xref: /linux/drivers/cpufreq/cpufreq.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/string_choices.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)			 \
39 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 		if ((__active) == !policy_is_inactive(__policy))
41 
42 #define for_each_active_policy(__policy)		\
43 	for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)		\
45 	for_each_suitable_policy(__policy, false)
46 
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor)				\
50 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51 
52 static char default_governor[CPUFREQ_NAME_LEN];
53 
54 /*
55  * The "cpufreq driver" - the arch- or hardware-dependent low
56  * level driver of CPUFreq support, and its spinlock. This lock
57  * also protects the cpufreq_cpu_data array.
58  */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62 
63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)64 bool cpufreq_supports_freq_invariance(void)
65 {
66 	return static_branch_likely(&cpufreq_freq_invariance);
67 }
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
has_target(void)72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
has_target_index(void)77 bool has_target_index(void)
78 {
79 	return !!cpufreq_driver->target_index;
80 }
81 
82 /* internal prototypes */
83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84 static int cpufreq_init_governor(struct cpufreq_policy *policy);
85 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87 static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 			      struct cpufreq_governor *new_gov,
89 			      unsigned int new_pol);
90 static bool cpufreq_boost_supported(void);
91 static int cpufreq_boost_trigger_state(int state);
92 
93 /*
94  * Two notifier lists: the "policy" list is involved in the
95  * validation process for a new CPU frequency policy; the
96  * "transition" list for kernel code that needs to handle
97  * changes to devices when the CPU clock speed changes.
98  * The mutex locks both lists.
99  */
100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
cpufreq_disabled(void)104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
disable_cpufreq(void)108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113 
have_governor_per_policy(void)114 bool have_governor_per_policy(void)
115 {
116 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119 
120 static struct kobject *cpufreq_global_kobject;
121 
get_governor_parent_kobj(struct cpufreq_policy * policy)122 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
123 {
124 	if (have_governor_per_policy())
125 		return &policy->kobj;
126 	else
127 		return cpufreq_global_kobject;
128 }
129 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
130 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)131 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
132 {
133 	struct kernel_cpustat kcpustat;
134 	u64 cur_wall_time;
135 	u64 idle_time;
136 	u64 busy_time;
137 
138 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
139 
140 	kcpustat_cpu_fetch(&kcpustat, cpu);
141 
142 	busy_time = kcpustat.cpustat[CPUTIME_USER];
143 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
144 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
145 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
146 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
147 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
148 
149 	idle_time = cur_wall_time - busy_time;
150 	if (wall)
151 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
152 
153 	return div_u64(idle_time, NSEC_PER_USEC);
154 }
155 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)156 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
157 {
158 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
159 
160 	if (idle_time == -1ULL)
161 		return get_cpu_idle_time_jiffy(cpu, wall);
162 	else if (!io_busy)
163 		idle_time += get_cpu_iowait_time_us(cpu, wall);
164 
165 	return idle_time;
166 }
167 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
168 
169 /*
170  * This is a generic cpufreq init() routine which can be used by cpufreq
171  * drivers of SMP systems. It will do following:
172  * - validate & show freq table passed
173  * - set policies transition latency
174  * - policy->cpus with all possible CPUs
175  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)176 void cpufreq_generic_init(struct cpufreq_policy *policy,
177 		struct cpufreq_frequency_table *table,
178 		unsigned int transition_latency)
179 {
180 	policy->freq_table = table;
181 	policy->cpuinfo.transition_latency = transition_latency;
182 
183 	/*
184 	 * The driver only supports the SMP configuration where all processors
185 	 * share the clock and voltage and clock.
186 	 */
187 	cpumask_setall(policy->cpus);
188 }
189 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
190 
cpufreq_cpu_get_raw(unsigned int cpu)191 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
192 {
193 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
194 
195 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
198 
cpufreq_generic_get(unsigned int cpu)199 unsigned int cpufreq_generic_get(unsigned int cpu)
200 {
201 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
202 
203 	if (!policy || IS_ERR(policy->clk)) {
204 		pr_err("%s: No %s associated to cpu: %d\n",
205 		       __func__, policy ? "clk" : "policy", cpu);
206 		return 0;
207 	}
208 
209 	return clk_get_rate(policy->clk) / 1000;
210 }
211 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
212 
213 /**
214  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
215  * @cpu: CPU to find the policy for.
216  *
217  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
218  * the kobject reference counter of that policy.  Return a valid policy on
219  * success or NULL on failure.
220  *
221  * The policy returned by this function has to be released with the help of
222  * cpufreq_cpu_put() to balance its kobject reference counter properly.
223  */
cpufreq_cpu_get(unsigned int cpu)224 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
225 {
226 	struct cpufreq_policy *policy = NULL;
227 	unsigned long flags;
228 
229 	if (WARN_ON(cpu >= nr_cpu_ids))
230 		return NULL;
231 
232 	/* get the cpufreq driver */
233 	read_lock_irqsave(&cpufreq_driver_lock, flags);
234 
235 	if (cpufreq_driver) {
236 		/* get the CPU */
237 		policy = cpufreq_cpu_get_raw(cpu);
238 		if (policy)
239 			kobject_get(&policy->kobj);
240 	}
241 
242 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
243 
244 	return policy;
245 }
246 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
247 
248 /**
249  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
250  * @policy: cpufreq policy returned by cpufreq_cpu_get().
251  */
cpufreq_cpu_put(struct cpufreq_policy * policy)252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254 	kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257 
258 /**
259  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
260  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
261  */
cpufreq_cpu_release(struct cpufreq_policy * policy)262 void cpufreq_cpu_release(struct cpufreq_policy *policy)
263 {
264 	if (WARN_ON(!policy))
265 		return;
266 
267 	lockdep_assert_held(&policy->rwsem);
268 
269 	up_write(&policy->rwsem);
270 
271 	cpufreq_cpu_put(policy);
272 }
273 
274 /**
275  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
276  * @cpu: CPU to find the policy for.
277  *
278  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
279  * if the policy returned by it is not NULL, acquire its rwsem for writing.
280  * Return the policy if it is active or release it and return NULL otherwise.
281  *
282  * The policy returned by this function has to be released with the help of
283  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
284  * counter properly.
285  */
cpufreq_cpu_acquire(unsigned int cpu)286 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
287 {
288 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
289 
290 	if (!policy)
291 		return NULL;
292 
293 	down_write(&policy->rwsem);
294 
295 	if (policy_is_inactive(policy)) {
296 		cpufreq_cpu_release(policy);
297 		return NULL;
298 	}
299 
300 	return policy;
301 }
302 
303 /*********************************************************************
304  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
305  *********************************************************************/
306 
307 /**
308  * adjust_jiffies - Adjust the system "loops_per_jiffy".
309  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
310  * @ci: Frequency change information.
311  *
312  * This function alters the system "loops_per_jiffy" for the clock
313  * speed change. Note that loops_per_jiffy cannot be updated on SMP
314  * systems as each CPU might be scaled differently. So, use the arch
315  * per-CPU loops_per_jiffy value wherever possible.
316  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)317 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
318 {
319 #ifndef CONFIG_SMP
320 	static unsigned long l_p_j_ref;
321 	static unsigned int l_p_j_ref_freq;
322 
323 	if (ci->flags & CPUFREQ_CONST_LOOPS)
324 		return;
325 
326 	if (!l_p_j_ref_freq) {
327 		l_p_j_ref = loops_per_jiffy;
328 		l_p_j_ref_freq = ci->old;
329 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
330 			 l_p_j_ref, l_p_j_ref_freq);
331 	}
332 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
333 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
334 								ci->new);
335 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
336 			 loops_per_jiffy, ci->new);
337 	}
338 #endif
339 }
340 
341 /**
342  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
343  * @policy: cpufreq policy to enable fast frequency switching for.
344  * @freqs: contain details of the frequency update.
345  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
346  *
347  * This function calls the transition notifiers and adjust_jiffies().
348  *
349  * It is called twice on all CPU frequency changes that have external effects.
350  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)351 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
352 				      struct cpufreq_freqs *freqs,
353 				      unsigned int state)
354 {
355 	int cpu;
356 
357 	BUG_ON(irqs_disabled());
358 
359 	if (cpufreq_disabled())
360 		return;
361 
362 	freqs->policy = policy;
363 	freqs->flags = cpufreq_driver->flags;
364 	pr_debug("notification %u of frequency transition to %u kHz\n",
365 		 state, freqs->new);
366 
367 	switch (state) {
368 	case CPUFREQ_PRECHANGE:
369 		/*
370 		 * Detect if the driver reported a value as "old frequency"
371 		 * which is not equal to what the cpufreq core thinks is
372 		 * "old frequency".
373 		 */
374 		if (policy->cur && policy->cur != freqs->old) {
375 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
376 				 freqs->old, policy->cur);
377 			freqs->old = policy->cur;
378 		}
379 
380 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
381 					 CPUFREQ_PRECHANGE, freqs);
382 
383 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
384 		break;
385 
386 	case CPUFREQ_POSTCHANGE:
387 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
388 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
389 			 cpumask_pr_args(policy->cpus));
390 
391 		for_each_cpu(cpu, policy->cpus)
392 			trace_cpu_frequency(freqs->new, cpu);
393 
394 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
395 					 CPUFREQ_POSTCHANGE, freqs);
396 
397 		cpufreq_stats_record_transition(policy, freqs->new);
398 		policy->cur = freqs->new;
399 	}
400 }
401 
402 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)403 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, int transition_failed)
405 {
406 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
407 	if (!transition_failed)
408 		return;
409 
410 	swap(freqs->old, freqs->new);
411 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
412 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
413 }
414 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)415 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
416 		struct cpufreq_freqs *freqs)
417 {
418 
419 	/*
420 	 * Catch double invocations of _begin() which lead to self-deadlock.
421 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
422 	 * doesn't invoke _begin() on their behalf, and hence the chances of
423 	 * double invocations are very low. Moreover, there are scenarios
424 	 * where these checks can emit false-positive warnings in these
425 	 * drivers; so we avoid that by skipping them altogether.
426 	 */
427 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
428 				&& current == policy->transition_task);
429 
430 wait:
431 	wait_event(policy->transition_wait, !policy->transition_ongoing);
432 
433 	spin_lock(&policy->transition_lock);
434 
435 	if (unlikely(policy->transition_ongoing)) {
436 		spin_unlock(&policy->transition_lock);
437 		goto wait;
438 	}
439 
440 	policy->transition_ongoing = true;
441 	policy->transition_task = current;
442 
443 	spin_unlock(&policy->transition_lock);
444 
445 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
446 }
447 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
448 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)449 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
450 		struct cpufreq_freqs *freqs, int transition_failed)
451 {
452 	if (WARN_ON(!policy->transition_ongoing))
453 		return;
454 
455 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
456 
457 	arch_set_freq_scale(policy->related_cpus,
458 			    policy->cur,
459 			    arch_scale_freq_ref(policy->cpu));
460 
461 	spin_lock(&policy->transition_lock);
462 	policy->transition_ongoing = false;
463 	policy->transition_task = NULL;
464 	spin_unlock(&policy->transition_lock);
465 
466 	wake_up(&policy->transition_wait);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
469 
470 /*
471  * Fast frequency switching status count.  Positive means "enabled", negative
472  * means "disabled" and 0 means "not decided yet".
