xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
17 #include <linux/fs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
28 
29 #include <uapi/linux/magic.h>
30 
31 #include <asm/resctrl.h>
32 #include "internal.h"
33 
34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
37 
38 /* Mutex to protect rdtgroup access. */
39 DEFINE_MUTEX(rdtgroup_mutex);
40 
41 static struct kernfs_root *rdt_root;
42 struct rdtgroup rdtgroup_default;
43 LIST_HEAD(rdt_all_groups);
44 
45 /* list of entries for the schemata file */
46 LIST_HEAD(resctrl_schema_all);
47 
48 /* The filesystem can only be mounted once. */
49 bool resctrl_mounted;
50 
51 /* Kernel fs node for "info" directory under root */
52 static struct kernfs_node *kn_info;
53 
54 /* Kernel fs node for "mon_groups" directory under root */
55 static struct kernfs_node *kn_mongrp;
56 
57 /* Kernel fs node for "mon_data" directory under root */
58 static struct kernfs_node *kn_mondata;
59 
60 static struct seq_buf last_cmd_status;
61 static char last_cmd_status_buf[512];
62 
63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
64 static void rdtgroup_destroy_root(void);
65 
66 struct dentry *debugfs_resctrl;
67 
68 static bool resctrl_debug;
69 
rdt_last_cmd_clear(void)70 void rdt_last_cmd_clear(void)
71 {
72 	lockdep_assert_held(&rdtgroup_mutex);
73 	seq_buf_clear(&last_cmd_status);
74 }
75 
rdt_last_cmd_puts(const char * s)76 void rdt_last_cmd_puts(const char *s)
77 {
78 	lockdep_assert_held(&rdtgroup_mutex);
79 	seq_buf_puts(&last_cmd_status, s);
80 }
81 
rdt_last_cmd_printf(const char * fmt,...)82 void rdt_last_cmd_printf(const char *fmt, ...)
83 {
84 	va_list ap;
85 
86 	va_start(ap, fmt);
87 	lockdep_assert_held(&rdtgroup_mutex);
88 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
89 	va_end(ap);
90 }
91 
rdt_staged_configs_clear(void)92 void rdt_staged_configs_clear(void)
93 {
94 	struct rdt_ctrl_domain *dom;
95 	struct rdt_resource *r;
96 
97 	lockdep_assert_held(&rdtgroup_mutex);
98 
99 	for_each_alloc_capable_rdt_resource(r) {
100 		list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
101 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
102 	}
103 }
104 
105 /*
106  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
107  * we can keep a bitmap of free CLOSIDs in a single integer.
108  *
109  * Using a global CLOSID across all resources has some advantages and
110  * some drawbacks:
111  * + We can simply set current's closid to assign a task to a resource
112  *   group.
113  * + Context switch code can avoid extra memory references deciding which
114  *   CLOSID to load into the PQR_ASSOC MSR
115  * - We give up some options in configuring resource groups across multi-socket
116  *   systems.
117  * - Our choices on how to configure each resource become progressively more
118  *   limited as the number of resources grows.
119  */
120 static unsigned long closid_free_map;
121 static int closid_free_map_len;
122 
closids_supported(void)123 int closids_supported(void)
124 {
125 	return closid_free_map_len;
126 }
127 
closid_init(void)128 static void closid_init(void)
129 {
130 	struct resctrl_schema *s;
131 	u32 rdt_min_closid = 32;
132 
133 	/* Compute rdt_min_closid across all resources */
134 	list_for_each_entry(s, &resctrl_schema_all, list)
135 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
136 
137 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
138 
139 	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
140 	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
141 	closid_free_map_len = rdt_min_closid;
142 }
143 
closid_alloc(void)144 static int closid_alloc(void)
145 {
146 	int cleanest_closid;
147 	u32 closid;
148 
149 	lockdep_assert_held(&rdtgroup_mutex);
150 
151 	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
152 		cleanest_closid = resctrl_find_cleanest_closid();
153 		if (cleanest_closid < 0)
154 			return cleanest_closid;
155 		closid = cleanest_closid;
156 	} else {
157 		closid = ffs(closid_free_map);
158 		if (closid == 0)
159 			return -ENOSPC;
160 		closid--;
161 	}
162 	__clear_bit(closid, &closid_free_map);
163 
164 	return closid;
165 }
166 
closid_free(int closid)167 void closid_free(int closid)
168 {
169 	lockdep_assert_held(&rdtgroup_mutex);
170 
171 	__set_bit(closid, &closid_free_map);
172 }
173 
174 /**
175  * closid_allocated - test if provided closid is in use
176  * @closid: closid to be tested
177  *
178  * Return: true if @closid is currently associated with a resource group,
179  * false if @closid is free
180  */
closid_allocated(unsigned int closid)181 bool closid_allocated(unsigned int closid)
182 {
183 	lockdep_assert_held(&rdtgroup_mutex);
184 
185 	return !test_bit(closid, &closid_free_map);
186 }
187 
188 /**
189  * rdtgroup_mode_by_closid - Return mode of resource group with closid
190  * @closid: closid if the resource group
191  *
192  * Each resource group is associated with a @closid. Here the mode
193  * of a resource group can be queried by searching for it using its closid.
194  *
195  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
196  */
rdtgroup_mode_by_closid(int closid)197 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
198 {
199 	struct rdtgroup *rdtgrp;
200 
201 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
202 		if (rdtgrp->closid == closid)
203 			return rdtgrp->mode;
204 	}
205 
206 	return RDT_NUM_MODES;
207 }
208 
209 static const char * const rdt_mode_str[] = {
210 	[RDT_MODE_SHAREABLE]		= "shareable",
211 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
212 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
213 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
214 };
215 
216 /**
217  * rdtgroup_mode_str - Return the string representation of mode
218  * @mode: the resource group mode as &enum rdtgroup_mode
219  *
220  * Return: string representation of valid mode, "unknown" otherwise
221  */
rdtgroup_mode_str(enum rdtgrp_mode mode)222 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
223 {
224 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
225 		return "unknown";
226 
227 	return rdt_mode_str[mode];
228 }
229 
230 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)231 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
232 {
233 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
234 				.ia_uid = current_fsuid(),
235 				.ia_gid = current_fsgid(), };
236 
237 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
238 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
239 		return 0;
240 
241 	return kernfs_setattr(kn, &iattr);
242 }
243 
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)244 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
245 {
246 	struct kernfs_node *kn;
247 	int ret;
248 
249 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
250 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
251 				  0, rft->kf_ops, rft, NULL, NULL);
252 	if (IS_ERR(kn))
253 		return PTR_ERR(kn);
254 
255 	ret = rdtgroup_kn_set_ugid(kn);
256 	if (ret) {
257 		kernfs_remove(kn);
258 		return ret;
259 	}
260 
261 	return 0;
262 }
263 
rdtgroup_seqfile_show(struct seq_file * m,void * arg)264 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
265 {
266 	struct kernfs_open_file *of = m->private;
267 	struct rftype *rft = of->kn->priv;
268 
269 	if (rft->seq_show)
270 		return rft->seq_show(of, m, arg);
271 	return 0;
272 }
273 
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)274 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
275 				   size_t nbytes, loff_t off)
276 {
277 	struct rftype *rft = of->kn->priv;
278 
279 	if (rft->write)
280 		return rft->write(of, buf, nbytes, off);
281 
282 	return -EINVAL;
283 }
284 
285 static const struct kernfs_ops rdtgroup_kf_single_ops = {
286 	.atomic_write_len	= PAGE_SIZE,
287 	.write			= rdtgroup_file_write,
288 	.seq_show		= rdtgroup_seqfile_show,
289 };
290 
291 static const struct kernfs_ops kf_mondata_ops = {
292 	.atomic_write_len	= PAGE_SIZE,
293 	.seq_show		= rdtgroup_mondata_show,
294 };
295 
is_cpu_list(struct kernfs_open_file * of)296 static bool is_cpu_list(struct kernfs_open_file *of)
297 {
298 	struct rftype *rft = of->kn->priv;
299 
300 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
301 }
302 
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)303 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
304 			      struct seq_file *s, void *v)
305 {
306 	struct rdtgroup *rdtgrp;
307 	struct cpumask *mask;
308 	int ret = 0;
309 
310 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
311 
312 	if (rdtgrp) {
313 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
314 			if (!rdtgrp->plr->d) {
315 				rdt_last_cmd_clear();
316 				rdt_last_cmd_puts("Cache domain offline\n");
317 				ret = -ENODEV;
318 			} else {
319 				mask = &rdtgrp->plr->d->hdr.cpu_mask;
320 				seq_printf(s, is_cpu_list(of) ?
321 					   "%*pbl\n" : "%*pb\n",
322 					   cpumask_pr_args(mask));
323 			}
324 		} else {
325 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
326 				   cpumask_pr_args(&rdtgrp->cpu_mask));
327 		}
328 	} else {
329 		ret = -ENOENT;
330 	}
331 	rdtgroup_kn_unlock(of->kn);
332 
333 	return ret;
334 }
335 
336 /*
337  * This is safe against resctrl_sched_in() called from __switch_to()
338  * because __switch_to() is executed with interrupts disabled. A local call
339  * from update_closid_rmid() is protected against __switch_to() because
340  * preemption is disabled.
341  */
update_cpu_closid_rmid(void * info)342 static void update_cpu_closid_rmid(void *info)
343 {
344 	struct rdtgroup *r = info;
345 
346 	if (r) {
347 		this_cpu_write(pqr_state.default_closid, r->closid);
348 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
349 	}
350 
351 	/*
352 	 * We cannot unconditionally write the MSR because the current
353 	 * executing task might have its own closid selected. Just reuse
354 	 * the context switch code.
355 	 */
356 	resctrl_sched_in(current);
357 }
358 
359 /*
360  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
361  *
362  * Per task closids/rmids must have been set up before calling this function.
363  */
364 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)365 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
366 {
367 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
368 }
369 
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)370 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
371 			  cpumask_var_t tmpmask)
372 {
373 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
374 	struct list_head *head;
375 
376 	/* Check whether cpus belong to parent ctrl group */
377 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
378 	if (!cpumask_empty(tmpmask)) {
379 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
380 		return -EINVAL;
381 	}
382 
383 	/* Check whether cpus are dropped from this group */
384 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
385 	if (!cpumask_empty(tmpmask)) {
386 		/* Give any dropped cpus to parent rdtgroup */
387 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
388 		update_closid_rmid(tmpmask, prgrp);
389 	}
390 
391 	/*
392 	 * If we added cpus, remove them from previous group that owned them
393 	 * and update per-cpu rmid
394 	 */
395 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
396 	if (!cpumask_empty(tmpmask)) {
397 		head = &prgrp->mon.crdtgrp_list;
398 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
399 			if (crgrp == rdtgrp)
400 				continue;
401 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
402 				       tmpmask);
403 		}
404 		update_closid_rmid(tmpmask, rdtgrp);
405 	}
406 
407 	/* Done pushing/pulling - update this group with new mask */
408 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
409 
410 	return 0;
411 }
412 
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)413 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
414 {
415 	struct rdtgroup *crgrp;
416 
417 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
418 	/* update the child mon group masks as well*/
419 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
420 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
421 }
422 
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)423 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
424 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
425 {
426 	struct rdtgroup *r, *crgrp;
427 	struct list_head *head;
428 
429 	/* Check whether cpus are dropped from this group */
430 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
431 	if (!cpumask_empty(tmpmask)) {
432 		/* Can't drop from default group */
433 		if (rdtgrp == &rdtgroup_default) {
434 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
435 			return -EINVAL;
436 		}
437 
438 		/* Give any dropped cpus to rdtgroup_default */
439 		cpumask_or(&rdtgroup_default.cpu_mask,
440 			   &rdtgroup_default.cpu_mask, tmpmask);
441 		update_closid_rmid(tmpmask, &rdtgroup_default);
442 	}
443 
444 	/*
445 	 * If we added cpus, remove them from previous group and
446 	 * the prev group's child groups that owned them
447 	 * and update per-cpu closid/rmid.
448 	 */
449 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
450 	if (!cpumask_empty(tmpmask)) {
451 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
452 			if (r == rdtgrp)
453 				continue;
454 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
455 			if (!cpumask_empty(tmpmask1))
456 				cpumask_rdtgrp_clear(r, tmpmask1);
457 		}
458 		update_closid_rmid(tmpmask, rdtgrp);
459 	}
460 
461 	/* Done pushing/pulling - update this group with new mask */
462 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
463 
464 	/*
465 	 * Clear child mon group masks since there is a new parent mask
466 	 * now and update the rmid for the cpus the child lost.
467 	 */
468 	head = &rdtgrp->mon.crdtgrp_list;
469 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
470 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
471 		update_closid_rmid(tmpmask, rdtgrp);
472 		cpumask_clear(&crgrp->cpu_mask);
473 	}
474 
475 	return 0;
476 }
477 
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)478 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
479 				   char *buf, size_t nbytes, loff_t off)
480 {
481 	cpumask_var_t tmpmask, newmask, tmpmask1;
482 	struct rdtgroup *rdtgrp;
483 	int ret;
484 
485 	if (!buf)
486 		return -EINVAL;
487 
488 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
489 		return -ENOMEM;
490 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
491 		free_cpumask_var(tmpmask);
492 		return -ENOMEM;
493 	}
494 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
495 		free_cpumask_var(tmpmask);
496 		free_cpumask_var(newmask);
497 		return -ENOMEM;
498 	}
499 
500 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
501 	if (!rdtgrp) {
502 		ret = -ENOENT;
503 		goto unlock;
504 	}
505 
506 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
507 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
508 		ret = -EINVAL;
509 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
510 		goto unlock;
511 	}
512 
513 	if (is_cpu_list(of))
514 		ret = cpulist_parse(buf, newmask);
515 	else
516 		ret = cpumask_parse(buf, newmask);
517 
518 	if (ret) {
519 		rdt_last_cmd_puts("Bad CPU list/mask\n");
520 		goto unlock;
521 	}
522 
523 	/* check that user didn't specify any offline cpus */
524 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
525 	if (!cpumask_empty(tmpmask)) {
526 		ret = -EINVAL;
527 		rdt_last_cmd_puts("Can only assign online CPUs\n");
528 		goto unlock;
529 	}
530 
531 	if (rdtgrp->type == RDTCTRL_GROUP)
532 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
533 	else if (rdtgrp->type == RDTMON_GROUP)
534 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
535 	else
536 		ret = -EINVAL;
537 
538 unlock:
539 	rdtgroup_kn_unlock(of->kn);
540 	free_cpumask_var(tmpmask);
541 	free_cpumask_var(newmask);
542 	free_cpumask_var(tmpmask1);
543 
544 	return ret ?: nbytes;
545 }
546 
547 /**
548  * rdtgroup_remove - the helper to remove resource group safely
549  * @rdtgrp: resource group to remove
550  *
551  * On resource group creation via a mkdir, an extra kernfs_node reference is
552  * taken to ensure that the rdtgroup structure remains accessible for the
553  * rdtgroup_kn_unlock() calls where it is removed.
554  *
555  * Drop the extra reference here, then free the rdtgroup structure.
556  *
557  * Return: void
558  */
rdtgroup_remove(struct rdtgroup * rdtgrp)559 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
560 {
561 	kernfs_put(rdtgrp->kn);
562 	kfree(rdtgrp);
563 }
564 
_update_task_closid_rmid(void * task)565 static void _update_task_closid_rmid(void *task)
566 {
567 	/*
568 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
569 	 * Otherwise, the MSR is updated when the task is scheduled in.
