEV);
2078 }
2079
2080 if (cpu[cpuid]->cpu_flags == 0) {
2081 return (EALREADY);
2082 }
2083
2084 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2085 return (EBUSY);
2086 }
2087
2088 if (cpu[cpuid]->cpu_props != NULL) {
2089 (void) nvlist_free(cpu[cpuid]->cpu_props);
2090 cpu[cpuid]->cpu_props = NULL;
2091 }
2092
2093 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2094
2095 if (error != 0)
2096 return (error);
2097
2098 return (mp_cpu_unconfigure(cpuid));
2099 }
2100
2101 /*
2102 * Routines for registering and de-registering cpu_setup callback functions.
2103 *
2104 * Caller's context
2105 * These routines must not be called from a driver's attach(9E) or
2106 * detach(9E) entry point.
2107 *
2108 * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2109 */
2110
2111 /*
2112 * Ideally, these would be dynamically allocated and put into a linked
2113 * list; however that is not feasible because the registration routine
2114 * has to be available before the kmem allocator is working (in fact,
2115 * it is called by the kmem allocator init code). In any case, there
2116 * are quite a few extra entries for future users.
2117 */
2118 #define NCPU_SETUPS 20
2119
2120 struct cpu_setup {
2121 cpu_setup_func_t *func;
2122 void *arg;
2123 } cpu_setups[NCPU_SETUPS];
2124
2125 void
register_cpu_setup_func(cpu_setup_func_t * func,void * arg)2126 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2127 {
2128 int i;
2129
2130 ASSERT(MUTEX_HELD(&cpu_lock));
2131
2132 for (i = 0; i < NCPU_SETUPS; i++)
2133 if (cpu_setups[i].func == NULL)
2134 break;
2135 if (i >= NCPU_SETUPS)
2136 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2137
2138 cpu_setups[i].func = func;
2139 cpu_setups[i].arg = arg;
2140 }
2141
2142 void
unregister_cpu_setup_func(cpu_setup_func_t * func,void * arg)2143 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2144 {
2145 int i;
2146
2147 ASSERT(MUTEX_HELD(&cpu_lock));
2148
2149 for (i = 0; i < NCPU_SETUPS; i++)
2150 if ((cpu_setups[i].func == func) &&
2151 (cpu_setups[i].arg == arg))
2152 break;
2153 if (i >= NCPU_SETUPS)
2154 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2155 "deregister");
2156
2157 cpu_setups[i].func = NULL;
2158 cpu_setups[i].arg = 0;
2159 }
2160
2161 /*
2162 * Call any state change hooks for this CPU, ignore any errors.
2163 */
2164 void
cpu_state_change_notify(int id,cpu_setup_t what)2165 cpu_state_change_notify(int id, cpu_setup_t what)
2166 {
2167 int i;
2168
2169 ASSERT(MUTEX_HELD(&cpu_lock));
2170
2171 for (i = 0; i < NCPU_SETUPS; i++) {
2172 if (cpu_setups[i].func != NULL) {
2173 cpu_setups[i].func(what, id, cpu_setups[i].arg);
2174 }
2175 }
2176 }
2177
2178 /*
2179 * Call any state change hooks for this CPU, undo it if error found.
2180 */
2181 static int
cpu_state_change_hooks(int id,cpu_setup_t what,cpu_setup_t undo)2182 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2183 {
2184 int i;
2185 int retval = 0;
2186
2187 ASSERT(MUTEX_HELD(&cpu_lock));
2188
2189 for (i = 0; i < NCPU_SETUPS; i++) {
2190 if (cpu_setups[i].func != NULL) {
2191 retval = cpu_setups[i].func(what, id,
2192 cpu_setups[i].arg);
2193 if (retval) {
2194 for (i--; i >= 0; i--) {
2195 if (cpu_setups[i].func != NULL)
2196 cpu_setups[i].func(undo,
2197 id, cpu_setups[i].arg);
2198 }
2199 break;
2200 }
2201 }
2202 }
2203 return (retval);
2204 }
2205
2206 /*
2207 * Export information about this CPU via the kstat mechanism.
2208 */
2209 static struct {
2210 kstat_named_t ci_state;
2211 kstat_named_t ci_state_begin;
2212 kstat_named_t ci_cpu_type;
2213 kstat_named_t ci_fpu_type;
2214 kstat_named_t ci_clock_MHz;
2215 kstat_named_t ci_chip_id;
2216 kstat_named_t ci_implementation;
2217 kstat_named_t ci_brandstr;
2218 kstat_named_t ci_core_id;
2219 kstat_named_t ci_curr_clock_Hz;
2220 kstat_named_t ci_supp_freq_Hz;
2221 kstat_named_t ci_pg_id;
2222 #if defined(__sparcv9)
2223 kstat_named_t ci_device_ID;
2224 kstat_named_t ci_cpu_fru;
2225 #endif
2226 #if defined(__x86)
2227 kstat_named_t ci_vendorstr;
2228 kstat_named_t ci_family;
2229 kstat_named_t ci_model;
2230 kstat_named_t ci_step;
2231 kstat_named_t ci_clogid;
2232 kstat_named_t ci_pkg_core_id;
2233 kstat_named_t ci_ncpuperchip;
2234 kstat_named_t ci_ncoreperchip;
2235 kstat_named_t ci_max_cstates;
2236 kstat_named_t ci_curr_cstate;
2237 kstat_named_t ci_cacheid;
2238 kstat_named_t ci_sktstr;
2239 #endif
2240 } cpu_info_template = {
2241 { "state", KSTAT_DATA_CHAR },
2242 { "state_begin", KSTAT_DATA_LONG },
2243 { "cpu_type", KSTAT_DATA_CHAR },
2244 { "fpu_type", KSTAT_DATA_CHAR },
2245 { "clock_MHz", KSTAT_DATA_LONG },
2246 { "chip_id", KSTAT_DATA_LONG },
2247 { "implementation", KSTAT_DATA_STRING },
2248 { "brand", KSTAT_DATA_STRING },
2249 { "core_id", KSTAT_DATA_LONG },
2250 { "current_clock_Hz", KSTAT_DATA_UINT64 },
2251 { "supported_frequencies_Hz", KSTAT_DATA_STRING },
2252 { "pg_id", KSTAT_DATA_LONG },
2253 #if defined(__sparcv9)
2254 { "device_ID", KSTAT_DATA_UINT64 },
2255 { "cpu_fru", KSTAT_DATA_STRING },
2256 #endif
2257 #if defined(__x86)
2258 { "vendor_id", KSTAT_DATA_STRING },
2259 { "family", KSTAT_DATA_INT32 },
2260 { "model", KSTAT_DATA_INT32 },
2261 { "stepping", KSTAT_DATA_INT32 },
2262 { "clog_id", KSTAT_DATA_INT32 },
2263 { "pkg_core_id", KSTAT_DATA_LONG },
2264 { "ncpu_per_chip", KSTAT_DATA_INT32 },