473  */
474 static int cpufreq_fast_switch_count;
475 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
476 
cpufreq_list_transition_notifiers(void)477 static void cpufreq_list_transition_notifiers(void)
478 {
479 	struct notifier_block *nb;
480 
481 	pr_info("Registered transition notifiers:\n");
482 
483 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
484 
485 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
486 		pr_info("%pS\n", nb->notifier_call);
487 
488 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
489 }
490 
491 /**
492  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
493  * @policy: cpufreq policy to enable fast frequency switching for.
494  *
495  * Try to enable fast frequency switching for @policy.
496  *
497  * The attempt will fail if there is at least one transition notifier registered
498  * at this point, as fast frequency switching is quite fundamentally at odds
499  * with transition notifiers.  Thus if successful, it will make registration of
500  * transition notifiers fail going forward.
501  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)502 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
503 {
504 	lockdep_assert_held(&policy->rwsem);
505 
506 	if (!policy->fast_switch_possible)
507 		return;
508 
509 	mutex_lock(&cpufreq_fast_switch_lock);
510 	if (cpufreq_fast_switch_count >= 0) {
511 		cpufreq_fast_switch_count++;
512 		policy->fast_switch_enabled = true;
513 	} else {
514 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
515 			policy->cpu);
516 		cpufreq_list_transition_notifiers();
517 	}
518 	mutex_unlock(&cpufreq_fast_switch_lock);
519 }
520 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
521 
522 /**
523  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
524  * @policy: cpufreq policy to disable fast frequency switching for.
525  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)526 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
527 {
528 	mutex_lock(&cpufreq_fast_switch_lock);
529 	if (policy->fast_switch_enabled) {
530 		policy->fast_switch_enabled = false;
531 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
532 			cpufreq_fast_switch_count--;
533 	}
534 	mutex_unlock(&cpufreq_fast_switch_lock);
535 }
536 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
537 
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)538 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
539 		unsigned int target_freq, unsigned int relation)
540 {
541 	unsigned int idx;
542 
543 	target_freq = clamp_val(target_freq, policy->min, policy->max);
544 
545 	if (!policy->freq_table)
546 		return target_freq;
547 
548 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
549 	policy->cached_resolved_idx = idx;
550 	policy->cached_target_freq = target_freq;
551 	return policy->freq_table[idx].frequency;
552 }
553 
554 /**
555  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
556  * one.
557  * @policy: associated policy to interrogate
558  * @target_freq: target frequency to resolve.
559  *
560  * The target to driver frequency mapping is cached in the policy.
561  *
562  * Return: Lowest driver-supported frequency greater than or equal to the
563  * given target_freq, subject to policy (min/max) and driver limitations.
564  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)565 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
566 					 unsigned int target_freq)
567 {
568 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
569 }
570 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
571 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)572 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
573 {
574 	unsigned int latency;
575 
576 	if (policy->transition_delay_us)
577 		return policy->transition_delay_us;
578 
579 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
580 	if (latency)
581 		/* Give a 50% breathing room between updates */
582 		return latency + (latency >> 1);
583 
584 	return USEC_PER_MSEC;
585 }
586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
587 
588 /*********************************************************************
589  *                          SYSFS INTERFACE                          *
590  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)591 static ssize_t show_boost(struct kobject *kobj,
592 			  struct kobj_attribute *attr, char *buf)
593 {
594 	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
595 }
596 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
598 			   const char *buf, size_t count)
599 {
600 	bool enable;
601 
602 	if (kstrtobool(buf, &enable))
603 		return -EINVAL;
604 
605 	if (cpufreq_boost_trigger_state(enable)) {
606 		pr_err("%s: Cannot %s BOOST!\n",
607 		       __func__, str_enable_disable(enable));
608 		return -EINVAL;
609 	}
610 
611 	pr_debug("%s: cpufreq BOOST %s\n",
612 		 __func__, str_enabled_disabled(enable));
613 
614 	return count;
615 }
616 define_one_global_rw(boost);
617 
show_local_boost(struct cpufreq_policy * policy,char * buf)618 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
619 {
620 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
621 }
622 
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)623 static ssize_t store_local_boost(struct cpufreq_policy *policy,
624 				 const char *buf, size_t count)
625 {
626 	int ret;
627 	bool enable;
628 
629 	if (kstrtobool(buf, &enable))
630 		return -EINVAL;
631 
632 	if (!cpufreq_driver->boost_enabled)
633 		return -EINVAL;
634 
635 	if (!policy->boost_supported)
636 		return -EINVAL;
637 
638 	if (policy->boost_enabled == enable)
639 		return count;
640 
641 	policy->boost_enabled = enable;
642 
643 	cpus_read_lock();
644 	ret = cpufreq_driver->set_boost(policy, enable);
645 	cpus_read_unlock();
646 
647 	if (ret) {
648 		policy->boost_enabled = !policy->boost_enabled;
649 		return ret;
650 	}
651 
652 	return count;
653 }
654 
655 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
656 
find_governor(const char * str_governor)657 static struct cpufreq_governor *find_governor(const char *str_governor)
658 {
659 	struct cpufreq_governor *t;
660 
661 	for_each_governor(t)
662 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
663 			return t;
664 
665 	return NULL;
666 }
667 
get_governor(const char * str_governor)668 static struct cpufreq_governor *get_governor(const char *str_governor)
669 {
670 	struct cpufreq_governor *t;
671 
672 	mutex_lock(&cpufreq_governor_mutex);
673 	t = find_governor(str_governor);
674 	if (!t)
675 		goto unlock;
676 
677 	if (!try_module_get(t->owner))
678 		t = NULL;
679 
680 unlock:
681 	mutex_unlock(&cpufreq_governor_mutex);
682 
683 	return t;
684 }
685 
cpufreq_parse_policy(char * str_governor)686 static unsigned int cpufreq_parse_policy(char *str_governor)
687 {
688 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
689 		return CPUFREQ_POLICY_PERFORMANCE;
690 
691 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
692 		return CPUFREQ_POLICY_POWERSAVE;
693 
694 	return CPUFREQ_POLICY_UNKNOWN;
695 }
696 
697 /**
698  * cpufreq_parse_governor - parse a governor string only for has_target()
699  * @str_governor: Governor name.
700  */
cpufreq_parse_governor(char * str_governor)701 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
702 {
703 	struct cpufreq_governor *t;
704 
705 	t = get_governor(str_governor);
706 	if (t)
707 		return t;
708 
709 	if (request_module("cpufreq_%s", str_governor))
710 		return NULL;
711 
712 	return get_governor(str_governor);
713 }
714 
715 /*
716  * cpufreq_per_cpu_attr_read() / show_##file_name() -
717  * print out cpufreq information
718  *
719  * Write out information from cpufreq_driver->policy[cpu]; object must be
720  * "unsigned int".
721  */
722 
723 #define show_one(file_name, object)			\
724 static ssize_t show_##file_name				\
725 (struct cpufreq_policy *policy, char *buf)		\
726 {							\
727 	return sysfs_emit(buf, "%u\n", policy->object);	\
728 }
729 
730 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
731 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
732 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
733 show_one(scaling_min_freq, min);
734 show_one(scaling_max_freq, max);
735 
arch_freq_get_on_cpu(int cpu)736 __weak int arch_freq_get_on_cpu(int cpu)
737 {
738 	return -EOPNOTSUPP;
739 }
740 
cpufreq_avg_freq_supported(struct cpufreq_policy * policy)741 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
742 {
743 	return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
744 }
745 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)746 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
747 {
748 	ssize_t ret;
749 	int freq;
750 
751 	freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
752 		? arch_freq_get_on_cpu(policy->cpu)
753 		: 0;
754 
755 	if (freq > 0)
756 		ret = sysfs_emit(buf, "%u\n", freq);
757 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
758 		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
759 	else
760 		ret = sysfs_emit(buf, "%u\n", policy->cur);
761 	return ret;
762 }
763 
764 /*
765  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
766  */
767 #define store_one(file_name, object)			\
768 static ssize_t store_##file_name					\
769 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
770 {									\
771 	unsigned long val;						\
772 	int ret;							\
773 									\
774 	ret = kstrtoul(buf, 0, &val);					\
775 	if (ret)							\
776 		return ret;						\
777 									\
778 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
779 	return ret >= 0 ? count : ret;					\
780 }
781 
782 store_one(scaling_min_freq, min);
783 store_one(scaling_max_freq, max);
784 
785 /*
786  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
787  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)788 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
789 					char *buf)
790 {
791 	unsigned int cur_freq = __cpufreq_get(policy);
792 
793 	if (cur_freq)
794 		return sysfs_emit(buf, "%u\n", cur_freq);
795 
796 	return sysfs_emit(buf, "<unknown>\n");
797 }
798 
799 /*
800  * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
801  */
show_cpuinfo_avg_freq(struct cpufreq_policy * policy,char * buf)802 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
803 				     char *buf)
804 {
805 	int avg_freq = arch_freq_get_on_cpu(policy->cpu);
806 
807 	if (avg_freq > 0)
808 		return sysfs_emit(buf, "%u\n", avg_freq);
809 	return avg_freq != 0 ? avg_freq : -EINVAL;
810 }
811 
812 /*
813  * show_scaling_governor - show the current policy for the specified CPU
814  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)815 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
816 {
817 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
818 		return sysfs_emit(buf, "powersave\n");
819 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
820 		return sysfs_emit(buf, "performance\n");
821 	else if (policy->governor)
822 		return sysfs_emit(buf, "%s\n", policy->governor->name);
823 	return -EINVAL;
824 }
825 
826 /*
827  * store_scaling_governor - store policy for the specified CPU
828  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)829 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
830 					const char *buf, size_t count)
831 {
832 	char str_governor[16];
833 	int ret;
834 
835 	ret = sscanf(buf, "%15s", str_governor);
836 	if (ret != 1)
837 		return -EINVAL;
838 
839 	if (cpufreq_driver->setpolicy) {
840 		unsigned int new_pol;
841 
842 		new_pol = cpufreq_parse_policy(str_governor);
843 		if (!new_pol)
844 			return -EINVAL;
845 
846 		ret = cpufreq_set_policy(policy, NULL, new_pol);
847 	} else {
848 		struct cpufreq_governor *new_gov;
849 
850 		new_gov = cpufreq_parse_governor(str_governor);
851 		if (!new_gov)
852 			return -EINVAL;
853 
854 		ret = cpufreq_set_policy(policy, new_gov,
855 					 CPUFREQ_POLICY_UNKNOWN);
856 
857 		module_put(new_gov->owner);
858 	}
859 
860 	return ret ? ret : count;
861 }
862 
863 /*
864  * show_scaling_driver - show the cpufreq driver currently loaded
