xref: /linux/net/wireless/chan.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains helper code to handle channel
4  * settings and keeping track of what is possible at
5  * any point in time.
6  *
7  * Copyright 2009	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014  Intel Mobile Communications GmbH
9  * Copyright 2018-2025	Intel Corporation
10  */
11 
12 #include <linux/export.h>
13 #include <linux/bitfield.h>
14 #include <net/cfg80211.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17 
18 static bool cfg80211_valid_60g_freq(u32 freq)
19 {
20 	return freq >= 58320 && freq <= 70200;
21 }
22 
23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 			     struct ieee80211_channel *chan,
25 			     enum nl80211_channel_type chan_type)
26 {
27 	if (WARN_ON(!chan))
28 		return;
29 
30 	*chandef = (struct cfg80211_chan_def) {
31 		.chan = chan,
32 		.freq1_offset = chan->freq_offset,
33 	};
34 
35 	switch (chan_type) {
36 	case NL80211_CHAN_NO_HT:
37 		chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 		chandef->center_freq1 = chan->center_freq;
39 		break;
40 	case NL80211_CHAN_HT20:
41 		chandef->width = NL80211_CHAN_WIDTH_20;
42 		chandef->center_freq1 = chan->center_freq;
43 		break;
44 	case NL80211_CHAN_HT40PLUS:
45 		chandef->width = NL80211_CHAN_WIDTH_40;
46 		chandef->center_freq1 = chan->center_freq + 10;
47 		break;
48 	case NL80211_CHAN_HT40MINUS:
49 		chandef->width = NL80211_CHAN_WIDTH_40;
50 		chandef->center_freq1 = chan->center_freq - 10;
51 		break;
52 	default:
53 		WARN_ON(1);
54 	}
55 }
56 EXPORT_SYMBOL(cfg80211_chandef_create);
57 
58 static u32 cfg80211_get_start_freq(const struct cfg80211_chan_def *chandef,
59 				   u32 cf)
60 {
61 	u32 start_freq, center_freq, bandwidth;
62 
63 	center_freq = MHZ_TO_KHZ((cf == 1) ?
64 			chandef->center_freq1 : chandef->center_freq2);
65 	bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
66 
67 	if (bandwidth <= MHZ_TO_KHZ(20))
68 		start_freq = center_freq;
69 	else
70 		start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
71 
72 	return start_freq;
73 }
74 
75 static u32 cfg80211_get_end_freq(const struct cfg80211_chan_def *chandef,
76 				 u32 cf)
77 {
78 	u32 end_freq, center_freq, bandwidth;
79 
80 	center_freq = MHZ_TO_KHZ((cf == 1) ?
81 			chandef->center_freq1 : chandef->center_freq2);
82 	bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
83 
84 	if (bandwidth <= MHZ_TO_KHZ(20))
85 		end_freq = center_freq;
86 	else
87 		end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
88 
89 	return end_freq;
90 }
91 
92 #define for_each_subchan(chandef, freq, cf)				\
93 	for (u32 punctured = chandef->punctured,			\
94 	     cf = 1, freq = cfg80211_get_start_freq(chandef, cf);	\
95 	     freq <= cfg80211_get_end_freq(chandef, cf);		\
96 	     freq += MHZ_TO_KHZ(20),					\
97 	     ((cf == 1 && chandef->center_freq2 != 0 &&			\
98 	       freq > cfg80211_get_end_freq(chandef, cf)) ?		\
99 	      (cf++, freq = cfg80211_get_start_freq(chandef, cf),	\
100 	       punctured = 0) : (punctured >>= 1)))			\
101 		if (!(punctured & 1))
102 
103 #define for_each_s1g_subchan(chandef, freq_khz)                   \
104 	for (freq_khz = cfg80211_s1g_get_start_freq_khz(chandef); \
105 	     freq_khz <= cfg80211_s1g_get_end_freq_khz(chandef);  \
106 	     freq_khz += MHZ_TO_KHZ(1))
107 
108 struct cfg80211_per_bw_puncturing_values {
109 	u8 len;
110 	const u16 *valid_values;
111 };
112 
113 static const u16 puncturing_values_80mhz[] = {
114 	0x8, 0x4, 0x2, 0x1
115 };
116 
117 static const u16 puncturing_values_160mhz[] = {
118 	 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
119 };
120 
121 static const u16 puncturing_values_320mhz[] = {
122 	0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
123 	0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
124 	0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
125 };
126 
127 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
128 	{ \
129 		.len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
130 		.valid_values = puncturing_values_ ## _bw ## mhz \
131 	}
132 
133 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
134 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
135 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
136 	CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
137 };
138 
139 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
140 {
141 	u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
142 
143 	switch (chandef->width) {
144 	case NL80211_CHAN_WIDTH_80:
145 		idx = 0;
146 		start_freq = chandef->center_freq1 - 40;
147 		break;
148 	case NL80211_CHAN_WIDTH_160:
149 		idx = 1;
150 		start_freq = chandef->center_freq1 - 80;
151 		break;
152 	case NL80211_CHAN_WIDTH_320:
