1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
27
28 /*
29 * Portions of this source code were derived from Berkeley 4.3 BSD
30 * under license from the Regents of the University of California.
31 */
32
33 /*
34 * svc_cots.c
35 * Server side for connection-oriented RPC in the kernel.
36 *
37 */
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/sysmacros.h>
42 #include <sys/file.h>
43 #include <sys/stream.h>
44 #include <sys/strsubr.h>
45 #include <sys/strsun.h>
46 #include <sys/stropts.h>
47 #include <sys/tiuser.h>
48 #include <sys/timod.h>
49 #include <sys/tihdr.h>
50 #include <sys/fcntl.h>
51 #include <sys/errno.h>
52 #include <sys/kmem.h>
53 #include <sys/systm.h>
54 #include <sys/debug.h>
55 #include <sys/cmn_err.h>
56 #include <sys/kstat.h>
57 #include <sys/vtrace.h>
58
59 #include <rpc/types.h>
60 #include <rpc/xdr.h>
61 #include <rpc/auth.h>
62 #include <rpc/rpc_msg.h>
63 #include <rpc/svc.h>
64 #include <inet/ip.h>
65
66 #define COTS_MAX_ALLOCSIZE 2048
67 #define MSG_OFFSET 128 /* offset of call into the mblk */
68 #define RM_HDR_SIZE 4 /* record mark header size */
69
70 /*
71 * Routines exported through ops vector.
72 */
73 static bool_t svc_cots_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
74 static bool_t svc_cots_ksend(SVCXPRT *, struct rpc_msg *);
75 static bool_t svc_cots_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
76 static bool_t svc_cots_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
77 static void svc_cots_kdestroy(SVCMASTERXPRT *);
78 static int svc_cots_kdup(struct svc_req *, caddr_t, int,
79 struct dupreq **, bool_t *);
80 static void svc_cots_kdupdone(struct dupreq *, caddr_t,
81 void (*)(), int, int);
82 static int32_t *svc_cots_kgetres(SVCXPRT *, int);
83 static void svc_cots_kfreeres(SVCXPRT *);
84 static void svc_cots_kclone_destroy(SVCXPRT *);
85 static void svc_cots_kstart(SVCMASTERXPRT *);
86 static void svc_cots_ktattrs(SVCXPRT *, int, void **);
87
88 /*
89 * Server transport operations vector.
90 */
91 struct svc_ops svc_cots_op = {
92 svc_cots_krecv, /* Get requests */
93 svc_cots_kgetargs, /* Deserialize arguments */
94 svc_cots_ksend, /* Send reply */
95 svc_cots_kfreeargs, /* Free argument data space */
96 svc_cots_kdestroy, /* Destroy transport handle */
97 svc_cots_kdup, /* Check entry in dup req cache */
98 svc_cots_kdupdone, /* Mark entry in dup req cache as done */
99 svc_cots_kgetres, /* Get pointer to response buffer */
100 svc_cots_kfreeres, /* Destroy pre-serialized response header */
101 svc_cots_kclone_destroy, /* Destroy a clone xprt */
102 svc_cots_kstart, /* Tell `ready-to-receive' to rpcmod */
103 NULL, /* Transport specific clone xprt */
104 svc_cots_ktattrs /* Transport Attributes */
105 };
106
107 /*
108 * Master transport private data.
109 * Kept in xprt->xp_p2.
110 */
111 struct cots_master_data {
112 char *cmd_src_addr; /* client's address */
113 int cmd_xprt_started; /* flag for clone routine to call */
114 /* rpcmod's start routine. */
115 struct rpc_cots_server *cmd_stats; /* stats for zone */
116 };
117
118 /*
119 * Transport private data.
120 * Kept in clone_xprt->xp_p2buf.
121 */
122 typedef struct cots_data {
123 mblk_t *cd_mp; /* pre-allocated reply message */
124 mblk_t *cd_req_mp; /* request message */
125 } cots_data_t;
126
127 /*
128 * Server statistics
129 * NOTE: This structure type is duplicated in the NFS fast path.
