xref: /linux/drivers/cpufreq/powernv-cpufreq.c (revision 16cd1c2657762c62a00ac78eecaa25868f7e601b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * POWERNV cpufreq driver for the IBM POWER processors
4  *
5  * (C) Copyright IBM 2014
6  *
7  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8  */
9 
10 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/string_choices.h>
22 #include <linux/cpu.h>
23 #include <linux/hashtable.h>
24 #include <trace/events/power.h>
25 
26 #include <asm/cputhreads.h>
27 #include <asm/firmware.h>
28 #include <asm/reg.h>
29 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
30 #include <asm/opal.h>
31 #include <linux/timer.h>
32 
33 #define POWERNV_MAX_PSTATES_ORDER  8
34 #define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
35 #define PMSR_PSAFE_ENABLE	(1UL << 30)
36 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
37 #define MAX_PSTATE_SHIFT	32
38 #define LPSTATE_SHIFT		48
39 #define GPSTATE_SHIFT		56
40 #define MAX_NR_CHIPS		32
41 
42 #define MAX_RAMP_DOWN_TIME				5120
43 /*
44  * On an idle system we want the global pstate to ramp-down from max value to
45  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
46  * then ramp-down rapidly later on.
47  *
48  * This gives a percentage rampdown for time elapsed in milliseconds.
49  * ramp_down_percentage = ((ms * ms) >> 18)
50  *			~= 3.8 * (sec * sec)
51  *
52  * At 0 ms	ramp_down_percent = 0
53  * At 5120 ms	ramp_down_percent = 100
54  */
55 #define ramp_down_percent(time)		((time * time) >> 18)
56 
57 /* Interval after which the timer is queued to bring down global pstate */
58 #define GPSTATE_TIMER_INTERVAL				2000
59 
60 /**
61  * struct global_pstate_info -	Per policy data structure to maintain history of
62  *				global pstates
63  * @highest_lpstate_idx:	The local pstate index from which we are
64  *				ramping down
65  * @elapsed_time:		Time in ms spent in ramping down from
66  *				highest_lpstate_idx
67  * @last_sampled_time:		Time from boot in ms when global pstates were
68  *				last set
69  * @last_lpstate_idx:		Last set value of local pstate and global
70  * @last_gpstate_idx:		pstate in terms of cpufreq table index
71  * @timer:			Is used for ramping down if cpu goes idle for
72  *				a long time with global pstate held high
73  * @gpstate_lock:		A spinlock to maintain synchronization between
74  *				routines called by the timer handler and
75  *				governer's target_index calls
76  * @policy:			Associated CPUFreq policy
77  */
78 struct global_pstate_info {
79 	int highest_lpstate_idx;
80 	unsigned int elapsed_time;
81 	unsigned int last_sampled_time;
82 	int last_lpstate_idx;
83 	int last_gpstate_idx;
84 	spinlock_t gpstate_lock;
85 	struct timer_list timer;
86 	struct cpufreq_policy *policy;
87 };
88 
89 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
90 
91 static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
92 /**
93  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
94  *				  indexed by a function of pstate id.
95  *
96  * @pstate_id: pstate id for this entry.
97  *
98  * @cpufreq_table_idx: Index into the powernv_freqs
99  *		       cpufreq_frequency_table for frequency
100  *		       corresponding to pstate_id.
101  *
102  * @hentry: hlist_node that hooks this entry into the pstate_revmap
103  *	    hashtable
104  */
105 struct pstate_idx_revmap_data {
106 	u8 pstate_id;
107 	unsigned int cpufreq_table_idx;
108 	struct hlist_node hentry;
109 };
110 
111 static bool rebooting, throttled, occ_reset;
112 
113 static const char * const throttle_reason[] = {
114 	"No throttling",
115 	"Power Cap",
116 	"Processor Over Temperature",
117 	"Power Supply Failure",
118 	"Over Current",
119 	"OCC Reset"
120 };
121 
122 enum throttle_reason_type {
123 	NO_THROTTLE = 0,
124 	POWERCAP,
125 	CPU_OVERTEMP,
126 	POWER_SUPPLY_FAILURE,
127 	OVERCURRENT,
128 	OCC_RESET_THROTTLE,
129 	OCC_MAX_REASON
130 };
131 
132 static struct chip {
133 	unsigned int id;
134 	bool throttled;
135 	bool restore;
136 	u8 throttle_reason;
137 	cpumask_t mask;
138 	struct work_struct throttle;
139 	int throttle_turbo;
140 	int throttle_sub_turbo;
141 	int reason[OCC_MAX_REASON];
142 } *chips;
143 
144 static int nr_chips;
145 static DEFINE_PER_CPU(struct chip *, chip_info);
146 
147 /*
148  * Note:
149  * The set of pstates consists of contiguous integers.
