xref: /linux/arch/x86/kernel/cpu/bugs.c (revision 5c3b3264e5858813632031ba58bcd6e1eeb3b214)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 /*
38  * Speculation Vulnerability Handling
39  *
40  * Each vulnerability is handled with the following functions:
41  *   <vuln>_select_mitigation() -- Selects a mitigation to use.  This should
42  *				   take into account all relevant command line
43  *				   options.
44  *   <vuln>_update_mitigation() -- This is called after all vulnerabilities have
45  *				   selected a mitigation, in case the selection
46  *				   may want to change based on other choices
47  *				   made.  This function is optional.
48  *   <vuln>_apply_mitigation() -- Enable the selected mitigation.
49  *
50  * The compile-time mitigation in all cases should be AUTO.  An explicit
51  * command-line option can override AUTO.  If no such option is
52  * provided, <vuln>_select_mitigation() will override AUTO to the best
53  * mitigation option.
54  */
55 
56 static void __init spectre_v1_select_mitigation(void);
57 static void __init spectre_v1_apply_mitigation(void);
58 static void __init spectre_v2_select_mitigation(void);
59 static void __init spectre_v2_update_mitigation(void);
60 static void __init spectre_v2_apply_mitigation(void);
61 static void __init retbleed_select_mitigation(void);
62 static void __init retbleed_update_mitigation(void);
63 static void __init retbleed_apply_mitigation(void);
64 static void __init spectre_v2_user_select_mitigation(void);
65 static void __init spectre_v2_user_update_mitigation(void);
66 static void __init spectre_v2_user_apply_mitigation(void);
67 static void __init ssb_select_mitigation(void);
68 static void __init ssb_apply_mitigation(void);
69 static void __init l1tf_select_mitigation(void);
70 static void __init l1tf_apply_mitigation(void);
71 static void __init mds_select_mitigation(void);
72 static void __init mds_update_mitigation(void);
73 static void __init mds_apply_mitigation(void);
74 static void __init taa_select_mitigation(void);
75 static void __init taa_update_mitigation(void);
76 static void __init taa_apply_mitigation(void);
77 static void __init mmio_select_mitigation(void);
78 static void __init mmio_update_mitigation(void);
79 static void __init mmio_apply_mitigation(void);
80 static void __init rfds_select_mitigation(void);
81 static void __init rfds_update_mitigation(void);
82 static void __init rfds_apply_mitigation(void);
83 static void __init srbds_select_mitigation(void);
84 static void __init srbds_apply_mitigation(void);
85 static void __init l1d_flush_select_mitigation(void);
86 static void __init srso_select_mitigation(void);
87 static void __init srso_update_mitigation(void);
88 static void __init srso_apply_mitigation(void);
89 static void __init gds_select_mitigation(void);
90 static void __init gds_apply_mitigation(void);
91 static void __init bhi_select_mitigation(void);
92 static void __init bhi_update_mitigation(void);
93 static void __init bhi_apply_mitigation(void);
94 static void __init its_select_mitigation(void);
95 static void __init its_update_mitigation(void);
96 static void __init its_apply_mitigation(void);
97 static void __init tsa_select_mitigation(void);
98 static void __init tsa_apply_mitigation(void);
99 
100 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
101 u64 x86_spec_ctrl_base;
102 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
103 
104 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
105 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
106 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
107 
108 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
109 
110 static u64 __ro_after_init x86_arch_cap_msr;
111 
112 static DEFINE_MUTEX(spec_ctrl_mutex);
113 
114 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
115 
set_return_thunk(void * thunk)116 static void __init set_return_thunk(void *thunk)
117 {
118 	x86_return_thunk = thunk;
119 
120 	pr_info("active return thunk: %ps\n", thunk);
121 }
122 
123 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)124 static void update_spec_ctrl(u64 val)
125 {
126 	this_cpu_write(x86_spec_ctrl_current, val);
127 	wrmsrq(MSR_IA32_SPEC_CTRL, val);
128 }
129 
130 /*
131  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
132  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
133  */
update_spec_ctrl_cond(u64 val)134 void update_spec_ctrl_cond(u64 val)
135 {
136 	if (this_cpu_read(x86_spec_ctrl_current) == val)
137 		return;
138 
139 	this_cpu_write(x86_spec_ctrl_current, val);
140 
141 	/*
142 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
143 	 * forced the update can be delayed until that time.
144 	 */
145 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
146 		wrmsrq(MSR_IA32_SPEC_CTRL, val);
147 }
148 
spec_ctrl_current(void)149 noinstr u64 spec_ctrl_current(void)
150 {
151 	return this_cpu_read(x86_spec_ctrl_current);
152 }
153 EXPORT_SYMBOL_GPL(spec_ctrl_current);
154 
155 /*
156  * AMD specific MSR info for Speculative Store Bypass control.
157  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
158  */
159 u64 __ro_after_init x86_amd_ls_cfg_base;
160 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
161 
162 /* Control conditional STIBP in switch_to() */
163 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
164 /* Control conditional IBPB in switch_mm() */
165 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
166 /* Control unconditional IBPB in switch_mm() */
167 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
168 
169 /* Control IBPB on vCPU load */
170 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
171 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
172 
173 /* Control CPU buffer clear before idling (halt, mwait) */
174 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
175 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
176 
177 /*
178  * Controls whether l1d flush based mitigations are enabled,
179  * based on hw features and admin setting via boot parameter
180  * defaults to false
181  */
182 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
183 
184 /*
185  * Controls CPU Fill buffer clear before VMenter. This is a subset of
186  * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
187  * mitigation is required.
188  */
189 DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
190 EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
191 
192 #undef pr_fmt
193 #define pr_fmt(fmt)	"mitigations: " fmt
194 
cpu_print_attack_vectors(void)195 static void __init cpu_print_attack_vectors(void)
196 {
197 	pr_info("Enabled attack vectors: ");
198 
199 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
200 		pr_cont("user_kernel, ");
201 
202 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER))
203 		pr_cont("user_user, ");
204 
205 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST))
206 		pr_cont("guest_host, ");
207 
208 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST))
209 		pr_cont("guest_guest, ");
210 
211 	pr_cont("SMT mitigations: ");
212 
213 	switch (smt_mitigations) {
214 	case SMT_MITIGATIONS_OFF:
215 		pr_cont("off\n");
216 		break;
217 	case SMT_MITIGATIONS_AUTO:
218 		pr_cont("auto\n");
219 		break;
220 	case SMT_MITIGATIONS_ON:
221 		pr_cont("on\n");
222 	}
223 }
224 
cpu_select_mitigations(void)225 void __init cpu_select_mitigations(void)
226 {
227 	/*
228 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
229 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
230 	 * init code as it is not enumerated and depends on the family.
231 	 */
232 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
233 		rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
234 
235 		/*
236 		 * Previously running kernel (kexec), may have some controls
237 		 * turned ON. Clear them and let the mitigations setup below
238 		 * rediscover them based on configuration.
239 		 */
240 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
241 	}
242 
243 	x86_arch_cap_msr = x86_read_arch_cap_msr();
244 
245 	cpu_print_attack_vectors();
246 
247 	/* Select the proper CPU mitigations before patching alternatives: */
248 	spectre_v1_select_mitigation();
249 	spectre_v2_select_mitigation();
250 	retbleed_select_mitigation();
251 	spectre_v2_user_select_mitigation();
252 	ssb_select_mitigation();
253 	l1tf_select_mitigation();
254 	mds_select_mitigation();
255 	taa_select_mitigation();
256 	mmio_select_mitigation();
257 	rfds_select_mitigation();
258 	srbds_select_mitigation();
259 	l1d_flush_select_mitigation();
260 	srso_select_mitigation();
261 	gds_select_mitigation();
262 	its_select_mitigation();
263 	bhi_select_mitigation();
264 	tsa_select_mitigation();
265 
266 	/*
267 	 * After mitigations are selected, some may need to update their
268 	 * choices.
269 	 */
270 	spectre_v2_update_mitigation();
271 	/*
272 	 * retbleed_update_mitigation() relies on the state set by
273 	 * spectre_v2_update_mitigation(); specifically it wants to know about
274 	 * spectre_v2=ibrs.
275 	 */
276 	retbleed_update_mitigation();
277 	/*
278 	 * its_update_mitigation() depends on spectre_v2_update_mitigation()
279 	 * and retbleed_update_mitigation().
280 	 */
281 	its_update_mitigation();
282 
283 	/*
284 	 * spectre_v2_user_update_mitigation() depends on
285 	 * retbleed_update_mitigation(), specifically the STIBP
286 	 * selection is forced for UNRET or IBPB.
287 	 */
288 	spectre_v2_user_update_mitigation();
289 	mds_update_mitigation();
290 	taa_update_mitigation();
291 	mmio_update_mitigation();
292 	rfds_update_mitigation();
293 	bhi_update_mitigation();
294 	/* srso_update_mitigation() depends on retbleed_update_mitigation(). */
295 	srso_update_mitigation();
296 
297 	spectre_v1_apply_mitigation();
298 	spectre_v2_apply_mitigation();
299 	retbleed_apply_mitigation();
300 	spectre_v2_user_apply_mitigation();
301 	ssb_apply_mitigation();
302 	l1tf_apply_mitigation();
303 	mds_apply_mitigation();
304 	taa_apply_mitigation();
305 	mmio_apply_mitigation();
306 	rfds_apply_mitigation();
307 	srbds_apply_mitigation();
308 	srso_apply_mitigation();
309 	gds_apply_mitigation();
310 	its_apply_mitigation();
311 	bhi_apply_mitigation();
312 	tsa_apply_mitigation();
313 }
314 
315 /*
316  * NOTE: This function is *only* called for SVM, since Intel uses
317  * MSR_IA32_SPEC_CTRL for SSBD.
318  */
319 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)320 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
321 {
322 	u64 guestval, hostval;
323 	struct thread_info *ti = current_thread_info();
324 
325 	/*
326 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
327 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
328 	 */
329 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
330 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
331 		return;
332 
333 	/*
334 	 * If the host has SSBD mitigation enabled, force it in the host's
335 	 * virtual MSR value. If its not permanently enabled, evaluate
336 	 * current's TIF_SSBD thread flag.
337 	 */
338 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
339 		hostval = SPEC_CTRL_SSBD;
340 	else
341 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
342 
343 	/* Sanitize the guest value */
344 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
345 
346 	if (hostval != guestval) {
347 		unsigned long tif;
348 
349 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
350 				 ssbd_spec_ctrl_to_tif(hostval);
351 
352 		speculation_ctrl_update(tif);
353 	}
354 }
355 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
356 
x86_amd_ssb_disable(void)357 static void x86_amd_ssb_disable(void)
358 {
359 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
360 
361 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
362 		wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
363 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
364 		wrmsrq(MSR_AMD64_LS_CFG, msrval);
365 }
366 
367 #undef pr_fmt
368 #define pr_fmt(fmt)	"MDS: " fmt
369 
370 /*
371  * Returns true if vulnerability should be mitigated based on the
372  * selected attack vector controls.
373  *
374  * See Documentation/admin-guide/hw-vuln/attack_vector_controls.rst
375  */
should_mitigate_vuln(unsigned int bug)376 static bool __init should_mitigate_vuln(unsigned int bug)
377 {
378 	switch (bug) {
379 	/*
380 	 * The only runtime-selected spectre_v1 mitigations in the kernel are
381 	 * related to SWAPGS protection on kernel entry.  Therefore, protection
382 	 * is only required for the user->kernel attack vector.
383 	 */
384 	case X86_BUG_SPECTRE_V1:
385 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL);
386 
387 	case X86_BUG_SPECTRE_V2:
388 	case X86_BUG_RETBLEED:
389 	case X86_BUG_L1TF:
390 	case X86_BUG_ITS:
391 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
392 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
393 
394 	case X86_BUG_SPECTRE_V2_USER:
395 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
396 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
397 
398 	/*
399 	 * All the vulnerabilities below allow potentially leaking data
400 	 * across address spaces.  Therefore, mitigation is required for
401 	 * any of these 4 attack vectors.