570 	 */
571 	if (task == current)
572 		resctrl_sched_in(task);
573 }
574 
update_task_closid_rmid(struct task_struct * t)575 static void update_task_closid_rmid(struct task_struct *t)
576 {
577 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
578 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
579 	else
580 		_update_task_closid_rmid(t);
581 }
582 
task_in_rdtgroup(struct task_struct * tsk,struct rdtgroup * rdtgrp)583 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
584 {
585 	u32 closid, rmid = rdtgrp->mon.rmid;
586 
587 	if (rdtgrp->type == RDTCTRL_GROUP)
588 		closid = rdtgrp->closid;
589 	else if (rdtgrp->type == RDTMON_GROUP)
590 		closid = rdtgrp->mon.parent->closid;
591 	else
592 		return false;
593 
594 	return resctrl_arch_match_closid(tsk, closid) &&
595 	       resctrl_arch_match_rmid(tsk, closid, rmid);
596 }
597 
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)598 static int __rdtgroup_move_task(struct task_struct *tsk,
599 				struct rdtgroup *rdtgrp)
600 {
601 	/* If the task is already in rdtgrp, no need to move the task. */
602 	if (task_in_rdtgroup(tsk, rdtgrp))
603 		return 0;
604 
605 	/*
606 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
607 	 * updated by them.
608 	 *
609 	 * For ctrl_mon groups, move both closid and rmid.
610 	 * For monitor groups, can move the tasks only from
611 	 * their parent CTRL group.
612 	 */
613 	if (rdtgrp->type == RDTMON_GROUP &&
614 	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
615 		rdt_last_cmd_puts("Can't move task to different control group\n");
616 		return -EINVAL;
617 	}
618 
619 	if (rdtgrp->type == RDTMON_GROUP)
620 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
621 					     rdtgrp->mon.rmid);
622 	else
623 		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
624 					     rdtgrp->mon.rmid);
625 
626 	/*
627 	 * Ensure the task's closid and rmid are written before determining if
628 	 * the task is current that will decide if it will be interrupted.
629 	 * This pairs with the full barrier between the rq->curr update and
630 	 * resctrl_sched_in() during context switch.
631 	 */
632 	smp_mb();
633 
634 	/*
635 	 * By now, the task's closid and rmid are set. If the task is current
636 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
637 	 * group go into effect. If the task is not current, the MSR will be
638 	 * updated when the task is scheduled in.
639 	 */
640 	update_task_closid_rmid(tsk);
641 
642 	return 0;
643 }
644 
is_closid_match(struct task_struct * t,struct rdtgroup * r)645 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
646 {
647 	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
648 		resctrl_arch_match_closid(t, r->closid));
649 }
650 
is_rmid_match(struct task_struct * t,struct rdtgroup * r)651 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
652 {
653 	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
654 		resctrl_arch_match_rmid(t, r->mon.parent->closid,
655 					r->mon.rmid));
656 }
657 
658 /**
659  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
660  * @r: Resource group
661  *
662  * Return: 1 if tasks have been assigned to @r, 0 otherwise
663  */
rdtgroup_tasks_assigned(struct rdtgroup * r)664 int rdtgroup_tasks_assigned(struct rdtgroup *r)
665 {
666 	struct task_struct *p, *t;
667 	int ret = 0;
668 
669 	lockdep_assert_held(&rdtgroup_mutex);
670 
671 	rcu_read_lock();
672 	for_each_process_thread(p, t) {
673 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
674 			ret = 1;
675 			break;
676 		}
677 	}
678 	rcu_read_unlock();
679 
680 	return ret;
681 }
682 
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)683 static int rdtgroup_task_write_permission(struct task_struct *task,
684 					  struct kernfs_open_file *of)
685 {
686 	const struct cred *tcred = get_task_cred(task);
687 	const struct cred *cred = current_cred();
688 	int ret = 0;
689 
690 	/*
691 	 * Even if we're attaching all tasks in the thread group, we only
692 	 * need to check permissions on one of them.
693 	 */
694 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
695 	    !uid_eq(cred->euid, tcred->uid) &&
696 	    !uid_eq(cred->euid, tcred->suid)) {
697 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
698 		ret = -EPERM;
699 	}
700 
701 	put_cred(tcred);
702 	return ret;
703 }
704 
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)705 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
706 			      struct kernfs_open_file *of)
707 {
708 	struct task_struct *tsk;
709 	int ret;
710 
711 	rcu_read_lock();
712 	if (pid) {
713 		tsk = find_task_by_vpid(pid);
714 		if (!tsk) {
715 			rcu_read_unlock();
716 			rdt_last_cmd_printf("No task %d\n", pid);
717 			return -ESRCH;
718 		}
719 	} else {
720 		tsk = current;
721 	}
722 
723 	get_task_struct(tsk);
724 	rcu_read_unlock();
725 
726 	ret = rdtgroup_task_write_permission(tsk, of);
727 	if (!ret)
728 		ret = __rdtgroup_move_task(tsk, rdtgrp);
729 
730 	put_task_struct(tsk);
731 	return ret;
732 }
733 
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)734 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
735 				    char *buf, size_t nbytes, loff_t off)
736 {
737 	struct rdtgroup *rdtgrp;
738 	char *pid_str;
739 	int ret = 0;
740 	pid_t pid;
741 
742 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
743 	if (!rdtgrp) {
744 		rdtgroup_kn_unlock(of->kn);
745 		return -ENOENT;
746 	}
747 	rdt_last_cmd_clear();
748 
749 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
750 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
751 		ret = -EINVAL;
752 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
753 		goto unlock;
754 	}
755 
756 	while (buf && buf[0] != '\0' && buf[0] != '\n') {
757 		pid_str = strim(strsep(&buf, ","));
758 
759 		if (kstrtoint(pid_str, 0, &pid)) {
760 			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
761 			ret = -EINVAL;
762 			break;
763 		}
764 
765 		if (pid < 0) {
766 			rdt_last_cmd_printf("Invalid pid %d\n", pid);
767 			ret = -EINVAL;
768 			break;
769 		}
770 
771 		ret = rdtgroup_move_task(pid, rdtgrp, of);
772 		if (ret) {
773 			rdt_last_cmd_printf("Error while processing task %d\n", pid);
774 			break;
775 		}
776 	}
777 
778 unlock:
779 	rdtgroup_kn_unlock(of->kn);
780 
781 	return ret ?: nbytes;
782 }
783 
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)784 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
785 {
786 	struct task_struct *p, *t;
787 	pid_t pid;
788 
789 	rcu_read_lock();
790 	for_each_process_thread(p, t) {
791 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
792 			pid = task_pid_vnr(t);
793 			if (pid)
794 				seq_printf(s, "%d\n", pid);
795 		}
796 	}
797 	rcu_read_unlock();
798 }
799 
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)800 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
801 			       struct seq_file *s, void *v)
802 {
803 	struct rdtgroup *rdtgrp;
804 	int ret = 0;
805 
806 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
807 	if (rdtgrp)
808 		show_rdt_tasks(rdtgrp, s);
809 	else
810 		ret = -ENOENT;
811 	rdtgroup_kn_unlock(of->kn);
812 
813 	return ret;
814 }
815 
rdtgroup_closid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)816 static int rdtgroup_closid_show(struct kernfs_open_file *of,
817 				struct seq_file *s, void *v)
818 {
819 	struct rdtgroup *rdtgrp;
820 	int ret = 0;
821 
822 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
823 	if (rdtgrp)
824 		seq_printf(s, "%u\n", rdtgrp->closid);
825 	else
826 		ret = -ENOENT;
827 	rdtgroup_kn_unlock(of->kn);
828 
829 	return ret;
830 }
831 
rdtgroup_rmid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)832 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
833 			      struct seq_file *s, void *v)
834 {
835 	struct rdtgroup *rdtgrp;
836 	int ret = 0;
837 
838 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
839 	if (rdtgrp)
840 		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
841 	else
842 		ret = -ENOENT;
843 	rdtgroup_kn_unlock(of->kn);
844 
845 	return ret;
846 }
847 
848 #ifdef CONFIG_PROC_CPU_RESCTRL
849 
850 /*
851  * A task can only be part of one resctrl control group and of one monitor
852  * group which is associated to that control group.
853  *
854  * 1)   res:
855  *      mon:
856  *
857  *    resctrl is not available.
858  *
859  * 2)   res:/
860  *      mon:
861  *
862  *    Task is part of the root resctrl control group, and it is not associated
863  *    to any monitor group.
864  *
865  * 3)  res:/
866  *     mon:mon0
867  *
868  *    Task is part of the root resctrl control group and monitor group mon0.
869  *
870  * 4)  res:group0
871  *     mon:
872  *
873  *    Task is part of resctrl control group group0, and it is not associated
874  *    to any monitor group.
875  *
876  * 5) res:group0
877  *    mon:mon1
878  *
879  *    Task is part of resctrl control group group0 and monitor group mon1.
880  */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)881 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
882 		      struct pid *pid, struct task_struct *tsk)
883 {
884 	struct rdtgroup *rdtg;
885 	int ret = 0;
886 
887 	mutex_lock(&rdtgroup_mutex);
888 
889 	/* Return empty if resctrl has not been mounted. */
890 	if (!resctrl_mounted) {
891 		seq_puts(s, "res:\nmon:\n");
892 		goto unlock;
893 	}
894 
895 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
896 		struct rdtgroup *crg;
897 
898 		/*
899 		 * Task information is only relevant for shareable
900 		 * and exclusive groups.
901 		 */
902 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
903 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
904 			continue;
905 
906 		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
907 			continue;
908 
909 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
910 			   rdtg->kn->name);
911 		seq_puts(s, "mon:");
912 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
913 				    mon.crdtgrp_list) {
914 			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
915 						     crg->mon.rmid))
916 				continue;
917 			seq_printf(s, "%s", crg->kn->name);
918 			break;
919 		}
920 		seq_putc(s, '\n');
921 		goto unlock;
922 	}
923 	/*
924 	 * The above search should succeed. Otherwise return
925 	 * with an error.
926 	 */
927 	ret = -ENOENT;
928 unlock:
929 	mutex_unlock(&rdtgroup_mutex);
930 
931 	return ret;
932 }
933 #endif
934 
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)935 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
936 				    struct seq_file *seq, void *v)
937 {
938 	int len;
939 
940 	mutex_lock(&rdtgroup_mutex);
941 	len = seq_buf_used(&last_cmd_status);
942 	if (len)
943 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
944 	else
945 		seq_puts(seq, "ok\n");
946 	mutex_unlock(&rdtgroup_mutex);
947 	return 0;
948 }
949 
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)950 static int rdt_num_closids_show(struct kernfs_open_file *of,
951 				struct seq_file *seq, void *v)
952 {
953 	struct resctrl_schema *s = of->kn->parent->priv;
954 
955 	seq_printf(seq, "%u\n", s->num_closid);
956 	return 0;
957 }
958 
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)959 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
960 			     struct seq_file *seq, void *v)
961 {
962 	struct resctrl_schema *s = of->kn->parent->priv;
963 	struct rdt_resource *r = s->res;
964 
965 	seq_printf(seq, "%x\n", r->default_ctrl);
966 	return 0;
967 }
968 
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)969 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
970 			     struct seq_file *seq, void *v)
971 {
972 	struct resctrl_schema *s = of->kn->parent->priv;
973 	struct rdt_resource *r = s->res;
974 
975 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
976 	return 0;
977 }
978 
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)979 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
980 				   struct seq_file *seq, void *v)
981 {
982 	struct resctrl_schema *s = of->kn->parent->priv;
983 	struct rdt_resource *r = s->res;
984 
985 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
986 	return 0;
987 }
988 
989 /*
990  * rdt_bit_usage_show - Display current usage of resources
991  *
992  * A domain is a shared resource that can now be allocated differently. Here
993  * we display the current regions of the domain as an annotated bitmask.
994  * For each domain of this resource its allocation bitmask
995  * is annotated as below to indicate the current usage of the corresponding bit:
996  *   0 - currently unused
997  *   X - currently available for sharing and used by software and hardware
998  *   H - currently used by hardware only but available for software use
999  *   S - currently used and shareable by software only
1000  *   E - currently used exclusively by one resource group
1001  *   P - currently pseudo-locked by one resource group
1002  */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1003 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1004 			      struct seq_file *seq, void *v)
1005 {
1006 	struct resctrl_schema *s = of->kn->parent->priv;
1007 	/*
1008 	 * Use unsigned long even though only 32 bits are used to ensure
1009 	 * test_bit() is used safely.
1010 	 */
1011 	unsigned long sw_shareable = 0, hw_shareable = 0;
1012 	unsigned long exclusive = 0, pseudo_locked = 0;
1013 	struct rdt_resource *r = s->res;
1014 	struct rdt_ctrl_domain *dom;
1015 	int i, hwb, swb, excl, psl;
1016 	enum rdtgrp_mode mode;
1017 	bool sep = false;
1018 	u32 ctrl_val;
1019 
1020 	cpus_read_lock();
1021 	mutex_lock(&rdtgroup_mutex);
1022 	hw_shareable = r->cache.shareable_bits;
1023 	list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1024 		if (sep)
1025 			seq_putc(seq, ';');
1026 		sw_shareable = 0;
1027 		exclusive = 0;
1028 		seq_printf(seq, "%d=", dom->hdr.id);
1029 		for (i = 0; i < closids_supported(); i++) {
1030 			if (!closid_allocated(i))
1031 				continue;
1032 			ctrl_val = resctrl_arch_get_config(r, dom, i,
1033 							   s->conf_type);
1034 			mode = rdtgroup_mode_by_closid(i);
1035 			switch (mode) {
1036 			case RDT_MODE_SHAREABLE:
1037 				sw_shareable |= ctrl_val;
1038 				break;
1039 			case RDT_MODE_EXCLUSIVE:
1040 				exclusive |= ctrl_val;
1041 				break;
1042 			case RDT_MODE_PSEUDO_LOCKSETUP:
1043 			/*
1044 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1045 			 * here but not included since the CBM
1046 			 * associated with this CLOSID in this mode
1047 			 * is not initialized and no task or cpu can be
1048 			 * assigned this CLOSID.
