1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/types.h>
26 #include <sys/systm.h>
27 #include <sys/archsystm.h>
28 #include <sys/t_lock.h>
29 #include <sys/uadmin.h>
30 #include <sys/panic.h>
31 #include <sys/reboot.h>
32 #include <sys/autoconf.h>
33 #include <sys/machsystm.h>
34 #include <sys/promif.h>
35 #include <sys/membar.h>
36 #include <vm/hat_sfmmu.h>
37 #include <sys/cpu_module.h>
38 #include <sys/cpu_sgnblk_defs.h>
39 #include <sys/intreg.h>
40 #include <sys/consdev.h>
41 #include <sys/kdi_impl.h>
42 #include <sys/traptrace.h>
43 #include <sys/hypervisor_api.h>
44 #include <sys/vmsystm.h>
45 #include <sys/dtrace.h>
46 #include <sys/xc_impl.h>
47 #include <sys/callb.h>
48 #include <sys/mdesc.h>
49 #include <sys/mach_descrip.h>
50 #include <sys/wdt.h>
51 #include <sys/soft_state.h>
52 #include <sys/promimpl.h>
53 #include <sys/hsvc.h>
54 #include <sys/ldoms.h>
55 #include <sys/kldc.h>
56 #include <sys/clock_impl.h>
57 #include <sys/suspend.h>
58 #include <sys/dumphdr.h>
59
60 /*
61 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
62 * A value of NULL indicates that this area is not configured.
63 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
64 */
65
66 caddr_t hvdump_buf_va;
67 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
68 static uint64_t hvdump_buf_pa;
69
70 u_longlong_t panic_tick;
71
72 extern u_longlong_t gettick();
73 static void reboot_machine(char *);
74 static void update_hvdump_buffer(void);
75
76 /*
77 * For xt_sync synchronization.
78 */
79 extern uint64_t xc_tick_limit;
80 extern uint64_t xc_tick_jump_limit;
81 extern uint64_t xc_sync_tick_limit;
82
83 /*
84 * Bring in the cpc PIL_15 handler for panic_enter_hw.
85 */
86 extern uint64_t cpc_level15_inum;
87
88 /*
89 * We keep our own copies, used for cache flushing, because we can be called
90 * before cpu_fiximpl().
91 */
92 static int kdi_dcache_size;
93 static int kdi_dcache_linesize;
94 static int kdi_icache_size;
95 static int kdi_icache_linesize;
96
97 /*
98 * Assembly support for generic modules in sun4v/ml/mach_xc.s
99 */
100 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
101 extern void kdi_flush_idcache(int, int, int, int);
102 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
103
104
105 #define BOOT_CMD_MAX_LEN 256 /* power of 2 & 16-byte aligned */
106 #define BOOT_CMD_BASE "boot "
107
108 /*
109 * In an LDoms system we do not save the user's boot args in NVRAM
110 * as is done on legacy systems. Instead, we format and send a
111 * 'reboot-command' variable to the variable service. The contents
112 * of the variable are retrieved by OBP and used verbatim for
113 * the next boot.
114 */
115 static void
store_boot_cmd(char * args,boolean_t add_boot_str,boolean_t invoke_cb)116 store_boot_cmd(char *args, boolean_t add_boot_str, boolean_t invoke_cb)
117 {
118 static char *cmd_buf;
119 size_t len = 1;
120 pnode_t node;
121 size_t base_len = 0;
122 size_t args_len;
123 size_t args_max;
124 uint64_t majornum;
125 uint64_t minornum;
126 uint64_t buf_pa;
127 uint64_t status;
128
129 status = hsvc_version(HSVC_GROUP_REBOOT_DATA, &majornum, &minornum);
130
131 /*
132 * invoke_cb is set to true when we are in a normal shutdown sequence
133 * (interrupts are not blocked, the system is not panicking or being
134 * suspended). In that case, we can use any method to store the boot
135 * command. Otherwise storing the boot command can not be done using
136 * a domain service because it can not be safely used in that context.
137 */
138 if ((status != H_EOK) && (invoke_cb == B_FALSE))
139 return;
140
141 cmd_buf = contig_mem_alloc(BOOT_CMD_MAX_LEN);
142 if (cmd_buf == NULL)
143 return;
144
145 if (add_boot_str) {
146 (void) strcpy(cmd_buf, BOOT_CMD_BASE);
147
148 base_len = strlen(BOOT_CMD_BASE);
149 len = base_len + 1;
150 }
151
152 if (args != NULL) {
153 args_len = strlen(args);
154 args_max = BOOT_CMD_MAX_LEN - len;
155
156 if (args_len > args_max) {
157 cmn_err(CE_WARN, "Reboot command too long (%ld), "
158 "truncating command arguments", len + args_len);
159
160 args_len = args_max;
161 }
162
163 len += args_len;
164 (void) strncpy(&cmd_buf[base_len], args, args_len);
165 }
166
167 /*
168 * Save the reboot-command with HV, if reboot data group is
169 * negotiated. Else save the reboot-command via vars-config domain
170 * services on the SP.
171 */
172 if (status == H_EOK) {
173 buf_pa = va_to_pa(cmd_buf);
174 status = hv_reboot_data_set(buf_pa, len);
175 if (status != H_EOK) {
176 cmn_err(CE_WARN, "Unable to store boot command for "
177 "use on reboot with HV: error = 0x%lx", status);
178 }
179 } else {
180 node = prom_optionsnode();
181 if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
182 prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
183 cmn_err(CE_WARN, "Unable to store boot command for "
184 "use on reboot");
185 }
186 }
187
188
189 /*
190 * Machine dependent code to reboot.
191 *
192 * "bootstr", when non-null, points to a string to be used as the
193 * argument string when rebooting.
194 *
195 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
196 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
197 * we are in a normal shutdown sequence (interrupts are not blocked, the
198 * system is not panic'ing or being suspended).
199 */
200 /*ARGSUSED*/
201 void
mdboot(int cmd,int fcn,char * bootstr,boolean_t invoke_cb)202 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
203 {
204 extern void pm_cfb_check_and_powerup(void);
205
206 /*
207 * XXX - rconsvp is set to NULL to ensure that output messages
208 * are sent to the underlying "hardware" device using the
209 * monitor's printf routine since we are in the process of
210 * either rebooting or halting the machine.
