xref: /freebsd/sys/arm/ti/cpsw/if_cpsw.c (revision aa3860851b9f6a6002d135b1cac7736e0995eedc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5  * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * TI Common Platform Ethernet Switch (CPSW) Driver
32  * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33  *
34  * This controller is documented in the AM335x Technical Reference
35  * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36  * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37  *
38  * It is basically a single Ethernet port (port 0) wired internally to
39  * a 3-port store-and-forward switch connected to two independent
40  * "sliver" controllers (port 1 and port 2).  You can operate the
41  * controller in a variety of different ways by suitably configuring
42  * the slivers and the Address Lookup Engine (ALE) that routes packets
43  * between the ports.
44  *
45  * This code was developed and tested on a BeagleBone with
46  * an AM335x SoC.
47  */
48 
49 #include <sys/cdefs.h>
50 #include "opt_cpsw.h"
51 
52 #include <sys/param.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/mbuf.h>
57 #include <sys/module.h>
58 #include <sys/mutex.h>
59 #include <sys/rman.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/sysctl.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <machine/stdarg.h>
67 
68 #include <net/ethernet.h>
69 #include <net/bpf.h>
70 #include <net/if.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 
75 #include <dev/syscon/syscon.h>
76 #include "syscon_if.h"
77 #include <arm/ti/am335x/am335x_scm.h>
78 
79 #include <dev/mii/mii.h>
80 #include <dev/mii/miivar.h>
81 
82 #include <dev/ofw/ofw_bus.h>
83 #include <dev/ofw/ofw_bus_subr.h>
84 
85 #include <dev/fdt/fdt_common.h>
86 
87 #ifdef CPSW_ETHERSWITCH
88 #include <dev/etherswitch/etherswitch.h>
89 #include "etherswitch_if.h"
90 #endif
91 
92 #include "if_cpswreg.h"
93 #include "if_cpswvar.h"
94 
95 #include "miibus_if.h"
96 
97 /* Device probe/attach/detach. */
98 static int cpsw_probe(device_t);
99 static int cpsw_attach(device_t);
100 static int cpsw_detach(device_t);
101 static int cpswp_probe(device_t);
102 static int cpswp_attach(device_t);
103 static int cpswp_detach(device_t);
104 
105 static phandle_t cpsw_get_node(device_t, device_t);
106 
107 /* Device Init/shutdown. */
108 static int cpsw_shutdown(device_t);
109 static void cpswp_init(void *);
110 static void cpswp_init_locked(void *);
111 static void cpswp_stop_locked(struct cpswp_softc *);
112 
113 /* Device Suspend/Resume. */
114 static int cpsw_suspend(device_t);
115 static int cpsw_resume(device_t);
116 
117 /* Ioctl. */
118 static int cpswp_ioctl(if_t, u_long command, caddr_t data);
119 
120 static int cpswp_miibus_readreg(device_t, int phy, int reg);
121 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
122 static void cpswp_miibus_statchg(device_t);
123 
124 /* Send/Receive packets. */
125 static void cpsw_intr_rx(void *arg);
126 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
127 static void cpsw_rx_enqueue(struct cpsw_softc *);
128 static void cpswp_start(if_t);
129 static void cpsw_intr_tx(void *);
130 static void cpswp_tx_enqueue(struct cpswp_softc *);
131 static int cpsw_tx_dequeue(struct cpsw_softc *);
132 
133 /* Misc interrupts and watchdog. */
134 static void cpsw_intr_rx_thresh(void *);
135 static void cpsw_intr_misc(void *);
136 static void cpswp_tick(void *);
137 static void cpswp_ifmedia_sts(if_t, struct ifmediareq *);
138 static int cpswp_ifmedia_upd(if_t);
139 static void cpsw_tx_watchdog(void *);
140 
141 /* ALE support */
142 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
143 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
144 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
145 static void cpsw_ale_dump_table(struct cpsw_softc *);
146 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
147 	int);
148 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
149 
150 /* Statistics and sysctls. */
151 static void cpsw_add_sysctls(struct cpsw_softc *);
152 static void cpsw_stats_collect(struct cpsw_softc *);
153 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
154 
155 #ifdef CPSW_ETHERSWITCH
156 static etherswitch_info_t *cpsw_getinfo(device_t);
157 static int cpsw_getport(device_t, etherswitch_port_t *);
158 static int cpsw_setport(device_t, etherswitch_port_t *);
159 static int cpsw_getconf(device_t, etherswitch_conf_t *);
160 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
161 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
162 static int cpsw_readreg(device_t, int);
163 static int cpsw_writereg(device_t, int, int);
164 static int cpsw_readphy(device_t, int, int);
165 static int cpsw_writephy(device_t, int, int, int);
166 #endif
167 
168 /*
169  * Arbitrary limit on number of segments in an mbuf to be transmitted.
170  * Packets with more segments than this will be defragmented before
171  * they are queued.
172  */
173 #define	CPSW_TXFRAGS		16
174 
175 /* Shared resources. */
176 static device_method_t cpsw_methods[] = {
177 	/* Device interface */
178 	DEVMETHOD(device_probe,		cpsw_probe),
179 	DEVMETHOD(device_attach,	cpsw_attach),
180 	DEVMETHOD(device_detach,	cpsw_detach),
181 	DEVMETHOD(device_shutdown,	cpsw_shutdown),
182 	DEVMETHOD(device_suspend,	cpsw_suspend),
183 	DEVMETHOD(device_resume,	cpsw_resume),
184 	/* Bus interface */
185 	DEVMETHOD(bus_add_child,	device_add_child_ordered),
186 	/* OFW methods */
187 	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
188 #ifdef CPSW_ETHERSWITCH
189 	/* etherswitch interface */
190 	DEVMETHOD(etherswitch_getinfo,	cpsw_getinfo),
191 	DEVMETHOD(etherswitch_readreg,	cpsw_readreg),
192 	DEVMETHOD(etherswitch_writereg,	cpsw_writereg),
193 	DEVMETHOD(etherswitch_readphyreg,	cpsw_readphy),
194 	DEVMETHOD(etherswitch_writephyreg,	cpsw_writephy),
195 	DEVMETHOD(etherswitch_getport,	cpsw_getport),
196 	DEVMETHOD(etherswitch_setport,	cpsw_setport),
197 	DEVMETHOD(etherswitch_getvgroup,	cpsw_getvgroup),
198 	DEVMETHOD(etherswitch_setvgroup,	cpsw_setvgroup),
199 	DEVMETHOD(etherswitch_getconf,	cpsw_getconf),
200 #endif
201 	DEVMETHOD_END
202 };
203 
204 static driver_t cpsw_driver = {
205 	"cpswss",
206 	cpsw_methods,
207 	sizeof(struct cpsw_softc),
208 };
209 
210 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
211 
212 /* Port/Slave resources. */
213 static device_method_t cpswp_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		cpswp_probe),
216 	DEVMETHOD(device_attach,	cpswp_attach),
217 	DEVMETHOD(device_detach,	cpswp_detach),
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
222 	DEVMETHOD_END
223 };
224 
225 static driver_t cpswp_driver = {
226 	"cpsw",
227 	cpswp_methods,
228 	sizeof(struct cpswp_softc),
229 };
230 
231 #ifdef CPSW_ETHERSWITCH
232 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
233 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
234 #endif
235 
236 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
237 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
238 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
239 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
240 
241 #ifdef CPSW_ETHERSWITCH
242 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
243 #endif
244 
245 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
246 
247 static struct resource_spec irq_res_spec[] = {
248 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
249 	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
250 	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
251 	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
252 	{ -1, 0 }
253 };
254 
255 static struct {
256 	void (*cb)(void *);
257 } cpsw_intr_cb[] = {
258 	{ cpsw_intr_rx_thresh },
259 	{ cpsw_intr_rx },
260 	{ cpsw_intr_tx },
261 	{ cpsw_intr_misc },
262 };
263 
264 /* Number of entries here must match size of stats
265  * array in struct cpswp_softc. */
266 static struct cpsw_stat {
267 	int	reg;
268 	char *oid;
269 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
270 	{0x00, "GoodRxFrames"},
271 	{0x04, "BroadcastRxFrames"},
272 	{0x08, "MulticastRxFrames"},
273 	{0x0C, "PauseRxFrames"},
274 	{0x10, "RxCrcErrors"},
275 	{0x14, "RxAlignErrors"},
276 	{0x18, "OversizeRxFrames"},
277 	{0x1c, "RxJabbers"},
278 	{0x20, "ShortRxFrames"},
279 	{0x24, "RxFragments"},
280 	{0x30, "RxOctets"},
281 	{0x34, "GoodTxFrames"},
282 	{0x38, "BroadcastTxFrames"},
283 	{0x3c, "MulticastTxFrames"},
284 	{0x40, "PauseTxFrames"},
285 	{0x44, "DeferredTxFrames"},
286 	{0x48, "CollisionsTxFrames"},
287 	{0x4c, "SingleCollisionTxFrames"},
288 	{0x50, "MultipleCollisionTxFrames"},
289 	{0x54, "ExcessiveCollisions"},
290 	{0x58, "LateCollisions"},
291 	{0x5c, "TxUnderrun"},
292 	{0x60, "CarrierSenseErrors"},
293 	{0x64, "TxOctets"},
294 	{0x68, "RxTx64OctetFrames"},
295 	{0x6c, "RxTx65to127OctetFrames"},
296 	{0x70, "RxTx128to255OctetFrames"},
297 	{0x74, "RxTx256to511OctetFrames"},
298 	{0x78, "RxTx512to1024OctetFrames"},
299 	{0x7c, "RxTx1024upOctetFrames"},
300 	{0x80, "NetOctets"},
301 	{0x84, "RxStartOfFrameOverruns"},
302 	{0x88, "RxMiddleOfFrameOverruns"},
303 	{0x8c, "RxDmaOverruns"}
304 };
305 
306 /*
307  * Basic debug support.
308  */
309 
310 static void
cpsw_debugf_head(const char * funcname)311 cpsw_debugf_head(const char *funcname)
312 {
313 	int t = (int)(time_second % (24 * 60 * 60));
314 
315 	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
316 }
317 
318 static void
cpsw_debugf(const char * fmt,...)319 cpsw_debugf(const char *fmt, ...)
320 {
321 	va_list ap;
322 
323 	va_start(ap, fmt);
324 	vprintf(fmt, ap);
325 	va_end(ap);
326 	printf("\n");
327 
328 }
329 
330 #define	CPSW_DEBUGF(_sc, a) do {					\
331 	if ((_sc)->debug) {						\
332 		cpsw_debugf_head(__func__);				\
333 		cpsw_debugf a;						\
334 	}								\
335 } while (0)
336 
337 /*
338  * Locking macros
339  */
340 #define	CPSW_TX_LOCK(sc) do {						\
341 		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
342 		mtx_lock(&(sc)->tx.lock);				\
343 } while (0)
344 
345 #define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
346 #define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
347 
348 #define	CPSW_RX_LOCK(sc) do {						\
349 		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
350 		mtx_lock(&(sc)->rx.lock);				\
351 } while (0)
352 
353 #define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
354 #define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
355 
356 #define CPSW_PORT_LOCK(_sc) do {					\
357 		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
358 		mtx_lock(&(_sc)->lock);					\
359 } while (0)
360 
361 #define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
362 #define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
363 
364 /*
365  * Read/Write macros
366  */
367 #define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
368 #define	cpsw_write_4(_sc, _reg, _val)					\
369 	bus_write_4((_sc)->mem_res, (_reg), (_val))
370 
371 #define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
372 
373 #define	cpsw_cpdma_bd_paddr(sc, slot)					\
374 	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
375 #define	cpsw_cpdma_read_bd(sc, slot, val)				\
376 	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
377 #define	cpsw_cpdma_write_bd(sc, slot, val)				\
378 	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
380 	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
381 #define	cpsw_cpdma_write_bd_flags(sc, slot, val)			\
382 	bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
383 #define	cpsw_cpdma_read_bd_flags(sc, slot)				\
384 	bus_read_2(sc->mem_res, slot->bd_offset + 14)
385 #define	cpsw_write_hdp_slot(sc, queue, slot)				\
386 	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
387 #define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
388 #define	cpsw_read_cp(sc, queue)						\
389 	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
390 #define	cpsw_write_cp(sc, queue, val)					\
391 	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
392 #define	cpsw_write_cp_slot(sc, queue, slot)				\
393 	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
394 
395 #if 0
396 /* XXX temporary function versions for debugging. */
397 static void
398 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
399 {
400 	uint32_t reg = queue->hdp_offset;
401 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
402 	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
403 	cpsw_write_4(sc, reg, v);
404 }
405 
406 static void
407 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
408 {
409 	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
410 	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
411 	cpsw_write_cp(sc, queue, v);
412 }
413 #endif
414 
415 /*
416  * Expanded dump routines for verbose debugging.