150  * powernv_pstate_info stores the index of the frequency table for
151  * max, min and nominal frequencies. It also stores number of
152  * available frequencies.
153  *
154  * powernv_pstate_info.nominal indicates the index to the highest
155  * non-turbo frequency.
156  */
157 static struct powernv_pstate_info {
158 	unsigned int min;
159 	unsigned int max;
160 	unsigned int nominal;
161 	unsigned int nr_pstates;
162 	bool wof_enabled;
163 } powernv_pstate_info;
164 
extract_pstate(u64 pmsr_val,unsigned int shift)165 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
166 {
167 	return ((pmsr_val >> shift) & 0xFF);
168 }
169 
170 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
171 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
172 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
173 
174 /* Use following functions for conversions between pstate_id and index */
175 
176 /*
177  * idx_to_pstate : Returns the pstate id corresponding to the
178  *		   frequency in the cpufreq frequency table
179  *		   powernv_freqs indexed by @i.
180  *
181  *		   If @i is out of bound, this will return the pstate
182  *		   corresponding to the nominal frequency.
183  */
idx_to_pstate(unsigned int i)184 static inline u8 idx_to_pstate(unsigned int i)
185 {
186 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
187 		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
188 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
189 	}
190 
191 	return powernv_freqs[i].driver_data;
192 }
193 
194 /*
195  * pstate_to_idx : Returns the index in the cpufreq frequencytable
196  *		   powernv_freqs for the frequency whose corresponding
197  *		   pstate id is @pstate.
198  *
199  *		   If no frequency corresponding to @pstate is found,
200  *		   this will return the index of the nominal
201  *		   frequency.
202  */
pstate_to_idx(u8 pstate)203 static unsigned int pstate_to_idx(u8 pstate)
204 {
205 	unsigned int key = pstate % POWERNV_MAX_PSTATES;
206 	struct pstate_idx_revmap_data *revmap_data;
207 
208 	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
209 		if (revmap_data->pstate_id == pstate)
210 			return revmap_data->cpufreq_table_idx;
211 	}
212 
213 	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
214 	return powernv_pstate_info.nominal;
215 }
216 
reset_gpstates(struct cpufreq_policy * policy)217 static inline void reset_gpstates(struct cpufreq_policy *policy)
218 {
219 	struct global_pstate_info *gpstates = policy->driver_data;
220 
221 	gpstates->highest_lpstate_idx = 0;
222 	gpstates->elapsed_time = 0;
223 	gpstates->last_sampled_time = 0;
224 	gpstates->last_lpstate_idx = 0;
225 	gpstates->last_gpstate_idx = 0;
226 }
227 
228 /*
229  * Initialize the freq table based on data obtained
230  * from the firmware passed via device-tree
231  */
init_powernv_pstates(void)232 static int init_powernv_pstates(void)
233 {
234 	struct device_node *power_mgt;
235 	int i, nr_pstates = 0;
236 	const __be32 *pstate_ids, *pstate_freqs;
237 	u32 len_ids, len_freqs;
238 	u32 pstate_min, pstate_max, pstate_nominal;
239 	u32 pstate_turbo, pstate_ultra_turbo;
240 	int rc = -ENODEV;
241 
242 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
243 	if (!power_mgt) {
244 		pr_warn("power-mgt node not found\n");
245 		return -ENODEV;
246 	}
247 
248 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
249 		pr_warn("ibm,pstate-min node not found\n");
250 		goto out;
251 	}
252 
253 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
254 		pr_warn("ibm,pstate-max node not found\n");
255 		goto out;
256 	}
257 
258 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
259 				 &pstate_nominal)) {
260 		pr_warn("ibm,pstate-nominal not found\n");
261 		goto out;
262 	}
263 
264 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
265 				 &pstate_ultra_turbo)) {
266 		powernv_pstate_info.wof_enabled = false;
267 		goto next;
268 	}
269 
270 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
271 				 &pstate_turbo)) {
272 		powernv_pstate_info.wof_enabled = false;
273 		goto next;
274 	}
275 
276 	if (pstate_turbo == pstate_ultra_turbo)
277 		powernv_pstate_info.wof_enabled = false;
278 	else
279 		powernv_pstate_info.wof_enabled = true;
280 
281 next:
282 	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
283 		pstate_nominal, pstate_max);
284 	pr_info("Workload Optimized Frequency is %s in the platform\n",
285 		str_enabled_disabled(powernv_pstate_info.wof_enabled));
286 
287 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
288 	if (!pstate_ids) {
289 		pr_warn("ibm,pstate-ids not found\n");
290 		goto out;
291 	}
292 
293 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
294 				      &len_freqs);
295 	if (!pstate_freqs) {
296 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
297 		goto out;
298 	}
299 
300 	if (len_ids != len_freqs) {