865  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)866 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
867 {
868 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
869 }
870 
871 /*
872  * show_scaling_available_governors - show the available CPUfreq governors
873  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)874 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
875 						char *buf)
876 {
877 	ssize_t i = 0;
878 	struct cpufreq_governor *t;
879 
880 	if (!has_target()) {
881 		i += sysfs_emit(buf, "performance powersave");
882 		goto out;
883 	}
884 
885 	mutex_lock(&cpufreq_governor_mutex);
886 	for_each_governor(t) {
887 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
888 		    - (CPUFREQ_NAME_LEN + 2)))
889 			break;
890 		i += sysfs_emit_at(buf, i, "%s ", t->name);
891 	}
892 	mutex_unlock(&cpufreq_governor_mutex);
893 out:
894 	i += sysfs_emit_at(buf, i, "\n");
895 	return i;
896 }
897 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)898 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
899 {
900 	ssize_t i = 0;
901 	unsigned int cpu;
902 
903 	for_each_cpu(cpu, mask) {
904 		i += sysfs_emit_at(buf, i, "%u ", cpu);
905 		if (i >= (PAGE_SIZE - 5))
906 			break;
907 	}
908 
909 	/* Remove the extra space at the end */
910 	i--;
911 
912 	i += sysfs_emit_at(buf, i, "\n");
913 	return i;
914 }
915 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
916 
917 /*
918  * show_related_cpus - show the CPUs affected by each transition even if
919  * hw coordination is in use
920  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)921 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
922 {
923 	return cpufreq_show_cpus(policy->related_cpus, buf);
924 }
925 
926 /*
927  * show_affected_cpus - show the CPUs affected by each transition
928  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)929 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
930 {
931 	return cpufreq_show_cpus(policy->cpus, buf);
932 }
933 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)934 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
935 					const char *buf, size_t count)
936 {
937 	unsigned int freq = 0;
938 	unsigned int ret;
939 
940 	if (!policy->governor || !policy->governor->store_setspeed)
941 		return -EINVAL;
942 
943 	ret = sscanf(buf, "%u", &freq);
944 	if (ret != 1)
945 		return -EINVAL;
946 
947 	policy->governor->store_setspeed(policy, freq);
948 
949 	return count;
950 }
951 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)952 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
953 {
954 	if (!policy->governor || !policy->governor->show_setspeed)
955 		return sysfs_emit(buf, "<unsupported>\n");
956 
957 	return policy->governor->show_setspeed(policy, buf);
958 }
959 
960 /*
961  * show_bios_limit - show the current cpufreq HW/BIOS limitation
962  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)963 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
964 {
965 	unsigned int limit;
966 	int ret;
967 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
968 	if (!ret)
969 		return sysfs_emit(buf, "%u\n", limit);
970 	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
971 }
972 
973 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
974 cpufreq_freq_attr_ro(cpuinfo_avg_freq);
975 cpufreq_freq_attr_ro(cpuinfo_min_freq);
976 cpufreq_freq_attr_ro(cpuinfo_max_freq);
977 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
978 cpufreq_freq_attr_ro(scaling_available_governors);
979 cpufreq_freq_attr_ro(scaling_driver);
980 cpufreq_freq_attr_ro(scaling_cur_freq);
981 cpufreq_freq_attr_ro(bios_limit);
982 cpufreq_freq_attr_ro(related_cpus);
983 cpufreq_freq_attr_ro(affected_cpus);
984 cpufreq_freq_attr_rw(scaling_min_freq);
985 cpufreq_freq_attr_rw(scaling_max_freq);
986 cpufreq_freq_attr_rw(scaling_governor);
987 cpufreq_freq_attr_rw(scaling_setspeed);
988 
989 static struct attribute *cpufreq_attrs[] = {
990 	&cpuinfo_min_freq.attr,
991 	&cpuinfo_max_freq.attr,
992 	&cpuinfo_transition_latency.attr,
993 	&scaling_min_freq.attr,
994 	&scaling_max_freq.attr,
995 	&affected_cpus.attr,
996 	&related_cpus.attr,
997 	&scaling_governor.attr,
998 	&scaling_driver.attr,
999 	&scaling_available_governors.attr,
1000 	&scaling_setspeed.attr,
1001 	NULL
1002 };
1003 ATTRIBUTE_GROUPS(cpufreq);
1004 
1005 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1006 #define to_attr(a) container_of(a, struct freq_attr, attr)
1007 
show(struct kobject * kobj,struct attribute * attr,char * buf)1008 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1009 {
1010 	struct cpufreq_policy *policy = to_policy(kobj);
1011 	struct freq_attr *fattr = to_attr(attr);
1012 	ssize_t ret = -EBUSY;
1013 
1014 	if (!fattr->show)
1015 		return -EIO;
1016 
1017 	down_read(&policy->rwsem);
1018 	if (likely(!policy_is_inactive(policy)))
1019 		ret = fattr->show(policy, buf);
1020 	up_read(&policy->rwsem);
1021 
1022 	return ret;
1023 }
1024 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1025 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1026 		     const char *buf, size_t count)
1027 {
1028 	struct cpufreq_policy *policy = to_policy(kobj);
1029 	struct freq_attr *fattr = to_attr(attr);
1030 	ssize_t ret = -EBUSY;
1031 
1032 	if (!fattr->store)
1033 		return -EIO;
1034 
1035 	down_write(&policy->rwsem);
1036 	if (likely(!policy_is_inactive(policy)))
1037 		ret = fattr->store(policy, buf, count);
1038 	up_write(&policy->rwsem);
1039 
1040 	return ret;
1041 }
1042 
cpufreq_sysfs_release(struct kobject * kobj)1043 static void cpufreq_sysfs_release(struct kobject *kobj)
1044 {
1045 	struct cpufreq_policy *policy = to_policy(kobj);
1046 	pr_debug("last reference is dropped\n");
1047 	complete(&policy->kobj_unregister);
1048 }
1049 
1050 static const struct sysfs_ops sysfs_ops = {
1051 	.show	= show,
1052 	.store	= store,
1053 };
1054 
1055 static const struct kobj_type ktype_cpufreq = {
1056 	.sysfs_ops	= &sysfs_ops,
1057 	.default_groups	= cpufreq_groups,
1058 	.release	= cpufreq_sysfs_release,
1059 };
1060 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1061 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1062 				struct device *dev)
1063 {
1064 	if (unlikely(!dev))
1065 		return;
1066 
1067 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1068 		return;
1069 
1070 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1071 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1072 		dev_err(dev, "cpufreq symlink creation failed\n");
1073 }
1074 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1075 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1076 				   struct device *dev)
1077 {
1078 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1079 	sysfs_remove_link(&dev->kobj, "cpufreq");
1080 	cpumask_clear_cpu(cpu, policy->real_cpus);
1081 }
1082 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1083 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1084 {
1085 	struct freq_attr **drv_attr;
1086 	int ret = 0;
1087 
1088 	/* Attributes that need freq_table */
1089 	if (policy->freq_table) {
1090 		ret = sysfs_create_file(&policy->kobj,
1091 				&cpufreq_freq_attr_scaling_available_freqs.attr);
1092 		if (ret)
1093 			return ret;
1094 
1095 		if (cpufreq_boost_supported()) {
1096 			ret = sysfs_create_file(&policy->kobj,
1097 				&cpufreq_freq_attr_scaling_boost_freqs.attr);
1098 			if (ret)
1099 				return ret;
1100 		}
1101 	}
1102 
1103 	/* set up files for this cpu device */
1104 	drv_attr = cpufreq_driver->attr;
1105 	while (drv_attr && *drv_attr) {
1106 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1107 		if (ret)
1108 			return ret;
1109 		drv_attr++;
1110 	}
1111 	if (cpufreq_driver->get) {
1112 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	if (cpufreq_avg_freq_supported(policy)) {
1118 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1119 		if (ret)
1120 			return ret;
1121 	}
1122 
1123 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1124 	if (ret)
1125 		return ret;
1126 
1127 	if (cpufreq_driver->bios_limit) {
1128 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	if (cpufreq_boost_supported()) {
1134 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
cpufreq_init_policy(struct cpufreq_policy * policy)1142 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1143 {
1144 	struct cpufreq_governor *gov = NULL;
1145 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1146 	int ret;
1147 
1148 	if (has_target()) {
1149 		/* Update policy governor to the one used before hotplug. */
1150 		gov = get_governor(policy->last_governor);
1151 		if (gov) {
1152 			pr_debug("Restoring governor %s for cpu %d\n",
1153 				 gov->name, policy->cpu);
1154 		} else {
1155 			gov = get_governor(default_governor);
1156 		}
1157 
1158 		if (!gov) {
1159 			gov = cpufreq_default_governor();
1160 			__module_get(gov->owner);
1161 		}
1162 
1163 	} else {
1164 
1165 		/* Use the default policy if there is no last_policy. */
1166 		if (policy->last_policy) {
1167 			pol = policy->last_policy;
1168 		} else {
1169 			pol = cpufreq_parse_policy(default_governor);
1170 			/*
1171 			 * In case the default governor is neither "performance"
1172 			 * nor "powersave", fall back to the initial policy
1173 			 * value set by the driver.
1174 			 */
1175 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1176 				pol = policy->policy;
1177 		}
1178 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1179 		    pol != CPUFREQ_POLICY_POWERSAVE)
1180 			return -ENODATA;
1181 	}
1182 
1183 	ret = cpufreq_set_policy(policy, gov, pol);
1184 	if (gov)
1185 		module_put(gov->owner);
1186 
1187 	return ret;
1188 }
1189 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1190 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1191 {
1192 	int ret = 0;
1193 
1194 	/* Has this CPU been taken care of already? */
1195 	if (cpumask_test_cpu(cpu, policy->cpus))
1196 		return 0;
1197 
1198 	down_write(&policy->rwsem);
1199 	if (has_target())
1200 		cpufreq_stop_governor(policy);
1201 
1202 	cpumask_set_cpu(cpu, policy->cpus);
1203 
1204 	if (has_target()) {
1205 		ret = cpufreq_start_governor(policy);
1206 		if (ret)
1207 			pr_err("%s: Failed to start governor\n", __func__);
1208 	}
1209 	up_write(&policy->rwsem);
1210 	return ret;
1211 }
1212 
refresh_frequency_limits(struct cpufreq_policy * policy)1213 void refresh_frequency_limits(struct cpufreq_policy *policy)
1214 {
1215 	if (!policy_is_inactive(policy)) {
1216 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1217 
1218 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1219 	}
1220 }
1221 EXPORT_SYMBOL(refresh_frequency_limits);
1222 
handle_update(struct work_struct * work)1223 static void handle_update(struct work_struct *work)
1224 {
1225 	struct cpufreq_policy *policy =
1226 		container_of(work, struct cpufreq_policy, update);
1227 
1228 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1229 	down_write(&policy->rwsem);
1230 	refresh_frequency_limits(policy);
1231 	up_write(&policy->rwsem);
1232 }
1233 
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1234 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1235 				void *data)
1236 {
1237 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1238 
1239 	schedule_work(&policy->update);
1240 	return 0;
1241 }
1242 
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1243 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1244 				void *data)
1245 {
1246 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1247 
1248 	schedule_work(&policy->update);
1249 	return 0;
1250 }
1251 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1252 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1253 {
1254 	struct kobject *kobj;
1255 	struct completion *cmp;
1256 
1257 	down_write(&policy->rwsem);
1258 	cpufreq_stats_free_table(policy);
1259 	kobj = &policy->kobj;
1260 	cmp = &policy->kobj_unregister;
1261 	up_write(&policy->rwsem);
1262 	kobject_put(kobj);
1263 
1264 	/*
1265 	 * We need to make sure that the underlying kobj is
1266 	 * actually not referenced anymore by anybody before we
1267 	 * proceed with unloading.