417  */
418 static void
cpsw_dump_slot(struct cpsw_softc * sc,struct cpsw_slot * slot)419 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
420 {
421 	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
422 	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
423 	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
424 	    "Port0"};
425 	struct cpsw_cpdma_bd bd;
426 	const char *sep;
427 	int i;
428 
429 	cpsw_cpdma_read_bd(sc, slot, &bd);
430 	printf("BD Addr : 0x%08x   Next  : 0x%08x\n",
431 	    cpsw_cpdma_bd_paddr(sc, slot), bd.next);
432 	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
433 	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
434 	printf("  Flags: ");
435 	sep = "";
436 	for (i = 0; i < 16; ++i) {
437 		if (bd.flags & (1 << (15 - i))) {
438 			printf("%s%s", sep, flags[i]);
439 			sep = ",";
440 		}
441 	}
442 	printf("\n");
443 	if (slot->mbuf) {
444 		printf("  Ether:  %14D\n",
445 		    (char *)(slot->mbuf->m_data), " ");
446 		printf("  Packet: %16D\n",
447 		    (char *)(slot->mbuf->m_data) + 14, " ");
448 	}
449 }
450 
451 #define	CPSW_DUMP_SLOT(cs, slot) do {				\
452 	IF_DEBUG(sc) {						\
453 		cpsw_dump_slot(sc, slot);			\
454 	}							\
455 } while (0)
456 
457 static void
cpsw_dump_queue(struct cpsw_softc * sc,struct cpsw_slots * q)458 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
459 {
460 	struct cpsw_slot *slot;
461 	int i = 0;
462 	int others = 0;
463 
464 	STAILQ_FOREACH(slot, q, next) {
465 		if (i > CPSW_TXFRAGS)
466 			++others;
467 		else
468 			cpsw_dump_slot(sc, slot);
469 		++i;
470 	}
471 	if (others)
472 		printf(" ... and %d more.\n", others);
473 	printf("\n");
474 }
475 
476 #define CPSW_DUMP_QUEUE(sc, q) do {				\
477 	IF_DEBUG(sc) {						\
478 		cpsw_dump_queue(sc, q);				\
479 	}							\
480 } while (0)
481 
482 static void
cpsw_init_slots(struct cpsw_softc * sc)483 cpsw_init_slots(struct cpsw_softc *sc)
484 {
485 	struct cpsw_slot *slot;
486 	int i;
487 
488 	STAILQ_INIT(&sc->avail);
489 
490 	/* Put the slot descriptors onto the global avail list. */
491 	for (i = 0; i < nitems(sc->_slots); i++) {
492 		slot = &sc->_slots[i];
493 		slot->bd_offset = cpsw_cpdma_bd_offset(i);
494 		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
495 	}
496 }
497 
498 static int
cpsw_add_slots(struct cpsw_softc * sc,struct cpsw_queue * queue,int requested)499 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
500 {
501 	const int max_slots = nitems(sc->_slots);
502 	struct cpsw_slot *slot;
503 	int i;
504 
505 	if (requested < 0)
506 		requested = max_slots;
507 
508 	for (i = 0; i < requested; ++i) {
509 		slot = STAILQ_FIRST(&sc->avail);
510 		if (slot == NULL)
511 			return (0);
512 		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
513 			device_printf(sc->dev, "failed to create dmamap\n");
514 			return (ENOMEM);
515 		}
516 		STAILQ_REMOVE_HEAD(&sc->avail, next);
517 		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
518 		++queue->avail_queue_len;
519 		++queue->queue_slots;
520 	}
521 	return (0);
522 }
523 
524 static void
cpsw_free_slot(struct cpsw_softc * sc,struct cpsw_slot * slot)525 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
526 {
527 	int error __diagused;
528 
529 	if (slot->dmamap) {
530 		if (slot->mbuf)
531 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
532 		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
533 		KASSERT(error == 0, ("Mapping still active"));
534 		slot->dmamap = NULL;
535 	}
536 	if (slot->mbuf) {
537 		m_freem(slot->mbuf);
538 		slot->mbuf = NULL;
539 	}
540 }
541 
542 static void
cpsw_reset(struct cpsw_softc * sc)543 cpsw_reset(struct cpsw_softc *sc)
544 {
545 	int i;
546 
547 	callout_stop(&sc->watchdog.callout);
548 
549 	/* Reset RMII/RGMII wrapper. */
550 	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
551 	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
552 		;
553 
554 	/* Disable TX and RX interrupts for all cores. */
555 	for (i = 0; i < 3; ++i) {
556 		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
557 		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
558 		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
559 		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
560 	}
561 
562 	/* Reset CPSW subsystem. */
563 	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
564 	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
565 		;
566 
567 	/* Reset Sliver port 1 and 2 */
568 	for (i = 0; i < 2; i++) {
569 		/* Reset */
570 		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
571 		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
572 			;
573 	}
574 
575 	/* Reset DMA controller. */
576 	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
577 	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
578 		;
579 
580 	/* Disable TX & RX DMA */
581 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
582 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
583 
584 	/* Clear all queues. */
585 	for (i = 0; i < 8; i++) {
586 		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
587 		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
588 		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
589 		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
590 	}
591 
592 	/* Clear all interrupt Masks */
593 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
594 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
595 }
596 
597 static void
cpsw_init(struct cpsw_softc * sc)598 cpsw_init(struct cpsw_softc *sc)
599 {
600 	struct cpsw_slot *slot;
601 	uint32_t reg;
602 
603 	/* Disable the interrupt pacing. */
604 	reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
605 	reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
606 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
607 
608 	/* Clear ALE */
609 	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
610 
611 	/* Enable ALE */
612 	reg = CPSW_ALE_CTL_ENABLE;
613 	if (sc->dualemac)
614 		reg |= CPSW_ALE_CTL_VLAN_AWARE;
615 	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
616 
617 	/* Set Host Port Mapping. */
618 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
619 	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
620 
621 	/* Initialize ALE: set host port to forwarding(3). */
622 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
623 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
624 
625 	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
626 
627 	/* Enable statistics for ports 0, 1 and 2 */
628 	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
629 
630 	/* Turn off flow control. */
631 	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
632 
633 	/* Make IP hdr aligned with 4 */
634 	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
635 
636 	/* Initialize RX Buffer Descriptors */
637 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
638 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
639 
640 	/* Enable TX & RX DMA */
641 	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
642 	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
643 
644 	/* Enable Interrupts for core 0 */
645 	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
646 	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
647 	cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
648 	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
649 
650 	/* Enable host Error Interrupt */
651 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
652 
653 	/* Enable interrupts for RX and TX on Channel 0 */
654 	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
655 	    CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
656 	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
657 
658 	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
659 	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
660 	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
661 
662 	/* Select MII in GMII_SEL, Internal Delay mode */
663 	//ti_scm_reg_write_4(0x650, 0);
664 
665 	/* Initialize active queues. */
666 	slot = STAILQ_FIRST(&sc->tx.active);
667 	if (slot != NULL)
668 		cpsw_write_hdp_slot(sc, &sc->tx, slot);
669 	slot = STAILQ_FIRST(&sc->rx.active);
670 	if (slot != NULL)
671 		cpsw_write_hdp_slot(sc, &sc->rx, slot);
672 	cpsw_rx_enqueue(sc);
673 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
674 	cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
675 
676 	/* Activate network interface. */
677 	sc->rx.running = 1;
678 	sc->tx.running = 1;
679 	sc->watchdog.timer = 0;
680 	callout_init(&sc->watchdog.callout, 0);
681 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
682 }
683 
684 /*
685  *
686  * Device Probe, Attach, Detach.
687  *
688  */
689 
690 static int
cpsw_probe(device_t dev)691 cpsw_probe(device_t dev)
692 {
693 
694 	if (!ofw_bus_status_okay(dev))
695 		return (ENXIO);
696 
697 	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
698 		return (ENXIO);
699 
700 	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
701 	return (BUS_PROBE_DEFAULT);
702 }
703 
704 static int
cpsw_intr_attach(struct cpsw_softc * sc)705 cpsw_intr_attach(struct cpsw_softc *sc)
706 {
707 	int i;
708 
709 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
710 		if (bus_setup_intr(sc->dev, sc->irq_res[i],
711 		    INTR_TYPE_NET | INTR_MPSAFE, NULL,
712 		    cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
713 			return (-1);
714 		}
715 	}
716 
717 	return (0);
718 }
719 
720 static void
cpsw_intr_detach(struct cpsw_softc * sc)721 cpsw_intr_detach(struct cpsw_softc *sc)
722 {
723 	int i;
724 
725 	for (i = 0; i < CPSW_INTR_COUNT; i++) {
726 		if (sc->ih_cookie[i]) {
727 			bus_teardown_intr(sc->dev, sc->irq_res[i],
728 			    sc->ih_cookie[i]);
729 		}
730 	}
731 }
732 
733 static int
cpsw_get_fdt_data(struct cpsw_softc * sc,int port)734 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
735 {
736 	char *name;
737 	int len, phy, vlan;
738 	pcell_t phy_id[3], vlan_id;
739 	phandle_t child;
740 	unsigned long mdio_child_addr;
741 
742 	/* Find any slave with phy-handle/phy_id */
743 	phy = -1;
744 	vlan = -1;
745 	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
746 		if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
747 			continue;
748 		if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
749 			OF_prop_free(name);
750 			continue;
751 		}
752 		OF_prop_free(name);
753 
754 		if (mdio_child_addr != slave_mdio_addr[port] &&
755 		    mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
756 			continue;
757 
758 		if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
759 			/* Users with old DTB will have phy_id instead */
760 			phy = -1;
761 			len = OF_getproplen(child, "phy_id");
762 			if (len / sizeof(pcell_t) == 2) {
763 				/* Get phy address from fdt */
764 				if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
765 					phy = phy_id[1];
766 			}
767 		}
768 
769 		len = OF_getproplen(child, "dual_emac_res_vlan");
770 		if (len / sizeof(pcell_t) == 1) {
771 			/* Get phy address from fdt */
772 			if (OF_getencprop(child, "dual_emac_res_vlan",
773 			    &vlan_id, len) > 0) {
774 				vlan = vlan_id;
775 			}
776 		}
777 
778 		break;
779 	}
780 	if (phy == -1)
781 		return (ENXIO);
782 	sc->port[port].phy = phy;
783 	sc->port[port].vlan = vlan;
784 
785 	return (0);
786 }
787 
788 static int
cpsw_attach(device_t dev)789 cpsw_attach(device_t dev)
790 {
791 	int error, i;
792 	struct cpsw_softc *sc;
793 	uint32_t reg;
794 
795 	sc = device_get_softc(dev);
796 	sc->dev = dev;
797 	sc->node = ofw_bus_get_node(dev);
798 	getbinuptime(&sc->attach_uptime);
799 
800 	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
801 	    sizeof(sc->active_slave)) <= 0) {
802 		sc->active_slave = 0;
803 	}
804 	if (sc->active_slave > 1)
805 		sc->active_slave = 1;
806 
807 	if (OF_hasprop(sc->node, "dual_emac"))
808 		sc->dualemac = 1;
809 
810 	for (i = 0; i < CPSW_PORTS; i++) {
811 		if (!sc->dualemac && i != sc->active_slave)
812 			continue;
813 		if (cpsw_get_fdt_data(sc, i) != 0) {
814 			device_printf(dev,
815 			    "failed to get PHY address from FDT\n");
816 			return (ENXIO);
817 		}
818 	}
819 
820 	/* Initialize mutexes */
821 	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
822 	    "cpsw TX lock", MTX_DEF);
823 	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
824 	    "cpsw RX lock", MTX_DEF);
825 
826 	/* Allocate IRQ resources */
827 	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
828 	if (error) {
829 		device_printf(dev, "could not allocate IRQ resources\n");
830 		cpsw_detach(dev);
831 		return (ENXIO);
832 	}
833 
834 	sc->mem_rid = 0;
835 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
836 	    &sc->mem_rid, RF_ACTIVE);
837 	if (sc->mem_res == NULL) {
838 		device_printf(sc->dev, "failed to allocate memory resource\n");
839 		cpsw_detach(dev);
840 		return (ENXIO);
841 	}
842 
843 	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
844 	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
845 		reg & 0xFF, (reg >> 11) & 0x1F);
846 
847 	cpsw_add_sysctls(sc);
848 
849 	/* Allocate a busdma tag and DMA safe memory for mbufs. */
850 	error = bus_dma_tag_create(
851 		bus_get_dma_tag(sc->dev),	/* parent */
852 		1, 0,				/* alignment, boundary */
853 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
854 		BUS_SPACE_MAXADDR,		/* highaddr */
855 		NULL, NULL,			/* filtfunc, filtfuncarg */
856 		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
857 		MCLBYTES, 0,			/* maxsegsz, flags */
858 		NULL, NULL,			/* lockfunc, lockfuncarg */
859 		&sc->mbuf_dtag);		/* dmatag */
860 	if (error) {
861 		device_printf(dev, "bus_dma_tag_create failed\n");
862 		cpsw_detach(dev);
863 		return (error);
864 	}
865 
866 	/* Allocate a NULL buffer for padding. */
867 	sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
868 
869 	cpsw_init_slots(sc);
870 
871 	/* Allocate slots to TX and RX queues. */
872 	STAILQ_INIT(&sc->rx.avail);
873 	STAILQ_INIT(&sc->rx.active);
874 	STAILQ_INIT(&sc->tx.avail);
875 	STAILQ_INIT(&sc->tx.active);
876 	// For now:  128 slots to TX, rest to RX.