130 */
131 static const struct rpc_cots_server {
132 kstat_named_t rscalls;
133 kstat_named_t rsbadcalls;
134 kstat_named_t rsnullrecv;
135 kstat_named_t rsbadlen;
136 kstat_named_t rsxdrcall;
137 kstat_named_t rsdupchecks;
138 kstat_named_t rsdupreqs;
139 } cots_rsstat_tmpl = {
140 { "calls", KSTAT_DATA_UINT64 },
141 { "badcalls", KSTAT_DATA_UINT64 },
142 { "nullrecv", KSTAT_DATA_UINT64 },
143 { "badlen", KSTAT_DATA_UINT64 },
144 { "xdrcall", KSTAT_DATA_UINT64 },
145 { "dupchecks", KSTAT_DATA_UINT64 },
146 { "dupreqs", KSTAT_DATA_UINT64 }
147 };
148
149 #define CLONE2STATS(clone_xprt) \
150 ((struct cots_master_data *)(clone_xprt)->xp_master->xp_p2)->cmd_stats
151 #define RSSTAT_INCR(s, x) \
152 atomic_inc_64(&(s)->x.value.ui64)
153
154 /*
155 * Pointer to a transport specific `ready to receive' function in rpcmod
156 * (set from rpcmod).
157 */
158 void (*mir_start)(queue_t *);
159 uint_t *svc_max_msg_sizep;
160
161 /*
162 * the address size of the underlying transport can sometimes be
163 * unknown (tinfo->ADDR_size == -1). For this case, it is
164 * necessary to figure out what the size is so the correct amount
165 * of data is allocated. This is an itterative process:
166 * 1. take a good guess (use T_MINADDRSIZE)
167 * 2. try it.
168 * 3. if it works then everything is ok
169 * 4. if the error is ENAMETOLONG, double the guess
170 * 5. go back to step 2.
171 */
172 #define T_UNKNOWNADDRSIZE (-1)
173 #define T_MINADDRSIZE 32
174
175 /*
176 * Create a transport record.
177 * The transport record, output buffer, and private data structure
178 * are allocated. The output buffer is serialized into using xdrmem.
179 * There is one transport record per user process which implements a
180 * set of services.
181 */
182 static kmutex_t cots_kcreate_lock;
183
184 int
svc_cots_kcreate(file_t * fp,uint_t max_msgsize,struct T_info_ack * tinfo,SVCMASTERXPRT ** nxprt)185 svc_cots_kcreate(file_t *fp, uint_t max_msgsize, struct T_info_ack *tinfo,
186 SVCMASTERXPRT **nxprt)
187 {
188 struct cots_master_data *cmd;
189 int err, retval;
190 SVCMASTERXPRT *xprt;
191 struct rpcstat *rpcstat;
192 struct T_addr_ack *ack_p;
193 struct strioctl getaddr;
194
195 if (nxprt == NULL)
196 return (EINVAL);
197
198 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
199 ASSERT(rpcstat != NULL);
200
201 xprt = kmem_zalloc(sizeof (SVCMASTERXPRT), KM_SLEEP);
202
203 cmd = kmem_zalloc(sizeof (*cmd) + sizeof (*ack_p)
204 + (2 * sizeof (sin6_t)), KM_SLEEP);
205
206 ack_p = (struct T_addr_ack *)&cmd[1];
207
208 if ((tinfo->TIDU_size > COTS_MAX_ALLOCSIZE) ||
209 (tinfo->TIDU_size <= 0))
210 xprt->xp_msg_size = COTS_MAX_ALLOCSIZE;
211 else {
212 xprt->xp_msg_size = tinfo->TIDU_size -
213 (tinfo->TIDU_size % BYTES_PER_XDR_UNIT);
214 }
215
216 xprt->xp_ops = &svc_cots_op;
217 xprt->xp_p2 = (caddr_t)cmd;
218 cmd->cmd_xprt_started = 0;
219 cmd->cmd_stats = rpcstat->rpc_cots_server;
220
221 getaddr.ic_cmd = TI_GETINFO;
222 getaddr.ic_timout = -1;
223 getaddr.ic_len = sizeof (*ack_p) + (2 * sizeof (sin6_t));
224 getaddr.ic_dp = (char *)ack_p;
225 ack_p->PRIM_type = T_ADDR_REQ;
226
227 err = strioctl(fp->f_vnode, I_STR, (intptr_t)&getaddr,
228 0, K_TO_K, CRED(), &retval);
229 if (err) {
230 kmem_free(cmd, sizeof (*cmd) + sizeof (*ack_p) +
231 (2 * sizeof (sin6_t)));
232 kmem_free(xprt, sizeof (SVCMASTERXPRT));
233 return (err);
234 }
235
236 xprt->xp_rtaddr.maxlen = ack_p->REMADDR_length;
237 xprt->xp_rtaddr.len = ack_p->REMADDR_length;
238 cmd->cmd_src_addr = xprt->xp_rtaddr.buf =
239 (char *)ack_p + ack_p->REMADDR_offset;
240
241 xprt->xp_lcladdr.maxlen = ack_p->LOCADDR_length;
242 xprt->xp_lcladdr.len = ack_p->LOCADDR_length;
243 xprt->xp_lcladdr.buf = (char *)ack_p + ack_p->LOCADDR_offset;
244
245 /*
246 * If the current sanity check size in rpcmod is smaller
247 * than the size needed for this xprt, then increase
248 * the sanity check.