1049 			 */
1050 				break;
1051 			case RDT_MODE_PSEUDO_LOCKED:
1052 			case RDT_NUM_MODES:
1053 				WARN(1,
1054 				     "invalid mode for closid %d\n", i);
1055 				break;
1056 			}
1057 		}
1058 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1059 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1060 			hwb = test_bit(i, &hw_shareable);
1061 			swb = test_bit(i, &sw_shareable);
1062 			excl = test_bit(i, &exclusive);
1063 			psl = test_bit(i, &pseudo_locked);
1064 			if (hwb && swb)
1065 				seq_putc(seq, 'X');
1066 			else if (hwb && !swb)
1067 				seq_putc(seq, 'H');
1068 			else if (!hwb && swb)
1069 				seq_putc(seq, 'S');
1070 			else if (excl)
1071 				seq_putc(seq, 'E');
1072 			else if (psl)
1073 				seq_putc(seq, 'P');
1074 			else /* Unused bits remain */
1075 				seq_putc(seq, '0');
1076 		}
1077 		sep = true;
1078 	}
1079 	seq_putc(seq, '\n');
1080 	mutex_unlock(&rdtgroup_mutex);
1081 	cpus_read_unlock();
1082 	return 0;
1083 }
1084 
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1085 static int rdt_min_bw_show(struct kernfs_open_file *of,
1086 			     struct seq_file *seq, void *v)
1087 {
1088 	struct resctrl_schema *s = of->kn->parent->priv;
1089 	struct rdt_resource *r = s->res;
1090 
1091 	seq_printf(seq, "%u\n", r->membw.min_bw);
1092 	return 0;
1093 }
1094 
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1095 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1096 			      struct seq_file *seq, void *v)
1097 {
1098 	struct rdt_resource *r = of->kn->parent->priv;
1099 
1100 	seq_printf(seq, "%d\n", r->num_rmid);
1101 
1102 	return 0;
1103 }
1104 
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1105 static int rdt_mon_features_show(struct kernfs_open_file *of,
1106 				 struct seq_file *seq, void *v)
1107 {
1108 	struct rdt_resource *r = of->kn->parent->priv;
1109 	struct mon_evt *mevt;
1110 
1111 	list_for_each_entry(mevt, &r->evt_list, list) {
1112 		seq_printf(seq, "%s\n", mevt->name);
1113 		if (mevt->configurable)
1114 			seq_printf(seq, "%s_config\n", mevt->name);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1120 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1121 			     struct seq_file *seq, void *v)
1122 {
1123 	struct resctrl_schema *s = of->kn->parent->priv;
1124 	struct rdt_resource *r = s->res;
1125 
1126 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1127 	return 0;
1128 }
1129 
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1130 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1131 			     struct seq_file *seq, void *v)
1132 {
1133 	struct resctrl_schema *s = of->kn->parent->priv;
1134 	struct rdt_resource *r = s->res;
1135 
1136 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1137 	return 0;
1138 }
1139 
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1140 static int max_threshold_occ_show(struct kernfs_open_file *of,
1141 				  struct seq_file *seq, void *v)
1142 {
1143 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1144 
1145 	return 0;
1146 }
1147 
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1148 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1149 					 struct seq_file *seq, void *v)
1150 {
1151 	struct resctrl_schema *s = of->kn->parent->priv;
1152 	struct rdt_resource *r = s->res;
1153 
1154 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1155 		seq_puts(seq, "per-thread\n");
1156 	else
1157 		seq_puts(seq, "max\n");
1158 
1159 	return 0;
1160 }
1161 
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1162 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1163 				       char *buf, size_t nbytes, loff_t off)
1164 {
1165 	unsigned int bytes;
1166 	int ret;
1167 
1168 	ret = kstrtouint(buf, 0, &bytes);
1169 	if (ret)
1170 		return ret;
1171 
1172 	if (bytes > resctrl_rmid_realloc_limit)
1173 		return -EINVAL;
1174 
1175 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1176 
1177 	return nbytes;
1178 }
1179 
1180 /*
1181  * rdtgroup_mode_show - Display mode of this resource group
1182  */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1183 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1184 			      struct seq_file *s, void *v)
1185 {
1186 	struct rdtgroup *rdtgrp;
1187 
1188 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1189 	if (!rdtgrp) {
1190 		rdtgroup_kn_unlock(of->kn);
1191 		return -ENOENT;
1192 	}
1193 
1194 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1195 
1196 	rdtgroup_kn_unlock(of->kn);
1197 	return 0;
1198 }
1199 
resctrl_peer_type(enum resctrl_conf_type my_type)1200 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1201 {
1202 	switch (my_type) {
1203 	case CDP_CODE:
1204 		return CDP_DATA;
1205 	case CDP_DATA:
1206 		return CDP_CODE;
1207 	default:
1208 	case CDP_NONE:
1209 		return CDP_NONE;
1210 	}
1211 }
1212 
rdt_has_sparse_bitmasks_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1213 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1214 					struct seq_file *seq, void *v)
1215 {
1216 	struct resctrl_schema *s = of->kn->parent->priv;
1217 	struct rdt_resource *r = s->res;
1218 
1219 	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1226  * @r: Resource to which domain instance @d belongs.
1227  * @d: The domain instance for which @closid is being tested.
1228  * @cbm: Capacity bitmask being tested.
1229  * @closid: Intended closid for @cbm.
1230  * @type: CDP type of @r.
1231  * @exclusive: Only check if overlaps with exclusive resource groups
1232  *
1233  * Checks if provided @cbm intended to be used for @closid on domain
1234  * @d overlaps with any other closids or other hardware usage associated
1235  * with this domain. If @exclusive is true then only overlaps with
1236  * resource groups in exclusive mode will be considered. If @exclusive
1237  * is false then overlaps with any resource group or hardware entities
1238  * will be considered.
1239  *
1240  * @cbm is unsigned long, even if only 32 bits are used, to make the
1241  * bitmap functions work correctly.
1242  *
1243  * Return: false if CBM does not overlap, true if it does.
1244  */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1245 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1246 				    unsigned long cbm, int closid,
1247 				    enum resctrl_conf_type type, bool exclusive)
1248 {
1249 	enum rdtgrp_mode mode;
1250 	unsigned long ctrl_b;
1251 	int i;
1252 
1253 	/* Check for any overlap with regions used by hardware directly */
1254 	if (!exclusive) {
1255 		ctrl_b = r->cache.shareable_bits;
1256 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1257 			return true;
1258 	}
1259 
1260 	/* Check for overlap with other resource groups */
1261 	for (i = 0; i < closids_supported(); i++) {
1262 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1263 		mode = rdtgroup_mode_by_closid(i);
1264 		if (closid_allocated(i) && i != closid &&
1265 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1266 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1267 				if (exclusive) {
1268 					if (mode == RDT_MODE_EXCLUSIVE)
1269 						return true;
1270 					continue;
1271 				}
1272 				return true;
1273 			}
1274 		}
1275 	}
1276 
1277 	return false;
1278 }
1279 
1280 /**
1281  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1282  * @s: Schema for the resource to which domain instance @d belongs.
1283  * @d: The domain instance for which @closid is being tested.
1284  * @cbm: Capacity bitmask being tested.
1285  * @closid: Intended closid for @cbm.
1286  * @exclusive: Only check if overlaps with exclusive resource groups
1287  *
1288  * Resources that can be allocated using a CBM can use the CBM to control
1289  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1290  * for overlap. Overlap test is not limited to the specific resource for
1291  * which the CBM is intended though - when dealing with CDP resources that
1292  * share the underlying hardware the overlap check should be performed on
1293  * the CDP resource sharing the hardware also.
1294  *
1295  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1296  * overlap test.
1297  *
1298  * Return: true if CBM overlap detected, false if there is no overlap
1299  */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_ctrl_domain * d,unsigned long cbm,int closid,bool exclusive)1300 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1301 			   unsigned long cbm, int closid, bool exclusive)
1302 {
1303 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1304 	struct rdt_resource *r = s->res;
1305 
1306 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1307 				    exclusive))
1308 		return true;
1309 
1310 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1311 		return false;
1312 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1313 }
1314 
1315 /**
1316  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1317  * @rdtgrp: Resource group identified through its closid.
1318  *
1319  * An exclusive resource group implies that there should be no sharing of
1320  * its allocated resources. At the time this group is considered to be
1321  * exclusive this test can determine if its current schemata supports this
1322  * setting by testing for overlap with all other resource groups.
1323  *
1324  * Return: true if resource group can be exclusive, false if there is overlap
1325  * with allocations of other resource groups and thus this resource group
1326  * cannot be exclusive.
1327  */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1328 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1329 {
1330 	int closid = rdtgrp->closid;
1331 	struct rdt_ctrl_domain *d;
1332 	struct resctrl_schema *s;
1333 	struct rdt_resource *r;
1334 	bool has_cache = false;
1335 	u32 ctrl;
1336 
1337 	/* Walking r->domains, ensure it can't race with cpuhp */
1338 	lockdep_assert_cpus_held();
1339 
1340 	list_for_each_entry(s, &resctrl_schema_all, list) {
1341 		r = s->res;
1342 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1343 			continue;
1344 		has_cache = true;
1345 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1346 			ctrl = resctrl_arch_get_config(r, d, closid,
1347 						       s->conf_type);
1348 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1349 				rdt_last_cmd_puts("Schemata overlaps\n");
1350 				return false;
1351 			}
1352 		}
1353 	}
1354 
1355 	if (!has_cache) {
1356 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1357 		return false;
1358 	}
1359 
1360 	return true;
1361 }
1362 
1363 /*
1364  * rdtgroup_mode_write - Modify the resource group's mode
1365  */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1366 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1367 				   char *buf, size_t nbytes, loff_t off)
1368 {
1369 	struct rdtgroup *rdtgrp;
1370 	enum rdtgrp_mode mode;
1371 	int ret = 0;
1372 
1373 	/* Valid input requires a trailing newline */
1374 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1375 		return -EINVAL;
1376 	buf[nbytes - 1] = '\0';
1377 
1378 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1379 	if (!rdtgrp) {
1380 		rdtgroup_kn_unlock(of->kn);
1381 		return -ENOENT;
1382 	}
1383 
1384 	rdt_last_cmd_clear();
1385 
1386 	mode = rdtgrp->mode;
1387 
1388 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1389 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1390 	    (!strcmp(buf, "pseudo-locksetup") &&
1391 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1392 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1393 		goto out;
1394 
1395 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1396 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1397 		ret = -EINVAL;
1398 		goto out;
1399 	}
1400 
1401 	if (!strcmp(buf, "shareable")) {
1402 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1403 			ret = rdtgroup_locksetup_exit(rdtgrp);
1404 			if (ret)
1405 				goto out;
1406 		}
1407 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1408 	} else if (!strcmp(buf, "exclusive")) {
1409 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1410 			ret = -EINVAL;
1411 			goto out;
1412 		}
1413 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1414 			ret = rdtgroup_locksetup_exit(rdtgrp);
1415 			if (ret)
1416 				goto out;
1417 		}
1418 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1419 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1420 		ret = rdtgroup_locksetup_enter(rdtgrp);
1421 		if (ret)
1422 			goto out;
1423 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1424 	} else {
1425 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1426 		ret = -EINVAL;
1427 	}
1428 
1429 out:
1430 	rdtgroup_kn_unlock(of->kn);
1431 	return ret ?: nbytes;
1432 }
1433 
1434 /**
1435  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1436  * @r: RDT resource to which @d belongs.
1437  * @d: RDT domain instance.
1438  * @cbm: bitmask for which the size should be computed.
1439  *
1440  * The bitmask provided associated with the RDT domain instance @d will be
1441  * translated into how many bytes it represents. The size in bytes is
1442  * computed by first dividing the total cache size by the CBM length to
1443  * determine how many bytes each bit in the bitmask represents. The result
1444  * is multiplied with the number of bits set in the bitmask.
1445  *
1446  * @cbm is unsigned long, even if only 32 bits are used to make the
1447  * bitmap functions work correctly.
1448  */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_ctrl_domain * d,unsigned long cbm)1449 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1450 				  struct rdt_ctrl_domain *d, unsigned long cbm)
1451 {
1452 	unsigned int size = 0;
1453 	struct cacheinfo *ci;
1454 	int num_b;
1455 
1456 	if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1457 		return size;
1458 
1459 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1460 	ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1461 	if (ci)
1462 		size = ci->size / r->cache.cbm_len * num_b;
1463 
1464 	return size;
1465 }
1466 
1467 /*
1468  * rdtgroup_size_show - Display size in bytes of allocated regions
1469  *
1470  * The "size" file mirrors the layout of the "schemata" file, printing the
1471  * size in bytes of each region instead of the capacity bitmask.
1472  */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1473 static int rdtgroup_size_show(struct kernfs_open_file *of,
1474 			      struct seq_file *s, void *v)
1475 {
1476 	struct resctrl_schema *schema;
1477 	enum resctrl_conf_type type;
1478 	struct rdt_ctrl_domain *d;
1479 	struct rdtgroup *rdtgrp;
1480 	struct rdt_resource *r;
1481 	unsigned int size;
1482 	int ret = 0;
1483 	u32 closid;
1484 	bool sep;
1485 	u32 ctrl;
1486 
1487 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1488 	if (!rdtgrp) {
1489 		rdtgroup_kn_unlock(of->kn);
1490 		return -ENOENT;
1491 	}
1492 
1493 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1494 		if (!rdtgrp->plr->d) {
1495 			rdt_last_cmd_clear();
1496 			rdt_last_cmd_puts("Cache domain offline\n");
1497 			ret = -ENODEV;
1498 		} else {
1499 			seq_printf(s, "%*s:", max_name_width,
1500 				   rdtgrp->plr->s->name);
1501 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1502 						    rdtgrp->plr->d,
1503 						    rdtgrp->plr->cbm);
1504 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1505 		}
1506 		goto out;
1507 	}
1508 
1509 	closid = rdtgrp->closid;
1510 
1511 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1512 		r = schema->res;
1513 		type = schema->conf_type;
1514 		sep = false;
1515 		seq_printf(s, "%*s:", max_name_width, schema->name);
1516 		list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1517 			if (sep)
1518 				seq_putc(s, ';');
1519 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1520 				size = 0;
1521 			} else {
1522 				if (is_mba_sc(r))
1523 					ctrl = d->mbps_val[closid];
1524 				else
1525 					ctrl = resctrl_arch_get_config(r, d,
1526 								       closid,
1527 								       type);
1528 				if (r->rid == RDT_RESOURCE_MBA ||
1529 				    r->rid == RDT_RESOURCE_SMBA)
1530 					size = ctrl;
1531 				else
1532 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1533 			}
1534 			seq_printf(s, "%d=%u", d->hdr.id, size);
1535 			sep = true;
1536 		}
1537 		seq_putc(s, '\n');
1538 	}
1539 
1540 out:
1541 	rdtgroup_kn_unlock(of->kn);
1542 
1543 	return ret;
1544 }
1545 
1546 struct mon_config_info {
1547 	u32 evtid;
1548 	u32 mon_config;
1549 };
1550 
1551 #define INVALID_CONFIG_INDEX   UINT_MAX
1552 
1553 /**
1554  * mon_event_config_index_get - get the hardware index for the
1555  *                              configurable event
1556  * @evtid: event id.
1557  *
1558  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1559  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1560  *         INVALID_CONFIG_INDEX for invalid evtid
1561  */
mon_event_config_index_get(u32 evtid)1562 static inline unsigned int mon_event_config_index_get(u32 evtid)
1563 {
1564 	switch (evtid) {
1565 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1566 		return 0;
1567 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1568 		return 1;
1569 	default:
1570 		/* Should never reach here */
1571 		return INVALID_CONFIG_INDEX;
1572 	}
1573 }
1574 
mon_event_config_read(void * info)1575 static void mon_event_config_read(void *info)
1576 {
1577 	struct mon_config_info *mon_info = info;
1578 	unsigned int index;
1579 	u64 msrval;
1580 
1581 	index = mon_event_config_index_get(mon_info->evtid);
1582 	if (index == INVALID_CONFIG_INDEX) {
1583 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1584 		return;
1585 	}
1586 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1587 
1588 	/* Report only the valid event configuration bits */
1589 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1590 }
1591 
mondata_config_read(struct rdt_mon_domain * d,struct mon_config_info * mon_info)1592 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info)
1593 {
1594 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1);
1595 }
1596 
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1597 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1598 {
1599 	struct mon_config_info mon_info = {0};
1600 	struct rdt_mon_domain *dom;
1601 	bool sep = false;
1602 
1603 	cpus_read_lock();
1604 	mutex_lock(&rdtgroup_mutex);
1605 
1606 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1607 		if (sep)
1608 			seq_puts(s, ";");
1609 
1610 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1611 		mon_info.evtid = evtid;
1612 		mondata_config_read(dom, &mon_info);
1613 
1614 		seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1615 		sep = true;
1616 	}
1617 	seq_puts(s, "\n");
1618 
1619 	mutex_unlock(&rdtgroup_mutex);
1620 	cpus_read_unlock();
1621 
1622 	return 0;
1623 }
1624 
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1625 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1626 				       struct seq_file *seq, void *v)
1627 {
1628 	struct rdt_resource *r = of->kn->parent->priv;
1629 
1630 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1631 
1632 	return 0;
1633 }
1634 
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1635 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1636 				       struct seq_file *seq, void *v)
1637 {
1638 	struct rdt_resource *r = of->kn->parent->priv;
1639 
1640 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1641 
1642 	return 0;
1643 }
1644 
mon_event_config_write(void * info)1645 static void mon_event_config_write(void *info)
1646 {
1647 	struct mon_config_info *mon_info = info;
1648 	unsigned int index;
1649 
1650 	index = mon_event_config_index_get(mon_info->evtid);
1651 	if (index == INVALID_CONFIG_INDEX) {
1652 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1653 		return;
1654 	}
1655 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1656 }
1657 
mbm_config_write_domain(struct rdt_resource * r,struct rdt_mon_domain * d,u32 evtid,u32 val)1658 static void mbm_config_write_domain(struct rdt_resource *r,
1659 				    struct rdt_mon_domain *d, u32 evtid, u32 val)
1660 {
1661 	struct mon_config_info mon_info = {0};
1662 
1663 	/*
1664 	 * Read the current config value first. If both are the same then
1665 	 * no need to write it again.