211 */
212 rconsvp = NULL;
213
214 switch (fcn) {
215 case AD_HALT:
216 /*
217 * LDoms: By storing a no-op command
218 * in the 'reboot-command' variable we cause OBP
219 * to ignore the setting of 'auto-boot?' after
220 * it completes the reset. This causes the system
221 * to stop at the ok prompt.
222 */
223 if (domaining_enabled())
224 store_boot_cmd("noop", B_FALSE, invoke_cb);
225 break;
226
227 case AD_POWEROFF:
228 break;
229
230 default:
231 if (bootstr == NULL) {
232 switch (fcn) {
233
234 case AD_FASTREBOOT:
235 case AD_BOOT:
236 bootstr = "";
237 break;
238
239 case AD_IBOOT:
240 bootstr = "-a";
241 break;
242
243 case AD_SBOOT:
244 bootstr = "-s";
245 break;
246
247 case AD_SIBOOT:
248 bootstr = "-sa";
249 break;
250 default:
251 cmn_err(CE_WARN,
252 "mdboot: invalid function %d", fcn);
253 bootstr = "";
254 break;
255 }
256 }
257
258 /*
259 * If LDoms is running, we must save the boot string
260 * before we enter restricted mode. This is possible
261 * only if we are not being called from panic.
262 */
263 if (domaining_enabled())
264 store_boot_cmd(bootstr, B_TRUE, invoke_cb);
265 }
266
267 /*
268 * At a high interrupt level we can't:
269 * 1) bring up the console
270 * or
271 * 2) wait for pending interrupts prior to redistribution
272 * to the current CPU
273 *
274 * so we do them now.
275 */
276 pm_cfb_check_and_powerup();
277
278 /* make sure there are no more changes to the device tree */
279 devtree_freeze();
280
281 if (invoke_cb)
282 (void) callb_execute_class(CB_CL_MDBOOT, 0);
283
284 /*
285 * Clear any unresolved UEs from memory.
286 */
287 page_retire_mdboot();
288
289 /*
290 * stop other cpus which also raise our priority. since there is only
291 * one active cpu after this, and our priority will be too high
292 * for us to be preempted, we're essentially single threaded
293 * from here on out.
294 */
295 stop_other_cpus();
296
297 /*
298 * try and reset leaf devices. reset_leaves() should only
299 * be called when there are no other threads that could be
300 * accessing devices
301 */
302 reset_leaves();
303
304 watchdog_clear();
305
306 if (fcn == AD_HALT) {
307 mach_set_soft_state(SIS_TRANSITION,
308 &SOLARIS_SOFT_STATE_HALT_MSG);
309 halt((char *)NULL);
310 } else if (fcn == AD_POWEROFF) {
311 mach_set_soft_state(SIS_TRANSITION,
312 &SOLARIS_SOFT_STATE_POWER_MSG);
313 power_down(NULL);
314 } else {
315 mach_set_soft_state(SIS_TRANSITION,
316 &SOLARIS_SOFT_STATE_REBOOT_MSG);
317 reboot_machine(bootstr);
318 }
319 /* MAYBE REACHED */
320 }
321
322 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
323 /*ARGSUSED*/
324 void
mdpreboot(int cmd,int fcn,char * bootstr)325 mdpreboot(int cmd, int fcn, char *bootstr)
326 {
327 }
328
329 /*
330 * Halt the machine and then reboot with the device
331 * and arguments specified in bootstr.
332 */
333 static void
reboot_machine(char * bootstr)334 reboot_machine(char *bootstr)
335 {
336 flush_windows();
337 stop_other_cpus(); /* send stop signal to other CPUs */
338 prom_printf("rebooting...\n");
339 /*
340 * For platforms that use CPU signatures, we
341 * need to set the signature block to OS and
342 * the state to exiting for all the processors.
343 */
344 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
345 prom_reboot(bootstr);
346 /*NOTREACHED*/
347 }
348
349 /*
350 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
351 * Once in panic_idle() they raise spl, record their location, and spin.
352 */
353 static void
panic_idle(void)354 panic_idle(void)
355 {
356 (void) spl7();
357
358 debug_flush_windows();
359 (void) setjmp(&curthread->t_pcb);
360
361 CPU->cpu_m.in_prom = 1;
362 membar_stld();
363
364 dumpsys_helper();
365
366 for (;;)
367 ;
368 }
369
370 /*
371 * Force the other CPUs to trap into panic_idle(), and then remove them
372 * from the cpu_ready_set so they will no longer receive cross-calls.
373 */
374 /*ARGSUSED*/
375 void
panic_stopcpus(cpu_t * cp,kthread_t * t,int spl)376 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
377 {
378 cpuset_t cps;
379 int i;
380
381 (void) splzs();
382 CPUSET_ALL_BUT(cps, cp->cpu_id);
383 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, 0);
384
385 for (i = 0; i < NCPU; i++) {
386 if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
387 int ntries = 0x10000;
388
389 while (!cpu[i]->cpu_m.in_prom && ntries) {
390 DELAY(50);
391 ntries--;
392 }
393
394 if (!cpu[i]->cpu_m.in_prom)
395 printf("panic: failed to stop cpu%d\n", i);
396
397 cpu[i]->cpu_flags &= ~CPU_READY;
398 cpu[i]->cpu_flags |= CPU_QUIESCED;
399 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
400 }
401 }
402 }
403
404 /*
405 * Platform callback following each entry to panicsys(). If we've panicked at
406 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so,
407 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic
408 * was made and so we re-enqueue an interrupt request structure to allow
409 * further level 14 interrupts to be processed once we lower PIL. This allows
410 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
411 *
412 * In case we panic at level 15, ensure that the cpc handler has been
413 * reinstalled otherwise we could run the risk of hitting a missing interrupt
414 * handler when this thread drops PIL and the cpc counter overflows.