402 	 */
403 	case X86_BUG_MDS:
404 	case X86_BUG_TAA:
405 	case X86_BUG_MMIO_STALE_DATA:
406 	case X86_BUG_RFDS:
407 	case X86_BUG_SRBDS:
408 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
409 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
410 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
411 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
412 
413 	case X86_BUG_GDS:
414 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
415 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
416 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
417 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST) ||
418 		       (smt_mitigations != SMT_MITIGATIONS_OFF);
419 
420 	case X86_BUG_SPEC_STORE_BYPASS:
421 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER);
422 
423 	default:
424 		WARN(1, "Unknown bug %x\n", bug);
425 		return false;
426 	}
427 }
428 
429 /* Default mitigation for MDS-affected CPUs */
430 static enum mds_mitigations mds_mitigation __ro_after_init =
431 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
432 static bool mds_nosmt __ro_after_init = false;
433 
434 static const char * const mds_strings[] = {
435 	[MDS_MITIGATION_OFF]	= "Vulnerable",
436 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
437 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
438 };
439 
440 enum taa_mitigations {
441 	TAA_MITIGATION_OFF,
442 	TAA_MITIGATION_AUTO,
443 	TAA_MITIGATION_UCODE_NEEDED,
444 	TAA_MITIGATION_VERW,
445 	TAA_MITIGATION_TSX_DISABLED,
446 };
447 
448 /* Default mitigation for TAA-affected CPUs */
449 static enum taa_mitigations taa_mitigation __ro_after_init =
450 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
451 
452 enum mmio_mitigations {
453 	MMIO_MITIGATION_OFF,
454 	MMIO_MITIGATION_AUTO,
455 	MMIO_MITIGATION_UCODE_NEEDED,
456 	MMIO_MITIGATION_VERW,
457 };
458 
459 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
460 static enum mmio_mitigations mmio_mitigation __ro_after_init =
461 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
462 
463 enum rfds_mitigations {
464 	RFDS_MITIGATION_OFF,
465 	RFDS_MITIGATION_AUTO,
466 	RFDS_MITIGATION_VERW,
467 	RFDS_MITIGATION_UCODE_NEEDED,
468 };
469 
470 /* Default mitigation for Register File Data Sampling */
471 static enum rfds_mitigations rfds_mitigation __ro_after_init =
472 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
473 
474 /*
475  * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
476  * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
477  */
478 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
479 
mds_select_mitigation(void)480 static void __init mds_select_mitigation(void)
481 {
482 	if (!boot_cpu_has_bug(X86_BUG_MDS)) {
483 		mds_mitigation = MDS_MITIGATION_OFF;
484 		return;
485 	}
486 
487 	if (mds_mitigation == MDS_MITIGATION_AUTO) {
488 		if (should_mitigate_vuln(X86_BUG_MDS))
489 			mds_mitigation = MDS_MITIGATION_FULL;
490 		else
491 			mds_mitigation = MDS_MITIGATION_OFF;
492 	}
493 
494 	if (mds_mitigation == MDS_MITIGATION_OFF)
495 		return;
496 
497 	verw_clear_cpu_buf_mitigation_selected = true;
498 }
499 
mds_update_mitigation(void)500 static void __init mds_update_mitigation(void)
501 {
502 	if (!boot_cpu_has_bug(X86_BUG_MDS))
503 		return;
504 
505 	/* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */
506 	if (verw_clear_cpu_buf_mitigation_selected)
507 		mds_mitigation = MDS_MITIGATION_FULL;
508 
509 	if (mds_mitigation == MDS_MITIGATION_FULL) {
510 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
511 			mds_mitigation = MDS_MITIGATION_VMWERV;
512 	}
513 
514 	pr_info("%s\n", mds_strings[mds_mitigation]);
515 }
516 
mds_apply_mitigation(void)517 static void __init mds_apply_mitigation(void)
518 {
519 	if (mds_mitigation == MDS_MITIGATION_FULL ||
520 	    mds_mitigation == MDS_MITIGATION_VMWERV) {
521 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
522 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
523 		    (mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
524 			cpu_smt_disable(false);
525 	}
526 }
527 
mds_cmdline(char * str)528 static int __init mds_cmdline(char *str)
529 {
530 	if (!boot_cpu_has_bug(X86_BUG_MDS))
531 		return 0;
532 
533 	if (!str)
534 		return -EINVAL;
535 
536 	if (!strcmp(str, "off"))
537 		mds_mitigation = MDS_MITIGATION_OFF;
538 	else if (!strcmp(str, "full"))
539 		mds_mitigation = MDS_MITIGATION_FULL;
540 	else if (!strcmp(str, "full,nosmt")) {
541 		mds_mitigation = MDS_MITIGATION_FULL;
542 		mds_nosmt = true;
543 	}
544 
545 	return 0;
546 }
547 early_param("mds", mds_cmdline);
548 
549 #undef pr_fmt
550 #define pr_fmt(fmt)	"TAA: " fmt
551 
552 static bool taa_nosmt __ro_after_init;
553 
554 static const char * const taa_strings[] = {
555 	[TAA_MITIGATION_OFF]		= "Vulnerable",
556 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
557 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
558 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
559 };
560 
taa_vulnerable(void)561 static bool __init taa_vulnerable(void)
562 {
563 	return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM);
564 }
565 
taa_select_mitigation(void)566 static void __init taa_select_mitigation(void)
567 {
568 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
569 		taa_mitigation = TAA_MITIGATION_OFF;
570 		return;
571 	}
572 
573 	/* TSX previously disabled by tsx=off */
574 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
575 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
576 		return;
577 	}
578 
579 	/* Microcode will be checked in taa_update_mitigation(). */
580 	if (taa_mitigation == TAA_MITIGATION_AUTO) {
581 		if (should_mitigate_vuln(X86_BUG_TAA))
582 			taa_mitigation = TAA_MITIGATION_VERW;
583 		else
584 			taa_mitigation = TAA_MITIGATION_OFF;
585 	}
586 
587 	if (taa_mitigation != TAA_MITIGATION_OFF)
588 		verw_clear_cpu_buf_mitigation_selected = true;
589 }
590 
taa_update_mitigation(void)591 static void __init taa_update_mitigation(void)
592 {
593 	if (!taa_vulnerable())
594 		return;
595 
596 	if (verw_clear_cpu_buf_mitigation_selected)
597 		taa_mitigation = TAA_MITIGATION_VERW;
598 
599 	if (taa_mitigation == TAA_MITIGATION_VERW) {
600 		/* Check if the requisite ucode is available. */
601 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
602 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
603 
604 		/*
605 		 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
606 		 * A microcode update fixes this behavior to clear CPU buffers. It also
607 		 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
608 		 * ARCH_CAP_TSX_CTRL_MSR bit.
609 		 *
610 		 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
611 		 * update is required.
612 		 */
613 		if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
614 		   !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
615 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
616 	}
617 
618 	pr_info("%s\n", taa_strings[taa_mitigation]);
619 }
620 
taa_apply_mitigation(void)621 static void __init taa_apply_mitigation(void)
622 {
623 	if (taa_mitigation == TAA_MITIGATION_VERW ||
624 	    taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) {
625 		/*
626 		 * TSX is enabled, select alternate mitigation for TAA which is
627 		 * the same as MDS. Enable MDS static branch to clear CPU buffers.
628 		 *
629 		 * For guests that can't determine whether the correct microcode is
630 		 * present on host, enable the mitigation for UCODE_NEEDED as well.
631 		 */
632 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
633 
634 		if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
635 			cpu_smt_disable(false);
636 	}
637 }
638 
tsx_async_abort_parse_cmdline(char * str)639 static int __init tsx_async_abort_parse_cmdline(char *str)
640 {
641 	if (!boot_cpu_has_bug(X86_BUG_TAA))
642 		return 0;
643 
644 	if (!str)
645 		return -EINVAL;
646 
647 	if (!strcmp(str, "off")) {
648 		taa_mitigation = TAA_MITIGATION_OFF;
649 	} else if (!strcmp(str, "full")) {
650 		taa_mitigation = TAA_MITIGATION_VERW;
651 	} else if (!strcmp(str, "full,nosmt")) {
652 		taa_mitigation = TAA_MITIGATION_VERW;
653 		taa_nosmt = true;
654 	}
655 
656 	return 0;
657 }
658 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
659 
660 #undef pr_fmt
661 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
662 
663 static bool mmio_nosmt __ro_after_init = false;
664 
665 static const char * const mmio_strings[] = {
666 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
667 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
668 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
669 };
670 
mmio_select_mitigation(void)671 static void __init mmio_select_mitigation(void)
672 {
673 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
674 	     cpu_mitigations_off()) {
675 		mmio_mitigation = MMIO_MITIGATION_OFF;
676 		return;
677 	}
678 
679 	/* Microcode will be checked in mmio_update_mitigation(). */
680 	if (mmio_mitigation == MMIO_MITIGATION_AUTO) {
681 		if (should_mitigate_vuln(X86_BUG_MMIO_STALE_DATA))
682 			mmio_mitigation = MMIO_MITIGATION_VERW;
683 		else
684 			mmio_mitigation = MMIO_MITIGATION_OFF;
685 	}
686 
687 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
688 		return;
689 
690 	/*
691 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
692 	 * by MDS or TAA.
693 	 */
694 	if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable())
695 		verw_clear_cpu_buf_mitigation_selected = true;
696 }
697 
mmio_update_mitigation(void)698 static void __init mmio_update_mitigation(void)
699 {
700 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
701 		return;
702 
703 	if (verw_clear_cpu_buf_mitigation_selected)
704 		mmio_mitigation = MMIO_MITIGATION_VERW;
705 
706 	if (mmio_mitigation == MMIO_MITIGATION_VERW) {
707 		/*
708 		 * Check if the system has the right microcode.
709 		 *
710 		 * CPU Fill buffer clear mitigation is enumerated by either an explicit
711 		 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
712 		 * affected systems.
713 		 */
714 		if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
715 		      (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
716 		       boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
717 		     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))))
718 			mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
719 	}
720 
721 	pr_info("%s\n", mmio_strings[mmio_mitigation]);
722 }
723 
mmio_apply_mitigation(void)724 static void __init mmio_apply_mitigation(void)
725 {
726 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
727 		return;
728 
729 	/*
730 	 * Only enable the VMM mitigation if the CPU buffer clear mitigation is
731 	 * not being used.
732 	 */
733 	if (verw_clear_cpu_buf_mitigation_selected) {
734 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
735 		static_branch_disable(&cpu_buf_vm_clear);
736 	} else {
737 		static_branch_enable(&cpu_buf_vm_clear);
738 	}
739 
740 	/*
741 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
742 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
743 	 * is required irrespective of SMT state.
744 	 */
745 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
746 		static_branch_enable(&cpu_buf_idle_clear);
747 
748 	if (mmio_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
749 		cpu_smt_disable(false);
750 }
751 
mmio_stale_data_parse_cmdline(char * str)752 static int __init mmio_stale_data_parse_cmdline(char *str)
753 {
754 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
755 		return 0;
756 
757 	if (!str)
758 		return -EINVAL;
759 
760 	if (!strcmp(str, "off")) {
761 		mmio_mitigation = MMIO_MITIGATION_OFF;
762 	} else if (!strcmp(str, "full")) {
763 		mmio_mitigation = MMIO_MITIGATION_VERW;
764 	} else if (!strcmp(str, "full,nosmt")) {
765 		mmio_mitigation = MMIO_MITIGATION_VERW;
766 		mmio_nosmt = true;
767 	}
768 
769 	return 0;
770 }
771 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
772 
773 #undef pr_fmt
774 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
775 
776 static const char * const rfds_strings[] = {
777 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
778 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
779 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
780 };
781 
verw_clears_cpu_reg_file(void)782 static inline bool __init verw_clears_cpu_reg_file(void)
783 {
784 	return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR);
785 }
786 
rfds_select_mitigation(void)787 static void __init rfds_select_mitigation(void)
788 {
789 	if (!boot_cpu_has_bug(X86_BUG_RFDS)) {
790 		rfds_mitigation = RFDS_MITIGATION_OFF;
791 		return;
792 	}
793 
794 	if (rfds_mitigation == RFDS_MITIGATION_AUTO) {
795 		if (should_mitigate_vuln(X86_BUG_RFDS))
796 			rfds_mitigation = RFDS_MITIGATION_VERW;
797 		else
798 			rfds_mitigation = RFDS_MITIGATION_OFF;
799 	}
800 
801 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
802 		return;
803 
804 	if (verw_clears_cpu_reg_file())
805 		verw_clear_cpu_buf_mitigation_selected = true;
806 }
807 
rfds_update_mitigation(void)808 static void __init rfds_update_mitigation(void)
809 {
810 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
811 		return;
812 
813 	if (verw_clear_cpu_buf_mitigation_selected)
814 		rfds_mitigation = RFDS_MITIGATION_VERW;
815 
816 	if (rfds_mitigation == RFDS_MITIGATION_VERW) {
817 		if (!verw_clears_cpu_reg_file())
818 			rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
819 	}
820 
821 	pr_info("%s\n", rfds_strings[rfds_mitigation]);
822 }
823 
rfds_apply_mitigation(void)824 static void __init rfds_apply_mitigation(void)
825 {
826 	if (rfds_mitigation == RFDS_MITIGATION_VERW)
827 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
828 }
829 
rfds_parse_cmdline(char * str)830 static __init int rfds_parse_cmdline(char *str)
831 {
832 	if (!str)
833 		return -EINVAL;
834 
835 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
836 		return 0;
837 
838 	if (!strcmp(str, "off"))
839 		rfds_mitigation = RFDS_MITIGATION_OFF;
840 	else if (!strcmp(str, "on"))
841 		rfds_mitigation = RFDS_MITIGATION_VERW;
842 
843 	return 0;
844 }
845 early_param("reg_file_data_sampling", rfds_parse_cmdline);
846 
847 #undef pr_fmt
848 #define pr_fmt(fmt)	"SRBDS: " fmt
849 
850 enum srbds_mitigations {
851 	SRBDS_MITIGATION_OFF,
852 	SRBDS_MITIGATION_AUTO,
853 	SRBDS_MITIGATION_UCODE_NEEDED,
854 	SRBDS_MITIGATION_FULL,
855 	SRBDS_MITIGATION_TSX_OFF,
856 	SRBDS_MITIGATION_HYPERVISOR,
857 };
858 
859 static enum srbds_mitigations srbds_mitigation __ro_after_init =
860 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF;
861 
862 static const char * const srbds_strings[] = {
863 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
864 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
865 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
866 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
867 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
868 };
869 
870 static bool srbds_off;
871 
update_srbds_msr(void)872 void update_srbds_msr(void)
873 {
874 	u64 mcu_ctrl;
875 
876 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
877 		return;
878 
879 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
880 		return;
881 
882 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
883 		return;
884 
885 	/*
886 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
887 	 * being disabled and it hasn't received the SRBDS MSR microcode.
888 	 */
889 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
890 		return;
891 
892 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
893 
894 	switch (srbds_mitigation) {
895 	case SRBDS_MITIGATION_OFF:
896 	case SRBDS_MITIGATION_TSX_OFF:
897 		mcu_ctrl |= RNGDS_MITG_DIS;
898 		break;
899 	case SRBDS_MITIGATION_FULL:
900 		mcu_ctrl &= ~RNGDS_MITG_DIS;
901 		break;
902 	default:
903 		break;
904 	}
905 
906 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
907 }
908 
srbds_select_mitigation(void)909 static void __init srbds_select_mitigation(void)
910 {
911 	if (!boot_cpu_has_bug(X86_BUG_SRBDS)) {
912 		srbds_mitigation = SRBDS_MITIGATION_OFF;
913 		return;
914 	}
915 
916 	if (srbds_mitigation == SRBDS_MITIGATION_AUTO) {
917 		if (should_mitigate_vuln(X86_BUG_SRBDS))
918 			srbds_mitigation = SRBDS_MITIGATION_FULL;
919 		else {
920 			srbds_mitigation = SRBDS_MITIGATION_OFF;
921 			return;
922 		}
923 	}
924 
925 	/*
926 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
927 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
928 	 * by Processor MMIO Stale Data vulnerability.
