xref: /linux/kernel/sched/idle.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic entry points for the idle threads and
4  * implementation of the idle task scheduling class.
5  *
6  * (NOTE: these are not related to SCHED_IDLE batch scheduled
7  *        tasks which are handled in sched/fair.c )
8  */
9 
10 /* Linker adds these: start and end of __cpuidle functions */
11 extern char __cpuidle_text_start[], __cpuidle_text_end[];
12 
13 /**
14  * sched_idle_set_state - Record idle state for the current CPU.
15  * @idle_state: State to record.
16  */
sched_idle_set_state(struct cpuidle_state * idle_state)17 void sched_idle_set_state(struct cpuidle_state *idle_state)
18 {
19 	idle_set_state(this_rq(), idle_state);
20 }
21 
22 static int __read_mostly cpu_idle_force_poll;
23 
cpu_idle_poll_ctrl(bool enable)24 void cpu_idle_poll_ctrl(bool enable)
25 {
26 	if (enable) {
27 		cpu_idle_force_poll++;
28 	} else {
29 		cpu_idle_force_poll--;
30 		WARN_ON_ONCE(cpu_idle_force_poll < 0);
31 	}
32 }
33 
34 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
cpu_idle_poll_setup(char * __unused)35 static int __init cpu_idle_poll_setup(char *__unused)
36 {
37 	cpu_idle_force_poll = 1;
38 
39 	return 1;
40 }
41 __setup("nohlt", cpu_idle_poll_setup);
42 
cpu_idle_nopoll_setup(char * __unused)43 static int __init cpu_idle_nopoll_setup(char *__unused)
44 {
45 	cpu_idle_force_poll = 0;
46 
47 	return 1;
48 }
49 __setup("hlt", cpu_idle_nopoll_setup);
50 #endif
51 
cpu_idle_poll(void)52 static noinline int __cpuidle cpu_idle_poll(void)
53 {
54 	instrumentation_begin();
55 	trace_cpu_idle(0, smp_processor_id());
56 	stop_critical_timings();
57 	ct_cpuidle_enter();
58 
59 	raw_local_irq_enable();
60 	while (!tif_need_resched() &&
61 	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
62 		cpu_relax();
63 	raw_local_irq_disable();
64 
65 	ct_cpuidle_exit();
66 	start_critical_timings();
67 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
68 	local_irq_enable();
69 	instrumentation_end();
70 
71 	return 1;
72 }
73 
74 /* Weak implementations for optional arch specific functions */
arch_cpu_idle_prepare(void)75 void __weak arch_cpu_idle_prepare(void) { }
arch_cpu_idle_enter(void)76 void __weak arch_cpu_idle_enter(void) { }
arch_cpu_idle_exit(void)77 void __weak arch_cpu_idle_exit(void) { }
arch_cpu_idle_dead(void)78 void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
arch_cpu_idle(void)79 void __weak arch_cpu_idle(void)
80 {
81 	cpu_idle_force_poll = 1;
82 }
83 
84 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
85 DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
86 
cond_tick_broadcast_enter(void)87 static inline void cond_tick_broadcast_enter(void)
88 {
89 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
90 		tick_broadcast_enter();
91 }
92 
cond_tick_broadcast_exit(void)93 static inline void cond_tick_broadcast_exit(void)
94 {
95 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
96 		tick_broadcast_exit();
97 }
98 #else
cond_tick_broadcast_enter(void)99 static inline void cond_tick_broadcast_enter(void) { }
cond_tick_broadcast_exit(void)100 static inline void cond_tick_broadcast_exit(void) { }
101 #endif
102 
103 /**
104  * default_idle_call - Default CPU idle routine.
105  *
106  * To use when the cpuidle framework cannot be used.
107  */
default_idle_call(void)108 void __cpuidle default_idle_call(void)
109 {
110 	instrumentation_begin();
111 	if (!current_clr_polling_and_test()) {
112 		cond_tick_broadcast_enter();
113 		trace_cpu_idle(1, smp_processor_id());
114 		stop_critical_timings();
115 
116 		ct_cpuidle_enter();
117 		arch_cpu_idle();
118 		ct_cpuidle_exit();
119 
120 		start_critical_timings();
121 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
122 		cond_tick_broadcast_exit();
123 	}
124 	local_irq_enable();
125 	instrumentation_end();
126 }
127 
call_cpuidle_s2idle(struct cpuidle_driver * drv,struct cpuidle_device * dev)128 static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
129 			       struct cpuidle_device *dev)
130 {
131 	if (current_clr_polling_and_test())
132 		return -EBUSY;
133 
134 	return cpuidle_enter_s2idle(drv, dev);
135 }
136 
call_cpuidle(struct cpuidle_driver * drv,struct cpuidle_device * dev,int next_state)137 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
138 		      int next_state)
139 {
140 	/*
141 	 * The idle task must be scheduled, it is pointless to go to idle, just
142 	 * update no idle residency and return.
