1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013, Ira Cooper. All rights reserved.
23 * Copyright 2020 Nexenta by DDN, Inc. All rights reserved.
24 */
25 /*
26 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
31
32 /*
33 * University Copyright- Copyright (c) 1982, 1986, 1988
34 * The Regents of the University of California
35 * All Rights Reserved
36 *
37 * University Acknowledgment- Portions of this document are derived from
38 * software developed by the University of California, Berkeley, and its
39 * contributors.
40 */
41
42 #include <sys/types.h>
43 #include <sys/sysmacros.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/cred_impl.h>
47 #include <sys/policy.h>
48 #include <sys/vnode.h>
49 #include <sys/errno.h>
50 #include <sys/kmem.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/syscall.h>
54 #include <sys/debug.h>
55 #include <sys/atomic.h>
56 #include <sys/ucred.h>
57 #include <sys/prsystm.h>
58 #include <sys/modctl.h>
59 #include <sys/avl.h>
60 #include <sys/door.h>
61 #include <c2/audit.h>
62 #include <sys/zone.h>
63 #include <sys/tsol/label.h>
64 #include <sys/sid.h>
65 #include <sys/idmap.h>
66 #include <sys/klpd.h>
67 #include <sys/varargs.h>
68 #include <sys/sysconf.h>
69 #include <util/qsort.h>
70
71
72 /* Ephemeral IDs Zones specific data */
73 typedef struct ephemeral_zsd {
74 uid_t min_uid;
75 uid_t last_uid;
76 gid_t min_gid;
77 gid_t last_gid;
78 kmutex_t eph_lock;
79 cred_t *eph_nobody;
80 } ephemeral_zsd_t;
81
82 static void crgrphold(credgrp_t *);
83
84 #define CREDGRPSZ(ngrp) (sizeof (credgrp_t) + ((ngrp - 1) * sizeof (gid_t)))
85
86 static kmutex_t ephemeral_zone_mutex;
87 static zone_key_t ephemeral_zone_key;
88
89 static struct kmem_cache *cred_cache;
90 static size_t crsize = 0;
91 static int audoff = 0;
92 uint32_t ucredsize;
93 cred_t *kcred;
94 static cred_t *dummycr;
95
96 int rstlink; /* link(2) restricted to files owned by user? */
97
98 static int get_c2audit_load(void);
99
100 #define CR_AUINFO(c) (auditinfo_addr_t *)((audoff == 0) ? NULL : \
101 ((char *)(c)) + audoff)
102
103 #define REMOTE_PEER_CRED(c) ((c)->cr_gid == -1)
104
105 #define BIN_GROUP_SEARCH_CUTOFF 16
106
107 static boolean_t hasephids = B_FALSE;
108
109 static ephemeral_zsd_t *
get_ephemeral_zsd(zone_t * zone)110 get_ephemeral_zsd(zone_t *zone)
111 {
112 ephemeral_zsd_t *eph_zsd;
113
114 eph_zsd = zone_getspecific(ephemeral_zone_key, zone);
115 if (eph_zsd != NULL) {
116 return (eph_zsd);
117 }
118
119 mutex_enter(&ephemeral_zone_mutex);
120 eph_zsd = zone_getspecific(ephemeral_zone_key, zone);
121 if (eph_zsd == NULL) {
122 eph_zsd = kmem_zalloc(sizeof (ephemeral_zsd_t), KM_SLEEP);
123 eph_zsd->min_uid = MAXUID;
124 eph_zsd->last_uid = IDMAP_WK__MAX_UID;
125 eph_zsd->min_gid = MAXUID;
126 eph_zsd->last_gid = IDMAP_WK__MAX_GID;
127 mutex_init(&eph_zsd->eph_lock, NULL, MUTEX_DEFAULT, NULL);
128
129 /*
130 * nobody is used to map SID containing CRs.
131 */
132 eph_zsd->eph_nobody = crdup(zone->zone_kcred);
133 (void) crsetugid(eph_zsd->eph_nobody, UID_NOBODY, GID_NOBODY);
134 CR_FLAGS(eph_zsd->eph_nobody) = 0;
135 eph_zsd->eph_nobody->cr_zone = zone;
136
137 (void) zone_setspecific(ephemeral_zone_key, zone, eph_zsd);
138 }
139 mutex_exit(&ephemeral_zone_mutex);
140 return (eph_zsd);
141 }
142
143 static cred_t *crdup_flags(const cred_t *, int);
144 static cred_t *cralloc_flags(int);
145
146 /*
147 * This function is called when a zone is destroyed
148 */
149 static void
150 /* ARGSUSED */
destroy_ephemeral_zsd(zoneid_t zone_id,void * arg)151 destroy_ephemeral_zsd(zoneid_t zone_id, void *arg)
152 {
153 ephemeral_zsd_t *eph_zsd = arg;
154 if (eph_zsd != NULL) {
155 mutex_destroy(&eph_zsd->eph_lock);
156 crfree(eph_zsd->eph_nobody);
157 kmem_free(eph_zsd, sizeof (ephemeral_zsd_t));
158 }
159 }
160
161
162
163 /*
164 * Initialize credentials data structures.
165 */
166
167 void
cred_init(void)168 cred_init(void)
169 {
170 priv_init();
171
172 crsize = sizeof (cred_t);
173
174 if (get_c2audit_load() > 0) {
175 #ifdef _LP64
176 /* assure audit context is 64-bit aligned */
177 audoff = (crsize +
178 sizeof (int64_t) - 1) & ~(sizeof (int64_t) - 1);
179 #else /* _LP64 */
180 audoff = crsize;
181 #endif /* _LP64 */
182 crsize = audoff + sizeof (auditinfo_addr_t);
183 crsize = (crsize + sizeof (int) - 1) & ~(sizeof (int) - 1);
184 }
185
186 cred_cache = kmem_cache_create("cred_cache", crsize, 0,
187 NULL, NULL, NULL, NULL, NULL, 0);
188
189 /*
190 * dummycr is used to copy initial state for creds.
191 */
192 dummycr = cralloc();
193 bzero(dummycr, crsize);
194 dummycr->cr_ref = 1;
195 dummycr->cr_uid = (uid_t)-1;
196 dummycr->cr_gid = (gid_t)-1;
197 dummycr->cr_ruid = (uid_t)-1;
198 dummycr->cr_rgid = (gid_t)-1;
199 dummycr->cr_suid = (uid_t)-1;
200 dummycr->cr_sgid = (gid_t)-1;
201
202
203 /*
204 * kcred is used by anything that needs all privileges; it's
205 * also the template used for crget as it has all the compatible
206 * sets filled in.