301 		pr_warn("Entries in ibm,pstate-ids and "
302 			"ibm,pstate-frequencies-mhz does not match\n");
303 	}
304 
305 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
306 	if (!nr_pstates) {
307 		pr_warn("No PStates found\n");
308 		goto out;
309 	}
310 
311 	powernv_pstate_info.nr_pstates = nr_pstates;
312 	pr_debug("NR PStates %d\n", nr_pstates);
313 
314 	for (i = 0; i < nr_pstates; i++) {
315 		u32 id = be32_to_cpu(pstate_ids[i]);
316 		u32 freq = be32_to_cpu(pstate_freqs[i]);
317 		struct pstate_idx_revmap_data *revmap_data;
318 		unsigned int key;
319 
320 		pr_debug("PState id %d freq %d MHz\n", id, freq);
321 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
322 		powernv_freqs[i].driver_data = id & 0xFF;
323 
324 		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
325 		if (!revmap_data) {
326 			rc = -ENOMEM;
327 			goto out;
328 		}
329 
330 		revmap_data->pstate_id = id & 0xFF;
331 		revmap_data->cpufreq_table_idx = i;
332 		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
333 		hash_add(pstate_revmap, &revmap_data->hentry, key);
334 
335 		if (id == pstate_max)
336 			powernv_pstate_info.max = i;
337 		if (id == pstate_nominal)
338 			powernv_pstate_info.nominal = i;
339 		if (id == pstate_min)
340 			powernv_pstate_info.min = i;
341 
342 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
343 			int j;
344 
345 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
346 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
347 		}
348 	}
349 
350 	/* End of list marker entry */
351 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
352 
353 	of_node_put(power_mgt);
354 	return 0;
355 out:
356 	of_node_put(power_mgt);
357 	return rc;
358 }
359 
360 /* Returns the CPU frequency corresponding to the pstate_id. */
pstate_id_to_freq(u8 pstate_id)361 static unsigned int pstate_id_to_freq(u8 pstate_id)
362 {
363 	int i;
364 
365 	i = pstate_to_idx(pstate_id);
366 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
367 		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
368 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
369 		i = powernv_pstate_info.nominal;
370 	}
371 
372 	return powernv_freqs[i].frequency;
373 }
374 
375 /*
376  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
377  * the firmware
378  */
cpuinfo_nominal_freq_show(struct cpufreq_policy * policy,char * buf)379 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
380 					char *buf)
381 {
382 	return sprintf(buf, "%u\n",
383 		powernv_freqs[powernv_pstate_info.nominal].frequency);
384 }
385 
386 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
387 	__ATTR_RO(cpuinfo_nominal_freq);
388 
389 static struct freq_attr *powernv_cpu_freq_attr[] = {
390 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
391 	NULL,
392 };
393 
394 #define throttle_attr(name, member)					\
395 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
396 {									\
397 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
398 									\
399 	return sprintf(buf, "%u\n", chip->member);			\
400 }									\
401 									\
402 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
403 
404 throttle_attr(unthrottle, reason[NO_THROTTLE]);
405 throttle_attr(powercap, reason[POWERCAP]);
406 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
407 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
408 throttle_attr(overcurrent, reason[OVERCURRENT]);
409 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
410 throttle_attr(turbo_stat, throttle_turbo);
411 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
412 
413 static struct attribute *throttle_attrs[] = {
414 	&throttle_attr_unthrottle.attr,
415 	&throttle_attr_powercap.attr,
416 	&throttle_attr_overtemp.attr,
417 	&throttle_attr_supply_fault.attr,
418 	&throttle_attr_overcurrent.attr,
419 	&throttle_attr_occ_reset.attr,
420 	&throttle_attr_turbo_stat.attr,
421 	&throttle_attr_sub_turbo_stat.attr,
422 	NULL,
423 };
424 
425 static const struct attribute_group throttle_attr_grp = {
426 	.name	= "throttle_stats",
427 	.attrs	= throttle_attrs,
428 };
429 
430 /* Helper routines */
431 
432 /* Access helpers to power mgt SPR */
433 
get_pmspr(unsigned long sprn)434 static inline unsigned long get_pmspr(unsigned long sprn)
435 {
436 	switch (sprn) {
437 	case SPRN_PMCR:
438 		return mfspr(SPRN_PMCR);
439 
440 	case SPRN_PMICR:
441 		return mfspr(SPRN_PMICR);
442 
443 	case SPRN_PMSR:
444 		return mfspr(SPRN_PMSR);
445 	}
446 	BUG();
447 }
448 
set_pmspr(unsigned long sprn,unsigned long val)449 static inline void set_pmspr(unsigned long sprn, unsigned long val)
450 {
451 	switch (sprn) {
452 	case SPRN_PMCR:
453 		mtspr(SPRN_PMCR, val);
454 		return;
455 
456 	case SPRN_PMICR:
457 		mtspr(SPRN_PMICR, val);
458 		return;
459 	}
460 	BUG();
461 }
462 
463 /*
464  * Use objects of this type to query/update
465  * pstates on a remote CPU via smp_call_function.