2265 { "ncore_per_chip", KSTAT_DATA_INT32 },
2266 { "supported_max_cstates", KSTAT_DATA_INT32 },
2267 { "current_cstate", KSTAT_DATA_INT32 },
2268 { "cache_id", KSTAT_DATA_INT32 },
2269 { "socket_type", KSTAT_DATA_STRING },
2270 #endif
2271 };
2272
2273 static kmutex_t cpu_info_template_lock;
2274
2275 static int
cpu_info_kstat_update(kstat_t * ksp,int rw)2276 cpu_info_kstat_update(kstat_t *ksp, int rw)
2277 {
2278 cpu_t *cp = ksp->ks_private;
2279 const char *pi_state;
2280
2281 if (rw == KSTAT_WRITE)
2282 return (EACCES);
2283
2284 #if defined(__x86)
2285 /* Is the cpu still initialising itself? */
2286 if (cpuid_checkpass(cp, 1) == 0)
2287 return (ENXIO);
2288 #endif
2289
2290 pi_state = cpu_get_state_str(cp->cpu_flags);
2291
2292 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2293 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2294 (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2295 cp->cpu_type_info.pi_processor_type, 15);
2296 (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2297 cp->cpu_type_info.pi_fputypes, 15);
2298 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2299 cpu_info_template.ci_chip_id.value.l =
2300 pg_plat_hw_instance_id(cp, PGHW_CHIP);
2301 kstat_named_setstr(&cpu_info_template.ci_implementation,
2302 cp->cpu_idstr);
2303 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2304 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2305 cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2306 cp->cpu_curr_clock;
2307 cpu_info_template.ci_pg_id.value.l =
2308 cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2309 cp->cpu_pg->cmt_lineage->pg_id : -1;
2310 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2311 cp->cpu_supp_freqs);
2312 #if defined(__sparcv9)
2313 cpu_info_template.ci_device_ID.value.ui64 =
2314 cpunodes[cp->cpu_id].device_id;
2315 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2316 #endif
2317 #if defined(__x86)
2318 kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2319 cpuid_getvendorstr(cp));
2320 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2321 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2322 cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2323 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2324 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2325 cpu_info_template.ci_ncoreperchip.value.l =
2326 cpuid_get_ncore_per_chip(cp);
2327 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2328 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2329 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2330 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2331 kstat_named_setstr(&cpu_info_template.ci_sktstr,
2332 cpuid_getsocketstr(cp));
2333 #endif
2334
2335 return (0);
2336 }
2337
2338 static void
cpu_info_kstat_create(cpu_t * cp)2339 cpu_info_kstat_create(cpu_t *cp)
2340 {
2341 zoneid_t zoneid;
2342
2343 ASSERT(MUTEX_HELD(&cpu_lock));
2344
2345 if (pool_pset_enabled())
2346 zoneid = GLOBAL_ZONEID;
2347 else
2348 zoneid = ALL_ZONES;
2349 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2350 NULL, "misc", KSTAT_TYPE_NAMED,
2351 sizeof (cpu_info_template) / sizeof (kstat_named_t),
2352 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2353 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2354 #if defined(__sparcv9)
2355 cp->cpu_info_kstat->ks_data_size +=
2356 strlen(cpu_fru_fmri(cp)) + 1;
2357 #endif
2358 #if defined(__x86)
2359 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2360 #endif
2361 if (cp->cpu_supp_freqs != NULL)
2362 cp->cpu_info_kstat->ks_data_size +=
2363 strlen(cp->cpu_supp_freqs) + 1;
2364 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2365 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2366 cp->cpu_info_kstat->ks_private = cp;
2367 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2368 kstat_install(cp->cpu_info_kstat);
2369 }
2370 }
2371
2372 static void
cpu_info_kstat_destroy(cpu_t * cp)2373 cpu_info_kstat_destroy(cpu_t *cp)
2374 {
2375 ASSERT(MUTEX_HELD(&cpu_lock));
2376
2377 kstat_delete(cp->cpu_info_kstat);
2378 cp->cpu_info_kstat = NULL;
2379 }
2380
2381 /*
2382 * Create and install kstats for the boot CPU.
2383 */
2384 void
cpu_kstat_init(cpu_t * cp)2385 cpu_kstat_init(cpu_t *cp)
2386 {
2387 mutex_enter(&cpu_lock);
2388 cpu_info_kstat_create(cp);
2389 cpu_stats_kstat_create(cp);
2390 cpu_create_intrstat(cp);
2391 cpu_set_state(cp);
2392 mutex_exit(&cpu_lock);
2393 }
2394
2395 /*
2396 * Make visible to the zone that subset of the cpu information that would be
2397 * initialized when a cpu is configured (but still offline).
2398 */
2399 void
cpu_visibility_configure(cpu_t * cp,zone_t * zone)2400 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2401 {
2402 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2403
2404 ASSERT(MUTEX_HELD(&cpu_lock));
2405 ASSERT(pool_pset_enabled());
2406 ASSERT(cp != NULL);
2407
2408 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2409 zone->zone_ncpus++;
2410 ASSERT(zone->zone_ncpus <= ncpus);
2411 }
2412 if (cp->cpu_info_kstat != NULL)
2413 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2414 }
2415
2416 /*
2417 * Make visible to the zone that subset of the cpu information that would be
2418 * initialized when a previously configured cpu is onlined.