207 */
208 kcred = cralloc();
209
210 bzero(kcred, crsize);
211 kcred->cr_ref = 1;
212
213 /* kcred is never freed, so we don't need zone_cred_hold here */
214 kcred->cr_zone = &zone0;
215
216 priv_fillset(&CR_LPRIV(kcred));
217 CR_IPRIV(kcred) = *priv_basic;
218
219 priv_addset(&CR_IPRIV(kcred), PRIV_PROC_SECFLAGS);
220
221 /* Not a basic privilege, if chown is not restricted add it to I0 */
222 if (!rstchown)
223 priv_addset(&CR_IPRIV(kcred), PRIV_FILE_CHOWN_SELF);
224
225 /* Basic privilege, if link is restricted remove it from I0 */
226 if (rstlink)
227 priv_delset(&CR_IPRIV(kcred), PRIV_FILE_LINK_ANY);
228
229 CR_EPRIV(kcred) = CR_PPRIV(kcred) = CR_IPRIV(kcred);
230
231 CR_FLAGS(kcred) = NET_MAC_AWARE;
232
233 /*
234 * Set up credentials of p0.
235 */
236 ttoproc(curthread)->p_cred = kcred;
237 curthread->t_cred = kcred;
238
239 ucredsize = UCRED_SIZE;
240
241 mutex_init(&ephemeral_zone_mutex, NULL, MUTEX_DEFAULT, NULL);
242 zone_key_create(&ephemeral_zone_key, NULL, NULL, destroy_ephemeral_zsd);
243 }
244
245 /*
246 * Allocate (nearly) uninitialized cred_t.
247 */
248 static cred_t *
cralloc_flags(int flgs)249 cralloc_flags(int flgs)
250 {
251 cred_t *cr = kmem_cache_alloc(cred_cache, flgs);
252
253 if (cr == NULL)
254 return (NULL);
255
256 cr->cr_ref = 1; /* So we can crfree() */
257 cr->cr_zone = NULL;
258 cr->cr_label = NULL;
259 cr->cr_ksid = NULL;
260 cr->cr_klpd = NULL;
261 cr->cr_grps = NULL;
262 return (cr);
263 }
264
265 cred_t *
cralloc(void)266 cralloc(void)
267 {
268 return (cralloc_flags(KM_SLEEP));
269 }
270
271 /*
272 * As cralloc but prepared for ksid change (if appropriate).
273 */
274 cred_t *
cralloc_ksid(void)275 cralloc_ksid(void)
276 {
277 cred_t *cr = cralloc();
278 if (hasephids)
279 cr->cr_ksid = kcrsid_alloc();
280 return (cr);
281 }
282
283 /*
284 * Allocate a initialized cred structure and crhold() it.
285 * Initialized means: all ids 0, group count 0, L=Full, E=P=I=I0
286 */
287 cred_t *
crget(void)288 crget(void)
289 {
290 cred_t *cr = kmem_cache_alloc(cred_cache, KM_SLEEP);
291
292 bcopy(zone_kcred(), cr, crsize);
293 cr->cr_ref = 1;
294 zone_cred_hold(cr->cr_zone);
295 if (cr->cr_label)
296 label_hold(cr->cr_label);
297 ASSERT(cr->cr_klpd == NULL);
298 ASSERT(cr->cr_grps == NULL);
299 return (cr);
300 }
301
302 /*
303 * Broadcast the cred to all the threads in the process.
304 * The current thread's credentials can be set right away, but other
305 * threads must wait until the start of the next system call or trap.
306 * This avoids changing the cred in the middle of a system call.
307 *
308 * The cred has already been held for the process and the thread (2 holds),
309 * and p->p_cred set.
310 *
311 * p->p_crlock shouldn't be held here, since p_lock must be acquired.
312 */
313 void
crset(proc_t * p,cred_t * cr)314 crset(proc_t *p, cred_t *cr)
315 {
316 kthread_id_t t;
317 kthread_id_t first;
318 cred_t *oldcr;
319
320 ASSERT(p == curproc); /* assumes p_lwpcnt can't change */
321
322 /*
323 * DTrace accesses t_cred in probe context. t_cred must always be
324 * either NULL, or point to a valid, allocated cred structure.
325 */
326 t = curthread;
327 oldcr = t->t_cred;
328 t->t_cred = cr; /* the cred is held by caller for this thread */
329 crfree(oldcr); /* free the old cred for the thread */
330
331 /*
332 * Broadcast to other threads, if any.
333 */
334 if (p->p_lwpcnt > 1) {
335 mutex_enter(&p->p_lock); /* to keep thread list safe */
336 first = curthread;
337 for (t = first->t_forw; t != first; t = t->t_forw)
338 t->t_pre_sys = 1; /* so syscall will get new cred */
339 mutex_exit(&p->p_lock);
340 }
341 }
342
343 /*
344 * Put a hold on a cred structure.
345 */
346 void
crhold(cred_t * cr)347 crhold(cred_t *cr)
348 {
349 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0);
350 atomic_inc_32(&cr->cr_ref);
351 }
352
353 /*
354 * Release previous hold on a cred structure. Free it if refcnt == 0.
355 * If cred uses label different from zone label, free it.
356 */
357 void
crfree(cred_t * cr)358 crfree(cred_t *cr)
359 {
360 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0);
361 if (atomic_dec_32_nv(&cr->cr_ref) == 0) {
362 ASSERT(cr != kcred);
363 if (cr->cr_label)
364 label_rele(cr->cr_label);
365 if (cr->cr_klpd)
366 crklpd_rele(cr->cr_klpd);
367 if (cr->cr_zone)
368 zone_cred_rele(cr->cr_zone);
369 if (cr->cr_ksid)
370 kcrsid_rele(cr->cr_ksid);
371 if (cr->cr_grps)
372 crgrprele(cr->cr_grps);
373
374 kmem_cache_free(cred_cache, cr);
375 }
376 }
377
378 /*
379 * Copy a cred structure to a new one and free the old one.
380 * The new cred will have two references. One for the calling process,
381 * and one for the thread.
382 */
383 cred_t *
crcopy(cred_t * cr)384 crcopy(cred_t *cr)
385 {
386 cred_t *newcr;
387
388 newcr = cralloc();
389 bcopy(cr, newcr, crsize);
390 if (newcr->cr_zone)
391 zone_cred_hold(newcr->cr_zone);
392 if (newcr->cr_label)
393 label_hold(newcr->cr_label);
394 if (newcr->cr_ksid)
395 kcrsid_hold(newcr->cr_ksid);
396 if (newcr->cr_klpd)
397 crklpd_hold(newcr->cr_klpd);
398 if (newcr->cr_grps)
399 crgrphold(newcr->cr_grps);
400 crfree(cr);
401 newcr->cr_ref = 2; /* caller gets two references */
402 return (newcr);
403 }
404
405 /*
406 * Copy a cred structure to a new one and free the old one.