929 	 */
930 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
931 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
932 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
933 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
934 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
935 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
936 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
937 	else if (srbds_off)
938 		srbds_mitigation = SRBDS_MITIGATION_OFF;
939 
940 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
941 }
942 
srbds_apply_mitigation(void)943 static void __init srbds_apply_mitigation(void)
944 {
945 	update_srbds_msr();
946 }
947 
srbds_parse_cmdline(char * str)948 static int __init srbds_parse_cmdline(char *str)
949 {
950 	if (!str)
951 		return -EINVAL;
952 
953 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
954 		return 0;
955 
956 	srbds_off = !strcmp(str, "off");
957 	return 0;
958 }
959 early_param("srbds", srbds_parse_cmdline);
960 
961 #undef pr_fmt
962 #define pr_fmt(fmt)     "L1D Flush : " fmt
963 
964 enum l1d_flush_mitigations {
965 	L1D_FLUSH_OFF = 0,
966 	L1D_FLUSH_ON,
967 };
968 
969 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
970 
l1d_flush_select_mitigation(void)971 static void __init l1d_flush_select_mitigation(void)
972 {
973 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
974 		return;
975 
976 	static_branch_enable(&switch_mm_cond_l1d_flush);
977 	pr_info("Conditional flush on switch_mm() enabled\n");
978 }
979 
l1d_flush_parse_cmdline(char * str)980 static int __init l1d_flush_parse_cmdline(char *str)
981 {
982 	if (!strcmp(str, "on"))
983 		l1d_flush_mitigation = L1D_FLUSH_ON;
984 
985 	return 0;
986 }
987 early_param("l1d_flush", l1d_flush_parse_cmdline);
988 
989 #undef pr_fmt
990 #define pr_fmt(fmt)	"GDS: " fmt
991 
992 enum gds_mitigations {
993 	GDS_MITIGATION_OFF,
994 	GDS_MITIGATION_AUTO,
995 	GDS_MITIGATION_UCODE_NEEDED,
996 	GDS_MITIGATION_FORCE,
997 	GDS_MITIGATION_FULL,
998 	GDS_MITIGATION_FULL_LOCKED,
999 	GDS_MITIGATION_HYPERVISOR,
1000 };
1001 
1002 static enum gds_mitigations gds_mitigation __ro_after_init =
1003 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF;
1004 
1005 static const char * const gds_strings[] = {
1006 	[GDS_MITIGATION_OFF]		= "Vulnerable",
1007 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1008 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
1009 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
1010 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
1011 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
1012 };
1013 
gds_ucode_mitigated(void)1014 bool gds_ucode_mitigated(void)
1015 {
1016 	return (gds_mitigation == GDS_MITIGATION_FULL ||
1017 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
1018 }
1019 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
1020 
update_gds_msr(void)1021 void update_gds_msr(void)
1022 {
1023 	u64 mcu_ctrl_after;
1024 	u64 mcu_ctrl;
1025 
1026 	switch (gds_mitigation) {
1027 	case GDS_MITIGATION_OFF:
1028 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1029 		mcu_ctrl |= GDS_MITG_DIS;
1030 		break;
1031 	case GDS_MITIGATION_FULL_LOCKED:
1032 		/*
1033 		 * The LOCKED state comes from the boot CPU. APs might not have
1034 		 * the same state. Make sure the mitigation is enabled on all
1035 		 * CPUs.
1036 		 */
1037 	case GDS_MITIGATION_FULL:
1038 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1039 		mcu_ctrl &= ~GDS_MITG_DIS;
1040 		break;
1041 	case GDS_MITIGATION_FORCE:
1042 	case GDS_MITIGATION_UCODE_NEEDED:
1043 	case GDS_MITIGATION_HYPERVISOR:
1044 	case GDS_MITIGATION_AUTO:
1045 		return;
1046 	}
1047 
1048 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1049 
1050 	/*
1051 	 * Check to make sure that the WRMSR value was not ignored. Writes to
1052 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
1053 	 * processor was not.
1054 	 */
1055 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
1056 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
1057 }
1058 
gds_select_mitigation(void)1059 static void __init gds_select_mitigation(void)
1060 {
1061 	u64 mcu_ctrl;
1062 
1063 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1064 		return;
1065 
1066 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1067 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
1068 		return;
1069 	}
1070 
1071 	/* Will verify below that mitigation _can_ be disabled */
1072 	if (gds_mitigation == GDS_MITIGATION_AUTO) {
1073 		if (should_mitigate_vuln(X86_BUG_GDS))
1074 			gds_mitigation = GDS_MITIGATION_FULL;
1075 		else
1076 			gds_mitigation = GDS_MITIGATION_OFF;
1077 	}
1078 
1079 	/* No microcode */
1080 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
1081 		if (gds_mitigation != GDS_MITIGATION_FORCE)
1082 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
1083 		return;
1084 	}
1085 
1086 	/* Microcode has mitigation, use it */
1087 	if (gds_mitigation == GDS_MITIGATION_FORCE)
1088 		gds_mitigation = GDS_MITIGATION_FULL;
1089 
1090 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1091 	if (mcu_ctrl & GDS_MITG_LOCKED) {
1092 		if (gds_mitigation == GDS_MITIGATION_OFF)
1093 			pr_warn("Mitigation locked. Disable failed.\n");
1094 
1095 		/*
1096 		 * The mitigation is selected from the boot CPU. All other CPUs
1097 		 * _should_ have the same state. If the boot CPU isn't locked
1098 		 * but others are then update_gds_msr() will WARN() of the state
1099 		 * mismatch. If the boot CPU is locked update_gds_msr() will
1100 		 * ensure the other CPUs have the mitigation enabled.
1101 		 */
1102 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
1103 	}
1104 }
1105 
gds_apply_mitigation(void)1106 static void __init gds_apply_mitigation(void)
1107 {
1108 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1109 		return;
1110 
1111 	/* Microcode is present */
1112 	if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)
1113 		update_gds_msr();
1114 	else if (gds_mitigation == GDS_MITIGATION_FORCE) {
1115 		/*
1116 		 * This only needs to be done on the boot CPU so do it
1117 		 * here rather than in update_gds_msr()
1118 		 */
1119 		setup_clear_cpu_cap(X86_FEATURE_AVX);
1120 		pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
1121 	}
1122 
1123 	pr_info("%s\n", gds_strings[gds_mitigation]);
1124 }
1125 
gds_parse_cmdline(char * str)1126 static int __init gds_parse_cmdline(char *str)
1127 {
1128 	if (!str)
1129 		return -EINVAL;
1130 
1131 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1132 		return 0;
1133 
1134 	if (!strcmp(str, "off"))
1135 		gds_mitigation = GDS_MITIGATION_OFF;
1136 	else if (!strcmp(str, "force"))
1137 		gds_mitigation = GDS_MITIGATION_FORCE;
1138 
1139 	return 0;
1140 }
1141 early_param("gather_data_sampling", gds_parse_cmdline);
1142 
1143 #undef pr_fmt
1144 #define pr_fmt(fmt)     "Spectre V1 : " fmt
1145 
1146 enum spectre_v1_mitigation {
1147 	SPECTRE_V1_MITIGATION_NONE,
1148 	SPECTRE_V1_MITIGATION_AUTO,
1149 };
1150 
1151 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
1152 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
1153 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
1154 
1155 static const char * const spectre_v1_strings[] = {
1156 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
1157 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
1158 };
1159 
1160 /*
1161  * Does SMAP provide full mitigation against speculative kernel access to
1162  * userspace?
1163  */
smap_works_speculatively(void)1164 static bool smap_works_speculatively(void)
1165 {
1166 	if (!boot_cpu_has(X86_FEATURE_SMAP))
1167 		return false;
1168 
1169 	/*
1170 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
1171 	 * prevent speculative access to user data in the L1 cache.
1172 	 * Consider SMAP to be non-functional as a mitigation on these
1173 	 * CPUs.
1174 	 */
1175 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
1176 		return false;
1177 
1178 	return true;
1179 }
1180 
spectre_v1_select_mitigation(void)1181 static void __init spectre_v1_select_mitigation(void)
1182 {
1183 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1184 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1185 
1186 	if (!should_mitigate_vuln(X86_BUG_SPECTRE_V1))
1187 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1188 }
1189 
spectre_v1_apply_mitigation(void)1190 static void __init spectre_v1_apply_mitigation(void)
1191 {
1192 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1193 		return;
1194 
1195 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
1196 		/*
1197 		 * With Spectre v1, a user can speculatively control either
1198 		 * path of a conditional swapgs with a user-controlled GS
1199 		 * value.  The mitigation is to add lfences to both code paths.
1200 		 *
1201 		 * If FSGSBASE is enabled, the user can put a kernel address in
1202 		 * GS, in which case SMAP provides no protection.
1203 		 *
1204 		 * If FSGSBASE is disabled, the user can only put a user space
1205 		 * address in GS.  That makes an attack harder, but still
1206 		 * possible if there's no SMAP protection.
1207 		 */
1208 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
1209 		    !smap_works_speculatively()) {
1210 			/*
1211 			 * Mitigation can be provided from SWAPGS itself or
1212 			 * PTI as the CR3 write in the Meltdown mitigation
1213 			 * is serializing.
1214 			 *
1215 			 * If neither is there, mitigate with an LFENCE to
1216 			 * stop speculation through swapgs.
1217 			 */
1218 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
1219 			    !boot_cpu_has(X86_FEATURE_PTI))
1220 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
1221 
1222 			/*
1223 			 * Enable lfences in the kernel entry (non-swapgs)
1224 			 * paths, to prevent user entry from speculatively
1225 			 * skipping swapgs.
1226 			 */
1227 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
1228 		}
1229 	}
1230 
1231 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1232 }
1233 
nospectre_v1_cmdline(char * str)1234 static int __init nospectre_v1_cmdline(char *str)
1235 {
1236 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1237 	return 0;
1238 }
1239 early_param("nospectre_v1", nospectre_v1_cmdline);
1240 
1241 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
1242 
1243 /* Depends on spectre_v2 mitigation selected already */
cdt_possible(enum spectre_v2_mitigation mode)1244 static inline bool cdt_possible(enum spectre_v2_mitigation mode)
1245 {
1246 	if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) ||
1247 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE))
1248 		return false;
1249 
1250 	if (mode == SPECTRE_V2_RETPOLINE ||
1251 	    mode == SPECTRE_V2_EIBRS_RETPOLINE)
1252 		return true;
1253 
1254 	return false;
1255 }
1256 
1257 #undef pr_fmt
1258 #define pr_fmt(fmt)     "RETBleed: " fmt
1259 
1260 enum its_mitigation {
1261 	ITS_MITIGATION_OFF,
1262 	ITS_MITIGATION_AUTO,
1263 	ITS_MITIGATION_VMEXIT_ONLY,
1264 	ITS_MITIGATION_ALIGNED_THUNKS,
1265 	ITS_MITIGATION_RETPOLINE_STUFF,
1266 };
1267 
1268 static enum its_mitigation its_mitigation __ro_after_init =
1269 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_MITIGATION_AUTO : ITS_MITIGATION_OFF;
1270 
1271 enum retbleed_mitigation {
1272 	RETBLEED_MITIGATION_NONE,
1273 	RETBLEED_MITIGATION_AUTO,
1274 	RETBLEED_MITIGATION_UNRET,
1275 	RETBLEED_MITIGATION_IBPB,
1276 	RETBLEED_MITIGATION_IBRS,
1277 	RETBLEED_MITIGATION_EIBRS,
1278 	RETBLEED_MITIGATION_STUFF,
1279 };
1280 
1281 static const char * const retbleed_strings[] = {
1282 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1283 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1284 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1285 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1286 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1287 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1288 };
1289 
1290 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1291 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE;
1292 
1293 static int __ro_after_init retbleed_nosmt = false;
1294 
1295 enum srso_mitigation {
1296 	SRSO_MITIGATION_NONE,
1297 	SRSO_MITIGATION_AUTO,
1298 	SRSO_MITIGATION_UCODE_NEEDED,
1299 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
1300 	SRSO_MITIGATION_MICROCODE,
1301 	SRSO_MITIGATION_NOSMT,
1302 	SRSO_MITIGATION_SAFE_RET,
1303 	SRSO_MITIGATION_IBPB,
1304 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
1305 	SRSO_MITIGATION_BP_SPEC_REDUCE,
1306 };
1307 
1308 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO;
1309 
retbleed_parse_cmdline(char * str)1310 static int __init retbleed_parse_cmdline(char *str)
1311 {
1312 	if (!str)
1313 		return -EINVAL;
1314 
1315 	while (str) {
1316 		char *next = strchr(str, ',');
1317 		if (next) {
1318 			*next = 0;
1319 			next++;
1320 		}
1321 
1322 		if (!strcmp(str, "off")) {
1323 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1324 		} else if (!strcmp(str, "auto")) {
1325 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1326 		} else if (!strcmp(str, "unret")) {
1327 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1328 		} else if (!strcmp(str, "ibpb")) {
1329 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1330 		} else if (!strcmp(str, "stuff")) {
1331 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1332 		} else if (!strcmp(str, "nosmt")) {
1333 			retbleed_nosmt = true;
1334 		} else if (!strcmp(str, "force")) {
1335 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1336 		} else {
1337 			pr_err("Ignoring unknown retbleed option (%s).", str);
1338 		}
1339 
1340 		str = next;
1341 	}
1342 
1343 	return 0;
1344 }
1345 early_param("retbleed", retbleed_parse_cmdline);
1346 
1347 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1348 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1349 
retbleed_select_mitigation(void)1350 static void __init retbleed_select_mitigation(void)
1351 {
1352 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) {
1353 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1354 		return;
1355 	}
1356 
1357 	switch (retbleed_mitigation) {
1358 	case RETBLEED_MITIGATION_UNRET:
1359 		if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1360 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1361 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1362 		}
1363 		break;
1364 	case RETBLEED_MITIGATION_IBPB:
1365 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1366 			pr_err("WARNING: CPU does not support IBPB.\n");
1367 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1368 		} else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1369 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1370 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1371 		}
1372 		break;
1373 	case RETBLEED_MITIGATION_STUFF:
1374 		if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1375 			pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1376 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1377 		} else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1378 			pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n");
1379 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1380 		}
1381 		break;
1382 	default:
1383 		break;
1384 	}
1385 
1386 	if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO)
1387 		return;
1388 
1389 	if (!should_mitigate_vuln(X86_BUG_RETBLEED)) {
1390 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1391 		return;
1392 	}
1393 
1394 	/* Intel mitigation selected in retbleed_update_mitigation() */
1395 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1396 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1397 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1398 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1399 		else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1400 			 boot_cpu_has(X86_FEATURE_IBPB))
1401 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1402 		else
1403 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1404 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1405 		/* Final mitigation depends on spectre-v2 selection */
1406 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1407 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1408 		else if (boot_cpu_has(X86_FEATURE_IBRS))
1409 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1410 		else
1411 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1412 	}
1413 }
1414 
retbleed_update_mitigation(void)1415 static void __init retbleed_update_mitigation(void)
1416 {
1417 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED))
1418 		return;
1419 
1420 	 /* ITS can also enable stuffing */
1421 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF)
1422 		retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1423 
1424 	/* If SRSO is using IBPB, that works for retbleed too */
1425 	if (srso_mitigation == SRSO_MITIGATION_IBPB)
1426 		retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1427 
1428 	if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF &&
1429 	    !cdt_possible(spectre_v2_enabled)) {
1430 		pr_err("WARNING: retbleed=stuff depends on retpoline\n");
1431 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1432 	}
1433 
1434 	/*
1435 	 * Let IBRS trump all on Intel without affecting the effects of the
1436 	 * retbleed= cmdline option except for call depth based stuffing
1437 	 */
1438 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1439 		switch (spectre_v2_enabled) {
1440 		case SPECTRE_V2_IBRS:
1441 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1442 			break;
1443 		case SPECTRE_V2_EIBRS:
1444 		case SPECTRE_V2_EIBRS_RETPOLINE:
1445 		case SPECTRE_V2_EIBRS_LFENCE:
1446 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1447 			break;
1448 		default:
1449 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1450 				pr_err(RETBLEED_INTEL_MSG);
1451 		}
1452 	}
1453 
1454 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1455 }
1456 
retbleed_apply_mitigation(void)1457 static void __init retbleed_apply_mitigation(void)
1458 {
1459 	bool mitigate_smt = false;
1460 
1461 	switch (retbleed_mitigation) {
1462 	case RETBLEED_MITIGATION_NONE:
1463 		return;
1464 
1465 	case RETBLEED_MITIGATION_UNRET:
1466 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1467 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1468 
1469 		set_return_thunk(retbleed_return_thunk);
1470 
1471 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1472 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1473 			pr_err(RETBLEED_UNTRAIN_MSG);
1474 
1475 		mitigate_smt = true;
1476 		break;
1477 
1478 	case RETBLEED_MITIGATION_IBPB:
1479 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1480 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1481 		mitigate_smt = true;
1482 
1483 		/*
1484 		 * IBPB on entry already obviates the need for
1485 		 * software-based untraining so clear those in case some
1486 		 * other mitigation like SRSO has selected them.