877 	// XXX TODO: start with 32/64 and grow dynamically based on demand.
878 	if (cpsw_add_slots(sc, &sc->tx, 128) ||
879 	    cpsw_add_slots(sc, &sc->rx, -1)) {
880 		device_printf(dev, "failed to allocate dmamaps\n");
881 		cpsw_detach(dev);
882 		return (ENOMEM);
883 	}
884 	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
885 	    sc->tx.queue_slots, sc->rx.queue_slots);
886 
887 	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
888 	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
889 
890 	if (cpsw_intr_attach(sc) == -1) {
891 		device_printf(dev, "failed to setup interrupts\n");
892 		cpsw_detach(dev);
893 		return (ENXIO);
894 	}
895 
896 #ifdef CPSW_ETHERSWITCH
897 	for (i = 0; i < CPSW_VLANS; i++)
898 		cpsw_vgroups[i].vid = -1;
899 #endif
900 
901 	/* Reset the controller. */
902 	cpsw_reset(sc);
903 	cpsw_init(sc);
904 
905 	for (i = 0; i < CPSW_PORTS; i++) {
906 		if (!sc->dualemac && i != sc->active_slave)
907 			continue;
908 		sc->port[i].dev = device_add_child(dev, "cpsw", i);
909 		if (sc->port[i].dev == NULL) {
910 			cpsw_detach(dev);
911 			return (ENXIO);
912 		}
913 	}
914 	bus_generic_probe(dev);
915 	bus_generic_attach(dev);
916 
917 	return (0);
918 }
919 
920 static int
cpsw_detach(device_t dev)921 cpsw_detach(device_t dev)
922 {
923 	struct cpsw_softc *sc;
924 	int error, i;
925 
926 	bus_generic_detach(dev);
927  	sc = device_get_softc(dev);
928 
929 	for (i = 0; i < CPSW_PORTS; i++) {
930 		if (sc->port[i].dev)
931 			device_delete_child(dev, sc->port[i].dev);
932 	}
933 
934 	if (device_is_attached(dev)) {
935 		callout_stop(&sc->watchdog.callout);
936 		callout_drain(&sc->watchdog.callout);
937 	}
938 
939 	/* Stop and release all interrupts */
940 	cpsw_intr_detach(sc);
941 
942 	/* Free dmamaps and mbufs */
943 	for (i = 0; i < nitems(sc->_slots); ++i)
944 		cpsw_free_slot(sc, &sc->_slots[i]);
945 
946 	/* Free null padding buffer. */
947 	if (sc->nullpad)
948 		free(sc->nullpad, M_DEVBUF);
949 
950 	/* Free DMA tag */
951 	if (sc->mbuf_dtag) {
952 		error = bus_dma_tag_destroy(sc->mbuf_dtag);
953 		KASSERT(error == 0, ("Unable to destroy DMA tag"));
954 	}
955 
956 	/* Free IO memory handler */
957 	if (sc->mem_res != NULL)
958 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
959 	bus_release_resources(dev, irq_res_spec, sc->irq_res);
960 
961 	/* Destroy mutexes */
962 	mtx_destroy(&sc->rx.lock);
963 	mtx_destroy(&sc->tx.lock);
964 
965 	/* Detach the switch device, if present. */
966 	error = bus_generic_detach(dev);
967 	if (error != 0)
968 		return (error);
969 
970 	return (device_delete_children(dev));
971 }
972 
973 static phandle_t
cpsw_get_node(device_t bus,device_t dev)974 cpsw_get_node(device_t bus, device_t dev)
975 {
976 
977 	/* Share controller node with port device. */
978 	return (ofw_bus_get_node(bus));
979 }
980 
981 static int
cpswp_probe(device_t dev)982 cpswp_probe(device_t dev)
983 {
984 
985 	if (device_get_unit(dev) > 1) {
986 		device_printf(dev, "Only two ports are supported.\n");
987 		return (ENXIO);
988 	}
989 	device_set_desc(dev, "Ethernet Switch Port");
990 
991 	return (BUS_PROBE_DEFAULT);
992 }
993 
994 static int
cpswp_attach(device_t dev)995 cpswp_attach(device_t dev)
996 {
997 	int error;
998 	if_t ifp;
999 	struct cpswp_softc *sc;
1000 	uint32_t reg;
1001 	uint8_t mac_addr[ETHER_ADDR_LEN];
1002 	phandle_t opp_table;
1003 	struct syscon *syscon;
1004 
1005 	sc = device_get_softc(dev);
1006 	sc->dev = dev;
1007 	sc->pdev = device_get_parent(dev);
1008 	sc->swsc = device_get_softc(sc->pdev);
1009 	sc->unit = device_get_unit(dev);
1010 	sc->phy = sc->swsc->port[sc->unit].phy;
1011 	sc->vlan = sc->swsc->port[sc->unit].vlan;
1012 	if (sc->swsc->dualemac && sc->vlan == -1)
1013 		sc->vlan = sc->unit + 1;
1014 
1015 	if (sc->unit == 0) {
1016 		sc->physel = MDIOUSERPHYSEL0;
1017 		sc->phyaccess = MDIOUSERACCESS0;
1018 	} else {
1019 		sc->physel = MDIOUSERPHYSEL1;
1020 		sc->phyaccess = MDIOUSERACCESS1;
1021 	}
1022 
1023 	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1024 	    MTX_DEF);
1025 
1026 	/* Allocate network interface */
1027 	ifp = sc->ifp = if_alloc(IFT_ETHER);
1028 	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1029 	if_setsoftc(ifp, sc);
1030 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
1031 
1032 	if_setcapenable(ifp, if_getcapabilities(ifp));
1033 
1034 	if_setinitfn(ifp, cpswp_init);
1035 	if_setstartfn(ifp, cpswp_start);
1036 	if_setioctlfn(ifp, cpswp_ioctl);
1037 
1038 	if_setsendqlen(ifp, sc->swsc->tx.queue_slots);
1039 	if_setsendqready(ifp);
1040 
1041 	/* FIXME: For now; Go and kidnap syscon from opp-table */
1042 	/* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1043 	opp_table = OF_finddevice("/opp-table");
1044 	if (opp_table == -1) {
1045 		device_printf(dev, "Cant find /opp-table\n");
1046 		cpswp_detach(dev);
1047 		return (ENXIO);
1048 	}
1049 	if (!OF_hasprop(opp_table, "syscon")) {
1050 		device_printf(dev, "/opp-table doesnt have required syscon property\n");
1051 		cpswp_detach(dev);
1052 		return (ENXIO);
1053 	}
1054 	if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1055 		device_printf(dev, "Failed to get syscon\n");
1056 		cpswp_detach(dev);
1057 		return (ENXIO);
1058 	}
1059 
1060 	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1061 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1062 	mac_addr[0] = reg & 0xFF;
1063 	mac_addr[1] = (reg >>  8) & 0xFF;
1064 	mac_addr[2] = (reg >> 16) & 0xFF;
1065 	mac_addr[3] = (reg >> 24) & 0xFF;
1066 
1067 	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1068 	reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1069 	mac_addr[4] = reg & 0xFF;
1070 	mac_addr[5] = (reg >>  8) & 0xFF;
1071 
1072 	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1073 	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1074 	if (error) {
1075 		device_printf(dev, "attaching PHYs failed\n");
1076 		cpswp_detach(dev);
1077 		return (error);
1078 	}
1079 	sc->mii = device_get_softc(sc->miibus);
1080 
1081 	/* Select PHY and enable interrupts */
1082 	cpsw_write_4(sc->swsc, sc->physel,
1083 	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1084 
1085 	ether_ifattach(sc->ifp, mac_addr);
1086 	callout_init(&sc->mii_callout, 0);
1087 
1088 	return (0);
1089 }
1090 
1091 static int
cpswp_detach(device_t dev)1092 cpswp_detach(device_t dev)
1093 {
1094 	struct cpswp_softc *sc;
1095 
1096 	sc = device_get_softc(dev);
1097 	CPSW_DEBUGF(sc->swsc, (""));
1098 	if (device_is_attached(dev)) {
1099 		ether_ifdetach(sc->ifp);
1100 		CPSW_PORT_LOCK(sc);
1101 		cpswp_stop_locked(sc);
1102 		CPSW_PORT_UNLOCK(sc);
1103 		callout_drain(&sc->mii_callout);
1104 	}
1105 
1106 	bus_generic_detach(dev);
1107 
1108 	if_free(sc->ifp);
1109 	mtx_destroy(&sc->lock);
1110 
1111 	return (0);
1112 }
1113 
1114 /*
1115  *
1116  * Init/Shutdown.
