1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * TI Common Platform Time Sync
4 *
5 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
6 *
7 */
8 #include <linux/clk-provider.h>
9 #include <linux/err.h>
10 #include <linux/if.h>
11 #include <linux/hrtimer.h>
12 #include <linux/module.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/time.h>
16 #include <linux/uaccess.h>
17 #include <linux/workqueue.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20
21 #include "cpts.h"
22
23 #define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
24 #define CPTS_SKB_RX_TX_TMO 100 /*ms */
25 #define CPTS_EVENT_RX_TX_TIMEOUT (100) /* ms */
26
27 struct cpts_skb_cb_data {
28 u32 skb_mtype_seqid;
29 unsigned long tmo;
30 };
31
32 #define cpts_read32(c, r) readl_relaxed(&c->reg->r)
33 #define cpts_write32(c, v, r) writel_relaxed(v, &c->reg->r)
34
cpts_event_port(struct cpts_event * event)35 static int cpts_event_port(struct cpts_event *event)
36 {
37 return (event->high >> PORT_NUMBER_SHIFT) & PORT_NUMBER_MASK;
38 }
39
event_expired(struct cpts_event * event)40 static int event_expired(struct cpts_event *event)
41 {
42 return time_after(jiffies, event->tmo);
43 }
44
event_type(struct cpts_event * event)45 static int event_type(struct cpts_event *event)
46 {
47 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
48 }
49
cpts_fifo_pop(struct cpts * cpts,u32 * high,u32 * low)50 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
51 {
52 u32 r = cpts_read32(cpts, intstat_raw);
53
54 if (r & TS_PEND_RAW) {
55 *high = cpts_read32(cpts, event_high);
56 *low = cpts_read32(cpts, event_low);
57 cpts_write32(cpts, EVENT_POP, event_pop);
58 return 0;
59 }
60 return -1;
61 }
62
cpts_purge_events(struct cpts * cpts)63 static int cpts_purge_events(struct cpts *cpts)
64 {
65 struct list_head *this, *next;
66 struct cpts_event *event;
67 int removed = 0;
68
69 list_for_each_safe(this, next, &cpts->events) {
70 event = list_entry(this, struct cpts_event, list);
71 if (event_expired(event)) {
72 list_del_init(&event->list);
73 list_add(&event->list, &cpts->pool);
74 ++removed;
75 }
76 }
77
78 if (removed)
79 dev_dbg(cpts->dev, "cpts: event pool cleaned up %d\n", removed);
80 return removed ? 0 : -1;
81 }
82
cpts_purge_txq(struct cpts * cpts)83 static void cpts_purge_txq(struct cpts *cpts)
84 {
85 struct cpts_skb_cb_data *skb_cb;
86 struct sk_buff *skb, *tmp;
87 int removed = 0;
88
89 skb_queue_walk_safe(&cpts->txq, skb, tmp) {
90 skb_cb = (struct cpts_skb_cb_data *)skb->cb;
91 if (time_after(jiffies, skb_cb->tmo)) {
92 __skb_unlink(skb, &cpts->txq);
93 dev_consume_skb_any(skb);
94 ++removed;
95 }
96 }
97
98 if (removed)
99 dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
100 }
101
102 /*
103 * Returns zero if matching event type was found.