1487 		 */
1488 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1489 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1490 
1491 		/*
1492 		 * There is no need for RSB filling: write_ibpb() ensures
1493 		 * all predictions, including the RSB, are invalidated,
1494 		 * regardless of IBPB implementation.
1495 		 */
1496 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1497 
1498 		break;
1499 
1500 	case RETBLEED_MITIGATION_STUFF:
1501 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1502 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1503 
1504 		set_return_thunk(call_depth_return_thunk);
1505 		break;
1506 
1507 	default:
1508 		break;
1509 	}
1510 
1511 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1512 	    (retbleed_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
1513 		cpu_smt_disable(false);
1514 }
1515 
1516 #undef pr_fmt
1517 #define pr_fmt(fmt)     "ITS: " fmt
1518 
1519 static const char * const its_strings[] = {
1520 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1521 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1522 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1523 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1524 };
1525 
its_parse_cmdline(char * str)1526 static int __init its_parse_cmdline(char *str)
1527 {
1528 	if (!str)
1529 		return -EINVAL;
1530 
1531 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1532 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1533 		return 0;
1534 	}
1535 
1536 	if (!strcmp(str, "off")) {
1537 		its_mitigation = ITS_MITIGATION_OFF;
1538 	} else if (!strcmp(str, "on")) {
1539 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1540 	} else if (!strcmp(str, "force")) {
1541 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1542 		setup_force_cpu_bug(X86_BUG_ITS);
1543 	} else if (!strcmp(str, "vmexit")) {
1544 		its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1545 	} else if (!strcmp(str, "stuff")) {
1546 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1547 	} else {
1548 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1549 	}
1550 
1551 	return 0;
1552 }
1553 early_param("indirect_target_selection", its_parse_cmdline);
1554 
its_select_mitigation(void)1555 static void __init its_select_mitigation(void)
1556 {
1557 	if (!boot_cpu_has_bug(X86_BUG_ITS)) {
1558 		its_mitigation = ITS_MITIGATION_OFF;
1559 		return;
1560 	}
1561 
1562 	if (its_mitigation == ITS_MITIGATION_AUTO) {
1563 		if (should_mitigate_vuln(X86_BUG_ITS))
1564 			its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1565 		else
1566 			its_mitigation = ITS_MITIGATION_OFF;
1567 	}
1568 
1569 	if (its_mitigation == ITS_MITIGATION_OFF)
1570 		return;
1571 
1572 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1573 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1574 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1575 		its_mitigation = ITS_MITIGATION_OFF;
1576 		return;
1577 	}
1578 
1579 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1580 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1581 		its_mitigation = ITS_MITIGATION_OFF;
1582 		return;
1583 	}
1584 
1585 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1586 	    !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1587 		pr_err("RSB stuff mitigation not supported, using default\n");
1588 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1589 	}
1590 
1591 	if (its_mitigation == ITS_MITIGATION_VMEXIT_ONLY &&
1592 	    !boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY))
1593 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1594 }
1595 
its_update_mitigation(void)1596 static void __init its_update_mitigation(void)
1597 {
1598 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1599 		return;
1600 
1601 	switch (spectre_v2_enabled) {
1602 	case SPECTRE_V2_NONE:
1603 		if (its_mitigation != ITS_MITIGATION_OFF)
1604 			pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1605 		its_mitigation = ITS_MITIGATION_OFF;
1606 		break;
1607 	case SPECTRE_V2_RETPOLINE:
1608 	case SPECTRE_V2_EIBRS_RETPOLINE:
1609 		/* Retpoline+CDT mitigates ITS */
1610 		if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF)
1611 			its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1612 		break;
1613 	case SPECTRE_V2_LFENCE:
1614 	case SPECTRE_V2_EIBRS_LFENCE:
1615 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1616 		its_mitigation = ITS_MITIGATION_OFF;
1617 		break;
1618 	default:
1619 		break;
1620 	}
1621 
1622 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1623 	    !cdt_possible(spectre_v2_enabled))
1624 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1625 
1626 	pr_info("%s\n", its_strings[its_mitigation]);
1627 }
1628 
its_apply_mitigation(void)1629 static void __init its_apply_mitigation(void)
1630 {
1631 	switch (its_mitigation) {
1632 	case ITS_MITIGATION_OFF:
1633 	case ITS_MITIGATION_AUTO:
1634 	case ITS_MITIGATION_VMEXIT_ONLY:
1635 		break;
1636 	case ITS_MITIGATION_ALIGNED_THUNKS:
1637 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1638 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1639 
1640 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1641 		set_return_thunk(its_return_thunk);
1642 		break;
1643 	case ITS_MITIGATION_RETPOLINE_STUFF:
1644 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1645 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1646 		set_return_thunk(call_depth_return_thunk);
1647 		break;
1648 	}
1649 }
1650 
1651 #undef pr_fmt
1652 #define pr_fmt(fmt)	"Transient Scheduler Attacks: " fmt
1653 
1654 enum tsa_mitigations {
1655 	TSA_MITIGATION_NONE,
1656 	TSA_MITIGATION_AUTO,
1657 	TSA_MITIGATION_UCODE_NEEDED,
1658 	TSA_MITIGATION_USER_KERNEL,
1659 	TSA_MITIGATION_VM,
1660 	TSA_MITIGATION_FULL,
1661 };
1662 
1663 static const char * const tsa_strings[] = {
1664 	[TSA_MITIGATION_NONE]		= "Vulnerable",
1665 	[TSA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1666 	[TSA_MITIGATION_USER_KERNEL]	= "Mitigation: Clear CPU buffers: user/kernel boundary",
1667 	[TSA_MITIGATION_VM]		= "Mitigation: Clear CPU buffers: VM",
1668 	[TSA_MITIGATION_FULL]		= "Mitigation: Clear CPU buffers",
1669 };
1670 
1671 static enum tsa_mitigations tsa_mitigation __ro_after_init =
1672 	IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_AUTO : TSA_MITIGATION_NONE;
1673 
tsa_parse_cmdline(char * str)1674 static int __init tsa_parse_cmdline(char *str)
1675 {
1676 	if (!str)
1677 		return -EINVAL;
1678 
1679 	if (!strcmp(str, "off"))
1680 		tsa_mitigation = TSA_MITIGATION_NONE;
1681 	else if (!strcmp(str, "on"))
1682 		tsa_mitigation = TSA_MITIGATION_FULL;
1683 	else if (!strcmp(str, "user"))
1684 		tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1685 	else if (!strcmp(str, "vm"))
1686 		tsa_mitigation = TSA_MITIGATION_VM;
1687 	else
1688 		pr_err("Ignoring unknown tsa=%s option.\n", str);
1689 
1690 	return 0;
1691 }
1692 early_param("tsa", tsa_parse_cmdline);
1693 
tsa_select_mitigation(void)1694 static void __init tsa_select_mitigation(void)
1695 {
1696 	if (!boot_cpu_has_bug(X86_BUG_TSA)) {
1697 		tsa_mitigation = TSA_MITIGATION_NONE;
1698 		return;
1699 	}
1700 
1701 	if (tsa_mitigation == TSA_MITIGATION_AUTO) {
1702 		bool vm = false, uk = false;
1703 
1704 		tsa_mitigation = TSA_MITIGATION_NONE;
1705 
1706 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
1707 		    cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) {
1708 			tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1709 			uk = true;
1710 		}
1711 
1712 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
1713 		    cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
1714 			tsa_mitigation = TSA_MITIGATION_VM;
1715 			vm = true;
1716 		}
1717 
1718 		if (uk && vm)
1719 			tsa_mitigation = TSA_MITIGATION_FULL;
1720 	}
1721 
1722 	if (tsa_mitigation == TSA_MITIGATION_NONE)
1723 		return;
1724 
1725 	if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR))
1726 		tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED;
1727 
1728 	/*
1729 	 * No need to set verw_clear_cpu_buf_mitigation_selected - it
1730 	 * doesn't fit all cases here and it is not needed because this
1731 	 * is the only VERW-based mitigation on AMD.