407 * The new cred will have two references. One for the calling process,
408 * and one for the thread.
409 * This variation on crcopy uses a pre-allocated structure for the
410 * "new" cred.
411 */
412 void
crcopy_to(cred_t * oldcr,cred_t * newcr)413 crcopy_to(cred_t *oldcr, cred_t *newcr)
414 {
415 credsid_t *nkcr = newcr->cr_ksid;
416
417 bcopy(oldcr, newcr, crsize);
418 if (newcr->cr_zone)
419 zone_cred_hold(newcr->cr_zone);
420 if (newcr->cr_label)
421 label_hold(newcr->cr_label);
422 if (newcr->cr_klpd)
423 crklpd_hold(newcr->cr_klpd);
424 if (newcr->cr_grps)
425 crgrphold(newcr->cr_grps);
426 if (nkcr) {
427 newcr->cr_ksid = nkcr;
428 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid);
429 } else if (newcr->cr_ksid)
430 kcrsid_hold(newcr->cr_ksid);
431 crfree(oldcr);
432 newcr->cr_ref = 2; /* caller gets two references */
433 }
434
435 /*
436 * Dup a cred struct to a new held one.
437 * The old cred is not freed.
438 */
439 static cred_t *
crdup_flags(const cred_t * cr,int flgs)440 crdup_flags(const cred_t *cr, int flgs)
441 {
442 cred_t *newcr;
443
444 newcr = cralloc_flags(flgs);
445
446 if (newcr == NULL)
447 return (NULL);
448
449 bcopy(cr, newcr, crsize);
450 if (newcr->cr_zone)
451 zone_cred_hold(newcr->cr_zone);
452 if (newcr->cr_label)
453 label_hold(newcr->cr_label);
454 if (newcr->cr_klpd)
455 crklpd_hold(newcr->cr_klpd);
456 if (newcr->cr_ksid)
457 kcrsid_hold(newcr->cr_ksid);
458 if (newcr->cr_grps)
459 crgrphold(newcr->cr_grps);
460 newcr->cr_ref = 1;
461 return (newcr);
462 }
463
464 cred_t *
crdup(cred_t * cr)465 crdup(cred_t *cr)
466 {
467 return (crdup_flags(cr, KM_SLEEP));
468 }
469
470 /*
471 * Dup a cred struct to a new held one.
472 * The old cred is not freed.
473 * This variation on crdup uses a pre-allocated structure for the
474 * "new" cred.
475 */
476 void
crdup_to(cred_t * oldcr,cred_t * newcr)477 crdup_to(cred_t *oldcr, cred_t *newcr)
478 {
479 credsid_t *nkcr = newcr->cr_ksid;
480
481 bcopy(oldcr, newcr, crsize);
482 if (newcr->cr_zone)
483 zone_cred_hold(newcr->cr_zone);
484 if (newcr->cr_label)
485 label_hold(newcr->cr_label);
486 if (newcr->cr_klpd)
487 crklpd_hold(newcr->cr_klpd);
488 if (newcr->cr_grps)
489 crgrphold(newcr->cr_grps);
490 if (nkcr) {
491 newcr->cr_ksid = nkcr;
492 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid);
493 } else if (newcr->cr_ksid)
494 kcrsid_hold(newcr->cr_ksid);
495 newcr->cr_ref = 1;
496 }
497
498 /*
499 * Return the (held) credentials for the current running process.
500 */
501 cred_t *
crgetcred(void)502 crgetcred(void)
503 {
504 cred_t *cr;
505 proc_t *p;
506
507 p = ttoproc(curthread);
508 mutex_enter(&p->p_crlock);
509 crhold(cr = p->p_cred);
510 mutex_exit(&p->p_crlock);
511 return (cr);
512 }
513
514 /*
515 * Backward compatibility check for suser().
516 * Accounting flag is now set in the policy functions; auditing is
517 * done through use of privilege in the audit trail.
518 */
519 int
suser(cred_t * cr)520 suser(cred_t *cr)
521 {
522 return (PRIV_POLICY(cr, PRIV_SYS_SUSER_COMPAT, B_FALSE, EPERM, NULL)
523 == 0);
524 }
525
526 /*
527 * Determine whether the supplied group id is a member of the group
528 * described by the supplied credentials.
529 */
530 int
groupmember(gid_t gid,const cred_t * cr)531 groupmember(gid_t gid, const cred_t *cr)
532 {
533 if (gid == cr->cr_gid)
534 return (1);
535 return (supgroupmember(gid, cr));
536 }
537
538 /*
539 * As groupmember but only check against the supplemental groups.
540 */
541 int
supgroupmember(gid_t gid,const cred_t * cr)542 supgroupmember(gid_t gid, const cred_t *cr)
543 {
544 int hi, lo;
545 credgrp_t *grps = cr->cr_grps;
546 const gid_t *gp, *endgp;
547
548 if (grps == NULL)
549 return (0);
550
551 /* For a small number of groups, use sequentials search. */
552 if (grps->crg_ngroups <= BIN_GROUP_SEARCH_CUTOFF) {
553 endgp = &grps->crg_groups[grps->crg_ngroups];
554 for (gp = grps->crg_groups; gp < endgp; gp++)
555 if (*gp == gid)
556 return (1);
557 return (0);
558 }
559
560 /* We use binary search when we have many groups. */
561 lo = 0;
562 hi = grps->crg_ngroups - 1;
563 gp = grps->crg_groups;
564
565 do {
566 int m = (lo + hi) / 2;
567
568 if (gid > gp[m])
569 lo = m + 1;
570 else if (gid < gp[m])
571 hi = m - 1;
572 else
573 return (1);
574 } while (lo <= hi);
575
576 return (0);
577 }
578
579 /*
580 * This function is called to check whether the credentials set
581 * "scrp" has permission to act on credentials set "tcrp". It enforces the
582 * permission requirements needed to send a signal to a process.
583 * The same requirements are imposed by other system calls, however.