249 */
250 if (max_msgsize != 0 && svc_max_msg_sizep &&
251 max_msgsize > *svc_max_msg_sizep) {
252
253 /* This check needs a lock */
254 mutex_enter(&cots_kcreate_lock);
255 if (svc_max_msg_sizep && max_msgsize > *svc_max_msg_sizep)
256 *svc_max_msg_sizep = max_msgsize;
257 mutex_exit(&cots_kcreate_lock);
258 }
259
260 *nxprt = xprt;
261
262 return (0);
263 }
264
265 /*
266 * Destroy a master transport record.
267 * Frees the space allocated for a transport record.
268 */
269 static void
svc_cots_kdestroy(SVCMASTERXPRT * xprt)270 svc_cots_kdestroy(SVCMASTERXPRT *xprt)
271 {
272 struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
273
274 ASSERT(cmd);
275
276 if (xprt->xp_netid)
277 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
278 if (xprt->xp_addrmask.maxlen)
279 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
280
281 mutex_destroy(&xprt->xp_req_lock);
282 mutex_destroy(&xprt->xp_thread_lock);
283
284 kmem_free(cmd, sizeof (*cmd) + sizeof (struct T_addr_ack) +
285 (2 * sizeof (sin6_t)));
286
287 kmem_free(xprt, sizeof (SVCMASTERXPRT));
288 }
289
290 /*
291 * svc_tli_kcreate() calls this function at the end to tell
292 * rpcmod that the transport is ready to receive requests.
293 */
294 static void
svc_cots_kstart(SVCMASTERXPRT * xprt)295 svc_cots_kstart(SVCMASTERXPRT *xprt)
296 {
297 struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
298
299 if (cmd->cmd_xprt_started == 0) {
300 /*
301 * Acquire the xp_req_lock in order to use xp_wq
302 * safely (we don't want to qenable a queue that has
303 * already been closed).
304 */
305 mutex_enter(&xprt->xp_req_lock);
306 if (cmd->cmd_xprt_started == 0 &&
307 xprt->xp_wq != NULL) {
308 (*mir_start)(xprt->xp_wq);
309 cmd->cmd_xprt_started = 1;
310 }
311 mutex_exit(&xprt->xp_req_lock);
312 }
313 }
314
315 /*
316 * Transport-type specific part of svc_xprt_cleanup().
317 */
318 static void
svc_cots_kclone_destroy(SVCXPRT * clone_xprt)319 svc_cots_kclone_destroy(SVCXPRT *clone_xprt)
320 {
321 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
322
323 if (cd->cd_req_mp) {
324 freemsg(cd->cd_req_mp);
325 cd->cd_req_mp = (mblk_t *)0;
326 }
327 ASSERT(cd->cd_mp == NULL);
328 }
329
330 /*
331 * Transport Attributes.
332 */
333 static void
svc_cots_ktattrs(SVCXPRT * clone_xprt,int attrflag,void ** tattr)334 svc_cots_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
335 {
336 *tattr = NULL;
337
338 switch (attrflag) {
339 case SVC_TATTR_ADDRMASK:
340 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
341 }
342 }
343
344 /*
345 * Receive rpc requests.
346 * Checks if the message is intact, and deserializes the call packet.