1666 	 */
1667 	mon_info.evtid = evtid;
1668 	mondata_config_read(d, &mon_info);
1669 	if (mon_info.mon_config == val)
1670 		return;
1671 
1672 	mon_info.mon_config = val;
1673 
1674 	/*
1675 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1676 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1677 	 * are scoped at the domain level. Writing any of these MSRs
1678 	 * on one CPU is observed by all the CPUs in the domain.
1679 	 */
1680 	smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write,
1681 			      &mon_info, 1);
1682 
1683 	/*
1684 	 * When an Event Configuration is changed, the bandwidth counters
1685 	 * for all RMIDs and Events will be cleared by the hardware. The
1686 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1687 	 * every RMID on the next read to any event for every RMID.
1688 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1689 	 * cleared while it is tracked by the hardware. Clear the
1690 	 * mbm_local and mbm_total counts for all the RMIDs.
1691 	 */
1692 	resctrl_arch_reset_rmid_all(r, d);
1693 }
1694 
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1695 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1696 {
1697 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1698 	char *dom_str = NULL, *id_str;
1699 	unsigned long dom_id, val;
1700 	struct rdt_mon_domain *d;
1701 
1702 	/* Walking r->domains, ensure it can't race with cpuhp */
1703 	lockdep_assert_cpus_held();
1704 
1705 next:
1706 	if (!tok || tok[0] == '\0')
1707 		return 0;
1708 
1709 	/* Start processing the strings for each domain */
1710 	dom_str = strim(strsep(&tok, ";"));
1711 	id_str = strsep(&dom_str, "=");
1712 
1713 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1714 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1715 		return -EINVAL;
1716 	}
1717 
1718 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1719 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1720 		return -EINVAL;
1721 	}
1722 
1723 	/* Value from user cannot be more than the supported set of events */
1724 	if ((val & hw_res->mbm_cfg_mask) != val) {
1725 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1726 				    hw_res->mbm_cfg_mask);
1727 		return -EINVAL;
1728 	}
1729 
1730 	list_for_each_entry(d, &r->mon_domains, hdr.list) {
1731 		if (d->hdr.id == dom_id) {
1732 			mbm_config_write_domain(r, d, evtid, val);
1733 			goto next;
1734 		}
1735 	}
1736 
1737 	return -EINVAL;
1738 }
1739 
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1740 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1741 					    char *buf, size_t nbytes,
1742 					    loff_t off)
1743 {
1744 	struct rdt_resource *r = of->kn->parent->priv;
1745 	int ret;
1746 
1747 	/* Valid input requires a trailing newline */
1748 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1749 		return -EINVAL;
1750 
1751 	cpus_read_lock();
1752 	mutex_lock(&rdtgroup_mutex);
1753 
1754 	rdt_last_cmd_clear();
1755 
1756 	buf[nbytes - 1] = '\0';
1757 
1758 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1759 
1760 	mutex_unlock(&rdtgroup_mutex);
1761 	cpus_read_unlock();
1762 
1763 	return ret ?: nbytes;
1764 }
1765 
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1766 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1767 					    char *buf, size_t nbytes,
1768 					    loff_t off)
1769 {
1770 	struct rdt_resource *r = of->kn->parent->priv;
1771 	int ret;
1772 
1773 	/* Valid input requires a trailing newline */
1774 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1775 		return -EINVAL;
1776 
1777 	cpus_read_lock();
1778 	mutex_lock(&rdtgroup_mutex);
1779 
1780 	rdt_last_cmd_clear();
1781 
1782 	buf[nbytes - 1] = '\0';
1783 
1784 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1785 
1786 	mutex_unlock(&rdtgroup_mutex);
1787 	cpus_read_unlock();
1788 
1789 	return ret ?: nbytes;
1790 }
1791 
1792 /* rdtgroup information files for one cache resource. */
1793 static struct rftype res_common_files[] = {
1794 	{
1795 		.name		= "last_cmd_status",
1796 		.mode		= 0444,
1797 		.kf_ops		= &rdtgroup_kf_single_ops,
1798 		.seq_show	= rdt_last_cmd_status_show,
1799 		.fflags		= RFTYPE_TOP_INFO,
1800 	},
1801 	{
1802 		.name		= "num_closids",
1803 		.mode		= 0444,
1804 		.kf_ops		= &rdtgroup_kf_single_ops,
1805 		.seq_show	= rdt_num_closids_show,
1806 		.fflags		= RFTYPE_CTRL_INFO,
1807 	},
1808 	{
1809 		.name		= "mon_features",
1810 		.mode		= 0444,
1811 		.kf_ops		= &rdtgroup_kf_single_ops,
1812 		.seq_show	= rdt_mon_features_show,
1813 		.fflags		= RFTYPE_MON_INFO,
1814 	},
1815 	{
1816 		.name		= "num_rmids",
1817 		.mode		= 0444,
1818 		.kf_ops		= &rdtgroup_kf_single_ops,
1819 		.seq_show	= rdt_num_rmids_show,
1820 		.fflags		= RFTYPE_MON_INFO,
1821 	},
1822 	{
1823 		.name		= "cbm_mask",
1824 		.mode		= 0444,
1825 		.kf_ops		= &rdtgroup_kf_single_ops,
1826 		.seq_show	= rdt_default_ctrl_show,
1827 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1828 	},
1829 	{
1830 		.name		= "min_cbm_bits",
1831 		.mode		= 0444,
1832 		.kf_ops		= &rdtgroup_kf_single_ops,
1833 		.seq_show	= rdt_min_cbm_bits_show,
1834 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1835 	},
1836 	{
1837 		.name		= "shareable_bits",
1838 		.mode		= 0444,
1839 		.kf_ops		= &rdtgroup_kf_single_ops,
1840 		.seq_show	= rdt_shareable_bits_show,
1841 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1842 	},
1843 	{
1844 		.name		= "bit_usage",
1845 		.mode		= 0444,
1846 		.kf_ops		= &rdtgroup_kf_single_ops,
1847 		.seq_show	= rdt_bit_usage_show,
1848 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1849 	},
1850 	{
1851 		.name		= "min_bandwidth",
1852 		.mode		= 0444,
1853 		.kf_ops		= &rdtgroup_kf_single_ops,
1854 		.seq_show	= rdt_min_bw_show,
1855 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1856 	},
1857 	{
1858 		.name		= "bandwidth_gran",
1859 		.mode		= 0444,
1860 		.kf_ops		= &rdtgroup_kf_single_ops,
1861 		.seq_show	= rdt_bw_gran_show,
1862 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1863 	},
1864 	{
1865 		.name		= "delay_linear",
1866 		.mode		= 0444,
1867 		.kf_ops		= &rdtgroup_kf_single_ops,
1868 		.seq_show	= rdt_delay_linear_show,
1869 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1870 	},
1871 	/*
1872 	 * Platform specific which (if any) capabilities are provided by
1873 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1874 	 * discovery.
1875 	 */
1876 	{
1877 		.name		= "thread_throttle_mode",
1878 		.mode		= 0444,
1879 		.kf_ops		= &rdtgroup_kf_single_ops,
1880 		.seq_show	= rdt_thread_throttle_mode_show,
1881 	},
1882 	{
1883 		.name		= "max_threshold_occupancy",
1884 		.mode		= 0644,
1885 		.kf_ops		= &rdtgroup_kf_single_ops,
1886 		.write		= max_threshold_occ_write,
1887 		.seq_show	= max_threshold_occ_show,
1888 		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1889 	},
1890 	{
1891 		.name		= "mbm_total_bytes_config",
1892 		.mode		= 0644,
1893 		.kf_ops		= &rdtgroup_kf_single_ops,
1894 		.seq_show	= mbm_total_bytes_config_show,
1895 		.write		= mbm_total_bytes_config_write,
1896 	},
1897 	{
1898 		.name		= "mbm_local_bytes_config",
1899 		.mode		= 0644,
1900 		.kf_ops		= &rdtgroup_kf_single_ops,
1901 		.seq_show	= mbm_local_bytes_config_show,
1902 		.write		= mbm_local_bytes_config_write,
1903 	},
1904 	{
1905 		.name		= "cpus",
1906 		.mode		= 0644,
1907 		.kf_ops		= &rdtgroup_kf_single_ops,
1908 		.write		= rdtgroup_cpus_write,
1909 		.seq_show	= rdtgroup_cpus_show,
1910 		.fflags		= RFTYPE_BASE,
1911 	},
1912 	{
1913 		.name		= "cpus_list",
1914 		.mode		= 0644,
1915 		.kf_ops		= &rdtgroup_kf_single_ops,
1916 		.write		= rdtgroup_cpus_write,
1917 		.seq_show	= rdtgroup_cpus_show,
1918 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1919 		.fflags		= RFTYPE_BASE,
1920 	},
1921 	{
1922 		.name		= "tasks",
1923 		.mode		= 0644,
1924 		.kf_ops		= &rdtgroup_kf_single_ops,
1925 		.write		= rdtgroup_tasks_write,
1926 		.seq_show	= rdtgroup_tasks_show,
1927 		.fflags		= RFTYPE_BASE,
1928 	},
1929 	{
1930 		.name		= "mon_hw_id",
1931 		.mode		= 0444,
1932 		.kf_ops		= &rdtgroup_kf_single_ops,
1933 		.seq_show	= rdtgroup_rmid_show,
1934 		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1935 	},
1936 	{
1937 		.name		= "schemata",
1938 		.mode		= 0644,
1939 		.kf_ops		= &rdtgroup_kf_single_ops,
1940 		.write		= rdtgroup_schemata_write,
1941 		.seq_show	= rdtgroup_schemata_show,
1942 		.fflags		= RFTYPE_CTRL_BASE,
1943 	},
1944 	{
1945 		.name		= "mode",
1946 		.mode		= 0644,
1947 		.kf_ops		= &rdtgroup_kf_single_ops,
1948 		.write		= rdtgroup_mode_write,
1949 		.seq_show	= rdtgroup_mode_show,
1950 		.fflags		= RFTYPE_CTRL_BASE,
1951 	},
1952 	{
1953 		.name		= "size",
1954 		.mode		= 0444,
1955 		.kf_ops		= &rdtgroup_kf_single_ops,
1956 		.seq_show	= rdtgroup_size_show,
1957 		.fflags		= RFTYPE_CTRL_BASE,
1958 	},
1959 	{
1960 		.name		= "sparse_masks",
1961 		.mode		= 0444,
1962 		.kf_ops		= &rdtgroup_kf_single_ops,
1963 		.seq_show	= rdt_has_sparse_bitmasks_show,
1964 		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1965 	},
1966 	{
1967 		.name		= "ctrl_hw_id",
1968 		.mode		= 0444,
1969 		.kf_ops		= &rdtgroup_kf_single_ops,
1970 		.seq_show	= rdtgroup_closid_show,
1971 		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1972 	},
1973 
1974 };
1975 
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1976 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1977 {
1978 	struct rftype *rfts, *rft;
1979 	int ret, len;
1980 
1981 	rfts = res_common_files;
1982 	len = ARRAY_SIZE(res_common_files);
1983 
1984 	lockdep_assert_held(&rdtgroup_mutex);
1985 
1986 	if (resctrl_debug)
1987 		fflags |= RFTYPE_DEBUG;
1988 
1989 	for (rft = rfts; rft < rfts + len; rft++) {
1990 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1991 			ret = rdtgroup_add_file(kn, rft);
1992 			if (ret)
1993 				goto error;
1994 		}
1995 	}
1996 
1997 	return 0;
1998 error:
1999 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2000 	while (--rft >= rfts) {
2001 		if ((fflags & rft->fflags) == rft->fflags)
2002 			kernfs_remove_by_name(kn, rft->name);
2003 	}
2004 	return ret;
2005 }
2006 
rdtgroup_get_rftype_by_name(const char * name)2007 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2008 {
2009 	struct rftype *rfts, *rft;
2010 	int len;
2011 
2012 	rfts = res_common_files;
2013 	len = ARRAY_SIZE(res_common_files);
2014 
2015 	for (rft = rfts; rft < rfts + len; rft++) {
2016 		if (!strcmp(rft->name, name))
2017 			return rft;
2018 	}
2019 
2020 	return NULL;
2021 }
2022 
thread_throttle_mode_init(void)2023 void __init thread_throttle_mode_init(void)
2024 {
2025 	struct rftype *rft;
2026 
2027 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2028 	if (!rft)
2029 		return;
2030 
2031 	rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2032 }
2033 
mbm_config_rftype_init(const char * config)2034 void __init mbm_config_rftype_init(const char *config)
2035 {
2036 	struct rftype *rft;
2037 
2038 	rft = rdtgroup_get_rftype_by_name(config);
2039 	if (rft)
2040 		rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2041 }
2042 
2043 /**
2044  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2045  * @r: The resource group with which the file is associated.
2046  * @name: Name of the file
2047  *
2048  * The permissions of named resctrl file, directory, or link are modified
2049  * to not allow read, write, or execute by any user.
2050  *
2051  * WARNING: This function is intended to communicate to the user that the
2052  * resctrl file has been locked down - that it is not relevant to the
2053  * particular state the system finds itself in. It should not be relied
2054  * on to protect from user access because after the file's permissions
2055  * are restricted the user can still change the permissions using chmod
2056  * from the command line.
2057  *
2058  * Return: 0 on success, <0 on failure.
2059  */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)2060 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2061 {
2062 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2063 	struct kernfs_node *kn;
2064 	int ret = 0;
2065 
2066 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2067 	if (!kn)
2068 		return -ENOENT;
2069 
2070 	switch (kernfs_type(kn)) {
2071 	case KERNFS_DIR:
2072 		iattr.ia_mode = S_IFDIR;
2073 		break;
2074 	case KERNFS_FILE:
2075 		iattr.ia_mode = S_IFREG;
2076 		break;
2077 	case KERNFS_LINK:
2078 		iattr.ia_mode = S_IFLNK;
2079 		break;
2080 	}
2081 
2082 	ret = kernfs_setattr(kn, &iattr);
2083 	kernfs_put(kn);
2084 	return ret;
2085 }
2086 
2087 /**
2088  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2089  * @r: The resource group with which the file is associated.
2090  * @name: Name of the file
2091  * @mask: Mask of permissions that should be restored
2092  *
2093  * Restore the permissions of the named file. If @name is a directory the
2094  * permissions of its parent will be used.
2095  *
2096  * Return: 0 on success, <0 on failure.