1268 	 */
1269 	pr_debug("waiting for dropping of refcount\n");
1270 	wait_for_completion(cmp);
1271 	pr_debug("wait complete\n");
1272 }
1273 
cpufreq_policy_alloc(unsigned int cpu)1274 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1275 {
1276 	struct cpufreq_policy *policy;
1277 	struct device *dev = get_cpu_device(cpu);
1278 	int ret;
1279 
1280 	if (!dev)
1281 		return NULL;
1282 
1283 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1284 	if (!policy)
1285 		return NULL;
1286 
1287 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1288 		goto err_free_policy;
1289 
1290 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1291 		goto err_free_cpumask;
1292 
1293 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1294 		goto err_free_rcpumask;
1295 
1296 	init_completion(&policy->kobj_unregister);
1297 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1298 				   cpufreq_global_kobject, "policy%u", cpu);
1299 	if (ret) {
1300 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1301 		/*
1302 		 * The entire policy object will be freed below, but the extra
1303 		 * memory allocated for the kobject name needs to be freed by
1304 		 * releasing the kobject.
1305 		 */
1306 		kobject_put(&policy->kobj);
1307 		goto err_free_real_cpus;
1308 	}
1309 
1310 	freq_constraints_init(&policy->constraints);
1311 
1312 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1313 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1314 
1315 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1316 				    &policy->nb_min);
1317 	if (ret) {
1318 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1319 			ret, cpu);
1320 		goto err_kobj_remove;
1321 	}
1322 
1323 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1324 				    &policy->nb_max);
1325 	if (ret) {
1326 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1327 			ret, cpu);
1328 		goto err_min_qos_notifier;
1329 	}
1330 
1331 	INIT_LIST_HEAD(&policy->policy_list);
1332 	init_rwsem(&policy->rwsem);
1333 	spin_lock_init(&policy->transition_lock);
1334 	init_waitqueue_head(&policy->transition_wait);
1335 	INIT_WORK(&policy->update, handle_update);
1336 
1337 	policy->cpu = cpu;
1338 	return policy;
1339 
1340 err_min_qos_notifier:
1341 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342 				 &policy->nb_min);
1343 err_kobj_remove:
1344 	cpufreq_policy_put_kobj(policy);
1345 err_free_real_cpus:
1346 	free_cpumask_var(policy->real_cpus);
1347 err_free_rcpumask:
1348 	free_cpumask_var(policy->related_cpus);
1349 err_free_cpumask:
1350 	free_cpumask_var(policy->cpus);
1351 err_free_policy:
1352 	kfree(policy);
1353 
1354 	return NULL;
1355 }
1356 
cpufreq_policy_free(struct cpufreq_policy * policy)1357 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1358 {
1359 	unsigned long flags;
1360 	int cpu;
1361 
1362 	/*
1363 	 * The callers must ensure the policy is inactive by now, to avoid any
1364 	 * races with show()/store() callbacks.
1365 	 */
1366 	if (unlikely(!policy_is_inactive(policy)))
1367 		pr_warn("%s: Freeing active policy\n", __func__);
1368 
1369 	/* Remove policy from list */
1370 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1371 	list_del(&policy->policy_list);
1372 
1373 	for_each_cpu(cpu, policy->related_cpus)
1374 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1375 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1376 
1377 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1378 				 &policy->nb_max);
1379 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1380 				 &policy->nb_min);
1381 
1382 	/* Cancel any pending policy->update work before freeing the policy. */
1383 	cancel_work_sync(&policy->update);
1384 
1385 	if (policy->max_freq_req) {
1386 		/*
1387 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1388 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1389 		 * sent after adding max_freq_req earlier.
1390 		 */
1391 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1392 					     CPUFREQ_REMOVE_POLICY, policy);
1393 		freq_qos_remove_request(policy->max_freq_req);
1394 	}
1395 
1396 	freq_qos_remove_request(policy->min_freq_req);
1397 	kfree(policy->min_freq_req);
1398 
1399 	cpufreq_policy_put_kobj(policy);
1400 	free_cpumask_var(policy->real_cpus);
1401 	free_cpumask_var(policy->related_cpus);
1402 	free_cpumask_var(policy->cpus);
1403 	kfree(policy);
1404 }
1405 
cpufreq_online(unsigned int cpu)1406 static int cpufreq_online(unsigned int cpu)
1407 {
1408 	struct cpufreq_policy *policy;
1409 	bool new_policy;
1410 	unsigned long flags;
1411 	unsigned int j;
1412 	int ret;
1413 
1414 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1415 
1416 	/* Check if this CPU already has a policy to manage it */
1417 	policy = per_cpu(cpufreq_cpu_data, cpu);
1418 	if (policy) {
1419 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1420 		if (!policy_is_inactive(policy))
1421 			return cpufreq_add_policy_cpu(policy, cpu);
1422 
1423 		/* This is the only online CPU for the policy.  Start over. */
1424 		new_policy = false;
1425 		down_write(&policy->rwsem);
1426 		policy->cpu = cpu;
1427 		policy->governor = NULL;
1428 	} else {
1429 		new_policy = true;
1430 		policy = cpufreq_policy_alloc(cpu);
1431 		if (!policy)
1432 			return -ENOMEM;
1433 		down_write(&policy->rwsem);
1434 	}
1435 
1436 	if (!new_policy && cpufreq_driver->online) {
1437 		/* Recover policy->cpus using related_cpus */
1438 		cpumask_copy(policy->cpus, policy->related_cpus);
1439 
1440 		ret = cpufreq_driver->online(policy);
1441 		if (ret) {
1442 			pr_debug("%s: %d: initialization failed\n", __func__,
1443 				 __LINE__);
1444 			goto out_exit_policy;
1445 		}
1446 	} else {
1447 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1448 
1449 		/*
1450 		 * Call driver. From then on the cpufreq must be able
1451 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1452 		 */
1453 		ret = cpufreq_driver->init(policy);
1454 		if (ret) {
1455 			pr_debug("%s: %d: initialization failed\n", __func__,
1456 				 __LINE__);
1457 			goto out_free_policy;
1458 		}
1459 
1460 		/*
1461 		 * The initialization has succeeded and the policy is online.
1462 		 * If there is a problem with its frequency table, take it
1463 		 * offline and drop it.
1464 		 */
1465 		ret = cpufreq_table_validate_and_sort(policy);
1466 		if (ret)
1467 			goto out_offline_policy;
1468 
1469 		/* related_cpus should at least include policy->cpus. */
1470 		cpumask_copy(policy->related_cpus, policy->cpus);
1471 	}
1472 
1473 	/*
1474 	 * affected cpus must always be the one, which are online. We aren't
1475 	 * managing offline cpus here.
1476 	 */
1477 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1478 
1479 	if (new_policy) {
1480 		for_each_cpu(j, policy->related_cpus) {
1481 			per_cpu(cpufreq_cpu_data, j) = policy;
1482 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1483 		}
1484 
1485 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1486 					       GFP_KERNEL);
1487 		if (!policy->min_freq_req) {
1488 			ret = -ENOMEM;
1489 			goto out_destroy_policy;
1490 		}
1491 
1492 		ret = freq_qos_add_request(&policy->constraints,
1493 					   policy->min_freq_req, FREQ_QOS_MIN,
1494 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1495 		if (ret < 0) {
1496 			/*
1497 			 * So we don't call freq_qos_remove_request() for an
1498 			 * uninitialized request.
1499 			 */
1500 			kfree(policy->min_freq_req);
1501 			policy->min_freq_req = NULL;
1502 			goto out_destroy_policy;
1503 		}
1504 
1505 		/*
1506 		 * This must be initialized right here to avoid calling
1507 		 * freq_qos_remove_request() on uninitialized request in case
1508 		 * of errors.
1509 		 */
1510 		policy->max_freq_req = policy->min_freq_req + 1;
1511 
1512 		ret = freq_qos_add_request(&policy->constraints,
1513 					   policy->max_freq_req, FREQ_QOS_MAX,
1514 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1515 		if (ret < 0) {
1516 			policy->max_freq_req = NULL;
1517 			goto out_destroy_policy;
1518 		}
1519 
1520 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1521 				CPUFREQ_CREATE_POLICY, policy);
1522 	} else {
1523 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1524 		if (ret < 0)
1525 			goto out_destroy_policy;
1526 	}
1527 
1528 	if (cpufreq_driver->get && has_target()) {
1529 		policy->cur = cpufreq_driver->get(policy->cpu);
1530 		if (!policy->cur) {
1531 			ret = -EIO;
1532 			pr_err("%s: ->get() failed\n", __func__);
1533 			goto out_destroy_policy;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Sometimes boot loaders set CPU frequency to a value outside of
1539 	 * frequency table present with cpufreq core. In such cases CPU might be
1540 	 * unstable if it has to run on that frequency for long duration of time
1541 	 * and so its better to set it to a frequency which is specified in
1542 	 * freq-table. This also makes cpufreq stats inconsistent as
1543 	 * cpufreq-stats would fail to register because current frequency of CPU
1544 	 * isn't found in freq-table.
1545 	 *
1546 	 * Because we don't want this change to effect boot process badly, we go
1547 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1548 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1549 	 * is initialized to zero).
1550 	 *
1551 	 * We are passing target-freq as "policy->cur - 1" otherwise
1552 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1553 	 * equal to target-freq.
1554 	 */
1555 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1556 	    && has_target()) {
1557 		unsigned int old_freq = policy->cur;
1558 
1559 		/* Are we running at unknown frequency ? */
1560 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1561 		if (ret == -EINVAL) {
1562 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1563 						      CPUFREQ_RELATION_L);
1564 
1565 			/*
1566 			 * Reaching here after boot in a few seconds may not
1567 			 * mean that system will remain stable at "unknown"
1568 			 * frequency for longer duration. Hence, a BUG_ON().
1569 			 */
1570 			BUG_ON(ret);
1571 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1572 				__func__, policy->cpu, old_freq, policy->cur);
1573 		}
1574 	}
1575 
1576 	if (new_policy) {
1577 		ret = cpufreq_add_dev_interface(policy);
1578 		if (ret)
1579 			goto out_destroy_policy;
1580 
1581 		cpufreq_stats_create_table(policy);
1582 
1583 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1584 		list_add(&policy->policy_list, &cpufreq_policy_list);
1585 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1586 
1587 		/*
1588 		 * Register with the energy model before
1589 		 * em_rebuild_sched_domains() is called, which will result
1590 		 * in rebuilding of the sched domains, which should only be done
1591 		 * once the energy model is properly initialized for the policy
1592 		 * first.
1593 		 *
1594 		 * Also, this should be called before the policy is registered
1595 		 * with cooling framework.