347 */
348 static bool_t
svc_cots_krecv(SVCXPRT * clone_xprt,mblk_t * mp,struct rpc_msg * msg)349 svc_cots_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
350 {
351 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
352 XDR *xdrs = &clone_xprt->xp_xdrin;
353 struct rpc_cots_server *stats = CLONE2STATS(clone_xprt);
354
355 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KRECV_START,
356 "svc_cots_krecv_start:");
357 RPCLOG(4, "svc_cots_krecv_start clone_xprt = %p:\n",
358 (void *)clone_xprt);
359
360 RSSTAT_INCR(stats, rscalls);
361
362 if (mp->b_datap->db_type != M_DATA) {
363 RPCLOG(16, "svc_cots_krecv bad db_type %d\n",
364 mp->b_datap->db_type);
365 goto bad;
366 }
367
368 xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
369
370 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
371 "xdr_callmsg_start:");
372 RPCLOG0(4, "xdr_callmsg_start:\n");
373 if (!xdr_callmsg(xdrs, msg)) {
374 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
375 "xdr_callmsg_end:(%S)", "bad");
376 RPCLOG0(1, "svc_cots_krecv xdr_callmsg failure\n");
377 RSSTAT_INCR(stats, rsxdrcall);
378 goto bad;
379 }
380 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
381 "xdr_callmsg_end:(%S)", "good");
382
383 clone_xprt->xp_xid = msg->rm_xid;
384 cd->cd_req_mp = mp;
385
386 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
387 "svc_cots_krecv_end:(%S)", "good");
388 RPCLOG0(4, "svc_cots_krecv_end:good\n");
389 return (TRUE);
390
391 bad:
392 if (mp)
393 freemsg(mp);
394
395 RSSTAT_INCR(stats, rsbadcalls);
396 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
397 "svc_cots_krecv_end:(%S)", "bad");
398 return (FALSE);
399 }
400
401 /*
402 * Send rpc reply.
403 */
404 static bool_t
svc_cots_ksend(SVCXPRT * clone_xprt,struct rpc_msg * msg)405 svc_cots_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
406 {
407 /* LINTED pointer alignment */
408 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
409 XDR *xdrs = &(clone_xprt->xp_xdrout);
410 int retval = FALSE;
411 mblk_t *mp;
412 xdrproc_t xdr_results;
413 caddr_t xdr_location;
414 bool_t has_args;
415
416 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KSEND_START,
417 "svc_cots_ksend_start:");
418
419 /*
420 * If there is a result procedure specified in the reply message,
421 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
422 * We need to make sure it won't be processed twice, so we null
423 * it for xdr_replymsg here.
424 */
425 has_args = FALSE;
426 if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
427 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
428 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
429 has_args = TRUE;
430 xdr_location = msg->acpted_rply.ar_results.where;
431 msg->acpted_rply.ar_results.proc = xdr_void;
432 msg->acpted_rply.ar_results.where = NULL;
433 }
434 }
435
436 mp = cd->cd_mp;
437 if (mp) {
438 /*
439 * The program above pre-allocated an mblk and put
440 * the data in place.
441 */
442 cd->cd_mp = (mblk_t *)NULL;
443 if (!(xdr_replymsg_body(xdrs, msg) &&
444 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
445 xdr_results, xdr_location)))) {
446 RPCLOG0(1, "svc_cots_ksend: "
447 "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
448 freemsg(mp);
449 goto out;
450 }
451 } else {
452 int len;
453 int mpsize;
454
455 /*
456 * Leave space for protocol headers.
457 */
458 len = MSG_OFFSET + clone_xprt->xp_msg_size;
459
460 /*
461 * Allocate an initial mblk for the response data.
462 */
463 while (!(mp = allocb(len, BPRI_LO))) {
464 RPCLOG0(16, "svc_cots_ksend: allocb failed failed\n");
465 if (strwaitbuf(len, BPRI_LO)) {
466 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
467 "svc_cots_ksend_end:(%S)", "strwaitbuf");
468 RPCLOG0(1,
469 "svc_cots_ksend: strwaitbuf failed\n");
470 goto out;
471 }
472 }
473
474 /*
475 * Initialize the XDR decode stream. Additional mblks
476 * will be allocated if necessary. They will be TIDU
477 * sized.