104 */
cpts_fifo_read(struct cpts * cpts,int match)105 static int cpts_fifo_read(struct cpts *cpts, int match)
106 {
107 struct ptp_clock_event pevent;
108 bool need_schedule = false;
109 struct cpts_event *event;
110 unsigned long flags;
111 int i, type = -1;
112 u32 hi, lo;
113
114 spin_lock_irqsave(&cpts->lock, flags);
115
116 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
117 if (cpts_fifo_pop(cpts, &hi, &lo))
118 break;
119
120 if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
121 dev_warn(cpts->dev, "cpts: event pool empty\n");
122 break;
123 }
124
125 event = list_first_entry(&cpts->pool, struct cpts_event, list);
126 event->high = hi;
127 event->low = lo;
128 event->timestamp = timecounter_cyc2time(&cpts->tc, event->low);
129 type = event_type(event);
130
131 dev_dbg(cpts->dev, "CPTS_EV: %d high:%08X low:%08x\n",
132 type, event->high, event->low);
133 switch (type) {
134 case CPTS_EV_PUSH:
135 WRITE_ONCE(cpts->cur_timestamp, lo);
136 timecounter_read(&cpts->tc);
137 if (cpts->mult_new) {
138 cpts->cc.mult = cpts->mult_new;
139 cpts->mult_new = 0;
140 }
141 if (!cpts->irq_poll)
142 complete(&cpts->ts_push_complete);
143 break;
144 case CPTS_EV_TX:
145 case CPTS_EV_RX:
146 event->tmo = jiffies +
147 msecs_to_jiffies(CPTS_EVENT_RX_TX_TIMEOUT);
148
149 list_del_init(&event->list);
150 list_add_tail(&event->list, &cpts->events);
151 need_schedule = true;
152 break;
153 case CPTS_EV_ROLL:
154 case CPTS_EV_HALF:
155 break;
156 case CPTS_EV_HW:
157 pevent.timestamp = event->timestamp;
158 pevent.type = PTP_CLOCK_EXTTS;
159 pevent.index = cpts_event_port(event) - 1;
160 ptp_clock_event(cpts->clock, &pevent);
161 break;
162 default:
163 dev_err(cpts->dev, "cpts: unknown event type\n");
164 break;
165 }
166 if (type == match)
167 break;
168 }
169
170 spin_unlock_irqrestore(&cpts->lock, flags);
171
172 if (!cpts->irq_poll && need_schedule)
173 ptp_schedule_worker(cpts->clock, 0);
174
175 return type == match ? 0 : -1;
176 }
177
cpts_misc_interrupt(struct cpts * cpts)178 void cpts_misc_interrupt(struct cpts *cpts)
179 {
180 cpts_fifo_read(cpts, -1);
181 }
182 EXPORT_SYMBOL_GPL(cpts_misc_interrupt);
183
cpts_systim_read(const struct cyclecounter * cc)184 static u64 cpts_systim_read(const struct cyclecounter *cc)
185 {
186 struct cpts *cpts = container_of(cc, struct cpts, cc);
187
188 return READ_ONCE(cpts->cur_timestamp);
189 }
190
cpts_update_cur_time(struct cpts * cpts,int match,struct ptp_system_timestamp * sts)191 static void cpts_update_cur_time(struct cpts *cpts, int match,
192 struct ptp_system_timestamp *sts)
193 {
194 unsigned long flags;
195
196 reinit_completion(&cpts->ts_push_complete);
197
198 /* use spin_lock_irqsave() here as it has to run very fast */
199 spin_lock_irqsave(&cpts->lock, flags);
200 ptp_read_system_prets(sts);
201 cpts_write32(cpts, TS_PUSH, ts_push);
202 cpts_read32(cpts, ts_push);
203 ptp_read_system_postts(sts);
204 spin_unlock_irqrestore(&cpts->lock, flags);
205
206 if (cpts->irq_poll && cpts_fifo_read(cpts, match) && match != -1)
207 dev_err(cpts->dev, "cpts: unable to obtain a time stamp\n");
208
209 if (!cpts->irq_poll &&
210 !wait_for_completion_timeout(&cpts->ts_push_complete, HZ))
211 dev_err(cpts->dev, "cpts: obtain a time stamp timeout\n");
212 }
213
214 /* PTP clock operations */
215
cpts_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)216 static int cpts_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