2419 */
2420 void
cpu_visibility_online(cpu_t * cp,zone_t * zone)2421 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2422 {
2423 kstat_t *ksp;
2424 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2425 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2426 processorid_t cpun;
2427
2428 ASSERT(MUTEX_HELD(&cpu_lock));
2429 ASSERT(pool_pset_enabled());
2430 ASSERT(cp != NULL);
2431 ASSERT(cpu_is_active(cp));
2432
2433 cpun = cp->cpu_id;
2434 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2435 zone->zone_ncpus_online++;
2436 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2437 }
2438 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2439 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2440 != NULL) {
2441 kstat_zone_add(ksp, zoneid);
2442 kstat_rele(ksp);
2443 }
2444 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2445 kstat_zone_add(ksp, zoneid);
2446 kstat_rele(ksp);
2447 }
2448 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2449 kstat_zone_add(ksp, zoneid);
2450 kstat_rele(ksp);
2451 }
2452 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2453 NULL) {
2454 kstat_zone_add(ksp, zoneid);
2455 kstat_rele(ksp);
2456 }
2457 }
2458
2459 /*
2460 * Update relevant kstats such that cpu is now visible to processes
2461 * executing in specified zone.
2462 */
2463 void
cpu_visibility_add(cpu_t * cp,zone_t * zone)2464 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2465 {
2466 cpu_visibility_configure(cp, zone);
2467 if (cpu_is_active(cp))
2468 cpu_visibility_online(cp, zone);
2469 }
2470
2471 /*
2472 * Make invisible to the zone that subset of the cpu information that would be
2473 * torn down when a previously offlined cpu is unconfigured.
2474 */
2475 void
cpu_visibility_unconfigure(cpu_t * cp,zone_t * zone)2476 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2477 {
2478 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2479
2480 ASSERT(MUTEX_HELD(&cpu_lock));
2481 ASSERT(pool_pset_enabled());
2482 ASSERT(cp != NULL);
2483
2484 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2485 ASSERT(zone->zone_ncpus != 0);
2486 zone->zone_ncpus--;
2487 }
2488 if (cp->cpu_info_kstat)
2489 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2490 }
2491
2492 /*
2493 * Make invisible to the zone that subset of the cpu information that would be
2494 * torn down when a cpu is offlined (but still configured).
2495 */
2496 void
cpu_visibility_offline(cpu_t * cp,zone_t * zone)2497 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2498 {
2499 kstat_t *ksp;
2500 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2501 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2502 processorid_t cpun;
2503
2504 ASSERT(MUTEX_HELD(&cpu_lock));
2505 ASSERT(pool_pset_enabled());
2506 ASSERT(cp != NULL);
2507 ASSERT(cpu_is_active(cp));
2508
2509 cpun = cp->cpu_id;
2510 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2511 ASSERT(zone->zone_ncpus_online != 0);
2512 zone->zone_ncpus_online--;
2513 }
2514
2515 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2516 NULL) {
2517 kstat_zone_remove(ksp, zoneid);
2518 kstat_rele(ksp);
2519 }
2520 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2521 kstat_zone_remove(ksp, zoneid);
2522 kstat_rele(ksp);
2523 }
2524 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2525 kstat_zone_remove(ksp, zoneid);
2526 kstat_rele(ksp);
2527 }
2528 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2529 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2530 != NULL) {
2531 kstat_zone_remove(ksp, zoneid);
2532 kstat_rele(ksp);
2533 }
2534 }
2535
2536 /*
2537 * Update relevant kstats such that cpu is no longer visible to processes
2538 * executing in specified zone.
2539 */
2540 void
cpu_visibility_remove(cpu_t * cp,zone_t * zone)2541 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2542 {
2543 if (cpu_is_active(cp))
2544 cpu_visibility_offline(cp, zone);
2545 cpu_visibility_unconfigure(cp, zone);
2546 }
2547
2548 /*
2549 * Bind a thread to a CPU as requested.
2550 */
2551 int
cpu_bind_thread(kthread_id_t tp,processorid_t bind,processorid_t * obind,int * error)2552 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2553 int *error)
2554 {
2555 processorid_t binding;
2556 cpu_t *cp = NULL;
2557
2558 ASSERT(MUTEX_HELD(&cpu_lock));
2559 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2560
2561 thread_lock(tp);
2562
2563 /*
2564 * Record old binding, but change the obind, which was initialized
2565 * to PBIND_NONE, only if this thread has a binding. This avoids
2566 * reporting PBIND_NONE for a process when some LWPs are bound.
2567 */
2568 binding = tp->t_bind_cpu;
2569 if (binding != PBIND_NONE)
2570 *obind = binding; /* record old binding */
2571
2572 switch (bind) {
2573 case PBIND_QUERY:
2574 /* Just return the old binding */
2575 thread_unlock(tp);
2576 return (0);
2577
2578 case PBIND_QUERY_TYPE:
2579 /* Return the binding type */
2580 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2581 thread_unlock(tp);
2582 return (0);
2583
2584 case PBIND_SOFT:
2585 /*
2586 * Set soft binding for this thread and return the actual
2587 * binding
2588 */
2589 TB_CPU_SOFT_SET(tp);
2590 thread_unlock(tp);
2591 return (0);
2592
2593 case PBIND_HARD:
2594 /*
2595 * Set hard binding for this thread and return the actual
2596 * binding
2597 */
2598 TB_CPU_HARD_SET(tp);
2599 thread_unlock(tp);
2600 return (0);
2601
2602 default:
2603 break;
2604 }
2605
2606 /*
2607 * If this thread/LWP cannot be bound because of permission
2608 * problems, just note that and return success so that the
2609 * other threads/LWPs will be bound. This is the way
2610 * processor_bind() is defined to work.
2611 *
2612 * Binding will get EPERM if the thread is of system class
2613 * or hasprocperm() fails.
2614 */
2615 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2616 *error = EPERM;
2617 thread_unlock(tp);
2618 return (0);
2619 }
2620
2621 binding = bind;
2622 if (binding != PBIND_NONE) {
2623 cp = cpu_get((processorid_t)binding);
2624 /*
2625 * Make sure binding is valid and is in right partition.
2626 */
2627 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2628 *error = EINVAL;
2629 thread_unlock(tp);
2630 return (0);
2631 }
2632 }
2633 tp->t_bind_cpu = binding; /* set new binding */
2634
2635 /*
2636 * If there is no system-set reason for affinity, set
2637 * the t_bound_cpu field to reflect the binding.
2638 */
2639 if (tp->t_affinitycnt == 0) {
2640 if (binding == PBIND_NONE) {
2641 /*
2642 * We may need to adjust disp_max_unbound_pri
2643 * since we're becoming unbound.