478 */
479 xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
480 mpsize = MBLKSIZE(mp);
481 ASSERT(mpsize >= len);
482 ASSERT(mp->b_rptr == mp->b_datap->db_base);
483
484 /*
485 * If the size of mblk is not appreciably larger than what we
486 * asked, then resize the mblk to exactly len bytes. Reason for
487 * this: suppose len is 1600 bytes, the tidu is 1460 bytes
488 * (from TCP over ethernet), and the arguments to RPC require
489 * 2800 bytes. Ideally we want the protocol to render two
490 * ~1400 byte segments over the wire. If allocb() gives us a 2k
491 * mblk, and we allocate a second mblk for the rest, the
492 * protocol module may generate 3 segments over the wire:
493 * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
494 * 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
495 * the XDR encoding will generate two ~1400 byte mblks, and the
496 * protocol module is more likely to produce properly sized
497 * segments.
498 */
499 if ((mpsize >> 1) <= len) {
500 mp->b_rptr += (mpsize - len);
501 }
502
503 /*
504 * Adjust b_rptr to reserve space for the non-data protocol
505 * headers that any downstream modules might like to add, and
506 * for the record marking header.
507 */
508 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
509
510 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
511 ASSERT(mp->b_wptr == mp->b_rptr);
512
513 msg->rm_xid = clone_xprt->xp_xid;
514
515 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
516 "xdr_replymsg_start:");
517 if (!(xdr_replymsg(xdrs, msg) &&
518 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
519 xdr_results, xdr_location)))) {
520 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
521 "xdr_replymsg_end:(%S)", "bad");
522 freemsg(mp);
523 RPCLOG0(1, "svc_cots_ksend: xdr_replymsg/SVCAUTH_WRAP "
524 "failed\n");
525 goto out;
526 }
527 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
528 "xdr_replymsg_end:(%S)", "good");
529 }
530
531 put(clone_xprt->xp_wq, mp);
532 retval = TRUE;
533
534 out:
535 /*
536 * This is completely disgusting. If public is set it is
537 * a pointer to a structure whose first field is the address
538 * of the function to free that structure and any related
539 * stuff. (see rrokfree in nfs_xdr.c).
540 */
541 if (xdrs->x_public) {
542 /* LINTED pointer alignment */
543 (**((int (**)())xdrs->x_public))(xdrs->x_public);
544 }
545
546 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
547 "svc_cots_ksend_end:(%S)", "done");
548 return (retval);
549 }
550
551 /*
552 * Deserialize arguments.
553 */
554 static bool_t
svc_cots_kgetargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)555 svc_cots_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
556 caddr_t args_ptr)
557 {
558 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
559 xdr_args, args_ptr));
560 }
561
562 static bool_t
svc_cots_kfreeargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)563 svc_cots_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
564 caddr_t args_ptr)
565 {
566 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
567 mblk_t *mp;
568 bool_t retval;
569
570 /*
571 * It is important to call the XDR routine before
572 * freeing the request mblk. Structures in the
573 * XDR data may point into the mblk and require that
574 * the memory be intact during the free routine.
575 */
576 if (args_ptr) {
577 /* LINTED pointer alignment */
578 XDR *xdrs = &clone_xprt->xp_xdrin;
579
580 xdrs->x_op = XDR_FREE;
581 retval = (*xdr_args)(xdrs, args_ptr);
582 } else
583 retval = TRUE;
584
585 if ((mp = cd->cd_req_mp) != NULL) {
586 cd->cd_req_mp = (mblk_t *)0;
587 freemsg(mp);
588 }
589
590 return (retval);
591 }
592
593 static int32_t *
svc_cots_kgetres(SVCXPRT * clone_xprt,int size)594 svc_cots_kgetres(SVCXPRT *clone_xprt, int size)
595 {
596 /* LINTED pointer alignment */
597 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
598 XDR *xdrs = &clone_xprt->xp_xdrout;
599 mblk_t *mp;
600 int32_t *buf;
601 struct rpc_msg rply;
602 int len;
603 int mpsize;
604
605 /*
606 * Leave space for protocol headers.
607 */
608 len = MSG_OFFSET + clone_xprt->xp_msg_size;
609
610 /*
611 * Allocate an initial mblk for the response data.