584 *
585 * The rules are:
586 * (1) if the credentials are the same, the check succeeds
587 * (2) if the zone ids don't match, and scrp is not in the global zone or
588 * does not have the PRIV_PROC_ZONE privilege, the check fails
589 * (3) if the real or effective user id of scrp matches the real or saved
590 * user id of tcrp or scrp has the PRIV_PROC_OWNER privilege, the check
591 * succeeds
592 * (4) otherwise, the check fails
593 */
594 int
hasprocperm(const cred_t * tcrp,const cred_t * scrp)595 hasprocperm(const cred_t *tcrp, const cred_t *scrp)
596 {
597 if (scrp == tcrp)
598 return (1);
599 if (scrp->cr_zone != tcrp->cr_zone &&
600 (scrp->cr_zone != global_zone ||
601 secpolicy_proc_zone(scrp) != 0))
602 return (0);
603 if (scrp->cr_uid == tcrp->cr_ruid ||
604 scrp->cr_ruid == tcrp->cr_ruid ||
605 scrp->cr_uid == tcrp->cr_suid ||
606 scrp->cr_ruid == tcrp->cr_suid ||
607 !PRIV_POLICY(scrp, PRIV_PROC_OWNER, B_FALSE, EPERM, "hasprocperm"))
608 return (1);
609 return (0);
610 }
611
612 /*
613 * This interface replaces hasprocperm; it works like hasprocperm but
614 * additionally returns success if the proc_t's match
615 * It is the preferred interface for most uses.
616 * And it will acquire p_crlock itself, so it assert's that it shouldn't
617 * be held.
618 */
619 int
prochasprocperm(proc_t * tp,proc_t * sp,const cred_t * scrp)620 prochasprocperm(proc_t *tp, proc_t *sp, const cred_t *scrp)
621 {
622 int rets;
623 cred_t *tcrp;
624
625 ASSERT(MUTEX_NOT_HELD(&tp->p_crlock));
626
627 if (tp == sp)
628 return (1);
629
630 if (tp->p_sessp != sp->p_sessp && secpolicy_basic_proc(scrp) != 0)
631 return (0);
632
633 mutex_enter(&tp->p_crlock);
634 crhold(tcrp = tp->p_cred);
635 mutex_exit(&tp->p_crlock);
636 rets = hasprocperm(tcrp, scrp);
637 crfree(tcrp);
638
639 return (rets);
640 }
641
642 /*
643 * This routine is used to compare two credentials to determine if
644 * they refer to the same "user". If the pointers are equal, then
645 * they must refer to the same user. Otherwise, the contents of
646 * the credentials are compared to see whether they are equivalent.
647 *
648 * This routine returns 0 if the credentials refer to the same user,
649 * 1 if they do not.
650 */
651 int
crcmp(const cred_t * cr1,const cred_t * cr2)652 crcmp(const cred_t *cr1, const cred_t *cr2)
653 {
654 credgrp_t *grp1, *grp2;
655
656 if (cr1 == cr2)
657 return (0);
658
659 if (cr1->cr_uid == cr2->cr_uid &&
660 cr1->cr_gid == cr2->cr_gid &&
661 cr1->cr_ruid == cr2->cr_ruid &&
662 cr1->cr_rgid == cr2->cr_rgid &&
663 cr1->cr_zone == cr2->cr_zone &&
664 ((grp1 = cr1->cr_grps) == (grp2 = cr2->cr_grps) ||
665 (grp1 != NULL && grp2 != NULL &&
666 grp1->crg_ngroups == grp2->crg_ngroups &&
667 bcmp(grp1->crg_groups, grp2->crg_groups,
668 grp1->crg_ngroups * sizeof (gid_t)) == 0))) {
669 return (!priv_isequalset(&CR_OEPRIV(cr1), &CR_OEPRIV(cr2)));
670 }
671 return (1);
672 }
673
674 /*
675 * Read access functions to cred_t.
676 */
677 uid_t
crgetuid(const cred_t * cr)678 crgetuid(const cred_t *cr)
679 {
680 return (cr->cr_uid);
681 }
682
683 uid_t
crgetruid(const cred_t * cr)684 crgetruid(const cred_t *cr)
685 {
686 return (cr->cr_ruid);
687 }
688
689 uid_t
crgetsuid(const cred_t * cr)690 crgetsuid(const cred_t *cr)
691 {
692 return (cr->cr_suid);
693 }
694
695 gid_t
crgetgid(const cred_t * cr)696 crgetgid(const cred_t *cr)
697 {
698 return (cr->cr_gid);
699 }
700
701 gid_t
crgetrgid(const cred_t * cr)702 crgetrgid(const cred_t *cr)
703 {
704 return (cr->cr_rgid);
705 }
706
707 gid_t
crgetsgid(const cred_t * cr)708 crgetsgid(const cred_t *cr)
709 {
710 return (cr->cr_sgid);
711 }
712
713 const auditinfo_addr_t *
crgetauinfo(const cred_t * cr)714 crgetauinfo(const cred_t *cr)
715 {
716 return ((const auditinfo_addr_t *)CR_AUINFO(cr));
717 }
718
719 auditinfo_addr_t *
crgetauinfo_modifiable(cred_t * cr)720 crgetauinfo_modifiable(cred_t *cr)
721 {
722 return (CR_AUINFO(cr));
723 }
724
725 zoneid_t
crgetzoneid(const cred_t * cr)726 crgetzoneid(const cred_t *cr)
727 {
728 return (cr->cr_zone == NULL ?
729 (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) :
730 cr->cr_zone->zone_id);
731 }
732
733 projid_t
crgetprojid(const cred_t * cr)734 crgetprojid(const cred_t *cr)
735 {
736 return (cr->cr_projid);
737 }
738
739 zone_t *
crgetzone(const cred_t * cr)740 crgetzone(const cred_t *cr)
741 {
742 return (cr->cr_zone);
743 }
744
745 struct ts_label_s *
crgetlabel(const cred_t * cr)746 crgetlabel(const cred_t *cr)
747 {
748 return (cr->cr_label ?