153 		idx = 2;
154 		start_freq = chandef->center_freq1 - 160;
155 		break;
156 	default:
157 		return chandef->punctured == 0;
158 	}
159 
160 	if (!chandef->punctured)
161 		return true;
162 
163 	/* check if primary channel is punctured */
164 	if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
165 		return false;
166 
167 	for (i = 0; i < per_bw_puncturing[idx].len; i++) {
168 		if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
169 			return true;
170 	}
171 
172 	return false;
173 }
174 
175 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
176 {
177 	int max_contiguous = 0;
178 	int num_of_enabled = 0;
179 	int contiguous = 0;
180 	int i;
181 
182 	if (!chandef->edmg.channels || !chandef->edmg.bw_config)
183 		return false;
184 
185 	if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
186 		return false;
187 
188 	for (i = 0; i < 6; i++) {
189 		if (chandef->edmg.channels & BIT(i)) {
190 			contiguous++;
191 			num_of_enabled++;
192 		} else {
193 			contiguous = 0;
194 		}
195 
196 		max_contiguous = max(contiguous, max_contiguous);
197 	}
198 	/* basic verification of edmg configuration according to
199 	 * IEEE P802.11ay/D4.0 section 9.4.2.251
200 	 */
201 	/* check bw_config against contiguous edmg channels */
202 	switch (chandef->edmg.bw_config) {
203 	case IEEE80211_EDMG_BW_CONFIG_4:
204 	case IEEE80211_EDMG_BW_CONFIG_8:
205 	case IEEE80211_EDMG_BW_CONFIG_12:
206 		if (max_contiguous < 1)
207 			return false;
208 		break;
209 	case IEEE80211_EDMG_BW_CONFIG_5:
210 	case IEEE80211_EDMG_BW_CONFIG_9:
211 	case IEEE80211_EDMG_BW_CONFIG_13:
212 		if (max_contiguous < 2)
213 			return false;
214 		break;
215 	case IEEE80211_EDMG_BW_CONFIG_6:
216 	case IEEE80211_EDMG_BW_CONFIG_10:
217 	case IEEE80211_EDMG_BW_CONFIG_14:
218 		if (max_contiguous < 3)
219 			return false;
220 		break;
221 	case IEEE80211_EDMG_BW_CONFIG_7:
222 	case IEEE80211_EDMG_BW_CONFIG_11:
223 	case IEEE80211_EDMG_BW_CONFIG_15:
224 		if (max_contiguous < 4)
225 			return false;
226 		break;
227 
228 	default:
229 		return false;
230 	}
231 
232 	/* check bw_config against aggregated (non contiguous) edmg channels */
233 	switch (chandef->edmg.bw_config) {
234 	case IEEE80211_EDMG_BW_CONFIG_4:
235 	case IEEE80211_EDMG_BW_CONFIG_5:
236 	case IEEE80211_EDMG_BW_CONFIG_6:
237 	case IEEE80211_EDMG_BW_CONFIG_7:
238 		break;
239 	case IEEE80211_EDMG_BW_CONFIG_8:
240 	case IEEE80211_EDMG_BW_CONFIG_9:
241 	case IEEE80211_EDMG_BW_CONFIG_10:
242 	case IEEE80211_EDMG_BW_CONFIG_11:
243 		if (num_of_enabled < 2)
244 			return false;
245 		break;
246 	case IEEE80211_EDMG_BW_CONFIG_12:
247 	case IEEE80211_EDMG_BW_CONFIG_13:
248 	case IEEE80211_EDMG_BW_CONFIG_14:
249 	case IEEE80211_EDMG_BW_CONFIG_15:
250 		if (num_of_enabled < 4 || max_contiguous < 2)
251 			return false;
252 		break;
253 	default:
254 		return false;
255 	}
256 
257 	return true;
258 }
259 
260 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
261 {
262 	int mhz;
263 
264 	switch (chan_width) {
265 	case NL80211_CHAN_WIDTH_1:
266 		mhz = 1;
267 		break;
268 	case NL80211_CHAN_WIDTH_2:
269 		mhz = 2;
270 		break;
271 	case NL80211_CHAN_WIDTH_4:
272 		mhz = 4;
273 		break;
274 	case NL80211_CHAN_WIDTH_8:
275 		mhz = 8;
276 		break;
277 	case NL80211_CHAN_WIDTH_16:
278 		mhz = 16;
279 		break;
280 	case NL80211_CHAN_WIDTH_5:
281 		mhz = 5;
282 		break;
283 	case NL80211_CHAN_WIDTH_10:
284 		mhz = 10;
285 		break;
286 	case NL80211_CHAN_WIDTH_20:
287 	case NL80211_CHAN_WIDTH_20_NOHT:
288 		mhz = 20;
289 		break;
290 	case NL80211_CHAN_WIDTH_40:
291 		mhz = 40;
292 		break;
293 	case NL80211_CHAN_WIDTH_80P80:
294 	case NL80211_CHAN_WIDTH_80:
295 		mhz = 80;
296 		break;
297 	case NL80211_CHAN_WIDTH_160:
298 		mhz = 160;
299 		break;
300 	case NL80211_CHAN_WIDTH_320:
301 		mhz = 320;
302 		break;
303 	default:
304 		WARN_ON_ONCE(1);
305 		return -1;
306 	}
307 	return mhz;
308 }
309 EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
310 
311 static bool cfg80211_valid_center_freq(u32 center,
312 				       enum nl80211_chan_width width)
313 {
314 	int bw;
315 	int step;
316 
317 	/* We only do strict verification on 6 GHz */
318 	if (center < 5955 || center > 7115)
319 		return true;
320 
321 	bw = nl80211_chan_width_to_mhz(width);
322 	if (bw < 0)
323 		return false;
324 
325 	/* Validate that the channels bw is entirely within the 6 GHz band */
326 	if (center - bw / 2 < 5945 || center + bw / 2 > 7125)
327 		return false;
328 
329 	/* With 320 MHz the permitted channels overlap */
330 	if (bw == 320)
331 		step = 160;
332 	else
333 		step = bw;
334 
335 	/*
336 	 * Valid channels are packed from lowest frequency towards higher ones.
337 	 * So test that the lower frequency aligns with one of these steps.