217 {
218 struct cpts *cpts = container_of(ptp, struct cpts, info);
219
220 mutex_lock(&cpts->ptp_clk_mutex);
221
222 cpts->mult_new = adjust_by_scaled_ppm(cpts->cc_mult, scaled_ppm);
223
224 cpts_update_cur_time(cpts, CPTS_EV_PUSH, NULL);
225
226 mutex_unlock(&cpts->ptp_clk_mutex);
227 return 0;
228 }
229
cpts_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)230 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
231 {
232 struct cpts *cpts = container_of(ptp, struct cpts, info);
233
234 mutex_lock(&cpts->ptp_clk_mutex);
235 timecounter_adjtime(&cpts->tc, delta);
236 mutex_unlock(&cpts->ptp_clk_mutex);
237
238 return 0;
239 }
240
cpts_ptp_gettimeex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)241 static int cpts_ptp_gettimeex(struct ptp_clock_info *ptp,
242 struct timespec64 *ts,
243 struct ptp_system_timestamp *sts)
244 {
245 struct cpts *cpts = container_of(ptp, struct cpts, info);
246 u64 ns;
247
248 mutex_lock(&cpts->ptp_clk_mutex);
249
250 cpts_update_cur_time(cpts, CPTS_EV_PUSH, sts);
251
252 ns = timecounter_read(&cpts->tc);
253 mutex_unlock(&cpts->ptp_clk_mutex);
254
255 *ts = ns_to_timespec64(ns);
256
257 return 0;
258 }
259
cpts_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)260 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
261 const struct timespec64 *ts)
262 {
263 struct cpts *cpts = container_of(ptp, struct cpts, info);
264 u64 ns;
265
266 ns = timespec64_to_ns(ts);
267
268 mutex_lock(&cpts->ptp_clk_mutex);
269 timecounter_init(&cpts->tc, &cpts->cc, ns);
270 mutex_unlock(&cpts->ptp_clk_mutex);
271
272 return 0;
273 }
274
cpts_extts_enable(struct cpts * cpts,u32 index,int on)275 static int cpts_extts_enable(struct cpts *cpts, u32 index, int on)
276 {
277 u32 v;
278
279 if (((cpts->hw_ts_enable & BIT(index)) >> index) == on)
280 return 0;
281
282 mutex_lock(&cpts->ptp_clk_mutex);
283
284 v = cpts_read32(cpts, control);
285 if (on) {
286 v |= BIT(8 + index);
287 cpts->hw_ts_enable |= BIT(index);
288 } else {
289 v &= ~BIT(8 + index);
290 cpts->hw_ts_enable &= ~BIT(index);
291 }
292 cpts_write32(cpts, v, control);
293
294 mutex_unlock(&cpts->ptp_clk_mutex);
295
296 return 0;
297 }
298
cpts_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)299 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
300 struct ptp_clock_request *rq, int on)
301 {
302 struct cpts *cpts = container_of(ptp, struct cpts, info);
303
304 switch (rq->type) {
305 case PTP_CLK_REQ_EXTTS:
306 return cpts_extts_enable(cpts, rq->extts.index, on);
307 default:
308 break;
309 }
310
311 return -EOPNOTSUPP;
312 }
313
cpts_match_tx_ts(struct cpts * cpts,struct cpts_event * event)314 static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
315 {
316 struct sk_buff_head txq_list;
317 struct sk_buff *skb, *tmp;
318 unsigned long flags;
319 bool found = false;
320 u32 mtype_seqid;
321
322 mtype_seqid = event->high &
323 ((MESSAGE_TYPE_MASK << MESSAGE_TYPE_SHIFT) |
324 (SEQUENCE_ID_MASK << SEQUENCE_ID_SHIFT) |
325 (EVENT_TYPE_MASK << EVENT_TYPE_SHIFT));
326
327 __skb_queue_head_init(&txq_list);
328
329 spin_lock_irqsave(&cpts->txq.lock, flags);
330 skb_queue_splice_init(&cpts->txq, &txq_list);
331 spin_unlock_irqrestore(&cpts->txq.lock, flags);
332
333 skb_queue_walk_safe(&txq_list, skb, tmp) {
334 struct skb_shared_hwtstamps ssh;
335 struct cpts_skb_cb_data *skb_cb =
336 (struct cpts_skb_cb_data *)skb->cb;