2644 */
2645 disp_adjust_unbound_pri(tp);
2646
2647 tp->t_bound_cpu = NULL; /* set new binding */
2648
2649 /*
2650 * Move thread to lgroup with strongest affinity
2651 * after unbinding
2652 */
2653 if (tp->t_lgrp_affinity)
2654 lgrp_move_thread(tp,
2655 lgrp_choose(tp, tp->t_cpupart), 1);
2656
2657 if (tp->t_state == TS_ONPROC &&
2658 tp->t_cpu->cpu_part != tp->t_cpupart)
2659 cpu_surrender(tp);
2660 } else {
2661 lpl_t *lpl;
2662
2663 tp->t_bound_cpu = cp;
2664 ASSERT(cp->cpu_lpl != NULL);
2665
2666 /*
2667 * Set home to lgroup with most affinity containing CPU
2668 * that thread is being bound or minimum bounding
2669 * lgroup if no affinities set
2670 */
2671 if (tp->t_lgrp_affinity)
2672 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2673 LGRP_NONE, B_FALSE);
2674 else
2675 lpl = cp->cpu_lpl;
2676
2677 if (tp->t_lpl != lpl) {
2678 /* can't grab cpu_lock */
2679 lgrp_move_thread(tp, lpl, 1);
2680 }
2681
2682 /*
2683 * Make the thread switch to the bound CPU.
2684 * If the thread is runnable, we need to
2685 * requeue it even if t_cpu is already set
2686 * to the right CPU, since it may be on a
2687 * kpreempt queue and need to move to a local
2688 * queue. We could check t_disp_queue to
2689 * avoid unnecessary overhead if it's already
2690 * on the right queue, but since this isn't
2691 * a performance-critical operation it doesn't
2692 * seem worth the extra code and complexity.
2693 *
2694 * If the thread is weakbound to the cpu then it will
2695 * resist the new binding request until the weak
2696 * binding drops. The cpu_surrender or requeueing
2697 * below could be skipped in such cases (since it
2698 * will have no effect), but that would require
2699 * thread_allowmigrate to acquire thread_lock so
2700 * we'll take the very occasional hit here instead.
2701 */
2702 if (tp->t_state == TS_ONPROC) {
2703 cpu_surrender(tp);
2704 } else if (tp->t_state == TS_RUN) {
2705 cpu_t *ocp = tp->t_cpu;
2706
2707 (void) dispdeq(tp);
2708 setbackdq(tp);
2709 /*
2710 * Either on the bound CPU's disp queue now,
2711 * or swapped out or on the swap queue.
2712 */
2713 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2714 tp->t_weakbound_cpu == ocp ||
2715 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2716 != TS_LOAD);
2717 }
2718 }
2719 }
2720
2721 /*
2722 * Our binding has changed; set TP_CHANGEBIND.
2723 */
2724 tp->t_proc_flag |= TP_CHANGEBIND;
2725 aston(tp);
2726
2727 thread_unlock(tp);
2728
2729 return (0);
2730 }
2731
2732
2733 cpuset_t *
cpuset_alloc(int kmflags)2734 cpuset_alloc(int kmflags)
2735 {
2736 return (kmem_alloc(sizeof (cpuset_t), kmflags));
2737 }
2738
2739 void
cpuset_free(cpuset_t * s)2740 cpuset_free(cpuset_t *s)
2741 {
2742 kmem_free(s, sizeof (cpuset_t));
2743 }
2744
2745 void
cpuset_all(cpuset_t * s)2746 cpuset_all(cpuset_t *s)
2747 {
2748 int i;
2749
2750 for (i = 0; i < CPUSET_WORDS; i++)
2751 s->cpub[i] = ~0UL;
2752 }
2753
2754 void
cpuset_all_but(cpuset_t * s,const uint_t cpu)2755 cpuset_all_but(cpuset_t *s, const uint_t cpu)
2756 {
2757 cpuset_all(s);
2758 CPUSET_DEL(*s, cpu);
2759 }
2760
2761 void
cpuset_only(cpuset_t * s,const uint_t cpu)2762 cpuset_only(cpuset_t *s, const uint_t cpu)
2763 {
2764 CPUSET_ZERO(*s);
2765 CPUSET_ADD(*s, cpu);
2766 }
2767
2768 long
cpu_in_set(const cpuset_t * s,const uint_t cpu)2769 cpu_in_set(const cpuset_t *s, const uint_t cpu)
2770 {
2771 VERIFY(cpu < NCPU);
2772 return (BT_TEST(s->cpub, cpu));
2773 }
2774
2775 void
cpuset_add(cpuset_t * s,const uint_t cpu)2776 cpuset_add(cpuset_t *s, const uint_t cpu)
2777 {
2778 VERIFY(cpu < NCPU);
2779 BT_SET(s->cpub, cpu);
2780 }
2781
2782 void
cpuset_del(cpuset_t * s,const uint_t cpu)2783 cpuset_del(cpuset_t *s, const uint_t cpu)
2784 {
2785 VERIFY(cpu < NCPU);
2786 BT_CLEAR(s->cpub, cpu);
2787 }
2788
2789 int
cpuset_isnull(const cpuset_t * s)2790 cpuset_isnull(const cpuset_t *s)
2791 {
2792 int i;
2793
2794 for (i = 0; i < CPUSET_WORDS; i++) {
2795 if (s->cpub[i] != 0)
2796 return (0);
2797 }
2798 return (1);
2799 }
2800
2801 int
cpuset_isequal(const cpuset_t * s1,const cpuset_t * s2)2802 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2)
2803 {
2804 int i;
2805
2806 for (i = 0; i < CPUSET_WORDS; i++) {
2807 if (s1->cpub[i] != s2->cpub[i])
2808 return (0);
2809 }
2810 return (1);
2811 }
2812
2813 uint_t
cpuset_find(const cpuset_t * s)2814 cpuset_find(const cpuset_t *s)
2815 {
2816
2817 uint_t i;
2818 uint_t cpu = (uint_t)-1;
2819
2820 /*
2821 * Find a cpu in the cpuset
2822 */
2823 for (i = 0; i < CPUSET_WORDS; i++) {
2824 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2825 if (cpu != (uint_t)-1) {
2826 cpu += i * BT_NBIPUL;
2827 break;
2828 }
2829 }
2830 return (cpu);
2831 }
2832
2833 void
cpuset_bounds(const cpuset_t * s,uint_t * smallestid,uint_t * largestid)2834 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2835 {
2836 int i, j;
2837 uint_t bit;
2838
2839 /*
2840 * First, find the smallest cpu id in the set.