1117  *
1118  */
1119 
1120 static int
cpsw_ports_down(struct cpsw_softc * sc)1121 cpsw_ports_down(struct cpsw_softc *sc)
1122 {
1123 	struct cpswp_softc *psc;
1124 	if_t ifp1, ifp2;
1125 
1126 	if (!sc->dualemac)
1127 		return (1);
1128 	psc = device_get_softc(sc->port[0].dev);
1129 	ifp1 = psc->ifp;
1130 	psc = device_get_softc(sc->port[1].dev);
1131 	ifp2 = psc->ifp;
1132 	if ((if_getflags(ifp1) & IFF_UP) == 0 && (if_getflags(ifp2) & IFF_UP) == 0)
1133 		return (1);
1134 
1135 	return (0);
1136 }
1137 
1138 static void
cpswp_init(void * arg)1139 cpswp_init(void *arg)
1140 {
1141 	struct cpswp_softc *sc = arg;
1142 
1143 	CPSW_DEBUGF(sc->swsc, (""));
1144 	CPSW_PORT_LOCK(sc);
1145 	cpswp_init_locked(arg);
1146 	CPSW_PORT_UNLOCK(sc);
1147 }
1148 
1149 static void
cpswp_init_locked(void * arg)1150 cpswp_init_locked(void *arg)
1151 {
1152 #ifdef CPSW_ETHERSWITCH
1153 	int i;
1154 #endif
1155 	struct cpswp_softc *sc = arg;
1156 	if_t ifp;
1157 	uint32_t reg;
1158 
1159 	CPSW_DEBUGF(sc->swsc, (""));
1160 	CPSW_PORT_LOCK_ASSERT(sc);
1161 	ifp = sc->ifp;
1162 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1163 		return;
1164 
1165 	getbinuptime(&sc->init_uptime);
1166 
1167 	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1168 		/* Reset the controller. */
1169 		cpsw_reset(sc->swsc);
1170 		cpsw_init(sc->swsc);
1171 	}
1172 
1173 	/* Set Slave Mapping. */
1174 	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1175 	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1176 	    0x33221100);
1177 	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1178 	/* Enable MAC RX/TX modules. */
1179 	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1180 	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1181 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1182 	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1183 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1184 
1185 	/* Initialize ALE: set port to forwarding, initialize addrs */
1186 	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1187 	    ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1188 	cpswp_ale_update_addresses(sc, 1);
1189 
1190 	if (sc->swsc->dualemac) {
1191 		/* Set Port VID. */
1192 		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1193 		    sc->vlan & 0xfff);
1194 		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1195 		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1196 		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1197 		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1198 #ifdef CPSW_ETHERSWITCH
1199 		for (i = 0; i < CPSW_VLANS; i++) {
1200 			if (cpsw_vgroups[i].vid != -1)
1201 				continue;
1202 			cpsw_vgroups[i].vid = sc->vlan;
1203 			break;
1204 		}
1205 #endif
1206 	}
1207 
1208 	mii_mediachg(sc->mii);
1209 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1210 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1211 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1212 }
1213 
1214 static int
cpsw_shutdown(device_t dev)1215 cpsw_shutdown(device_t dev)
1216 {
1217 	struct cpsw_softc *sc;
1218 	struct cpswp_softc *psc;
1219 	int i;
1220 
1221  	sc = device_get_softc(dev);
1222 	CPSW_DEBUGF(sc, (""));
1223 	for (i = 0; i < CPSW_PORTS; i++) {
1224 		if (!sc->dualemac && i != sc->active_slave)
1225 			continue;
1226 		psc = device_get_softc(sc->port[i].dev);
1227 		CPSW_PORT_LOCK(psc);
1228 		cpswp_stop_locked(psc);
1229 		CPSW_PORT_UNLOCK(psc);
1230 	}
1231 
1232 	return (0);
1233 }
1234 
1235 static void
cpsw_rx_teardown(struct cpsw_softc * sc)1236 cpsw_rx_teardown(struct cpsw_softc *sc)
1237 {
1238 	int i = 0;
1239 
1240 	CPSW_RX_LOCK(sc);
1241 	CPSW_DEBUGF(sc, ("starting RX teardown"));
1242 	sc->rx.teardown = 1;
1243 	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1244 	CPSW_RX_UNLOCK(sc);
1245 	while (sc->rx.running) {
1246 		if (++i > 10) {
1247 			device_printf(sc->dev,
1248 			    "Unable to cleanly shutdown receiver\n");
1249 			return;
1250 		}
1251 		DELAY(200);
1252 	}
1253 	if (!sc->rx.running)
1254 		CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1255 }
1256 
1257 static void
cpsw_tx_teardown(struct cpsw_softc * sc)1258 cpsw_tx_teardown(struct cpsw_softc *sc)
1259 {
1260 	int i = 0;
1261 
1262 	CPSW_TX_LOCK(sc);
1263 	CPSW_DEBUGF(sc, ("starting TX teardown"));
1264 	/* Start the TX queue teardown if queue is not empty. */
1265 	if (STAILQ_FIRST(&sc->tx.active) != NULL)
1266 		cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1267 	else
1268 		sc->tx.teardown = 1;
1269 	cpsw_tx_dequeue(sc);
1270 	while (sc->tx.running && ++i < 10) {
1271 		DELAY(200);
1272 		cpsw_tx_dequeue(sc);
1273 	}
1274 	if (sc->tx.running) {
1275 		device_printf(sc->dev,
1276 		    "Unable to cleanly shutdown transmitter\n");
1277 	}
1278 	CPSW_DEBUGF(sc,
1279 	    ("finished TX teardown (%d retries, %d idle buffers)", i,
1280 	     sc->tx.active_queue_len));
1281 	CPSW_TX_UNLOCK(sc);
1282 }
1283 
1284 static void
cpswp_stop_locked(struct cpswp_softc * sc)1285 cpswp_stop_locked(struct cpswp_softc *sc)
1286 {
1287 	if_t ifp;
1288 	uint32_t reg;
1289 
1290 	ifp = sc->ifp;
1291 	CPSW_DEBUGF(sc->swsc, (""));
1292 	CPSW_PORT_LOCK_ASSERT(sc);
1293 
1294 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1295 		return;
1296 
1297 	/* Disable interface */
1298 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1299 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1300 
1301 	/* Stop ticker */
1302 	callout_stop(&sc->mii_callout);
1303 
1304 	/* Tear down the RX/TX queues. */
1305 	if (cpsw_ports_down(sc->swsc)) {
1306 		cpsw_rx_teardown(sc->swsc);
1307 		cpsw_tx_teardown(sc->swsc);
1308 	}
1309 
1310 	/* Stop MAC RX/TX modules. */
1311 	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1312 	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1313 	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1314 
1315 	if (cpsw_ports_down(sc->swsc)) {
1316 		/* Capture stats before we reset controller. */
1317 		cpsw_stats_collect(sc->swsc);
1318 
1319 		cpsw_reset(sc->swsc);
1320 		cpsw_init(sc->swsc);
1321 	}
1322 }
1323 
1324 /*
1325  *  Suspend/Resume.
1326  */
1327 
1328 static int
cpsw_suspend(device_t dev)1329 cpsw_suspend(device_t dev)
1330 {
1331 	struct cpsw_softc *sc;
1332 	struct cpswp_softc *psc;
1333 	int i;
1334 
1335 	sc = device_get_softc(dev);
1336 	CPSW_DEBUGF(sc, (""));
1337 	for (i = 0; i < CPSW_PORTS; i++) {
1338 		if (!sc->dualemac && i != sc->active_slave)
1339 			continue;
1340 		psc = device_get_softc(sc->port[i].dev);
1341 		CPSW_PORT_LOCK(psc);
1342 		cpswp_stop_locked(psc);
1343 		CPSW_PORT_UNLOCK(psc);
1344 	}
1345 
1346 	return (0);
1347 }
1348 
1349 static int
cpsw_resume(device_t dev)1350 cpsw_resume(device_t dev)
1351 {
1352 	struct cpsw_softc *sc;
1353 
1354 	sc  = device_get_softc(dev);
1355 	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1356 
1357 	return (0);
1358 }
1359 
1360 /*
1361  *
1362  *  IOCTL
1363  *
1364  */
1365 
1366 static void
cpsw_set_promisc(struct cpswp_softc * sc,int set)1367 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1368 {
1369 	uint32_t reg;
1370 
1371 	/*
1372 	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1373 	 * That disables the ALE forwarding logic and causes every
1374 	 * packet to be sent only to the host port.  In bypass mode,
1375 	 * the ALE processes host port transmit packets the same as in
1376 	 * normal mode.
1377 	 */
1378 	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1379 	reg &= ~CPSW_ALE_CTL_BYPASS;
1380 	if (set)
1381 		reg |= CPSW_ALE_CTL_BYPASS;
1382 	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1383 }
1384 
1385 static void
cpsw_set_allmulti(struct cpswp_softc * sc,int set)1386 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1387 {
1388 	if (set) {
1389 		printf("All-multicast mode unimplemented\n");
1390 	}
1391 }
1392 
1393 static int
cpswp_ioctl(if_t ifp,u_long command,caddr_t data)1394 cpswp_ioctl(if_t ifp, u_long command, caddr_t data)
1395 {
1396 	struct cpswp_softc *sc;
1397 	struct ifreq *ifr;
1398 	int error;
1399 	uint32_t changed;
1400 
1401 	error = 0;
1402 	sc = if_getsoftc(ifp);
1403 	ifr = (struct ifreq *)data;
1404 
1405 	switch (command) {
1406 	case SIOCSIFCAP:
1407 		changed = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1408 		if (changed & IFCAP_HWCSUM) {
1409 			if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1410 				if_setcapenablebit(ifp, IFCAP_HWCSUM, 0);
1411 			else
1412 				if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
1413 		}
1414 		error = 0;
1415 		break;
1416 	case SIOCSIFFLAGS:
1417 		CPSW_PORT_LOCK(sc);
1418 		if (if_getflags(ifp) & IFF_UP) {
1419 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1420 				changed = if_getflags(ifp) ^ sc->if_flags;
1421 				CPSW_DEBUGF(sc->swsc,
1422 				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1423 				    changed));
1424 				if (changed & IFF_PROMISC)
1425 					cpsw_set_promisc(sc,
1426 					    if_getflags(ifp) & IFF_PROMISC);
1427 				if (changed & IFF_ALLMULTI)
1428 					cpsw_set_allmulti(sc,
1429 					    if_getflags(ifp) & IFF_ALLMULTI);
1430 			} else {
1431 				CPSW_DEBUGF(sc->swsc,
1432 				    ("SIOCSIFFLAGS: starting up"));
1433 				cpswp_init_locked(sc);
1434 			}
1435 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1436 			CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1437 			cpswp_stop_locked(sc);
1438 		}
1439 
1440 		sc->if_flags = if_getflags(ifp);
1441 		CPSW_PORT_UNLOCK(sc);
1442 		break;
1443 	case SIOCADDMULTI:
1444 		cpswp_ale_update_addresses(sc, 0);
1445 		break;
1446 	case SIOCDELMULTI:
1447 		/* Ugh.  DELMULTI doesn't provide the specific address
1448 		   being removed, so the best we can do is remove
1449 		   everything and rebuild it all. */
1450 		cpswp_ale_update_addresses(sc, 1);
1451 		break;
1452 	case SIOCGIFMEDIA:
1453 	case SIOCSIFMEDIA:
1454 		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1455 		break;
1456 	default:
1457 		error = ether_ioctl(ifp, command, data);
1458 	}
1459 	return (error);
1460 }
1461 
1462 /*
1463  *
1464  * MIIBUS
1465  *
1466  */
1467 static int
cpswp_miibus_ready(struct cpsw_softc * sc,uint32_t reg)1468 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1469 {
1470 	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1471 
1472 	while (--retries) {
1473 		r = cpsw_read_4(sc, reg);
1474 		if ((r & MDIO_PHYACCESS_GO) == 0)
1475 			return (1);
1476 		DELAY(CPSW_MIIBUS_DELAY);
1477 	}
1478 
1479 	return (0);
1480 }
1481 
1482 static int
cpswp_miibus_readreg(device_t dev,int phy,int reg)1483 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1484 {
1485 	struct cpswp_softc *sc;
1486 	uint32_t cmd, r;
1487 
1488 	sc = device_get_softc(dev);
1489 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1490 		device_printf(dev, "MDIO not ready to read\n");
1491 		return (0);
1492 	}
1493 
1494 	/* Set GO, reg, phy */
1495 	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1496 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1497 
1498 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1499 		device_printf(dev, "MDIO timed out during read\n");
1500 		return (0);
1501 	}
1502 
1503 	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1504 	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1505 		device_printf(dev, "Failed to read from PHY.\n");
1506 		r = 0;
1507 	}
1508 	return (r & 0xFFFF);
1509 }
1510 
1511 static int
cpswp_miibus_writereg(device_t dev,int phy,int reg,int value)1512 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1513 {
1514 	struct cpswp_softc *sc;
1515 	uint32_t cmd;
1516 
1517 	sc = device_get_softc(dev);
1518 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1519 		device_printf(dev, "MDIO not ready to write\n");
1520 		return (0);
1521 	}
1522 
1523 	/* Set GO, WRITE, reg, phy, and value */
1524 	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1525 	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1526 	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1527 
1528 	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1529 		device_printf(dev, "MDIO timed out during write\n");
1530 		return (0);
1531 	}
1532 
1533 	return (0);
1534 }
1535 
1536 static void
cpswp_miibus_statchg(device_t dev)1537 cpswp_miibus_statchg(device_t dev)
1538 {
1539 	struct cpswp_softc *sc;
1540 	uint32_t mac_control, reg;
1541 
1542 	sc = device_get_softc(dev);
1543 	CPSW_DEBUGF(sc->swsc, (""));
1544 
1545 	reg = CPSW_SL_MACCONTROL(sc->unit);
1546 	mac_control = cpsw_read_4(sc->swsc, reg);
1547 	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1548 	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1549 
1550 	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1551 	case IFM_1000_SX:
1552 	case IFM_1000_LX:
1553 	case IFM_1000_CX:
1554 	case IFM_1000_T:
1555 		mac_control |= CPSW_SL_MACTL_GIG;
1556 		break;
1557 
1558 	case IFM_100_TX:
1559 		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1560 		break;
1561 	}
1562 	if (sc->mii->mii_media_active & IFM_FDX)
1563 		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1564 
1565 	cpsw_write_4(sc->swsc, reg, mac_control);
1566 }
1567 
1568 /*
1569  *
1570  * Transmit/Receive Packets.