415 */
416 void
panic_enter_hw(int spl)417 panic_enter_hw(int spl)
418 {
419 uint_t opstate;
420
421 if (!panic_tick) {
422 panic_tick = gettick();
423 if (mach_htraptrace_enable) {
424 uint64_t prev_freeze;
425
426 /* there are no possible error codes for this hcall */
427 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
428 &prev_freeze);
429 }
430 #ifdef TRAPTRACE
431 TRAPTRACE_FREEZE;
432 #endif
433 }
434
435 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
436
437 if (spl == ipltospl(PIL_14)) {
438 opstate = disable_vec_intr();
439
440 if (curthread->t_panic_trap != NULL) {
441 tickcmpr_disable();
442 intr_dequeue_req(PIL_14, cbe_level14_inum);
443 } else {
444 if (!tickcmpr_disabled())
445 intr_enqueue_req(PIL_14, cbe_level14_inum);
446 /*
447 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
448 * and SOFTINT<16> (STICK_INT) to indicate
449 * that the current level 14 has been serviced.
450 */
451 wr_clr_softint((1 << PIL_14) |
452 TICK_INT_MASK | STICK_INT_MASK);
453 }
454
455 enable_vec_intr(opstate);
456 } else if (spl == ipltospl(PIL_15)) {
457 opstate = disable_vec_intr();
458 intr_enqueue_req(PIL_15, cpc_level15_inum);
459 wr_clr_softint(1 << PIL_15);
460 enable_vec_intr(opstate);
461 }
462 }
463
464 /*
465 * Miscellaneous hardware-specific code to execute after panicstr is set
466 * by the panic code: we also print and record PTL1 panic information here.
467 */
468 /*ARGSUSED*/
469 void
panic_quiesce_hw(panic_data_t * pdp)470 panic_quiesce_hw(panic_data_t *pdp)
471 {
472 extern uint_t getpstate(void);
473 extern void setpstate(uint_t);
474
475 /*
476 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
477 */
478 if (!panic_tick) {
479 panic_tick = gettick();
480 if (mach_htraptrace_enable) {
481 uint64_t prev_freeze;
482
483 /* there are no possible error codes for this hcall */
484 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
485 &prev_freeze);
486 }
487 #ifdef TRAPTRACE
488 TRAPTRACE_FREEZE;
489 #endif
490 }
491 /*
492 * For Platforms that use CPU signatures, we
493 * need to set the signature block to OS, the state to
494 * exiting, and the substate to panic for all the processors.
495 */
496 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
497
498 update_hvdump_buffer();
499
500 /*
501 * Disable further ECC errors from the bus nexus.
502 */
503 (void) bus_func_invoke(BF_TYPE_ERRDIS);
504
505 /*
506 * Redirect all interrupts to the current CPU.
507 */
508 intr_redist_all_cpus_shutdown();
509
510 /*
511 * This call exists solely to support dumps to network
512 * devices after sync from OBP.
513 *
514 * If we came here via the sync callback, then on some
515 * platforms, interrupts may have arrived while we were
516 * stopped in OBP. OBP will arrange for those interrupts to
517 * be redelivered if you say "go", but not if you invoke a
518 * client callback like 'sync'. For some dump devices
519 * (network swap devices), we need interrupts to be
520 * delivered in order to dump, so we have to call the bus
521 * nexus driver to reset the interrupt state machines.
522 */
523 (void) bus_func_invoke(BF_TYPE_RESINTR);
524
525 setpstate(getpstate() | PSTATE_IE);
526 }
527
528 /*
529 * Platforms that use CPU signatures need to set the signature block to OS and
530 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
531 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
532 * reboot the machine if the dump never completes.
533 */
534 /*ARGSUSED*/
535 void
panic_dump_hw(int spl)536 panic_dump_hw(int spl)
537 {
538 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
539 }
540
541 /*
542 * for ptl1_panic
543 */
544 void
ptl1_init_cpu(struct cpu * cpu)545 ptl1_init_cpu(struct cpu *cpu)
546 {
547 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
548
549 /*CONSTCOND*/
550 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
551 panic("ptl1_init_cpu: not enough space left for ptl1_panic "
552 "stack, sizeof (struct cpu) = %lu",
553 (unsigned long)sizeof (struct cpu));
554 }
555
556 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
557 cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
558 }
559
560 void
ptl1_panic_handler(ptl1_state_t * pstate)561 ptl1_panic_handler(ptl1_state_t *pstate)
562 {
563 static const char *ptl1_reasons[] = {
564 #ifdef PTL1_PANIC_DEBUG
565 "trap for debug purpose", /* PTL1_BAD_DEBUG */
566 #else
567 "unknown trap", /* PTL1_BAD_DEBUG */
568 #endif
569 "register window trap", /* PTL1_BAD_WTRAP */
570 "kernel MMU miss", /* PTL1_BAD_KMISS */
571 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */
572 "ISM MMU miss", /* PTL1_BAD_ISM */
573 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */
574 "kernel trap handler state", /* PTL1_BAD_TRAP */
575 "floating point trap", /* PTL1_BAD_FPTRAP */
576 #ifdef DEBUG
577 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */
578 #else
579 "unknown trap", /* PTL1_BAD_INTR_VEC */
580 #endif
581 #ifdef TRAPTRACE
582 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */
583 #else
584 "unknown trap", /* PTL1_BAD_TRACE_PTR */
585 #endif
586 "stack overflow", /* PTL1_BAD_STACK */
587 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */
588 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */
589 "CPU ECC error loop", /* PTL1_BAD_ECC */
590 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
591 "unexpected global level(%gl)", /* PTL1_BAD_GL */
592 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */
593 "unexpected RED mode trap", /* PTL1_BAD_RED */
594 "return value EINVAL from hcall: "\
595 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
596 "return value ENOMAP from hcall: "\
597 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
598 "error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */
599 "missing shared TSB" /* PTL1_NO_SCDTSB8K */
600 };
601
602 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
603 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
604 struct panic_trap_info ti = { 0 };
605
606 /*
607 * Use trap_info for a place holder to call panic_savetrap() and
608 * panic_showtrap() to save and print out ptl1_panic information.
609 */
610 if (curthread->t_panic_trap == NULL)
611 curthread->t_panic_trap = &ti;
612
613 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
614 panic("bad %s at TL %u", ptl1_reasons[reason], tl);
615 else
616 panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
617 }
618
619 void
clear_watchdog_on_exit(void)620 clear_watchdog_on_exit(void)
621 {
622 if (watchdog_enabled && watchdog_activated) {
623 prom_printf("Debugging requested; hardware watchdog "
624 "suspended.\n");
625 (void) watchdog_suspend();
626 }
627 }
628
629 /*
630 * Restore the watchdog timer when returning from a debugger
631 * after a panic or L1-A and resume watchdog pat.