2097  */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)2098 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2099 			     umode_t mask)
2100 {
2101 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2102 	struct kernfs_node *kn, *parent;
2103 	struct rftype *rfts, *rft;
2104 	int ret, len;
2105 
2106 	rfts = res_common_files;
2107 	len = ARRAY_SIZE(res_common_files);
2108 
2109 	for (rft = rfts; rft < rfts + len; rft++) {
2110 		if (!strcmp(rft->name, name))
2111 			iattr.ia_mode = rft->mode & mask;
2112 	}
2113 
2114 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2115 	if (!kn)
2116 		return -ENOENT;
2117 
2118 	switch (kernfs_type(kn)) {
2119 	case KERNFS_DIR:
2120 		parent = kernfs_get_parent(kn);
2121 		if (parent) {
2122 			iattr.ia_mode |= parent->mode;
2123 			kernfs_put(parent);
2124 		}
2125 		iattr.ia_mode |= S_IFDIR;
2126 		break;
2127 	case KERNFS_FILE:
2128 		iattr.ia_mode |= S_IFREG;
2129 		break;
2130 	case KERNFS_LINK:
2131 		iattr.ia_mode |= S_IFLNK;
2132 		break;
2133 	}
2134 
2135 	ret = kernfs_setattr(kn, &iattr);
2136 	kernfs_put(kn);
2137 	return ret;
2138 }
2139 
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)2140 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2141 				      unsigned long fflags)
2142 {
2143 	struct kernfs_node *kn_subdir;
2144 	int ret;
2145 
2146 	kn_subdir = kernfs_create_dir(kn_info, name,
2147 				      kn_info->mode, priv);
2148 	if (IS_ERR(kn_subdir))
2149 		return PTR_ERR(kn_subdir);
2150 
2151 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2152 	if (ret)
2153 		return ret;
2154 
2155 	ret = rdtgroup_add_files(kn_subdir, fflags);
2156 	if (!ret)
2157 		kernfs_activate(kn_subdir);
2158 
2159 	return ret;
2160 }
2161 
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2162 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2163 {
2164 	struct resctrl_schema *s;
2165 	struct rdt_resource *r;
2166 	unsigned long fflags;
2167 	char name[32];
2168 	int ret;
2169 
2170 	/* create the directory */
2171 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2172 	if (IS_ERR(kn_info))
2173 		return PTR_ERR(kn_info);
2174 
2175 	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2176 	if (ret)
2177 		goto out_destroy;
2178 
2179 	/* loop over enabled controls, these are all alloc_capable */
2180 	list_for_each_entry(s, &resctrl_schema_all, list) {
2181 		r = s->res;
2182 		fflags = r->fflags | RFTYPE_CTRL_INFO;
2183 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2184 		if (ret)
2185 			goto out_destroy;
2186 	}
2187 
2188 	for_each_mon_capable_rdt_resource(r) {
2189 		fflags = r->fflags | RFTYPE_MON_INFO;
2190 		sprintf(name, "%s_MON", r->name);
2191 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2192 		if (ret)
2193 			goto out_destroy;
2194 	}
2195 
2196 	ret = rdtgroup_kn_set_ugid(kn_info);
2197 	if (ret)
2198 		goto out_destroy;
2199 
2200 	kernfs_activate(kn_info);
2201 
2202 	return 0;
2203 
2204 out_destroy:
2205 	kernfs_remove(kn_info);
2206 	return ret;
2207 }
2208 
2209 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2210 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2211 		    char *name, struct kernfs_node **dest_kn)
2212 {
2213 	struct kernfs_node *kn;
2214 	int ret;
2215 
2216 	/* create the directory */
2217 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2218 	if (IS_ERR(kn))
2219 		return PTR_ERR(kn);
2220 
2221 	if (dest_kn)
2222 		*dest_kn = kn;
2223 
2224 	ret = rdtgroup_kn_set_ugid(kn);
2225 	if (ret)
2226 		goto out_destroy;
2227 
2228 	kernfs_activate(kn);
2229 
2230 	return 0;
2231 
2232 out_destroy:
2233 	kernfs_remove(kn);
2234 	return ret;
2235 }
2236 
l3_qos_cfg_update(void * arg)2237 static void l3_qos_cfg_update(void *arg)
2238 {
2239 	bool *enable = arg;
2240 
2241 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2242 }
2243 
l2_qos_cfg_update(void * arg)2244 static void l2_qos_cfg_update(void *arg)
2245 {
2246 	bool *enable = arg;
2247 
2248 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2249 }
2250 
is_mba_linear(void)2251 static inline bool is_mba_linear(void)
2252 {
2253 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2254 }
2255 
set_cache_qos_cfg(int level,bool enable)2256 static int set_cache_qos_cfg(int level, bool enable)
2257 {
2258 	void (*update)(void *arg);
2259 	struct rdt_ctrl_domain *d;
2260 	struct rdt_resource *r_l;
2261 	cpumask_var_t cpu_mask;
2262 	int cpu;
2263 
2264 	/* Walking r->domains, ensure it can't race with cpuhp */
2265 	lockdep_assert_cpus_held();
2266 
2267 	if (level == RDT_RESOURCE_L3)
2268 		update = l3_qos_cfg_update;
2269 	else if (level == RDT_RESOURCE_L2)
2270 		update = l2_qos_cfg_update;
2271 	else
2272 		return -EINVAL;
2273 
2274 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2275 		return -ENOMEM;
2276 
2277 	r_l = &rdt_resources_all[level].r_resctrl;
2278 	list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2279 		if (r_l->cache.arch_has_per_cpu_cfg)
2280 			/* Pick all the CPUs in the domain instance */
2281 			for_each_cpu(cpu, &d->hdr.cpu_mask)
2282 				cpumask_set_cpu(cpu, cpu_mask);
2283 		else
2284 			/* Pick one CPU from each domain instance to update MSR */
2285 			cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2286 	}
2287 
2288 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2289 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2290 
2291 	free_cpumask_var(cpu_mask);
2292 
2293 	return 0;
2294 }
2295 
2296 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)2297 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2298 {
2299 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2300 
2301 	if (!r->cdp_capable)
2302 		return;
2303 
2304 	if (r->rid == RDT_RESOURCE_L2)
2305 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2306 
2307 	if (r->rid == RDT_RESOURCE_L3)
2308 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2309 }
2310 
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_ctrl_domain * d)2311 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2312 {
2313 	u32 num_closid = resctrl_arch_get_num_closid(r);
2314 	int cpu = cpumask_any(&d->hdr.cpu_mask);
2315 	int i;
2316 
2317 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2318 				   GFP_KERNEL, cpu_to_node(cpu));
2319 	if (!d->mbps_val)
2320 		return -ENOMEM;
2321 
2322 	for (i = 0; i < num_closid; i++)
2323 		d->mbps_val[i] = MBA_MAX_MBPS;
2324 
2325 	return 0;
2326 }
2327 
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_ctrl_domain * d)2328 static void mba_sc_domain_destroy(struct rdt_resource *r,
2329 				  struct rdt_ctrl_domain *d)
2330 {
2331 	kfree(d->mbps_val);
2332 	d->mbps_val = NULL;
2333 }
2334 
2335 /*
2336  * MBA software controller is supported only if
2337  * MBM is supported and MBA is in linear scale,
2338  * and the MBM monitor scope is the same as MBA
2339  * control scope.
2340  */
supports_mba_mbps(void)2341 static bool supports_mba_mbps(void)
2342 {
2343 	struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2344 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2345 
2346 	return (is_mbm_local_enabled() &&
2347 		r->alloc_capable && is_mba_linear() &&
2348 		r->ctrl_scope == rmbm->mon_scope);
2349 }
2350 
2351 /*
2352  * Enable or disable the MBA software controller
2353  * which helps user specify bandwidth in MBps.
2354  */
set_mba_sc(bool mba_sc)2355 static int set_mba_sc(bool mba_sc)
2356 {
2357 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2358 	u32 num_closid = resctrl_arch_get_num_closid(r);
2359 	struct rdt_ctrl_domain *d;
2360 	int i;
2361 
2362 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2363 		return -EINVAL;
2364 
2365 	r->membw.mba_sc = mba_sc;
2366 
2367 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2368 		for (i = 0; i < num_closid; i++)
2369 			d->mbps_val[i] = MBA_MAX_MBPS;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
cdp_enable(int level)2375 static int cdp_enable(int level)
2376 {
2377 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2378 	int ret;
2379 
2380 	if (!r_l->alloc_capable)
2381 		return -EINVAL;
2382 
2383 	ret = set_cache_qos_cfg(level, true);
2384 	if (!ret)
2385 		rdt_resources_all[level].cdp_enabled = true;
2386 
2387 	return ret;
2388 }
2389 
cdp_disable(int level)2390 static void cdp_disable(int level)
2391 {
2392 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2393 
2394 	if (r_hw->cdp_enabled) {
2395 		set_cache_qos_cfg(level, false);
2396 		r_hw->cdp_enabled = false;
2397 	}
2398 }
2399 
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)2400 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2401 {
2402 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2403 
2404 	if (!hw_res->r_resctrl.cdp_capable)
2405 		return -EINVAL;
2406 
2407 	if (enable)
2408 		return cdp_enable(l);
2409 
2410 	cdp_disable(l);
2411 
2412 	return 0;
2413 }
2414 
2415 /*
2416  * We don't allow rdtgroup directories to be created anywhere
2417  * except the root directory. Thus when looking for the rdtgroup
2418  * structure for a kernfs node we are either looking at a directory,
2419  * in which case the rdtgroup structure is pointed at by the "priv"
2420  * field, otherwise we have a file, and need only look to the parent
2421  * to find the rdtgroup.
2422  */
kernfs_to_rdtgroup(struct kernfs_node * kn)2423 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2424 {
2425 	if (kernfs_type(kn) == KERNFS_DIR) {
2426 		/*
2427 		 * All the resource directories use "kn->priv"
2428 		 * to point to the "struct rdtgroup" for the
2429 		 * resource. "info" and its subdirectories don't
2430 		 * have rdtgroup structures, so return NULL here.
2431 		 */
2432 		if (kn == kn_info || kn->parent == kn_info)
2433 			return NULL;
2434 		else
2435 			return kn->priv;
2436 	} else {
2437 		return kn->parent->priv;
2438 	}
2439 }
2440 
rdtgroup_kn_get(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2441 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2442 {
2443 	atomic_inc(&rdtgrp->waitcount);
2444 	kernfs_break_active_protection(kn);
2445 }
2446 
rdtgroup_kn_put(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2447 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2448 {
2449 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2450 	    (rdtgrp->flags & RDT_DELETED)) {
2451 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2452 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2453 			rdtgroup_pseudo_lock_remove(rdtgrp);
2454 		kernfs_unbreak_active_protection(kn);
2455 		rdtgroup_remove(rdtgrp);
2456 	} else {
2457 		kernfs_unbreak_active_protection(kn);
2458 	}
2459 }
2460 
rdtgroup_kn_lock_live(struct kernfs_node * kn)2461 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2462 {
2463 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2464 
2465 	if (!rdtgrp)
2466 		return NULL;
2467 
2468 	rdtgroup_kn_get(rdtgrp, kn);
2469 
2470 	cpus_read_lock();
2471 	mutex_lock(&rdtgroup_mutex);
2472 
2473 	/* Was this group deleted while we waited? */
2474 	if (rdtgrp->flags & RDT_DELETED)
2475 		return NULL;
2476 
2477 	return rdtgrp;
2478 }
2479 
rdtgroup_kn_unlock(struct kernfs_node * kn)2480 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2481 {
2482 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2483 
2484 	if (!rdtgrp)
2485 		return;
2486 
2487 	mutex_unlock(&rdtgroup_mutex);
2488 	cpus_read_unlock();
2489 
2490 	rdtgroup_kn_put(rdtgrp, kn);
2491 }
2492 
2493 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2494 			     struct rdtgroup *prgrp,
2495 			     struct kernfs_node **mon_data_kn);
2496 
rdt_disable_ctx(void)2497 static void rdt_disable_ctx(void)
2498 {
2499 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2500 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2501 	set_mba_sc(false);
2502 
2503 	resctrl_debug = false;
2504 }
2505 
rdt_enable_ctx(struct rdt_fs_context * ctx)2506 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2507 {
2508 	int ret = 0;
2509 
2510 	if (ctx->enable_cdpl2) {
2511 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2512 		if (ret)
2513 			goto out_done;
2514 	}
2515 
2516 	if (ctx->enable_cdpl3) {
2517 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2518 		if (ret)
2519 			goto out_cdpl2;
2520 	}
2521 
2522 	if (ctx->enable_mba_mbps) {
2523 		ret = set_mba_sc(true);
2524 		if (ret)
2525 			goto out_cdpl3;
2526 	}
2527 
2528 	if (ctx->enable_debug)
2529 		resctrl_debug = true;
2530 
2531 	return 0;
2532 
2533 out_cdpl3:
2534 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2535 out_cdpl2:
2536 	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2537 out_done:
2538 	return ret;
2539 }
2540 
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2541 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2542 {
2543 	struct resctrl_schema *s;
2544 	const char *suffix = "";
2545 	int ret, cl;
2546 
2547 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2548 	if (!s)
2549 		return -ENOMEM;
2550 
2551 	s->res = r;
2552 	s->num_closid = resctrl_arch_get_num_closid(r);
2553 	if (resctrl_arch_get_cdp_enabled(r->rid))
2554 		s->num_closid /= 2;
2555 
2556 	s->conf_type = type;
2557 	switch (type) {
2558 	case CDP_CODE:
2559 		suffix = "CODE";
2560 		break;
2561 	case CDP_DATA:
2562 		suffix = "DATA";
2563 		break;
2564 	case CDP_NONE:
2565 		suffix = "";
2566 		break;
2567 	}
2568 
2569 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2570 	if (ret >= sizeof(s->name)) {
2571 		kfree(s);
2572 		return -EINVAL;
2573 	}
2574 
2575 	cl = strlen(s->name);
2576 
2577 	/*
2578 	 * If CDP is supported by this resource, but not enabled,
2579 	 * include the suffix. This ensures the tabular format of the
2580 	 * schemata file does not change between mounts of the filesystem.
2581 	 */
2582 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2583 		cl += 4;
2584 
2585 	if (cl > max_name_width)
2586 		max_name_width = cl;
2587 
2588 	INIT_LIST_HEAD(&s->list);
2589 	list_add(&s->list, &resctrl_schema_all);
2590 
2591 	return 0;
2592 }
2593 
schemata_list_create(void)2594 static int schemata_list_create(void)
2595 {
2596 	struct rdt_resource *r;
2597 	int ret = 0;
2598 
2599 	for_each_alloc_capable_rdt_resource(r) {
2600 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2601 			ret = schemata_list_add(r, CDP_CODE);
2602 			if (ret)
2603 				break;
2604 
2605 			ret = schemata_list_add(r, CDP_DATA);
2606 		} else {
2607 			ret = schemata_list_add(r, CDP_NONE);
2608 		}
2609 
2610 		if (ret)
2611 			break;
2612 	}
2613 
2614 	return ret;
2615 }
2616 
schemata_list_destroy(void)2617 static void schemata_list_destroy(void)
2618 {
2619 	struct resctrl_schema *s, *tmp;
2620 
2621 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2622 		list_del(&s->list);
2623 		kfree(s);
2624 	}
2625 }
2626 
rdt_get_tree(struct fs_context * fc)2627 static int rdt_get_tree(struct fs_context *fc)
2628 {
2629 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2630 	unsigned long flags = RFTYPE_CTRL_BASE;
2631 	struct rdt_mon_domain *dom;
2632 	struct rdt_resource *r;
2633 	int ret;
2634 
2635 	cpus_read_lock();
2636 	mutex_lock(&rdtgroup_mutex);
2637 	/*
2638 	 * resctrl file system can only be mounted once.