1571  *
1572  */
1573 static void
cpsw_intr_rx(void * arg)1574 cpsw_intr_rx(void *arg)
1575 {
1576 	struct cpsw_softc *sc;
1577 	if_t ifp;
1578 	struct mbuf *received, *next;
1579 
1580 	sc = (struct cpsw_softc *)arg;
1581 	CPSW_RX_LOCK(sc);
1582 	if (sc->rx.teardown) {
1583 		sc->rx.running = 0;
1584 		sc->rx.teardown = 0;
1585 		cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1586 	}
1587 	received = cpsw_rx_dequeue(sc);
1588 	cpsw_rx_enqueue(sc);
1589 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1590 	CPSW_RX_UNLOCK(sc);
1591 
1592 	while (received != NULL) {
1593 		next = received->m_nextpkt;
1594 		received->m_nextpkt = NULL;
1595 		ifp = received->m_pkthdr.rcvif;
1596 		if_input(ifp, received);
1597 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1598 		received = next;
1599 	}
1600 }
1601 
1602 static struct mbuf *
cpsw_rx_dequeue(struct cpsw_softc * sc)1603 cpsw_rx_dequeue(struct cpsw_softc *sc)
1604 {
1605 	int nsegs, port, removed;
1606 	struct cpsw_cpdma_bd bd;
1607 	struct cpsw_slot *last, *slot;
1608 	struct cpswp_softc *psc;
1609 	struct mbuf *m, *m0, *mb_head, *mb_tail;
1610 	uint16_t m0_flags;
1611 
1612 	nsegs = 0;
1613 	m0 = NULL;
1614 	last = NULL;
1615 	mb_head = NULL;
1616 	mb_tail = NULL;
1617 	removed = 0;
1618 
1619 	/* Pull completed packets off hardware RX queue. */
1620 	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1621 		cpsw_cpdma_read_bd(sc, slot, &bd);
1622 
1623 		/*
1624 		 * Stop on packets still in use by hardware, but do not stop
1625 		 * on packets with the teardown complete flag, they will be
1626 		 * discarded later.
1627 		 */
1628 		if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1629 		    CPDMA_BD_OWNER)
1630 			break;
1631 
1632 		last = slot;
1633 		++removed;
1634 		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1635 		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1636 
1637 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1638 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1639 
1640 		m = slot->mbuf;
1641 		slot->mbuf = NULL;
1642 
1643 		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1644 			CPSW_DEBUGF(sc, ("RX teardown is complete"));
1645 			m_freem(m);
1646 			sc->rx.running = 0;
1647 			sc->rx.teardown = 0;
1648 			break;
1649 		}
1650 
1651 		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1652 		KASSERT(port >= 0 && port <= 1,
1653 		    ("patcket received with invalid port: %d", port));
1654 		psc = device_get_softc(sc->port[port].dev);
1655 
1656 		/* Set up mbuf */
1657 		m->m_data += bd.bufoff;
1658 		m->m_len = bd.buflen;
1659 		if (bd.flags & CPDMA_BD_SOP) {
1660 			m->m_pkthdr.len = bd.pktlen;
1661 			m->m_pkthdr.rcvif = psc->ifp;
1662 			m->m_flags |= M_PKTHDR;
1663 			m0_flags = bd.flags;
1664 			m0 = m;
1665 		}
1666 		nsegs++;
1667 		m->m_next = NULL;
1668 		m->m_nextpkt = NULL;
1669 		if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1670 			if (m0_flags & CPDMA_BD_PASS_CRC)
1671 				m_adj(m0, -ETHER_CRC_LEN);
1672 			m0_flags = 0;
1673 			m0 = NULL;
1674 			if (nsegs > sc->rx.longest_chain)
1675 				sc->rx.longest_chain = nsegs;
1676 			nsegs = 0;
1677 		}
1678 
1679 		if ((if_getcapenable(psc->ifp) & IFCAP_RXCSUM) != 0) {
1680 			/* check for valid CRC by looking into pkt_err[5:4] */
1681 			if ((bd.flags &
1682 			    (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1683 			    CPDMA_BD_SOP) {
1684 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1685 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1686 				m->m_pkthdr.csum_data = 0xffff;
1687 			}
1688 		}
1689 
1690 		if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1691 		    (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1692 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1693 			cpsw_write_hdp_slot(sc, &sc->rx,
1694 			    STAILQ_FIRST(&sc->rx.active));
1695 			sc->rx.queue_restart++;
1696 		}
1697 
1698 		/* Add mbuf to packet list to be returned. */
1699 		if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1700 			mb_tail->m_nextpkt = m;
1701 		} else if (mb_tail != NULL) {
1702 			mb_tail->m_next = m;
1703 		} else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1704 			if (bootverbose)
1705 				printf(
1706 				    "%s: %s: discanding fragment packet w/o header\n",
1707 				    __func__, if_name(psc->ifp));
1708 			m_freem(m);
1709 			continue;
1710 		} else {
1711 			mb_head = m;
1712 		}
1713 		mb_tail = m;
1714 	}
1715 
1716 	if (removed != 0) {
1717 		cpsw_write_cp_slot(sc, &sc->rx, last);
1718 		sc->rx.queue_removes += removed;
1719 		sc->rx.avail_queue_len += removed;
1720 		sc->rx.active_queue_len -= removed;
1721 		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1722 			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1723 		CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1724 	}
1725 
1726 	return (mb_head);
1727 }
1728 
1729 static void
cpsw_rx_enqueue(struct cpsw_softc * sc)1730 cpsw_rx_enqueue(struct cpsw_softc *sc)
1731 {
1732 	bus_dma_segment_t seg[1];
1733 	struct cpsw_cpdma_bd bd;
1734 	struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1735 	int error, nsegs, added = 0;
1736 
1737 	/* Register new mbufs with hardware. */
1738 	first_new_slot = NULL;
1739 	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1740 	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1741 		if (first_new_slot == NULL)
1742 			first_new_slot = slot;
1743 		if (slot->mbuf == NULL) {
1744 			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1745 			if (slot->mbuf == NULL) {
1746 				device_printf(sc->dev,
1747 				    "Unable to fill RX queue\n");
1748 				break;
1749 			}
1750 			slot->mbuf->m_len =
1751 			    slot->mbuf->m_pkthdr.len =
1752 			    slot->mbuf->m_ext.ext_size;
1753 		}
1754 
1755 		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1756 		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1757 
1758 		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1759 		KASSERT(error == 0, ("DMA error (error=%d)", error));
1760 		if (error != 0 || nsegs != 1) {
1761 			device_printf(sc->dev,
1762 			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1763 			    __func__, nsegs, error);
1764 			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1765 			m_freem(slot->mbuf);
1766 			slot->mbuf = NULL;
1767 			break;
1768 		}
1769 
1770 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1771 
1772 		/* Create and submit new rx descriptor. */
1773 		if ((next = STAILQ_NEXT(slot, next)) != NULL)
1774 			bd.next = cpsw_cpdma_bd_paddr(sc, next);
1775 		else
1776 			bd.next = 0;
1777 		bd.bufptr = seg->ds_addr;
1778 		bd.bufoff = 0;
1779 		bd.buflen = MCLBYTES - 1;
1780 		bd.pktlen = bd.buflen;
1781 		bd.flags = CPDMA_BD_OWNER;
1782 		cpsw_cpdma_write_bd(sc, slot, &bd);
1783 		++added;
1784 
1785 		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1786 		STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1787 	}
1788 
1789 	if (added == 0 || first_new_slot == NULL)
1790 		return;
1791 
1792 	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1793 
1794 	/* Link new entries to hardware RX queue. */
1795 	if (last_old_slot == NULL) {
1796 		/* Start a fresh queue. */
1797 		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1798 	} else {
1799 		/* Add buffers to end of current queue. */
1800 		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1801 	}
1802 	sc->rx.queue_adds += added;
1803 	sc->rx.avail_queue_len -= added;
1804 	sc->rx.active_queue_len += added;
1805 	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1806 	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1807 		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1808 }
1809 
1810 static void
cpswp_start(if_t ifp)1811 cpswp_start(if_t ifp)
1812 {
1813 	struct cpswp_softc *sc;
1814 
1815 	sc = if_getsoftc(ifp);
1816 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1817 	    sc->swsc->tx.running == 0) {
1818 		return;
1819 	}
1820 	CPSW_TX_LOCK(sc->swsc);
1821 	cpswp_tx_enqueue(sc);
1822 	cpsw_tx_dequeue(sc->swsc);
1823 	CPSW_TX_UNLOCK(sc->swsc);
1824 }
1825 
1826 static void
cpsw_intr_tx(void * arg)1827 cpsw_intr_tx(void *arg)
1828 {
1829 	struct cpsw_softc *sc;
1830 
1831 	sc = (struct cpsw_softc *)arg;
1832 	CPSW_TX_LOCK(sc);
1833 	if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1834 		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1835 	cpsw_tx_dequeue(sc);
1836 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1837 	CPSW_TX_UNLOCK(sc);
1838 }
1839 
1840 static void
cpswp_tx_enqueue(struct cpswp_softc * sc)1841 cpswp_tx_enqueue(struct cpswp_softc *sc)
1842 {
1843 	bus_dma_segment_t segs[CPSW_TXFRAGS];
1844 	struct cpsw_cpdma_bd bd;
1845 	struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1846 	struct mbuf *m0;
1847 	int error, nsegs, seg, added = 0, padlen;
1848 
1849 	/* Pull pending packets from IF queue and prep them for DMA. */
1850 	last = NULL;
1851 	first_new_slot = NULL;
1852 	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1853 	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1854 		m0 = if_dequeue(sc->ifp);
1855 		if (m0 == NULL)
1856 			break;
1857 
1858 		slot->mbuf = m0;
1859 		padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1860 		if (padlen < 0)
1861 			padlen = 0;
1862 		else if (padlen > 0)
1863 			m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1864 
1865 		/* Create mapping in DMA memory */
1866 		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1867 		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1868 		/* If the packet is too fragmented, try to simplify. */
1869 		if (error == EFBIG ||
1870 		    (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1871 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1872 			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1873 			if (m0 == NULL) {
1874 				device_printf(sc->dev,
1875 				    "Can't defragment packet; dropping\n");
1876 				m_freem(slot->mbuf);
1877 			} else {
1878 				CPSW_DEBUGF(sc->swsc,
1879 				    ("Requeueing defragmented packet"));
1880 				if_sendq_prepend(sc->ifp, m0);
1881 			}
1882 			slot->mbuf = NULL;
1883 			continue;
1884 		}
1885 		if (error != 0) {
1886 			device_printf(sc->dev,
1887 			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1888 			    __func__, error);
1889 			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1890 			m_freem(slot->mbuf);
1891 			slot->mbuf = NULL;