338 	 */
339 	return (center - bw / 2 - 5945) % step == 0;
340 }
341 
342 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
343 {
344 	u32 control_freq, control_freq_khz, start_khz, end_khz;
345 
346 	if (!chandef->chan)
347 		return false;
348 
349 	if (chandef->freq1_offset >= 1000)
350 		return false;
351 
352 	control_freq = chandef->chan->center_freq;
353 
354 	switch (chandef->width) {
355 	case NL80211_CHAN_WIDTH_5:
356 	case NL80211_CHAN_WIDTH_10:
357 	case NL80211_CHAN_WIDTH_20:
358 	case NL80211_CHAN_WIDTH_20_NOHT:
359 		if (ieee80211_chandef_to_khz(chandef) !=
360 		    ieee80211_channel_to_khz(chandef->chan))
361 			return false;
362 		if (chandef->center_freq2)
363 			return false;
364 		break;
365 	case NL80211_CHAN_WIDTH_1:
366 	case NL80211_CHAN_WIDTH_2:
367 	case NL80211_CHAN_WIDTH_4:
368 	case NL80211_CHAN_WIDTH_8:
369 	case NL80211_CHAN_WIDTH_16:
370 		if (!cfg80211_chandef_is_s1g(chandef))
371 			return false;
372 		if (chandef->center_freq2)
373 			return false;
374 
375 		control_freq_khz = ieee80211_channel_to_khz(chandef->chan);
376 		start_khz = cfg80211_s1g_get_start_freq_khz(chandef);
377 		end_khz = cfg80211_s1g_get_end_freq_khz(chandef);
378 
379 		if (control_freq_khz < start_khz || control_freq_khz > end_khz)
380 			return false;
381 		break;
382 	case NL80211_CHAN_WIDTH_80P80:
383 		if (!chandef->center_freq2)
384 			return false;
385 		/* adjacent is not allowed -- that's a 160 MHz channel */
386 		if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
387 		    chandef->center_freq2 - chandef->center_freq1 == 80)
388 			return false;
389 		break;
390 	default:
391 		if (chandef->center_freq2)
392 			return false;
393 		break;
394 	}
395 
396 	switch (chandef->width) {
397 	case NL80211_CHAN_WIDTH_5:
398 	case NL80211_CHAN_WIDTH_10:
399 	case NL80211_CHAN_WIDTH_20:
400 	case NL80211_CHAN_WIDTH_20_NOHT:
401 	case NL80211_CHAN_WIDTH_1:
402 	case NL80211_CHAN_WIDTH_2:
403 	case NL80211_CHAN_WIDTH_4:
404 	case NL80211_CHAN_WIDTH_8:
405 	case NL80211_CHAN_WIDTH_16:
406 		/* all checked above */
407 		break;
408 	case NL80211_CHAN_WIDTH_320:
409 		if (chandef->center_freq1 == control_freq + 150 ||
410 		    chandef->center_freq1 == control_freq + 130 ||
411 		    chandef->center_freq1 == control_freq + 110 ||
412 		    chandef->center_freq1 == control_freq + 90 ||
413 		    chandef->center_freq1 == control_freq - 90 ||
414 		    chandef->center_freq1 == control_freq - 110 ||
415 		    chandef->center_freq1 == control_freq - 130 ||
416 		    chandef->center_freq1 == control_freq - 150)
417 			break;
418 		fallthrough;
419 	case NL80211_CHAN_WIDTH_160:
420 		if (chandef->center_freq1 == control_freq + 70 ||
421 		    chandef->center_freq1 == control_freq + 50 ||
422 		    chandef->center_freq1 == control_freq - 50 ||
423 		    chandef->center_freq1 == control_freq - 70)
424 			break;
425 		fallthrough;
426 	case NL80211_CHAN_WIDTH_80P80:
427 	case NL80211_CHAN_WIDTH_80:
428 		if (chandef->center_freq1 == control_freq + 30 ||
429 		    chandef->center_freq1 == control_freq - 30)
430 			break;
431 		fallthrough;
432 	case NL80211_CHAN_WIDTH_40:
433 		if (chandef->center_freq1 == control_freq + 10 ||
434 		    chandef->center_freq1 == control_freq - 10)
435 			break;
436 		fallthrough;
437 	default:
438 		return false;
439 	}
440 
441 	if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width))
442 		return false;
443 
444 	if (chandef->width == NL80211_CHAN_WIDTH_80P80 &&
445 	    !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width))
446 		return false;
447 
448 	/* channel 14 is only for IEEE 802.11b */
449 	if (chandef->center_freq1 == 2484 &&
450 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
451 		return false;
452 
453 	if (cfg80211_chandef_is_edmg(chandef) &&
454 	    !cfg80211_edmg_chandef_valid(chandef))
455 		return false;
456 
457 	if (!cfg80211_chandef_is_s1g(chandef) && chandef->s1g_primary_2mhz)
458 		return false;
459 
460 	return valid_puncturing_bitmap(chandef);
461 }
462 EXPORT_SYMBOL(cfg80211_chandef_valid);
463 
464 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
465 			     enum nl80211_chan_width primary_chan_width,
466 			     u16 *punctured)
467 {
468 	int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
469 	int width = cfg80211_chandef_get_width(c);
470 	u32 control = c->chan->center_freq;
471 	u32 center = c->center_freq1;
472 	u16 _punct = 0;
473 
474 	if (WARN_ON_ONCE(pri_width < 0 || width < 0))
475 		return -1;
476 
477 	/* not intended to be called this way, can't determine */
478 	if (WARN_ON_ONCE(pri_width > width))
479 		return -1;
480 
481 	if (!punctured)
482 		punctured = &_punct;
483 
484 	*punctured = c->punctured;
485 
486 	while (width > pri_width) {
487 		unsigned int bits_to_drop = width / 20 / 2;
488 
489 		if (control > center) {
490 			center += width / 4;
491 			*punctured >>= bits_to_drop;
492 		} else {
493 			center -= width / 4;
494 			*punctured &= (1 << bits_to_drop) - 1;
495 		}
496 		width /= 2;
497 	}
498 
499 	return center;
500 }
501 EXPORT_SYMBOL(cfg80211_chandef_primary);
502 
503 static const struct cfg80211_chan_def *
504 check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
505 			     const struct cfg80211_chan_def *c2,
506 			     enum nl80211_chan_width primary_chan_width)
507 {
508 	u16 punct_c1 = 0, punct_c2 = 0;
509 
510 	/* check primary is compatible -> error if not */
511 	if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
512 	    cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
513 		return ERR_PTR(-EINVAL);
514 
515 	if (punct_c1 != punct_c2)
516 		return ERR_PTR(-EINVAL);
517 
518 	/* assumes c1 is smaller width, if that was just checked -> done */
519 	if (c1->width == primary_chan_width)
520 		return c2;
521 
522 	/* otherwise continue checking the next width */
523 	return NULL;
524 }
525 
526 static const struct cfg80211_chan_def *
527 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
528 			     const struct cfg80211_chan_def *c2)
529 {
530 	const struct cfg80211_chan_def *ret;
531 
532 	/* If they are identical, return */
533 	if (cfg80211_chandef_identical(c1, c2))
534 		return c2;
535 
536 	/* otherwise, must have same control channel */
537 	if (c1->chan != c2->chan)
538 		return NULL;
539 
540 	/*
541 	 * If they have the same width, but aren't identical,
542 	 * then they can't be compatible.
543 	 */
544 	if (c1->width == c2->width)
545 		return NULL;
546 
547 	/*
548 	 * can't be compatible if one of them is 5/10 MHz or S1G
549 	 * but they don't have the same width.
550 	 */
551 #define NARROW_OR_S1G(width)	((width) == NL80211_CHAN_WIDTH_5 || \
552 				 (width) == NL80211_CHAN_WIDTH_10 || \
553 				 (width) == NL80211_CHAN_WIDTH_1 || \
554 				 (width) == NL80211_CHAN_WIDTH_2 || \
555 				 (width) == NL80211_CHAN_WIDTH_4 || \
556 				 (width) == NL80211_CHAN_WIDTH_8 || \
557 				 (width) == NL80211_CHAN_WIDTH_16)
558 
559 	if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
560 		return NULL;
561 
562 	/*
563 	 * Make sure that c1 is always the narrower one, so that later
564 	 * we either return NULL or c2 and don't have to check both
565 	 * directions.
566 	 */
567 	if (c1->width > c2->width)
568 		swap(c1, c2);
569 
570 	/*
571 	 * No further checks needed if the "narrower" one is only 20 MHz.