337
338 if (mtype_seqid == skb_cb->skb_mtype_seqid) {
339 memset(&ssh, 0, sizeof(ssh));
340 ssh.hwtstamp = ns_to_ktime(event->timestamp);
341 skb_tstamp_tx(skb, &ssh);
342 found = true;
343 __skb_unlink(skb, &txq_list);
344 dev_consume_skb_any(skb);
345 dev_dbg(cpts->dev, "match tx timestamp mtype_seqid %08x\n",
346 mtype_seqid);
347 break;
348 }
349
350 if (time_after(jiffies, skb_cb->tmo)) {
351 /* timeout any expired skbs over 1s */
352 dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
353 __skb_unlink(skb, &txq_list);
354 dev_consume_skb_any(skb);
355 }
356 }
357
358 spin_lock_irqsave(&cpts->txq.lock, flags);
359 skb_queue_splice(&txq_list, &cpts->txq);
360 spin_unlock_irqrestore(&cpts->txq.lock, flags);
361
362 return found;
363 }
364
cpts_process_events(struct cpts * cpts)365 static void cpts_process_events(struct cpts *cpts)
366 {
367 struct list_head *this, *next;
368 struct cpts_event *event;
369 LIST_HEAD(events_free);
370 unsigned long flags;
371 LIST_HEAD(events);
372
373 spin_lock_irqsave(&cpts->lock, flags);
374 list_splice_init(&cpts->events, &events);
375 spin_unlock_irqrestore(&cpts->lock, flags);
376
377 list_for_each_safe(this, next, &events) {
378 event = list_entry(this, struct cpts_event, list);
379 if (cpts_match_tx_ts(cpts, event) ||
380 time_after(jiffies, event->tmo)) {
381 list_del_init(&event->list);
382 list_add(&event->list, &events_free);
383 }
384 }
385
386 spin_lock_irqsave(&cpts->lock, flags);
387 list_splice_tail(&events, &cpts->events);
388 list_splice_tail(&events_free, &cpts->pool);
389 spin_unlock_irqrestore(&cpts->lock, flags);
390 }
391
cpts_overflow_check(struct ptp_clock_info * ptp)392 static long cpts_overflow_check(struct ptp_clock_info *ptp)
393 {
394 struct cpts *cpts = container_of(ptp, struct cpts, info);
395 unsigned long delay = cpts->ov_check_period;
396 unsigned long flags;
397 u64 ns;
398
399 mutex_lock(&cpts->ptp_clk_mutex);
400
401 cpts_update_cur_time(cpts, -1, NULL);
402 ns = timecounter_read(&cpts->tc);
403
404 cpts_process_events(cpts);
405
406 spin_lock_irqsave(&cpts->txq.lock, flags);
407 if (!skb_queue_empty(&cpts->txq)) {
408 cpts_purge_txq(cpts);
409 if (!skb_queue_empty(&cpts->txq))
410 delay = CPTS_SKB_TX_WORK_TIMEOUT;
411 }
412 spin_unlock_irqrestore(&cpts->txq.lock, flags);
413
414 dev_dbg(cpts->dev, "cpts overflow check at %lld\n", ns);
415 mutex_unlock(&cpts->ptp_clk_mutex);
416 return (long)delay;
417 }
418
419 static const struct ptp_clock_info cpts_info = {
420 .owner = THIS_MODULE,
421 .name = "CTPS timer",
422 .max_adj = 1000000,
423 .n_ext_ts = 0,
424 .n_pins = 0,
425 .pps = 0,
426 .adjfine = cpts_ptp_adjfine,
427 .adjtime = cpts_ptp_adjtime,
428 .gettimex64 = cpts_ptp_gettimeex,
429 .settime64 = cpts_ptp_settime,
430 .enable = cpts_ptp_enable,
431 .do_aux_work = cpts_overflow_check,
432 };
433
cpts_skb_get_mtype_seqid(struct sk_buff * skb,u32 * mtype_seqid)434 static int cpts_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid)
435 {
436 unsigned int ptp_class = ptp_classify_raw(skb);
437 struct ptp_header *hdr;
438 u8 msgtype;
439 u16 seqid;
440
441 if (ptp_class == PTP_CLASS_NONE)
442 return 0;
443
444 hdr = ptp_parse_header(skb, ptp_class);
445 if (!hdr)
446 return 0;
447
448 msgtype = ptp_get_msgtype(hdr, ptp_class);
449 seqid = ntohs(hdr->sequence_id);
450
451 *mtype_seqid = (msgtype & MESSAGE_TYPE_MASK) << MESSAGE_TYPE_SHIFT;