749 cr->cr_label :
750 (cr->cr_zone ? cr->cr_zone->zone_slabel : NULL));
751 }
752
753 boolean_t
crisremote(const cred_t * cr)754 crisremote(const cred_t *cr)
755 {
756 return (REMOTE_PEER_CRED(cr));
757 }
758
759 #define BADUID(x, zn) ((x) != -1 && !VALID_UID((x), (zn)))
760 #define BADGID(x, zn) ((x) != -1 && !VALID_GID((x), (zn)))
761
762 int
crsetresuid(cred_t * cr,uid_t r,uid_t e,uid_t s)763 crsetresuid(cred_t *cr, uid_t r, uid_t e, uid_t s)
764 {
765 zone_t *zone = crgetzone(cr);
766
767 ASSERT(cr->cr_ref <= 2);
768
769 if (BADUID(r, zone) || BADUID(e, zone) || BADUID(s, zone))
770 return (-1);
771
772 if (r != -1)
773 cr->cr_ruid = r;
774 if (e != -1)
775 cr->cr_uid = e;
776 if (s != -1)
777 cr->cr_suid = s;
778
779 return (0);
780 }
781
782 int
crsetresgid(cred_t * cr,gid_t r,gid_t e,gid_t s)783 crsetresgid(cred_t *cr, gid_t r, gid_t e, gid_t s)
784 {
785 zone_t *zone = crgetzone(cr);
786
787 ASSERT(cr->cr_ref <= 2);
788
789 if (BADGID(r, zone) || BADGID(e, zone) || BADGID(s, zone))
790 return (-1);
791
792 if (r != -1)
793 cr->cr_rgid = r;
794 if (e != -1)
795 cr->cr_gid = e;
796 if (s != -1)
797 cr->cr_sgid = s;
798
799 return (0);
800 }
801
802 int
crsetugid(cred_t * cr,uid_t uid,gid_t gid)803 crsetugid(cred_t *cr, uid_t uid, gid_t gid)
804 {
805 zone_t *zone = crgetzone(cr);
806
807 ASSERT(cr->cr_ref <= 2);
808
809 if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone))
810 return (-1);
811
812 cr->cr_uid = cr->cr_ruid = cr->cr_suid = uid;
813 cr->cr_gid = cr->cr_rgid = cr->cr_sgid = gid;
814
815 return (0);
816 }
817
818 static int
gidcmp(const void * v1,const void * v2)819 gidcmp(const void *v1, const void *v2)
820 {
821 gid_t g1 = *(gid_t *)v1;
822 gid_t g2 = *(gid_t *)v2;
823
824 if (g1 < g2)
825 return (-1);
826 else if (g1 > g2)
827 return (1);
828 else
829 return (0);
830 }
831
832 int
crsetgroups(cred_t * cr,int n,gid_t * grp)833 crsetgroups(cred_t *cr, int n, gid_t *grp)
834 {
835 ASSERT(cr->cr_ref <= 2);
836
837 if (n > ngroups_max || n < 0)
838 return (-1);
839
840 if (cr->cr_grps != NULL)
841 crgrprele(cr->cr_grps);
842
843 if (n > 0) {
844 cr->cr_grps = kmem_alloc(CREDGRPSZ(n), KM_SLEEP);
845 bcopy(grp, cr->cr_grps->crg_groups, n * sizeof (gid_t));
846 cr->cr_grps->crg_ref = 1;
847 cr->cr_grps->crg_ngroups = n;
848 qsort(cr->cr_grps->crg_groups, n, sizeof (gid_t), gidcmp);
849 } else {
850 cr->cr_grps = NULL;
851 }
852
853 return (0);
854 }
855
856 void
crsetprojid(cred_t * cr,projid_t projid)857 crsetprojid(cred_t *cr, projid_t projid)
858 {
859 ASSERT(projid >= 0 && projid <= MAXPROJID);
860 cr->cr_projid = projid;
861 }
862
863 /*
864 * This routine returns the pointer to the first element of the crg_groups
865 * array. It can move around in an implementation defined way.
866 * Note that when we have no grouplist, we return one element but the
867 * caller should never reference it.
868 */
869 const gid_t *
crgetgroups(const cred_t * cr)870 crgetgroups(const cred_t *cr)
871 {
872 return (cr->cr_grps == NULL ? &cr->cr_gid : cr->cr_grps->crg_groups);
873 }
874
875 int
crgetngroups(const cred_t * cr)876 crgetngroups(const cred_t *cr)
877 {
878 return (cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups);
879 }
880
881 void
cred2prcred(const cred_t * cr,prcred_t * pcrp)882 cred2prcred(const cred_t *cr, prcred_t *pcrp)
883 {
884 pcrp->pr_euid = cr->cr_uid;
885 pcrp->pr_ruid = cr->cr_ruid;
886 pcrp->pr_suid = cr->cr_suid;
887 pcrp->pr_egid = cr->cr_gid;
888 pcrp->pr_rgid = cr->cr_rgid;
889 pcrp->pr_sgid = cr->cr_sgid;
890 pcrp->pr_groups[0] = 0; /* in case ngroups == 0 */
891 pcrp->pr_ngroups = cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups;
892
893 if (pcrp->pr_ngroups != 0)
894 bcopy(cr->cr_grps->crg_groups, pcrp->pr_groups,
895 sizeof (gid_t) * pcrp->pr_ngroups);
896 }
897
898 static int
cred2ucaud(const cred_t * cr,auditinfo64_addr_t * ainfo,const cred_t * rcr)899 cred2ucaud(const cred_t *cr, auditinfo64_addr_t *ainfo, const cred_t *rcr)
900 {
901 auditinfo_addr_t *ai;
902 au_tid_addr_t tid;
903
904 if (secpolicy_audit_getattr(rcr, B_TRUE) != 0)
905 return (-1);
906
907 ai = CR_AUINFO(cr); /* caller makes sure this is non-NULL */
908 tid = ai->ai_termid;
909
910 ainfo->ai_auid = ai->ai_auid;
911 ainfo->ai_mask = ai->ai_mask;
912 ainfo->ai_asid = ai->ai_asid;
913
914 ainfo->ai_termid.at_type = tid.at_type;
915 bcopy(&tid.at_addr, &ainfo->ai_termid.at_addr, 4 * sizeof (uint_t));
916
917 ainfo->ai_termid.at_port.at_major = (uint32_t)getmajor(tid.at_port);
918 ainfo->ai_termid.at_port.at_minor = (uint32_t)getminor(tid.at_port);
919
920 return (0);
921 }
922
923 void
cred2uclabel(const cred_t * cr,bslabel_t * labelp)924 cred2uclabel(const cred_t *cr, bslabel_t *labelp)
925 {
926 ts_label_t *tslp;
927
928 if ((tslp = crgetlabel(cr)) != NULL)
929 bcopy(&tslp->tsl_label, labelp, sizeof (bslabel_t));
930 }
931
932 /*
933 * Convert a credential into a "ucred". Allow the caller to specify
934 * and aligned buffer, e.g., in an mblk, so we don't have to allocate
935 * memory and copy it twice.
936 *
937 * This function may call cred2ucaud(), which calls CRED(). Since this
938 * can be called from an interrupt thread, receiver's cred (rcr) is needed
939 * to determine whether audit info should be included.
940 */
941 struct ucred_s *
cred2ucred(const cred_t * cr,pid_t pid,void * buf,const cred_t * rcr)942 cred2ucred(const cred_t *cr, pid_t pid, void *buf, const cred_t *rcr)
943 {
944 struct ucred_s *uc;
945 uint32_t realsz = ucredminsize(cr);
946 ts_label_t *tslp = is_system_labeled() ? crgetlabel(cr) : NULL;
947
948 /* The structure isn't always completely filled in, so zero it */
949 if (buf == NULL) {
950 uc = kmem_zalloc(realsz, KM_SLEEP);
951 } else {
952 bzero(buf, realsz);
953 uc = buf;
954 }
955 uc->uc_size = realsz;
956 uc->uc_pid = pid;
957 uc->uc_projid = cr->cr_projid;
958 uc->uc_zoneid = crgetzoneid(cr);
959
960 if (REMOTE_PEER_CRED(cr)) {
961 /*
962 * Other than label, the rest of cred info about a
963 * remote peer isn't available. Copy the label directly
964 * after the header where we generally copy the prcred.