572 	 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
573 	 * 20 MHz HT (or later) one.
574 	 */
575 	if (c1->width <= NL80211_CHAN_WIDTH_20)
576 		return c2;
577 
578 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
579 	if (ret)
580 		return ret;
581 
582 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
583 	if (ret)
584 		return ret;
585 
586 	/*
587 	 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
588 	 * match. If c2 was also 80+80 it was already either accepted
589 	 * or rejected above (identical or not, respectively.)
590 	 */
591 	if (c1->width == NL80211_CHAN_WIDTH_80P80)
592 		return NULL;
593 
594 	ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
595 	if (ret)
596 		return ret;
597 
598 	/*
599 	 * Getting here would mean they're both wider than 160, have the
600 	 * same primary 160, but are not identical - this cannot happen
601 	 * since they must be 320 (no wider chandefs exist, at least yet.)
602 	 */
603 	WARN_ON_ONCE(1);
604 
605 	return NULL;
606 }
607 
608 const struct cfg80211_chan_def *
609 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
610 			    const struct cfg80211_chan_def *c2)
611 {
612 	const struct cfg80211_chan_def *ret;
613 
614 	ret = _cfg80211_chandef_compatible(c1, c2);
615 	if (IS_ERR(ret))
616 		return NULL;
617 	return ret;
618 }
619 EXPORT_SYMBOL(cfg80211_chandef_compatible);
620 
621 void cfg80211_set_dfs_state(struct wiphy *wiphy,
622 			    const struct cfg80211_chan_def *chandef,
623 			    enum nl80211_dfs_state dfs_state)
624 {
625 	struct ieee80211_channel *c;
626 	int width;
627 
628 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
629 		return;
630 
631 	width = cfg80211_chandef_get_width(chandef);
632 	if (width < 0)
633 		return;
634 
635 	for_each_subchan(chandef, freq, cf) {
636 		c = ieee80211_get_channel_khz(wiphy, freq);
637 		if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
638 			continue;
639 
640 		c->dfs_state = dfs_state;
641 		c->dfs_state_entered = jiffies;
642 	}
643 }
644 
645 static bool
646 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
647 				   enum nl80211_iftype iftype,
648 				   struct wireless_dev *wdev,
649 				   struct ieee80211_channel *chan)
650 {
651 	unsigned int link_id;
652 
653 	for_each_valid_link(wdev, link_id) {
654 		struct ieee80211_channel *other_chan = NULL;
655 		struct cfg80211_chan_def chandef = {};
656 		int ret;
657 
658 		/* In order to avoid daisy chaining only allow BSS STA */
659 		if (wdev->iftype != NL80211_IFTYPE_STATION ||
660 		    !wdev->links[link_id].client.current_bss)
661 			continue;
662 
663 		other_chan =
664 			wdev->links[link_id].client.current_bss->pub.channel;
665 
666 		if (!other_chan)
667 			continue;
668 
669 		if (chan == other_chan)
670 			return true;
671 
672 		/* continue if we can't get the channel */
673 		ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
674 		if (ret)
675 			continue;
676 
677 		if (cfg80211_is_sub_chan(&chandef, chan, false))
678 			return true;
679 	}
680 
681 	return false;
682 }
683 
684 /*
685  * Check if P2P GO is allowed to operate on a DFS channel
686  */
687 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
688 					 enum nl80211_iftype iftype,
689 					 struct ieee80211_channel *chan)
690 {
691 	struct wireless_dev *wdev;
692 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
693 
694 	lockdep_assert_held(&rdev->wiphy.mtx);
695 
696 	if (!wiphy_ext_feature_isset(&rdev->wiphy,
697 				     NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
698 	    !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
699 		return false;
700 
701 	/* only valid for P2P GO */
702 	if (iftype != NL80211_IFTYPE_P2P_GO)
703 		return false;
704 
705 	/*
706 	 * Allow only if there's a concurrent BSS
707 	 */
708 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
709 		bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
710 							      wdev, chan);
711 		if (ret)
712 			return ret;
713 	}
714 
715 	return false;
716 }
717 
718 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
719 					   const struct cfg80211_chan_def *chandef,
720 					   enum nl80211_iftype iftype)
721 {
722 	struct ieee80211_channel *c;
723 
724 	/* DFS is not required for S1G */
725 	if (cfg80211_chandef_is_s1g(chandef))
726 		return 0;
727 
728 	for_each_subchan(chandef, freq, cf) {
729 		c = ieee80211_get_channel_khz(wiphy, freq);
730 		if (!c)
731 			return -EINVAL;
732 
733 		if (c->flags & IEEE80211_CHAN_RADAR &&
734 		    !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
735 			return 1;
736 	}
737 
738 	return 0;
739 }
740 
741 
742 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
743 				  const struct cfg80211_chan_def *chandef,
744 				  enum nl80211_iftype iftype)
745 {
746 	int width;
747 	int ret;
748 
749 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
750 		return -EINVAL;
751 
752 	switch (iftype) {
753 	case NL80211_IFTYPE_ADHOC:
754 	case NL80211_IFTYPE_AP:
755 	case NL80211_IFTYPE_P2P_GO:
756 	case NL80211_IFTYPE_MESH_POINT:
757 		width = cfg80211_chandef_get_width(chandef);
758 		if (width < 0)
759 			return -EINVAL;
760 
761 		ret = cfg80211_get_chans_dfs_required(wiphy, chandef, iftype);
762 
763 		return (ret > 0) ? BIT(chandef->width) : ret;
764 		break;
765 	case NL80211_IFTYPE_STATION:
766 	case NL80211_IFTYPE_OCB:
767 	case NL80211_IFTYPE_P2P_CLIENT:
768 	case NL80211_IFTYPE_MONITOR:
769 	case NL80211_IFTYPE_AP_VLAN:
770 	case NL80211_IFTYPE_P2P_DEVICE:
771 	case NL80211_IFTYPE_NAN:
772 		break;
773 	case NL80211_IFTYPE_WDS:
774 	case NL80211_IFTYPE_UNSPECIFIED:
775 	case NUM_NL80211_IFTYPES:
776 		WARN_ON(1);
777 	}
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
782 
783 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
784 				 const struct cfg80211_chan_def *chandef)
785 {
786 	struct ieee80211_channel *c;
787 	int width, count = 0;
788 
789 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
790 		return false;
791 
792 	width = cfg80211_chandef_get_width(chandef);
793 	if (width < 0)
794 		return false;
795 
796 	/*
797 	 * Check entire range of channels for the bandwidth.