632 */
633 void
restore_watchdog_on_entry()634 restore_watchdog_on_entry()
635 {
636 watchdog_resume();
637 }
638
639 int
kdi_watchdog_disable(void)640 kdi_watchdog_disable(void)
641 {
642 watchdog_suspend();
643
644 return (0);
645 }
646
647 void
kdi_watchdog_restore(void)648 kdi_watchdog_restore(void)
649 {
650 watchdog_resume();
651 }
652
653 void
mach_dump_buffer_init(void)654 mach_dump_buffer_init(void)
655 {
656 uint64_t ret, minsize = 0;
657
658 if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
659 hvdump_buf_sz = HVDUMP_SIZE_MAX;
660
661 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
662 if (hvdump_buf_va == NULL)
663 return;
664
665 hvdump_buf_pa = va_to_pa(hvdump_buf_va);
666
667 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
668 &minsize);
669
670 if (ret != H_EOK) {
671 contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
672 hvdump_buf_va = NULL;
673 cmn_err(CE_NOTE, "!Error in setting up hvstate"
674 "dump buffer. Error = 0x%lx, size = 0x%lx,"
675 "buf_pa = 0x%lx", ret, hvdump_buf_sz,
676 hvdump_buf_pa);
677
678 if (ret == H_EINVAL) {
679 cmn_err(CE_NOTE, "!Buffer size too small."
680 "Available buffer size = 0x%lx,"
681 "Minimum buffer size required = 0x%lx",
682 hvdump_buf_sz, minsize);
683 }
684 }
685 }
686
687
688 static void
update_hvdump_buffer(void)689 update_hvdump_buffer(void)
690 {
691 uint64_t ret, dummy_val;
692
693 if (hvdump_buf_va == NULL)
694 return;
695
696 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
697 &dummy_val);
698 if (ret != H_EOK) {
699 cmn_err(CE_NOTE, "!Cannot update hvstate dump"
700 "buffer. Error = 0x%lx", ret);
701 }
702 }
703
704
705 static int
getintprop(pnode_t node,char * name,int deflt)706 getintprop(pnode_t node, char *name, int deflt)
707 {
708 int value;
709
710 switch (prom_getproplen(node, name)) {
711 case 0:
712 value = 1; /* boolean properties */
713 break;
714
715 case sizeof (int):
716 (void) prom_getprop(node, name, (caddr_t)&value);
717 break;
718
719 default:
720 value = deflt;
721 break;
722 }
723
724 return (value);
725 }
726
727 /*
728 * Called by setcpudelay
729 */
730 void
cpu_init_tick_freq(void)731 cpu_init_tick_freq(void)
732 {
733 md_t *mdp;
734 mde_cookie_t rootnode;
735 int listsz;
736 mde_cookie_t *listp = NULL;
737 int num_nodes;
738 uint64_t stick_prop;
739
740 if (broken_md_flag) {
741 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
742 return;
743 }
744
745 if ((mdp = md_get_handle()) == NULL)
746 panic("stick_frequency property not found in MD");
747
748 rootnode = md_root_node(mdp);
749 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
750
751 num_nodes = md_node_count(mdp);
752
753 ASSERT(num_nodes > 0);
754 listsz = num_nodes * sizeof (mde_cookie_t);
755 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
756
757 if (listp == NULL)
758 panic("cannot allocate list for MD properties");
759
760 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
761 md_find_name(mdp, "fwd"), listp);
762
763 ASSERT(num_nodes == 1);
764
765 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
766 panic("stick_frequency property not found in MD");
767
768 sys_tick_freq = stick_prop;
769
770 prom_free((caddr_t)listp, listsz);
771 (void) md_fini_handle(mdp);
772 }
773
774 int shipit(int n, uint64_t cpu_list_ra);
775
776 #ifdef DEBUG
777 #define SEND_MONDO_STATS 1
778 #endif
779
780 #ifdef SEND_MONDO_STATS
781 uint32_t x_one_stimes[64];
782 uint32_t x_one_ltimes[16];
783 uint32_t x_set_stimes[64];
784 uint32_t x_set_ltimes[16];
785 uint32_t x_set_cpus[NCPU];
786 #endif
787
788 void
send_one_mondo(int cpuid)789 send_one_mondo(int cpuid)
790 {
791 int retries, stat;
792 uint64_t starttick, endtick, tick, lasttick;
793 struct machcpu *mcpup = &(CPU->cpu_m);
794
795 CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
796 starttick = lasttick = gettick();
797 mcpup->cpu_list[0] = (uint16_t)cpuid;
798 stat = shipit(1, mcpup->cpu_list_ra);
799 endtick = starttick + xc_tick_limit;
800 retries = 0;
801 while (stat != H_EOK) {
802 if (stat != H_EWOULDBLOCK) {
803 if (panic_quiesce)
804 return;
805 if (stat == H_ECPUERROR)
806 cmn_err(CE_PANIC, "send_one_mondo: "
807 "cpuid: 0x%x has been marked in "
808 "error", cpuid);
809 else
810 cmn_err(CE_PANIC, "send_one_mondo: "
811 "unexpected hypervisor error 0x%x "
812 "while sending a mondo to cpuid: "
813 "0x%x", stat, cpuid);
814 }
815 tick = gettick();
816 /*
817 * If there is a big jump between the current tick
818 * count and lasttick, we have probably hit a break
819 * point. Adjust endtick accordingly to avoid panic.