2639 	 */
2640 	if (resctrl_mounted) {
2641 		ret = -EBUSY;
2642 		goto out;
2643 	}
2644 
2645 	ret = rdtgroup_setup_root(ctx);
2646 	if (ret)
2647 		goto out;
2648 
2649 	ret = rdt_enable_ctx(ctx);
2650 	if (ret)
2651 		goto out_root;
2652 
2653 	ret = schemata_list_create();
2654 	if (ret) {
2655 		schemata_list_destroy();
2656 		goto out_ctx;
2657 	}
2658 
2659 	closid_init();
2660 
2661 	if (resctrl_arch_mon_capable())
2662 		flags |= RFTYPE_MON;
2663 
2664 	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2665 	if (ret)
2666 		goto out_schemata_free;
2667 
2668 	kernfs_activate(rdtgroup_default.kn);
2669 
2670 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2671 	if (ret < 0)
2672 		goto out_schemata_free;
2673 
2674 	if (resctrl_arch_mon_capable()) {
2675 		ret = mongroup_create_dir(rdtgroup_default.kn,
2676 					  &rdtgroup_default, "mon_groups",
2677 					  &kn_mongrp);
2678 		if (ret < 0)
2679 			goto out_info;
2680 
2681 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2682 					&rdtgroup_default, &kn_mondata);
2683 		if (ret < 0)
2684 			goto out_mongrp;
2685 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2686 	}
2687 
2688 	ret = rdt_pseudo_lock_init();
2689 	if (ret)
2690 		goto out_mondata;
2691 
2692 	ret = kernfs_get_tree(fc);
2693 	if (ret < 0)
2694 		goto out_psl;
2695 
2696 	if (resctrl_arch_alloc_capable())
2697 		resctrl_arch_enable_alloc();
2698 	if (resctrl_arch_mon_capable())
2699 		resctrl_arch_enable_mon();
2700 
2701 	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2702 		resctrl_mounted = true;
2703 
2704 	if (is_mbm_enabled()) {
2705 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2706 		list_for_each_entry(dom, &r->mon_domains, hdr.list)
2707 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2708 						   RESCTRL_PICK_ANY_CPU);
2709 	}
2710 
2711 	goto out;
2712 
2713 out_psl:
2714 	rdt_pseudo_lock_release();
2715 out_mondata:
2716 	if (resctrl_arch_mon_capable())
2717 		kernfs_remove(kn_mondata);
2718 out_mongrp:
2719 	if (resctrl_arch_mon_capable())
2720 		kernfs_remove(kn_mongrp);
2721 out_info:
2722 	kernfs_remove(kn_info);
2723 out_schemata_free:
2724 	schemata_list_destroy();
2725 out_ctx:
2726 	rdt_disable_ctx();
2727 out_root:
2728 	rdtgroup_destroy_root();
2729 out:
2730 	rdt_last_cmd_clear();
2731 	mutex_unlock(&rdtgroup_mutex);
2732 	cpus_read_unlock();
2733 	return ret;
2734 }
2735 
2736 enum rdt_param {
2737 	Opt_cdp,
2738 	Opt_cdpl2,
2739 	Opt_mba_mbps,
2740 	Opt_debug,
2741 	nr__rdt_params
2742 };
2743 
2744 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2745 	fsparam_flag("cdp",		Opt_cdp),
2746 	fsparam_flag("cdpl2",		Opt_cdpl2),
2747 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2748 	fsparam_flag("debug",		Opt_debug),
2749 	{}
2750 };
2751 
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2752 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2753 {
2754 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2755 	struct fs_parse_result result;
2756 	const char *msg;
2757 	int opt;
2758 
2759 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2760 	if (opt < 0)
2761 		return opt;
2762 
2763 	switch (opt) {
2764 	case Opt_cdp:
2765 		ctx->enable_cdpl3 = true;
2766 		return 0;
2767 	case Opt_cdpl2:
2768 		ctx->enable_cdpl2 = true;
2769 		return 0;
2770 	case Opt_mba_mbps:
2771 		msg = "mba_MBps requires local MBM and linear scale MBA at L3 scope";
2772 		if (!supports_mba_mbps())
2773 			return invalfc(fc, msg);
2774 		ctx->enable_mba_mbps = true;
2775 		return 0;
2776 	case Opt_debug:
2777 		ctx->enable_debug = true;
2778 		return 0;
2779 	}
2780 
2781 	return -EINVAL;
2782 }
2783 
rdt_fs_context_free(struct fs_context * fc)2784 static void rdt_fs_context_free(struct fs_context *fc)
2785 {
2786 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2787 
2788 	kernfs_free_fs_context(fc);
2789 	kfree(ctx);
2790 }
2791 
2792 static const struct fs_context_operations rdt_fs_context_ops = {
2793 	.free		= rdt_fs_context_free,
2794 	.parse_param	= rdt_parse_param,
2795 	.get_tree	= rdt_get_tree,
2796 };
2797 
rdt_init_fs_context(struct fs_context * fc)2798 static int rdt_init_fs_context(struct fs_context *fc)
2799 {
2800 	struct rdt_fs_context *ctx;
2801 
2802 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2803 	if (!ctx)
2804 		return -ENOMEM;
2805 
2806 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2807 	fc->fs_private = &ctx->kfc;
2808 	fc->ops = &rdt_fs_context_ops;
2809 	put_user_ns(fc->user_ns);
2810 	fc->user_ns = get_user_ns(&init_user_ns);
2811 	fc->global = true;
2812 	return 0;
2813 }
2814 
reset_all_ctrls(struct rdt_resource * r)2815 static int reset_all_ctrls(struct rdt_resource *r)
2816 {
2817 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2818 	struct rdt_hw_ctrl_domain *hw_dom;
2819 	struct msr_param msr_param;
2820 	struct rdt_ctrl_domain *d;
2821 	int i;
2822 
2823 	/* Walking r->domains, ensure it can't race with cpuhp */
2824 	lockdep_assert_cpus_held();
2825 
2826 	msr_param.res = r;
2827 	msr_param.low = 0;
2828 	msr_param.high = hw_res->num_closid;
2829 
2830 	/*
2831 	 * Disable resource control for this resource by setting all
2832 	 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2833 	 * from each domain to update the MSRs below.
2834 	 */
2835 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2836 		hw_dom = resctrl_to_arch_ctrl_dom(d);
2837 
2838 		for (i = 0; i < hw_res->num_closid; i++)
2839 			hw_dom->ctrl_val[i] = r->default_ctrl;
2840 		msr_param.dom = d;
2841 		smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  * Move tasks from one to the other group. If @from is NULL, then all tasks
2849  * in the systems are moved unconditionally (used for teardown).
2850  *
2851  * If @mask is not NULL the cpus on which moved tasks are running are set
2852  * in that mask so the update smp function call is restricted to affected
2853  * cpus.
2854  */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2855 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2856 				 struct cpumask *mask)
2857 {
2858 	struct task_struct *p, *t;
2859 
2860 	read_lock(&tasklist_lock);
2861 	for_each_process_thread(p, t) {
2862 		if (!from || is_closid_match(t, from) ||
2863 		    is_rmid_match(t, from)) {
2864 			resctrl_arch_set_closid_rmid(t, to->closid,
2865 						     to->mon.rmid);
2866 
2867 			/*
2868 			 * Order the closid/rmid stores above before the loads
2869 			 * in task_curr(). This pairs with the full barrier
2870 			 * between the rq->curr update and resctrl_sched_in()
2871 			 * during context switch.
2872 			 */
2873 			smp_mb();
2874 
2875 			/*
2876 			 * If the task is on a CPU, set the CPU in the mask.
2877 			 * The detection is inaccurate as tasks might move or
2878 			 * schedule before the smp function call takes place.
2879 			 * In such a case the function call is pointless, but
2880 			 * there is no other side effect.
2881 			 */
2882 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2883 				cpumask_set_cpu(task_cpu(t), mask);
2884 		}
2885 	}
2886 	read_unlock(&tasklist_lock);
2887 }
2888 
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2889 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2890 {
2891 	struct rdtgroup *sentry, *stmp;
2892 	struct list_head *head;
2893 
2894 	head = &rdtgrp->mon.crdtgrp_list;
2895 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2896 		free_rmid(sentry->closid, sentry->mon.rmid);
2897 		list_del(&sentry->mon.crdtgrp_list);
2898 
2899 		if (atomic_read(&sentry->waitcount) != 0)
2900 			sentry->flags = RDT_DELETED;
2901 		else
2902 			rdtgroup_remove(sentry);
2903 	}
2904 }
2905 
2906 /*
2907  * Forcibly remove all of subdirectories under root.
2908  */
rmdir_all_sub(void)2909 static void rmdir_all_sub(void)
2910 {
2911 	struct rdtgroup *rdtgrp, *tmp;
2912 
2913 	/* Move all tasks to the default resource group */
2914 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2915 
2916 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2917 		/* Free any child rmids */
2918 		free_all_child_rdtgrp(rdtgrp);
2919 
2920 		/* Remove each rdtgroup other than root */
2921 		if (rdtgrp == &rdtgroup_default)
2922 			continue;
2923 
2924 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2925 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2926 			rdtgroup_pseudo_lock_remove(rdtgrp);
2927 
2928 		/*
2929 		 * Give any CPUs back to the default group. We cannot copy
2930 		 * cpu_online_mask because a CPU might have executed the
2931 		 * offline callback already, but is still marked online.
2932 		 */
2933 		cpumask_or(&rdtgroup_default.cpu_mask,
2934 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2935 
2936 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2937 
2938 		kernfs_remove(rdtgrp->kn);
2939 		list_del(&rdtgrp->rdtgroup_list);
2940 
2941 		if (atomic_read(&rdtgrp->waitcount) != 0)
2942 			rdtgrp->flags = RDT_DELETED;
2943 		else
2944 			rdtgroup_remove(rdtgrp);
2945 	}
2946 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2947 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2948 
2949 	kernfs_remove(kn_info);
2950 	kernfs_remove(kn_mongrp);
2951 	kernfs_remove(kn_mondata);
2952 }
2953 
rdt_kill_sb(struct super_block * sb)2954 static void rdt_kill_sb(struct super_block *sb)
2955 {
2956 	struct rdt_resource *r;
2957 
2958 	cpus_read_lock();
2959 	mutex_lock(&rdtgroup_mutex);
2960 
2961 	rdt_disable_ctx();
2962 
2963 	/*Put everything back to default values. */
2964 	for_each_alloc_capable_rdt_resource(r)
2965 		reset_all_ctrls(r);
2966 	rmdir_all_sub();
2967 	rdt_pseudo_lock_release();
2968 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2969 	schemata_list_destroy();
2970 	rdtgroup_destroy_root();
2971 	if (resctrl_arch_alloc_capable())
2972 		resctrl_arch_disable_alloc();
2973 	if (resctrl_arch_mon_capable())
2974 		resctrl_arch_disable_mon();
2975 	resctrl_mounted = false;
2976 	kernfs_kill_sb(sb);
2977 	mutex_unlock(&rdtgroup_mutex);
2978 	cpus_read_unlock();
2979 }
2980 
2981 static struct file_system_type rdt_fs_type = {
2982 	.name			= "resctrl",
2983 	.init_fs_context	= rdt_init_fs_context,
2984 	.parameters		= rdt_fs_parameters,
2985 	.kill_sb		= rdt_kill_sb,
2986 };
2987 
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2988 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2989 		       void *priv)
2990 {
2991 	struct kernfs_node *kn;
2992 	int ret = 0;
2993 
2994 	kn = __kernfs_create_file(parent_kn, name, 0444,
2995 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2996 				  &kf_mondata_ops, priv, NULL, NULL);
2997 	if (IS_ERR(kn))
2998 		return PTR_ERR(kn);
2999 
3000 	ret = rdtgroup_kn_set_ugid(kn);
3001 	if (ret) {
3002 		kernfs_remove(kn);
3003 		return ret;
3004 	}
3005 
3006 	return ret;
3007 }
3008 
mon_rmdir_one_subdir(struct kernfs_node * pkn,char * name,char * subname)3009 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3010 {
3011 	struct kernfs_node *kn;
3012 
3013 	kn = kernfs_find_and_get(pkn, name);
3014 	if (!kn)
3015 		return;
3016 	kernfs_put(kn);
3017 
3018 	if (kn->dir.subdirs <= 1)
3019 		kernfs_remove(kn);
3020 	else
3021 		kernfs_remove_by_name(kn, subname);
3022 }
3023 
3024 /*
3025  * Remove all subdirectories of mon_data of ctrl_mon groups
3026  * and monitor groups for the given domain.
3027  * Remove files and directories containing "sum" of domain data
3028  * when last domain being summed is removed.
3029  */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3030 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3031 					   struct rdt_mon_domain *d)
3032 {
3033 	struct rdtgroup *prgrp, *crgrp;
3034 	char subname[32];
3035 	bool snc_mode;
3036 	char name[32];
3037 
3038 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3039 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3040 	if (snc_mode)
3041 		sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3042 
3043 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3044 		mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3045 
3046 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3047 			mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3048 	}
3049 }
3050 
mon_add_all_files(struct kernfs_node * kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp,bool do_sum)3051 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3052 			     struct rdt_resource *r, struct rdtgroup *prgrp,
3053 			     bool do_sum)
3054 {
3055 	struct rmid_read rr = {0};
3056 	union mon_data_bits priv;
3057 	struct mon_evt *mevt;
3058 	int ret;
3059 
3060 	if (WARN_ON(list_empty(&r->evt_list)))
3061 		return -EPERM;
3062 
3063 	priv.u.rid = r->rid;
3064 	priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3065 	priv.u.sum = do_sum;
3066 	list_for_each_entry(mevt, &r->evt_list, list) {
3067 		priv.u.evtid = mevt->evtid;
3068 		ret = mon_addfile(kn, mevt->name, priv.priv);
3069 		if (ret)
3070 			return ret;
3071 
3072 		if (!do_sum && is_mbm_event(mevt->evtid))
3073 			mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3074 	}
3075 
3076 	return 0;
3077 }
3078 
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_mon_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)3079 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3080 				struct rdt_mon_domain *d,
3081 				struct rdt_resource *r, struct rdtgroup *prgrp)
3082 {
3083 	struct kernfs_node *kn, *ckn;
3084 	char name[32];
3085 	bool snc_mode;
3086 	int ret = 0;
3087 
3088 	lockdep_assert_held(&rdtgroup_mutex);
3089 
3090 	snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3091 	sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3092 	kn = kernfs_find_and_get(parent_kn, name);
3093 	if (kn) {
3094 		/*
3095 		 * rdtgroup_mutex will prevent this directory from being
3096 		 * removed. No need to keep this hold.
3097 		 */
3098 		kernfs_put(kn);
3099 	} else {
3100 		kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3101 		if (IS_ERR(kn))
3102 			return PTR_ERR(kn);
3103 
3104 		ret = rdtgroup_kn_set_ugid(kn);
3105 		if (ret)
3106 			goto out_destroy;
3107 		ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3108 		if (ret)
3109 			goto out_destroy;
3110 	}
3111 
3112 	if (snc_mode) {
3113 		sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3114 		ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3115 		if (IS_ERR(ckn)) {
3116 			ret = -EINVAL;
3117 			goto out_destroy;
3118 		}
3119 
3120 		ret = rdtgroup_kn_set_ugid(ckn);
3121 		if (ret)
3122 			goto out_destroy;
3123 
3124 		ret = mon_add_all_files(ckn, d, r, prgrp, false);
3125 		if (ret)
3126 			goto out_destroy;
3127 	}
3128 
3129 	kernfs_activate(kn);
3130 	return 0;
3131 
3132 out_destroy:
3133 	kernfs_remove(kn);
3134 	return ret;
3135 }
3136 
3137 /*
3138  * Add all subdirectories of mon_data for "ctrl_mon" groups
3139  * and "monitor" groups with given domain id.
3140  */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_mon_domain * d)3141 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3142 					   struct rdt_mon_domain *d)
3143 {
3144 	struct kernfs_node *parent_kn;
3145 	struct rdtgroup *prgrp, *crgrp;
3146 	struct list_head *head;
3147 
3148 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3149 		parent_kn = prgrp->mon.mon_data_kn;
3150 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3151 
3152 		head = &prgrp->mon.crdtgrp_list;
3153 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3154 			parent_kn = crgrp->mon.mon_data_kn;
3155 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3156 		}
3157 	}
3158 }
3159 
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)3160 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3161 				       struct rdt_resource *r,
3162 				       struct rdtgroup *prgrp)
3163 {
3164 	struct rdt_mon_domain *dom;
3165 	int ret;
3166 
3167 	/* Walking r->domains, ensure it can't race with cpuhp */
3168 	lockdep_assert_cpus_held();
3169 
3170 	list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3171 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3172 		if (ret)
3173 			return ret;
3174 	}
3175 
3176 	return 0;
3177 }
3178 
3179 /*
3180  * This creates a directory mon_data which contains the monitored data.
3181  *
3182  * mon_data has one directory for each domain which are named
3183  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3184  * with L3 domain looks as below:
3185  * ./mon_data:
3186  * mon_L3_00
3187  * mon_L3_01
3188  * mon_L3_02
3189  * ...
3190  *
3191  * Each domain directory has one file per event:
3192  * ./mon_L3_00/:
3193  * llc_occupancy
3194  *
3195  */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)3196 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3197 			     struct rdtgroup *prgrp,
3198 			     struct kernfs_node **dest_kn)
3199 {
3200 	struct rdt_resource *r;
3201 	struct kernfs_node *kn;
3202 	int ret;
3203 
3204 	/*
3205 	 * Create the mon_data directory first.