2841 */
2842 for (i = 0; i < CPUSET_WORDS; i++) {
2843 if (s->cpub[i] != 0) {
2844 bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2845 ASSERT(bit != (uint_t)-1);
2846 *smallestid = bit + (i * BT_NBIPUL);
2847
2848 /*
2849 * Now find the largest cpu id in
2850 * the set and return immediately.
2851 * Done in an inner loop to avoid
2852 * having to break out of the first
2853 * loop.
2854 */
2855 for (j = CPUSET_WORDS - 1; j >= i; j--) {
2856 if (s->cpub[j] != 0) {
2857 bit = (uint_t)(highbit(s->cpub[j]) - 1);
2858 ASSERT(bit != (uint_t)-1);
2859 *largestid = bit + (j * BT_NBIPUL);
2860 ASSERT(*largestid >= *smallestid);
2861 return;
2862 }
2863 }
2864
2865 /*
2866 * If this code is reached, a
2867 * smallestid was found, but not a
2868 * largestid. The cpuset must have
2869 * been changed during the course
2870 * of this function call.
2871 */
2872 ASSERT(0);
2873 }
2874 }
2875 *smallestid = *largestid = CPUSET_NOTINSET;
2876 }
2877
2878 void
cpuset_atomic_del(cpuset_t * s,const uint_t cpu)2879 cpuset_atomic_del(cpuset_t *s, const uint_t cpu)
2880 {
2881 VERIFY(cpu < NCPU);
2882 BT_ATOMIC_CLEAR(s->cpub, (cpu))
2883 }
2884
2885 void
cpuset_atomic_add(cpuset_t * s,const uint_t cpu)2886 cpuset_atomic_add(cpuset_t *s, const uint_t cpu)
2887 {
2888 VERIFY(cpu < NCPU);
2889 BT_ATOMIC_SET(s->cpub, (cpu))
2890 }
2891
2892 long
cpuset_atomic_xadd(cpuset_t * s,const uint_t cpu)2893 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu)
2894 {
2895 long res;
2896
2897 VERIFY(cpu < NCPU);
2898 BT_ATOMIC_SET_EXCL(s->cpub, cpu, res);
2899 return (res);
2900 }
2901
2902 long
cpuset_atomic_xdel(cpuset_t * s,const uint_t cpu)2903 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu)
2904 {
2905 long res;
2906
2907 VERIFY(cpu < NCPU);
2908 BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res);
2909 return (res);
2910 }
2911
2912 void
cpuset_or(cpuset_t * dst,const cpuset_t * src)2913 cpuset_or(cpuset_t *dst, const cpuset_t *src)
2914 {
2915 for (int i = 0; i < CPUSET_WORDS; i++) {
2916 dst->cpub[i] |= src->cpub[i];
2917 }
2918 }
2919
2920 void
cpuset_xor(cpuset_t * dst,const cpuset_t * src)2921 cpuset_xor(cpuset_t *dst, const cpuset_t *src)
2922 {
2923 for (int i = 0; i < CPUSET_WORDS; i++) {
2924 dst->cpub[i] ^= src->cpub[i];
2925 }
2926 }
2927
2928 void
cpuset_and(cpuset_t * dst,const cpuset_t * src)2929 cpuset_and(cpuset_t *dst, const cpuset_t *src)
2930 {
2931 for (int i = 0; i < CPUSET_WORDS; i++) {
2932 dst->cpub[i] &= src->cpub[i];
2933 }
2934 }
2935
2936 void
cpuset_zero(cpuset_t * dst)2937 cpuset_zero(cpuset_t *dst)
2938 {
2939 for (int i = 0; i < CPUSET_WORDS; i++) {
2940 dst->cpub[i] = 0;
2941 }
2942 }
2943
2944
2945 /*
2946 * Unbind threads bound to specified CPU.
2947 *
2948 * If `unbind_all_threads' is true, unbind all user threads bound to a given
2949 * CPU. Otherwise unbind all soft-bound user threads.
2950 */
2951 int
cpu_unbind(processorid_t cpu,boolean_t unbind_all_threads)2952 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2953 {
2954 processorid_t obind;
2955 kthread_t *tp;
2956 int ret = 0;
2957 proc_t *pp;
2958 int err, berr = 0;
2959
2960 ASSERT(MUTEX_HELD(&cpu_lock));
2961
2962 mutex_enter(&pidlock);
2963 for (pp = practive; pp != NULL; pp = pp->p_next) {
2964 mutex_enter(&pp->p_lock);
2965 tp = pp->p_tlist;
2966 /*
2967 * Skip zombies, kernel processes, and processes in
2968 * other zones, if called from a non-global zone.
2969 */
2970 if (tp == NULL || (pp->p_flag & SSYS) ||
2971 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2972 mutex_exit(&pp->p_lock);
2973 continue;
2974 }
2975 do {
2976 if (tp->t_bind_cpu != cpu)
2977 continue;
2978 /*
2979 * Skip threads with hard binding when
2980 * `unbind_all_threads' is not specified.
2981 */
2982 if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2983 continue;
2984 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2985 if (ret == 0)
2986 ret = err;
2987 } while ((tp = tp->t_forw) != pp->p_tlist);
2988 mutex_exit(&pp->p_lock);
2989 }
2990 mutex_exit(&pidlock);
2991 if (ret == 0)
2992 ret = berr;
2993 return (ret);
2994 }
2995
2996
2997 /*
2998 * Destroy all remaining bound threads on a cpu.
2999 */
3000 void
cpu_destroy_bound_threads(cpu_t * cp)3001 cpu_destroy_bound_threads(cpu_t *cp)
3002 {
3003 extern id_t syscid;
3004 register kthread_id_t t, tlist, tnext;
3005
3006 /*
3007 * Destroy all remaining bound threads on the cpu. This
3008 * should include both the interrupt threads and the idle thread.
3009 * This requires some care, since we need to traverse the
3010 * thread list with the pidlock mutex locked, but thread_free
3011 * also locks the pidlock mutex. So, we collect the threads
3012 * we're going to reap in a list headed by "tlist", then we
3013 * unlock the pidlock mutex and traverse the tlist list,
3014 * doing thread_free's on the thread's. Simple, n'est pas?