466  */
467 struct powernv_smp_call_data {
468 	unsigned int freq;
469 	u8 pstate_id;
470 	u8 gpstate_id;
471 };
472 
473 /*
474  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
475  *
476  * Called via smp_call_function.
477  *
478  * Note: The caller of the smp_call_function should pass an argument of
479  * the type 'struct powernv_smp_call_data *' along with this function.
480  *
481  * The current frequency on this CPU will be returned via
482  * ((struct powernv_smp_call_data *)arg)->freq;
483  */
powernv_read_cpu_freq(void * arg)484 static void powernv_read_cpu_freq(void *arg)
485 {
486 	unsigned long pmspr_val;
487 	struct powernv_smp_call_data *freq_data = arg;
488 
489 	pmspr_val = get_pmspr(SPRN_PMSR);
490 	freq_data->pstate_id = extract_local_pstate(pmspr_val);
491 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
492 
493 	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
494 		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
495 		 freq_data->freq);
496 }
497 
498 /*
499  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
500  * firmware for CPU 'cpu'. This value is reported through the sysfs
501  * file cpuinfo_cur_freq.
502  */
powernv_cpufreq_get(unsigned int cpu)503 static unsigned int powernv_cpufreq_get(unsigned int cpu)
504 {
505 	struct powernv_smp_call_data freq_data;
506 
507 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
508 			&freq_data, 1);
509 
510 	return freq_data.freq;
511 }
512 
513 /*
514  * set_pstate: Sets the pstate on this CPU.
515  *
516  * This is called via an smp_call_function.
517  *
518  * The caller must ensure that freq_data is of the type
519  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
520  * on this CPU should be present in freq_data->pstate_id.
521  */
set_pstate(void * data)522 static void set_pstate(void *data)
523 {
524 	unsigned long val;
525 	struct powernv_smp_call_data *freq_data = data;
526 	unsigned long pstate_ul = freq_data->pstate_id;
527 	unsigned long gpstate_ul = freq_data->gpstate_id;
528 
529 	val = get_pmspr(SPRN_PMCR);
530 	val = val & 0x0000FFFFFFFFFFFFULL;
531 
532 	pstate_ul = pstate_ul & 0xFF;
533 	gpstate_ul = gpstate_ul & 0xFF;
534 
535 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
536 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
537 
538 	pr_debug("Setting cpu %d pmcr to %016lX\n",
539 			raw_smp_processor_id(), val);
540 	set_pmspr(SPRN_PMCR, val);
541 }
542 
543 /*
544  * get_nominal_index: Returns the index corresponding to the nominal
545  * pstate in the cpufreq table
546  */
get_nominal_index(void)547 static inline unsigned int get_nominal_index(void)
548 {
549 	return powernv_pstate_info.nominal;
550 }
551 
powernv_cpufreq_throttle_check(void * data)552 static void powernv_cpufreq_throttle_check(void *data)
553 {
554 	struct chip *chip;
555 	unsigned int cpu = smp_processor_id();
556 	unsigned long pmsr;
557 	u8 pmsr_pmax;
558 	unsigned int pmsr_pmax_idx;
559 
560 	pmsr = get_pmspr(SPRN_PMSR);
561 	chip = this_cpu_read(chip_info);
562 
563 	/* Check for Pmax Capping */
564 	pmsr_pmax = extract_max_pstate(pmsr);
565 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
566 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
567 		if (chip->throttled)
568 			goto next;
569 		chip->throttled = true;
570 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
571 			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
572 				     cpu, chip->id, pmsr_pmax,
573 				     idx_to_pstate(powernv_pstate_info.nominal));
574 			chip->throttle_sub_turbo++;
575 		} else {
576 			chip->throttle_turbo++;
577 		}
578 		trace_powernv_throttle(chip->id,
579 				      throttle_reason[chip->throttle_reason],
580 				      pmsr_pmax);
581 	} else if (chip->throttled) {
582 		chip->throttled = false;
583 		trace_powernv_throttle(chip->id,
584 				      throttle_reason[chip->throttle_reason],
585 				      pmsr_pmax);
586 	}
587 
588 	/* Check if Psafe_mode_active is set in PMSR. */
589 next:
590 	if (pmsr & PMSR_PSAFE_ENABLE) {
591 		throttled = true;
592 		pr_info("Pstate set to safe frequency\n");
593 	}
594 
595 	/* Check if SPR_EM_DISABLE is set in PMSR */
596 	if (pmsr & PMSR_SPR_EM_DISABLE) {
597 		throttled = true;
598 		pr_info("Frequency Control disabled from OS\n");
599 	}
600 
601 	if (throttled) {
602 		pr_info("PMSR = %16lx\n", pmsr);
603 		pr_warn("CPU Frequency could be throttled\n");
604 	}
605 }
606 
607 /**
608  * calc_global_pstate - Calculate global pstate
609  * @elapsed_time:		Elapsed time in milliseconds
610  * @local_pstate_idx:		New local pstate
611  * @highest_lpstate_idx:	pstate from which its ramping down
612  *
613  * Finds the appropriate global pstate based on the pstate from which its
614  * ramping down and the time elapsed in ramping down. It follows a quadratic
615  * equation which ensures that it reaches ramping down to pmin in 5sec.