143 	 */
144 	if (current_clr_polling_and_test()) {
145 		dev->last_residency_ns = 0;
146 		local_irq_enable();
147 		return -EBUSY;
148 	}
149 
150 	/*
151 	 * Enter the idle state previously returned by the governor decision.
152 	 * This function will block until an interrupt occurs and will take
153 	 * care of re-enabling the local interrupts
154 	 */
155 	return cpuidle_enter(drv, dev, next_state);
156 }
157 
158 /**
159  * cpuidle_idle_call - the main idle function
160  *
161  * NOTE: no locks or semaphores should be used here
162  *
163  * On architectures that support TIF_POLLING_NRFLAG, is called with polling
164  * set, and it returns with polling set.  If it ever stops polling, it
165  * must clear the polling bit.
166  */
cpuidle_idle_call(void)167 static void cpuidle_idle_call(void)
168 {
169 	struct cpuidle_device *dev = cpuidle_get_device();
170 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
171 	int next_state, entered_state;
172 
173 	/*
174 	 * Check if the idle task must be rescheduled. If it is the
175 	 * case, exit the function after re-enabling the local irq.
176 	 */
177 	if (need_resched()) {
178 		local_irq_enable();
179 		return;
180 	}
181 
182 	/*
183 	 * The RCU framework needs to be told that we are entering an idle
184 	 * section, so no more rcu read side critical sections and one more
185 	 * step to the grace period
186 	 */
187 
188 	if (cpuidle_not_available(drv, dev)) {
189 		tick_nohz_idle_stop_tick();
190 
191 		default_idle_call();
192 		goto exit_idle;
193 	}
194 
195 	/*
196 	 * Suspend-to-idle ("s2idle") is a system state in which all user space
197 	 * has been frozen, all I/O devices have been suspended and the only
198 	 * activity happens here and in interrupts (if any). In that case bypass
199 	 * the cpuidle governor and go straight for the deepest idle state
200 	 * available.  Possibly also suspend the local tick and the entire
201 	 * timekeeping to prevent timer interrupts from kicking us out of idle
202 	 * until a proper wakeup interrupt happens.
203 	 */
204 
205 	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
206 		u64 max_latency_ns;
207 
208 		if (idle_should_enter_s2idle()) {
209 
210 			entered_state = call_cpuidle_s2idle(drv, dev);
211 			if (entered_state > 0)
212 				goto exit_idle;
213 
214 			max_latency_ns = U64_MAX;
215 		} else {
216 			max_latency_ns = dev->forced_idle_latency_limit_ns;
217 		}
218 
219 		tick_nohz_idle_stop_tick();
220 
221 		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
222 		call_cpuidle(drv, dev, next_state);
223 	} else {
224 		bool stop_tick = true;
225 
226 		/*
227 		 * Ask the cpuidle framework to choose a convenient idle state.
228 		 */
229 		next_state = cpuidle_select(drv, dev, &stop_tick);
230 
231 		if (stop_tick || tick_nohz_tick_stopped())
232 			tick_nohz_idle_stop_tick();
233 		else
234 			tick_nohz_idle_retain_tick();
235 
236 		entered_state = call_cpuidle(drv, dev, next_state);
237 		/*
238 		 * Give the governor an opportunity to reflect on the outcome
239 		 */
240 		cpuidle_reflect(dev, entered_state);
241 	}
242 
243 exit_idle:
244 	__current_set_polling();
245 
246 	/*
247 	 * It is up to the idle functions to reenable local interrupts
248 	 */
249 	if (WARN_ON_ONCE(irqs_disabled()))
250 		local_irq_enable();
251 }
252 
253 /*
254  * Generic idle loop implementation
255  *
256  * Called with polling cleared.
257  */
do_idle(void)258 static void do_idle(void)
259 {
260 	int cpu = smp_processor_id();
261 
262 	/*
263 	 * Check if we need to update blocked load
264 	 */
265 	nohz_run_idle_balance(cpu);
266 
267 	/*
268 	 * If the arch has a polling bit, we maintain an invariant:
269 	 *
270 	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
271 	 * rq->idle). This means that, if rq->idle has the polling bit set,
272 	 * then setting need_resched is guaranteed to cause the CPU to
273 	 * reschedule.