3015 * Also, this depends on thread_free not mucking with the
3016 * t_next and t_prev links of the thread.
3017 */
3018
3019 if ((t = curthread) != NULL) {
3020
3021 tlist = NULL;
3022 mutex_enter(&pidlock);
3023 do {
3024 tnext = t->t_next;
3025 if (t->t_bound_cpu == cp) {
3026
3027 /*
3028 * We've found a bound thread, carefully unlink
3029 * it out of the thread list, and add it to
3030 * our "tlist". We "know" we don't have to
3031 * worry about unlinking curthread (the thread
3032 * that is executing this code).
3033 */
3034 t->t_next->t_prev = t->t_prev;
3035 t->t_prev->t_next = t->t_next;
3036 t->t_next = tlist;
3037 tlist = t;
3038 ASSERT(t->t_cid == syscid);
3039 /* wake up anyone blocked in thread_join */
3040 cv_broadcast(&t->t_joincv);
3041 /*
3042 * t_lwp set by interrupt threads and not
3043 * cleared.
3044 */
3045 t->t_lwp = NULL;
3046 /*
3047 * Pause and idle threads always have
3048 * t_state set to TS_ONPROC.
3049 */
3050 t->t_state = TS_FREE;
3051 t->t_prev = NULL; /* Just in case */
3052 }
3053
3054 } while ((t = tnext) != curthread);
3055
3056 mutex_exit(&pidlock);
3057
3058 mutex_sync();
3059 for (t = tlist; t != NULL; t = tnext) {
3060 tnext = t->t_next;
3061 thread_free(t);
3062 }
3063 }
3064 }
3065
3066 /*
3067 * Update the cpu_supp_freqs of this cpu. This information is returned
3068 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
3069 * maintain the kstat data size.
3070 */
3071 void
cpu_set_supp_freqs(cpu_t * cp,const char * freqs)3072 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
3073 {
3074 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
3075 const char *lfreqs = clkstr;
3076 boolean_t kstat_exists = B_FALSE;
3077 kstat_t *ksp;
3078 size_t len;
3079
3080 /*
3081 * A NULL pointer means we only support one speed.
3082 */
3083 if (freqs == NULL)
3084 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
3085 cp->cpu_curr_clock);
3086 else
3087 lfreqs = freqs;
3088
3089 /*
3090 * Make sure the frequency doesn't change while a snapshot is
3091 * going on. Of course, we only need to worry about this if
3092 * the kstat exists.
3093 */
3094 if ((ksp = cp->cpu_info_kstat) != NULL) {
3095 mutex_enter(ksp->ks_lock);
3096 kstat_exists = B_TRUE;
3097 }
3098
3099 /*
3100 * Free any previously allocated string and if the kstat
3101 * already exists, then update its data size.
3102 */
3103 if (cp->cpu_supp_freqs != NULL) {
3104 len = strlen(cp->cpu_supp_freqs) + 1;
3105 kmem_free(cp->cpu_supp_freqs, len);
3106 if (kstat_exists)
3107 ksp->ks_data_size -= len;
3108 }
3109
3110 /*
3111 * Allocate the new string and set the pointer.
3112 */
3113 len = strlen(lfreqs) + 1;
3114 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3115 (void) strcpy(cp->cpu_supp_freqs, lfreqs);
3116
3117 /*
3118 * If the kstat already exists then update the data size and
3119 * free the lock.
3120 */
3121 if (kstat_exists) {
3122 ksp->ks_data_size += len;
3123 mutex_exit(ksp->ks_lock);
3124 }
3125 }
3126
3127 /*
3128 * Indicate the current CPU's clock freqency (in Hz).
3129 * The calling context must be such that CPU references are safe.
3130 */
3131 void
cpu_set_curr_clock(uint64_t new_clk)3132 cpu_set_curr_clock(uint64_t new_clk)
3133 {
3134 uint64_t old_clk;
3135
3136 old_clk = CPU->cpu_curr_clock;
3137 CPU->cpu_curr_clock = new_clk;
3138
3139 /*
3140 * The cpu-change-speed DTrace probe exports the frequency in Hz
3141 */
3142 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3143 uint64_t, old_clk, uint64_t, new_clk);
3144 }
3145
3146 /*
3147 * processor_info(2) and p_online(2) status support functions
3148 * The constants returned by the cpu_get_state() and cpu_get_state_str() are
3149 * for use in communicating processor state information to userland. Kernel
3150 * subsystems should only be using the cpu_flags value directly. Subsystems
3151 * modifying cpu_flags should record the state change via a call to the
3152 * cpu_set_state().
3153 */
3154
3155 /*
3156 * Update the pi_state of this CPU. This function provides the CPU status for
3157 * the information returned by processor_info(2).
3158 */
3159 void
cpu_set_state(cpu_t * cpu)3160 cpu_set_state(cpu_t *cpu)
3161 {
3162 ASSERT(MUTEX_HELD(&cpu_lock));
3163 cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3164 cpu->cpu_state_begin = gethrestime_sec();
3165 pool_cpu_mod = gethrtime();
3166 }
3167
3168 /*
3169 * Return offline/online/other status for the indicated CPU. Use only for
3170 * communication with user applications; cpu_flags provides the in-kernel
3171 * interface.
3172 */
3173 static int
cpu_flags_to_state(cpu_flag_t flags)3174 cpu_flags_to_state(cpu_flag_t flags)
3175 {
3176 if (flags & CPU_DISABLED)
3177 return (P_DISABLED);
3178 else if (flags & CPU_POWEROFF)
3179 return (P_POWEROFF);
3180 else if (flags & CPU_FAULTED)
3181 return (P_FAULTED);
3182 else if (flags & CPU_SPARE)
3183 return (P_SPARE);
3184 else if ((flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3185 return (P_OFFLINE);
3186 else if (flags & CPU_ENABLE)
3187 return (P_ONLINE);
3188 else
3189 return (P_NOINTR);
3190 }
3191
3192 int
cpu_get_state(cpu_t * cpu)3193 cpu_get_state(cpu_t *cpu)
3194 {
3195 ASSERT(MUTEX_HELD(&cpu_lock));
3196 return (cpu_flags_to_state(cpu->cpu_flags));
3197 }
3198
3199 /*
3200 * Return processor_info(2) state as a string.