616  */
calc_global_pstate(unsigned int elapsed_time,int highest_lpstate_idx,int local_pstate_idx)617 static inline int calc_global_pstate(unsigned int elapsed_time,
618 				     int highest_lpstate_idx,
619 				     int local_pstate_idx)
620 {
621 	int index_diff;
622 
623 	/*
624 	 * Using ramp_down_percent we get the percentage of rampdown
625 	 * that we are expecting to be dropping. Difference between
626 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
627 	 * number of how many pstates we will drop eventually by the end of
628 	 * 5 seconds, then just scale it get the number pstates to be dropped.
629 	 */
630 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
631 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
632 
633 	/* Ensure that global pstate is >= to local pstate */
634 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
635 		return local_pstate_idx;
636 	else
637 		return highest_lpstate_idx + index_diff;
638 }
639 
queue_gpstate_timer(struct global_pstate_info * gpstates)640 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
641 {
642 	unsigned int timer_interval;
643 
644 	/*
645 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
646 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
647 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
648 	 * seconds of ramp down time.
649 	 */
650 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
651 	     > MAX_RAMP_DOWN_TIME)
652 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
653 	else
654 		timer_interval = GPSTATE_TIMER_INTERVAL;
655 
656 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
657 }
658 
659 /**
660  * gpstate_timer_handler
661  *
662  * @t: Timer context used to fetch global pstate info struct
663  *
664  * This handler brings down the global pstate closer to the local pstate
665  * according quadratic equation. Queues a new timer if it is still not equal
666  * to local pstate
667  */
gpstate_timer_handler(struct timer_list * t)668 static void gpstate_timer_handler(struct timer_list *t)
669 {
670 	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
671 	struct cpufreq_policy *policy = gpstates->policy;
672 	int gpstate_idx, lpstate_idx;
673 	unsigned long val;
674 	unsigned int time_diff = jiffies_to_msecs(jiffies)
675 					- gpstates->last_sampled_time;
676 	struct powernv_smp_call_data freq_data;
677 
678 	if (!spin_trylock(&gpstates->gpstate_lock))
679 		return;
680 	/*
681 	 * If the timer has migrated to the different cpu then bring
682 	 * it back to one of the policy->cpus
683 	 */
684 	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
685 		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
686 		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
687 		spin_unlock(&gpstates->gpstate_lock);
688 		return;
689 	}
690 
691 	/*
692 	 * If PMCR was last updated was using fast_switch then
693 	 * We may have wrong in gpstate->last_lpstate_idx
694 	 * value. Hence, read from PMCR to get correct data.
695 	 */
696 	val = get_pmspr(SPRN_PMCR);
697 	freq_data.gpstate_id = extract_global_pstate(val);
698 	freq_data.pstate_id = extract_local_pstate(val);
699 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
700 		reset_gpstates(policy);
701 		spin_unlock(&gpstates->gpstate_lock);
702 		return;
703 	}
704 
705 	gpstates->last_sampled_time += time_diff;
706 	gpstates->elapsed_time += time_diff;
707 
708 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
709 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
710 		lpstate_idx = gpstate_idx;
711 		reset_gpstates(policy);
712 		gpstates->highest_lpstate_idx = gpstate_idx;
713 	} else {
714 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
715 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
716 						 gpstates->highest_lpstate_idx,
717 						 lpstate_idx);
718 	}
719 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
720 	gpstates->last_gpstate_idx = gpstate_idx;
721 	gpstates->last_lpstate_idx = lpstate_idx;
722 	/*
723 	 * If local pstate is equal to global pstate, rampdown is over
724 	 * So timer is not required to be queued.