820 */
821 if (tick > (lasttick + xc_tick_jump_limit))
822 endtick += (tick - lasttick);
823 lasttick = tick;
824 if (tick > endtick) {
825 if (panic_quiesce)
826 return;
827 cmn_err(CE_PANIC, "send mondo timeout "
828 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
829 cpuid, retries, stat);
830 }
831 drv_usecwait(1);
832 stat = shipit(1, mcpup->cpu_list_ra);
833 retries++;
834 }
835 #ifdef SEND_MONDO_STATS
836 {
837 uint64_t n = gettick() - starttick;
838 if (n < 8192)
839 x_one_stimes[n >> 7]++;
840 else if (n < 15*8192)
841 x_one_ltimes[n >> 13]++;
842 else
843 x_one_ltimes[0xf]++;
844 }
845 #endif
846 }
847
848 void
send_mondo_set(cpuset_t set)849 send_mondo_set(cpuset_t set)
850 {
851 uint64_t starttick, endtick, tick, lasttick;
852 uint_t largestid, smallestid;
853 int i, j;
854 int ncpuids = 0;
855 int shipped = 0;
856 int retries = 0;
857 struct machcpu *mcpup = &(CPU->cpu_m);
858
859 ASSERT(!CPUSET_ISNULL(set));
860 CPUSET_BOUNDS(set, smallestid, largestid);
861 if (smallestid == CPUSET_NOTINSET) {
862 return;
863 }
864
865 starttick = lasttick = gettick();
866 endtick = starttick + xc_tick_limit;
867
868 /*
869 * Assemble CPU list for HV argument. We already know
870 * smallestid and largestid are members of set.
871 */
872 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
873 if (largestid != smallestid) {
874 for (i = smallestid+1; i <= largestid-1; i++) {
875 if (CPU_IN_SET(set, i)) {
876 mcpup->cpu_list[ncpuids++] = (uint16_t)i;
877 }
878 }
879 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
880 }
881
882 do {
883 int stat;
884
885 stat = shipit(ncpuids, mcpup->cpu_list_ra);
886 if (stat == H_EOK) {
887 shipped += ncpuids;
888 break;
889 }
890
891 /*
892 * Either not all CPU mondos were sent, or an
893 * error occurred. CPUs that were sent mondos
894 * have their CPU IDs overwritten in cpu_list.
895 * Reset cpu_list so that it only holds those
896 * CPU IDs that still need to be sent.
897 */
898 for (i = 0, j = 0; i < ncpuids; i++) {
899 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
900 shipped++;
901 } else {
902 mcpup->cpu_list[j++] = mcpup->cpu_list[i];
903 }
904 }
905 ncpuids = j;
906
907 /*
908 * Now handle possible errors returned
909 * from hypervisor.
910 */
911 if (stat == H_ECPUERROR) {
912 int errorcpus;
913
914 if (!panic_quiesce)
915 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
916
917 /*
918 * Remove any CPUs in the error state from
919 * cpu_list. At this point cpu_list only
920 * contains the CPU IDs for mondos not
921 * succesfully sent.
922 */
923 for (i = 0, errorcpus = 0; i < ncpuids; i++) {
924 uint64_t state = CPU_STATE_INVALID;
925 uint16_t id = mcpup->cpu_list[i];
926
927 (void) hv_cpu_state(id, &state);
928 if (state == CPU_STATE_ERROR) {
929 if (!panic_quiesce)
930 cmn_err(CE_CONT, "0x%x ", id);
931 errorcpus++;
932 } else if (errorcpus > 0) {
933 mcpup->cpu_list[i - errorcpus] =
934 mcpup->cpu_list[i];
935 }
936 }
937 ncpuids -= errorcpus;
938
939 if (!panic_quiesce) {
940 if (errorcpus == 0) {
941 cmn_err(CE_CONT, "<none> have been "
942 "marked in error\n");
943 cmn_err(CE_PANIC, "send_mondo_set: "
944 "hypervisor returned "
945 "H_ECPUERROR but no CPU in "
946 "cpu_list in error state");
947 } else {
948 cmn_err(CE_CONT, "have been marked in "
949 "error\n");
950 cmn_err(CE_PANIC, "send_mondo_set: "
951 "CPU(s) in error state");
952 }
953 }
954 } else if (stat != H_EWOULDBLOCK) {
955 if (panic_quiesce)
956 return;
957 /*
958 * For all other errors, panic.
959 */
960 cmn_err(CE_CONT, "send_mondo_set: unexpected "
961 "hypervisor error 0x%x while sending a "
962 "mondo to cpuid(s):", stat);
963 for (i = 0; i < ncpuids; i++) {
964 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
965 }
966 cmn_err(CE_CONT, "\n");
967 cmn_err(CE_PANIC, "send_mondo_set: unexpected "
968 "hypervisor error");
969 }
970
971 tick = gettick();
972 /*
973 * If there is a big jump between the current tick
974 * count and lasttick, we have probably hit a break
975 * point. Adjust endtick accordingly to avoid panic.
976 */
977 if (tick > (lasttick + xc_tick_jump_limit))
978 endtick += (tick - lasttick);
979 lasttick = tick;
980 if (tick > endtick) {
981 if (panic_quiesce)
982 return;
983 cmn_err(CE_CONT, "send mondo timeout "
984 "[retries: 0x%x] cpuids: ", retries);
985 for (i = 0; i < ncpuids; i++)
986 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
987 cmn_err(CE_CONT, "\n");
988 cmn_err(CE_PANIC, "send_mondo_set: timeout");
989 }
990
991 while (gettick() < (tick + sys_clock_mhz))
992 ;
993 retries++;
994 } while (ncpuids > 0);
995
996 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
997
998 #ifdef SEND_MONDO_STATS
999 {
1000 uint64_t n = gettick() - starttick;
1001 if (n < 8192)
1002 x_set_stimes[n >> 7]++;
1003 else if (n < 15*8192)
1004 x_set_ltimes[n >> 13]++;
1005 else
1006 x_set_ltimes[0xf]++;
1007 }
1008 x_set_cpus[shipped]++;
1009 #endif
1010 }
1011
1012 void
syncfpu(void)1013 syncfpu(void)
1014 {
1015 }
1016
1017 void
sticksync_slave(void)1018 sticksync_slave(void)
1019 {
1020 suspend_sync_tick_stick_npt();
1021 }
1022
1023 void
sticksync_master(void)1024 sticksync_master(void)
1025 {}
1026
1027 void
cpu_init_cache_scrub(void)1028 cpu_init_cache_scrub(void)
1029 {
1030 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
1031 }
1032
1033 int
dtrace_blksuword32_err(uintptr_t addr,uint32_t * data)1034 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
1035 {
1036 int ret, watched;
1037
1038 watched = watch_disable_addr((void *)addr, 4, S_WRITE);
1039 ret = dtrace_blksuword32(addr, data, 0);
1040 if (watched)
1041 watch_enable_addr((void *)addr, 4, S_WRITE);
1042
1043 return (ret);
1044 }
1045
1046 int
dtrace_blksuword32(uintptr_t addr,uint32_t * data,int tryagain)1047 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
1048 {
1049 if (suword32((void *)addr, *data) == -1)
1050 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
1051 dtrace_flush_sec(addr);
1052
1053 return (0);
1054 }
1055
1056 /*ARGSUSED*/
1057 void
cpu_faulted_enter(struct cpu * cp)1058 cpu_faulted_enter(struct cpu *cp)
1059 {
1060 }
1061
1062 /*ARGSUSED*/
1063 void
cpu_faulted_exit(struct cpu * cp)1064 cpu_faulted_exit(struct cpu *cp)
1065 {
1066 }
1067
1068 static int
kdi_cpu_ready_iter(int (* cb)(int,void *),void * arg)1069 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
1070 {
1071 int rc, i;
1072
1073 for (rc = 0, i = 0; i < NCPU; i++) {
1074 if (CPU_IN_SET(cpu_ready_set, i))
1075 rc += cb(i, arg);
1076 }
1077
1078 return (rc);
1079 }
1080
1081 /*
1082 * Sends a cross-call to a specified processor. The caller assumes
1083 * responsibility for repetition of cross-calls, as appropriate (MARSA for
1084 * debugging).