1732 	 */
1733 	pr_info("%s\n", tsa_strings[tsa_mitigation]);
1734 }
1735 
tsa_apply_mitigation(void)1736 static void __init tsa_apply_mitigation(void)
1737 {
1738 	switch (tsa_mitigation) {
1739 	case TSA_MITIGATION_USER_KERNEL:
1740 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1741 		break;
1742 	case TSA_MITIGATION_VM:
1743 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1744 		break;
1745 	case TSA_MITIGATION_FULL:
1746 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1747 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1748 		break;
1749 	default:
1750 		break;
1751 	}
1752 }
1753 
1754 #undef pr_fmt
1755 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1756 
1757 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1758 	SPECTRE_V2_USER_NONE;
1759 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1760 	SPECTRE_V2_USER_NONE;
1761 
1762 #ifdef CONFIG_MITIGATION_RETPOLINE
1763 static bool spectre_v2_bad_module;
1764 
retpoline_module_ok(bool has_retpoline)1765 bool retpoline_module_ok(bool has_retpoline)
1766 {
1767 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1768 		return true;
1769 
1770 	pr_err("System may be vulnerable to spectre v2\n");
1771 	spectre_v2_bad_module = true;
1772 	return false;
1773 }
1774 
spectre_v2_module_string(void)1775 static inline const char *spectre_v2_module_string(void)
1776 {
1777 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1778 }
1779 #else
spectre_v2_module_string(void)1780 static inline const char *spectre_v2_module_string(void) { return ""; }
1781 #endif
1782 
1783 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1784 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1785 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1786 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1787 
1788 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1789 void unpriv_ebpf_notify(int new_state)
1790 {
1791 	if (new_state)
1792 		return;
1793 
1794 	/* Unprivileged eBPF is enabled */
1795 
1796 	switch (spectre_v2_enabled) {
1797 	case SPECTRE_V2_EIBRS:
1798 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1799 		break;
1800 	case SPECTRE_V2_EIBRS_LFENCE:
1801 		if (sched_smt_active())
1802 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1803 		break;
1804 	default:
1805 		break;
1806 	}
1807 }
1808 #endif
1809 
match_option(const char * arg,int arglen,const char * opt)1810 static inline bool match_option(const char *arg, int arglen, const char *opt)
1811 {
1812 	int len = strlen(opt);
1813 
1814 	return len == arglen && !strncmp(arg, opt, len);
1815 }
1816 
1817 /* The kernel command line selection for spectre v2 */
1818 enum spectre_v2_mitigation_cmd {
1819 	SPECTRE_V2_CMD_NONE,
1820 	SPECTRE_V2_CMD_AUTO,
1821 	SPECTRE_V2_CMD_FORCE,
1822 	SPECTRE_V2_CMD_RETPOLINE,
1823 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1824 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1825 	SPECTRE_V2_CMD_EIBRS,
1826 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1827 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1828 	SPECTRE_V2_CMD_IBRS,
1829 };
1830 
1831 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init = SPECTRE_V2_CMD_AUTO;
1832 
1833 enum spectre_v2_user_cmd {
1834 	SPECTRE_V2_USER_CMD_NONE,
1835 	SPECTRE_V2_USER_CMD_AUTO,
1836 	SPECTRE_V2_USER_CMD_FORCE,
1837 	SPECTRE_V2_USER_CMD_PRCTL,
1838 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1839 	SPECTRE_V2_USER_CMD_SECCOMP,
1840 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1841 };
1842 
1843 static const char * const spectre_v2_user_strings[] = {
1844 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1845 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1846 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1847 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1848 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1849 };
1850 
1851 static const struct {
1852 	const char			*option;
1853 	enum spectre_v2_user_cmd	cmd;
1854 	bool				secure;
1855 } v2_user_options[] __initconst = {
1856 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1857 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1858 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1859 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1860 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1861 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1862 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1863 };
1864 
spec_v2_user_print_cond(const char * reason,bool secure)1865 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1866 {
1867 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1868 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1869 }
1870 
spectre_v2_parse_user_cmdline(void)1871 static enum spectre_v2_user_cmd __init spectre_v2_parse_user_cmdline(void)
1872 {
1873 	char arg[20];
1874 	int ret, i;
1875 
1876 	if (!IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2))
1877 		return SPECTRE_V2_USER_CMD_NONE;
1878 
1879 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1880 				  arg, sizeof(arg));
1881 	if (ret < 0)
1882 		return SPECTRE_V2_USER_CMD_AUTO;
1883 
1884 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1885 		if (match_option(arg, ret, v2_user_options[i].option)) {
1886 			spec_v2_user_print_cond(v2_user_options[i].option,
1887 						v2_user_options[i].secure);
1888 			return v2_user_options[i].cmd;
1889 		}
1890 	}
1891 
1892 	pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1893 	return SPECTRE_V2_USER_CMD_AUTO;
1894 }
1895 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1896 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1897 {
1898 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1899 }
1900 
spectre_v2_user_select_mitigation(void)1901 static void __init spectre_v2_user_select_mitigation(void)
1902 {
1903 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1904 		return;
1905 
1906 	switch (spectre_v2_parse_user_cmdline()) {
1907 	case SPECTRE_V2_USER_CMD_NONE:
1908 		return;
1909 	case SPECTRE_V2_USER_CMD_FORCE:
1910 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1911 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1912 		break;
1913 	case SPECTRE_V2_USER_CMD_AUTO:
1914 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2_USER))
1915 			break;
1916 		spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1917 		if (smt_mitigations == SMT_MITIGATIONS_OFF)
1918 			break;
1919 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1920 		break;
1921 	case SPECTRE_V2_USER_CMD_PRCTL:
1922 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_PRCTL;
1923 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1924 		break;
1925 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1926 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1927 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1928 		break;
1929 	case SPECTRE_V2_USER_CMD_SECCOMP:
1930 		if (IS_ENABLED(CONFIG_SECCOMP))
1931 			spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP;
1932 		else
1933 			spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1934 		spectre_v2_user_stibp = spectre_v2_user_ibpb;
1935 		break;
1936 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1937 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1938 		if (IS_ENABLED(CONFIG_SECCOMP))
1939 			spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP;
1940 		else
1941 			spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1942 		break;
1943 	}
1944 
1945 	/*
1946 	 * At this point, an STIBP mode other than "off" has been set.
1947 	 * If STIBP support is not being forced, check if STIBP always-on
1948 	 * is preferred.
1949 	 */
1950 	if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1951 	     spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) &&
1952 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1953 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1954 
1955 	if (!boot_cpu_has(X86_FEATURE_IBPB))
1956 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1957 
1958 	if (!boot_cpu_has(X86_FEATURE_STIBP))
1959 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1960 }
1961 
spectre_v2_user_update_mitigation(void)1962 static void __init spectre_v2_user_update_mitigation(void)
1963 {
1964 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1965 		return;
1966 
1967 	/* The spectre_v2 cmd line can override spectre_v2_user options */
1968 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) {
1969 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1970 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1971 	} else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) {
1972 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1973 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1974 	}
1975 
1976 	/*
1977 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1978 	 * is not required.
1979 	 *
1980 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1981 	 * injection in user-mode as the IBRS bit remains always set which
1982 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1983 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1984 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1985 	 * These modes therefore disable the implicit cross-thread protection,
1986 	 * so allow for STIBP to be selected in those cases.
1987 	 */
1988 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1989 	    !cpu_smt_possible() ||
1990 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1991 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS))) {
1992 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1993 		return;
1994 	}
1995 
1996 	if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE &&
1997 	    (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1998 	     retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) {
1999 		if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT &&
2000 		    spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED)
2001 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
2002 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
2003 	}
2004 	pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]);
2005 }
2006 
spectre_v2_user_apply_mitigation(void)2007 static void __init spectre_v2_user_apply_mitigation(void)
2008 {
2009 	/* Initialize Indirect Branch Prediction Barrier */
2010 	if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) {
2011 		static_branch_enable(&switch_vcpu_ibpb);
2012 
2013 		switch (spectre_v2_user_ibpb) {
2014 		case SPECTRE_V2_USER_STRICT:
2015 			static_branch_enable(&switch_mm_always_ibpb);
2016 			break;
2017 		case SPECTRE_V2_USER_PRCTL:
2018 		case SPECTRE_V2_USER_SECCOMP:
2019 			static_branch_enable(&switch_mm_cond_ibpb);
2020 			break;
2021 		default:
2022 			break;
2023 		}
2024 
2025 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
2026 			static_key_enabled(&switch_mm_always_ibpb) ?
2027 			"always-on" : "conditional");
2028 	}
2029 }
2030 
2031 static const char * const spectre_v2_strings[] = {
2032 	[SPECTRE_V2_NONE]			= "Vulnerable",
2033 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
2034 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
2035 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
2036 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
2037 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
2038 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
2039 };
2040 
2041 static const struct {
2042 	const char *option;
2043 	enum spectre_v2_mitigation_cmd cmd;
2044 	bool secure;
2045 } mitigation_options[] __initconst = {
2046 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
2047 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
2048 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
2049 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
2050 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
2051 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
2052 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
2053 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
2054 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
2055 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
2056 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
2057 };
2058 
spec_v2_print_cond(const char * reason,bool secure)2059 static void __init spec_v2_print_cond(const char *reason, bool secure)
2060 {
2061 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
2062 		pr_info("%s selected on command line.\n", reason);
2063 }
2064 
spectre_v2_parse_cmdline(void)2065 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
2066 {
2067 	enum spectre_v2_mitigation_cmd cmd;
2068 	char arg[20];
2069 	int ret, i;
2070 
2071 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
2072 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2"))
2073 		return SPECTRE_V2_CMD_NONE;
2074 
2075 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
2076 	if (ret < 0)
2077 		return cmd;
2078 
2079 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
2080 		if (!match_option(arg, ret, mitigation_options[i].option))
2081 			continue;
2082 		cmd = mitigation_options[i].cmd;
2083 		break;
2084 	}
2085 
2086 	if (i >= ARRAY_SIZE(mitigation_options)) {
2087 		pr_err("unknown option (%s). Switching to default mode\n", arg);
2088 		return cmd;
2089 	}
2090 
2091 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
2092 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2093 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
2094 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2095 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2096 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2097 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
2098 		       mitigation_options[i].option);
2099 		return SPECTRE_V2_CMD_AUTO;
2100 	}
2101 
2102 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
2103 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2104 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2105 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2106 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
2107 		       mitigation_options[i].option);
2108 		return SPECTRE_V2_CMD_AUTO;
2109 	}
2110 
2111 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2112 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
2113 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
2114 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
2115 		       mitigation_options[i].option);
2116 		return SPECTRE_V2_CMD_AUTO;
2117 	}
2118 
2119 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
2120 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
2121 		       mitigation_options[i].option);
2122 		return SPECTRE_V2_CMD_AUTO;
2123 	}
2124 
2125 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
2126 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
2127 		       mitigation_options[i].option);
2128 		return SPECTRE_V2_CMD_AUTO;
2129 	}
2130 
2131 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
2132 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
2133 		       mitigation_options[i].option);
2134 		return SPECTRE_V2_CMD_AUTO;
2135 	}
2136 
2137 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
2138 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
2139 		       mitigation_options[i].option);
2140 		return SPECTRE_V2_CMD_AUTO;
2141 	}
2142 
2143 	spec_v2_print_cond(mitigation_options[i].option,
2144 			   mitigation_options[i].secure);
2145 	return cmd;
2146 }
2147 
spectre_v2_select_retpoline(void)2148 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
2149 {
2150 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2151 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
2152 		return SPECTRE_V2_NONE;
2153 	}
2154 
2155 	return SPECTRE_V2_RETPOLINE;
2156 }
2157 
2158 static bool __ro_after_init rrsba_disabled;
2159 
2160 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)2161 static void __init spec_ctrl_disable_kernel_rrsba(void)
2162 {
2163 	if (rrsba_disabled)
2164 		return;
2165 
2166 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
2167 		rrsba_disabled = true;
2168 		return;
2169 	}
2170 
2171 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
2172 		return;
2173 
2174 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
2175 	update_spec_ctrl(x86_spec_ctrl_base);
2176 	rrsba_disabled = true;
2177 }
2178 
spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)2179 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
2180 {
2181 	/*
2182 	 * WARNING! There are many subtleties to consider when changing *any*
2183 	 * code related to RSB-related mitigations.  Before doing so, carefully
2184 	 * read the following document, and update if necessary:
2185 	 *
2186 	 *   Documentation/admin-guide/hw-vuln/rsb.rst
2187 	 *
2188 	 * In an overly simplified nutshell:
2189 	 *
2190 	 *   - User->user RSB attacks are conditionally mitigated during
2191 	 *     context switches by cond_mitigation -> write_ibpb().
2192 	 *
2193 	 *   - User->kernel and guest->host attacks are mitigated by eIBRS or
2194 	 *     RSB filling.
2195 	 *
2196 	 *     Though, depending on config, note that other alternative
2197 	 *     mitigations may end up getting used instead, e.g., IBPB on
2198 	 *     entry/vmexit, call depth tracking, or return thunks.
2199 	 */
2200 
2201 	switch (mode) {
2202 	case SPECTRE_V2_NONE:
2203 		break;
2204 
2205 	case SPECTRE_V2_EIBRS:
2206 	case SPECTRE_V2_EIBRS_LFENCE:
2207 	case SPECTRE_V2_EIBRS_RETPOLINE:
2208 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2209 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
2210 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
2211 		}
2212 		break;
2213 
2214 	case SPECTRE_V2_RETPOLINE:
2215 	case SPECTRE_V2_LFENCE:
2216 	case SPECTRE_V2_IBRS:
2217 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
2218 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
2219 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2220 		break;
2221 
2222 	default:
2223 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
2224 		dump_stack();
2225 		break;
2226 	}
2227 }
2228 
2229 /*
2230  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
2231  * branch history in userspace. Not needed if BHI_NO is set.