725 	 */
726 	if (gpstate_idx != gpstates->last_lpstate_idx)
727 		queue_gpstate_timer(gpstates);
728 
729 	set_pstate(&freq_data);
730 	spin_unlock(&gpstates->gpstate_lock);
731 }
732 
733 /*
734  * powernv_cpufreq_target_index: Sets the frequency corresponding to
735  * the cpufreq table entry indexed by new_index on the cpus in the
736  * mask policy->cpus
737  */
powernv_cpufreq_target_index(struct cpufreq_policy * policy,unsigned int new_index)738 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
739 					unsigned int new_index)
740 {
741 	struct powernv_smp_call_data freq_data;
742 	unsigned int cur_msec, gpstate_idx;
743 	struct global_pstate_info *gpstates = policy->driver_data;
744 
745 	if (unlikely(rebooting) && new_index != get_nominal_index())
746 		return 0;
747 
748 	if (!throttled) {
749 		/* we don't want to be preempted while
750 		 * checking if the CPU frequency has been throttled
751 		 */
752 		preempt_disable();
753 		powernv_cpufreq_throttle_check(NULL);
754 		preempt_enable();
755 	}
756 
757 	cur_msec = jiffies_to_msecs(get_jiffies_64());
758 
759 	freq_data.pstate_id = idx_to_pstate(new_index);
760 	if (!gpstates) {
761 		freq_data.gpstate_id = freq_data.pstate_id;
762 		goto no_gpstate;
763 	}
764 
765 	spin_lock(&gpstates->gpstate_lock);
766 
767 	if (!gpstates->last_sampled_time) {
768 		gpstate_idx = new_index;
769 		gpstates->highest_lpstate_idx = new_index;
770 		goto gpstates_done;
771 	}
772 
773 	if (gpstates->last_gpstate_idx < new_index) {
774 		gpstates->elapsed_time += cur_msec -
775 						 gpstates->last_sampled_time;
776 
777 		/*
778 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
779 		 * we should be resetting all global pstate related data. Set it
780 		 * equal to local pstate to start fresh.
781 		 */
782 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
783 			reset_gpstates(policy);
784 			gpstates->highest_lpstate_idx = new_index;
785 			gpstate_idx = new_index;
786 		} else {
787 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
788 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
789 							 gpstates->highest_lpstate_idx,
790 							 new_index);
791 		}
792 	} else {
793 		reset_gpstates(policy);
794 		gpstates->highest_lpstate_idx = new_index;
795 		gpstate_idx = new_index;
796 	}
797 
798 	/*
799 	 * If local pstate is equal to global pstate, rampdown is over
800 	 * So timer is not required to be queued.
801 	 */
802 	if (gpstate_idx != new_index)
803 		queue_gpstate_timer(gpstates);
804 	else
805 		timer_delete_sync(&gpstates->timer);
806 
807 gpstates_done:
808 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
809 	gpstates->last_sampled_time = cur_msec;
810 	gpstates->last_gpstate_idx = gpstate_idx;
811 	gpstates->last_lpstate_idx = new_index;
812 
813 	spin_unlock(&gpstates->gpstate_lock);
814 
815 no_gpstate:
816 	/*
817 	 * Use smp_call_function to send IPI and execute the
818 	 * mtspr on target CPU.  We could do that without IPI
819 	 * if current CPU is within policy->cpus (core)
820 	 */
821 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
822 	return 0;
823 }
824 
powernv_cpufreq_cpu_init(struct cpufreq_policy * policy)825 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
826 {
827 	int base, i;
828 	struct kernfs_node *kn;
829 	struct global_pstate_info *gpstates;
830 
831 	base = cpu_first_thread_sibling(policy->cpu);
832 
833 	for (i = 0; i < threads_per_core; i++)
834 		cpumask_set_cpu(base + i, policy->cpus);
835 
836 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
837 	if (!kn) {
838 		int ret;
839 
840 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
841 		if (ret) {
842 			pr_info("Failed to create throttle stats directory for cpu %d\n",
843 				policy->cpu);
844 			return ret;
845 		}
846 	} else {
847 		kernfs_put(kn);
848 	}
849 
850 	policy->freq_table = powernv_freqs;
851 	policy->fast_switch_possible = true;
852 
853 	if (pvr_version_is(PVR_POWER9))
854 		return 0;
855 
856 	/* Initialise Gpstate ramp-down timer only on POWER8 */
857 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
858 	if (!gpstates)
859 		return -ENOMEM;
860 
861 	policy->driver_data = gpstates;
862 
863 	/* initialize timer */
864 	gpstates->policy = policy;
865 	timer_setup(&gpstates->timer, gpstate_timer_handler,
866 		    TIMER_PINNED | TIMER_DEFERRABLE);