3206 	 */
3207 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3208 	if (ret)
3209 		return ret;
3210 
3211 	if (dest_kn)
3212 		*dest_kn = kn;
3213 
3214 	/*
3215 	 * Create the subdirectories for each domain. Note that all events
3216 	 * in a domain like L3 are grouped into a resource whose domain is L3
3217 	 */
3218 	for_each_mon_capable_rdt_resource(r) {
3219 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3220 		if (ret)
3221 			goto out_destroy;
3222 	}
3223 
3224 	return 0;
3225 
3226 out_destroy:
3227 	kernfs_remove(kn);
3228 	return ret;
3229 }
3230 
3231 /**
3232  * cbm_ensure_valid - Enforce validity on provided CBM
3233  * @_val:	Candidate CBM
3234  * @r:		RDT resource to which the CBM belongs
3235  *
3236  * The provided CBM represents all cache portions available for use. This
3237  * may be represented by a bitmap that does not consist of contiguous ones
3238  * and thus be an invalid CBM.
3239  * Here the provided CBM is forced to be a valid CBM by only considering
3240  * the first set of contiguous bits as valid and clearing all bits.
3241  * The intention here is to provide a valid default CBM with which a new
3242  * resource group is initialized. The user can follow this with a
3243  * modification to the CBM if the default does not satisfy the
3244  * requirements.
3245  */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)3246 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3247 {
3248 	unsigned int cbm_len = r->cache.cbm_len;
3249 	unsigned long first_bit, zero_bit;
3250 	unsigned long val = _val;
3251 
3252 	if (!val)
3253 		return 0;
3254 
3255 	first_bit = find_first_bit(&val, cbm_len);
3256 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3257 
3258 	/* Clear any remaining bits to ensure contiguous region */
3259 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3260 	return (u32)val;
3261 }
3262 
3263 /*
3264  * Initialize cache resources per RDT domain
3265  *
3266  * Set the RDT domain up to start off with all usable allocations. That is,
3267  * all shareable and unused bits. All-zero CBM is invalid.
3268  */
__init_one_rdt_domain(struct rdt_ctrl_domain * d,struct resctrl_schema * s,u32 closid)3269 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3270 				 u32 closid)
3271 {
3272 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3273 	enum resctrl_conf_type t = s->conf_type;
3274 	struct resctrl_staged_config *cfg;
3275 	struct rdt_resource *r = s->res;
3276 	u32 used_b = 0, unused_b = 0;
3277 	unsigned long tmp_cbm;
3278 	enum rdtgrp_mode mode;
3279 	u32 peer_ctl, ctrl_val;
3280 	int i;
3281 
3282 	cfg = &d->staged_config[t];
3283 	cfg->have_new_ctrl = false;
3284 	cfg->new_ctrl = r->cache.shareable_bits;
3285 	used_b = r->cache.shareable_bits;
3286 	for (i = 0; i < closids_supported(); i++) {
3287 		if (closid_allocated(i) && i != closid) {
3288 			mode = rdtgroup_mode_by_closid(i);
3289 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3290 				/*
3291 				 * ctrl values for locksetup aren't relevant
3292 				 * until the schemata is written, and the mode
3293 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3294 				 */
3295 				continue;
3296 			/*
3297 			 * If CDP is active include peer domain's
3298 			 * usage to ensure there is no overlap
3299 			 * with an exclusive group.
3300 			 */
3301 			if (resctrl_arch_get_cdp_enabled(r->rid))
3302 				peer_ctl = resctrl_arch_get_config(r, d, i,
3303 								   peer_type);
3304 			else
3305 				peer_ctl = 0;
3306 			ctrl_val = resctrl_arch_get_config(r, d, i,
3307 							   s->conf_type);
3308 			used_b |= ctrl_val | peer_ctl;
3309 			if (mode == RDT_MODE_SHAREABLE)
3310 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3311 		}
3312 	}
3313 	if (d->plr && d->plr->cbm > 0)
3314 		used_b |= d->plr->cbm;
3315 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3316 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3317 	cfg->new_ctrl |= unused_b;
3318 	/*
3319 	 * Force the initial CBM to be valid, user can
3320 	 * modify the CBM based on system availability.
3321 	 */
3322 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3323 	/*
3324 	 * Assign the u32 CBM to an unsigned long to ensure that
3325 	 * bitmap_weight() does not access out-of-bound memory.
3326 	 */
3327 	tmp_cbm = cfg->new_ctrl;
3328 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3329 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3330 		return -ENOSPC;
3331 	}
3332 	cfg->have_new_ctrl = true;
3333 
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Initialize cache resources with default values.
3339  *
3340  * A new RDT group is being created on an allocation capable (CAT)
3341  * supporting system. Set this group up to start off with all usable
3342  * allocations.
3343  *
3344  * If there are no more shareable bits available on any domain then
3345  * the entire allocation will fail.
3346  */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3347 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3348 {
3349 	struct rdt_ctrl_domain *d;
3350 	int ret;
3351 
3352 	list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3353 		ret = __init_one_rdt_domain(d, s, closid);
3354 		if (ret < 0)
3355 			return ret;
3356 	}
3357 
3358 	return 0;
3359 }
3360 
3361 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3362 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3363 {
3364 	struct resctrl_staged_config *cfg;
3365 	struct rdt_ctrl_domain *d;
3366 
3367 	list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3368 		if (is_mba_sc(r)) {
3369 			d->mbps_val[closid] = MBA_MAX_MBPS;
3370 			continue;
3371 		}
3372 
3373 		cfg = &d->staged_config[CDP_NONE];
3374 		cfg->new_ctrl = r->default_ctrl;
3375 		cfg->have_new_ctrl = true;
3376 	}
3377 }
3378 
3379 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3380 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3381 {
3382 	struct resctrl_schema *s;
3383 	struct rdt_resource *r;
3384 	int ret = 0;
3385 
3386 	rdt_staged_configs_clear();
3387 
3388 	list_for_each_entry(s, &resctrl_schema_all, list) {
3389 		r = s->res;
3390 		if (r->rid == RDT_RESOURCE_MBA ||
3391 		    r->rid == RDT_RESOURCE_SMBA) {
3392 			rdtgroup_init_mba(r, rdtgrp->closid);
3393 			if (is_mba_sc(r))
3394 				continue;
3395 		} else {
3396 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3397 			if (ret < 0)
3398 				goto out;
3399 		}
3400 
3401 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3402 		if (ret < 0) {
3403 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3404 			goto out;
3405 		}
3406 
3407 	}
3408 
3409 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3410 
3411 out:
3412 	rdt_staged_configs_clear();
3413 	return ret;
3414 }
3415 
mkdir_rdt_prepare_rmid_alloc(struct rdtgroup * rdtgrp)3416 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3417 {
3418 	int ret;
3419 
3420 	if (!resctrl_arch_mon_capable())
3421 		return 0;
3422 
3423 	ret = alloc_rmid(rdtgrp->closid);
3424 	if (ret < 0) {
3425 		rdt_last_cmd_puts("Out of RMIDs\n");
3426 		return ret;
3427 	}
3428 	rdtgrp->mon.rmid = ret;
3429 
3430 	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3431 	if (ret) {
3432 		rdt_last_cmd_puts("kernfs subdir error\n");
3433 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3434 		return ret;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
mkdir_rdt_prepare_rmid_free(struct rdtgroup * rgrp)3440 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3441 {
3442 	if (resctrl_arch_mon_capable())
3443 		free_rmid(rgrp->closid, rgrp->mon.rmid);
3444 }
3445 
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3446 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3447 			     const char *name, umode_t mode,
3448 			     enum rdt_group_type rtype, struct rdtgroup **r)
3449 {
3450 	struct rdtgroup *prdtgrp, *rdtgrp;
3451 	unsigned long files = 0;
3452 	struct kernfs_node *kn;
3453 	int ret;
3454 
3455 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3456 	if (!prdtgrp) {
3457 		ret = -ENODEV;
3458 		goto out_unlock;
3459 	}
3460 
3461 	if (rtype == RDTMON_GROUP &&
3462 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3463 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3464 		ret = -EINVAL;
3465 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3466 		goto out_unlock;
3467 	}
3468 
3469 	/* allocate the rdtgroup. */
3470 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3471 	if (!rdtgrp) {
3472 		ret = -ENOSPC;
3473 		rdt_last_cmd_puts("Kernel out of memory\n");
3474 		goto out_unlock;
3475 	}
3476 	*r = rdtgrp;
3477 	rdtgrp->mon.parent = prdtgrp;
3478 	rdtgrp->type = rtype;
3479 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3480 
3481 	/* kernfs creates the directory for rdtgrp */
3482 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3483 	if (IS_ERR(kn)) {
3484 		ret = PTR_ERR(kn);
3485 		rdt_last_cmd_puts("kernfs create error\n");
3486 		goto out_free_rgrp;
3487 	}
3488 	rdtgrp->kn = kn;
3489 
3490 	/*
3491 	 * kernfs_remove() will drop the reference count on "kn" which
3492 	 * will free it. But we still need it to stick around for the
3493 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3494 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3495 	 */
3496 	kernfs_get(kn);
3497 
3498 	ret = rdtgroup_kn_set_ugid(kn);
3499 	if (ret) {
3500 		rdt_last_cmd_puts("kernfs perm error\n");
3501 		goto out_destroy;
3502 	}
3503 
3504 	if (rtype == RDTCTRL_GROUP) {
3505 		files = RFTYPE_BASE | RFTYPE_CTRL;
3506 		if (resctrl_arch_mon_capable())
3507 			files |= RFTYPE_MON;
3508 	} else {
3509 		files = RFTYPE_BASE | RFTYPE_MON;
3510 	}
3511 
3512 	ret = rdtgroup_add_files(kn, files);
3513 	if (ret) {
3514 		rdt_last_cmd_puts("kernfs fill error\n");
3515 		goto out_destroy;
3516 	}
3517 
3518 	/*
3519 	 * The caller unlocks the parent_kn upon success.
3520 	 */
3521 	return 0;
3522 
3523 out_destroy:
3524 	kernfs_put(rdtgrp->kn);
3525 	kernfs_remove(rdtgrp->kn);
3526 out_free_rgrp:
3527 	kfree(rdtgrp);
3528 out_unlock:
3529 	rdtgroup_kn_unlock(parent_kn);
3530 	return ret;
3531 }
3532 
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3533 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3534 {
3535 	kernfs_remove(rgrp->kn);
3536 	rdtgroup_remove(rgrp);
3537 }
3538 
3539 /*
3540  * Create a monitor group under "mon_groups" directory of a control
3541  * and monitor group(ctrl_mon). This is a resource group
3542  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3543  */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3544 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3545 			      const char *name, umode_t mode)
3546 {
3547 	struct rdtgroup *rdtgrp, *prgrp;
3548 	int ret;
3549 
3550 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3551 	if (ret)
3552 		return ret;
3553 
3554 	prgrp = rdtgrp->mon.parent;
3555 	rdtgrp->closid = prgrp->closid;
3556 
3557 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3558 	if (ret) {
3559 		mkdir_rdt_prepare_clean(rdtgrp);
3560 		goto out_unlock;
3561 	}
3562 
3563 	kernfs_activate(rdtgrp->kn);
3564 
3565 	/*
3566 	 * Add the rdtgrp to the list of rdtgrps the parent
3567 	 * ctrl_mon group has to track.
3568 	 */
3569 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3570 
3571 out_unlock:
3572 	rdtgroup_kn_unlock(parent_kn);
3573 	return ret;
3574 }
3575 
3576 /*
3577  * These are rdtgroups created under the root directory. Can be used
3578  * to allocate and monitor resources.
3579  */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3580 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3581 				   const char *name, umode_t mode)
3582 {
3583 	struct rdtgroup *rdtgrp;
3584 	struct kernfs_node *kn;
3585 	u32 closid;
3586 	int ret;
3587 
3588 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3589 	if (ret)
3590 		return ret;
3591 
3592 	kn = rdtgrp->kn;
3593 	ret = closid_alloc();
3594 	if (ret < 0) {
3595 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3596 		goto out_common_fail;
3597 	}
3598 	closid = ret;
3599 	ret = 0;
3600 
3601 	rdtgrp->closid = closid;
3602 
3603 	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3604 	if (ret)
3605 		goto out_closid_free;
3606 
3607 	kernfs_activate(rdtgrp->kn);
3608 
3609 	ret = rdtgroup_init_alloc(rdtgrp);
3610 	if (ret < 0)
3611 		goto out_rmid_free;
3612 
3613 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3614 
3615 	if (resctrl_arch_mon_capable()) {
3616 		/*
3617 		 * Create an empty mon_groups directory to hold the subset
3618 		 * of tasks and cpus to monitor.
3619 		 */
3620 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3621 		if (ret) {
3622 			rdt_last_cmd_puts("kernfs subdir error\n");
3623 			goto out_del_list;
3624 		}
3625 	}
3626 
3627 	goto out_unlock;
3628 
3629 out_del_list:
3630 	list_del(&rdtgrp->rdtgroup_list);
3631 out_rmid_free:
3632 	mkdir_rdt_prepare_rmid_free(rdtgrp);
3633 out_closid_free:
3634 	closid_free(closid);
3635 out_common_fail:
3636 	mkdir_rdt_prepare_clean(rdtgrp);
3637 out_unlock:
3638 	rdtgroup_kn_unlock(parent_kn);
3639 	return ret;
3640 }
3641 
3642 /*
3643  * We allow creating mon groups only with in a directory called "mon_groups"
3644  * which is present in every ctrl_mon group. Check if this is a valid
3645  * "mon_groups" directory.
3646  *
3647  * 1. The directory should be named "mon_groups".
3648  * 2. The mon group itself should "not" be named "mon_groups".
3649  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3650  *   as parent.
3651  */
is_mon_groups(struct kernfs_node * kn,const char * name)3652 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3653 {
3654 	return (!strcmp(kn->name, "mon_groups") &&
3655 		strcmp(name, "mon_groups"));
3656 }
3657 
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3658 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3659 			  umode_t mode)
3660 {
3661 	/* Do not accept '\n' to avoid unparsable situation. */
3662 	if (strchr(name, '\n'))
3663 		return -EINVAL;
3664 
3665 	/*
3666 	 * If the parent directory is the root directory and RDT
3667 	 * allocation is supported, add a control and monitoring
3668 	 * subdirectory
3669 	 */
3670 	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3671 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3672 
3673 	/*
3674 	 * If RDT monitoring is supported and the parent directory is a valid
3675 	 * "mon_groups" directory, add a monitoring subdirectory.
3676 	 */
3677 	if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3678 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3679 
3680 	return -EPERM;
3681 }
3682 
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3683 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3684 {
3685 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3686 	int cpu;
3687 
3688 	/* Give any tasks back to the parent group */
3689 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3690 
3691 	/* Update per cpu rmid of the moved CPUs first */
3692 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3693 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3694 	/*
3695 	 * Update the MSR on moved CPUs and CPUs which have moved
3696 	 * task running on them.
3697 	 */
3698 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3699 	update_closid_rmid(tmpmask, NULL);
3700 
3701 	rdtgrp->flags = RDT_DELETED;
3702 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3703 
3704 	/*
3705 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3706 	 */
3707 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3708 	list_del(&rdtgrp->mon.crdtgrp_list);
3709 
3710 	kernfs_remove(rdtgrp->kn);
3711 
3712 	return 0;
3713 }
3714 
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3715 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3716 {
3717 	rdtgrp->flags = RDT_DELETED;
3718 	list_del(&rdtgrp->rdtgroup_list);
3719 
3720 	kernfs_remove(rdtgrp->kn);
3721 	return 0;
3722 }
3723 
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3724 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3725 {
3726 	int cpu;
3727 
3728 	/* Give any tasks back to the default group */
3729 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3730 
3731 	/* Give any CPUs back to the default group */
3732 	cpumask_or(&rdtgroup_default.cpu_mask,
3733 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3734 
3735 	/* Update per cpu closid and rmid of the moved CPUs first */
3736 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3737 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3738 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3739 	}
3740 
3741 	/*
3742 	 * Update the MSR on moved CPUs and CPUs which have moved
3743 	 * task running on them.