612 */
613 while ((mp = allocb(len, BPRI_LO)) == NULL) {
614 if (strwaitbuf(len, BPRI_LO))
615 return (FALSE);
616 }
617
618 /*
619 * Initialize the XDR decode stream. Additional mblks
620 * will be allocated if necessary. They will be TIDU
621 * sized.
622 */
623 xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
624 mpsize = MBLKSIZE(mp);
625 ASSERT(mpsize >= len);
626 ASSERT(mp->b_rptr == mp->b_datap->db_base);
627
628 /*
629 * If the size of mblk is not appreciably larger than what we
630 * asked, then resize the mblk to exactly len bytes. Reason for
631 * this: suppose len is 1600 bytes, the tidu is 1460 bytes
632 * (from TCP over ethernet), and the arguments to RPC require
633 * 2800 bytes. Ideally we want the protocol to render two
634 * ~1400 byte segments over the wire. If allocb() gives us a 2k
635 * mblk, and we allocate a second mblk for the rest, the
636 * protocol module may generate 3 segments over the wire:
637 * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
638 * 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
639 * the XDR encoding will generate two ~1400 byte mblks, and the
640 * protocol module is more likely to produce properly sized
641 * segments.
642 */
643 if ((mpsize >> 1) <= len) {
644 mp->b_rptr += (mpsize - len);
645 }
646
647 /*
648 * Adjust b_rptr to reserve space for the non-data protocol
649 * headers that any downstream modules might like to add, and
650 * for the record marking header.
651 */
652 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
653
654 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
655 ASSERT(mp->b_wptr == mp->b_rptr);
656
657 /*
658 * Assume a successful RPC since most of them are.
659 */
660 rply.rm_xid = clone_xprt->xp_xid;
661 rply.rm_direction = REPLY;
662 rply.rm_reply.rp_stat = MSG_ACCEPTED;
663 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
664 rply.acpted_rply.ar_stat = SUCCESS;
665
666 if (!xdr_replymsg_hdr(xdrs, &rply)) {
667 freeb(mp);
668 return (NULL);
669 }
670
671
672 buf = XDR_INLINE(xdrs, size);
673 if (buf == NULL) {
674 ASSERT(cd->cd_mp == NULL);
675 freemsg(mp);
676 } else {
677 cd->cd_mp = mp;
678 }
679 return (buf);
680 }
681
682 static void
svc_cots_kfreeres(SVCXPRT * clone_xprt)683 svc_cots_kfreeres(SVCXPRT *clone_xprt)
684 {
685 cots_data_t *cd;
686 mblk_t *mp;
687
688 cd = (cots_data_t *)clone_xprt->xp_p2buf;
689 if ((mp = cd->cd_mp) != NULL) {
690 cd->cd_mp = (mblk_t *)NULL;
691 freemsg(mp);
692 }
693 }
694
695 /*
696 * the dup cacheing routines below provide a cache of non-failure
697 * transaction id's. rpc service routines can use this to detect
698 * retransmissions and re-send a non-failure response.
699 */
700
701 /*
702 * MAXDUPREQS is the number of cached items. It should be adjusted
703 * to the service load so that there is likely to be a response entry
704 * when the first retransmission comes in.
705 */
706 #define MAXDUPREQS 1024
707
708 /*
709 * This should be appropriately scaled to MAXDUPREQS.
710 */
711 #define DRHASHSZ 257
712
713 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
714 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1))
715 #else
716 #define XIDHASH(xid) ((xid) % DRHASHSZ)
717 #endif
718 #define DRHASH(dr) XIDHASH((dr)->dr_xid)
719 #define REQTOXID(req) ((req)->rq_xprt->xp_xid)
720
721 static int cotsndupreqs = 0;
722 int cotsmaxdupreqs = MAXDUPREQS;
723 static kmutex_t cotsdupreq_lock;
724 static struct dupreq *cotsdrhashtbl[DRHASHSZ];
725 static int cotsdrhashstat[DRHASHSZ];
726
727 static void unhash(struct dupreq *);
728
729 /*
730 * cotsdrmru points to the head of a circular linked list in lru order.
731 * cotsdrmru->dr_next == drlru
732 */
733 struct dupreq *cotsdrmru;
734
735 /*
736 * PSARC 2003/523 Contract Private Interface
737 * svc_cots_kdup
738 * Changes must be reviewed by Solaris File Sharing
739 * Changes must be communicated to contract-2003-523@sun.com
740 *
741 * svc_cots_kdup searches the request cache and returns 0 if the
742 * request is not found in the cache. If it is found, then it
743 * returns the state of the request (in progress or done) and
744 * the status or attributes that were part of the original reply.