274 	 */
275 
276 	__current_set_polling();
277 	tick_nohz_idle_enter();
278 
279 	while (!need_resched()) {
280 		rmb();
281 
282 		/*
283 		 * Interrupts shouldn't be re-enabled from that point on until
284 		 * the CPU sleeping instruction is reached. Otherwise an interrupt
285 		 * may fire and queue a timer that would be ignored until the CPU
286 		 * wakes from the sleeping instruction. And testing need_resched()
287 		 * doesn't tell about pending needed timer reprogram.
288 		 *
289 		 * Several cases to consider:
290 		 *
291 		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
292 		 *   "wfi" or "mwait" are fine because they can be entered with
293 		 *   interrupt disabled.
294 		 *
295 		 * - sti;mwait() couple is fine because the interrupts are
296 		 *   re-enabled only upon the execution of mwait, leaving no gap
297 		 *   in-between.
298 		 *
299 		 * - ROLLBACK based idle handlers with the sleeping instruction
300 		 *   called with interrupts enabled are NOT fine. In this scheme
301 		 *   when the interrupt detects it has interrupted an idle handler,
302 		 *   it rolls back to its beginning which performs the
303 		 *   need_resched() check before re-executing the sleeping
304 		 *   instruction. This can leak a pending needed timer reprogram.
305 		 *   If such a scheme is really mandatory due to the lack of an
306 		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
307 		 *   must instead be applied: when the interrupt detects it has
308 		 *   interrupted an idle handler, it must resume to the end of
309 		 *   this idle handler so that the generic idle loop is iterated
310 		 *   again to reprogram the tick.
311 		 */
312 		local_irq_disable();
313 
314 		if (cpu_is_offline(cpu)) {
315 			cpuhp_report_idle_dead();
316 			arch_cpu_idle_dead();
317 		}
318 
319 		arch_cpu_idle_enter();
320 		rcu_nocb_flush_deferred_wakeup();
321 
322 		/*
323 		 * In poll mode we reenable interrupts and spin. Also if we
324 		 * detected in the wakeup from idle path that the tick
325 		 * broadcast device expired for us, we don't want to go deep
326 		 * idle as we know that the IPI is going to arrive right away.
327 		 */
328 		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
329 			tick_nohz_idle_restart_tick();
330 			cpu_idle_poll();
331 		} else {
332 			cpuidle_idle_call();
333 		}
334 		arch_cpu_idle_exit();
335 	}
336 
337 	/*
338 	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
339 	 * be set, propagate it into PREEMPT_NEED_RESCHED.
340 	 *
341 	 * This is required because for polling idle loops we will not have had
342 	 * an IPI to fold the state for us.
343 	 */
344 	preempt_set_need_resched();
345 	tick_nohz_idle_exit();
346 	__current_clr_polling();
347 
348 	/*
349 	 * We promise to call sched_ttwu_pending() and reschedule if
350 	 * need_resched() is set while polling is set. That means that clearing
351 	 * polling needs to be visible before doing these things.
352 	 */
353 	smp_mb__after_atomic();
354 
355 	/*
356 	 * RCU relies on this call to be done outside of an RCU read-side
357 	 * critical section.
358 	 */
359 	flush_smp_call_function_queue();
360 	schedule_idle();
361 
362 	if (unlikely(klp_patch_pending(current)))
363 		klp_update_patch_state(current);
364 }
365 
cpu_in_idle(unsigned long pc)366 bool cpu_in_idle(unsigned long pc)
367 {
368 	return pc >= (unsigned long)__cpuidle_text_start &&
369 		pc < (unsigned long)__cpuidle_text_end;
370 }
371 
372 struct idle_timer {
373 	struct hrtimer timer;
374 	int done;
375 };
376 
idle_inject_timer_fn(struct hrtimer * timer)377 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
378 {
379 	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
380 
381 	WRITE_ONCE(it->done, 1);
382 	set_tsk_need_resched(current);
383 
384 	return HRTIMER_NORESTART;
385 }
386 
play_idle_precise(u64 duration_ns,u64 latency_ns)387 void play_idle_precise(u64 duration_ns, u64 latency_ns)
388 {
389 	struct idle_timer it;
390 
391 	/*
392 	 * Only FIFO tasks can disable the tick since they don't need the forced
393 	 * preemption.