3744 	 */
3745 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3746 	update_closid_rmid(tmpmask, NULL);
3747 
3748 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3749 	closid_free(rdtgrp->closid);
3750 
3751 	rdtgroup_ctrl_remove(rdtgrp);
3752 
3753 	/*
3754 	 * Free all the child monitor group rmids.
3755 	 */
3756 	free_all_child_rdtgrp(rdtgrp);
3757 
3758 	return 0;
3759 }
3760 
rdtgroup_rmdir(struct kernfs_node * kn)3761 static int rdtgroup_rmdir(struct kernfs_node *kn)
3762 {
3763 	struct kernfs_node *parent_kn = kn->parent;
3764 	struct rdtgroup *rdtgrp;
3765 	cpumask_var_t tmpmask;
3766 	int ret = 0;
3767 
3768 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3769 		return -ENOMEM;
3770 
3771 	rdtgrp = rdtgroup_kn_lock_live(kn);
3772 	if (!rdtgrp) {
3773 		ret = -EPERM;
3774 		goto out;
3775 	}
3776 
3777 	/*
3778 	 * If the rdtgroup is a ctrl_mon group and parent directory
3779 	 * is the root directory, remove the ctrl_mon group.
3780 	 *
3781 	 * If the rdtgroup is a mon group and parent directory
3782 	 * is a valid "mon_groups" directory, remove the mon group.
3783 	 */
3784 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3785 	    rdtgrp != &rdtgroup_default) {
3786 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3787 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3788 			ret = rdtgroup_ctrl_remove(rdtgrp);
3789 		} else {
3790 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3791 		}
3792 	} else if (rdtgrp->type == RDTMON_GROUP &&
3793 		 is_mon_groups(parent_kn, kn->name)) {
3794 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3795 	} else {
3796 		ret = -EPERM;
3797 	}
3798 
3799 out:
3800 	rdtgroup_kn_unlock(kn);
3801 	free_cpumask_var(tmpmask);
3802 	return ret;
3803 }
3804 
3805 /**
3806  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3807  * @rdtgrp:		the MON group whose parent should be replaced
3808  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3809  * @cpus:		cpumask provided by the caller for use during this call
3810  *
3811  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3812  * tasks' CLOSID immediately changing to that of the new parent group.
3813  * Monitoring data for the group is unaffected by this operation.
3814  */
mongrp_reparent(struct rdtgroup * rdtgrp,struct rdtgroup * new_prdtgrp,cpumask_var_t cpus)3815 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3816 			    struct rdtgroup *new_prdtgrp,
3817 			    cpumask_var_t cpus)
3818 {
3819 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3820 
3821 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3822 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3823 
3824 	/* Nothing to do when simply renaming a MON group. */
3825 	if (prdtgrp == new_prdtgrp)
3826 		return;
3827 
3828 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3829 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3830 		       &new_prdtgrp->mon.crdtgrp_list);
3831 
3832 	rdtgrp->mon.parent = new_prdtgrp;
3833 	rdtgrp->closid = new_prdtgrp->closid;
3834 
3835 	/* Propagate updated closid to all tasks in this group. */
3836 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3837 
3838 	update_closid_rmid(cpus, NULL);
3839 }
3840 
rdtgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name)3841 static int rdtgroup_rename(struct kernfs_node *kn,
3842 			   struct kernfs_node *new_parent, const char *new_name)
3843 {
3844 	struct rdtgroup *new_prdtgrp;
3845 	struct rdtgroup *rdtgrp;
3846 	cpumask_var_t tmpmask;
3847 	int ret;
3848 
3849 	rdtgrp = kernfs_to_rdtgroup(kn);
3850 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3851 	if (!rdtgrp || !new_prdtgrp)
3852 		return -ENOENT;
3853 
3854 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3855 	rdtgroup_kn_get(rdtgrp, kn);
3856 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3857 
3858 	mutex_lock(&rdtgroup_mutex);
3859 
3860 	rdt_last_cmd_clear();
3861 
3862 	/*
3863 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3864 	 * either kernfs_node is a file.
3865 	 */
3866 	if (kernfs_type(kn) != KERNFS_DIR ||
3867 	    kernfs_type(new_parent) != KERNFS_DIR) {
3868 		rdt_last_cmd_puts("Source and destination must be directories");
3869 		ret = -EPERM;
3870 		goto out;
3871 	}
3872 
3873 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3874 		ret = -ENOENT;
3875 		goto out;
3876 	}
3877 
3878 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3879 	    !is_mon_groups(kn->parent, kn->name)) {
3880 		rdt_last_cmd_puts("Source must be a MON group\n");
3881 		ret = -EPERM;
3882 		goto out;
3883 	}
3884 
3885 	if (!is_mon_groups(new_parent, new_name)) {
3886 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3887 		ret = -EPERM;
3888 		goto out;
3889 	}
3890 
3891 	/*
3892 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3893 	 * current parent CTRL_MON group and therefore cannot be assigned to
3894 	 * the new parent, making the move illegal.
3895 	 */
3896 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3897 	    rdtgrp->mon.parent != new_prdtgrp) {
3898 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3899 		ret = -EPERM;
3900 		goto out;
3901 	}
3902 
3903 	/*
3904 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3905 	 * possibility of failing to allocate it after kernfs_rename() has
3906 	 * succeeded.
3907 	 */
3908 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3909 		ret = -ENOMEM;
3910 		goto out;
3911 	}
3912 
3913 	/*
3914 	 * Perform all input validation and allocations needed to ensure
3915 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3916 	 * otherwise it would be necessary to revert this call if
3917 	 * mongrp_reparent() failed.
3918 	 */
3919 	ret = kernfs_rename(kn, new_parent, new_name);
3920 	if (!ret)
3921 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3922 
3923 	free_cpumask_var(tmpmask);
3924 
3925 out:
3926 	mutex_unlock(&rdtgroup_mutex);
3927 	rdtgroup_kn_put(rdtgrp, kn);
3928 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3929 	return ret;
3930 }
3931 
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3932 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3933 {
3934 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3935 		seq_puts(seq, ",cdp");
3936 
3937 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3938 		seq_puts(seq, ",cdpl2");
3939 
3940 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3941 		seq_puts(seq, ",mba_MBps");
3942 
3943 	if (resctrl_debug)
3944 		seq_puts(seq, ",debug");
3945 
3946 	return 0;
3947 }
3948 
3949 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3950 	.mkdir		= rdtgroup_mkdir,
3951 	.rmdir		= rdtgroup_rmdir,
3952 	.rename		= rdtgroup_rename,
3953 	.show_options	= rdtgroup_show_options,
3954 };
3955 
rdtgroup_setup_root(struct rdt_fs_context * ctx)3956 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3957 {
3958 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3959 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3960 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3961 				      &rdtgroup_default);
3962 	if (IS_ERR(rdt_root))
3963 		return PTR_ERR(rdt_root);
3964 
3965 	ctx->kfc.root = rdt_root;
3966 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3967 
3968 	return 0;
3969 }
3970 
rdtgroup_destroy_root(void)3971 static void rdtgroup_destroy_root(void)
3972 {
3973 	kernfs_destroy_root(rdt_root);
3974 	rdtgroup_default.kn = NULL;
3975 }
3976 
rdtgroup_setup_default(void)3977 static void __init rdtgroup_setup_default(void)
3978 {
3979 	mutex_lock(&rdtgroup_mutex);
3980 
3981 	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3982 	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3983 	rdtgroup_default.type = RDTCTRL_GROUP;
3984 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3985 
3986 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3987 
3988 	mutex_unlock(&rdtgroup_mutex);
3989 }
3990 
domain_destroy_mon_state(struct rdt_mon_domain * d)3991 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
3992 {
3993 	bitmap_free(d->rmid_busy_llc);
3994 	kfree(d->mbm_total);
3995 	kfree(d->mbm_local);
3996 }
3997 
resctrl_offline_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)3998 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
3999 {
4000 	mutex_lock(&rdtgroup_mutex);
4001 
4002 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4003 		mba_sc_domain_destroy(r, d);
4004 
4005 	mutex_unlock(&rdtgroup_mutex);
4006 }
4007 
resctrl_offline_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4008 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4009 {
4010 	mutex_lock(&rdtgroup_mutex);
4011 
4012 	/*
4013 	 * If resctrl is mounted, remove all the
4014 	 * per domain monitor data directories.
4015 	 */
4016 	if (resctrl_mounted && resctrl_arch_mon_capable())
4017 		rmdir_mondata_subdir_allrdtgrp(r, d);
4018 
4019 	if (is_mbm_enabled())
4020 		cancel_delayed_work(&d->mbm_over);
4021 	if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4022 		/*
4023 		 * When a package is going down, forcefully
4024 		 * decrement rmid->ebusy. There is no way to know
4025 		 * that the L3 was flushed and hence may lead to
4026 		 * incorrect counts in rare scenarios, but leaving
4027 		 * the RMID as busy creates RMID leaks if the
4028 		 * package never comes back.
4029 		 */
4030 		__check_limbo(d, true);
4031 		cancel_delayed_work(&d->cqm_limbo);
4032 	}
4033 
4034 	domain_destroy_mon_state(d);
4035 
4036 	mutex_unlock(&rdtgroup_mutex);
4037 }
4038 
domain_setup_mon_state(struct rdt_resource * r,struct rdt_mon_domain * d)4039 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4040 {
4041 	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4042 	size_t tsize;
4043 
4044 	if (is_llc_occupancy_enabled()) {
4045 		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4046 		if (!d->rmid_busy_llc)
4047 			return -ENOMEM;
4048 	}
4049 	if (is_mbm_total_enabled()) {
4050 		tsize = sizeof(*d->mbm_total);
4051 		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4052 		if (!d->mbm_total) {
4053 			bitmap_free(d->rmid_busy_llc);
4054 			return -ENOMEM;
4055 		}
4056 	}
4057 	if (is_mbm_local_enabled()) {
4058 		tsize = sizeof(*d->mbm_local);
4059 		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4060 		if (!d->mbm_local) {
4061 			bitmap_free(d->rmid_busy_llc);
4062 			kfree(d->mbm_total);
4063 			return -ENOMEM;
4064 		}
4065 	}
4066 
4067 	return 0;
4068 }
4069 
resctrl_online_ctrl_domain(struct rdt_resource * r,struct rdt_ctrl_domain * d)4070 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4071 {
4072 	int err = 0;
4073 
4074 	mutex_lock(&rdtgroup_mutex);
4075 
4076 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4077 		/* RDT_RESOURCE_MBA is never mon_capable */
4078 		err = mba_sc_domain_allocate(r, d);
4079 	}
4080 
4081 	mutex_unlock(&rdtgroup_mutex);
4082 
4083 	return err;
4084 }
4085 
resctrl_online_mon_domain(struct rdt_resource * r,struct rdt_mon_domain * d)4086 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4087 {
4088 	int err;
4089 
4090 	mutex_lock(&rdtgroup_mutex);
4091 
4092 	err = domain_setup_mon_state(r, d);
4093 	if (err)
4094 		goto out_unlock;
4095 
4096 	if (is_mbm_enabled()) {
4097 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4098 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4099 					   RESCTRL_PICK_ANY_CPU);
4100 	}
4101 
4102 	if (is_llc_occupancy_enabled())
4103 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4104 
4105 	/*
4106 	 * If the filesystem is not mounted then only the default resource group
4107 	 * exists. Creation of its directories is deferred until mount time
4108 	 * by rdt_get_tree() calling mkdir_mondata_all().
4109 	 * If resctrl is mounted, add per domain monitor data directories.
4110 	 */
4111 	if (resctrl_mounted && resctrl_arch_mon_capable())
4112 		mkdir_mondata_subdir_allrdtgrp(r, d);
4113 
4114 out_unlock:
4115 	mutex_unlock(&rdtgroup_mutex);
4116 
4117 	return err;
4118 }
4119 
resctrl_online_cpu(unsigned int cpu)4120 void resctrl_online_cpu(unsigned int cpu)
4121 {
4122 	mutex_lock(&rdtgroup_mutex);
4123 	/* The CPU is set in default rdtgroup after online. */
4124 	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4125 	mutex_unlock(&rdtgroup_mutex);
4126 }
4127 
clear_childcpus(struct rdtgroup * r,unsigned int cpu)4128 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4129 {
4130 	struct rdtgroup *cr;
4131 
4132 	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4133 		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4134 			break;
4135 	}
4136 }
4137 
resctrl_offline_cpu(unsigned int cpu)4138 void resctrl_offline_cpu(unsigned int cpu)
4139 {
4140 	struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4141 	struct rdt_mon_domain *d;
4142 	struct rdtgroup *rdtgrp;
4143 
4144 	mutex_lock(&rdtgroup_mutex);
4145 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4146 		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4147 			clear_childcpus(rdtgrp, cpu);
4148 			break;
4149 		}
4150 	}
4151 
4152 	if (!l3->mon_capable)
4153 		goto out_unlock;
4154 
4155 	d = get_mon_domain_from_cpu(cpu, l3);
4156 	if (d) {
4157 		if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4158 			cancel_delayed_work(&d->mbm_over);
4159 			mbm_setup_overflow_handler(d, 0, cpu);
4160 		}
4161 		if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4162 		    has_busy_rmid(d)) {
4163 			cancel_delayed_work(&d->cqm_limbo);
4164 			cqm_setup_limbo_handler(d, 0, cpu);
4165 		}
4166 	}
4167 
4168 out_unlock:
4169 	mutex_unlock(&rdtgroup_mutex);
4170 }
4171 
4172 /*
4173  * rdtgroup_init - rdtgroup initialization
4174  *
4175  * Setup resctrl file system including set up root, create mount point,
4176  * register rdtgroup filesystem, and initialize files under root directory.
4177  *
4178  * Return: 0 on success or -errno
4179  */
rdtgroup_init(void)4180 int __init rdtgroup_init(void)
4181 {
4182 	int ret = 0;
4183 
4184 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4185 		     sizeof(last_cmd_status_buf));
4186 
4187 	rdtgroup_setup_default();
4188 
4189 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4190 	if (ret)
4191 		return ret;
4192 
4193 	ret = register_filesystem(&rdt_fs_type);
4194 	if (ret)
4195 		goto cleanup_mountpoint;
4196 
4197 	/*
4198 	 * Adding the resctrl debugfs directory here may not be ideal since
4199 	 * it would let the resctrl debugfs directory appear on the debugfs
4200 	 * filesystem before the resctrl filesystem is mounted.
4201 	 * It may also be ok since that would enable debugging of RDT before
4202 	 * resctrl is mounted.
4203 	 * The reason why the debugfs directory is created here and not in
4204 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4205 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4206 	 * (the lockdep class of inode->i_rwsem). Other filesystem
4207 	 * interactions (eg. SyS_getdents) have the lock ordering:
4208 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4209 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4210 	 * is taken, thus creating dependency:
4211 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4212 	 * issues considering the other two lock dependencies.
4213 	 * By creating the debugfs directory here we avoid a dependency
4214 	 * that may cause deadlock (even though file operations cannot
4215 	 * occur until the filesystem is mounted, but I do not know how to
4216 	 * tell lockdep that).
4217 	 */
4218 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4219 
4220 	return 0;
4221 
4222 cleanup_mountpoint:
4223 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4224 
4225 	return ret;
4226 }
4227 
rdtgroup_exit(void)4228 void __exit rdtgroup_exit(void)
4229 {
4230 	debugfs_remove_recursive(debugfs_resctrl);
4231 	unregister_filesystem(&rdt_fs_type);
4232 	sysfs_remove_mount_point(fs_kobj, "resctrl");
4233 }
4234