965 * That's why we use sizeof (struct ucred_s). The other
966 * offset fields are initialized to 0.
967 */
968 uc->uc_labeloff = tslp == NULL ? 0 : sizeof (struct ucred_s);
969 } else {
970 uc->uc_credoff = UCRED_CRED_OFF;
971 uc->uc_privoff = UCRED_PRIV_OFF;
972 uc->uc_audoff = UCRED_AUD_OFF;
973 uc->uc_labeloff = tslp == NULL ? 0 : UCRED_LABEL_OFF;
974
975 cred2prcred(cr, UCCRED(uc));
976 cred2prpriv(cr, UCPRIV(uc));
977
978 if (audoff == 0 || cred2ucaud(cr, UCAUD(uc), rcr) != 0)
979 uc->uc_audoff = 0;
980 }
981 if (tslp != NULL)
982 bcopy(&tslp->tsl_label, UCLABEL(uc), sizeof (bslabel_t));
983
984 return (uc);
985 }
986
987 /*
988 * Don't allocate the non-needed group entries. Note: this function
989 * must match the code in cred2ucred; they must agree about the
990 * minimal size of the ucred.
991 */
992 uint32_t
ucredminsize(const cred_t * cr)993 ucredminsize(const cred_t *cr)
994 {
995 int ndiff;
996
997 if (cr == NULL)
998 return (ucredsize);
999
1000 if (REMOTE_PEER_CRED(cr)) {
1001 if (is_system_labeled())
1002 return (sizeof (struct ucred_s) + sizeof (bslabel_t));
1003 else
1004 return (sizeof (struct ucred_s));
1005 }
1006
1007 if (cr->cr_grps == NULL)
1008 ndiff = ngroups_max - 1; /* Needs one for prcred_t */
1009 else
1010 ndiff = ngroups_max - cr->cr_grps->crg_ngroups;
1011
1012 return (ucredsize - ndiff * sizeof (gid_t));
1013 }
1014
1015 /*
1016 * Get the "ucred" of a process.
1017 */
1018 struct ucred_s *
pgetucred(proc_t * p)1019 pgetucred(proc_t *p)
1020 {
1021 cred_t *cr;
1022 struct ucred_s *uc;
1023
1024 mutex_enter(&p->p_crlock);
1025 cr = p->p_cred;
1026 crhold(cr);
1027 mutex_exit(&p->p_crlock);
1028
1029 uc = cred2ucred(cr, p->p_pid, NULL, CRED());
1030 crfree(cr);
1031
1032 return (uc);
1033 }
1034
1035 /*
1036 * If the reply status is NFSERR_EACCES, it may be because we are
1037 * root (no root net access). Check the real uid, if it isn't root
1038 * make that the uid instead and retry the call.
1039 * Private interface for NFS.
1040 */
1041 cred_t *
crnetadjust(cred_t * cr)1042 crnetadjust(cred_t *cr)
1043 {
1044 if (cr->cr_uid == 0 && cr->cr_ruid != 0) {
1045 cr = crdup(cr);
1046 cr->cr_uid = cr->cr_ruid;
1047 return (cr);
1048 }
1049 return (NULL);
1050 }
1051
1052 /*
1053 * The reference count is of interest when you want to check
1054 * whether it is ok to modify the credential in place.
1055 */
1056 uint_t
crgetref(const cred_t * cr)1057 crgetref(const cred_t *cr)
1058 {
1059 return (cr->cr_ref);
1060 }
1061
1062 static int
get_c2audit_load(void)1063 get_c2audit_load(void)
1064 {
1065 static int gotit = 0;
1066 static int c2audit_load;
1067
1068 if (gotit)
1069 return (c2audit_load);
1070 c2audit_load = 1; /* set default value once */
1071 if (mod_sysctl(SYS_CHECK_EXCLUDE, "c2audit") != 0)
1072 c2audit_load = 0;
1073 gotit++;
1074
1075 return (c2audit_load);
1076 }
1077
1078 int
get_audit_ucrsize(void)1079 get_audit_ucrsize(void)
1080 {
1081 return (get_c2audit_load() ? sizeof (auditinfo64_addr_t) : 0);
1082 }
1083
1084 /*
1085 * Set zone pointer in credential to indicated value. First adds a
1086 * hold for the new zone, then drops the hold on previous zone (if any).
1087 * This is done in this order in case the old and new zones are the
1088 * same.
1089 */
1090 void
crsetzone(cred_t * cr,zone_t * zptr)1091 crsetzone(cred_t *cr, zone_t *zptr)
1092 {
1093 zone_t *oldzptr = cr->cr_zone;
1094
1095 ASSERT(cr != kcred);
1096 ASSERT(cr->cr_ref <= 2);
1097 cr->cr_zone = zptr;
1098 zone_cred_hold(zptr);
1099 if (oldzptr)
1100 zone_cred_rele(oldzptr);
1101 }
1102
1103 /*
1104 * Create a new cred based on the supplied label
1105 */
1106 cred_t *
newcred_from_bslabel(bslabel_t * blabel,uint32_t doi,int flags)1107 newcred_from_bslabel(bslabel_t *blabel, uint32_t doi, int flags)
1108 {
1109 ts_label_t *lbl = labelalloc(blabel, doi, flags);
1110 cred_t *cr = NULL;
1111
1112 if (lbl != NULL) {
1113 if ((cr = crdup_flags(dummycr, flags)) != NULL) {
1114 cr->cr_label = lbl;
1115 } else {
1116 label_rele(lbl);
1117 }
1118 }
1119
1120 return (cr);
1121 }
1122
1123 /*
1124 * Derive a new cred from the existing cred, but with a different label.
1125 * To be used when a cred is being shared, but the label needs to be changed
1126 * by a caller without affecting other users
1127 */
1128 cred_t *
copycred_from_tslabel(const cred_t * cr,ts_label_t * label,int flags)1129 copycred_from_tslabel(const cred_t *cr, ts_label_t *label, int flags)
1130 {
1131 cred_t *newcr = NULL;
1132
1133 if ((newcr = crdup_flags(cr, flags)) != NULL) {
1134 if (newcr->cr_label != NULL)
1135 label_rele(newcr->cr_label);
1136 label_hold(label);
1137 newcr->cr_label = label;
1138 }
1139
1140 return (newcr);
1141 }
1142
1143 /*
1144 * Derive a new cred from the existing cred, but with a different label.