1596 		 */
1597 		if (cpufreq_driver->register_em)
1598 			cpufreq_driver->register_em(policy);
1599 	}
1600 
1601 	ret = cpufreq_init_policy(policy);
1602 	if (ret) {
1603 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1604 		       __func__, cpu, ret);
1605 		goto out_destroy_policy;
1606 	}
1607 
1608 	up_write(&policy->rwsem);
1609 
1610 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1611 
1612 	/* Callback for handling stuff after policy is ready */
1613 	if (cpufreq_driver->ready)
1614 		cpufreq_driver->ready(policy);
1615 
1616 	/* Register cpufreq cooling only for a new policy */
1617 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1618 		policy->cdev = of_cpufreq_cooling_register(policy);
1619 
1620 	/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1621 	if (cpufreq_driver->set_boost && policy->boost_supported &&
1622 	    policy->boost_enabled != cpufreq_boost_enabled()) {
1623 		policy->boost_enabled = cpufreq_boost_enabled();
1624 		ret = cpufreq_driver->set_boost(policy, policy->boost_enabled);
1625 		if (ret) {
1626 			/* If the set_boost fails, the online operation is not affected */
1627 			pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1628 				str_enable_disable(policy->boost_enabled));
1629 			policy->boost_enabled = !policy->boost_enabled;
1630 		}
1631 	}
1632 
1633 	pr_debug("initialization complete\n");
1634 
1635 	return 0;
1636 
1637 out_destroy_policy:
1638 	for_each_cpu(j, policy->real_cpus)
1639 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1640 
1641 out_offline_policy:
1642 	if (cpufreq_driver->offline)
1643 		cpufreq_driver->offline(policy);
1644 
1645 out_exit_policy:
1646 	if (cpufreq_driver->exit)
1647 		cpufreq_driver->exit(policy);
1648 
1649 out_free_policy:
1650 	cpumask_clear(policy->cpus);
1651 	up_write(&policy->rwsem);
1652 
1653 	cpufreq_policy_free(policy);
1654 	return ret;
1655 }
1656 
1657 /**
1658  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1659  * @dev: CPU device.
1660  * @sif: Subsystem interface structure pointer (not used)
1661  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1662 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1663 {
1664 	struct cpufreq_policy *policy;
1665 	unsigned cpu = dev->id;
1666 	int ret;
1667 
1668 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1669 
1670 	if (cpu_online(cpu)) {
1671 		ret = cpufreq_online(cpu);
1672 		if (ret)
1673 			return ret;
1674 	}
1675 
1676 	/* Create sysfs link on CPU registration */
1677 	policy = per_cpu(cpufreq_cpu_data, cpu);
1678 	if (policy)
1679 		add_cpu_dev_symlink(policy, cpu, dev);
1680 
1681 	return 0;
1682 }
1683 
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1684 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1685 {
1686 	int ret;
1687 
1688 	if (has_target())
1689 		cpufreq_stop_governor(policy);
1690 
1691 	cpumask_clear_cpu(cpu, policy->cpus);
1692 
1693 	if (!policy_is_inactive(policy)) {
1694 		/* Nominate a new CPU if necessary. */
1695 		if (cpu == policy->cpu)
1696 			policy->cpu = cpumask_any(policy->cpus);
1697 
1698 		/* Start the governor again for the active policy. */
1699 		if (has_target()) {
1700 			ret = cpufreq_start_governor(policy);
1701 			if (ret)
1702 				pr_err("%s: Failed to start governor\n", __func__);
1703 		}
1704 
1705 		return;
1706 	}
1707 
1708 	if (has_target())
1709 		strscpy(policy->last_governor, policy->governor->name,
1710 			CPUFREQ_NAME_LEN);
1711 	else
1712 		policy->last_policy = policy->policy;
1713 
1714 	if (has_target())
1715 		cpufreq_exit_governor(policy);
1716 
1717 	/*
1718 	 * Perform the ->offline() during light-weight tear-down, as
1719 	 * that allows fast recovery when the CPU comes back.
1720 	 */
1721 	if (cpufreq_driver->offline) {
1722 		cpufreq_driver->offline(policy);
1723 		return;
1724 	}
1725 
1726 	if (cpufreq_driver->exit)
1727 		cpufreq_driver->exit(policy);
1728 
1729 	policy->freq_table = NULL;
1730 }
1731 
cpufreq_offline(unsigned int cpu)1732 static int cpufreq_offline(unsigned int cpu)
1733 {
1734 	struct cpufreq_policy *policy;
1735 
1736 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1737 
1738 	policy = cpufreq_cpu_get_raw(cpu);
1739 	if (!policy) {
1740 		pr_debug("%s: No cpu_data found\n", __func__);
1741 		return 0;
1742 	}
1743 
1744 	down_write(&policy->rwsem);
1745 
1746 	__cpufreq_offline(cpu, policy);
1747 
1748 	up_write(&policy->rwsem);
1749 	return 0;
1750 }
1751 
1752 /*
1753  * cpufreq_remove_dev - remove a CPU device
1754  *
1755  * Removes the cpufreq interface for a CPU device.
1756  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1757 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1758 {
1759 	unsigned int cpu = dev->id;
1760 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1761 
1762 	if (!policy)
1763 		return;
1764 
1765 	down_write(&policy->rwsem);
1766 
1767 	if (cpu_online(cpu))
1768 		__cpufreq_offline(cpu, policy);
1769 
1770 	remove_cpu_dev_symlink(policy, cpu, dev);
1771 
1772 	if (!cpumask_empty(policy->real_cpus)) {
1773 		up_write(&policy->rwsem);
1774 		return;
1775 	}
1776 
1777 	/*
1778 	 * Unregister cpufreq cooling once all the CPUs of the policy are
1779 	 * removed.
1780 	 */
1781 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1782 		cpufreq_cooling_unregister(policy->cdev);
1783 		policy->cdev = NULL;
1784 	}
1785 
1786 	/* We did light-weight exit earlier, do full tear down now */
1787 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1788 		cpufreq_driver->exit(policy);
1789 
1790 	up_write(&policy->rwsem);
1791 
1792 	cpufreq_policy_free(policy);
1793 }
1794 
1795 /**
1796  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1797  * @policy: Policy managing CPUs.
1798  * @new_freq: New CPU frequency.
1799  *
1800  * Adjust to the current frequency first and clean up later by either calling
1801  * cpufreq_update_policy(), or scheduling handle_update().
1802  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1803 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1804 				unsigned int new_freq)
1805 {
1806 	struct cpufreq_freqs freqs;
1807 
1808 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1809 		 policy->cur, new_freq);
1810 
1811 	freqs.old = policy->cur;
1812 	freqs.new = new_freq;
1813 
1814 	cpufreq_freq_transition_begin(policy, &freqs);
1815 	cpufreq_freq_transition_end(policy, &freqs, 0);
1816 }
1817 
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1818 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1819 {
1820 	unsigned int new_freq;
1821 
1822 	new_freq = cpufreq_driver->get(policy->cpu);
1823 	if (!new_freq)
1824 		return 0;
1825 
1826 	/*
1827 	 * If fast frequency switching is used with the given policy, the check
1828 	 * against policy->cur is pointless, so skip it in that case.
1829 	 */
1830 	if (policy->fast_switch_enabled || !has_target())
1831 		return new_freq;
1832 
1833 	if (policy->cur != new_freq) {
1834 		/*
1835 		 * For some platforms, the frequency returned by hardware may be
1836 		 * slightly different from what is provided in the frequency
1837 		 * table, for example hardware may return 499 MHz instead of 500
1838 		 * MHz. In such cases it is better to avoid getting into
1839 		 * unnecessary frequency updates.
1840 		 */
1841 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1842 			return policy->cur;
1843 
1844 		cpufreq_out_of_sync(policy, new_freq);
1845 		if (update)
1846 			schedule_work(&policy->update);
1847 	}
1848 
1849 	return new_freq;
1850 }
1851 
1852 /**
1853  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1854  * @cpu: CPU number
1855  *
1856  * This is the last known freq, without actually getting it from the driver.
1857  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1858  */
cpufreq_quick_get(unsigned int cpu)1859 unsigned int cpufreq_quick_get(unsigned int cpu)
1860 {
1861 	struct cpufreq_policy *policy;
1862 	unsigned int ret_freq = 0;
1863 	unsigned long flags;
1864 
1865 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1866 
1867 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1868 		ret_freq = cpufreq_driver->get(cpu);
1869 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1870 		return ret_freq;
1871 	}
1872 
1873 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1874 
1875 	policy = cpufreq_cpu_get(cpu);
1876 	if (policy) {
1877 		ret_freq = policy->cur;
1878 		cpufreq_cpu_put(policy);
1879 	}
1880 
1881 	return ret_freq;
1882 }
1883 EXPORT_SYMBOL(cpufreq_quick_get);
1884 
1885 /**
1886  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1887  * @cpu: CPU number
1888  *
1889  * Just return the max possible frequency for a given CPU.
1890  */
cpufreq_quick_get_max(unsigned int cpu)1891 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1892 {
1893 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1894 	unsigned int ret_freq = 0;
1895 
1896 	if (policy) {
1897 		ret_freq = policy->max;
1898 		cpufreq_cpu_put(policy);
1899 	}
1900 
1901 	return ret_freq;
1902 }
1903 EXPORT_SYMBOL(cpufreq_quick_get_max);
1904 
1905 /**
1906  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1907  * @cpu: CPU number
1908  *
1909  * The default return value is the max_freq field of cpuinfo.
1910  */
cpufreq_get_hw_max_freq(unsigned int cpu)1911 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1912 {
1913 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1914 	unsigned int ret_freq = 0;
1915 
1916 	if (policy) {
1917 		ret_freq = policy->cpuinfo.max_freq;
1918 		cpufreq_cpu_put(policy);
1919 	}
1920 
1921 	return ret_freq;
1922 }
1923 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1924 
__cpufreq_get(struct cpufreq_policy * policy)1925 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1926 {
1927 	if (unlikely(policy_is_inactive(policy)))
1928 		return 0;
1929 
1930 	return cpufreq_verify_current_freq(policy, true);
1931 }
1932 
1933 /**
1934  * cpufreq_get - get the current CPU frequency (in kHz)
1935  * @cpu: CPU number
1936  *
1937  * Get the CPU current (static) CPU frequency
1938  */
cpufreq_get(unsigned int cpu)1939 unsigned int cpufreq_get(unsigned int cpu)
1940 {
1941 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1942 	unsigned int ret_freq = 0;
1943 
1944 	if (policy) {
1945 		down_read(&policy->rwsem);
1946 		if (cpufreq_driver->get)
1947 			ret_freq = __cpufreq_get(policy);
1948 		up_read(&policy->rwsem);
1949 
1950 		cpufreq_cpu_put(policy);
1951 	}
1952 
1953 	return ret_freq;
1954 }
1955 EXPORT_SYMBOL(cpufreq_get);
1956 
1957 static struct subsys_interface cpufreq_interface = {
1958 	.name		= "cpufreq",
1959 	.subsys		= &cpu_subsys,
1960 	.add_dev	= cpufreq_add_dev,
1961 	.remove_dev	= cpufreq_remove_dev,
1962 };
1963 
1964 /*
1965  * In case platform wants some specific frequency to be configured
1966  * during suspend..
1967  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1968 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1969 {
1970 	int ret;
1971 
1972 	if (!policy->suspend_freq) {
1973 		pr_debug("%s: suspend_freq not defined\n", __func__);
1974 		return 0;
1975 	}
1976 
1977 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1978 			policy->suspend_freq);
1979 
1980 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1981 			CPUFREQ_RELATION_H);
1982 	if (ret)
1983 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1984 				__func__, policy->suspend_freq, ret);
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL(cpufreq_generic_suspend);
1989 
1990 /**
1991  * cpufreq_suspend() - Suspend CPUFreq governors.
1992  *
1993  * Called during system wide Suspend/Hibernate cycles for suspending governors
1994  * as some platforms can't change frequency after this point in suspend cycle.
