1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2017 by Delphix. All rights reserved.
27 */
28
29 /*
30 * Contracts
31 * ---------
32 *
33 * Contracts are a primitive which enrich the relationships between
34 * processes and system resources. The primary purpose of contracts is
35 * to provide a means for the system to negotiate the departure from a
36 * binding relationship (e.g. pages locked in memory or a thread bound
37 * to processor), but they can also be used as a purely asynchronous
38 * error reporting mechanism as they are with process contracts.
39 *
40 * More information on how one interfaces with contracts and what
41 * contracts can do for you can be found in:
42 * PSARC 2003/193 Solaris Contracts
43 * PSARC 2004/460 Contracts addendum
44 *
45 * This file contains the core contracts framework. By itself it is
46 * useless: it depends the contracts filesystem (ctfs) to provide an
47 * interface to user processes and individual contract types to
48 * implement the process/resource relationships.
49 *
50 * Data structure overview
51 * -----------------------
52 *
53 * A contract is represented by a contract_t, which itself points to an
54 * encapsulating contract-type specific contract object. A contract_t
55 * contains the contract's static identity (including its terms), its
56 * linkage to various bookkeeping structures, the contract-specific
57 * event queue, and a reference count.
58 *
59 * A contract template is represented by a ct_template_t, which, like a
60 * contract, points to an encapsulating contract-type specific template
61 * object. A ct_template_t contains the template's terms.
62 *
63 * An event queue is represented by a ct_equeue_t, and consists of a
64 * list of events, a list of listeners, and a list of listeners who are
65 * waiting for new events (affectionately referred to as "tail
66 * listeners"). There are three queue types, defined by ct_listnum_t
67 * (an enum). An event may be on one of each type of queue
68 * simultaneously; the list linkage used by a queue is determined by
69 * its type.
70 *
71 * An event is represented by a ct_kevent_t, which contains mostly
72 * static event data (e.g. id, payload). It also has an array of
73 * ct_member_t structures, each of which contains a list_node_t and
74 * represent the event's linkage in a specific event queue.
75 *
76 * Each open of an event endpoint results in the creation of a new
77 * listener, represented by a ct_listener_t. In addition to linkage
78 * into the aforementioned lists in the event_queue, a ct_listener_t
79 * contains a pointer to the ct_kevent_t it is currently positioned at
80 * as well as a set of status flags and other administrative data.
81 *
82 * Each process has a list of contracts it owns, p_ct_held; a pointer
83 * to the process contract it is a member of, p_ct_process; the linkage
84 * for that membership, p_ct_member; and an array of event queue
85 * structures representing the process bundle queues.
86 *
87 * Each LWP has an array of its active templates, lwp_ct_active; and
88 * the most recently created contracts, lwp_ct_latest.
89 *
90 * A process contract has a list of member processes and a list of
91 * inherited contracts.
92 *
93 * There is a system-wide list of all contracts, as well as per-type
94 * lists of contracts.
95 *
96 * Lock ordering overview
97 * ----------------------
98 *
99 * Locks at the top are taken first:
100 *
101 * ct_evtlock
102 * regent ct_lock
103 * member ct_lock
104 * pidlock
105 * p_lock
106 * contract ctq_lock contract_lock
107 * pbundle ctq_lock
108 * cte_lock
109 * ct_reflock
110 *
111 * contract_lock and ctq_lock/cte_lock are not currently taken at the
112 * same time.
113 *
114 * Reference counting and locking
115 * ------------------------------
116 *
117 * A contract has a reference count, protected by ct_reflock.
118 * (ct_reflock is also used in a couple other places where atomic
119 * access to a variable is needed in an innermost context). A process
120 * maintains a hold on each contract it owns. A process contract has a
121 * hold on each contract is has inherited. Each event has a hold on
122 * the contract which generated it. Process contract templates have
123 * holds on the contracts referred to by their transfer terms. CTFS
124 * contract directory nodes have holds on contracts. Lastly, various
125 * code paths may temporarily take holds on contracts to prevent them
126 * from disappearing while other processing is going on. It is
127 * important to note that the global contract lists do not hold
128 * references on contracts; a contract is removed from these structures
129 * atomically with the release of its last reference.
130 *
131 * At a given point in time, a contract can either be owned by a
132 * process, inherited by a regent process contract, or orphaned. A
133 * contract_t's owner and regent pointers, ct_owner and ct_regent, are
134 * protected by its ct_lock. The linkage in the holder's (holder =
135 * owner or regent) list of contracts, ct_ctlist, is protected by
136 * whatever lock protects the holder's data structure. In order for
137 * these two directions to remain consistent, changing the holder of a
138 * contract requires that both locks be held.
139 *
140 * Events also have reference counts. There is one hold on an event
141 * per queue it is present on, in addition to those needed for the
142 * usual sundry reasons. Individual listeners are associated with
143 * specific queues, and increase a queue-specific reference count
144 * stored in the ct_member_t structure.
145 *
146 * The dynamic contents of an event (reference count and flags) are
147 * protected by its cte_lock, while the contents of the embedded
148 * ct_member_t structures are protected by the locks of the queues they
149 * are linked into. A ct_listener_t's contents are also protected by
150 * its event queue's ctq_lock.
151 *
152 * Resource controls
153 * -----------------
154 *
155 * Control: project.max-contracts (rc_project_contract)
156 * Description: Maximum number of contracts allowed a project.
157 *
158 * When a contract is created, the project's allocation is tested and
159 * (assuming success) increased. When the last reference to a
160 * contract is released, the creating project's allocation is
161 * decreased.
162 */
163
164 #include <sys/mutex.h>
165 #include <sys/debug.h>
166 #include <sys/types.h>
167 #include <sys/param.h>
168 #include <sys/kmem.h>
169 #include <sys/thread.h>
170 #include <sys/id_space.h>
171 #include <sys/avl.h>
172 #include <sys/list.h>
173 #include <sys/sysmacros.h>
174 #include <sys/proc.h>
175 #include <sys/ctfs.h>
176 #include <sys/contract_impl.h>
177 #include <sys/contract/process_impl.h>
178 #include <sys/dditypes.h>
179 #include <sys/contract/device_impl.h>
180 #include <sys/systm.h>
181 #include <sys/atomic.h>
182 #include <sys/cmn_err.h>
183 #include <sys/model.h>
184 #include <sys/policy.h>
185 #include <sys/zone.h>
186 #include <sys/task.h>
187 #include <sys/ddi.h>
188 #include <sys/sunddi.h>
189
190 extern rctl_hndl_t rc_project_contract;
191
192 static id_space_t *contract_ids;
193 static avl_tree_t contract_avl;
194 static kmutex_t contract_lock;
195
196 int ct_ntypes = CTT_MAXTYPE;
197 static ct_type_t *ct_types_static[CTT_MAXTYPE];
198 ct_type_t **ct_types = ct_types_static;
199 int ct_debug;
200
201 static void cte_queue_create(ct_equeue_t *, ct_listnum_t, int, int);
202 static void cte_queue_destroy(ct_equeue_t *);
203 static void cte_queue_drain(ct_equeue_t *, int);
204 static void cte_trim(ct_equeue_t *, contract_t *);
205 static void cte_copy(ct_equeue_t *, ct_equeue_t *);
206
207 /*
208 * contract_compar
209 *
210 * A contract comparator which sorts on contract ID.