394 	 */
395 	WARN_ON_ONCE(current->policy != SCHED_FIFO);
396 	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
397 	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
398 	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
399 	WARN_ON_ONCE(!duration_ns);
400 	WARN_ON_ONCE(current->mm);
401 
402 	rcu_sleep_check();
403 	preempt_disable();
404 	current->flags |= PF_IDLE;
405 	cpuidle_use_deepest_state(latency_ns);
406 
407 	it.done = 0;
408 	hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
409 	it.timer.function = idle_inject_timer_fn;
410 	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
411 		      HRTIMER_MODE_REL_PINNED_HARD);
412 
413 	while (!READ_ONCE(it.done))
414 		do_idle();
415 
416 	cpuidle_use_deepest_state(0);
417 	current->flags &= ~PF_IDLE;
418 
419 	preempt_fold_need_resched();
420 	preempt_enable();
421 }
422 EXPORT_SYMBOL_GPL(play_idle_precise);
423 
cpu_startup_entry(enum cpuhp_state state)424 void cpu_startup_entry(enum cpuhp_state state)
425 {
426 	current->flags |= PF_IDLE;
427 	arch_cpu_idle_prepare();
428 	cpuhp_online_idle(state);
429 	while (1)
430 		do_idle();
431 }
432 
433 /*
434  * idle-task scheduling class.
435  */
436 
437 #ifdef CONFIG_SMP
438 static int
select_task_rq_idle(struct task_struct * p,int cpu,int flags)439 select_task_rq_idle(struct task_struct *p, int cpu, int flags)
440 {
441 	return task_cpu(p); /* IDLE tasks as never migrated */
442 }
443 
444 static int
balance_idle(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)445 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
446 {
447 	return WARN_ON_ONCE(1);
448 }
449 #endif
450 
451 /*
452  * Idle tasks are unconditionally rescheduled:
453  */
wakeup_preempt_idle(struct rq * rq,struct task_struct * p,int flags)454 static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
455 {
456 	resched_curr(rq);
457 }
458 
put_prev_task_idle(struct rq * rq,struct task_struct * prev)459 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
460 {
461 }
462 
set_next_task_idle(struct rq * rq,struct task_struct * next,bool first)463 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
464 {
465 	update_idle_core(rq);
466 	schedstat_inc(rq->sched_goidle);
467 }
468 
469 #ifdef CONFIG_SMP
pick_task_idle(struct rq * rq)470 static struct task_struct *pick_task_idle(struct rq *rq)
471 {
472 	return rq->idle;
473 }
474 #endif
475 
pick_next_task_idle(struct rq * rq)476 struct task_struct *pick_next_task_idle(struct rq *rq)
477 {
478 	struct task_struct *next = rq->idle;
479 
480 	set_next_task_idle(rq, next, true);
481 
482 	return next;
483 }
484 
485 /*
486  * It is not legal to sleep in the idle task - print a warning
487  * message if some code attempts to do it:
488  */
489 static void
dequeue_task_idle(struct rq * rq,struct task_struct * p,int flags)490 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
491 {
492 	raw_spin_rq_unlock_irq(rq);
493 	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
494 	dump_stack();
495 	raw_spin_rq_lock_irq(rq);
496 }
497 
498 /*
499  * scheduler tick hitting a task of our scheduling class.
500  *
501  * NOTE: This function can be called remotely by the tick offload that
502  * goes along full dynticks. Therefore no local assumption can be made
503  * and everything must be accessed through the @rq and @curr passed in
504  * parameters.
505  */
task_tick_idle(struct rq * rq,struct task_struct * curr,int queued)506 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
507 {
508 }
509 
switched_to_idle(struct rq * rq,struct task_struct * p)510 static void switched_to_idle(struct rq *rq, struct task_struct *p)
511 {
512 	BUG();
513 }
514 
515 static void
prio_changed_idle(struct rq * rq,struct task_struct * p,int oldprio)516 prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
517 {
518 	BUG();
519 }
520 
update_curr_idle(struct rq * rq)521 static void update_curr_idle(struct rq *rq)
522 {
523 }
524 
525 /*
526  * Simple, special scheduling class for the per-CPU idle tasks:
527  */
528 DEFINE_SCHED_CLASS(idle) = {
529 
530 	/* no enqueue/yield_task for idle tasks */
531 
532 	/* dequeue is not valid, we print a debug message there: */
533 	.dequeue_task		= dequeue_task_idle,
534 
535 	.wakeup_preempt		= wakeup_preempt_idle,
536 
537 	.pick_next_task		= pick_next_task_idle,
538 	.put_prev_task		= put_prev_task_idle,
539 	.set_next_task          = set_next_task_idle,
540 
541 #ifdef CONFIG_SMP
542 	.balance		= balance_idle,
543 	.pick_task		= pick_task_idle,
544 	.select_task_rq		= select_task_rq_idle,
545 	.set_cpus_allowed	= set_cpus_allowed_common,
546 #endif
547 
548 	.task_tick		= task_tick_idle,
549 
550 	.prio_changed		= prio_changed_idle,
551 	.switched_to		= switched_to_idle,
552 	.update_curr		= update_curr_idle,
553 };
554