1085 */
1086 static int
kdi_xc_one(int cpuid,void (* func)(uintptr_t,uintptr_t),uintptr_t arg1,uintptr_t arg2)1087 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
1088 uintptr_t arg2)
1089 {
1090 int stat;
1091 struct machcpu *mcpup;
1092 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
1093
1094 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
1095
1096 /*
1097 * if (idsr_busy())
1098 * return (KDI_XC_RES_ERR);
1099 */
1100
1101 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
1102
1103 mcpup->cpu_list[0] = (uint16_t)cpuid;
1104 stat = shipit(1, mcpup->cpu_list_ra);
1105
1106 if (stat == 0)
1107 return (KDI_XC_RES_OK);
1108 else
1109 return (KDI_XC_RES_NACK);
1110 }
1111
1112 static void
kdi_tickwait(clock_t nticks)1113 kdi_tickwait(clock_t nticks)
1114 {
1115 clock_t endtick = gettick() + nticks;
1116
1117 while (gettick() < endtick)
1118 ;
1119 }
1120
1121 static void
kdi_cpu_init(int dcache_size,int dcache_linesize,int icache_size,int icache_linesize)1122 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
1123 int icache_linesize)
1124 {
1125 kdi_dcache_size = dcache_size;
1126 kdi_dcache_linesize = dcache_linesize;
1127 kdi_icache_size = icache_size;
1128 kdi_icache_linesize = icache_linesize;
1129 }
1130
1131 /* used directly by kdi_read/write_phys */
1132 void
kdi_flush_caches(void)1133 kdi_flush_caches(void)
1134 {
1135 /* Not required on sun4v architecture. */
1136 }
1137
1138 /*ARGSUSED*/
1139 int
kdi_get_stick(uint64_t * stickp)1140 kdi_get_stick(uint64_t *stickp)
1141 {
1142 return (-1);
1143 }
1144
1145 void
cpu_kdi_init(kdi_t * kdi)1146 cpu_kdi_init(kdi_t *kdi)
1147 {
1148 kdi->kdi_flush_caches = kdi_flush_caches;
1149 kdi->mkdi_cpu_init = kdi_cpu_init;
1150 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1151 kdi->mkdi_xc_one = kdi_xc_one;
1152 kdi->mkdi_tickwait = kdi_tickwait;
1153 kdi->mkdi_get_stick = kdi_get_stick;
1154 }
1155
1156 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1157 static uint64_t soft_state_saved_state = (uint64_t)-1;
1158 static int soft_state_initialized = 0;
1159 static uint64_t soft_state_sup_minor; /* Supported minor number */
1160 static hsvc_info_t soft_state_hsvc = {
1161 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1162
1163
1164 static void
sun4v_system_claim(void)1165 sun4v_system_claim(void)
1166 {
1167 lbolt_debug_entry();
1168
1169 watchdog_suspend();
1170 kldc_debug_enter();
1171 /*
1172 * For "mdb -K", set soft state to debugging
1173 */
1174 if (soft_state_saved_state == -1) {
1175 mach_get_soft_state(&soft_state_saved_state,
1176 &SOLARIS_SOFT_STATE_SAVED_MSG);
1177 }
1178 /*
1179 * check again as the read above may or may not have worked and if
1180 * it didn't then soft state will still be -1
1181 */
1182 if (soft_state_saved_state != -1) {
1183 mach_set_soft_state(SIS_TRANSITION,
1184 &SOLARIS_SOFT_STATE_DEBUG_MSG);
1185 }
1186 }
1187
1188 static void
sun4v_system_release(void)1189 sun4v_system_release(void)
1190 {
1191 watchdog_resume();
1192 /*
1193 * For "mdb -K", set soft_state state back to original state on exit
1194 */
1195 if (soft_state_saved_state != -1) {
1196 mach_set_soft_state(soft_state_saved_state,
1197 &SOLARIS_SOFT_STATE_SAVED_MSG);
1198 soft_state_saved_state = -1;
1199 }
1200
1201 lbolt_debug_return();
1202 }
1203
1204 void
plat_kdi_init(kdi_t * kdi)1205 plat_kdi_init(kdi_t *kdi)
1206 {
1207 kdi->pkdi_system_claim = sun4v_system_claim;
1208 kdi->pkdi_system_release = sun4v_system_release;
1209 }
1210
1211 /*
1212 * Routine to return memory information associated
1213 * with a physical address and syndrome.
1214 */
1215 /* ARGSUSED */
1216 int
cpu_get_mem_info(uint64_t synd,uint64_t afar,uint64_t * mem_sizep,uint64_t * seg_sizep,uint64_t * bank_sizep,int * segsp,int * banksp,int * mcidp)1217 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1218 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1219 int *segsp, int *banksp, int *mcidp)
1220 {
1221 return (ENOTSUP);
1222 }
1223
1224 /*
1225 * This routine returns the size of the kernel's FRU name buffer.