452 *mtype_seqid |= (seqid & SEQUENCE_ID_MASK) << SEQUENCE_ID_SHIFT;
453
454 return 1;
455 }
456
cpts_find_ts(struct cpts * cpts,struct sk_buff * skb,int ev_type,u32 skb_mtype_seqid)457 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb,
458 int ev_type, u32 skb_mtype_seqid)
459 {
460 struct list_head *this, *next;
461 struct cpts_event *event;
462 unsigned long flags;
463 u32 mtype_seqid;
464 u64 ns = 0;
465
466 cpts_fifo_read(cpts, -1);
467 spin_lock_irqsave(&cpts->lock, flags);
468 list_for_each_safe(this, next, &cpts->events) {
469 event = list_entry(this, struct cpts_event, list);
470 if (event_expired(event)) {
471 list_del_init(&event->list);
472 list_add(&event->list, &cpts->pool);
473 continue;
474 }
475
476 mtype_seqid = event->high &
477 ((MESSAGE_TYPE_MASK << MESSAGE_TYPE_SHIFT) |
478 (SEQUENCE_ID_MASK << SEQUENCE_ID_SHIFT) |
479 (EVENT_TYPE_MASK << EVENT_TYPE_SHIFT));
480
481 if (mtype_seqid == skb_mtype_seqid) {
482 ns = event->timestamp;
483 list_del_init(&event->list);
484 list_add(&event->list, &cpts->pool);
485 break;
486 }
487 }
488 spin_unlock_irqrestore(&cpts->lock, flags);
489
490 return ns;
491 }
492
cpts_rx_timestamp(struct cpts * cpts,struct sk_buff * skb)493 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
494 {
495 struct cpts_skb_cb_data *skb_cb = (struct cpts_skb_cb_data *)skb->cb;
496 struct skb_shared_hwtstamps *ssh;
497 int ret;
498 u64 ns;
499
500 /* cpts_rx_timestamp() is called before eth_type_trans(), so
501 * skb MAC Hdr properties are not configured yet. Hence need to
502 * reset skb MAC header here
503 */
504 skb_reset_mac_header(skb);
505 ret = cpts_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
506 if (!ret)
507 return;
508
509 skb_cb->skb_mtype_seqid |= (CPTS_EV_RX << EVENT_TYPE_SHIFT);
510
511 dev_dbg(cpts->dev, "%s mtype seqid %08x\n",
512 __func__, skb_cb->skb_mtype_seqid);
513
514 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX, skb_cb->skb_mtype_seqid);
515 if (!ns)
516 return;
517 ssh = skb_hwtstamps(skb);
518 memset(ssh, 0, sizeof(*ssh));
519 ssh->hwtstamp = ns_to_ktime(ns);
520 }
521 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
522
cpts_tx_timestamp(struct cpts * cpts,struct sk_buff * skb)523 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
524 {
525 struct cpts_skb_cb_data *skb_cb = (struct cpts_skb_cb_data *)skb->cb;
526 int ret;
527
528 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
529 return;
530
531 ret = cpts_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
532 if (!ret)
533 return;
534
535 skb_cb->skb_mtype_seqid |= (CPTS_EV_TX << EVENT_TYPE_SHIFT);
536
537 dev_dbg(cpts->dev, "%s mtype seqid %08x\n",
538 __func__, skb_cb->skb_mtype_seqid);
539
540 /* Always defer TX TS processing to PTP worker */
541 skb_get(skb);
542 /* get the timestamp for timeouts */
543 skb_cb->tmo = jiffies + msecs_to_jiffies(CPTS_SKB_RX_TX_TMO);
544 skb_queue_tail(&cpts->txq, skb);
545 ptp_schedule_worker(cpts->clock, 0);
546 }
547 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
548
cpts_register(struct cpts * cpts)549 int cpts_register(struct cpts *cpts)
550 {
551 int err, i;
552
553 skb_queue_head_init(&cpts->txq);
554 INIT_LIST_HEAD(&cpts->events);
555 INIT_LIST_HEAD(&cpts->pool);
556 for (i = 0; i < CPTS_MAX_EVENTS; i++)
557 list_add(&cpts->pool_data[i].list, &cpts->pool);
558
559 err = clk_enable(cpts->refclk);
560 if (err)
561 return err;
562
563 cpts_write32(cpts, CPTS_EN, control);