3201 */
3202 const char *
cpu_get_state_str(cpu_flag_t flags)3203 cpu_get_state_str(cpu_flag_t flags)
3204 {
3205 const char *string;
3206
3207 switch (cpu_flags_to_state(flags)) {
3208 case P_ONLINE:
3209 string = PS_ONLINE;
3210 break;
3211 case P_POWEROFF:
3212 string = PS_POWEROFF;
3213 break;
3214 case P_NOINTR:
3215 string = PS_NOINTR;
3216 break;
3217 case P_SPARE:
3218 string = PS_SPARE;
3219 break;
3220 case P_FAULTED:
3221 string = PS_FAULTED;
3222 break;
3223 case P_OFFLINE:
3224 string = PS_OFFLINE;
3225 break;
3226 case P_DISABLED:
3227 string = PS_DISABLED;
3228 break;
3229 default:
3230 string = "unknown";
3231 break;
3232 }
3233 return (string);
3234 }
3235
3236 /*
3237 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3238 * kstats, respectively. This is done when a CPU is initialized or placed
3239 * online via p_online(2).
3240 */
3241 static void
cpu_stats_kstat_create(cpu_t * cp)3242 cpu_stats_kstat_create(cpu_t *cp)
3243 {
3244 int instance = cp->cpu_id;
3245 char *module = "cpu";
3246 char *class = "misc";
3247 kstat_t *ksp;
3248 zoneid_t zoneid;
3249
3250 ASSERT(MUTEX_HELD(&cpu_lock));
3251
3252 if (pool_pset_enabled())
3253 zoneid = GLOBAL_ZONEID;
3254 else
3255 zoneid = ALL_ZONES;
3256 /*
3257 * Create named kstats
3258 */
3259 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \
3260 ksp = kstat_create_zone(module, instance, (name), class, \
3261 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \
3262 zoneid); \
3263 if (ksp != NULL) { \
3264 ksp->ks_private = cp; \
3265 ksp->ks_update = (update_func); \
3266 kstat_install(ksp); \
3267 } else \
3268 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3269 module, instance, (name));
3270
3271 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3272 cpu_sys_stats_ks_update);
3273 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3274 cpu_vm_stats_ks_update);
3275
3276 /*
3277 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3278 */
3279 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3280 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3281 if (ksp != NULL) {
3282 ksp->ks_update = cpu_stat_ks_update;
3283 ksp->ks_private = cp;
3284 kstat_install(ksp);
3285 }
3286 }
3287
3288 static void
cpu_stats_kstat_destroy(cpu_t * cp)3289 cpu_stats_kstat_destroy(cpu_t *cp)
3290 {
3291 char ks_name[KSTAT_STRLEN];
3292
3293 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3294 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3295
3296 kstat_delete_byname("cpu", cp->cpu_id, "sys");
3297 kstat_delete_byname("cpu", cp->cpu_id, "vm");
3298 }
3299
3300 static int
cpu_sys_stats_ks_update(kstat_t * ksp,int rw)3301 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3302 {
3303 cpu_t *cp = (cpu_t *)ksp->ks_private;
3304 struct cpu_sys_stats_ks_data *csskd;
3305 cpu_sys_stats_t *css;
3306 hrtime_t msnsecs[NCMSTATES];
3307 int i;
3308
3309 if (rw == KSTAT_WRITE)
3310 return (EACCES);
3311
3312 csskd = ksp->ks_data;
3313 css = &cp->cpu_stats.sys;
3314
3315 /*
3316 * Read CPU mstate, but compare with the last values we
3317 * received to make sure that the returned kstats never
3318 * decrease.
3319 */
3320
3321 get_cpu_mstate(cp, msnsecs);
3322 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3323 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3324 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3325 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3326 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3327 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3328
3329 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3330 sizeof (cpu_sys_stats_ks_data_template));
3331
3332 csskd->cpu_ticks_wait.value.ui64 = 0;
3333 csskd->wait_ticks_io.value.ui64 = 0;
3334
3335 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3336 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3337 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3338 csskd->cpu_ticks_idle.value.ui64 =
3339 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3340 csskd->cpu_ticks_user.value.ui64 =
3341 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3342 csskd->cpu_ticks_kernel.value.ui64 =
3343 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3344 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3345 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3346 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3347 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3348 csskd->bread.value.ui64 = css->bread;
3349 csskd->bwrite.value.ui64 = css->bwrite;
3350 csskd->lread.value.ui64 = css->lread;
3351 csskd->lwrite.value.ui64 = css->lwrite;
3352 csskd->phread.value.ui64 = css->phread;
3353 csskd->phwrite.value.ui64 = css->phwrite;
3354 csskd->pswitch.value.ui64 = css->pswitch;
3355 csskd->trap.value.ui64 = css->trap;
3356 csskd->intr.value.ui64 = 0;
3357 for (i = 0; i < PIL_MAX; i++)
3358 csskd->intr.value.ui64 += css->intr[i];
3359 csskd->syscall.value.ui64 = css->syscall;
3360 csskd->sysread.value.ui64 = css->sysread;
3361 csskd->syswrite.value.ui64 = css->syswrite;
3362 csskd->sysfork.value.ui64 = css->sysfork;
3363 csskd->sysvfork.value.ui64 = css->sysvfork;
3364 csskd->sysexec.value.ui64 = css->sysexec;
3365 csskd->readch.value.ui64 = css->readch;
3366 csskd->writech.value.ui64 = css->writech;
3367 csskd->rcvint.value.ui64 = css->rcvint;
3368 csskd->xmtint.value.ui64 = css->xmtint;
3369 csskd->mdmint.value.ui64 = css->mdmint;
3370 csskd->rawch.value.ui64 = css->rawch;
3371 csskd->canch.value.ui64 = css->canch;
3372 csskd->outch.value.ui64 = css->outch;
3373 csskd->msg.value.ui64 = css->msg;
3374 csskd->sema.value.ui64 = css->sema;
3375 csskd->namei.value.ui64 = css->namei;
3376 csskd->ufsiget.value.ui64 = css->ufsiget;
3377 csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3378 csskd->ufsipage.value.ui64 = css->ufsipage;
3379 csskd->ufsinopage.value.ui64 = css->ufsinopage;
3380 csskd->procovf.value.ui64 = css->procovf;
3381 csskd->intrthread.value.ui64 = 0;
3382 for (i = 0; i < LOCK_LEVEL - 1; i++)
3383 csskd->intrthread.value.ui64 += css->intr[i];
3384 csskd->intrblk.value.ui64 = css->intrblk;
3385 csskd->intrunpin.value.ui64 = css->intrunpin;
3386 csskd->idlethread.value.ui64 = css->idlethread;
3387 csskd->inv_swtch.value.ui64 = css->inv_swtch;
3388 csskd->nthreads.value.ui64 = css->nthreads;
3389 csskd->cpumigrate.value.ui64 = css->cpumigrate;
3390 csskd->xcalls.value.ui64 = css->xcalls;
3391 csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3392 csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3393 csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3394 csskd->modload.value.ui64 = css->modload;
3395 csskd->modunload.value.ui64 = css->modunload;
3396 csskd->bawrite.value.ui64 = css->bawrite;
3397 csskd->iowait.value.ui64 = css->iowait;
3398
3399 return (0);
3400 }
3401
3402 static int
cpu_vm_stats_ks_update(kstat_t * ksp,int rw)3403 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3404 {
3405 cpu_t *cp = (cpu_t *)ksp->ks_private;
3406 struct cpu_vm_stats_ks_data *cvskd;
3407 cpu_vm_stats_t *cvs;
3408
3409 if (rw == KSTAT_WRITE)
3410 return (EACCES);
3411
3412 cvs = &cp->cpu_stats.vm;
3413 cvskd = ksp->ks_data;
3414
3415 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3416 sizeof (cpu_vm_stats_ks_data_template));
3417 cvskd->pgrec.value.ui64 = cvs->pgrec;
3418 cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3419 cvskd->pgin.value.ui64 = cvs->pgin;
3420 cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3421 cvskd->pgout.value.ui64 = cvs->pgout;
3422 cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3423 cvskd->swapin.value.ui64 = cvs->swapin;
3424 cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3425 cvskd->swapout.value.ui64 = cvs->swapout;