745 *
746 * If DUP_DONE (there is a duplicate) svc_cots_kdup copies over the
747 * value of the response. In that case, also return in *dupcachedp
748 * whether the response free routine is cached in the dupreq - in which case
749 * the caller should not be freeing it, because it will be done later
750 * in the svc_cots_kdup code when the dupreq is reused.
751 */
752 static int
svc_cots_kdup(struct svc_req * req,caddr_t res,int size,struct dupreq ** drpp,bool_t * dupcachedp)753 svc_cots_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
754 bool_t *dupcachedp)
755 {
756 struct rpc_cots_server *stats = CLONE2STATS(req->rq_xprt);
757 struct dupreq *dr;
758 uint32_t xid;
759 uint32_t drhash;
760 int status;
761
762 xid = REQTOXID(req);
763 mutex_enter(&cotsdupreq_lock);
764 RSSTAT_INCR(stats, rsdupchecks);
765 /*
766 * Check to see whether an entry already exists in the cache.
767 */
768 dr = cotsdrhashtbl[XIDHASH(xid)];
769 while (dr != NULL) {
770 if (dr->dr_xid == xid &&
771 dr->dr_proc == req->rq_proc &&
772 dr->dr_prog == req->rq_prog &&
773 dr->dr_vers == req->rq_vers &&
774 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
775 bcmp((caddr_t)dr->dr_addr.buf,
776 (caddr_t)req->rq_xprt->xp_rtaddr.buf,
777 dr->dr_addr.len) == 0) {
778 status = dr->dr_status;
779 if (status == DUP_DONE) {
780 bcopy(dr->dr_resp.buf, res, size);
781 if (dupcachedp != NULL)
782 *dupcachedp = (dr->dr_resfree != NULL);
783 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KDUP_DONE,
784 "svc_cots_kdup: DUP_DONE");
785 } else {
786 dr->dr_status = DUP_INPROGRESS;
787 *drpp = dr;
788 TRACE_0(TR_FAC_KRPC,
789 TR_SVC_COTS_KDUP_INPROGRESS,
790 "svc_cots_kdup: DUP_INPROGRESS");
791 }
792 RSSTAT_INCR(stats, rsdupreqs);
793 mutex_exit(&cotsdupreq_lock);
794 return (status);
795 }
796 dr = dr->dr_chain;
797 }
798
799 /*
800 * There wasn't an entry, either allocate a new one or recycle
801 * an old one.
802 */
803 if (cotsndupreqs < cotsmaxdupreqs) {
804 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
805 if (dr == NULL) {
806 mutex_exit(&cotsdupreq_lock);
807 return (DUP_ERROR);
808 }
809 dr->dr_resp.buf = NULL;
810 dr->dr_resp.maxlen = 0;
811 dr->dr_addr.buf = NULL;
812 dr->dr_addr.maxlen = 0;
813 if (cotsdrmru) {
814 dr->dr_next = cotsdrmru->dr_next;
815 cotsdrmru->dr_next = dr;
816 } else {
817 dr->dr_next = dr;
818 }
819 cotsndupreqs++;
820 } else {
821 dr = cotsdrmru->dr_next;
822 while (dr->dr_status == DUP_INPROGRESS) {
823 dr = dr->dr_next;
824 if (dr == cotsdrmru->dr_next) {
825 cmn_err(CE_WARN, "svc_cots_kdup no slots free");
826 mutex_exit(&cotsdupreq_lock);
827 return (DUP_ERROR);
828 }
829 }
830 unhash(dr);
831 if (dr->dr_resfree) {
832 (*dr->dr_resfree)(dr->dr_resp.buf);
833 }
834 }
835 dr->dr_resfree = NULL;
836 cotsdrmru = dr;
837
838 dr->dr_xid = REQTOXID(req);
839 dr->dr_prog = req->rq_prog;
840 dr->dr_vers = req->rq_vers;
841 dr->dr_proc = req->rq_proc;
842 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
843 if (dr->dr_addr.buf != NULL)
844 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
845 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
846 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
847 if (dr->dr_addr.buf == NULL) {
848 dr->dr_addr.maxlen = 0;
849 dr->dr_status = DUP_DROP;