211 */
212 int
contract_compar(const void * x,const void * y)213 contract_compar(const void *x, const void *y)
214 {
215 const contract_t *ct1 = x;
216 const contract_t *ct2 = y;
217
218 if (ct1->ct_id < ct2->ct_id)
219 return (-1);
220 if (ct1->ct_id > ct2->ct_id)
221 return (1);
222 return (0);
223 }
224
225 /*
226 * contract_init
227 *
228 * Initializes the contract subsystem, the specific contract types, and
229 * process 0.
230 */
231 void
contract_init(void)232 contract_init(void)
233 {
234 /*
235 * Initialize contract subsystem.
236 */
237 contract_ids = id_space_create("contracts", 1, INT_MAX);
238 avl_create(&contract_avl, contract_compar, sizeof (contract_t),
239 offsetof(contract_t, ct_ctavl));
240 mutex_init(&contract_lock, NULL, MUTEX_DEFAULT, NULL);
241
242 /*
243 * Initialize contract types.
244 */
245 contract_process_init();
246 contract_device_init();
247
248 /*
249 * Initialize p0/lwp0 contract state.
250 */
251 avl_create(&p0.p_ct_held, contract_compar, sizeof (contract_t),
252 offsetof(contract_t, ct_ctlist));
253 }
254
255 /*
256 * contract_dtor
257 *
258 * Performs basic destruction of the common portions of a contract.
259 * Called from the failure path of contract_ctor and from
260 * contract_rele.
261 */
262 static void
contract_dtor(contract_t * ct)263 contract_dtor(contract_t *ct)
264 {
265 cte_queue_destroy(&ct->ct_events);
266 list_destroy(&ct->ct_vnodes);
267 mutex_destroy(&ct->ct_reflock);
268 mutex_destroy(&ct->ct_lock);
269 mutex_destroy(&ct->ct_evtlock);
270 }
271
272 /*
273 * contract_ctor
274 *
275 * Called by a contract type to initialize a contract. Fails if the
276 * max-contract resource control would have been exceeded. After a
277 * successful call to contract_ctor, the contract is unlocked and
278 * visible in all namespaces; any type-specific initialization should
279 * be completed before calling contract_ctor. Returns 0 on success.
280 *
281 * Because not all callers can tolerate failure, a 0 value for canfail
282 * instructs contract_ctor to ignore the project.max-contracts resource
283 * control. Obviously, this "out" should only be employed by callers
284 * who are sufficiently constrained in other ways (e.g. newproc).
285 */
286 int
contract_ctor(contract_t * ct,ct_type_t * type,ct_template_t * tmpl,void * data,ctflags_t flags,proc_t * author,int canfail)287 contract_ctor(contract_t *ct, ct_type_t *type, ct_template_t *tmpl, void *data,
288 ctflags_t flags, proc_t *author, int canfail)
289 {
290 avl_index_t where;
291 klwp_t *curlwp = ttolwp(curthread);
292
293 ASSERT(author == curproc);
294
295 mutex_init(&ct->ct_lock, NULL, MUTEX_DEFAULT, NULL);
296 mutex_init(&ct->ct_reflock, NULL, MUTEX_DEFAULT, NULL);
297 mutex_init(&ct->ct_evtlock, NULL, MUTEX_DEFAULT, NULL);
298 ct->ct_id = id_alloc(contract_ids);
299
300 cte_queue_create(&ct->ct_events, CTEL_CONTRACT, 20, 0);
301 list_create(&ct->ct_vnodes, sizeof (contract_vnode_t),
302 offsetof(contract_vnode_t, ctv_node));
303
304 /*
305 * Instance data
306 */
307 ct->ct_ref = 2; /* one for the holder, one for "latest" */
308 ct->ct_cuid = crgetuid(CRED());
309 ct->ct_type = type;
310 ct->ct_data = data;
311 gethrestime(&ct->ct_ctime);
312 ct->ct_state = CTS_OWNED;
313 ct->ct_flags = flags;
314 ct->ct_regent = author->p_ct_process ?
315 &author->p_ct_process->conp_contract : NULL;
316 ct->ct_ev_info = tmpl->ctmpl_ev_info;
317 ct->ct_ev_crit = tmpl->ctmpl_ev_crit;
318 ct->ct_cookie = tmpl->ctmpl_cookie;
319 ct->ct_owner = author;
320 ct->ct_ntime.ctm_total = -1;
321 ct->ct_qtime.ctm_total = -1;
322 ct->ct_nevent = NULL;
323
324 /*
325 * Test project.max-contracts.
326 */
327 mutex_enter(&author->p_lock);
328 mutex_enter(&contract_lock);
329 if (canfail && rctl_test(rc_project_contract,
330 author->p_task->tk_proj->kpj_rctls, author, 1,
331 RCA_SAFE) & RCT_DENY) {
332 id_free(contract_ids, ct->ct_id);
333 mutex_exit(&contract_lock);
334 mutex_exit(&author->p_lock);
335 ct->ct_events.ctq_flags |= CTQ_DEAD;
336 contract_dtor(ct);
337 return (1);
338 }
339 ct->ct_proj = author->p_task->tk_proj;
340 ct->ct_proj->kpj_data.kpd_contract++;
341 (void) project_hold(ct->ct_proj);
342 mutex_exit(&contract_lock);
343
344 /*
345 * Insert into holder's avl of contracts.
346 * We use an avl not because order is important, but because
347 * readdir of /proc/contracts requires we be able to use a
348 * scalar as an index into the process's list of contracts
349 */
350 ct->ct_zoneid = author->p_zone->zone_id;
351 ct->ct_czuniqid = ct->ct_mzuniqid = author->p_zone->zone_uniqid;
352 VERIFY(avl_find(&author->p_ct_held, ct, &where) == NULL);
353 avl_insert(&author->p_ct_held, ct, where);
354 mutex_exit(&author->p_lock);
355
356 /*
357 * Insert into global contract AVL
358 */
359 mutex_enter(&contract_lock);
360 VERIFY(avl_find(&contract_avl, ct, &where) == NULL);
361 avl_insert(&contract_avl, ct, where);
362 mutex_exit(&contract_lock);
363
364 /*
365 * Insert into type AVL
366 */
367 mutex_enter(&type->ct_type_lock);
368 VERIFY(avl_find(&type->ct_type_avl, ct, &where) == NULL);
369 avl_insert(&type->ct_type_avl, ct, where);
370 type->ct_type_timestruc = ct->ct_ctime;
371 mutex_exit(&type->ct_type_lock);
372
373 if (curlwp->lwp_ct_latest[type->ct_type_index])
374 contract_rele(curlwp->lwp_ct_latest[type->ct_type_index]);
375 curlwp->lwp_ct_latest[type->ct_type_index] = ct;
376
377 return (0);
378 }
379
380 /*
381 * contract_rele
382 *
383 * Releases a reference to a contract. If the caller had the last
384 * reference, the contract is removed from all namespaces, its
385 * allocation against the max-contracts resource control is released,
386 * and the contract type's free entry point is invoked for any
387 * type-specific deconstruction and to (presumably) free the object.
