xref: /linux/arch/x86/kvm/reverse_cpuid.h (revision 6e9128ff9d8113ef208e5ec82573b96ead100072)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Define a KVM-only feature flag.
11  *
12  * For features that are scattered by cpufeatures.h, __feature_translate() also
13  * needs to be updated to translate the kernel-defined feature into the
14  * KVM-defined feature.
15  *
16  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
17  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
18  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
19  * needed in this case.
20  */
21 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
22 
23 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
25 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
26 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
27 
28 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
29 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
30 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
31 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
32 #define X86_FEATURE_AVX_VNNI_INT16      KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
33 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
34 #define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
35 
36 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
37 #define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
38 #define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
39 #define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
40 #define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
41 #define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
42 #define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
43 
44 /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
45 #define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
46 #define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
47 #define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
48 
49 /* CPUID level 0x80000007 (EDX). */
50 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
51 
52 /* CPUID level 0x80000022 (EAX) */
53 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
54 
55 /* CPUID level 0x80000021 (ECX) */
56 #define KVM_X86_FEATURE_TSA_SQ_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 1)
57 #define KVM_X86_FEATURE_TSA_L1_NO	KVM_X86_FEATURE(CPUID_8000_0021_ECX, 2)
58 
59 struct cpuid_reg {
60 	u32 function;
61 	u32 index;
62 	int reg;
63 };
64 
65 static const struct cpuid_reg reverse_cpuid[] = {
66 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
67 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
68 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
69 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
70 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
71 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
72 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
73 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
74 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
75 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
76 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
77 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
78 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
79 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
80 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
81 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
82 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
83 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
84 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
85 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
86 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
87 	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
88 	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
89 	[CPUID_8000_0021_ECX] = {0x80000021, 0, CPUID_ECX},
90 };
91 
92 /*
93  * Reverse CPUID and its derivatives can only be used for hardware-defined
94  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
95  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
96  * is nonsensical as the bit number/mask is an arbitrary software-defined value
97  * and can't be used by KVM to query/control guest capabilities.  And obviously
98  * the leaf being queried must have an entry in the lookup table.
99  */
reverse_cpuid_check(unsigned int x86_leaf)100 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
101 {
102 	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
103 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
104 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
105 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
106 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
107 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
108 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
109 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
110 }
111 
112 /*
113  * Translate feature bits that are scattered in the kernel's cpufeatures word
114  * into KVM feature words that align with hardware's definitions.
115  */
__feature_translate(int x86_feature)116 static __always_inline u32 __feature_translate(int x86_feature)
117 {
118 #define KVM_X86_TRANSLATE_FEATURE(f)	\
119 	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
120 
121 	switch (x86_feature) {
122 	KVM_X86_TRANSLATE_FEATURE(SGX1);
123 	KVM_X86_TRANSLATE_FEATURE(SGX2);
124 	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
125 	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
126 	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
127 	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
128 	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
129 	KVM_X86_TRANSLATE_FEATURE(TSA_SQ_NO);
130 	KVM_X86_TRANSLATE_FEATURE(TSA_L1_NO);
131 	default:
132 		return x86_feature;
133 	}
134 }
135 
__feature_leaf(int x86_feature)136 static __always_inline u32 __feature_leaf(int x86_feature)
137 {
138 	u32 x86_leaf = __feature_translate(x86_feature) / 32;
139 
140 	reverse_cpuid_check(x86_leaf);
141 	return x86_leaf;
142 }
143 
144 /*
145  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
146  * the hardware defined bit number (stored in bits 4:0) and a software defined
147  * "word" (stored in bits 31:5).  The word is used to index into arrays of
148  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
149  */
__feature_bit(int x86_feature)150 static __always_inline u32 __feature_bit(int x86_feature)
151 {
152 	x86_feature = __feature_translate(x86_feature);
153 
154 	reverse_cpuid_check(x86_feature / 32);
155 	return 1 << (x86_feature & 31);
156 }
157 
158 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
159 
x86_feature_cpuid(unsigned int x86_feature)160 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
161 {
162 	unsigned int x86_leaf = __feature_leaf(x86_feature);
163 
164 	return reverse_cpuid[x86_leaf];
165 }
166 
__cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,u32 reg)167 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
168 						  u32 reg)
169 {
170 	switch (reg) {
171 	case CPUID_EAX:
172 		return &entry->eax;
173 	case CPUID_EBX:
174 		return &entry->ebx;
175 	case CPUID_ECX:
176 		return &entry->ecx;
177 	case CPUID_EDX:
178 		return &entry->edx;
179 	default:
180 		BUILD_BUG();
181 		return NULL;
182 	}
183 }
184 
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)185 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
186 						unsigned int x86_feature)
187 {
188 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
189 
190 	return __cpuid_entry_get_reg(entry, cpuid.reg);
191 }
192 
cpuid_entry_get(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)193 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
194 					   unsigned int x86_feature)
195 {
196 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
197 
198 	return *reg & __feature_bit(x86_feature);
199 }
200 
cpuid_entry_has(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)201 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
202 					    unsigned int x86_feature)
203 {
204 	return cpuid_entry_get(entry, x86_feature);
205 }
206 
cpuid_entry_clear(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)207 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
208 					      unsigned int x86_feature)
209 {
210 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
211 
212 	*reg &= ~__feature_bit(x86_feature);
213 }
214 
cpuid_entry_set(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)215 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
216 					    unsigned int x86_feature)
217 {
218 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
219 
220 	*reg |= __feature_bit(x86_feature);
221 }
222 
cpuid_entry_change(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool set)223 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
224 					       unsigned int x86_feature,
225 					       bool set)
226 {
227 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
228 
229 	/*
230 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
231 	 * compiler into using CMOV instead of Jcc when possible.
232 	 */
233 	if (set)
234 		*reg |= __feature_bit(x86_feature);
235 	else
236 		*reg &= ~__feature_bit(x86_feature);
237 }
238 
239 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
240