1892 			break;
1893 		}
1894 
1895 		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1896 				BUS_DMASYNC_PREWRITE);
1897 
1898 		CPSW_DEBUGF(sc->swsc,
1899 		    ("Queueing TX packet: %d segments + %d pad bytes",
1900 		    nsegs, padlen));
1901 
1902 		if (first_new_slot == NULL)
1903 			first_new_slot = slot;
1904 
1905 		/* Link from the previous descriptor. */
1906 		if (last != NULL)
1907 			cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1908 
1909 		slot->ifp = sc->ifp;
1910 
1911 		/* If there is only one segment, the for() loop
1912 		 * gets skipped and the single buffer gets set up
1913 		 * as both SOP and EOP. */
1914 		if (nsegs > 1) {
1915 			next = STAILQ_NEXT(slot, next);
1916 			bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1917 		} else
1918 			bd.next = 0;
1919 		/* Start by setting up the first buffer. */
1920 		bd.bufptr = segs[0].ds_addr;
1921 		bd.bufoff = 0;
1922 		bd.buflen = segs[0].ds_len;
1923 		bd.pktlen = m_length(slot->mbuf, NULL);
1924 		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER;
1925 		if (sc->swsc->dualemac) {
1926 			bd.flags |= CPDMA_BD_TO_PORT;
1927 			bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1928 		}
1929 		for (seg = 1; seg < nsegs; ++seg) {
1930 			/* Save the previous buffer (which isn't EOP) */
1931 			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1932 			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1933 			STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1934 			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1935 
1936 			/* Setup next buffer (which isn't SOP) */
1937 			if (nsegs > seg + 1) {
1938 				next = STAILQ_NEXT(slot, next);
1939 				bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1940 			} else
1941 				bd.next = 0;
1942 			bd.bufptr = segs[seg].ds_addr;
1943 			bd.bufoff = 0;
1944 			bd.buflen = segs[seg].ds_len;
1945 			bd.pktlen = 0;
1946 			bd.flags = CPDMA_BD_OWNER;
1947 		}
1948 
1949 		/* Save the final buffer. */
1950 		bd.flags |= CPDMA_BD_EOP;
1951 		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1952 		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1953 		STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1954 
1955 		last = slot;
1956 		added += nsegs;
1957 		if (nsegs > sc->swsc->tx.longest_chain)
1958 			sc->swsc->tx.longest_chain = nsegs;
1959 
1960 		BPF_MTAP(sc->ifp, m0);
1961 	}
1962 
1963 	if (first_new_slot == NULL)
1964 		return;
1965 
1966 	/* Attach the list of new buffers to the hardware TX queue. */
1967 	if (last_old_slot != NULL &&
1968 	    (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1969 	     CPDMA_BD_EOQ) == 0) {
1970 		/* Add buffers to end of current queue. */
1971 		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1972 		    first_new_slot);
1973 	} else {
1974 		/* Start a fresh queue. */
1975 		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1976 	}
1977 	sc->swsc->tx.queue_adds += added;
1978 	sc->swsc->tx.avail_queue_len -= added;
1979 	sc->swsc->tx.active_queue_len += added;
1980 	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1981 		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1982 	}
1983 	CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1984 }
1985 
1986 static int
cpsw_tx_dequeue(struct cpsw_softc * sc)1987 cpsw_tx_dequeue(struct cpsw_softc *sc)
1988 {
1989 	struct cpsw_slot *slot, *last_removed_slot = NULL;
1990 	struct cpsw_cpdma_bd bd;
1991 	uint32_t flags, removed = 0;
1992 
1993 	/* Pull completed buffers off the hardware TX queue. */
1994 	slot = STAILQ_FIRST(&sc->tx.active);
1995 	while (slot != NULL) {
1996 		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1997 
1998 		/* TearDown complete is only marked on the SOP for the packet. */
1999 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2000 		    (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2001 			sc->tx.teardown = 1;
2002 		}
2003 
2004 		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2005 		    (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2006 			break; /* Hardware is still using this packet. */
2007 
2008 		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2009 		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2010 		m_freem(slot->mbuf);
2011 		slot->mbuf = NULL;
2012 
2013 		if (slot->ifp) {
2014 			if (sc->tx.teardown == 0)
2015 				if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2016 			else
2017 				if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2018 		}
2019 
2020 		/* Dequeue any additional buffers used by this packet. */
2021 		while (slot != NULL && slot->mbuf == NULL) {
2022 			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2023 			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2024 			++removed;
2025 			last_removed_slot = slot;
2026 			slot = STAILQ_FIRST(&sc->tx.active);
2027 		}
2028 
2029 		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2030 
2031 		/* Restart the TX queue if necessary. */
2032 		cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2033 		if (slot != NULL && bd.next != 0 && (bd.flags &
2034 		    (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2035 		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2036 			cpsw_write_hdp_slot(sc, &sc->tx, slot);
2037 			sc->tx.queue_restart++;
2038 			break;
2039 		}
2040 	}
2041 
2042 	if (removed != 0) {
2043 		sc->tx.queue_removes += removed;
2044 		sc->tx.active_queue_len -= removed;
2045 		sc->tx.avail_queue_len += removed;
2046 		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2047 			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2048 		CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2049 	}
2050 
2051 	if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2052 		CPSW_DEBUGF(sc, ("TX teardown is complete"));
2053 		sc->tx.teardown = 0;
2054 		sc->tx.running = 0;
2055 	}
2056 
2057 	return (removed);
2058 }
2059 
2060 /*
2061  *
2062  * Miscellaneous interrupts.
2063  *
2064  */
2065 
2066 static void
cpsw_intr_rx_thresh(void * arg)2067 cpsw_intr_rx_thresh(void *arg)
2068 {
2069 	struct cpsw_softc *sc;
2070 	if_t ifp;
2071 	struct mbuf *received, *next;
2072 
2073 	sc = (struct cpsw_softc *)arg;
2074 	CPSW_RX_LOCK(sc);
2075 	received = cpsw_rx_dequeue(sc);
2076 	cpsw_rx_enqueue(sc);
2077 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2078 	CPSW_RX_UNLOCK(sc);
2079 
2080 	while (received != NULL) {
2081 		next = received->m_nextpkt;
2082 		received->m_nextpkt = NULL;
2083 		ifp = received->m_pkthdr.rcvif;
2084 		if_input(ifp, received);
2085 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2086 		received = next;
2087 	}
2088 }
2089 
2090 static void
cpsw_intr_misc_host_error(struct cpsw_softc * sc)2091 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2092 {
2093 	uint32_t intstat;
2094 	uint32_t dmastat;
2095 	int txerr, rxerr, txchan, rxchan;
2096 
2097 	printf("\n\n");
2098 	device_printf(sc->dev,
2099 	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2100 	printf("\n\n");
2101 	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2102 	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2103 	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2104 	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2105 
2106 	txerr = (dmastat >> 20) & 15;
2107 	txchan = (dmastat >> 16) & 7;
2108 	rxerr = (dmastat >> 12) & 15;
2109 	rxchan = (dmastat >> 8) & 7;
2110 
2111 	switch (txerr) {
2112 	case 0: break;
2113 	case 1:	printf("SOP error on TX channel %d\n", txchan);
2114 		break;
2115 	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2116 		break;
2117 	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2118 		break;
2119 	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2120 		break;
2121 	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2122 		break;
2123 	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2124 		break;
2125 	default: printf("Unknown error on TX channel %d\n", txchan);
2126 		break;
2127 	}
2128 
2129 	if (txerr != 0) {
2130 		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2131 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2132 		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2133 		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2134 		cpsw_dump_queue(sc, &sc->tx.active);
2135 	}
2136 
2137 	switch (rxerr) {
2138 	case 0: break;
2139 	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2140 		break;
2141 	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2142 		break;
2143 	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2144 		break;
2145 	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2146 		break;
2147 	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2148 		break;
2149 	}
2150 
2151 	if (rxerr != 0) {
2152 		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2153 		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2154 		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2155 		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2156 		cpsw_dump_queue(sc, &sc->rx.active);
2157 	}
2158 
2159 	printf("\nALE Table\n");
2160 	cpsw_ale_dump_table(sc);
2161 
2162 	// XXX do something useful here??
2163 	panic("CPSW HOST ERROR INTERRUPT");
2164 
2165 	// Suppress this interrupt in the future.
2166 	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2167 	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2168 	// The watchdog will probably reset the controller
2169 	// in a little while.  It will probably fail again.
2170 }
2171 
2172 static void
cpsw_intr_misc(void * arg)2173 cpsw_intr_misc(void *arg)
2174 {
2175 	struct cpsw_softc *sc = arg;
2176 	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2177 
2178 	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2179 		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2180 	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2181 		cpsw_stats_collect(sc);
2182 	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2183 		cpsw_intr_misc_host_error(sc);
2184 	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2185 		cpsw_write_4(sc, MDIOLINKINTMASKED,
2186 		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2187 	}
2188 	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2189 		CPSW_DEBUGF(sc,
2190 		    ("MDIO operation completed interrupt unimplemented"));
2191 	}
2192 	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2193 }
2194 
2195 /*
2196  *
2197  * Periodic Checks and Watchdog.