388 */
389 void
contract_rele(contract_t * ct)390 contract_rele(contract_t *ct)
391 {
392 uint64_t nref;
393
394 mutex_enter(&ct->ct_reflock);
395 ASSERT(ct->ct_ref > 0);
396 nref = --ct->ct_ref;
397 mutex_exit(&ct->ct_reflock);
398 if (nref == 0) {
399 /*
400 * ct_owner is cleared when it drops its reference.
401 */
402 ASSERT(ct->ct_owner == NULL);
403 ASSERT(ct->ct_evcnt == 0);
404
405 /*
406 * Remove from global contract AVL
407 */
408 mutex_enter(&contract_lock);
409 avl_remove(&contract_avl, ct);
410 mutex_exit(&contract_lock);
411
412 /*
413 * Remove from type AVL
414 */
415 mutex_enter(&ct->ct_type->ct_type_lock);
416 avl_remove(&ct->ct_type->ct_type_avl, ct);
417 mutex_exit(&ct->ct_type->ct_type_lock);
418
419 /*
420 * Release the contract's ID
421 */
422 id_free(contract_ids, ct->ct_id);
423
424 /*
425 * Release project hold
426 */
427 mutex_enter(&contract_lock);
428 ct->ct_proj->kpj_data.kpd_contract--;
429 project_rele(ct->ct_proj);
430 mutex_exit(&contract_lock);
431
432 /*
433 * Free the contract
434 */
435 contract_dtor(ct);
436 ct->ct_type->ct_type_ops->contop_free(ct);
437 }
438 }
439
440 /*
441 * contract_hold
442 *
443 * Adds a reference to a contract
444 */
445 void
contract_hold(contract_t * ct)446 contract_hold(contract_t *ct)
447 {
448 mutex_enter(&ct->ct_reflock);
449 ASSERT(ct->ct_ref < UINT64_MAX);
450 ct->ct_ref++;
451 mutex_exit(&ct->ct_reflock);
452 }
453
454 /*
455 * contract_getzuniqid
456 *
457 * Get a contract's zone unique ID. Needed because 64-bit reads and
458 * writes aren't atomic on x86. Since there are contexts where we are
459 * unable to take ct_lock, we instead use ct_reflock; in actuality any
460 * lock would do.
461 */
462 uint64_t
contract_getzuniqid(contract_t * ct)463 contract_getzuniqid(contract_t *ct)
464 {
465 uint64_t zuniqid;
466
467 mutex_enter(&ct->ct_reflock);
468 zuniqid = ct->ct_mzuniqid;
469 mutex_exit(&ct->ct_reflock);
470
471 return (zuniqid);
472 }
473
474 /*
475 * contract_setzuniqid
476 *
477 * Sets a contract's zone unique ID. See contract_getzuniqid.
478 */
479 void
contract_setzuniqid(contract_t * ct,uint64_t zuniqid)480 contract_setzuniqid(contract_t *ct, uint64_t zuniqid)
481 {
482 mutex_enter(&ct->ct_reflock);
483 ct->ct_mzuniqid = zuniqid;
484 mutex_exit(&ct->ct_reflock);
485 }
486
487 /*
488 * contract_abandon
489 *
490 * Abandons the specified contract. If "explicit" is clear, the
491 * contract was implicitly abandoned (by process exit) and should be
492 * inherited if its terms allow it and its owner was a member of a
493 * regent contract. Otherwise, the contract type's abandon entry point
494 * is invoked to either destroy or orphan the contract.
495 */
496 int
contract_abandon(contract_t * ct,proc_t * p,int explicit)497 contract_abandon(contract_t *ct, proc_t *p, int explicit)
498 {
499 ct_equeue_t *q = NULL;
500 contract_t *parent = &p->p_ct_process->conp_contract;
501 int inherit = 0;
502
503 VERIFY(p == curproc);
504
505 mutex_enter(&ct->ct_lock);
506
507 /*
508 * Multiple contract locks are taken contract -> subcontract.
509 * Check if the contract will be inherited so we can acquire
510 * all the necessary locks before making sensitive changes.
511 */
512 if (!explicit && (ct->ct_flags & CTF_INHERIT) &&
513 contract_process_accept(parent)) {
514 mutex_exit(&ct->ct_lock);
515 mutex_enter(&parent->ct_lock);
516 mutex_enter(&ct->ct_lock);
517 inherit = 1;
518 }
519
520 if (ct->ct_owner != p) {
521 mutex_exit(&ct->ct_lock);
522 if (inherit)
523 mutex_exit(&parent->ct_lock);
524 return (EINVAL);
525 }
526
527 mutex_enter(&p->p_lock);
528 if (explicit)
529 avl_remove(&p->p_ct_held, ct);
530 ct->ct_owner = NULL;
531 mutex_exit(&p->p_lock);
532
533 /*
534 * Since we can't call cte_trim with the contract lock held,
535 * we grab the queue pointer here.
536 */
537 if (p->p_ct_equeue)
538 q = p->p_ct_equeue[ct->ct_type->ct_type_index];
539
540 /*
541 * contop_abandon may destroy the contract so we rely on it to
542 * drop ct_lock. We retain a reference on the contract so that
543 * the cte_trim which follows functions properly. Even though
544 * cte_trim doesn't dereference the contract pointer, it is
545 * still necessary to retain a reference to the contract so
546 * that we don't trim events which are sent by a subsequently
547 * allocated contract infortuitously located at the same address.
548 */
549 contract_hold(ct);
550
551 if (inherit) {
552 ct->ct_state = CTS_INHERITED;
553 VERIFY(ct->ct_regent == parent);
554 contract_process_take(parent, ct);
555
556 /*
557 * We are handing off the process's reference to the
558 * parent contract. For this reason, the order in
559 * which we drop the contract locks is also important.
560 */
561 mutex_exit(&ct->ct_lock);
562 mutex_exit(&parent->ct_lock);
563 } else {
564 ct->ct_regent = NULL;
565 ct->ct_type->ct_type_ops->contop_abandon(ct);
566 }
567
568 /*
569 * ct_lock has been dropped; we can safely trim the event
570 * queue now.