1145 */
1146 cred_t *
copycred_from_bslabel(const cred_t * cr,bslabel_t * blabel,uint32_t doi,int flags)1147 copycred_from_bslabel(const cred_t *cr, bslabel_t *blabel,
1148 uint32_t doi, int flags)
1149 {
1150 ts_label_t *lbl = labelalloc(blabel, doi, flags);
1151 cred_t *newcr = NULL;
1152
1153 if (lbl != NULL) {
1154 newcr = copycred_from_tslabel(cr, lbl, flags);
1155 label_rele(lbl);
1156 }
1157
1158 return (newcr);
1159 }
1160
1161 /*
1162 * This function returns a pointer to the kcred-equivalent in the current zone.
1163 */
1164 cred_t *
zone_kcred(void)1165 zone_kcred(void)
1166 {
1167 zone_t *zone;
1168
1169 if ((zone = CRED()->cr_zone) != NULL)
1170 return (zone->zone_kcred);
1171 else
1172 return (kcred);
1173 }
1174
1175 boolean_t
valid_ephemeral_uid(zone_t * zone,uid_t id)1176 valid_ephemeral_uid(zone_t *zone, uid_t id)
1177 {
1178 ephemeral_zsd_t *eph_zsd;
1179 if (id <= IDMAP_WK__MAX_UID)
1180 return (B_TRUE);
1181
1182 eph_zsd = get_ephemeral_zsd(zone);
1183 ASSERT(eph_zsd != NULL);
1184 membar_consumer();
1185 return (id > eph_zsd->min_uid && id <= eph_zsd->last_uid);
1186 }
1187
1188 boolean_t
valid_ephemeral_gid(zone_t * zone,gid_t id)1189 valid_ephemeral_gid(zone_t *zone, gid_t id)
1190 {
1191 ephemeral_zsd_t *eph_zsd;
1192 if (id <= IDMAP_WK__MAX_GID)
1193 return (B_TRUE);
1194
1195 eph_zsd = get_ephemeral_zsd(zone);
1196 ASSERT(eph_zsd != NULL);
1197 membar_consumer();
1198 return (id > eph_zsd->min_gid && id <= eph_zsd->last_gid);
1199 }
1200
1201 int
eph_uid_alloc(zone_t * zone,int flags,uid_t * start,int count)1202 eph_uid_alloc(zone_t *zone, int flags, uid_t *start, int count)
1203 {
1204 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1205
1206 ASSERT(eph_zsd != NULL);
1207
1208 mutex_enter(&eph_zsd->eph_lock);
1209
1210 /* Test for unsigned integer wrap around */
1211 if (eph_zsd->last_uid + count < eph_zsd->last_uid) {
1212 mutex_exit(&eph_zsd->eph_lock);
1213 return (-1);
1214 }
1215
1216 /* first call or idmap crashed and state corrupted */
1217 if (flags != 0)
1218 eph_zsd->min_uid = eph_zsd->last_uid;
1219
1220 hasephids = B_TRUE;
1221 *start = eph_zsd->last_uid + 1;
1222 atomic_add_32(&eph_zsd->last_uid, count);
1223 mutex_exit(&eph_zsd->eph_lock);
1224 return (0);
1225 }
1226
1227 int
eph_gid_alloc(zone_t * zone,int flags,gid_t * start,int count)1228 eph_gid_alloc(zone_t *zone, int flags, gid_t *start, int count)
1229 {
1230 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1231
1232 ASSERT(eph_zsd != NULL);
1233
1234 mutex_enter(&eph_zsd->eph_lock);
1235
1236 /* Test for unsigned integer wrap around */
1237 if (eph_zsd->last_gid + count < eph_zsd->last_gid) {
1238 mutex_exit(&eph_zsd->eph_lock);
1239 return (-1);
1240 }
1241
1242 /* first call or idmap crashed and state corrupted */
1243 if (flags != 0)
1244 eph_zsd->min_gid = eph_zsd->last_gid;
1245
1246 hasephids = B_TRUE;
1247 *start = eph_zsd->last_gid + 1;
1248 atomic_add_32(&eph_zsd->last_gid, count);
1249 mutex_exit(&eph_zsd->eph_lock);
1250 return (0);
1251 }
1252
1253 /*
1254 * IMPORTANT.The two functions get_ephemeral_data() and set_ephemeral_data()
1255 * are project private functions that are for use of the test system only and
1256 * are not to be used for other purposes.
1257 */
1258
1259 void
get_ephemeral_data(zone_t * zone,uid_t * min_uid,uid_t * last_uid,gid_t * min_gid,gid_t * last_gid)1260 get_ephemeral_data(zone_t *zone, uid_t *min_uid, uid_t *last_uid,
1261 gid_t *min_gid, gid_t *last_gid)
1262 {
1263 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1264
1265 ASSERT(eph_zsd != NULL);
1266
1267 mutex_enter(&eph_zsd->eph_lock);
1268
1269 *min_uid = eph_zsd->min_uid;
1270 *last_uid = eph_zsd->last_uid;
1271 *min_gid = eph_zsd->min_gid;
1272 *last_gid = eph_zsd->last_gid;
1273
1274 mutex_exit(&eph_zsd->eph_lock);
1275 }
1276
1277
1278 void
set_ephemeral_data(zone_t * zone,uid_t min_uid,uid_t last_uid,gid_t min_gid,gid_t last_gid)1279 set_ephemeral_data(zone_t *zone, uid_t min_uid, uid_t last_uid,
1280 gid_t min_gid, gid_t last_gid)
1281 {
1282 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1283
1284 ASSERT(eph_zsd != NULL);
1285
1286 mutex_enter(&eph_zsd->eph_lock);
1287
1288 if (min_uid != 0)
1289 eph_zsd->min_uid = min_uid;
1290 if (last_uid != 0)
1291 eph_zsd->last_uid = last_uid;
1292 if (min_gid != 0)
1293 eph_zsd->min_gid = min_gid;
1294 if (last_gid != 0)
1295 eph_zsd->last_gid = last_gid;
1296
1297 mutex_exit(&eph_zsd->eph_lock);
1298 }
1299
1300 /*
1301 * If the credential user SID or group SID is mapped to an ephemeral
1302 * ID, map the credential to nobody.
1303 */
1304 cred_t *
crgetmapped(const cred_t * cr)1305 crgetmapped(const cred_t *cr)
1306 {
1307 ephemeral_zsd_t *eph_zsd;
1308 /*
1309 * Someone incorrectly passed a NULL cred to a vnode operation
1310 * either on purpose or by calling CRED() in interrupt context.