2198  *
2199  */
2200 
2201 static void
cpswp_tick(void * msc)2202 cpswp_tick(void *msc)
2203 {
2204 	struct cpswp_softc *sc = msc;
2205 
2206 	/* Check for media type change */
2207 	mii_tick(sc->mii);
2208 	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2209 		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2210 			sc->mii->mii_media.ifm_media);
2211 		cpswp_ifmedia_upd(sc->ifp);
2212 	}
2213 
2214 	/* Schedule another timeout one second from now */
2215 	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2216 }
2217 
2218 static void
cpswp_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)2219 cpswp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2220 {
2221 	struct cpswp_softc *sc;
2222 	struct mii_data *mii;
2223 
2224 	sc = if_getsoftc(ifp);
2225 	CPSW_DEBUGF(sc->swsc, (""));
2226 	CPSW_PORT_LOCK(sc);
2227 
2228 	mii = sc->mii;
2229 	mii_pollstat(mii);
2230 
2231 	ifmr->ifm_active = mii->mii_media_active;
2232 	ifmr->ifm_status = mii->mii_media_status;
2233 	CPSW_PORT_UNLOCK(sc);
2234 }
2235 
2236 static int
cpswp_ifmedia_upd(if_t ifp)2237 cpswp_ifmedia_upd(if_t ifp)
2238 {
2239 	struct cpswp_softc *sc;
2240 
2241 	sc = if_getsoftc(ifp);
2242 	CPSW_DEBUGF(sc->swsc, (""));
2243 	CPSW_PORT_LOCK(sc);
2244 	mii_mediachg(sc->mii);
2245 	sc->media_status = sc->mii->mii_media.ifm_media;
2246 	CPSW_PORT_UNLOCK(sc);
2247 
2248 	return (0);
2249 }
2250 
2251 static void
cpsw_tx_watchdog_full_reset(struct cpsw_softc * sc)2252 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2253 {
2254 	struct cpswp_softc *psc;
2255 	int i;
2256 
2257 	cpsw_debugf_head("CPSW watchdog");
2258 	device_printf(sc->dev, "watchdog timeout\n");
2259 	printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2260 	    cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2261 	printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2262 	    cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2263 	cpsw_dump_queue(sc, &sc->tx.active);
2264 	for (i = 0; i < CPSW_PORTS; i++) {
2265 		if (!sc->dualemac && i != sc->active_slave)
2266 			continue;
2267 		psc = device_get_softc(sc->port[i].dev);
2268 		CPSW_PORT_LOCK(psc);
2269 		cpswp_stop_locked(psc);
2270 		CPSW_PORT_UNLOCK(psc);
2271 	}
2272 }
2273 
2274 static void
cpsw_tx_watchdog(void * msc)2275 cpsw_tx_watchdog(void *msc)
2276 {
2277 	struct cpsw_softc *sc;
2278 
2279 	sc = msc;
2280 	CPSW_TX_LOCK(sc);
2281 	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2282 		sc->watchdog.timer = 0; /* Nothing to do. */
2283 	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2284 		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2285 	} else if (cpsw_tx_dequeue(sc) > 0) {
2286 		sc->watchdog.timer = 0;  /* We just did something. */
2287 	} else {
2288 		/* There was something to do but it didn't get done. */
2289 		++sc->watchdog.timer;
2290 		if (sc->watchdog.timer > 5) {
2291 			sc->watchdog.timer = 0;
2292 			++sc->watchdog.resets;
2293 			cpsw_tx_watchdog_full_reset(sc);
2294 		}
2295 	}
2296 	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2297 	CPSW_TX_UNLOCK(sc);
2298 
2299 	/* Schedule another timeout one second from now */
2300 	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2301 }
2302 
2303 /*
2304  *
2305  * ALE support routines.
2306  *
2307  */
2308 
2309 static void
cpsw_ale_read_entry(struct cpsw_softc * sc,uint16_t idx,uint32_t * ale_entry)2310 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2311 {
2312 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2313 	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2314 	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2315 	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2316 }
2317 
2318 static void
cpsw_ale_write_entry(struct cpsw_softc * sc,uint16_t idx,uint32_t * ale_entry)2319 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2320 {
2321 	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2322 	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2323 	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2324 	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2325 }
2326 
2327 static void
cpsw_ale_remove_all_mc_entries(struct cpsw_softc * sc)2328 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2329 {
2330 	int i;
2331 	uint32_t ale_entry[3];
2332 
2333 	/* First four entries are link address and broadcast. */
2334 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2335 		cpsw_ale_read_entry(sc, i, ale_entry);
2336 		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2337 		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2338 		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2339 			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2340 			cpsw_ale_write_entry(sc, i, ale_entry);
2341 		}
2342 	}
2343 }
2344 
2345 static int
cpsw_ale_mc_entry_set(struct cpsw_softc * sc,uint8_t portmap,int vlan,uint8_t * mac)2346 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2347 	uint8_t *mac)
2348 {
2349 	int free_index = -1, matching_index = -1, i;
2350 	uint32_t ale_entry[3], ale_type;
2351 
2352 	/* Find a matching entry or a free entry. */
2353 	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2354 		cpsw_ale_read_entry(sc, i, ale_entry);
2355 
2356 		/* Entry Type[61:60] is 0 for free entry */
2357 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2358 			free_index = i;
2359 
2360 		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2361 		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2362 		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2363 		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2364 		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2365 		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2366 			matching_index = i;
2367 			break;
2368 		}
2369 	}
2370 
2371 	if (matching_index < 0) {
2372 		if (free_index < 0)
2373 			return (ENOMEM);
2374 		i = free_index;
2375 	}
2376 
2377 	if (vlan != -1)
2378 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2379 	else
2380 		ale_type = ALE_TYPE_ADDR << 28;
2381 
2382 	/* Set MAC address */
2383 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2384 	ale_entry[1] = mac[0] << 8 | mac[1];
2385 
2386 	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2387 	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2388 
2389 	/* Set portmask [68:66] */
2390 	ale_entry[2] = (portmap & 7) << 2;
2391 
2392 	cpsw_ale_write_entry(sc, i, ale_entry);
2393 
2394 	return 0;
2395 }
2396 
2397 static void
cpsw_ale_dump_table(struct cpsw_softc * sc)2398 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2399 	int i;
2400 	uint32_t ale_entry[3];
2401 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2402 		cpsw_ale_read_entry(sc, i, ale_entry);
2403 		switch (ALE_TYPE(ale_entry)) {
2404 		case ALE_TYPE_VLAN:
2405 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2406 				ale_entry[1], ale_entry[0]);
2407 			printf("type: %u ", ALE_TYPE(ale_entry));
2408 			printf("vlan: %u ", ALE_VLAN(ale_entry));
2409 			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2410 			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2411 			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2412 			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2413 			printf("\n");
2414 			break;
2415 		case ALE_TYPE_ADDR:
2416 		case ALE_TYPE_VLAN_ADDR:
2417 			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2418 				ale_entry[1], ale_entry[0]);
2419 			printf("type: %u ", ALE_TYPE(ale_entry));
2420 			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2421 				(ale_entry[1] >> 8) & 0xFF,
2422 				(ale_entry[1] >> 0) & 0xFF,
2423 				(ale_entry[0] >>24) & 0xFF,
2424 				(ale_entry[0] >>16) & 0xFF,
2425 				(ale_entry[0] >> 8) & 0xFF,
2426 				(ale_entry[0] >> 0) & 0xFF);
2427 			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2428 			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2429 				printf("vlan: %u ", ALE_VLAN(ale_entry));
2430 			printf("port: %u ", ALE_PORTS(ale_entry));
2431 			printf("\n");
2432 			break;
2433 		}
2434 	}
2435 	printf("\n");
2436 }
2437 
2438 static u_int
cpswp_set_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2439 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2440 {
2441 	struct cpswp_softc *sc = arg;
2442 	uint32_t portmask;
2443 
2444 	if (sc->swsc->dualemac)
2445 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2446 	else
2447 		portmask = 7;
2448 
2449 	cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2450 
2451 	return (1);
2452 }
2453 
2454 static int
cpswp_ale_update_addresses(struct cpswp_softc * sc,int purge)2455 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2456 {
2457 	uint8_t *mac;
2458 	uint32_t ale_entry[3], ale_type, portmask;
2459 
2460 	if (sc->swsc->dualemac) {
2461 		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2462 		portmask = 1 << (sc->unit + 1) | 1 << 0;
2463 	} else {
2464 		ale_type = ALE_TYPE_ADDR << 28;
2465 		portmask = 7;
2466 	}
2467 
2468 	/*
2469 	 * Route incoming packets for our MAC address to Port 0 (host).
2470 	 * For simplicity, keep this entry at table index 0 for port 1 and
2471 	 * at index 2 for port 2 in the ALE.
2472 	 */
2473 	mac = LLADDR((struct sockaddr_dl *)if_getifaddr(sc->ifp)->ifa_addr);
2474 	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2475 	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2476 	ale_entry[2] = 0; /* port = 0 */
2477 	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2478 
2479 	/* Set outgoing MAC Address for slave port. */
2480 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2481 	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2482 	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2483 	    mac[5] << 8 | mac[4]);
2484 
2485 	/* Keep the broadcast address at table entry 1 (or 3). */
2486 	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2487 	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2488 	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2489 	ale_entry[2] = portmask << 2;
2490 	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2491 
2492 	/* SIOCDELMULTI doesn't specify the particular address
2493 	   being removed, so we have to remove all and rebuild. */
2494 	if (purge)
2495 		cpsw_ale_remove_all_mc_entries(sc->swsc);
2496 
2497         /* Set other multicast addrs desired. */
2498 	if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2499 
2500 	return (0);
2501 }
2502 
2503 static int
cpsw_ale_update_vlan_table(struct cpsw_softc * sc,int vlan,int ports,int untag,int mcregflood,int mcunregflood)2504 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2505 	int untag, int mcregflood, int mcunregflood)
2506 {
2507 	int free_index, i, matching_index;
2508 	uint32_t ale_entry[3];
2509 
2510 	free_index = matching_index = -1;
2511 	/* Find a matching entry or a free entry. */
2512 	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2513 		cpsw_ale_read_entry(sc, i, ale_entry);
2514 
2515 		/* Entry Type[61:60] is 0 for free entry */
2516 		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2517 			free_index = i;
2518 
2519 		if (ALE_VLAN(ale_entry) == vlan) {
2520 			matching_index = i;
2521 			break;
2522 		}
2523 	}
2524 
2525 	if (matching_index < 0) {
2526 		if (free_index < 0)
2527 			return (-1);
2528 		i = free_index;
2529 	}
2530 
2531 	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2532 	    (mcunregflood & 7) << 8 | (ports & 7);
2533 	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2534 	ale_entry[2] = 0;
2535 	cpsw_ale_write_entry(sc, i, ale_entry);
2536 
2537 	return (0);
2538 }
2539 
2540 /*
2541  *
2542  * Statistics and Sysctls.