2232  */
spec_ctrl_bhi_dis(void)2233 static bool __init spec_ctrl_bhi_dis(void)
2234 {
2235 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
2236 		return false;
2237 
2238 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
2239 	update_spec_ctrl(x86_spec_ctrl_base);
2240 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
2241 
2242 	return true;
2243 }
2244 
2245 enum bhi_mitigations {
2246 	BHI_MITIGATION_OFF,
2247 	BHI_MITIGATION_AUTO,
2248 	BHI_MITIGATION_ON,
2249 	BHI_MITIGATION_VMEXIT_ONLY,
2250 };
2251 
2252 static enum bhi_mitigations bhi_mitigation __ro_after_init =
2253 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF;
2254 
spectre_bhi_parse_cmdline(char * str)2255 static int __init spectre_bhi_parse_cmdline(char *str)
2256 {
2257 	if (!str)
2258 		return -EINVAL;
2259 
2260 	if (!strcmp(str, "off"))
2261 		bhi_mitigation = BHI_MITIGATION_OFF;
2262 	else if (!strcmp(str, "on"))
2263 		bhi_mitigation = BHI_MITIGATION_ON;
2264 	else if (!strcmp(str, "vmexit"))
2265 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2266 	else
2267 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
2268 
2269 	return 0;
2270 }
2271 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
2272 
bhi_select_mitigation(void)2273 static void __init bhi_select_mitigation(void)
2274 {
2275 	if (!boot_cpu_has(X86_BUG_BHI))
2276 		bhi_mitigation = BHI_MITIGATION_OFF;
2277 
2278 	if (bhi_mitigation != BHI_MITIGATION_AUTO)
2279 		return;
2280 
2281 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) {
2282 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
2283 			bhi_mitigation = BHI_MITIGATION_ON;
2284 		else
2285 			bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2286 	} else {
2287 		bhi_mitigation = BHI_MITIGATION_OFF;
2288 	}
2289 }
2290 
bhi_update_mitigation(void)2291 static void __init bhi_update_mitigation(void)
2292 {
2293 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE)
2294 		bhi_mitigation = BHI_MITIGATION_OFF;
2295 
2296 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2297 	     spectre_v2_cmd == SPECTRE_V2_CMD_AUTO)
2298 		bhi_mitigation = BHI_MITIGATION_OFF;
2299 }
2300 
bhi_apply_mitigation(void)2301 static void __init bhi_apply_mitigation(void)
2302 {
2303 	if (bhi_mitigation == BHI_MITIGATION_OFF)
2304 		return;
2305 
2306 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
2307 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2308 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
2309 		spec_ctrl_disable_kernel_rrsba();
2310 		if (rrsba_disabled)
2311 			return;
2312 	}
2313 
2314 	if (!IS_ENABLED(CONFIG_X86_64))
2315 		return;
2316 
2317 	/* Mitigate in hardware if supported */
2318 	if (spec_ctrl_bhi_dis())
2319 		return;
2320 
2321 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
2322 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
2323 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2324 		return;
2325 	}
2326 
2327 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
2328 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
2329 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2330 }
2331 
spectre_v2_select_mitigation(void)2332 static void __init spectre_v2_select_mitigation(void)
2333 {
2334 	spectre_v2_cmd = spectre_v2_parse_cmdline();
2335 
2336 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2337 	    (spectre_v2_cmd == SPECTRE_V2_CMD_NONE || spectre_v2_cmd == SPECTRE_V2_CMD_AUTO))
2338 		return;
2339 
2340 	switch (spectre_v2_cmd) {
2341 	case SPECTRE_V2_CMD_NONE:
2342 		return;
2343 
2344 	case SPECTRE_V2_CMD_AUTO:
2345 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2))
2346 			break;
2347 		fallthrough;
2348 	case SPECTRE_V2_CMD_FORCE:
2349 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2350 			spectre_v2_enabled = SPECTRE_V2_EIBRS;
2351 			break;
2352 		}
2353 
2354 		spectre_v2_enabled = spectre_v2_select_retpoline();
2355 		break;
2356 
2357 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
2358 		pr_err(SPECTRE_V2_LFENCE_MSG);
2359 		spectre_v2_enabled = SPECTRE_V2_LFENCE;
2360 		break;
2361 
2362 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
2363 		spectre_v2_enabled = SPECTRE_V2_RETPOLINE;
2364 		break;
2365 
2366 	case SPECTRE_V2_CMD_RETPOLINE:
2367 		spectre_v2_enabled = spectre_v2_select_retpoline();
2368 		break;
2369 
2370 	case SPECTRE_V2_CMD_IBRS:
2371 		spectre_v2_enabled = SPECTRE_V2_IBRS;
2372 		break;
2373 
2374 	case SPECTRE_V2_CMD_EIBRS:
2375 		spectre_v2_enabled = SPECTRE_V2_EIBRS;
2376 		break;
2377 
2378 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
2379 		spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE;
2380 		break;
2381 
2382 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
2383 		spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE;
2384 		break;
2385 	}
2386 }
2387 
spectre_v2_update_mitigation(void)2388 static void __init spectre_v2_update_mitigation(void)
2389 {
2390 	if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO &&
2391 	    !spectre_v2_in_eibrs_mode(spectre_v2_enabled)) {
2392 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
2393 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2394 		    retbleed_mitigation != RETBLEED_MITIGATION_NONE &&
2395 		    retbleed_mitigation != RETBLEED_MITIGATION_STUFF &&
2396 		    boot_cpu_has(X86_FEATURE_IBRS) &&
2397 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
2398 			spectre_v2_enabled = SPECTRE_V2_IBRS;
2399 		}
2400 	}
2401 
2402 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2403 		pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]);
2404 }
2405 
spectre_v2_apply_mitigation(void)2406 static void __init spectre_v2_apply_mitigation(void)
2407 {
2408 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2409 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
2410 
2411 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2412 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
2413 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
2414 		} else {
2415 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
2416 			update_spec_ctrl(x86_spec_ctrl_base);
2417 		}
2418 	}
2419 
2420 	switch (spectre_v2_enabled) {
2421 	case SPECTRE_V2_NONE:
2422 		return;
2423 
2424 	case SPECTRE_V2_EIBRS:
2425 		break;
2426 
2427 	case SPECTRE_V2_IBRS:
2428 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
2429 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
2430 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
2431 		break;
2432 
2433 	case SPECTRE_V2_LFENCE:
2434 	case SPECTRE_V2_EIBRS_LFENCE:
2435 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
2436 		fallthrough;
2437 
2438 	case SPECTRE_V2_RETPOLINE:
2439 	case SPECTRE_V2_EIBRS_RETPOLINE:
2440 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
2441 		break;
2442 	}
2443 
2444 	/*
2445 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
2446 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
2447 	 * prediction from a non-RSB predictor is still a risk.
2448 	 */
2449 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE ||
2450 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE ||
2451 	    spectre_v2_enabled == SPECTRE_V2_RETPOLINE)
2452 		spec_ctrl_disable_kernel_rrsba();
2453 
2454 	spectre_v2_select_rsb_mitigation(spectre_v2_enabled);
2455 
2456 	/*
2457 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2458 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2459 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2460 	 * otherwise enabled.
2461 	 *
2462 	 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of
2463 	 * boot_cpu_has(), because the user might select retpoline on the kernel
2464 	 * command line and if the CPU supports Enhanced IBRS, kernel might
2465 	 * un-intentionally not enable IBRS around firmware calls.
2466 	 */
2467 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2468 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2469 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2470 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2471 
2472 		if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) {
2473 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2474 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2475 		}
2476 
2477 	} else if (boot_cpu_has(X86_FEATURE_IBRS) &&
2478 		   !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2479 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2480 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2481 	}
2482 }
2483 
update_stibp_msr(void * __unused)2484 static void update_stibp_msr(void * __unused)
2485 {
2486 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2487 	update_spec_ctrl(val);
2488 }
2489 
2490 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)2491 static void update_stibp_strict(void)
2492 {
2493 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2494 
2495 	if (sched_smt_active())
2496 		mask |= SPEC_CTRL_STIBP;
2497 
2498 	if (mask == x86_spec_ctrl_base)
2499 		return;
2500 
2501 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2502 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2503 	x86_spec_ctrl_base = mask;
2504 	on_each_cpu(update_stibp_msr, NULL, 1);
2505 }
2506 
2507 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)2508 static void update_indir_branch_cond(void)
2509 {
2510 	if (sched_smt_active())
2511 		static_branch_enable(&switch_to_cond_stibp);
2512 	else
2513 		static_branch_disable(&switch_to_cond_stibp);
2514 }
2515 
2516 #undef pr_fmt
2517 #define pr_fmt(fmt) fmt
2518 
2519 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)2520 static void update_mds_branch_idle(void)
2521 {
2522 	/*
2523 	 * Enable the idle clearing if SMT is active on CPUs which are
2524 	 * affected only by MSBDS and not any other MDS variant.
2525 	 *
2526 	 * The other variants cannot be mitigated when SMT is enabled, so
2527 	 * clearing the buffers on idle just to prevent the Store Buffer
2528 	 * repartitioning leak would be a window dressing exercise.
2529 	 */
2530 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2531 		return;
2532 
2533 	if (sched_smt_active()) {
2534 		static_branch_enable(&cpu_buf_idle_clear);
2535 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2536 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2537 		static_branch_disable(&cpu_buf_idle_clear);
2538 	}
2539 }
2540 
2541 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
2542 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
2543 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
2544 
cpu_bugs_smt_update(void)2545 void cpu_bugs_smt_update(void)
2546 {
2547 	mutex_lock(&spec_ctrl_mutex);
2548 
2549 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2550 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2551 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
2552 
2553 	switch (spectre_v2_user_stibp) {
2554 	case SPECTRE_V2_USER_NONE:
2555 		break;
2556 	case SPECTRE_V2_USER_STRICT:
2557 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2558 		update_stibp_strict();
2559 		break;
2560 	case SPECTRE_V2_USER_PRCTL:
2561 	case SPECTRE_V2_USER_SECCOMP:
2562 		update_indir_branch_cond();
2563 		break;
2564 	}
2565 
2566 	switch (mds_mitigation) {
2567 	case MDS_MITIGATION_FULL:
2568 	case MDS_MITIGATION_AUTO:
2569 	case MDS_MITIGATION_VMWERV:
2570 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
2571 			pr_warn_once(MDS_MSG_SMT);
2572 		update_mds_branch_idle();
2573 		break;
2574 	case MDS_MITIGATION_OFF:
2575 		break;
2576 	}
2577 
2578 	switch (taa_mitigation) {
2579 	case TAA_MITIGATION_VERW:
2580 	case TAA_MITIGATION_AUTO:
2581 	case TAA_MITIGATION_UCODE_NEEDED:
2582 		if (sched_smt_active())
2583 			pr_warn_once(TAA_MSG_SMT);
2584 		break;
2585 	case TAA_MITIGATION_TSX_DISABLED:
2586 	case TAA_MITIGATION_OFF:
2587 		break;
2588 	}
2589 
2590 	switch (mmio_mitigation) {
2591 	case MMIO_MITIGATION_VERW:
2592 	case MMIO_MITIGATION_AUTO:
2593 	case MMIO_MITIGATION_UCODE_NEEDED:
2594 		if (sched_smt_active())
2595 			pr_warn_once(MMIO_MSG_SMT);
2596 		break;
2597 	case MMIO_MITIGATION_OFF:
2598 		break;
2599 	}
2600 
2601 	switch (tsa_mitigation) {
2602 	case TSA_MITIGATION_USER_KERNEL:
2603 	case TSA_MITIGATION_VM:
2604 	case TSA_MITIGATION_AUTO:
2605 	case TSA_MITIGATION_FULL:
2606 		/*
2607 		 * TSA-SQ can potentially lead to info leakage between
2608 		 * SMT threads.
2609 		 */
2610 		if (sched_smt_active())
2611 			static_branch_enable(&cpu_buf_idle_clear);
2612 		else
2613 			static_branch_disable(&cpu_buf_idle_clear);
2614 		break;
2615 	case TSA_MITIGATION_NONE:
2616 	case TSA_MITIGATION_UCODE_NEEDED:
2617 		break;
2618 	}
2619 
2620 	mutex_unlock(&spec_ctrl_mutex);
2621 }
2622 
2623 #undef pr_fmt
2624 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2625 
2626 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2627 
2628 /* The kernel command line selection */
2629 enum ssb_mitigation_cmd {
2630 	SPEC_STORE_BYPASS_CMD_NONE,
2631 	SPEC_STORE_BYPASS_CMD_AUTO,
2632 	SPEC_STORE_BYPASS_CMD_ON,
2633 	SPEC_STORE_BYPASS_CMD_PRCTL,
2634 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2635 };
2636 
2637 static const char * const ssb_strings[] = {
2638 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2639 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2640 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2641 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2642 };
2643 
2644 static const struct {
2645 	const char *option;
2646 	enum ssb_mitigation_cmd cmd;
2647 } ssb_mitigation_options[]  __initconst = {
2648 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2649 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2650 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2651 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2652 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2653 };
2654 
ssb_parse_cmdline(void)2655 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2656 {
2657 	enum ssb_mitigation_cmd cmd;
2658 	char arg[20];
2659 	int ret, i;
2660 
2661 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2662 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2663 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2664 	    cpu_mitigations_off()) {
2665 		return SPEC_STORE_BYPASS_CMD_NONE;
2666 	} else {
2667 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2668 					  arg, sizeof(arg));
2669 		if (ret < 0)
2670 			return cmd;
2671 
2672 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2673 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2674 				continue;
2675 
2676 			cmd = ssb_mitigation_options[i].cmd;
2677 			break;
2678 		}
2679 
2680 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2681 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2682 			return cmd;
2683 		}
2684 	}
2685 
2686 	return cmd;
2687 }
2688 
ssb_select_mitigation(void)2689 static void __init ssb_select_mitigation(void)
2690 {
2691 	enum ssb_mitigation_cmd cmd;
2692 
2693 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2694 		goto out;
2695 
2696 	cmd = ssb_parse_cmdline();
2697 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2698 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2699 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2700 		return;
2701 
2702 	switch (cmd) {
2703 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2704 		/*
2705 		 * Choose prctl+seccomp as the default mode if seccomp is
2706 		 * enabled.
2707 		 */
2708 		if (IS_ENABLED(CONFIG_SECCOMP))
2709 			ssb_mode = SPEC_STORE_BYPASS_SECCOMP;
2710 		else
2711 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2712 		break;
2713 	case SPEC_STORE_BYPASS_CMD_ON:
2714 		ssb_mode = SPEC_STORE_BYPASS_DISABLE;
2715 		break;
2716 	case SPEC_STORE_BYPASS_CMD_AUTO:
2717 		if (should_mitigate_vuln(X86_BUG_SPEC_STORE_BYPASS))
2718 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2719 		else
2720 			ssb_mode = SPEC_STORE_BYPASS_NONE;
2721 		break;
2722 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2723 		ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2724 		break;
2725 	case SPEC_STORE_BYPASS_CMD_NONE:
2726 		break;
2727 	}
2728 
2729 out:
2730 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2731 		pr_info("%s\n", ssb_strings[ssb_mode]);
2732 }
2733 
ssb_apply_mitigation(void)2734 static void __init ssb_apply_mitigation(void)
2735 {
2736 	/*
2737 	 * We have three CPU feature flags that are in play here:
2738 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2739 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2740 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2741 	 */
2742 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) {
2743 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2744 		/*
2745 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2746 		 * use a completely different MSR and bit dependent on family.
2747 		 */
2748 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2749 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2750 			x86_amd_ssb_disable();
2751 		} else {
2752 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2753 			update_spec_ctrl(x86_spec_ctrl_base);
2754 		}
2755 	}
2756 }
2757 
2758 #undef pr_fmt
2759 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2760 
task_update_spec_tif(struct task_struct * tsk)2761 static void task_update_spec_tif(struct task_struct *tsk)
2762 {
2763 	/* Force the update of the real TIF bits */
2764 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2765 
2766 	/*
2767 	 * Immediately update the speculation control MSRs for the current
2768 	 * task, but for a non-current task delay setting the CPU
2769 	 * mitigation until it is scheduled next.
2770 	 *
2771 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2772 	 * always the current task.