1311 */
1312 if (cr == NULL)
1313 return (NULL);
1314
1315 if (cr->cr_ksid != NULL) {
1316 if (cr->cr_ksid->kr_sidx[KSID_USER].ks_id > MAXUID) {
1317 eph_zsd = get_ephemeral_zsd(crgetzone(cr));
1318 return (eph_zsd->eph_nobody);
1319 }
1320
1321 if (cr->cr_ksid->kr_sidx[KSID_GROUP].ks_id > MAXUID) {
1322 eph_zsd = get_ephemeral_zsd(crgetzone(cr));
1323 return (eph_zsd->eph_nobody);
1324 }
1325 }
1326
1327 return ((cred_t *)cr);
1328 }
1329
1330 /* index should be in range for a ksidindex_t */
1331 void
crsetsid(cred_t * cr,ksid_t * ksp,int index)1332 crsetsid(cred_t *cr, ksid_t *ksp, int index)
1333 {
1334 ASSERT(cr->cr_ref <= 2);
1335 ASSERT(index >= 0 && index < KSID_COUNT);
1336 if (cr->cr_ksid == NULL && ksp == NULL)
1337 return;
1338 cr->cr_ksid = kcrsid_setsid(cr->cr_ksid, ksp, index);
1339 }
1340
1341 void
crsetsidlist(cred_t * cr,ksidlist_t * ksl)1342 crsetsidlist(cred_t *cr, ksidlist_t *ksl)
1343 {
1344 ASSERT(cr->cr_ref <= 2);
1345 if (cr->cr_ksid == NULL && ksl == NULL)
1346 return;
1347 cr->cr_ksid = kcrsid_setsidlist(cr->cr_ksid, ksl);
1348 }
1349
1350 ksid_t *
crgetsid(const cred_t * cr,int i)1351 crgetsid(const cred_t *cr, int i)
1352 {
1353 ASSERT(i >= 0 && i < KSID_COUNT);
1354 if (cr->cr_ksid != NULL && cr->cr_ksid->kr_sidx[i].ks_domain)
1355 return ((ksid_t *)&cr->cr_ksid->kr_sidx[i]);
1356 return (NULL);
1357 }
1358
1359 ksidlist_t *
crgetsidlist(const cred_t * cr)1360 crgetsidlist(const cred_t *cr)
1361 {
1362 if (cr->cr_ksid != NULL)
1363 return (cr->cr_ksid->kr_sidlist);
1364 return (NULL);
1365 }
1366
1367 /*
1368 * Interface to set the effective and permitted privileges for
1369 * a credential; this interface does no security checks and is
1370 * intended for kernel (file)servers creating credentials with
1371 * specific privileges.
1372 */
1373 int
crsetpriv(cred_t * cr,...)1374 crsetpriv(cred_t *cr, ...)
1375 {
1376 va_list ap;
1377 const char *privnm;
1378
1379 ASSERT(cr->cr_ref <= 2);
1380
1381 priv_set_PA(cr);
1382
1383 va_start(ap, cr);
1384
1385 while ((privnm = va_arg(ap, const char *)) != NULL) {
1386 int priv = priv_getbyname(privnm, 0);
1387 if (priv < 0)
1388 return (-1);
1389
1390 priv_addset(&CR_PPRIV(cr), priv);
1391 priv_addset(&CR_EPRIV(cr), priv);
1392 }
1393 priv_adjust_PA(cr);
1394 va_end(ap);
1395 return (0);
1396 }
1397
1398 /*
1399 * Interface to effectively set the PRIV_ALL for
1400 * a credential; this interface does no security checks and is
1401 * intended for kernel (file)servers to extend the user credentials
1402 * to be ALL, like either kcred or zcred.
1403 */
1404 void
crset_zone_privall(cred_t * cr)1405 crset_zone_privall(cred_t *cr)
1406 {
1407 zone_t *zone = crgetzone(cr);
1408
1409 priv_fillset(&CR_LPRIV(cr));
1410 CR_EPRIV(cr) = CR_PPRIV(cr) = CR_IPRIV(cr) = CR_LPRIV(cr);
1411 priv_intersect(zone->zone_privset, &CR_LPRIV(cr));
1412 priv_intersect(zone->zone_privset, &CR_EPRIV(cr));
1413 priv_intersect(zone->zone_privset, &CR_IPRIV(cr));
1414 priv_intersect(zone->zone_privset, &CR_PPRIV(cr));
1415 }
1416
1417 struct credklpd *
crgetcrklpd(const cred_t * cr)1418 crgetcrklpd(const cred_t *cr)
1419 {
1420 return (cr->cr_klpd);
1421 }
1422
1423 void
crsetcrklpd(cred_t * cr,struct credklpd * crklpd)1424 crsetcrklpd(cred_t *cr, struct credklpd *crklpd)
1425 {
1426 ASSERT(cr->cr_ref <= 2);
1427
1428 if (cr->cr_klpd != NULL)
1429 crklpd_rele(cr->cr_klpd);
1430 cr->cr_klpd = crklpd;
1431 }
1432
1433 credgrp_t *
crgrpcopyin(int n,gid_t * gidset)1434 crgrpcopyin(int n, gid_t *gidset)
1435 {
1436 credgrp_t *mem;
1437 size_t sz = CREDGRPSZ(n);
1438
1439 ASSERT(n > 0);
1440
1441 mem = kmem_alloc(sz, KM_SLEEP);
1442
1443 if (copyin(gidset, mem->crg_groups, sizeof (gid_t) * n)) {
1444 kmem_free(mem, sz);
1445 return (NULL);
1446 }
1447 mem->crg_ref = 1;
1448 mem->crg_ngroups = n;
1449 qsort(mem->crg_groups, n, sizeof (gid_t), gidcmp);
1450 return (mem);
1451 }
1452
1453 const gid_t *
crgetggroups(const credgrp_t * grps)1454 crgetggroups(const credgrp_t *grps)
1455 {
1456 return (grps->crg_groups);
1457 }
1458
1459 void
crsetcredgrp(cred_t * cr,credgrp_t * grps)1460 crsetcredgrp(cred_t *cr, credgrp_t *grps)
1461 {
1462 ASSERT(cr->cr_ref <= 2);
1463
1464 if (cr->cr_grps != NULL)
1465 crgrprele(cr->cr_grps);
1466
1467 cr->cr_grps = grps;
1468 }
1469
1470 void
crgrprele(credgrp_t * grps)1471 crgrprele(credgrp_t *grps)
1472 {
1473 if (atomic_dec_32_nv(&grps->crg_ref) == 0)
1474 kmem_free(grps, CREDGRPSZ(grps->crg_ngroups));
1475 }
1476
1477 static void
crgrphold(credgrp_t * grps)1478 crgrphold(credgrp_t *grps)
1479 {
1480 atomic_inc_32(&grps->crg_ref);
1481 }
1482