571 */
572 if (q) {
573 mutex_enter(&q->ctq_lock);
574 cte_trim(q, ct);
575 mutex_exit(&q->ctq_lock);
576 }
577
578 contract_rele(ct);
579
580 return (0);
581 }
582
583 int
contract_newct(contract_t * ct)584 contract_newct(contract_t *ct)
585 {
586 return (ct->ct_type->ct_type_ops->contop_newct(ct));
587 }
588
589 /*
590 * contract_adopt
591 *
592 * Adopts a contract. After a successful call to this routine, the
593 * previously inherited contract will belong to the calling process,
594 * and its events will have been appended to its new owner's process
595 * bundle queue.
596 */
597 int
contract_adopt(contract_t * ct,proc_t * p)598 contract_adopt(contract_t *ct, proc_t *p)
599 {
600 avl_index_t where;
601 ct_equeue_t *q;
602 contract_t *parent;
603
604 ASSERT(p == curproc);
605
606 /*
607 * Ensure the process has an event queue. Checked by ASSERTs
608 * below.
609 */
610 (void) contract_type_pbundle(ct->ct_type, p);
611
612 mutex_enter(&ct->ct_lock);
613 parent = ct->ct_regent;
614 if (ct->ct_state != CTS_INHERITED ||
615 &p->p_ct_process->conp_contract != parent ||
616 p->p_zone->zone_uniqid != ct->ct_czuniqid) {
617 mutex_exit(&ct->ct_lock);
618 return (EINVAL);
619 }
620
621 /*
622 * Multiple contract locks are taken contract -> subcontract.
623 */
624 mutex_exit(&ct->ct_lock);
625 mutex_enter(&parent->ct_lock);
626 mutex_enter(&ct->ct_lock);
627
628 /*
629 * It is possible that the contract was adopted by someone else
630 * while its lock was dropped. It isn't possible for the
631 * contract to have been inherited by a different regent
632 * contract.
633 */
634 if (ct->ct_state != CTS_INHERITED) {
635 mutex_exit(&parent->ct_lock);
636 mutex_exit(&ct->ct_lock);
637 return (EBUSY);
638 }
639 ASSERT(ct->ct_regent == parent);
640
641 ct->ct_state = CTS_OWNED;
642
643 contract_process_adopt(ct, p);
644
645 mutex_enter(&p->p_lock);
646 ct->ct_owner = p;
647 VERIFY(avl_find(&p->p_ct_held, ct, &where) == NULL);
648 avl_insert(&p->p_ct_held, ct, where);
649 mutex_exit(&p->p_lock);
650
651 ASSERT(ct->ct_owner->p_ct_equeue);
652 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
653 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
654 cte_copy(&ct->ct_events, q);
655 mutex_exit(&ct->ct_lock);
656
657 return (0);
658 }
659
660 /*
661 * contract_ack
662 *
663 * Acknowledges receipt of a critical event.
664 */
665 int
contract_ack(contract_t * ct,uint64_t evid,int ack)666 contract_ack(contract_t *ct, uint64_t evid, int ack)
667 {
668 ct_kevent_t *ev;
669 list_t *queue = &ct->ct_events.ctq_events;
670 int error = ESRCH;
671 int nego = 0;
672 uint_t evtype;
673
674 ASSERT(ack == CT_ACK || ack == CT_NACK);
675
676 mutex_enter(&ct->ct_lock);
677 mutex_enter(&ct->ct_events.ctq_lock);
678 /*
679 * We are probably ACKing something near the head of the queue.
680 */
681 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
682 if (ev->cte_id == evid) {
683 if (ev->cte_flags & CTE_NEG)
684 nego = 1;
685 else if (ack == CT_NACK)
686 break;
687 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
688 ev->cte_flags |= CTE_ACK;
689 ct->ct_evcnt--;
690 evtype = ev->cte_type;
691 error = 0;
692 }
693 break;
694 }
695 }
696 mutex_exit(&ct->ct_events.ctq_lock);
697 mutex_exit(&ct->ct_lock);
698
699 /*
700 * Not all critical events are negotiation events, however
701 * every negotiation event is a critical event. NEGEND events
702 * are critical events but are not negotiation events
703 */
704 if (error || !nego)
705 return (error);
706
707 if (ack == CT_ACK)
708 error = ct->ct_type->ct_type_ops->contop_ack(ct, evtype, evid);
709 else
710 error = ct->ct_type->ct_type_ops->contop_nack(ct, evtype, evid);
711
712 return (error);
713 }
714
715 /*ARGSUSED*/
716 int
contract_ack_inval(contract_t * ct,uint_t evtype,uint64_t evid)717 contract_ack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
718 {
719 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
720 ct->ct_id);
721 return (ENOSYS);
722 }
723
724 /*ARGSUSED*/
725 int
contract_qack_inval(contract_t * ct,uint_t evtype,uint64_t evid)726 contract_qack_inval(contract_t *ct, uint_t evtype, uint64_t evid)
727 {
728 cmn_err(CE_PANIC, "contract_ack_inval: unsupported call: ctid: %u",
729 ct->ct_id);
730 return (ENOSYS);
731 }
732
733 /*ARGSUSED*/
734 int
contract_qack_notsup(contract_t * ct,uint_t evtype,uint64_t evid)735 contract_qack_notsup(contract_t *ct, uint_t evtype, uint64_t evid)
736 {
737 return (ERANGE);
738 }
739
740 /*
741 * contract_qack
742 *
743 * Asks that negotiations be extended by another time quantum
744 */
745 int
contract_qack(contract_t * ct,uint64_t evid)746 contract_qack(contract_t *ct, uint64_t evid)
747 {
748 ct_kevent_t *ev;
749 list_t *queue = &ct->ct_events.ctq_events;
750 int nego = 0;
751 uint_t evtype;
752
753 mutex_enter(&ct->ct_lock);
754 mutex_enter(&ct->ct_events.ctq_lock);
755
756 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
757 if (ev->cte_id == evid) {
758 if ((ev->cte_flags & (CTE_NEG | CTE_ACK)) == CTE_NEG) {
759 evtype = ev->cte_type;
760 nego = 1;
761 }
762 break;
763 }
764 }
765 mutex_exit(&ct->ct_events.ctq_lock);
766 mutex_exit(&ct->ct_lock);
767
768 /*
769 * Only a negotiated event (which is by definition also a critical
770 * event) which has not yet been acknowledged can provide
771 * time quanta to a negotiating owner process.
772 */
773 if (!nego)
774 return (ESRCH);
775
776 return (ct->ct_type->ct_type_ops->contop_qack(ct, evtype, evid));
777 }
778
779 /*
780 * contract_orphan
781 *
782 * Icky-poo. This is a process-contract special, used to ACK all
783 * critical messages when a contract is orphaned.