1995  * Because some of the devices (like: i2c, regulators, etc) they use for
1996  * changing frequency are suspended quickly after this point.
1997  */
cpufreq_suspend(void)1998 void cpufreq_suspend(void)
1999 {
2000 	struct cpufreq_policy *policy;
2001 
2002 	if (!cpufreq_driver)
2003 		return;
2004 
2005 	if (!has_target() && !cpufreq_driver->suspend)
2006 		goto suspend;
2007 
2008 	pr_debug("%s: Suspending Governors\n", __func__);
2009 
2010 	for_each_active_policy(policy) {
2011 		if (has_target()) {
2012 			down_write(&policy->rwsem);
2013 			cpufreq_stop_governor(policy);
2014 			up_write(&policy->rwsem);
2015 		}
2016 
2017 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
2018 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
2019 				cpufreq_driver->name);
2020 	}
2021 
2022 suspend:
2023 	cpufreq_suspended = true;
2024 }
2025 
2026 /**
2027  * cpufreq_resume() - Resume CPUFreq governors.
2028  *
2029  * Called during system wide Suspend/Hibernate cycle for resuming governors that
2030  * are suspended with cpufreq_suspend().
2031  */
cpufreq_resume(void)2032 void cpufreq_resume(void)
2033 {
2034 	struct cpufreq_policy *policy;
2035 	int ret;
2036 
2037 	if (!cpufreq_driver)
2038 		return;
2039 
2040 	if (unlikely(!cpufreq_suspended))
2041 		return;
2042 
2043 	cpufreq_suspended = false;
2044 
2045 	if (!has_target() && !cpufreq_driver->resume)
2046 		return;
2047 
2048 	pr_debug("%s: Resuming Governors\n", __func__);
2049 
2050 	for_each_active_policy(policy) {
2051 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2052 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2053 				cpufreq_driver->name);
2054 		} else if (has_target()) {
2055 			down_write(&policy->rwsem);
2056 			ret = cpufreq_start_governor(policy);
2057 			up_write(&policy->rwsem);
2058 
2059 			if (ret)
2060 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2061 				       __func__, policy->cpu);
2062 		}
2063 	}
2064 }
2065 
2066 /**
2067  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2068  * @flags: Flags to test against the current cpufreq driver's flags.
2069  *
2070  * Assumes that the driver is there, so callers must ensure that this is the
2071  * case.
2072  */
cpufreq_driver_test_flags(u16 flags)2073 bool cpufreq_driver_test_flags(u16 flags)
2074 {
2075 	return !!(cpufreq_driver->flags & flags);
2076 }
2077 
2078 /**
2079  * cpufreq_get_current_driver - Return the current driver's name.
2080  *
2081  * Return the name string of the currently registered cpufreq driver or NULL if
2082  * none.
2083  */
cpufreq_get_current_driver(void)2084 const char *cpufreq_get_current_driver(void)
2085 {
2086 	if (cpufreq_driver)
2087 		return cpufreq_driver->name;
2088 
2089 	return NULL;
2090 }
2091 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2092 
2093 /**
2094  * cpufreq_get_driver_data - Return current driver data.
2095  *
2096  * Return the private data of the currently registered cpufreq driver, or NULL
2097  * if no cpufreq driver has been registered.
2098  */
cpufreq_get_driver_data(void)2099 void *cpufreq_get_driver_data(void)
2100 {
2101 	if (cpufreq_driver)
2102 		return cpufreq_driver->driver_data;
2103 
2104 	return NULL;
2105 }
2106 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2107 
2108 /*********************************************************************
2109  *                     NOTIFIER LISTS INTERFACE                      *
2110  *********************************************************************/
2111 
2112 /**
2113  * cpufreq_register_notifier - Register a notifier with cpufreq.
2114  * @nb: notifier function to register.
2115  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2116  *
2117  * Add a notifier to one of two lists: either a list of notifiers that run on
2118  * clock rate changes (once before and once after every transition), or a list
2119  * of notifiers that ron on cpufreq policy changes.
2120  *
2121  * This function may sleep and it has the same return values as
2122  * blocking_notifier_chain_register().
2123  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2124 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2125 {
2126 	int ret;
2127 
2128 	if (cpufreq_disabled())
2129 		return -EINVAL;
2130 
2131 	switch (list) {
2132 	case CPUFREQ_TRANSITION_NOTIFIER:
2133 		mutex_lock(&cpufreq_fast_switch_lock);
2134 
2135 		if (cpufreq_fast_switch_count > 0) {
2136 			mutex_unlock(&cpufreq_fast_switch_lock);
2137 			return -EBUSY;
2138 		}
2139 		ret = srcu_notifier_chain_register(
2140 				&cpufreq_transition_notifier_list, nb);
2141 		if (!ret)
2142 			cpufreq_fast_switch_count--;
2143 
2144 		mutex_unlock(&cpufreq_fast_switch_lock);
2145 		break;
2146 	case CPUFREQ_POLICY_NOTIFIER:
2147 		ret = blocking_notifier_chain_register(
2148 				&cpufreq_policy_notifier_list, nb);
2149 		break;
2150 	default:
2151 		ret = -EINVAL;
2152 	}
2153 
2154 	return ret;
2155 }
2156 EXPORT_SYMBOL(cpufreq_register_notifier);
2157 
2158 /**
2159  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2160  * @nb: notifier block to be unregistered.
2161  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2162  *
2163  * Remove a notifier from one of the cpufreq notifier lists.
2164  *
2165  * This function may sleep and it has the same return values as
2166  * blocking_notifier_chain_unregister().
2167  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2168 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2169 {
2170 	int ret;
2171 
2172 	if (cpufreq_disabled())
2173 		return -EINVAL;
2174 
2175 	switch (list) {
2176 	case CPUFREQ_TRANSITION_NOTIFIER:
2177 		mutex_lock(&cpufreq_fast_switch_lock);
2178 
2179 		ret = srcu_notifier_chain_unregister(
2180 				&cpufreq_transition_notifier_list, nb);
2181 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2182 			cpufreq_fast_switch_count++;
2183 
2184 		mutex_unlock(&cpufreq_fast_switch_lock);
2185 		break;
2186 	case CPUFREQ_POLICY_NOTIFIER:
2187 		ret = blocking_notifier_chain_unregister(
2188 				&cpufreq_policy_notifier_list, nb);
2189 		break;
2190 	default:
2191 		ret = -EINVAL;
2192 	}
2193 
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2197 
2198 
2199 /*********************************************************************
2200  *                              GOVERNORS                            *
2201  *********************************************************************/
2202 
2203 /**
2204  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2205  * @policy: cpufreq policy to switch the frequency for.
2206  * @target_freq: New frequency to set (may be approximate).
2207  *
2208  * Carry out a fast frequency switch without sleeping.
2209  *
2210  * The driver's ->fast_switch() callback invoked by this function must be
2211  * suitable for being called from within RCU-sched read-side critical sections
2212  * and it is expected to select the minimum available frequency greater than or
2213  * equal to @target_freq (CPUFREQ_RELATION_L).
2214  *
2215  * This function must not be called if policy->fast_switch_enabled is unset.
2216  *
2217  * Governors calling this function must guarantee that it will never be invoked
2218  * twice in parallel for the same policy and that it will never be called in
2219  * parallel with either ->target() or ->target_index() for the same policy.
2220  *
2221  * Returns the actual frequency set for the CPU.
2222  *
2223  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2224  * error condition, the hardware configuration must be preserved.
2225  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2226 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2227 					unsigned int target_freq)
2228 {
2229 	unsigned int freq;
2230 	int cpu;
2231 
2232 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2233 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2234 
2235 	if (!freq)
2236 		return 0;
2237 
2238 	policy->cur = freq;
2239 	arch_set_freq_scale(policy->related_cpus, freq,
2240 			    arch_scale_freq_ref(policy->cpu));
2241 	cpufreq_stats_record_transition(policy, freq);
2242 
2243 	if (trace_cpu_frequency_enabled()) {
2244 		for_each_cpu(cpu, policy->cpus)
2245 			trace_cpu_frequency(freq, cpu);
2246 	}
2247 
2248 	return freq;
2249 }
2250 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2251 
2252 /**
2253  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2254  * @cpu: Target CPU.
2255  * @min_perf: Minimum (required) performance level (units of @capacity).
2256  * @target_perf: Target (desired) performance level (units of @capacity).
2257  * @capacity: Capacity of the target CPU.
2258  *
2259  * Carry out a fast performance level switch of @cpu without sleeping.
2260  *
2261  * The driver's ->adjust_perf() callback invoked by this function must be
2262  * suitable for being called from within RCU-sched read-side critical sections
2263  * and it is expected to select a suitable performance level equal to or above
2264  * @min_perf and preferably equal to or below @target_perf.
2265  *
2266  * This function must not be called if policy->fast_switch_enabled is unset.
2267  *
2268  * Governors calling this function must guarantee that it will never be invoked
2269  * twice in parallel for the same CPU and that it will never be called in
2270  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2271  * the same CPU.
2272  */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2273 void cpufreq_driver_adjust_perf(unsigned int cpu,
2274 				 unsigned long min_perf,
2275 				 unsigned long target_perf,
2276 				 unsigned long capacity)
2277 {
2278 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2279 }
2280 
2281 /**
2282  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2283  *
2284  * Return 'true' if the ->adjust_perf callback is present for the
2285  * current driver or 'false' otherwise.
2286  */
cpufreq_driver_has_adjust_perf(void)2287 bool cpufreq_driver_has_adjust_perf(void)
2288 {
2289 	return !!cpufreq_driver->adjust_perf;
2290 }
2291 
2292 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2293 static int __target_intermediate(struct cpufreq_policy *policy,
2294 				 struct cpufreq_freqs *freqs, int index)
2295 {
2296 	int ret;
2297 
2298 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2299 
2300 	/* We don't need to switch to intermediate freq */
2301 	if (!freqs->new)
2302 		return 0;
2303 
2304 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2305 		 __func__, policy->cpu, freqs->old, freqs->new);
2306 
2307 	cpufreq_freq_transition_begin(policy, freqs);
2308 	ret = cpufreq_driver->target_intermediate(policy, index);
2309 	cpufreq_freq_transition_end(policy, freqs, ret);
2310 
2311 	if (ret)
2312 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2313 		       __func__, ret);
2314 
2315 	return ret;
2316 }
2317 
__target_index(struct cpufreq_policy * policy,int index)2318 static int __target_index(struct cpufreq_policy *policy, int index)
2319 {
2320 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2321 	unsigned int restore_freq, intermediate_freq = 0;
2322 	unsigned int newfreq = policy->freq_table[index].frequency;
2323 	int retval = -EINVAL;
2324 	bool notify;
2325 
2326 	if (newfreq == policy->cur)
2327 		return 0;
2328 
2329 	/* Save last value to restore later on errors */
2330 	restore_freq = policy->cur;
2331 
2332 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2333 	if (notify) {
2334 		/* Handle switching to intermediate frequency */
2335 		if (cpufreq_driver->get_intermediate) {
2336 			retval = __target_intermediate(policy, &freqs, index);
2337 			if (retval)
2338 				return retval;
2339 
2340 			intermediate_freq = freqs.new;
2341 			/* Set old freq to intermediate */
2342 			if (intermediate_freq)
2343 				freqs.old = freqs.new;
2344 		}
2345 
2346 		freqs.new = newfreq;
2347 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2348 			 __func__, policy->cpu, freqs.old, freqs.new);
2349 
2350 		cpufreq_freq_transition_begin(policy, &freqs);
2351 	}
2352 
2353 	retval = cpufreq_driver->target_index(policy, index);
2354 	if (retval)
2355 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2356 		       retval);
2357 
2358 	if (notify) {
2359 		cpufreq_freq_transition_end(policy, &freqs, retval);
2360 
2361 		/*
2362 		 * Failed after setting to intermediate freq? Driver should have
2363 		 * reverted back to initial frequency and so should we. Check
2364 		 * here for intermediate_freq instead of get_intermediate, in
2365 		 * case we haven't switched to intermediate freq at all.