1226 */
1227 size_t
cpu_get_name_bufsize()1228 cpu_get_name_bufsize()
1229 {
1230 return (UNUM_NAMLEN);
1231 }
1232
1233 /*
1234 * This routine is a more generic interface to cpu_get_mem_unum(),
1235 * that may be used by other modules (e.g. mm).
1236 */
1237 /* ARGSUSED */
1238 int
cpu_get_mem_name(uint64_t synd,uint64_t * afsr,uint64_t afar,char * buf,int buflen,int * lenp)1239 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1240 char *buf, int buflen, int *lenp)
1241 {
1242 return (ENOTSUP);
1243 }
1244
1245 /* ARGSUSED */
1246 int
cpu_get_mem_sid(char * unum,char * buf,int buflen,int * lenp)1247 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1248 {
1249 return (ENOTSUP);
1250 }
1251
1252 /* ARGSUSED */
1253 int
cpu_get_mem_addr(char * unum,char * sid,uint64_t offset,uint64_t * addrp)1254 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1255 {
1256 return (ENOTSUP);
1257 }
1258
1259 /*
1260 * xt_sync - wait for previous x-traps to finish
1261 */
1262 void
xt_sync(cpuset_t cpuset)1263 xt_sync(cpuset_t cpuset)
1264 {
1265 union {
1266 uint8_t volatile byte[NCPU];
1267 uint64_t volatile xword[NCPU / 8];
1268 } cpu_sync;
1269 uint64_t starttick, endtick, tick, lasttick, traptrace_id;
1270 uint_t largestid, smallestid;
1271 int i, j;
1272
1273 kpreempt_disable();
1274 CPUSET_DEL(cpuset, CPU->cpu_id);
1275 CPUSET_AND(cpuset, cpu_ready_set);
1276
1277 CPUSET_BOUNDS(cpuset, smallestid, largestid);
1278 if (smallestid == CPUSET_NOTINSET)
1279 goto out;
1280
1281 /*
1282 * Sun4v uses a queue for receiving mondos. Successful
1283 * transmission of a mondo only indicates that the mondo
1284 * has been written into the queue.
1285 *
1286 * We use an array of bytes to let each cpu to signal back
1287 * to the cross trap sender that the cross trap has been
1288 * executed. Set the byte to 1 before sending the cross trap
1289 * and wait until other cpus reset it to 0.
1290 */
1291 bzero((void *)&cpu_sync, NCPU);
1292 cpu_sync.byte[smallestid] = 1;
1293 if (largestid != smallestid) {
1294 for (i = (smallestid + 1); i <= (largestid - 1); i++)
1295 if (CPU_IN_SET(cpuset, i))
1296 cpu_sync.byte[i] = 1;
1297 cpu_sync.byte[largestid] = 1;
1298 }
1299
1300 /*
1301 * To help debug xt_sync panic, each mondo is uniquely identified
1302 * by passing the tick value, traptrace_id as the second mondo
1303 * argument to xt_some which is logged in CPU's mondo queue,
1304 * traptrace buffer and the panic message.
1305 */
1306 traptrace_id = gettick();
1307 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1308 (uint64_t)cpu_sync.byte, traptrace_id);
1309
1310 starttick = lasttick = gettick();
1311 endtick = starttick + xc_sync_tick_limit;
1312
1313 for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1314 while (cpu_sync.xword[i] != 0) {
1315 tick = gettick();
1316 /*
1317 * If there is a big jump between the current tick
1318 * count and lasttick, we have probably hit a break
1319 * point. Adjust endtick accordingly to avoid panic.
1320 */
1321 if (tick > (lasttick + xc_tick_jump_limit)) {
1322 endtick += (tick - lasttick);
1323 }
1324 lasttick = tick;
1325 if (tick > endtick) {
1326 if (panic_quiesce)
1327 goto out;
1328 cmn_err(CE_CONT, "Cross trap sync timeout: "
1329 "at cpu_sync.xword[%d]: 0x%lx "
1330 "cpu_sync.byte: 0x%lx "
1331 "starttick: 0x%lx endtick: 0x%lx "
1332 "traptrace_id = 0x%lx\n",
1333 i, cpu_sync.xword[i],
1334 (uint64_t)cpu_sync.byte,
1335 starttick, endtick, traptrace_id);
1336 cmn_err(CE_CONT, "CPUIDs:");
1337 for (j = (i * 8); j <= largestid; j++) {
1338 if (cpu_sync.byte[j] != 0)
1339 cmn_err(CE_CONT, " 0x%x", j);
1340 }
1341 cmn_err(CE_PANIC, "xt_sync: timeout");
1342 }
1343 }
1344 }
1345
1346 out:
1347 kpreempt_enable();
1348 }
1349
1350 #define QFACTOR 200
1351 /*
1352 * Recalculate the values of the cross-call timeout variables based
1353 * on the value of the 'inter-cpu-latency' property of the platform node.
1354 * The property sets the number of nanosec to wait for a cross-call
1355 * to be acknowledged. Other timeout variables are derived from it.
1356 *
1357 * N.B. This implementation is aware of the internals of xc_init()
1358 * and updates many of the same variables.
1359 */
1360 void
recalc_xc_timeouts(void)1361 recalc_xc_timeouts(void)
1362 {
1363 typedef union {
1364 uint64_t whole;
1365 struct {
1366 uint_t high;
1367 uint_t low;
1368 } half;
1369 } u_number;
1370
1371 /* See x_call.c for descriptions of these extern variables. */
1372 extern uint64_t xc_tick_limit_scale;
1373 extern uint64_t xc_mondo_time_limit;
1374 extern uint64_t xc_func_time_limit;
1375 extern uint64_t xc_scale;
1376 extern uint64_t xc_mondo_multiplier;
1377 extern uint_t nsec_shift;
1378
1379 /* Temp versions of the target variables */
1380 uint64_t tick_limit;
1381 uint64_t tick_jump_limit;
1382 uint64_t mondo_time_limit;
1383 uint64_t func_time_limit;
1384 uint64_t scale;
1385
1386 uint64_t latency; /* nanoseconds */
1387 uint64_t maxfreq;
1388 uint64_t tick_limit_save = xc_tick_limit;
1389 uint64_t sync_tick_limit_save = xc_sync_tick_limit;
1390 uint_t tick_scale;
1391 uint64_t top;
1392 uint64_t bottom;
1393 u_number tk;
1394
1395 md_t *mdp;
1396 int nrnode;
1397 mde_cookie_t *platlist;
1398
1399 /*
1400 * Look up the 'inter-cpu-latency' (optional) property in the
1401 * platform node of the MD. The units are nanoseconds.