2543  *
2544  */
2545 
2546 #if 0
2547 static void
2548 cpsw_stats_dump(struct cpsw_softc *sc)
2549 {
2550 	int i;
2551 	uint32_t r;
2552 
2553 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2554 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2555 		    cpsw_stat_sysctls[i].reg);
2556 		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2557 		    (intmax_t)sc->shadow_stats[i], r,
2558 		    (intmax_t)sc->shadow_stats[i] + r));
2559 	}
2560 }
2561 #endif
2562 
2563 static void
cpsw_stats_collect(struct cpsw_softc * sc)2564 cpsw_stats_collect(struct cpsw_softc *sc)
2565 {
2566 	int i;
2567 	uint32_t r;
2568 
2569 	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2570 
2571 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2572 		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2573 		    cpsw_stat_sysctls[i].reg);
2574 		sc->shadow_stats[i] += r;
2575 		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2576 		    r);
2577 	}
2578 }
2579 
2580 static int
cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)2581 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2582 {
2583 	struct cpsw_softc *sc;
2584 	struct cpsw_stat *stat;
2585 	uint64_t result;
2586 
2587 	sc = (struct cpsw_softc *)arg1;
2588 	stat = &cpsw_stat_sysctls[oidp->oid_number];
2589 	result = sc->shadow_stats[oidp->oid_number];
2590 	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2591 	return (sysctl_handle_64(oidp, &result, 0, req));
2592 }
2593 
2594 static int
cpsw_stat_attached(SYSCTL_HANDLER_ARGS)2595 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2596 {
2597 	struct cpsw_softc *sc;
2598 	struct bintime t;
2599 	unsigned result;
2600 
2601 	sc = (struct cpsw_softc *)arg1;
2602 	getbinuptime(&t);
2603 	bintime_sub(&t, &sc->attach_uptime);
2604 	result = t.sec;
2605 	return (sysctl_handle_int(oidp, &result, 0, req));
2606 }
2607 
2608 static int
cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)2609 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2610 {
2611 	int error;
2612 	struct cpsw_softc *sc;
2613 	uint32_t ctrl, intr_per_ms;
2614 
2615 	sc = (struct cpsw_softc *)arg1;
2616 	error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2617 	if (error != 0 || req->newptr == NULL)
2618 		return (error);
2619 
2620 	ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2621 	ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2622 	if (sc->coal_us == 0) {
2623 		/* Disable the interrupt pace hardware. */
2624 		cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2625 		cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2626 		cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2627 		return (0);
2628 	}
2629 
2630 	if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2631 		sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2632 	if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2633 		sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2634 	intr_per_ms = 1000 / sc->coal_us;
2635 	/* Just to make sure... */
2636 	if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2637 		intr_per_ms = CPSW_WR_C_IMAX_MAX;
2638 	if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2639 		intr_per_ms = CPSW_WR_C_IMAX_MIN;
2640 
2641 	/* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2642 	ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2643 
2644 	/* Enable the interrupt pace hardware. */
2645 	cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2646 	cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2647 	ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2648 	cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2649 
2650 	return (0);
2651 }
2652 
2653 static int
cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)2654 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2655 {
2656 	struct cpsw_softc *swsc;
2657 	struct cpswp_softc *sc;
2658 	struct bintime t;
2659 	unsigned result;
2660 
2661 	swsc = arg1;
2662 	sc = device_get_softc(swsc->port[arg2].dev);
2663 	if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
2664 		getbinuptime(&t);
2665 		bintime_sub(&t, &sc->init_uptime);
2666 		result = t.sec;
2667 	} else
2668 		result = 0;
2669 	return (sysctl_handle_int(oidp, &result, 0, req));
2670 }
2671 
2672 static void
cpsw_add_queue_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * node,struct cpsw_queue * queue)2673 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2674 	struct cpsw_queue *queue)
2675 {
2676 	struct sysctl_oid_list *parent;
2677 
2678 	parent = SYSCTL_CHILDREN(node);
2679 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2680 	    CTLFLAG_RD, &queue->queue_slots, 0,
2681 	    "Total buffers currently assigned to this queue");
2682 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2683 	    CTLFLAG_RD, &queue->active_queue_len, 0,
2684 	    "Buffers currently registered with hardware controller");
2685 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2686 	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2687 	    "Max value of activeBuffers since last driver reset");
2688 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2689 	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2690 	    "Buffers allocated to this queue but not currently "
2691 	    "registered with hardware controller");
2692 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2693 	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2694 	    "Max value of availBuffers since last driver reset");
2695 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2696 	    CTLFLAG_RD, &queue->queue_adds, 0,
2697 	    "Total buffers added to queue");
2698 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2699 	    CTLFLAG_RD, &queue->queue_removes, 0,
2700 	    "Total buffers removed from queue");
2701 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2702 	    CTLFLAG_RD, &queue->queue_restart, 0,
2703 	    "Total times the queue has been restarted");
2704 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2705 	    CTLFLAG_RD, &queue->longest_chain, 0,
2706 	    "Max buffers used for a single packet");
2707 }
2708 
2709 static void
cpsw_add_watchdog_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * node,struct cpsw_softc * sc)2710 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2711 	struct cpsw_softc *sc)
2712 {
2713 	struct sysctl_oid_list *parent;
2714 
2715 	parent = SYSCTL_CHILDREN(node);
2716 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2717 	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2718 	    "Total number of watchdog resets");
2719 }
2720 
2721 static void
cpsw_add_sysctls(struct cpsw_softc * sc)2722 cpsw_add_sysctls(struct cpsw_softc *sc)
2723 {
2724 	struct sysctl_ctx_list *ctx;
2725 	struct sysctl_oid *stats_node, *queue_node, *node;
2726 	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2727 	struct sysctl_oid_list *ports_parent, *port_parent;
2728 	char port[16];
2729 	int i;
2730 
2731 	ctx = device_get_sysctl_ctx(sc->dev);
2732 	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2733 
2734 	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2735 	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2736 
2737 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2738 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2739 	    sc, 0, cpsw_stat_attached, "IU",
2740 	    "Time since driver attach");
2741 
2742 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2743 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2744 	    sc, 0, cpsw_intr_coalesce, "IU",
2745 	    "minimum time between interrupts");
2746 
2747 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2748 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2749 	ports_parent = SYSCTL_CHILDREN(node);
2750 	for (i = 0; i < CPSW_PORTS; i++) {
2751 		if (!sc->dualemac && i != sc->active_slave)
2752 			continue;
2753 		port[0] = '0' + i;
2754 		port[1] = '\0';
2755 		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2756 		    port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2757 		    "CPSW Port Statistics");
2758 		port_parent = SYSCTL_CHILDREN(node);
2759 		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2760 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2761 		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2762 	}
2763 
2764 	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2765 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2766 	stats_parent = SYSCTL_CHILDREN(stats_node);
2767 	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2768 		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2769 				cpsw_stat_sysctls[i].oid,
2770 				CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2771 				sc, 0, cpsw_stats_sysctl, "IU",
2772 				cpsw_stat_sysctls[i].oid);
2773 	}
2774 
2775 	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2776 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2777 	queue_parent = SYSCTL_CHILDREN(queue_node);
2778 
2779 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2780 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2781 	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2782 
2783 	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2784 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2785 	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2786 
2787 	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2788 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2789 	cpsw_add_watchdog_sysctls(ctx, node, sc);
2790 }
2791 
2792 #ifdef CPSW_ETHERSWITCH
2793 static etherswitch_info_t etherswitch_info = {
2794 	.es_nports =		CPSW_PORTS + 1,
2795 	.es_nvlangroups =	CPSW_VLANS,
2796 	.es_name =		"TI Common Platform Ethernet Switch (CPSW)",
2797 	.es_vlan_caps =		ETHERSWITCH_VLAN_DOT1Q,
2798 };
2799 
2800 static etherswitch_info_t *
cpsw_getinfo(device_t dev)2801 cpsw_getinfo(device_t dev)
2802 {
2803 	return (&etherswitch_info);
2804 }
2805 
2806 static int
cpsw_getport(device_t dev,etherswitch_port_t * p)2807 cpsw_getport(device_t dev, etherswitch_port_t *p)
2808 {
2809 	int err;
2810 	struct cpsw_softc *sc;
2811 	struct cpswp_softc *psc;
2812 	struct ifmediareq *ifmr;
2813 	uint32_t reg;
2814 
2815 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2816 		return (ENXIO);
2817 
2818 	err = 0;
2819 	sc = device_get_softc(dev);
2820 	if (p->es_port == CPSW_CPU_PORT) {
2821 		p->es_flags |= ETHERSWITCH_PORT_CPU;
2822  		ifmr = &p->es_ifmr;
2823 		ifmr->ifm_current = ifmr->ifm_active =
2824 		    IFM_ETHER | IFM_1000_T | IFM_FDX;
2825 		ifmr->ifm_mask = 0;
2826 		ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2827 		ifmr->ifm_count = 0;
2828 	} else {
2829 		psc = device_get_softc(sc->port[p->es_port - 1].dev);
2830 		err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2831 		    &psc->mii->mii_media, SIOCGIFMEDIA);
2832 	}
2833 	reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2834 	p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2835 
2836 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2837 	if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2838 		p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2839 	if (reg & ALE_PORTCTL_INGRESS)
2840 		p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2841 
2842 	return (err);
2843 }
2844 
2845 static int
cpsw_setport(device_t dev,etherswitch_port_t * p)2846 cpsw_setport(device_t dev, etherswitch_port_t *p)
2847 {
2848 	struct cpsw_softc *sc;
2849 	struct cpswp_softc *psc;
2850 	struct ifmedia *ifm;
2851 	uint32_t reg;
2852 
2853 	if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2854 		return (ENXIO);
2855 
2856 	sc = device_get_softc(dev);
2857 	if (p->es_pvid != 0) {
2858 		cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2859 		    p->es_pvid & ETHERSWITCH_VID_MASK);
2860 	}
2861 
2862 	reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2863 	if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2864 		reg |= ALE_PORTCTL_DROP_UNTAGGED;
2865 	else
2866 		reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2867 	if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2868 		reg |= ALE_PORTCTL_INGRESS;
2869 	else
2870 		reg &= ~ALE_PORTCTL_INGRESS;
2871 	cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2872 
2873 	/* CPU port does not allow media settings. */
2874 	if (p->es_port == CPSW_CPU_PORT)
2875 		return (0);
2876 
2877 	psc = device_get_softc(sc->port[p->es_port - 1].dev);
2878 	ifm = &psc->mii->mii_media;
2879 
2880 	return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2881 }
2882 
2883 static int
cpsw_getconf(device_t dev,etherswitch_conf_t * conf)2884 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2885 {
2886 
2887 	/* Return the VLAN mode. */
2888 	conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2889 	conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2890 
2891 	return (0);
2892 }
2893 
2894 static int
cpsw_getvgroup(device_t dev,etherswitch_vlangroup_t * vg)2895 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2896 {
2897 	int i, vid;
2898 	uint32_t ale_entry[3];
2899 	struct cpsw_softc *sc;
2900 
2901 	sc = device_get_softc(dev);
2902 
2903 	if (vg->es_vlangroup >= CPSW_VLANS)
2904 		return (EINVAL);
2905 
2906 	vg->es_vid = 0;
2907 	vid = cpsw_vgroups[vg->es_vlangroup].vid;
2908 	if (vid == -1)
2909 		return (0);
2910 
2911 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2912 		cpsw_ale_read_entry(sc, i, ale_entry);
2913 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2914 			continue;
2915 		if (vid != ALE_VLAN(ale_entry))
2916 			continue;
2917 
2918 		vg->es_fid = 0;
2919 		vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2920 		vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2921 		vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2922 	}
2923 
2924 	return (0);
2925 }
2926 
2927 static void
cpsw_remove_vlan(struct cpsw_softc * sc,int vlan)2928 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2929 {
2930 	int i;
2931 	uint32_t ale_entry[3];
2932 
2933 	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2934 		cpsw_ale_read_entry(sc, i, ale_entry);
2935 		if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2936 			continue;
2937 		if (vlan != ALE_VLAN(ale_entry))
2938 			continue;
2939 		ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2940 		cpsw_ale_write_entry(sc, i, ale_entry);
2941 		break;
2942 	}
2943 }
2944 
2945 static int
cpsw_setvgroup(device_t dev,etherswitch_vlangroup_t * vg)2946 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2947 {
2948 	int i;
2949 	struct cpsw_softc *sc;
2950 
2951 	sc = device_get_softc(dev);
2952 
2953 	for (i = 0; i < CPSW_VLANS; i++) {
2954 		/* Is this Vlan ID in use by another vlangroup ? */
2955 		if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2956 			return (EINVAL);
2957 	}
2958 
2959 	if (vg->es_vid == 0) {
2960 		if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2961 			return (0);
2962 		cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2963 		cpsw_vgroups[vg->es_vlangroup].vid = -1;
2964 		vg->es_untagged_ports = 0;
2965 		vg->es_member_ports = 0;
2966 		vg->es_vid = 0;
2967 		return (0);
2968 	}
2969 
2970 	vg->es_vid &= ETHERSWITCH_VID_MASK;
2971 	vg->es_member_ports &= CPSW_PORTS_MASK;
2972 	vg->es_untagged_ports &= CPSW_PORTS_MASK;
2973 
2974 	if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2975 	    cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2976 		return (EINVAL);
2977 
2978 	cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2979 	cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2980 	    vg->es_untagged_ports, vg->es_member_ports, 0);
2981 
2982 	return (0);
2983 }
2984 
2985 static int
cpsw_readreg(device_t dev,int addr)2986 cpsw_readreg(device_t dev, int addr)
2987 {
2988 
2989 	/* Not supported. */
2990 	return (0);
2991 }
2992 
2993 static int
cpsw_writereg(device_t dev,int addr,int value)2994 cpsw_writereg(device_t dev, int addr, int value)
2995 {
2996 
2997 	/* Not supported. */
2998 	return (0);
2999 }
3000 
3001 static int
cpsw_readphy(device_t dev,int phy,int reg)3002 cpsw_readphy(device_t dev, int phy, int reg)
3003 {
3004 
3005 	/* Not supported. */
3006 	return (0);
3007 }
3008 
3009 static int
cpsw_writephy(device_t dev,int phy,int reg,int data)3010 cpsw_writephy(device_t dev, int phy, int reg, int data)
3011 {
3012 
3013 	/* Not supported. */
3014 	return (0);
3015 }
3016 #endif
3017