564 cpts_write32(cpts, TS_PEND_EN, int_enable);
565
566 timecounter_init(&cpts->tc, &cpts->cc, ktime_get_real_ns());
567
568 cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
569 if (IS_ERR(cpts->clock)) {
570 err = PTR_ERR(cpts->clock);
571 cpts->clock = NULL;
572 goto err_ptp;
573 }
574 cpts->phc_index = ptp_clock_index(cpts->clock);
575
576 ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
577 return 0;
578
579 err_ptp:
580 clk_disable(cpts->refclk);
581 return err;
582 }
583 EXPORT_SYMBOL_GPL(cpts_register);
584
cpts_unregister(struct cpts * cpts)585 void cpts_unregister(struct cpts *cpts)
586 {
587 if (WARN_ON(!cpts->clock))
588 return;
589
590 ptp_clock_unregister(cpts->clock);
591 cpts->clock = NULL;
592 cpts->phc_index = -1;
593
594 cpts_write32(cpts, 0, int_enable);
595 cpts_write32(cpts, 0, control);
596
597 /* Drop all packet */
598 skb_queue_purge(&cpts->txq);
599
600 clk_disable(cpts->refclk);
601 }
602 EXPORT_SYMBOL_GPL(cpts_unregister);
603
cpts_calc_mult_shift(struct cpts * cpts)604 static void cpts_calc_mult_shift(struct cpts *cpts)
605 {
606 u64 frac, maxsec, ns;
607 u32 freq;
608
609 freq = clk_get_rate(cpts->refclk);
610
611 /* Calc the maximum number of seconds which we can run before
612 * wrapping around.
613 */
614 maxsec = cpts->cc.mask;
615 do_div(maxsec, freq);
616 /* limit conversation rate to 10 sec as higher values will produce
617 * too small mult factors and so reduce the conversion accuracy
618 */
619 if (maxsec > 10)
620 maxsec = 10;
621
622 /* Calc overflow check period (maxsec / 2) */
623 cpts->ov_check_period = (HZ * maxsec) / 2;
624 dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
625 cpts->ov_check_period);
626
627 if (cpts->cc.mult || cpts->cc.shift)
628 return;
629
630 clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
631 freq, NSEC_PER_SEC, maxsec);
632
633 frac = 0;
634 ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
635
636 dev_info(cpts->dev,
637 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
638 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
639 }
640
cpts_clk_unregister(void * clk)641 static void cpts_clk_unregister(void *clk)
642 {
643 clk_hw_unregister_mux(clk);
644 }
645
cpts_clk_del_provider(void * np)646 static void cpts_clk_del_provider(void *np)
647 {
648 of_clk_del_provider(np);
649 }
650
cpts_of_mux_clk_setup(struct cpts * cpts,struct device_node * node)651 static int cpts_of_mux_clk_setup(struct cpts *cpts, struct device_node *node)
652 {
653 struct device_node *refclk_np;
654 const char **parent_names;
655 unsigned int num_parents;
656 struct clk_hw *clk_hw;
657 int ret = -EINVAL;
658 u32 *mux_table;
659
660 refclk_np = of_get_child_by_name(node, "cpts-refclk-mux");
661 if (!refclk_np)
662 /* refclk selection supported not for all SoCs */
663 return 0;
664
665 num_parents = of_clk_get_parent_count(refclk_np);
666 if (num_parents < 1) {
667 dev_err(cpts->dev, "mux-clock %s must have parents\n",
668 refclk_np->name);
669 goto mux_fail;
670 }
671
672 parent_names = devm_kcalloc(cpts->dev, num_parents,
673 sizeof(*parent_names), GFP_KERNEL);
674
675 mux_table = devm_kcalloc(cpts->dev, num_parents, sizeof(*mux_table),
676 GFP_KERNEL);
677 if (!mux_table || !parent_names) {
678 ret = -ENOMEM;
679 goto mux_fail;
680 }
681
682 of_clk_parent_fill(refclk_np, parent_names, num_parents);
683
684 ret = of_property_read_variable_u32_array(refclk_np, "ti,mux-tbl",