1402 */
1403 if ((mdp = md_get_handle()) == NULL) {
1404 cmn_err(CE_WARN, "recalc_xc_timeouts: "
1405 "Unable to initialize machine description");
1406 return;
1407 }
1408
1409 nrnode = md_alloc_scan_dag(mdp,
1410 md_root_node(mdp), "platform", "fwd", &platlist);
1411
1412 ASSERT(nrnode == 1);
1413 if (nrnode < 1) {
1414 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1415 goto done;
1416 }
1417 if (md_get_prop_val(mdp, platlist[0],
1418 "inter-cpu-latency", &latency) == -1)
1419 goto done;
1420
1421 /*
1422 * clock.h defines an assembly-language macro
1423 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1424 * units to nanoseconds. Since the inter-cpu-latency
1425 * units are nanoseconds and the xc_* variables require
1426 * %stick units, we need the inverse of that function.
1427 * The trick is to perform the calculation without
1428 * floating point, but also without integer truncation
1429 * or overflow. To understand the calculation below,
1430 * please read the discussion of the macro in clock.h.
1431 * Since this new code will be invoked infrequently,
1432 * we can afford to implement it in C.
1433 *
1434 * tick_scale is the reciprocal of nsec_scale which is
1435 * calculated at startup in setcpudelay(). The calc
1436 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1437 * except we use tick_scale instead of nsec_scale and
1438 * C instead of assembler.
1439 */
1440 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1441 << (32 - nsec_shift)) / NANOSEC);
1442
1443 tk.whole = latency;
1444 top = ((uint64_t)tk.half.high << 4) * tick_scale;
1445 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1446 tick_limit = top + bottom;
1447
1448 /*
1449 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1450 * and used it to derive some of the timeout variables that we
1451 * recalculate below. We can back into the original value by
1452 * using the inverse of one of those calculations.
1453 */
1454 maxfreq = xc_mondo_time_limit / xc_scale;
1455
1456 /*
1457 * Don't allow the new timeout (xc_tick_limit) to fall below
1458 * the system tick frequency (stick). Allowing the timeout
1459 * to be set more tightly than this empirically determined
1460 * value may cause panics.
1461 */
1462 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1463
1464 tick_jump_limit = tick_limit / 32;
1465 tick_limit *= xc_tick_limit_scale;
1466
1467 /*
1468 * Recalculate xc_scale since it is used in a callback function
1469 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1470 * Make the change in xc_scale proportional to the change in
1471 * xc_tick_limit.
1472 */
1473 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1474 if (scale == 0)
1475 scale = 1;
1476
1477 mondo_time_limit = maxfreq * scale;
1478 func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1479
1480 /*
1481 * Don't modify the timeouts if nothing has changed. Else,
1482 * stuff the variables with the freshly calculated (temp)
1483 * variables. This minimizes the window where the set of
1484 * values could be inconsistent.
1485 */
1486 if (tick_limit != xc_tick_limit) {
1487 xc_tick_limit = tick_limit;
1488 xc_tick_jump_limit = tick_jump_limit;
1489 xc_scale = scale;
1490 xc_mondo_time_limit = mondo_time_limit;
1491 xc_func_time_limit = func_time_limit;
1492 }
1493
1494 done:
1495 /*
1496 * Increase the timeout limit for xt_sync() cross calls.
1497 */
1498 xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR);
1499 xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ?
1500 xc_tick_limit : xc_sync_tick_limit;
1501
1502 /*
1503 * Force the new values to be used for future cross calls.
1504 * This is necessary only when we increase the timeouts.
1505 */
1506 if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit >
1507 sync_tick_limit_save)) {
1508 cpuset_t cpuset = cpu_ready_set;
1509 xt_sync(cpuset);
1510 }
1511
1512 if (nrnode > 0)
1513 md_free_scan_dag(mdp, &platlist);
1514 (void) md_fini_handle(mdp);
1515 }
1516
1517 void
mach_soft_state_init(void)1518 mach_soft_state_init(void)
1519 {
1520 int i;
1521 uint64_t ra;
1522
1523 /*
1524 * Try to register soft_state api. If it fails, soft_state api has not
1525 * been implemented in the firmware, so do not bother to setup
1526 * soft_state in the kernel.
1527 */
1528 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1529 return;
1530 }
1531 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1532 ASSERT(strlen((const char *)(void *)
1533 soft_state_message_strings + i) < SSM_SIZE);
1534 if ((ra = va_to_pa(
1535 (void *)(soft_state_message_strings + i))) == -1ll) {
1536 return;
1537 }
1538 soft_state_message_ra[i] = ra;
1539 }
1540 /*
1541 * Tell OBP that we are supporting Guest State
1542 */
1543 prom_sun4v_soft_state_supported();
1544 soft_state_initialized = 1;
1545 }
1546
1547 void
mach_set_soft_state(uint64_t state,uint64_t * string_ra)1548 mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1549 {
1550 uint64_t rc;
1551
1552 if (soft_state_initialized && *string_ra) {
1553 rc = hv_soft_state_set(state, *string_ra);
1554 if (rc != H_EOK) {
1555 cmn_err(CE_WARN,
1556 "hv_soft_state_set returned %ld\n", rc);
1557 }
1558 }
1559 }
1560
1561 void
mach_get_soft_state(uint64_t * state,uint64_t * string_ra)1562 mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1563 {
1564 uint64_t rc;
1565
1566 if (soft_state_initialized && *string_ra) {
1567 rc = hv_soft_state_get(*string_ra, state);
1568 if (rc != H_EOK) {
1569 cmn_err(CE_WARN,
1570 "hv_soft_state_get returned %ld\n", rc);
1571 *state = -1;
1572 }
1573 }
1574 }
1575