784 */
785 void
contract_orphan(contract_t * ct)786 contract_orphan(contract_t *ct)
787 {
788 ct_kevent_t *ev;
789 list_t *queue = &ct->ct_events.ctq_events;
790
791 ASSERT(MUTEX_HELD(&ct->ct_lock));
792 ASSERT(ct->ct_state != CTS_ORPHAN);
793
794 mutex_enter(&ct->ct_events.ctq_lock);
795 ct->ct_state = CTS_ORPHAN;
796 for (ev = list_head(queue); ev; ev = list_next(queue, ev)) {
797 if ((ev->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
798 ev->cte_flags |= CTE_ACK;
799 ct->ct_evcnt--;
800 }
801 }
802 mutex_exit(&ct->ct_events.ctq_lock);
803
804 ASSERT(ct->ct_evcnt == 0);
805 }
806
807 /*
808 * contract_destroy
809 *
810 * Explicit contract destruction. Called when contract is empty.
811 * The contract will actually stick around until all of its events are
812 * removed from the bundle and and process bundle queues, and all fds
813 * which refer to it are closed. See contract_dtor if you are looking
814 * for what destroys the contract structure.
815 */
816 void
contract_destroy(contract_t * ct)817 contract_destroy(contract_t *ct)
818 {
819 ASSERT(MUTEX_HELD(&ct->ct_lock));
820 ASSERT(ct->ct_state != CTS_DEAD);
821 ASSERT(ct->ct_owner == NULL);
822
823 ct->ct_state = CTS_DEAD;
824 cte_queue_drain(&ct->ct_events, 1);
825 mutex_exit(&ct->ct_lock);
826 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
827 cte_trim(&ct->ct_type->ct_type_events, ct);
828 mutex_exit(&ct->ct_type->ct_type_events.ctq_lock);
829 mutex_enter(&ct->ct_lock);
830 ct->ct_type->ct_type_ops->contop_destroy(ct);
831 mutex_exit(&ct->ct_lock);
832 contract_rele(ct);
833 }
834
835 /*
836 * contract_vnode_get
837 *
838 * Obtains the contract directory vnode for this contract, if there is
839 * one. The caller must VN_RELE the vnode when they are through using
840 * it.
841 */
842 vnode_t *
contract_vnode_get(contract_t * ct,vfs_t * vfsp)843 contract_vnode_get(contract_t *ct, vfs_t *vfsp)
844 {
845 contract_vnode_t *ctv;
846 vnode_t *vp = NULL;
847
848 mutex_enter(&ct->ct_lock);
849 for (ctv = list_head(&ct->ct_vnodes); ctv != NULL;
850 ctv = list_next(&ct->ct_vnodes, ctv))
851 if (ctv->ctv_vnode->v_vfsp == vfsp) {
852 vp = ctv->ctv_vnode;
853 VN_HOLD(vp);
854 break;
855 }
856 mutex_exit(&ct->ct_lock);
857 return (vp);
858 }
859
860 /*
861 * contract_vnode_set
862 *
863 * Sets the contract directory vnode for this contract. We don't hold
864 * a reference on the vnode because we don't want to prevent it from
865 * being freed. The vnode's inactive entry point will take care of
866 * notifying us when it should be removed.
867 */
868 void
contract_vnode_set(contract_t * ct,contract_vnode_t * ctv,vnode_t * vnode)869 contract_vnode_set(contract_t *ct, contract_vnode_t *ctv, vnode_t *vnode)
870 {
871 mutex_enter(&ct->ct_lock);
872 ctv->ctv_vnode = vnode;
873 list_insert_head(&ct->ct_vnodes, ctv);
874 mutex_exit(&ct->ct_lock);
875 }
876
877 /*
878 * contract_vnode_clear
879 *
880 * Removes this vnode as the contract directory vnode for this
881 * contract. Called from a contract directory's inactive entry point,
882 * this may return 0 indicating that the vnode gained another reference
883 * because of a simultaneous call to contract_vnode_get.
884 */
885 int
contract_vnode_clear(contract_t * ct,contract_vnode_t * ctv)886 contract_vnode_clear(contract_t *ct, contract_vnode_t *ctv)
887 {
888 vnode_t *vp = ctv->ctv_vnode;
889 int result;
890
891 mutex_enter(&ct->ct_lock);
892 mutex_enter(&vp->v_lock);
893 if (vp->v_count == 1) {
894 list_remove(&ct->ct_vnodes, ctv);
895 result = 1;
896 } else {
897 VN_RELE_LOCKED(vp);
898 result = 0;
899 }
900 mutex_exit(&vp->v_lock);
901 mutex_exit(&ct->ct_lock);
902
903 return (result);
904 }
905
906 /*
907 * contract_exit
908 *
909 * Abandons all contracts held by process p, and drains process p's
910 * bundle queues. Called on process exit.
911 */
912 void
contract_exit(proc_t * p)913 contract_exit(proc_t *p)
914 {
915 contract_t *ct;
916 void *cookie = NULL;
917 int i;
918
919 ASSERT(p == curproc);
920
921 /*
922 * Abandon held contracts. contract_abandon knows enough not
923 * to remove the contract from the list a second time. We are
924 * exiting, so no locks are needed here. But because
925 * contract_abandon will take p_lock, we need to make sure we
926 * aren't holding it.
927 */
928 ASSERT(MUTEX_NOT_HELD(&p->p_lock));
929 while ((ct = avl_destroy_nodes(&p->p_ct_held, &cookie)) != NULL)
930 VERIFY(contract_abandon(ct, p, 0) == 0);
931
932 /*
933 * Drain pbundles. Because a process bundle queue could have
934 * been passed to another process, they may not be freed right
935 * away.
936 */
937 if (p->p_ct_equeue) {
938 for (i = 0; i < CTT_MAXTYPE; i++)
939 if (p->p_ct_equeue[i])
940 cte_queue_drain(p->p_ct_equeue[i], 0);
941 kmem_free(p->p_ct_equeue, CTT_MAXTYPE * sizeof (ct_equeue_t *));
942 }
943 }
944
945 static int
get_time_left(struct ct_time * t)946 get_time_left(struct ct_time *t)
947 {
948 clock_t ticks_elapsed;
949 int secs_elapsed;
950
951 if (t->ctm_total == -1)
952 return (-1);
953
954 ticks_elapsed = ddi_get_lbolt() - t->ctm_start;
955 secs_elapsed = t->ctm_total - (drv_hztousec(ticks_elapsed)/MICROSEC);
956 return (secs_elapsed > 0 ? secs_elapsed : 0);
957 }
958
959 /*
960 * contract_status_common
961 *
962 * Populates a ct_status structure. Used by contract types in their
963 * status entry points and ctfs when only common information is
964 * requested.