2366 		 */
2367 		if (unlikely(retval && intermediate_freq)) {
2368 			freqs.old = intermediate_freq;
2369 			freqs.new = restore_freq;
2370 			cpufreq_freq_transition_begin(policy, &freqs);
2371 			cpufreq_freq_transition_end(policy, &freqs, 0);
2372 		}
2373 	}
2374 
2375 	return retval;
2376 }
2377 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2378 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2379 			    unsigned int target_freq,
2380 			    unsigned int relation)
2381 {
2382 	unsigned int old_target_freq = target_freq;
2383 
2384 	if (cpufreq_disabled())
2385 		return -ENODEV;
2386 
2387 	target_freq = __resolve_freq(policy, target_freq, relation);
2388 
2389 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2390 		 policy->cpu, target_freq, relation, old_target_freq);
2391 
2392 	/*
2393 	 * This might look like a redundant call as we are checking it again
2394 	 * after finding index. But it is left intentionally for cases where
2395 	 * exactly same freq is called again and so we can save on few function
2396 	 * calls.
2397 	 */
2398 	if (target_freq == policy->cur &&
2399 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2400 		return 0;
2401 
2402 	if (cpufreq_driver->target) {
2403 		/*
2404 		 * If the driver hasn't setup a single inefficient frequency,
2405 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2406 		 */
2407 		if (!policy->efficiencies_available)
2408 			relation &= ~CPUFREQ_RELATION_E;
2409 
2410 		return cpufreq_driver->target(policy, target_freq, relation);
2411 	}
2412 
2413 	if (!cpufreq_driver->target_index)
2414 		return -EINVAL;
2415 
2416 	return __target_index(policy, policy->cached_resolved_idx);
2417 }
2418 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2419 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2420 int cpufreq_driver_target(struct cpufreq_policy *policy,
2421 			  unsigned int target_freq,
2422 			  unsigned int relation)
2423 {
2424 	int ret;
2425 
2426 	down_write(&policy->rwsem);
2427 
2428 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2429 
2430 	up_write(&policy->rwsem);
2431 
2432 	return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2435 
cpufreq_fallback_governor(void)2436 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2437 {
2438 	return NULL;
2439 }
2440 
cpufreq_init_governor(struct cpufreq_policy * policy)2441 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2442 {
2443 	int ret;
2444 
2445 	/* Don't start any governor operations if we are entering suspend */
2446 	if (cpufreq_suspended)
2447 		return 0;
2448 	/*
2449 	 * Governor might not be initiated here if ACPI _PPC changed
2450 	 * notification happened, so check it.
2451 	 */
2452 	if (!policy->governor)
2453 		return -EINVAL;
2454 
2455 	/* Platform doesn't want dynamic frequency switching ? */
2456 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2457 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2458 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2459 
2460 		if (gov) {
2461 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2462 				policy->governor->name, gov->name);
2463 			policy->governor = gov;
2464 		} else {
2465 			return -EINVAL;
2466 		}
2467 	}
2468 
2469 	if (!try_module_get(policy->governor->owner))
2470 		return -EINVAL;
2471 
2472 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2473 
2474 	if (policy->governor->init) {
2475 		ret = policy->governor->init(policy);
2476 		if (ret) {
2477 			module_put(policy->governor->owner);
2478 			return ret;
2479 		}
2480 	}
2481 
2482 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2483 
2484 	return 0;
2485 }
2486 
cpufreq_exit_governor(struct cpufreq_policy * policy)2487 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2488 {
2489 	if (cpufreq_suspended || !policy->governor)
2490 		return;
2491 
2492 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2493 
2494 	if (policy->governor->exit)
2495 		policy->governor->exit(policy);
2496 
2497 	module_put(policy->governor->owner);
2498 }
2499 
cpufreq_start_governor(struct cpufreq_policy * policy)2500 int cpufreq_start_governor(struct cpufreq_policy *policy)
2501 {
2502 	int ret;
2503 
2504 	if (cpufreq_suspended)
2505 		return 0;
2506 
2507 	if (!policy->governor)
2508 		return -EINVAL;
2509 
2510 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2511 
2512 	if (cpufreq_driver->get)
2513 		cpufreq_verify_current_freq(policy, false);
2514 
2515 	if (policy->governor->start) {
2516 		ret = policy->governor->start(policy);
2517 		if (ret)
2518 			return ret;
2519 	}
2520 
2521 	if (policy->governor->limits)
2522 		policy->governor->limits(policy);
2523 
2524 	return 0;
2525 }
2526 
cpufreq_stop_governor(struct cpufreq_policy * policy)2527 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2528 {
2529 	if (cpufreq_suspended || !policy->governor)
2530 		return;
2531 
2532 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2533 
2534 	if (policy->governor->stop)
2535 		policy->governor->stop(policy);
2536 }
2537 
cpufreq_governor_limits(struct cpufreq_policy * policy)2538 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2539 {
2540 	if (cpufreq_suspended || !policy->governor)
2541 		return;
2542 
2543 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2544 
2545 	if (policy->governor->limits)
2546 		policy->governor->limits(policy);
2547 }
2548 
cpufreq_register_governor(struct cpufreq_governor * governor)2549 int cpufreq_register_governor(struct cpufreq_governor *governor)
2550 {
2551 	int err;
2552 
2553 	if (!governor)
2554 		return -EINVAL;
2555 
2556 	if (cpufreq_disabled())
2557 		return -ENODEV;
2558 
2559 	mutex_lock(&cpufreq_governor_mutex);
2560 
2561 	err = -EBUSY;
2562 	if (!find_governor(governor->name)) {
2563 		err = 0;
2564 		list_add(&governor->governor_list, &cpufreq_governor_list);
2565 	}
2566 
2567 	mutex_unlock(&cpufreq_governor_mutex);
2568 	return err;
2569 }
2570 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2571 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2572 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2573 {
2574 	struct cpufreq_policy *policy;
2575 	unsigned long flags;
2576 
2577 	if (!governor)
2578 		return;
2579 
2580 	if (cpufreq_disabled())
2581 		return;
2582 
2583 	/* clear last_governor for all inactive policies */
2584 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2585 	for_each_inactive_policy(policy) {
2586 		if (!strcmp(policy->last_governor, governor->name)) {
2587 			policy->governor = NULL;
2588 			strcpy(policy->last_governor, "\0");
2589 		}
2590 	}
2591 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2592 
2593 	mutex_lock(&cpufreq_governor_mutex);
2594 	list_del(&governor->governor_list);
2595 	mutex_unlock(&cpufreq_governor_mutex);
2596 }
2597 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2598 
2599 
2600 /*********************************************************************
2601  *                          POLICY INTERFACE                         *
2602  *********************************************************************/
2603 
2604 /**
2605  * cpufreq_get_policy - get the current cpufreq_policy
2606  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2607  *	is written
2608  * @cpu: CPU to find the policy for
2609  *
2610  * Reads the current cpufreq policy.
2611  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2612 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2613 {
2614 	struct cpufreq_policy *cpu_policy;
2615 	if (!policy)
2616 		return -EINVAL;
2617 
2618 	cpu_policy = cpufreq_cpu_get(cpu);
2619 	if (!cpu_policy)
2620 		return -EINVAL;
2621 
2622 	memcpy(policy, cpu_policy, sizeof(*policy));
2623 
2624 	cpufreq_cpu_put(cpu_policy);
2625 	return 0;
2626 }
2627 EXPORT_SYMBOL(cpufreq_get_policy);
2628 
2629 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2630 
2631 /**
2632  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2633  * @policy: cpufreq policy of the CPUs.
2634  *
2635  * Update the value of cpufreq pressure for all @cpus in the policy.
2636  */
cpufreq_update_pressure(struct cpufreq_policy * policy)2637 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2638 {
2639 	unsigned long max_capacity, capped_freq, pressure;
2640 	u32 max_freq;
2641 	int cpu;
2642 
2643 	cpu = cpumask_first(policy->related_cpus);
2644 	max_freq = arch_scale_freq_ref(cpu);
2645 	capped_freq = policy->max;
2646 
2647 	/*
2648 	 * Handle properly the boost frequencies, which should simply clean
2649 	 * the cpufreq pressure value.
2650 	 */
2651 	if (max_freq <= capped_freq) {
2652 		pressure = 0;
2653 	} else {
2654 		max_capacity = arch_scale_cpu_capacity(cpu);
2655 		pressure = max_capacity -
2656 			   mult_frac(max_capacity, capped_freq, max_freq);
2657 	}
2658 
2659 	for_each_cpu(cpu, policy->related_cpus)
2660 		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2661 }
2662 
2663 /**
2664  * cpufreq_set_policy - Modify cpufreq policy parameters.
2665  * @policy: Policy object to modify.
2666  * @new_gov: Policy governor pointer.
2667  * @new_pol: Policy value (for drivers with built-in governors).
2668  *
2669  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2670  * limits to be set for the policy, update @policy with the verified limits
2671  * values and either invoke the driver's ->setpolicy() callback (if present) or
2672  * carry out a governor update for @policy.  That is, run the current governor's
2673  * ->limits() callback (if @new_gov points to the same object as the one in
2674  * @policy) or replace the governor for @policy with @new_gov.
2675  *
2676  * The cpuinfo part of @policy is not updated by this function.
2677  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2678 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2679 			      struct cpufreq_governor *new_gov,
2680 			      unsigned int new_pol)
2681 {
2682 	struct cpufreq_policy_data new_data;
2683 	struct cpufreq_governor *old_gov;
2684 	int ret;
2685 
2686 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2687 	new_data.freq_table = policy->freq_table;
2688 	new_data.cpu = policy->cpu;
2689 	/*
2690 	 * PM QoS framework collects all the requests from users and provide us
2691 	 * the final aggregated value here.
2692 	 */
2693 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2694 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2695 
2696 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2697 		 new_data.cpu, new_data.min, new_data.max);
2698 
2699 	/*
2700 	 * Verify that the CPU speed can be set within these limits and make sure
2701 	 * that min <= max.
2702 	 */
2703 	ret = cpufreq_driver->verify(&new_data);
2704 	if (ret)
2705 		return ret;
2706 
2707 	/*
2708 	 * Resolve policy min/max to available frequencies. It ensures
2709 	 * no frequency resolution will neither overshoot the requested maximum
2710 	 * nor undershoot the requested minimum.