867 	gpstates->timer.expires = jiffies +
868 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
869 	spin_lock_init(&gpstates->gpstate_lock);
870 
871 	return 0;
872 }
873 
powernv_cpufreq_cpu_exit(struct cpufreq_policy * policy)874 static void powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
875 {
876 	struct powernv_smp_call_data freq_data;
877 	struct global_pstate_info *gpstates = policy->driver_data;
878 
879 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
880 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
881 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
882 	if (gpstates)
883 		timer_delete_sync(&gpstates->timer);
884 
885 	kfree(policy->driver_data);
886 }
887 
powernv_cpufreq_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)888 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
889 				unsigned long action, void *unused)
890 {
891 	int cpu;
892 	struct cpufreq_policy *cpu_policy;
893 
894 	rebooting = true;
895 	for_each_online_cpu(cpu) {
896 		cpu_policy = cpufreq_cpu_get(cpu);
897 		if (!cpu_policy)
898 			continue;
899 		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
900 		cpufreq_cpu_put(cpu_policy);
901 	}
902 
903 	return NOTIFY_DONE;
904 }
905 
906 static struct notifier_block powernv_cpufreq_reboot_nb = {
907 	.notifier_call = powernv_cpufreq_reboot_notifier,
908 };
909 
powernv_cpufreq_work_fn(struct work_struct * work)910 static void powernv_cpufreq_work_fn(struct work_struct *work)
911 {
912 	struct chip *chip = container_of(work, struct chip, throttle);
913 	struct cpufreq_policy *policy;
914 	unsigned int cpu;
915 	cpumask_t mask;
916 
917 	cpus_read_lock();
918 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
919 	smp_call_function_any(&mask,
920 			      powernv_cpufreq_throttle_check, NULL, 0);
921 
922 	if (!chip->restore)
923 		goto out;
924 
925 	chip->restore = false;
926 	for_each_cpu(cpu, &mask) {
927 		int index;
928 
929 		policy = cpufreq_cpu_get(cpu);
930 		if (!policy)
931 			continue;
932 		index = cpufreq_table_find_index_c(policy, policy->cur, false);
933 		powernv_cpufreq_target_index(policy, index);
934 		cpumask_andnot(&mask, &mask, policy->cpus);
935 		cpufreq_cpu_put(policy);
936 	}
937 out:
938 	cpus_read_unlock();
939 }
940 
powernv_cpufreq_occ_msg(struct notifier_block * nb,unsigned long msg_type,void * _msg)941 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
942 				   unsigned long msg_type, void *_msg)
943 {
944 	struct opal_msg *msg = _msg;
945 	struct opal_occ_msg omsg;
946 	int i;
947 
948 	if (msg_type != OPAL_MSG_OCC)
949 		return 0;
950 
951 	omsg.type = be64_to_cpu(msg->params[0]);
952 
953 	switch (omsg.type) {
954 	case OCC_RESET:
955 		occ_reset = true;
956 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
957 		/*
958 		 * powernv_cpufreq_throttle_check() is called in
959 		 * target() callback which can detect the throttle state
960 		 * for governors like ondemand.
961 		 * But static governors will not call target() often thus
962 		 * report throttling here.
963 		 */
964 		if (!throttled) {
965 			throttled = true;
966 			pr_warn("CPU frequency is throttled for duration\n");
967 		}
968 
969 		break;
970 	case OCC_LOAD:
971 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
972 		break;
973 	case OCC_THROTTLE:
974 		omsg.chip = be64_to_cpu(msg->params[1]);
975 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
976 
977 		if (occ_reset) {
978 			occ_reset = false;
979 			throttled = false;
980 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
981 
982 			for (i = 0; i < nr_chips; i++) {
983 				chips[i].restore = true;
984 				schedule_work(&chips[i].throttle);
985 			}
986 
987 			return 0;
988 		}
989 
990 		for (i = 0; i < nr_chips; i++)
991 			if (chips[i].id == omsg.chip)
992 				break;
993 
994 		if (omsg.throttle_status >= 0 &&
995 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
996 			chips[i].throttle_reason = omsg.throttle_status;
997 			chips[i].reason[omsg.throttle_status]++;
998 		}
999 
1000 		if (!omsg.throttle_status)
1001 			chips[i].restore = true;
1002 
1003 		schedule_work(&chips[i].throttle);
1004 	}
1005 	return 0;
1006 }
1007 
1008 static struct notifier_block powernv_cpufreq_opal_nb = {
1009 	.notifier_call	= powernv_cpufreq_occ_msg,
1010 	.next		= NULL,
1011 	.priority	= 0,
1012 };
1013 