965 */
966 void
contract_status_common(contract_t * ct,zone_t * zone,void * status,model_t model)967 contract_status_common(contract_t *ct, zone_t *zone, void *status,
968 model_t model)
969 {
970 STRUCT_HANDLE(ct_status, lstatus);
971
972 STRUCT_SET_HANDLE(lstatus, model, status);
973 ASSERT(MUTEX_HELD(&ct->ct_lock));
974 if (zone->zone_uniqid == GLOBAL_ZONEUNIQID ||
975 zone->zone_uniqid == ct->ct_czuniqid) {
976 zone_t *czone;
977 zoneid_t zoneid = -1;
978
979 /*
980 * Contracts don't have holds on the zones they were
981 * created by. If the contract's zone no longer
982 * exists, we say its zoneid is -1.
983 */
984 if (zone->zone_uniqid == ct->ct_czuniqid ||
985 ct->ct_czuniqid == GLOBAL_ZONEUNIQID) {
986 zoneid = ct->ct_zoneid;
987 } else if ((czone = zone_find_by_id(ct->ct_zoneid)) != NULL) {
988 if (czone->zone_uniqid == ct->ct_mzuniqid)
989 zoneid = ct->ct_zoneid;
990 zone_rele(czone);
991 }
992
993 STRUCT_FSET(lstatus, ctst_zoneid, zoneid);
994 STRUCT_FSET(lstatus, ctst_holder,
995 (ct->ct_state == CTS_OWNED) ? ct->ct_owner->p_pid :
996 (ct->ct_state == CTS_INHERITED) ? ct->ct_regent->ct_id : 0);
997 STRUCT_FSET(lstatus, ctst_state, ct->ct_state);
998 } else {
999 /*
1000 * We are looking at a contract which was created by a
1001 * process outside of our zone. We provide fake zone,
1002 * holder, and state information.
1003 */
1004
1005 STRUCT_FSET(lstatus, ctst_zoneid, zone->zone_id);
1006 /*
1007 * Since "zone" can't disappear until the calling ctfs
1008 * is unmounted, zone_zsched must be valid.
1009 */
1010 STRUCT_FSET(lstatus, ctst_holder, (ct->ct_state < CTS_ORPHAN) ?
1011 zone->zone_zsched->p_pid : 0);
1012 STRUCT_FSET(lstatus, ctst_state, (ct->ct_state < CTS_ORPHAN) ?
1013 CTS_OWNED : ct->ct_state);
1014 }
1015 STRUCT_FSET(lstatus, ctst_nevents, ct->ct_evcnt);
1016 STRUCT_FSET(lstatus, ctst_ntime, get_time_left(&ct->ct_ntime));
1017 STRUCT_FSET(lstatus, ctst_qtime, get_time_left(&ct->ct_qtime));
1018 STRUCT_FSET(lstatus, ctst_nevid,
1019 ct->ct_nevent ? ct->ct_nevent->cte_id : 0);
1020 STRUCT_FSET(lstatus, ctst_critical, ct->ct_ev_crit);
1021 STRUCT_FSET(lstatus, ctst_informative, ct->ct_ev_info);
1022 STRUCT_FSET(lstatus, ctst_cookie, ct->ct_cookie);
1023 STRUCT_FSET(lstatus, ctst_type, ct->ct_type->ct_type_index);
1024 STRUCT_FSET(lstatus, ctst_id, ct->ct_id);
1025 }
1026
1027 /*
1028 * contract_checkcred
1029 *
1030 * Determines if the specified contract is owned by a process with the
1031 * same effective uid as the specified credential. The caller must
1032 * ensure that the uid spaces are the same. Returns 1 on success.
1033 */
1034 static int
contract_checkcred(contract_t * ct,const cred_t * cr)1035 contract_checkcred(contract_t *ct, const cred_t *cr)
1036 {
1037 proc_t *p;
1038 int fail = 1;
1039
1040 mutex_enter(&ct->ct_lock);
1041 if ((p = ct->ct_owner) != NULL) {
1042 mutex_enter(&p->p_crlock);
1043 fail = crgetuid(cr) != crgetuid(p->p_cred);
1044 mutex_exit(&p->p_crlock);
1045 }
1046 mutex_exit(&ct->ct_lock);
1047
1048 return (!fail);
1049 }
1050
1051 /*
1052 * contract_owned
1053 *
1054 * Determines if the specified credential can view an event generated
1055 * by the specified contract. If locked is set, the contract's ct_lock
1056 * is held and the caller will need to do additional work to determine
1057 * if they truly can see the event. Returns 1 on success.
1058 */
1059 int
contract_owned(contract_t * ct,const cred_t * cr,int locked)1060 contract_owned(contract_t *ct, const cred_t *cr, int locked)
1061 {
1062 int owner, cmatch, zmatch;
1063 uint64_t zuniqid, mzuniqid;
1064 uid_t euid;
1065
1066 ASSERT(locked || MUTEX_NOT_HELD(&ct->ct_lock));
1067
1068 zuniqid = curproc->p_zone->zone_uniqid;
1069 mzuniqid = contract_getzuniqid(ct);
1070 euid = crgetuid(cr);
1071
1072 /*
1073 * owner: we own the contract
1074 * cmatch: we are in the creator's (and holder's) zone and our
1075 * uid matches the creator's or holder's
1076 * zmatch: we are in the effective zone of a contract created
1077 * in the global zone, and our uid matches that of the
1078 * virtualized holder's (zsched/kcred)
1079 */
1080 owner = (ct->ct_owner == curproc);
1081 cmatch = (zuniqid == ct->ct_czuniqid) &&
1082 ((ct->ct_cuid == euid) || (!locked && contract_checkcred(ct, cr)));
1083 zmatch = (ct->ct_czuniqid != mzuniqid) && (zuniqid == mzuniqid) &&
1084 (crgetuid(kcred) == euid);
1085
1086 return (owner || cmatch || zmatch);
1087 }
1088
1089
1090 /*
1091 * contract_type_init
1092 *
1093 * Called by contract types to register themselves with the contracts
1094 * framework.
1095 */
1096 ct_type_t *
contract_type_init(ct_typeid_t type,const char * name,contops_t * ops,ct_f_default_t * dfault)1097 contract_type_init(ct_typeid_t type, const char *name, contops_t *ops,
1098 ct_f_default_t *dfault)
1099 {
1100 ct_type_t *result;
1101
1102 ASSERT(type < CTT_MAXTYPE);
1103
1104 result = kmem_alloc(sizeof (ct_type_t), KM_SLEEP);
1105
1106 mutex_init(&result->ct_type_lock, NULL, MUTEX_DEFAULT, NULL);
1107 avl_create(&result->ct_type_avl, contract_compar, sizeof (contract_t),
1108 offsetof(contract_t, ct_cttavl));
1109 cte_queue_create(&result->ct_type_events, CTEL_BUNDLE, 20, 0);
1110 result->ct_type_name = name;
1111 result->ct_type_ops = ops;
1112 result->ct_type_default = dfault;
1113 result->ct_type_evid = 0;
1114 gethrestime(&result->ct_type_timestruc);
1115 result->ct_type_index = type;
1116
1117 ct_types[type] = result;
1118
1119 return (result);
1120 }
1121
1122 /*
1123 * contract_type_count
1124 *
1125 * Obtains the number of contracts of a particular type.