850 mutex_exit(&cotsdupreq_lock);
851 return (DUP_ERROR);
852 }
853 }
854 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
855 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
856 if (dr->dr_resp.maxlen < size) {
857 if (dr->dr_resp.buf != NULL)
858 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
859 dr->dr_resp.maxlen = (unsigned int)size;
860 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
861 if (dr->dr_resp.buf == NULL) {
862 dr->dr_resp.maxlen = 0;
863 dr->dr_status = DUP_DROP;
864 mutex_exit(&cotsdupreq_lock);
865 return (DUP_ERROR);
866 }
867 }
868 dr->dr_status = DUP_INPROGRESS;
869
870 drhash = (uint32_t)DRHASH(dr);
871 dr->dr_chain = cotsdrhashtbl[drhash];
872 cotsdrhashtbl[drhash] = dr;
873 cotsdrhashstat[drhash]++;
874 mutex_exit(&cotsdupreq_lock);
875 *drpp = dr;
876 return (DUP_NEW);
877 }
878
879 /*
880 * PSARC 2003/523 Contract Private Interface
881 * svc_cots_kdupdone
882 * Changes must be reviewed by Solaris File Sharing
883 * Changes must be communicated to contract-2003-523@sun.com
884 *
885 * svc_cots_kdupdone marks the request done (DUP_DONE or DUP_DROP)
886 * and stores the response.
887 */
888 static void
svc_cots_kdupdone(struct dupreq * dr,caddr_t res,void (* dis_resfree)(),int size,int status)889 svc_cots_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
890 int size, int status)
891 {
892 ASSERT(dr->dr_resfree == NULL);
893 if (status == DUP_DONE) {
894 bcopy(res, dr->dr_resp.buf, size);
895 dr->dr_resfree = dis_resfree;
896 }
897 dr->dr_status = status;
898 }
899
900 /*
901 * This routine expects that the mutex, cotsdupreq_lock, is already held.
902 */
903 static void
unhash(struct dupreq * dr)904 unhash(struct dupreq *dr)
905 {
906 struct dupreq *drt;
907 struct dupreq *drtprev = NULL;
908 uint32_t drhash;
909
910 ASSERT(MUTEX_HELD(&cotsdupreq_lock));
911
912 drhash = (uint32_t)DRHASH(dr);
913 drt = cotsdrhashtbl[drhash];
914 while (drt != NULL) {
915 if (drt == dr) {
916 cotsdrhashstat[drhash]--;
917 if (drtprev == NULL) {
918 cotsdrhashtbl[drhash] = drt->dr_chain;
919 } else {
920 drtprev->dr_chain = drt->dr_chain;
921 }
922 return;
923 }
924 drtprev = drt;
925 drt = drt->dr_chain;
926 }
927 }
928
929 void
svc_cots_stats_init(zoneid_t zoneid,struct rpc_cots_server ** statsp)930 svc_cots_stats_init(zoneid_t zoneid, struct rpc_cots_server **statsp)
931 {
932 *statsp = (struct rpc_cots_server *)rpcstat_zone_init_common(zoneid,
933 "unix", "rpc_cots_server", (const kstat_named_t *)&cots_rsstat_tmpl,
934 sizeof (cots_rsstat_tmpl));
935 }
936
937 void
svc_cots_stats_fini(zoneid_t zoneid,struct rpc_cots_server ** statsp)938 svc_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_server **statsp)
939 {
940 rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_server");
941 kmem_free(*statsp, sizeof (cots_rsstat_tmpl));
942 }
943
944 void
svc_cots_init(void)945 svc_cots_init(void)
946 {
947 /*
948 * Check to make sure that the cots private data will fit into
949 * the stack buffer allocated by svc_run. The ASSERT is a safety
950 * net if the cots_data_t structure ever changes.
951 */
952 /*CONSTANTCONDITION*/
953 ASSERT(sizeof (cots_data_t) <= SVC_P2LEN);
954
955 mutex_init(&cots_kcreate_lock, NULL, MUTEX_DEFAULT, NULL);
956 mutex_init(&cotsdupreq_lock, NULL, MUTEX_DEFAULT, NULL);
957 }
958