2773 	 */
2774 	if (tsk == current)
2775 		speculation_ctrl_update_current();
2776 }
2777 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2778 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2779 {
2780 
2781 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2782 		return -EPERM;
2783 
2784 	switch (ctrl) {
2785 	case PR_SPEC_ENABLE:
2786 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2787 		return 0;
2788 	case PR_SPEC_DISABLE:
2789 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2790 		return 0;
2791 	default:
2792 		return -ERANGE;
2793 	}
2794 }
2795 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2796 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2797 {
2798 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2799 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2800 		return -ENXIO;
2801 
2802 	switch (ctrl) {
2803 	case PR_SPEC_ENABLE:
2804 		/* If speculation is force disabled, enable is not allowed */
2805 		if (task_spec_ssb_force_disable(task))
2806 			return -EPERM;
2807 		task_clear_spec_ssb_disable(task);
2808 		task_clear_spec_ssb_noexec(task);
2809 		task_update_spec_tif(task);
2810 		break;
2811 	case PR_SPEC_DISABLE:
2812 		task_set_spec_ssb_disable(task);
2813 		task_clear_spec_ssb_noexec(task);
2814 		task_update_spec_tif(task);
2815 		break;
2816 	case PR_SPEC_FORCE_DISABLE:
2817 		task_set_spec_ssb_disable(task);
2818 		task_set_spec_ssb_force_disable(task);
2819 		task_clear_spec_ssb_noexec(task);
2820 		task_update_spec_tif(task);
2821 		break;
2822 	case PR_SPEC_DISABLE_NOEXEC:
2823 		if (task_spec_ssb_force_disable(task))
2824 			return -EPERM;
2825 		task_set_spec_ssb_disable(task);
2826 		task_set_spec_ssb_noexec(task);
2827 		task_update_spec_tif(task);
2828 		break;
2829 	default:
2830 		return -ERANGE;
2831 	}
2832 	return 0;
2833 }
2834 
is_spec_ib_user_controlled(void)2835 static bool is_spec_ib_user_controlled(void)
2836 {
2837 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2838 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2839 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2840 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2841 }
2842 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2843 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2844 {
2845 	switch (ctrl) {
2846 	case PR_SPEC_ENABLE:
2847 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2848 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2849 			return 0;
2850 
2851 		/*
2852 		 * With strict mode for both IBPB and STIBP, the instruction
2853 		 * code paths avoid checking this task flag and instead,
2854 		 * unconditionally run the instruction. However, STIBP and IBPB
2855 		 * are independent and either can be set to conditionally
2856 		 * enabled regardless of the mode of the other.
2857 		 *
2858 		 * If either is set to conditional, allow the task flag to be
2859 		 * updated, unless it was force-disabled by a previous prctl
2860 		 * call. Currently, this is possible on an AMD CPU which has the
2861 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2862 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2863 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2864 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2865 		 */
2866 		if (!is_spec_ib_user_controlled() ||
2867 		    task_spec_ib_force_disable(task))
2868 			return -EPERM;
2869 
2870 		task_clear_spec_ib_disable(task);
2871 		task_update_spec_tif(task);
2872 		break;
2873 	case PR_SPEC_DISABLE:
2874 	case PR_SPEC_FORCE_DISABLE:
2875 		/*
2876 		 * Indirect branch speculation is always allowed when
2877 		 * mitigation is force disabled.
2878 		 */
2879 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2880 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2881 			return -EPERM;
2882 
2883 		if (!is_spec_ib_user_controlled())
2884 			return 0;
2885 
2886 		task_set_spec_ib_disable(task);
2887 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2888 			task_set_spec_ib_force_disable(task);
2889 		task_update_spec_tif(task);
2890 		if (task == current)
2891 			indirect_branch_prediction_barrier();
2892 		break;
2893 	default:
2894 		return -ERANGE;
2895 	}
2896 	return 0;
2897 }
2898 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2899 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2900 			     unsigned long ctrl)
2901 {
2902 	switch (which) {
2903 	case PR_SPEC_STORE_BYPASS:
2904 		return ssb_prctl_set(task, ctrl);
2905 	case PR_SPEC_INDIRECT_BRANCH:
2906 		return ib_prctl_set(task, ctrl);
2907 	case PR_SPEC_L1D_FLUSH:
2908 		return l1d_flush_prctl_set(task, ctrl);
2909 	default:
2910 		return -ENODEV;
2911 	}
2912 }
2913 
2914 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2915 void arch_seccomp_spec_mitigate(struct task_struct *task)
2916 {
2917 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2918 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2919 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2920 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2921 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2922 }
2923 #endif
2924 
l1d_flush_prctl_get(struct task_struct * task)2925 static int l1d_flush_prctl_get(struct task_struct *task)
2926 {
2927 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2928 		return PR_SPEC_FORCE_DISABLE;
2929 
2930 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2931 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2932 	else
2933 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2934 }
2935 
ssb_prctl_get(struct task_struct * task)2936 static int ssb_prctl_get(struct task_struct *task)
2937 {
2938 	switch (ssb_mode) {
2939 	case SPEC_STORE_BYPASS_NONE:
2940 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2941 			return PR_SPEC_ENABLE;
2942 		return PR_SPEC_NOT_AFFECTED;
2943 	case SPEC_STORE_BYPASS_DISABLE:
2944 		return PR_SPEC_DISABLE;
2945 	case SPEC_STORE_BYPASS_SECCOMP:
2946 	case SPEC_STORE_BYPASS_PRCTL:
2947 		if (task_spec_ssb_force_disable(task))
2948 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2949 		if (task_spec_ssb_noexec(task))
2950 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2951 		if (task_spec_ssb_disable(task))
2952 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2953 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2954 	}
2955 	BUG();
2956 }
2957 
ib_prctl_get(struct task_struct * task)2958 static int ib_prctl_get(struct task_struct *task)
2959 {
2960 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2961 		return PR_SPEC_NOT_AFFECTED;
2962 
2963 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2964 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2965 		return PR_SPEC_ENABLE;
2966 	else if (is_spec_ib_user_controlled()) {
2967 		if (task_spec_ib_force_disable(task))
2968 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2969 		if (task_spec_ib_disable(task))
2970 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2971 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2972 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2973 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2974 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2975 		return PR_SPEC_DISABLE;
2976 	else
2977 		return PR_SPEC_NOT_AFFECTED;
2978 }
2979 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2980 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2981 {
2982 	switch (which) {
2983 	case PR_SPEC_STORE_BYPASS:
2984 		return ssb_prctl_get(task);
2985 	case PR_SPEC_INDIRECT_BRANCH:
2986 		return ib_prctl_get(task);
2987 	case PR_SPEC_L1D_FLUSH:
2988 		return l1d_flush_prctl_get(task);
2989 	default:
2990 		return -ENODEV;
2991 	}
2992 }
2993 
x86_spec_ctrl_setup_ap(void)2994 void x86_spec_ctrl_setup_ap(void)
2995 {
2996 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2997 		update_spec_ctrl(x86_spec_ctrl_base);
2998 
2999 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
3000 		x86_amd_ssb_disable();
3001 }
3002 
3003 bool itlb_multihit_kvm_mitigation;
3004 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
3005 
3006 #undef pr_fmt
3007 #define pr_fmt(fmt)	"L1TF: " fmt
3008 
3009 /* Default mitigation for L1TF-affected CPUs */
3010 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
3011 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF;
3012 #if IS_ENABLED(CONFIG_KVM_INTEL)
3013 EXPORT_SYMBOL_GPL(l1tf_mitigation);
3014 #endif
3015 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
3016 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
3017 
3018 /*
3019  * These CPUs all support 44bits physical address space internally in the
3020  * cache but CPUID can report a smaller number of physical address bits.
3021  *
3022  * The L1TF mitigation uses the top most address bit for the inversion of
3023  * non present PTEs. When the installed memory reaches into the top most
3024  * address bit due to memory holes, which has been observed on machines
3025  * which report 36bits physical address bits and have 32G RAM installed,
3026  * then the mitigation range check in l1tf_select_mitigation() triggers.
3027  * This is a false positive because the mitigation is still possible due to
3028  * the fact that the cache uses 44bit internally. Use the cache bits
3029  * instead of the reported physical bits and adjust them on the affected
3030  * machines to 44bit if the reported bits are less than 44.
3031  */
override_cache_bits(struct cpuinfo_x86 * c)3032 static void override_cache_bits(struct cpuinfo_x86 *c)
3033 {
3034 	if (c->x86 != 6)
3035 		return;
3036 
3037 	switch (c->x86_vfm) {
3038 	case INTEL_NEHALEM:
3039 	case INTEL_WESTMERE:
3040 	case INTEL_SANDYBRIDGE:
3041 	case INTEL_IVYBRIDGE:
3042 	case INTEL_HASWELL:
3043 	case INTEL_HASWELL_L:
3044 	case INTEL_HASWELL_G:
3045 	case INTEL_BROADWELL:
3046 	case INTEL_BROADWELL_G:
3047 	case INTEL_SKYLAKE_L:
3048 	case INTEL_SKYLAKE:
3049 	case INTEL_KABYLAKE_L:
3050 	case INTEL_KABYLAKE:
3051 		if (c->x86_cache_bits < 44)
3052 			c->x86_cache_bits = 44;
3053 		break;
3054 	}
3055 }
3056 
l1tf_select_mitigation(void)3057 static void __init l1tf_select_mitigation(void)
3058 {
3059 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
3060 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3061 		return;
3062 	}
3063 
3064 	if (l1tf_mitigation != L1TF_MITIGATION_AUTO)
3065 		return;
3066 
3067 	if (!should_mitigate_vuln(X86_BUG_L1TF)) {
3068 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3069 		return;
3070 	}
3071 
3072 	if (smt_mitigations == SMT_MITIGATIONS_ON)
3073 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
3074 	else
3075 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
3076 }
3077 
l1tf_apply_mitigation(void)3078 static void __init l1tf_apply_mitigation(void)
3079 {
3080 	u64 half_pa;
3081 
3082 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
3083 		return;
3084 
3085 	override_cache_bits(&boot_cpu_data);
3086 
3087 	switch (l1tf_mitigation) {
3088 	case L1TF_MITIGATION_OFF:
3089 	case L1TF_MITIGATION_FLUSH_NOWARN:
3090 	case L1TF_MITIGATION_FLUSH:
3091 	case L1TF_MITIGATION_AUTO:
3092 		break;
3093 	case L1TF_MITIGATION_FLUSH_NOSMT:
3094 	case L1TF_MITIGATION_FULL:
3095 		cpu_smt_disable(false);
3096 		break;
3097 	case L1TF_MITIGATION_FULL_FORCE:
3098 		cpu_smt_disable(true);
3099 		break;
3100 	}
3101 
3102 #if CONFIG_PGTABLE_LEVELS == 2
3103 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
3104 	return;
3105 #endif
3106 
3107 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
3108 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
3109 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
3110 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
3111 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
3112 				half_pa);
3113 		pr_info("However, doing so will make a part of your RAM unusable.\n");
3114 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
3115 		return;
3116 	}
3117 
3118 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
3119 }
3120 
l1tf_cmdline(char * str)3121 static int __init l1tf_cmdline(char *str)
3122 {
3123 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
3124 		return 0;
3125 
3126 	if (!str)
3127 		return -EINVAL;
3128 
3129 	if (!strcmp(str, "off"))
3130 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3131 	else if (!strcmp(str, "flush,nowarn"))
3132 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
3133 	else if (!strcmp(str, "flush"))
3134 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
3135 	else if (!strcmp(str, "flush,nosmt"))
3136 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
3137 	else if (!strcmp(str, "full"))
3138 		l1tf_mitigation = L1TF_MITIGATION_FULL;
3139 	else if (!strcmp(str, "full,force"))
3140 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
3141 
3142 	return 0;
3143 }
3144 early_param("l1tf", l1tf_cmdline);
3145 
3146 #undef pr_fmt
3147 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
3148 
3149 static const char * const srso_strings[] = {
3150 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
3151 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
3152 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
3153 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
3154 	[SRSO_MITIGATION_NOSMT]			= "Mitigation: SMT disabled",
3155 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
3156 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
3157 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
3158 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
3159 };
3160 
srso_parse_cmdline(char * str)3161 static int __init srso_parse_cmdline(char *str)
3162 {
3163 	if (!str)
3164 		return -EINVAL;
3165 
3166 	if (!strcmp(str, "off"))
3167 		srso_mitigation = SRSO_MITIGATION_NONE;
3168 	else if (!strcmp(str, "microcode"))
3169 		srso_mitigation = SRSO_MITIGATION_MICROCODE;
3170 	else if (!strcmp(str, "safe-ret"))
3171 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3172 	else if (!strcmp(str, "ibpb"))
3173 		srso_mitigation = SRSO_MITIGATION_IBPB;
3174 	else if (!strcmp(str, "ibpb-vmexit"))
3175 		srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3176 	else
3177 		pr_err("Ignoring unknown SRSO option (%s).", str);
3178 
3179 	return 0;
3180 }
3181 early_param("spec_rstack_overflow", srso_parse_cmdline);
3182 
3183 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
3184 
srso_select_mitigation(void)3185 static void __init srso_select_mitigation(void)
3186 {
3187 	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
3188 		srso_mitigation = SRSO_MITIGATION_NONE;
3189 		return;
3190 	}
3191 
3192 	if (srso_mitigation == SRSO_MITIGATION_AUTO) {
3193 		/*
3194 		 * Use safe-RET if user->kernel or guest->host protection is
3195 		 * required.  Otherwise the 'microcode' mitigation is sufficient
3196 		 * to protect the user->user and guest->guest vectors.
3197 		 */
3198 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
3199 		    (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) &&
3200 		     !boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))) {
3201 			srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3202 		} else if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
3203 			   cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
3204 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
3205 		} else {
3206 			srso_mitigation = SRSO_MITIGATION_NONE;
3207 			return;
3208 		}
3209 	}
3210 
3211 	/* Zen1/2 with SMT off aren't vulnerable to SRSO. */
3212 	if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
3213 		srso_mitigation = SRSO_MITIGATION_NOSMT;
3214 		return;
3215 	}
3216 
3217 	if (!boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) {
3218 		pr_warn("IBPB-extending microcode not applied!\n");
3219 		pr_warn(SRSO_NOTICE);
3220 
3221 		/*
3222 		 * Safe-RET provides partial mitigation without microcode, but
3223 		 * other mitigations require microcode to provide any
3224 		 * mitigations.