1126 */
1127 int
contract_type_count(ct_type_t * type)1128 contract_type_count(ct_type_t *type)
1129 {
1130 ulong_t count;
1131
1132 mutex_enter(&type->ct_type_lock);
1133 count = avl_numnodes(&type->ct_type_avl);
1134 mutex_exit(&type->ct_type_lock);
1135
1136 return (count);
1137 }
1138
1139 /*
1140 * contract_type_max
1141 *
1142 * Obtains the maximum contract id of of a particular type.
1143 */
1144 ctid_t
contract_type_max(ct_type_t * type)1145 contract_type_max(ct_type_t *type)
1146 {
1147 contract_t *ct;
1148 ctid_t res;
1149
1150 mutex_enter(&type->ct_type_lock);
1151 ct = avl_last(&type->ct_type_avl);
1152 res = ct ? ct->ct_id : -1;
1153 mutex_exit(&type->ct_type_lock);
1154
1155 return (res);
1156 }
1157
1158 /*
1159 * contract_max
1160 *
1161 * Obtains the maximum contract id.
1162 */
1163 ctid_t
contract_max(void)1164 contract_max(void)
1165 {
1166 contract_t *ct;
1167 ctid_t res;
1168
1169 mutex_enter(&contract_lock);
1170 ct = avl_last(&contract_avl);
1171 res = ct ? ct->ct_id : -1;
1172 mutex_exit(&contract_lock);
1173
1174 return (res);
1175 }
1176
1177 /*
1178 * contract_lookup_common
1179 *
1180 * Common code for contract_lookup and contract_type_lookup. Takes a
1181 * pointer to an AVL tree to search in. Should be called with the
1182 * appropriate tree-protecting lock held (unfortunately unassertable).
1183 */
1184 static ctid_t
contract_lookup_common(avl_tree_t * tree,uint64_t zuniqid,ctid_t current)1185 contract_lookup_common(avl_tree_t *tree, uint64_t zuniqid, ctid_t current)
1186 {
1187 contract_t template, *ct;
1188 avl_index_t where;
1189 ctid_t res;
1190
1191 template.ct_id = current;
1192 ct = avl_find(tree, &template, &where);
1193 if (ct == NULL)
1194 ct = avl_nearest(tree, where, AVL_AFTER);
1195 if (zuniqid != GLOBAL_ZONEUNIQID)
1196 while (ct && (contract_getzuniqid(ct) != zuniqid))
1197 ct = AVL_NEXT(tree, ct);
1198 res = ct ? ct->ct_id : -1;
1199
1200 return (res);
1201 }
1202
1203 /*
1204 * contract_type_lookup
1205 *
1206 * Returns the next type contract after the specified id, visible from
1207 * the specified zone.
1208 */
1209 ctid_t
contract_type_lookup(ct_type_t * type,uint64_t zuniqid,ctid_t current)1210 contract_type_lookup(ct_type_t *type, uint64_t zuniqid, ctid_t current)
1211 {
1212 ctid_t res;
1213
1214 mutex_enter(&type->ct_type_lock);
1215 res = contract_lookup_common(&type->ct_type_avl, zuniqid, current);
1216 mutex_exit(&type->ct_type_lock);
1217
1218 return (res);
1219 }
1220
1221 /*
1222 * contract_lookup
1223 *
1224 * Returns the next contract after the specified id, visible from the
1225 * specified zone.
1226 */
1227 ctid_t
contract_lookup(uint64_t zuniqid,ctid_t current)1228 contract_lookup(uint64_t zuniqid, ctid_t current)
1229 {
1230 ctid_t res;
1231
1232 mutex_enter(&contract_lock);
1233 res = contract_lookup_common(&contract_avl, zuniqid, current);
1234 mutex_exit(&contract_lock);
1235
1236 return (res);
1237 }
1238
1239 /*
1240 * contract_plookup
1241 *
1242 * Returns the next contract held by process p after the specified id,
1243 * visible from the specified zone. Made complicated by the fact that
1244 * contracts visible in a zone but held by processes outside of the
1245 * zone need to appear as being held by zsched to zone members.
1246 */
1247 ctid_t
contract_plookup(proc_t * p,ctid_t current,uint64_t zuniqid)1248 contract_plookup(proc_t *p, ctid_t current, uint64_t zuniqid)
1249 {
1250 contract_t template, *ct;
1251 avl_index_t where;
1252 ctid_t res;
1253
1254 template.ct_id = current;
1255 if (zuniqid != GLOBAL_ZONEUNIQID &&
1256 (p->p_flag & (SSYS|SZONETOP)) == (SSYS|SZONETOP)) {
1257 /* This is inelegant. */
1258 mutex_enter(&contract_lock);
1259 ct = avl_find(&contract_avl, &template, &where);
1260 if (ct == NULL)
1261 ct = avl_nearest(&contract_avl, where, AVL_AFTER);
1262 while (ct && !(ct->ct_state < CTS_ORPHAN &&
1263 contract_getzuniqid(ct) == zuniqid &&
1264 ct->ct_czuniqid == GLOBAL_ZONEUNIQID))
1265 ct = AVL_NEXT(&contract_avl, ct);
1266 res = ct ? ct->ct_id : -1;
1267 mutex_exit(&contract_lock);
1268 } else {
1269 mutex_enter(&p->p_lock);
1270 ct = avl_find(&p->p_ct_held, &template, &where);
1271 if (ct == NULL)
1272 ct = avl_nearest(&p->p_ct_held, where, AVL_AFTER);
1273 res = ct ? ct->ct_id : -1;
1274 mutex_exit(&p->p_lock);
1275 }
1276
1277 return (res);
1278 }
1279
1280 /*
1281 * contract_ptr_common
1282 *
1283 * Common code for contract_ptr and contract_type_ptr. Takes a pointer
1284 * to an AVL tree to search in. Should be called with the appropriate
1285 * tree-protecting lock held (unfortunately unassertable).
1286 */
1287 static contract_t *
contract_ptr_common(avl_tree_t * tree,ctid_t id,uint64_t zuniqid)1288 contract_ptr_common(avl_tree_t *tree, ctid_t id, uint64_t zuniqid)
1289 {
1290 contract_t template, *ct;
1291
1292 template.ct_id = id;
1293 ct = avl_find(tree, &template, NULL);
1294 if (ct == NULL || (zuniqid != GLOBAL_ZONEUNIQID &&
1295 contract_getzuniqid(ct) != zuniqid)) {
1296 return (NULL);
1297 }
1298
1299 /*
1300 * Check to see if a thread is in the window in contract_rele
1301 * between dropping the reference count and removing the
1302 * contract from the type AVL.