3426 cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3427 cvskd->zfod.value.ui64 = cvs->zfod;
3428 cvskd->dfree.value.ui64 = cvs->dfree;
3429 cvskd->scan.value.ui64 = cvs->scan;
3430 cvskd->rev.value.ui64 = cvs->rev;
3431 cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3432 cvskd->as_fault.value.ui64 = cvs->as_fault;
3433 cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3434 cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3435 cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3436 cvskd->softlock.value.ui64 = cvs->softlock;
3437 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3438 cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3439 cvskd->execpgin.value.ui64 = cvs->execpgin;
3440 cvskd->execpgout.value.ui64 = cvs->execpgout;
3441 cvskd->execfree.value.ui64 = cvs->execfree;
3442 cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3443 cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3444 cvskd->anonfree.value.ui64 = cvs->anonfree;
3445 cvskd->fspgin.value.ui64 = cvs->fspgin;
3446 cvskd->fspgout.value.ui64 = cvs->fspgout;
3447 cvskd->fsfree.value.ui64 = cvs->fsfree;
3448
3449 return (0);
3450 }
3451
3452 static int
cpu_stat_ks_update(kstat_t * ksp,int rw)3453 cpu_stat_ks_update(kstat_t *ksp, int rw)
3454 {
3455 cpu_stat_t *cso;
3456 cpu_t *cp;
3457 int i;
3458 hrtime_t msnsecs[NCMSTATES];
3459
3460 cso = (cpu_stat_t *)ksp->ks_data;
3461 cp = (cpu_t *)ksp->ks_private;
3462
3463 if (rw == KSTAT_WRITE)
3464 return (EACCES);
3465
3466 /*
3467 * Read CPU mstate, but compare with the last values we
3468 * received to make sure that the returned kstats never
3469 * decrease.
3470 */
3471
3472 get_cpu_mstate(cp, msnsecs);
3473 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3474 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3475 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3476 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3477 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3478 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3479 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3480 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3481 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3482 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0;
3483 cso->cpu_sysinfo.wait[W_IO] = 0;
3484 cso->cpu_sysinfo.wait[W_SWAP] = 0;
3485 cso->cpu_sysinfo.wait[W_PIO] = 0;
3486 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread);
3487 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite);
3488 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread);
3489 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite);
3490 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread);
3491 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite);
3492 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch);
3493 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap);
3494 cso->cpu_sysinfo.intr = 0;
3495 for (i = 0; i < PIL_MAX; i++)
3496 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3497 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall);
3498 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread);
3499 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite);
3500 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork);
3501 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork);
3502 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec);
3503 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch);
3504 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech);
3505 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint);
3506 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint);
3507 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint);
3508 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch);
3509 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch);
3510 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch);
3511 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg);
3512 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema);
3513 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei);
3514 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget);
3515 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk);
3516 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage);
3517 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage);
3518 cso->cpu_sysinfo.inodeovf = 0;
3519 cso->cpu_sysinfo.fileovf = 0;
3520 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf);
3521 cso->cpu_sysinfo.intrthread = 0;
3522 for (i = 0; i < LOCK_LEVEL - 1; i++)
3523 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3524 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk);
3525 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread);
3526 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch);
3527 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads);
3528 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate);
3529 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls);
3530 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters);
3531 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails);
3532 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails);
3533 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload);
3534 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload);
3535 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite);
3536 cso->cpu_sysinfo.rw_enters = 0;
3537 cso->cpu_sysinfo.win_uo_cnt = 0;
3538 cso->cpu_sysinfo.win_uu_cnt = 0;
3539 cso->cpu_sysinfo.win_so_cnt = 0;
3540 cso->cpu_sysinfo.win_su_cnt = 0;
3541 cso->cpu_sysinfo.win_suo_cnt = 0;
3542
3543 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait);
3544 cso->cpu_syswait.swap = 0;
3545 cso->cpu_syswait.physio = 0;
3546
3547 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec);
3548 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec);
3549 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin);
3550 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin);
3551 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout);
3552 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout);
3553 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin);
3554 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin);
3555 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout);
3556 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout);
3557 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod);
3558 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree);
3559 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan);
3560 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev);
3561 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault);
3562 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault);
3563 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault);
3564 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault);
3565 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault);
3566 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock);
3567 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3568 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun);
3569 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin);
3570 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout);
3571 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree);
3572 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin);
3573 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout);
3574 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree);
3575 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin);
3576 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout);
3577 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree);
3578
3579 return (0);
3580 }
3581