powernv_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1014 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1015 					unsigned int target_freq)
1016 {
1017 	int index;
1018 	struct powernv_smp_call_data freq_data;
1019 
1020 	index = cpufreq_table_find_index_dl(policy, target_freq, false);
1021 	freq_data.pstate_id = powernv_freqs[index].driver_data;
1022 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1023 	set_pstate(&freq_data);
1024 
1025 	return powernv_freqs[index].frequency;
1026 }
1027 
1028 static struct cpufreq_driver powernv_cpufreq_driver = {
1029 	.name		= "powernv-cpufreq",
1030 	.flags		= CPUFREQ_CONST_LOOPS,
1031 	.init		= powernv_cpufreq_cpu_init,
1032 	.exit		= powernv_cpufreq_cpu_exit,
1033 	.verify		= cpufreq_generic_frequency_table_verify,
1034 	.target_index	= powernv_cpufreq_target_index,
1035 	.fast_switch	= powernv_fast_switch,
1036 	.get		= powernv_cpufreq_get,
1037 	.attr		= powernv_cpu_freq_attr,
1038 };
1039 
init_chip_info(void)1040 static int init_chip_info(void)
1041 {
1042 	unsigned int *chip;
1043 	unsigned int cpu, i;
1044 	unsigned int prev_chip_id = UINT_MAX;
1045 	cpumask_t *chip_cpu_mask;
1046 	int ret = 0;
1047 
1048 	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1049 	if (!chip)
1050 		return -ENOMEM;
1051 
1052 	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1053 	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1054 	if (!chip_cpu_mask) {
1055 		ret = -ENOMEM;
1056 		goto free_and_return;
1057 	}
1058 
1059 	for_each_possible_cpu(cpu) {
1060 		unsigned int id = cpu_to_chip_id(cpu);
1061 
1062 		if (prev_chip_id != id) {
1063 			prev_chip_id = id;
1064 			chip[nr_chips++] = id;
1065 		}
1066 		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1067 	}
1068 
1069 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1070 	if (!chips) {
1071 		ret = -ENOMEM;
1072 		goto out_free_chip_cpu_mask;
1073 	}
1074 
1075 	for (i = 0; i < nr_chips; i++) {
1076 		chips[i].id = chip[i];
1077 		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1078 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1079 		for_each_cpu(cpu, &chips[i].mask)
1080 			per_cpu(chip_info, cpu) =  &chips[i];
1081 	}
1082 
1083 out_free_chip_cpu_mask:
1084 	kfree(chip_cpu_mask);
1085 free_and_return:
1086 	kfree(chip);
1087 	return ret;
1088 }
1089 
clean_chip_info(void)1090 static inline void clean_chip_info(void)
1091 {
1092 	int i;
1093 
1094 	/* flush any pending work items */
1095 	if (chips)
1096 		for (i = 0; i < nr_chips; i++)
1097 			cancel_work_sync(&chips[i].throttle);
1098 	kfree(chips);
1099 }
1100 
unregister_all_notifiers(void)1101 static inline void unregister_all_notifiers(void)
1102 {
1103 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1104 					 &powernv_cpufreq_opal_nb);
1105 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1106 }
1107 
powernv_cpufreq_init(void)1108 static int __init powernv_cpufreq_init(void)
1109 {
1110 	int rc = 0;
1111 
1112 	/* Don't probe on pseries (guest) platforms */
1113 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1114 		return -ENODEV;
1115 
1116 	/* Discover pstates from device tree and init */
1117 	rc = init_powernv_pstates();
1118 	if (rc)
1119 		goto out;
1120 
1121 	/* Populate chip info */
1122 	rc = init_chip_info();
1123 	if (rc)
1124 		goto out;
1125 
1126 	if (powernv_pstate_info.wof_enabled)
1127 		powernv_cpufreq_driver.set_boost = cpufreq_boost_set_sw;
1128 
1129 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1130 	if (rc) {
1131 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1132 		goto cleanup;
1133 	}
1134 
1135 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1136 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1137 
1138 	return 0;
1139 cleanup:
1140 	clean_chip_info();
1141 out:
1142 	pr_info("Platform driver disabled. System does not support PState control\n");
1143 	return rc;
1144 }
1145 module_init(powernv_cpufreq_init);
1146 
powernv_cpufreq_exit(void)1147 static void __exit powernv_cpufreq_exit(void)
1148 {
1149 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1150 	unregister_all_notifiers();
1151 	clean_chip_info();
1152 }
1153 module_exit(powernv_cpufreq_exit);
1154 
1155 MODULE_DESCRIPTION("cpufreq driver for IBM/OpenPOWER powernv systems");
1156 MODULE_LICENSE("GPL");
1157 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1158