798 	 * Check all channels are DFS channels (DFS_USABLE or
799 	 * DFS_AVAILABLE). Return number of usable channels
800 	 * (require CAC). Allow DFS and non-DFS channel mix.
801 	 */
802 	for_each_subchan(chandef, freq, cf) {
803 		c = ieee80211_get_channel_khz(wiphy, freq);
804 		if (!c)
805 			return false;
806 
807 		if (c->flags & IEEE80211_CHAN_DISABLED)
808 			return false;
809 
810 		if (c->flags & IEEE80211_CHAN_RADAR) {
811 			if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
812 				return false;
813 
814 			if (c->dfs_state == NL80211_DFS_USABLE)
815 				count++;
816 		}
817 	}
818 
819 	return count > 0;
820 }
821 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
822 
823 /*
824  * Checks if center frequency of chan falls with in the bandwidth
825  * range of chandef.
826  */
827 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
828 			  struct ieee80211_channel *chan,
829 			  bool primary_only)
830 {
831 	int width;
832 	u32 freq;
833 
834 	if (!chandef->chan)
835 		return false;
836 
837 	if (chandef->chan->center_freq == chan->center_freq)
838 		return true;
839 
840 	if (primary_only)
841 		return false;
842 
843 	width = cfg80211_chandef_get_width(chandef);
844 	if (width <= 20)
845 		return false;
846 
847 	for (freq = chandef->center_freq1 - width / 2 + 10;
848 	     freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
849 		if (chan->center_freq == freq)
850 			return true;
851 	}
852 
853 	if (!chandef->center_freq2)
854 		return false;
855 
856 	for (freq = chandef->center_freq2 - width / 2 + 10;
857 	     freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
858 		if (chan->center_freq == freq)
859 			return true;
860 	}
861 
862 	return false;
863 }
864 
865 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
866 {
867 	unsigned int link;
868 
869 	lockdep_assert_wiphy(wdev->wiphy);
870 
871 	switch (wdev->iftype) {
872 	case NL80211_IFTYPE_AP:
873 	case NL80211_IFTYPE_P2P_GO:
874 		for_each_valid_link(wdev, link) {
875 			if (wdev->links[link].ap.beacon_interval)
876 				return true;
877 		}
878 		break;
879 	case NL80211_IFTYPE_ADHOC:
880 		if (wdev->u.ibss.ssid_len)
881 			return true;
882 		break;
883 	case NL80211_IFTYPE_MESH_POINT:
884 		if (wdev->u.mesh.id_len)
885 			return true;
886 		break;
887 	case NL80211_IFTYPE_STATION:
888 	case NL80211_IFTYPE_OCB:
889 	case NL80211_IFTYPE_P2P_CLIENT:
890 	case NL80211_IFTYPE_MONITOR:
891 	case NL80211_IFTYPE_AP_VLAN:
892 	case NL80211_IFTYPE_P2P_DEVICE:
893 	/* Can NAN type be considered as beaconing interface? */
894 	case NL80211_IFTYPE_NAN:
895 		break;
896 	case NL80211_IFTYPE_UNSPECIFIED:
897 	case NL80211_IFTYPE_WDS:
898 	case NUM_NL80211_IFTYPES:
899 		WARN_ON(1);
900 	}
901 
902 	return false;
903 }
904 
905 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
906 			       struct ieee80211_channel *chan,
907 			       bool primary_only)
908 {
909 	unsigned int link;
910 
911 	switch (wdev->iftype) {
912 	case NL80211_IFTYPE_AP:
913 	case NL80211_IFTYPE_P2P_GO:
914 		for_each_valid_link(wdev, link) {
915 			if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
916 						 chan, primary_only))
917 				return true;
918 		}
919 		break;
920 	case NL80211_IFTYPE_ADHOC:
921 		return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
922 					    primary_only);
923 	case NL80211_IFTYPE_MESH_POINT:
924 		return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
925 					    primary_only);
926 	default:
927 		break;
928 	}
929 
930 	return false;
931 }
932 
933 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
934 					struct ieee80211_channel *chan)
935 {
936 	struct wireless_dev *wdev;
937 
938 	lockdep_assert_wiphy(wiphy);
939 
940 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
941 		if (!cfg80211_beaconing_iface_active(wdev))
942 			continue;
943 
944 		if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
945 			return true;
946 	}
947 
948 	return false;
949 }
950 
951 static bool
952 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
953 				 struct ieee80211_channel *channel)
954 {
955 	if (!rdev->background_radar_wdev)
956 		return false;
957 
958 	if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
959 		return false;
960 
961 	return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
962 				    false);
963 }
964 
965 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
966 				  struct ieee80211_channel *chan)
967 {
968 	struct cfg80211_registered_device *rdev;
969 
970 	ASSERT_RTNL();
971 
972 	if (!(chan->flags & IEEE80211_CHAN_RADAR))
973 		return false;
974 
975 	for_each_rdev(rdev) {
976 		bool found;
977 
978 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
979 			continue;
980 
981 		guard(wiphy)(&rdev->wiphy);
982 
983 		found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
984 			cfg80211_offchan_chain_is_active(rdev, chan);
985 
986 		if (found)
987 			return true;
988 	}
989 
990 	return false;
991 }
992 
993 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
994 				const struct cfg80211_chan_def *chandef)
995 {
996 	struct ieee80211_channel *c;
997 	int width;
998 	bool dfs_offload;
999 
1000 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1001 		return false;
1002 
1003 	width = cfg80211_chandef_get_width(chandef);
1004 	if (width < 0)
1005 		return false;
1006 
1007 	dfs_offload = wiphy_ext_feature_isset(wiphy,
1008 					      NL80211_EXT_FEATURE_DFS_OFFLOAD);
1009 
1010 	/*
1011 	 * Check entire range of channels for the bandwidth.