2711 	 */
2712 	policy->min = new_data.min;
2713 	policy->max = new_data.max;
2714 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2715 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2716 	trace_cpu_frequency_limits(policy);
2717 
2718 	cpufreq_update_pressure(policy);
2719 
2720 	policy->cached_target_freq = UINT_MAX;
2721 
2722 	pr_debug("new min and max freqs are %u - %u kHz\n",
2723 		 policy->min, policy->max);
2724 
2725 	if (cpufreq_driver->setpolicy) {
2726 		policy->policy = new_pol;
2727 		pr_debug("setting range\n");
2728 		return cpufreq_driver->setpolicy(policy);
2729 	}
2730 
2731 	if (new_gov == policy->governor) {
2732 		pr_debug("governor limits update\n");
2733 		cpufreq_governor_limits(policy);
2734 		return 0;
2735 	}
2736 
2737 	pr_debug("governor switch\n");
2738 
2739 	/* save old, working values */
2740 	old_gov = policy->governor;
2741 	/* end old governor */
2742 	if (old_gov) {
2743 		cpufreq_stop_governor(policy);
2744 		cpufreq_exit_governor(policy);
2745 	}
2746 
2747 	/* start new governor */
2748 	policy->governor = new_gov;
2749 	ret = cpufreq_init_governor(policy);
2750 	if (!ret) {
2751 		ret = cpufreq_start_governor(policy);
2752 		if (!ret) {
2753 			pr_debug("governor change\n");
2754 			return 0;
2755 		}
2756 		cpufreq_exit_governor(policy);
2757 	}
2758 
2759 	/* new governor failed, so re-start old one */
2760 	pr_debug("starting governor %s failed\n", policy->governor->name);
2761 	if (old_gov) {
2762 		policy->governor = old_gov;
2763 		if (cpufreq_init_governor(policy))
2764 			policy->governor = NULL;
2765 		else
2766 			cpufreq_start_governor(policy);
2767 	}
2768 
2769 	return ret;
2770 }
2771 
2772 /**
2773  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2774  * @cpu: CPU to re-evaluate the policy for.
2775  *
2776  * Update the current frequency for the cpufreq policy of @cpu and use
2777  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2778  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2779  * for the policy in question, among other things.
2780  */
cpufreq_update_policy(unsigned int cpu)2781 void cpufreq_update_policy(unsigned int cpu)
2782 {
2783 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2784 
2785 	if (!policy)
2786 		return;
2787 
2788 	/*
2789 	 * BIOS might change freq behind our back
2790 	 * -> ask driver for current freq and notify governors about a change
2791 	 */
2792 	if (cpufreq_driver->get && has_target() &&
2793 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2794 		goto unlock;
2795 
2796 	refresh_frequency_limits(policy);
2797 
2798 unlock:
2799 	cpufreq_cpu_release(policy);
2800 }
2801 EXPORT_SYMBOL(cpufreq_update_policy);
2802 
2803 /**
2804  * cpufreq_update_limits - Update policy limits for a given CPU.
2805  * @cpu: CPU to update the policy limits for.
2806  *
2807  * Invoke the driver's ->update_limits callback if present or call
2808  * cpufreq_update_policy() for @cpu.
2809  */
cpufreq_update_limits(unsigned int cpu)2810 void cpufreq_update_limits(unsigned int cpu)
2811 {
2812 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
2813 
2814 	policy = cpufreq_cpu_get(cpu);
2815 	if (!policy)
2816 		return;
2817 
2818 	if (cpufreq_driver->update_limits)
2819 		cpufreq_driver->update_limits(cpu);
2820 	else
2821 		cpufreq_update_policy(cpu);
2822 }
2823 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2824 
2825 /*********************************************************************
2826  *               BOOST						     *
2827  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2828 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2829 {
2830 	int ret;
2831 
2832 	if (!policy->freq_table)
2833 		return -ENXIO;
2834 
2835 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2836 	if (ret) {
2837 		pr_err("%s: Policy frequency update failed\n", __func__);
2838 		return ret;
2839 	}
2840 
2841 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2842 	if (ret < 0)
2843 		return ret;
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2848 
cpufreq_boost_trigger_state(int state)2849 static int cpufreq_boost_trigger_state(int state)
2850 {
2851 	struct cpufreq_policy *policy;
2852 	unsigned long flags;
2853 	int ret = 0;
2854 
2855 	if (cpufreq_driver->boost_enabled == state)
2856 		return 0;
2857 
2858 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2859 	cpufreq_driver->boost_enabled = state;
2860 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2861 
2862 	cpus_read_lock();
2863 	for_each_active_policy(policy) {
2864 		if (!policy->boost_supported)
2865 			continue;
2866 
2867 		policy->boost_enabled = state;
2868 		ret = cpufreq_driver->set_boost(policy, state);
2869 		if (ret) {
2870 			policy->boost_enabled = !policy->boost_enabled;
2871 			goto err_reset_state;
2872 		}
2873 	}
2874 	cpus_read_unlock();
2875 
2876 	return 0;
2877 
2878 err_reset_state:
2879 	cpus_read_unlock();
2880 
2881 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2882 	cpufreq_driver->boost_enabled = !state;
2883 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2884 
2885 	pr_err("%s: Cannot %s BOOST\n",
2886 	       __func__, str_enable_disable(state));
2887 
2888 	return ret;
2889 }
2890 
cpufreq_boost_supported(void)2891 static bool cpufreq_boost_supported(void)
2892 {
2893 	return cpufreq_driver->set_boost;
2894 }
2895 
create_boost_sysfs_file(void)2896 static int create_boost_sysfs_file(void)
2897 {
2898 	int ret;
2899 
2900 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2901 	if (ret)
2902 		pr_err("%s: cannot register global BOOST sysfs file\n",
2903 		       __func__);
2904 
2905 	return ret;
2906 }
2907 
remove_boost_sysfs_file(void)2908 static void remove_boost_sysfs_file(void)
2909 {
2910 	if (cpufreq_boost_supported())
2911 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2912 }
2913 
cpufreq_boost_enabled(void)2914 bool cpufreq_boost_enabled(void)
2915 {
2916 	return cpufreq_driver->boost_enabled;
2917 }
2918 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2919 
2920 /*********************************************************************
2921  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2922  *********************************************************************/
2923 static enum cpuhp_state hp_online;
2924 
cpuhp_cpufreq_online(unsigned int cpu)2925 static int cpuhp_cpufreq_online(unsigned int cpu)
2926 {
2927 	cpufreq_online(cpu);
2928 
2929 	return 0;
2930 }
2931 
cpuhp_cpufreq_offline(unsigned int cpu)2932 static int cpuhp_cpufreq_offline(unsigned int cpu)
2933 {
2934 	cpufreq_offline(cpu);
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * cpufreq_register_driver - register a CPU Frequency driver
2941  * @driver_data: A struct cpufreq_driver containing the values#
2942  * submitted by the CPU Frequency driver.
2943  *
2944  * Registers a CPU Frequency driver to this core code. This code
2945  * returns zero on success, -EEXIST when another driver got here first
2946  * (and isn't unregistered in the meantime).
2947  *
2948  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2949 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2950 {
2951 	unsigned long flags;
2952 	int ret;
2953 
2954 	if (cpufreq_disabled())
2955 		return -ENODEV;
2956 
2957 	/*
2958 	 * The cpufreq core depends heavily on the availability of device
2959 	 * structure, make sure they are available before proceeding further.
2960 	 */
2961 	if (!get_cpu_device(0))
2962 		return -EPROBE_DEFER;
2963 
2964 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2965 	    !(driver_data->setpolicy || driver_data->target_index ||
2966 		    driver_data->target) ||
2967 	     (driver_data->setpolicy && (driver_data->target_index ||
2968 		    driver_data->target)) ||
2969 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2970 	     (!driver_data->online != !driver_data->offline) ||
2971 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2972 		return -EINVAL;
2973 
2974 	pr_debug("trying to register driver %s\n", driver_data->name);
2975 
2976 	/* Protect against concurrent CPU online/offline. */
2977 	cpus_read_lock();
2978 
2979 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2980 	if (cpufreq_driver) {
2981 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982 		ret = -EEXIST;
2983 		goto out;
2984 	}
2985 	cpufreq_driver = driver_data;
2986 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2987 
2988 	/*
2989 	 * Mark support for the scheduler's frequency invariance engine for
2990 	 * drivers that implement target(), target_index() or fast_switch().
2991 	 */
2992 	if (!cpufreq_driver->setpolicy) {
2993 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2994 		pr_debug("supports frequency invariance");
2995 	}
2996 
2997 	if (driver_data->setpolicy)
2998 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2999 
3000 	if (cpufreq_boost_supported()) {
3001 		ret = create_boost_sysfs_file();
3002 		if (ret)
3003 			goto err_null_driver;
3004 	}
3005 
3006 	ret = subsys_interface_register(&cpufreq_interface);
3007 	if (ret)
3008 		goto err_boost_unreg;
3009 
3010 	if (unlikely(list_empty(&cpufreq_policy_list))) {
3011 		/* if all ->init() calls failed, unregister */
3012 		ret = -ENODEV;
3013 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
3014 			 driver_data->name);
3015 		goto err_if_unreg;
3016 	}
3017 
3018 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
3019 						   "cpufreq:online",
3020 						   cpuhp_cpufreq_online,
3021 						   cpuhp_cpufreq_offline);
3022 	if (ret < 0)
3023 		goto err_if_unreg;
3024 	hp_online = ret;
3025 	ret = 0;
3026 
3027 	pr_debug("driver %s up and running\n", driver_data->name);
3028 	goto out;
3029 
3030 err_if_unreg:
3031 	subsys_interface_unregister(&cpufreq_interface);
3032 err_boost_unreg:
3033 	remove_boost_sysfs_file();
3034 err_null_driver:
3035 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3036 	cpufreq_driver = NULL;
3037 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3038 out:
3039 	cpus_read_unlock();
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3043 
3044 /*
3045  * cpufreq_unregister_driver - unregister the current CPUFreq driver
3046  *
3047  * Unregister the current CPUFreq driver. Only call this if you have
3048  * the right to do so, i.e. if you have succeeded in initialising before!
3049  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3050  * currently not initialised.
3051  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3052 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3053 {
3054 	unsigned long flags;
3055 
3056 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3057 		return;
3058 
3059 	pr_debug("unregistering driver %s\n", driver->name);
3060 
3061 	/* Protect against concurrent cpu hotplug */
3062 	cpus_read_lock();
3063 	subsys_interface_unregister(&cpufreq_interface);
3064 	remove_boost_sysfs_file();
3065 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3066 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3067 
3068 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3069 
3070 	cpufreq_driver = NULL;
3071 
3072 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3073 	cpus_read_unlock();
3074 }
3075 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3076 
cpufreq_core_init(void)3077 static int __init cpufreq_core_init(void)
3078 {
3079 	struct cpufreq_governor *gov = cpufreq_default_governor();
3080 	struct device *dev_root;
3081 
3082 	if (cpufreq_disabled())
3083 		return -ENODEV;
3084 
3085 	dev_root = bus_get_dev_root(&cpu_subsys);
3086 	if (dev_root) {
3087 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3088 		put_device(dev_root);
3089 	}
3090 	BUG_ON(!cpufreq_global_kobject);
3091 
3092 	if (!strlen(default_governor))
3093 		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3094 
3095 	return 0;
3096 }
3097 module_param(off, int, 0444);
3098 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3099 core_initcall(cpufreq_core_init);
3100