3225 		 */
3226 		if (srso_mitigation == SRSO_MITIGATION_SAFE_RET)
3227 			srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
3228 		else
3229 			srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
3230 	}
3231 
3232 	switch (srso_mitigation) {
3233 	case SRSO_MITIGATION_SAFE_RET:
3234 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3235 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) {
3236 			srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3237 			goto ibpb_on_vmexit;
3238 		}
3239 
3240 		if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
3241 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
3242 			srso_mitigation = SRSO_MITIGATION_NONE;
3243 		}
3244 		break;
3245 ibpb_on_vmexit:
3246 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3247 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
3248 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
3249 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
3250 			break;
3251 		}
3252 		fallthrough;
3253 	case SRSO_MITIGATION_IBPB:
3254 		if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
3255 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
3256 			srso_mitigation = SRSO_MITIGATION_NONE;
3257 		}
3258 		break;
3259 	default:
3260 		break;
3261 	}
3262 }
3263 
srso_update_mitigation(void)3264 static void __init srso_update_mitigation(void)
3265 {
3266 	/* If retbleed is using IBPB, that works for SRSO as well */
3267 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB &&
3268 	    boot_cpu_has(X86_FEATURE_IBPB_BRTYPE))
3269 		srso_mitigation = SRSO_MITIGATION_IBPB;
3270 
3271 	if (boot_cpu_has_bug(X86_BUG_SRSO) &&
3272 	    !cpu_mitigations_off())
3273 		pr_info("%s\n", srso_strings[srso_mitigation]);
3274 }
3275 
srso_apply_mitigation(void)3276 static void __init srso_apply_mitigation(void)
3277 {
3278 	/*
3279 	 * Clear the feature flag if this mitigation is not selected as that
3280 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
3281 	 */
3282 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
3283 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
3284 
3285 	if (srso_mitigation == SRSO_MITIGATION_NONE) {
3286 		if (boot_cpu_has(X86_FEATURE_SBPB))
3287 			x86_pred_cmd = PRED_CMD_SBPB;
3288 		return;
3289 	}
3290 
3291 	switch (srso_mitigation) {
3292 	case SRSO_MITIGATION_SAFE_RET:
3293 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3294 		/*
3295 		 * Enable the return thunk for generated code
3296 		 * like ftrace, static_call, etc.
3297 		 */
3298 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
3299 		setup_force_cpu_cap(X86_FEATURE_UNRET);
3300 
3301 		if (boot_cpu_data.x86 == 0x19) {
3302 			setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
3303 			set_return_thunk(srso_alias_return_thunk);
3304 		} else {
3305 			setup_force_cpu_cap(X86_FEATURE_SRSO);
3306 			set_return_thunk(srso_return_thunk);
3307 		}
3308 		break;
3309 	case SRSO_MITIGATION_IBPB:
3310 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
3311 		/*
3312 		 * IBPB on entry already obviates the need for
3313 		 * software-based untraining so clear those in case some
3314 		 * other mitigation like Retbleed has selected them.
3315 		 */
3316 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
3317 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
3318 		fallthrough;
3319 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3320 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
3321 		/*
3322 		 * There is no need for RSB filling: entry_ibpb() ensures
3323 		 * all predictions, including the RSB, are invalidated,
3324 		 * regardless of IBPB implementation.
3325 		 */
3326 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
3327 		break;
3328 	default:
3329 		break;
3330 	}
3331 }
3332 
3333 #undef pr_fmt
3334 #define pr_fmt(fmt) fmt
3335 
3336 #ifdef CONFIG_SYSFS
3337 
3338 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3339 
3340 #if IS_ENABLED(CONFIG_KVM_INTEL)
3341 static const char * const l1tf_vmx_states[] = {
3342 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3343 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3344 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3345 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3346 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3347 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3348 };
3349 
l1tf_show_state(char * buf)3350 static ssize_t l1tf_show_state(char *buf)
3351 {
3352 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3353 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3354 
3355 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3356 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3357 	     sched_smt_active())) {
3358 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3359 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3360 	}
3361 
3362 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3363 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3364 			  sched_smt_active() ? "vulnerable" : "disabled");
3365 }
3366 
itlb_multihit_show_state(char * buf)3367 static ssize_t itlb_multihit_show_state(char *buf)
3368 {
3369 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3370 	    !boot_cpu_has(X86_FEATURE_VMX))
3371 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3372 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3373 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3374 	else if (itlb_multihit_kvm_mitigation)
3375 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3376 	else
3377 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3378 }
3379 #else
l1tf_show_state(char * buf)3380 static ssize_t l1tf_show_state(char *buf)
3381 {
3382 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3383 }
3384 
itlb_multihit_show_state(char * buf)3385 static ssize_t itlb_multihit_show_state(char *buf)
3386 {
3387 	return sysfs_emit(buf, "Processor vulnerable\n");
3388 }
3389 #endif
3390 
mds_show_state(char * buf)3391 static ssize_t mds_show_state(char *buf)
3392 {
3393 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3394 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3395 				  mds_strings[mds_mitigation]);
3396 	}
3397 
3398 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3399 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3400 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3401 				   sched_smt_active() ? "mitigated" : "disabled"));
3402 	}
3403 
3404 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3405 			  sched_smt_active() ? "vulnerable" : "disabled");
3406 }
3407 
tsx_async_abort_show_state(char * buf)3408 static ssize_t tsx_async_abort_show_state(char *buf)
3409 {
3410 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3411 	    (taa_mitigation == TAA_MITIGATION_OFF))
3412 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3413 
3414 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3415 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3416 				  taa_strings[taa_mitigation]);
3417 	}
3418 
3419 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3420 			  sched_smt_active() ? "vulnerable" : "disabled");
3421 }
3422 
mmio_stale_data_show_state(char * buf)3423 static ssize_t mmio_stale_data_show_state(char *buf)
3424 {
3425 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3426 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3427 
3428 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3429 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3430 				  mmio_strings[mmio_mitigation]);
3431 	}
3432 
3433 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3434 			  sched_smt_active() ? "vulnerable" : "disabled");
3435 }
3436 
rfds_show_state(char * buf)3437 static ssize_t rfds_show_state(char *buf)
3438 {
3439 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3440 }
3441 
old_microcode_show_state(char * buf)3442 static ssize_t old_microcode_show_state(char *buf)
3443 {
3444 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
3445 		return sysfs_emit(buf, "Unknown: running under hypervisor");
3446 
3447 	return sysfs_emit(buf, "Vulnerable\n");
3448 }
3449 
its_show_state(char * buf)3450 static ssize_t its_show_state(char *buf)
3451 {
3452 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3453 }
3454 
stibp_state(void)3455 static char *stibp_state(void)
3456 {
3457 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3458 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3459 		return "";
3460 
3461 	switch (spectre_v2_user_stibp) {
3462 	case SPECTRE_V2_USER_NONE:
3463 		return "; STIBP: disabled";
3464 	case SPECTRE_V2_USER_STRICT:
3465 		return "; STIBP: forced";
3466 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3467 		return "; STIBP: always-on";
3468 	case SPECTRE_V2_USER_PRCTL:
3469 	case SPECTRE_V2_USER_SECCOMP:
3470 		if (static_key_enabled(&switch_to_cond_stibp))
3471 			return "; STIBP: conditional";
3472 	}
3473 	return "";
3474 }
3475 
ibpb_state(void)3476 static char *ibpb_state(void)
3477 {
3478 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3479 		if (static_key_enabled(&switch_mm_always_ibpb))
3480 			return "; IBPB: always-on";
3481 		if (static_key_enabled(&switch_mm_cond_ibpb))
3482 			return "; IBPB: conditional";
3483 		return "; IBPB: disabled";
3484 	}
3485 	return "";
3486 }
3487 
pbrsb_eibrs_state(void)3488 static char *pbrsb_eibrs_state(void)
3489 {
3490 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3491 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3492 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3493 			return "; PBRSB-eIBRS: SW sequence";
3494 		else
3495 			return "; PBRSB-eIBRS: Vulnerable";
3496 	} else {
3497 		return "; PBRSB-eIBRS: Not affected";
3498 	}
3499 }
3500 
spectre_bhi_state(void)3501 static const char *spectre_bhi_state(void)
3502 {
3503 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3504 		return "; BHI: Not affected";
3505 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3506 		return "; BHI: BHI_DIS_S";
3507 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3508 		return "; BHI: SW loop, KVM: SW loop";
3509 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3510 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3511 		 rrsba_disabled)
3512 		return "; BHI: Retpoline";
3513 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT))
3514 		return "; BHI: Vulnerable, KVM: SW loop";
3515 
3516 	return "; BHI: Vulnerable";
3517 }
3518 
spectre_v2_show_state(char * buf)3519 static ssize_t spectre_v2_show_state(char *buf)
3520 {
3521 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
3522 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
3523 
3524 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3525 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3526 
3527 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3528 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3529 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3530 
3531 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3532 			  spectre_v2_strings[spectre_v2_enabled],
3533 			  ibpb_state(),
3534 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3535 			  stibp_state(),
3536 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3537 			  pbrsb_eibrs_state(),
3538 			  spectre_bhi_state(),
3539 			  /* this should always be at the end */
3540 			  spectre_v2_module_string());
3541 }
3542 
srbds_show_state(char * buf)3543 static ssize_t srbds_show_state(char *buf)
3544 {
3545 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3546 }
3547 
retbleed_show_state(char * buf)3548 static ssize_t retbleed_show_state(char *buf)
3549 {
3550 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3551 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3552 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3553 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3554 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3555 
3556 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3557 				  !sched_smt_active() ? "disabled" :
3558 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3559 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3560 				  "enabled with STIBP protection" : "vulnerable");
3561 	}
3562 
3563 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3564 }
3565 
srso_show_state(char * buf)3566 static ssize_t srso_show_state(char *buf)
3567 {
3568 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3569 }
3570 
gds_show_state(char * buf)3571 static ssize_t gds_show_state(char *buf)
3572 {
3573 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3574 }
3575 
tsa_show_state(char * buf)3576 static ssize_t tsa_show_state(char *buf)
3577 {
3578 	return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]);
3579 }
3580 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)3581 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3582 			       char *buf, unsigned int bug)
3583 {
3584 	if (!boot_cpu_has_bug(bug))
3585 		return sysfs_emit(buf, "Not affected\n");
3586 
3587 	switch (bug) {
3588 	case X86_BUG_CPU_MELTDOWN:
3589 		if (boot_cpu_has(X86_FEATURE_PTI))
3590 			return sysfs_emit(buf, "Mitigation: PTI\n");
3591 
3592 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3593 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3594 
3595 		break;
3596 
3597 	case X86_BUG_SPECTRE_V1:
3598 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3599 
3600 	case X86_BUG_SPECTRE_V2:
3601 		return spectre_v2_show_state(buf);
3602 
3603 	case X86_BUG_SPEC_STORE_BYPASS:
3604 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3605 
3606 	case X86_BUG_L1TF:
3607 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3608 			return l1tf_show_state(buf);
3609 		break;
3610 
3611 	case X86_BUG_MDS:
3612 		return mds_show_state(buf);
3613 
3614 	case X86_BUG_TAA:
3615 		return tsx_async_abort_show_state(buf);
3616 
3617 	case X86_BUG_ITLB_MULTIHIT:
3618 		return itlb_multihit_show_state(buf);
3619 
3620 	case X86_BUG_SRBDS:
3621 		return srbds_show_state(buf);
3622 
3623 	case X86_BUG_MMIO_STALE_DATA:
3624 		return mmio_stale_data_show_state(buf);
3625 
3626 	case X86_BUG_RETBLEED:
3627 		return retbleed_show_state(buf);
3628 
3629 	case X86_BUG_SRSO:
3630 		return srso_show_state(buf);
3631 
3632 	case X86_BUG_GDS:
3633 		return gds_show_state(buf);
3634 
3635 	case X86_BUG_RFDS:
3636 		return rfds_show_state(buf);
3637 
3638 	case X86_BUG_OLD_MICROCODE:
3639 		return old_microcode_show_state(buf);
3640 
3641 	case X86_BUG_ITS:
3642 		return its_show_state(buf);
3643 
3644 	case X86_BUG_TSA:
3645 		return tsa_show_state(buf);
3646 
3647 	default:
3648 		break;
3649 	}
3650 
3651 	return sysfs_emit(buf, "Vulnerable\n");
3652 }
3653 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3654 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3655 {
3656 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3657 }
3658 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3659 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3660 {
3661 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3662 }
3663 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3664 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3665 {
3666 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3667 }
3668 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3669 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3670 {
3671 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3672 }
3673 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3674 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3675 {
3676 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3677 }
3678 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3679 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3680 {
3681 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3682 }
3683 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3684 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3685 {
3686 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3687 }
3688 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3689 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3690 {
3691 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3692 }
3693 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3694 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3695 {
3696 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3697 }
3698 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3699 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3700 {
3701 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3702 }
3703 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3704 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3705 {
3706 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3707 }
3708 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3709 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3710 {
3711 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3712 }
3713 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3714 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3715 {
3716 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3717 }
3718 
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3719 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3720 {
3721 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3722 }
3723 
cpu_show_old_microcode(struct device * dev,struct device_attribute * attr,char * buf)3724 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf)
3725 {
3726 	return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE);
3727 }
3728 
cpu_show_indirect_target_selection(struct device * dev,struct device_attribute * attr,char * buf)3729 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3730 {
3731 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3732 }
3733 
cpu_show_tsa(struct device * dev,struct device_attribute * attr,char * buf)3734 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf)
3735 {
3736 	return cpu_show_common(dev, attr, buf, X86_BUG_TSA);
3737 }
3738 #endif
3739 
__warn_thunk(void)3740 void __warn_thunk(void)
3741 {
3742 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3743 }
3744