1012 	 * If any channel in between is disabled or has not
1013 	 * had gone through CAC return false
1014 	 */
1015 	for_each_subchan(chandef, freq, cf) {
1016 		c = ieee80211_get_channel_khz(wiphy, freq);
1017 		if (!c)
1018 			return false;
1019 
1020 		if (c->flags & IEEE80211_CHAN_DISABLED)
1021 			return false;
1022 
1023 		if ((c->flags & IEEE80211_CHAN_RADAR) &&
1024 		    (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1025 		    !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1026 			return false;
1027 	}
1028 
1029 	return true;
1030 }
1031 
1032 unsigned int
1033 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1034 			      const struct cfg80211_chan_def *chandef)
1035 {
1036 	struct ieee80211_channel *c;
1037 	int width;
1038 	unsigned int t1 = 0, t2 = 0;
1039 
1040 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1041 		return 0;
1042 
1043 	width = cfg80211_chandef_get_width(chandef);
1044 	if (width < 0)
1045 		return 0;
1046 
1047 	for_each_subchan(chandef, freq, cf) {
1048 		c = ieee80211_get_channel_khz(wiphy, freq);
1049 		if (!c || (c->flags & IEEE80211_CHAN_DISABLED)) {
1050 			if (cf == 1)
1051 				t1 = INT_MAX;
1052 			else
1053 				t2 = INT_MAX;
1054 			continue;
1055 		}
1056 
1057 		if (!(c->flags & IEEE80211_CHAN_RADAR))
1058 			continue;
1059 
1060 		if (cf == 1 && c->dfs_cac_ms > t1)
1061 			t1 = c->dfs_cac_ms;
1062 
1063 		if (cf == 2 && c->dfs_cac_ms > t2)
1064 			t2 = c->dfs_cac_ms;
1065 	}
1066 
1067 	if (t1 == INT_MAX && t2 == INT_MAX)
1068 		return 0;
1069 
1070 	if (t1 == INT_MAX)
1071 		return t2;
1072 
1073 	if (t2 == INT_MAX)
1074 		return t1;
1075 
1076 	return max(t1, t2);
1077 }
1078 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1079 
1080 /* check if the operating channels are valid and supported */
1081 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1082 				 enum ieee80211_edmg_bw_config edmg_bw_config,
1083 				 int primary_channel,
1084 				 struct ieee80211_edmg *edmg_cap)
1085 {
1086 	struct ieee80211_channel *chan;
1087 	int i, freq;
1088 	int channels_counter = 0;
1089 
1090 	if (!edmg_channels && !edmg_bw_config)
1091 		return true;
1092 
1093 	if ((!edmg_channels && edmg_bw_config) ||
1094 	    (edmg_channels && !edmg_bw_config))
1095 		return false;
1096 
1097 	if (!(edmg_channels & BIT(primary_channel - 1)))
1098 		return false;
1099 
1100 	/* 60GHz channels 1..6 */
1101 	for (i = 0; i < 6; i++) {
1102 		if (!(edmg_channels & BIT(i)))
1103 			continue;
1104 
1105 		if (!(edmg_cap->channels & BIT(i)))
1106 			return false;
1107 
1108 		channels_counter++;
1109 
1110 		freq = ieee80211_channel_to_frequency(i + 1,
1111 						      NL80211_BAND_60GHZ);
1112 		chan = ieee80211_get_channel(wiphy, freq);
1113 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1114 			return false;
1115 	}
1116 
1117 	/* IEEE802.11 allows max 4 channels */
1118 	if (channels_counter > 4)
1119 		return false;
1120 
1121 	/* check bw_config is a subset of what driver supports
1122 	 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1123 	 */
1124 	if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1125 		return false;
1126 
1127 	if (edmg_bw_config > edmg_cap->bw_config)
1128 		return false;
1129 
1130 	return true;
1131 }
1132 
1133 static bool cfg80211_s1g_usable(struct wiphy *wiphy,
1134 				const struct cfg80211_chan_def *chandef)
1135 {
1136 	u32 freq_khz;
1137 	const struct ieee80211_channel *chan;
1138 	u32 pri_khz = ieee80211_channel_to_khz(chandef->chan);
1139 	u32 end_khz = cfg80211_s1g_get_end_freq_khz(chandef);
1140 	u32 start_khz = cfg80211_s1g_get_start_freq_khz(chandef);
1141 	int width_mhz = cfg80211_chandef_get_width(chandef);
1142 	u32 prohibited_flags = IEEE80211_CHAN_DISABLED;
1143 
1144 	if (width_mhz >= 16)
1145 		prohibited_flags |= IEEE80211_CHAN_NO_16MHZ;
1146 	if (width_mhz >= 8)
1147 		prohibited_flags |= IEEE80211_CHAN_NO_8MHZ;
1148 	if (width_mhz >= 4)
1149 		prohibited_flags |= IEEE80211_CHAN_NO_4MHZ;
1150 
1151 	if (chandef->chan->flags & IEEE80211_CHAN_S1G_NO_PRIMARY)
1152 		return false;
1153 
1154 	if (pri_khz < start_khz || pri_khz > end_khz)
1155 		return false;
1156 
1157 	for_each_s1g_subchan(chandef, freq_khz) {
1158 		chan = ieee80211_get_channel_khz(wiphy, freq_khz);
1159 		if (!chan || (chan->flags & prohibited_flags))
1160 			return false;
1161 	}
1162 
1163 	if (chandef->s1g_primary_2mhz) {
1164 		u32 sib_khz;
1165 		const struct ieee80211_channel *sibling;
1166 
1167 		sibling = cfg80211_s1g_get_primary_sibling(wiphy, chandef);
1168 		if (!sibling)
1169 			return false;
1170 
1171 		if (sibling->flags & IEEE80211_CHAN_S1G_NO_PRIMARY)
1172 			return false;
1173 
1174 		sib_khz = ieee80211_channel_to_khz(sibling);
1175 		if (sib_khz < start_khz || sib_khz > end_khz)
1176 			return false;
1177 	}
1178 
1179 	return true;
1180 }
1181 
1182 bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1183 			      const struct cfg80211_chan_def *chandef,
1184 			      u32 prohibited_flags,
1185 			      u32 permitting_flags)
1186 {
1187 	struct ieee80211_sta_ht_cap *ht_cap;
1188 	struct ieee80211_sta_vht_cap *vht_cap;
1189 	struct ieee80211_edmg *edmg_cap;
1190 	u32 width, control_freq, cap;
1191 	bool ext_nss_cap, support_80_80 = false, support_320 = false;
1192 	const struct ieee80211_sband_iftype_data *iftd;
1193 	struct ieee80211_supported_band *sband;
1194 	struct ieee80211_channel *c;
1195 	int i;
1196 
1197 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1198 		return false;
1199 
1200 	ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1201 	vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1202 	edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1203 	ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1204 			IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1205 
1206 	if (cfg80211_chandef_is_s1g(chandef))
1207 		return cfg80211_s1g_usable(wiphy, chandef);
1208 
1209 	if (edmg_cap->channels &&
1210 	    !cfg80211_edmg_usable(wiphy,
1211 				  chandef->edmg.channels,
1212 				  chandef->edmg.bw_config,
1213 				  chandef->chan->hw_value,
1214 				  edmg_cap))
1215 		return false;
1216 
1217 	control_freq = chandef->chan->center_freq;
1218 
1219 	switch (chandef->width) {
1220 	case NL80211_CHAN_WIDTH_5:
1221 		width = 5;
1222 		break;
1223 	case NL80211_CHAN_WIDTH_10:
1224 		prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1225 		width = 10;
1226 		break;
1227 	case NL80211_CHAN_WIDTH_20:
1228 		if (!ht_cap->ht_supported &&
1229 		    chandef->chan->band != NL80211_BAND_6GHZ)
1230 			return false;
1231 		fallthrough;
1232 	case NL80211_CHAN_WIDTH_20_NOHT:
1233 		prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1234 		width = 20;