685 mux_table,
686 num_parents, num_parents);
687 if (ret < 0)
688 goto mux_fail;
689
690 clk_hw = clk_hw_register_mux_table(cpts->dev, refclk_np->name,
691 parent_names, num_parents,
692 0,
693 &cpts->reg->rftclk_sel, 0, 0x1F,
694 0, mux_table, NULL);
695 if (IS_ERR(clk_hw)) {
696 ret = PTR_ERR(clk_hw);
697 goto mux_fail;
698 }
699
700 ret = devm_add_action_or_reset(cpts->dev, cpts_clk_unregister, clk_hw);
701 if (ret) {
702 dev_err(cpts->dev, "add clkmux unreg action %d", ret);
703 goto mux_fail;
704 }
705
706 ret = of_clk_add_hw_provider(refclk_np, of_clk_hw_simple_get, clk_hw);
707 if (ret)
708 goto mux_fail;
709
710 ret = devm_add_action_or_reset(cpts->dev, cpts_clk_del_provider,
711 refclk_np);
712 if (ret) {
713 dev_err(cpts->dev, "add clkmux provider unreg action %d", ret);
714 goto mux_fail;
715 }
716
717 return ret;
718
719 mux_fail:
720 of_node_put(refclk_np);
721 return ret;
722 }
723
cpts_of_parse(struct cpts * cpts,struct device_node * node)724 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
725 {
726 int ret = -EINVAL;
727 u32 prop;
728
729 if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
730 cpts->cc.mult = prop;
731
732 if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
733 cpts->cc.shift = prop;
734
735 if ((cpts->cc.mult && !cpts->cc.shift) ||
736 (!cpts->cc.mult && cpts->cc.shift))
737 goto of_error;
738
739 return cpts_of_mux_clk_setup(cpts, node);
740
741 of_error:
742 dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
743 return ret;
744 }
745
cpts_create(struct device * dev,void __iomem * regs,struct device_node * node,u32 n_ext_ts)746 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
747 struct device_node *node, u32 n_ext_ts)
748 {
749 struct cpts *cpts;
750 int ret;
751
752 cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
753 if (!cpts)
754 return ERR_PTR(-ENOMEM);
755
756 cpts->dev = dev;
757 cpts->reg = (struct cpsw_cpts __iomem *)regs;
758 cpts->irq_poll = true;
759 spin_lock_init(&cpts->lock);
760 mutex_init(&cpts->ptp_clk_mutex);
761 init_completion(&cpts->ts_push_complete);
762
763 ret = cpts_of_parse(cpts, node);
764 if (ret)
765 return ERR_PTR(ret);
766
767 cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
768 if (IS_ERR(cpts->refclk))
769 /* try get clk from dev node for compatibility */
770 cpts->refclk = devm_clk_get(dev, "cpts");
771
772 if (IS_ERR(cpts->refclk)) {
773 dev_err(dev, "Failed to get cpts refclk %ld\n",
774 PTR_ERR(cpts->refclk));
775 return ERR_CAST(cpts->refclk);
776 }
777
778 ret = clk_prepare(cpts->refclk);
779 if (ret)
780 return ERR_PTR(ret);
781
782 cpts->cc.read = cpts_systim_read;
783 cpts->cc.mask = CLOCKSOURCE_MASK(32);
784 cpts->info = cpts_info;
785 cpts->phc_index = -1;
786
787 if (n_ext_ts)
788 cpts->info.n_ext_ts = n_ext_ts;
789
790 cpts_calc_mult_shift(cpts);
791 /* save cc.mult original value as it can be modified
792 * by cpts_ptp_adjfine().
793 */
794 cpts->cc_mult = cpts->cc.mult;
795
796 return cpts;
797 }
798 EXPORT_SYMBOL_GPL(cpts_create);
799
cpts_release(struct cpts * cpts)800 void cpts_release(struct cpts *cpts)
801 {
802 if (!cpts)
803 return;
804
805 if (WARN_ON(!cpts->refclk))
806 return;
807
808 clk_unprepare(cpts->refclk);
809 }
810 EXPORT_SYMBOL_GPL(cpts_release);
811
812 MODULE_LICENSE("GPL v2");
813 MODULE_DESCRIPTION("TI CPTS driver");
814 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
815