1235 		break;
1236 	case NL80211_CHAN_WIDTH_40:
1237 		width = 40;
1238 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1239 			break;
1240 		if (!ht_cap->ht_supported)
1241 			return false;
1242 		if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1243 		    ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1244 			return false;
1245 		if (chandef->center_freq1 < control_freq &&
1246 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1247 			return false;
1248 		if (chandef->center_freq1 > control_freq &&
1249 		    chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1250 			return false;
1251 		break;
1252 	case NL80211_CHAN_WIDTH_80P80:
1253 		cap = vht_cap->cap;
1254 		support_80_80 =
1255 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1256 			(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1257 			 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1258 			(ext_nss_cap &&
1259 			 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1260 		if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1261 			return false;
1262 		fallthrough;
1263 	case NL80211_CHAN_WIDTH_80:
1264 		prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1265 		width = 80;
1266 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1267 			break;
1268 		if (!vht_cap->vht_supported)
1269 			return false;
1270 		break;
1271 	case NL80211_CHAN_WIDTH_160:
1272 		prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1273 		width = 160;
1274 		if (chandef->chan->band == NL80211_BAND_6GHZ)
1275 			break;
1276 		if (!vht_cap->vht_supported)
1277 			return false;
1278 		cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1279 		if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1280 		    cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1281 		    !(ext_nss_cap &&
1282 		      (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1283 			return false;
1284 		break;
1285 	case NL80211_CHAN_WIDTH_320:
1286 		prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1287 		width = 320;
1288 
1289 		if (chandef->chan->band != NL80211_BAND_6GHZ)
1290 			return false;
1291 
1292 		sband = wiphy->bands[NL80211_BAND_6GHZ];
1293 		if (!sband)
1294 			return false;
1295 
1296 		for_each_sband_iftype_data(sband, i, iftd) {
1297 			if (!iftd->eht_cap.has_eht)
1298 				continue;
1299 
1300 			if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1301 			    IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1302 				support_320 = true;
1303 				break;
1304 			}
1305 		}
1306 
1307 		if (!support_320)
1308 			return false;
1309 		break;
1310 	default:
1311 		WARN_ON_ONCE(1);
1312 		return false;
1313 	}
1314 
1315 	/*
1316 	 * TODO: What if there are only certain 80/160/80+80 MHz channels
1317 	 *	 allowed by the driver, or only certain combinations?
1318 	 *	 For 40 MHz the driver can set the NO_HT40 flags, but for
1319 	 *	 80/160 MHz and in particular 80+80 MHz this isn't really
1320 	 *	 feasible and we only have NO_80MHZ/NO_160MHZ so far but
1321 	 *	 no way to cover 80+80 MHz or more complex restrictions.
1322 	 *	 Note that such restrictions also need to be advertised to
1323 	 *	 userspace, for example for P2P channel selection.
1324 	 */
1325 
1326 	if (width > 20)
1327 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1328 
1329 	/* 5 and 10 MHz are only defined for the OFDM PHY */
1330 	if (width < 20)
1331 		prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1332 
1333 	for_each_subchan(chandef, freq, cf) {
1334 		c = ieee80211_get_channel_khz(wiphy, freq);
1335 		if (!c)
1336 			return false;
1337 		if (c->flags & permitting_flags)
1338 			continue;
1339 		if (c->flags & prohibited_flags)
1340 			return false;
1341 	}
1342 
1343 	return true;
1344 }
1345 
1346 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1347 			     const struct cfg80211_chan_def *chandef,
1348 			     u32 prohibited_flags)
1349 {
1350 	return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0);
1351 }
1352 EXPORT_SYMBOL(cfg80211_chandef_usable);
1353 
1354 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1355 					      struct wireless_dev *wdev,
1356 					      struct ieee80211_channel *chan)
1357 {
1358 	struct ieee80211_channel *other_chan = NULL;
1359 	unsigned int link_id;
1360 	int r1, r2;
1361 
1362 	for_each_valid_link(wdev, link_id) {
1363 		if (wdev->iftype == NL80211_IFTYPE_STATION &&
1364 		    wdev->links[link_id].client.current_bss)
1365 			other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1366 
1367 		/*
1368 		 * If a GO already operates on the same GO_CONCURRENT channel,
1369 		 * this one (maybe the same one) can beacon as well. We allow
1370 		 * the operation even if the station we relied on with
1371 		 * GO_CONCURRENT is disconnected now. But then we must make sure
1372 		 * we're not outdoor on an indoor-only channel.
1373 		 */
1374 		if (iftype == NL80211_IFTYPE_P2P_GO &&
1375 		    wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1376 		    wdev->links[link_id].ap.beacon_interval &&
1377 		    !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1378 			other_chan = wdev->links[link_id].ap.chandef.chan;
1379 
1380 		if (!other_chan)
1381 			continue;
1382 
1383 		if (chan == other_chan)
1384 			return true;
1385 
1386 		if (chan->band != NL80211_BAND_5GHZ &&
1387 		    chan->band != NL80211_BAND_6GHZ)
1388 			continue;
1389 
1390 		r1 = cfg80211_get_unii(chan->center_freq);
1391 		r2 = cfg80211_get_unii(other_chan->center_freq);
1392 
1393 		if (r1 != -EINVAL && r1 == r2) {
1394 			/*
1395 			 * At some locations channels 149-165 are considered a
1396 			 * bundle, but at other locations, e.g., Indonesia,
1397 			 * channels 149-161 are considered a bundle while
1398 			 * channel 165 is left out and considered to be in a
1399 			 * different bundle. Thus, in case that there is a
1400 			 * station interface connected to an AP on channel 165,
1401 			 * it is assumed that channels 149-161 are allowed for
1402 			 * GO operations. However, having a station interface
1403 			 * connected to an AP on channels 149-161, does not
1404 			 * allow GO operation on channel 165.
1405 			 */
1406 			if (chan->center_freq == 5825 &&
1407 			    other_chan->center_freq != 5825)
1408 				continue;
1409 			return true;
1410 		}
1411 	}
1412 
1413 	return false;
1414 }
1415 
1416 /*
1417  * Check if the channel can be used under permissive conditions mandated by
1418  * some regulatory bodies, i.e., the channel is marked with
1419  * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1420  * associated to an AP on the same channel or on the same UNII band
1421  * (assuming that the AP is an authorized master).
1422  * In addition allow operation on a channel on which indoor operation is
1423  * allowed, iff we are currently operating in an indoor environment.
1424  */
1425 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1426 					enum nl80211_iftype iftype,
1427 					struct ieee80211_channel *chan)
1428 {
1429 	struct wireless_dev *wdev;
1430 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1431 
1432 	lockdep_assert_held(&rdev->wiphy.mtx);
1433 
1434 	if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1435 	    !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1436 		return false;
1437 
1438 	/* only valid for GO and TDLS off-channel (station/p2p-CL) */
1439 	if (iftype != NL80211_IFTYPE_P2P_GO &&
1440 	    iftype != NL80211_IFTYPE_STATION &&
1441 	    iftype != NL80211_IFTYPE_P2P_CLIENT)
1442 		return false;
1443 
1444 	if (regulatory_indoor_allowed() &&
1445 	    (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1446 		return true;
1447 
1448 	if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1449 		return false;
1450 
1451 	/*
1452 	 * Generally, it is possible to rely on another device/driver to allow
1453 	 * the IR concurrent relaxation, however, since the device can further
1454 	 * enforce the relaxation (by doing a similar verifications as this),
1455 	 * and thus fail the GO instantiation, consider only the interfaces of
1456 	 * the current registered device.
1457 	 */
1458 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1459 		bool ret;
1460 
1461 		ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1462 		if (ret)
1463 			return ret;
1464 	}
1465 
1466 	return false;
1467 }
1468 
1469 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1470 				     struct cfg80211_chan_def *chandef,
1471 				     enum nl80211_iftype iftype,
1472 				     u32 prohibited_flags,
1473 				     u32 permitting_flags)
1474 {
1475 	bool res, check_radar;
1476 	int dfs_required;
1477 
1478 	trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype,
1479 				      prohibited_flags,
1480 				      permitting_flags);
1481 
1482 	if (!_cfg80211_chandef_usable(wiphy, chandef,
1483 				      IEEE80211_CHAN_DISABLED, 0))
1484 		return false;
1485 
1486 	dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1487 	check_radar = dfs_required != 0;
1488 
1489 	if (dfs_required > 0 &&
1490 	    cfg80211_chandef_dfs_available(wiphy, chandef)) {
1491 		/* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1492 		prohibited_flags &= ~IEEE80211_CHAN_NO_IR;
1493 		check_radar = false;
1494 	}
1495 
1496 	if (check_radar &&
1497 	    !_cfg80211_chandef_usable(wiphy, chandef,
1498 				      IEEE80211_CHAN_RADAR, 0))
1499 		return false;
1500 
1501 	res = _cfg80211_chandef_usable(wiphy, chandef,
1502 				       prohibited_flags,
1503 				       permitting_flags);
1504 
1505 	trace_cfg80211_return_bool(res);
1506 	return res;
1507 }
1508 
1509 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
1510 				  struct cfg80211_chan_def *chandef,
1511 				  struct cfg80211_beaconing_check_config *cfg)
1512 {
1513 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1514 	u32 permitting_flags = 0;
1515 	bool check_no_ir = true;
1516 
1517 	/*
1518 	 * Under certain conditions suggested by some regulatory bodies a
1519 	 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1520 	 * only if such relaxations are not enabled and the conditions are not
1521 	 * met.
1522 	 */
1523 	if (cfg->relax) {
1524 		lockdep_assert_held(&rdev->wiphy.mtx);
1525 		check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype,
1526 							   chandef->chan);
1527 	}
1528 
1529 	if (cfg->reg_power == IEEE80211_REG_VLP_AP)
1530 		permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1531 
1532 	if ((cfg->iftype == NL80211_IFTYPE_P2P_GO ||
1533 	     cfg->iftype == NL80211_IFTYPE_AP) &&
1534 	    (chandef->width == NL80211_CHAN_WIDTH_20_NOHT ||
1535 	     chandef->width == NL80211_CHAN_WIDTH_20))
1536 		permitting_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1537 
1538 	return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype,
1539 					check_no_ir ? IEEE80211_CHAN_NO_IR : 0,
1540 					permitting_flags);
1541 }
1542 EXPORT_SYMBOL(cfg80211_reg_check_beaconing);
1543 
1544 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1545 				 struct net_device *dev,
1546 				 struct cfg80211_chan_def *chandef)
1547 {
1548 	if (!rdev->ops->set_monitor_channel)
1549 		return -EOPNOTSUPP;
1550 	if (!cfg80211_has_monitors_only(rdev))
1551 		return -EBUSY;
1552 
1553 	return rdev_set_monitor_channel(rdev, dev, chandef);
1554 }
1555 
1556 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1557 				  unsigned long sband_mask,
1558 				  u32 prohibited_flags)
1559 {
1560 	int idx;
1561 
1562 	prohibited_flags |= IEEE80211_CHAN_DISABLED;
1563 
1564 	for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1565 		struct ieee80211_supported_band *sband = wiphy->bands[idx];
1566 		int chanidx;
1567 
1568 		if (!sband)
1569 			continue;
1570 
1571 		for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1572 			struct ieee80211_channel *chan;
1573 
1574 			chan = &sband->channels[chanidx];
1575 
1576 			if (chan->flags & prohibited_flags)
1577 				continue;
1578 
1579 			return true;
1580 		}
1581 	}
1582 
1583 	return false;
1584 }
1585 EXPORT_SYMBOL(cfg80211_any_usable_channels);
1586 
1587 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1588 				       unsigned int link_id)
1589 {
1590 	lockdep_assert_wiphy(wdev->wiphy);
1591 
1592 	WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1593 	WARN_ON(!wdev->valid_links && link_id > 0);
1594 
1595 	switch (wdev->iftype) {
1596 	case NL80211_IFTYPE_MESH_POINT:
1597 		return &wdev->u.mesh.chandef;
1598 	case NL80211_IFTYPE_ADHOC:
1599 		return &wdev->u.ibss.chandef;
1600 	case NL80211_IFTYPE_OCB:
1601 		return &wdev->u.ocb.chandef;
1602 	case NL80211_IFTYPE_AP:
1603 	case NL80211_IFTYPE_P2P_GO:
1604 		return &wdev->links[link_id].ap.chandef;
1605 	default:
1606 		return NULL;
1607 	}
1608 }
1609 EXPORT_SYMBOL(wdev_chandef);
1610