1303 */
1304 mutex_enter(&ct->ct_reflock);
1305 if (ct->ct_ref) {
1306 ct->ct_ref++;
1307 mutex_exit(&ct->ct_reflock);
1308 } else {
1309 mutex_exit(&ct->ct_reflock);
1310 ct = NULL;
1311 }
1312
1313 return (ct);
1314 }
1315
1316 /*
1317 * contract_type_ptr
1318 *
1319 * Returns a pointer to the contract with the specified id. The
1320 * contract is held, so the caller needs to release the reference when
1321 * it is through with the contract.
1322 */
1323 contract_t *
contract_type_ptr(ct_type_t * type,ctid_t id,uint64_t zuniqid)1324 contract_type_ptr(ct_type_t *type, ctid_t id, uint64_t zuniqid)
1325 {
1326 contract_t *ct;
1327
1328 mutex_enter(&type->ct_type_lock);
1329 ct = contract_ptr_common(&type->ct_type_avl, id, zuniqid);
1330 mutex_exit(&type->ct_type_lock);
1331
1332 return (ct);
1333 }
1334
1335 /*
1336 * contract_ptr
1337 *
1338 * Returns a pointer to the contract with the specified id. The
1339 * contract is held, so the caller needs to release the reference when
1340 * it is through with the contract.
1341 */
1342 contract_t *
contract_ptr(ctid_t id,uint64_t zuniqid)1343 contract_ptr(ctid_t id, uint64_t zuniqid)
1344 {
1345 contract_t *ct;
1346
1347 mutex_enter(&contract_lock);
1348 ct = contract_ptr_common(&contract_avl, id, zuniqid);
1349 mutex_exit(&contract_lock);
1350
1351 return (ct);
1352 }
1353
1354 /*
1355 * contract_type_time
1356 *
1357 * Obtains the last time a contract of a particular type was created.
1358 */
1359 void
contract_type_time(ct_type_t * type,timestruc_t * time)1360 contract_type_time(ct_type_t *type, timestruc_t *time)
1361 {
1362 mutex_enter(&type->ct_type_lock);
1363 *time = type->ct_type_timestruc;
1364 mutex_exit(&type->ct_type_lock);
1365 }
1366
1367 /*
1368 * contract_type_bundle
1369 *
1370 * Obtains a type's bundle queue.
1371 */
1372 ct_equeue_t *
contract_type_bundle(ct_type_t * type)1373 contract_type_bundle(ct_type_t *type)
1374 {
1375 return (&type->ct_type_events);
1376 }
1377
1378 /*
1379 * contract_type_pbundle
1380 *
1381 * Obtain's a process's bundle queue. If one doesn't exist, one is
1382 * created. Often used simply to ensure that a bundle queue is
1383 * allocated.
1384 */
1385 ct_equeue_t *
contract_type_pbundle(ct_type_t * type,proc_t * pp)1386 contract_type_pbundle(ct_type_t *type, proc_t *pp)
1387 {
1388 /*
1389 * If there isn't an array of bundle queues, allocate one.
1390 */
1391 if (pp->p_ct_equeue == NULL) {
1392 size_t size = CTT_MAXTYPE * sizeof (ct_equeue_t *);
1393 ct_equeue_t **qa = kmem_zalloc(size, KM_SLEEP);
1394
1395 mutex_enter(&pp->p_lock);
1396 if (pp->p_ct_equeue)
1397 kmem_free(qa, size);
1398 else
1399 pp->p_ct_equeue = qa;
1400 mutex_exit(&pp->p_lock);
1401 }
1402
1403 /*
1404 * If there isn't a bundle queue of the required type, allocate
1405 * one.
1406 */
1407 if (pp->p_ct_equeue[type->ct_type_index] == NULL) {
1408 ct_equeue_t *q = kmem_zalloc(sizeof (ct_equeue_t), KM_SLEEP);
1409 cte_queue_create(q, CTEL_PBUNDLE, 20, 1);
1410
1411 mutex_enter(&pp->p_lock);
1412 if (pp->p_ct_equeue[type->ct_type_index])
1413 cte_queue_drain(q, 0);
1414 else
1415 pp->p_ct_equeue[type->ct_type_index] = q;
1416 mutex_exit(&pp->p_lock);
1417 }
1418
1419 return (pp->p_ct_equeue[type->ct_type_index]);
1420 }
1421
1422 /*
1423 * ctparam_copyin
1424 *
1425 * copyin a ct_param_t for CT_TSET or CT_TGET commands.
1426 * If ctparam_copyout() is not called after ctparam_copyin(), then
1427 * the caller must kmem_free() the buffer pointed by kparam->ctpm_kbuf.
1428 *
1429 * The copyin/out of ct_param_t is not done in ctmpl_set() and ctmpl_get()
1430 * because prctioctl() calls ctmpl_set() and ctmpl_get() while holding a
1431 * process lock.
1432 */
1433 int
ctparam_copyin(const void * uaddr,ct_kparam_t * kparam,int flag,int cmd)1434 ctparam_copyin(const void *uaddr, ct_kparam_t *kparam, int flag, int cmd)
1435 {
1436 uint32_t size;
1437 void *ubuf;
1438 ct_param_t *param = &kparam->param;
1439 STRUCT_DECL(ct_param, uarg);
1440
1441 STRUCT_INIT(uarg, flag);
1442 if (copyin(uaddr, STRUCT_BUF(uarg), STRUCT_SIZE(uarg)))
1443 return (EFAULT);
1444 size = STRUCT_FGET(uarg, ctpm_size);
1445 ubuf = STRUCT_FGETP(uarg, ctpm_value);
1446
1447 if (size > CT_PARAM_MAX_SIZE || size == 0)
1448 return (EINVAL);
1449
1450 kparam->ctpm_kbuf = kmem_alloc(size, KM_SLEEP);
1451 if (cmd == CT_TSET) {
1452 if (copyin(ubuf, kparam->ctpm_kbuf, size)) {
1453 kmem_free(kparam->ctpm_kbuf, size);
1454 return (EFAULT);
1455 }
1456 }
1457 param->ctpm_id = STRUCT_FGET(uarg, ctpm_id);
1458 param->ctpm_size = size;
1459 param->ctpm_value = ubuf;
1460 kparam->ret_size = 0;
1461
1462 return (0);
1463 }
1464
1465 /*
1466 * ctparam_copyout
1467 *
1468 * copyout a ct_kparam_t and frees the buffer pointed by the member
1469 * ctpm_kbuf of ct_kparam_t
1470 */
1471 int
ctparam_copyout(ct_kparam_t * kparam,void * uaddr,int flag)1472 ctparam_copyout(ct_kparam_t *kparam, void *uaddr, int flag)
1473 {
1474 int r = 0;
1475 ct_param_t *param = &kparam->param;
1476 STRUCT_DECL(ct_param, uarg);
1477
1478 STRUCT_INIT(uarg, flag);
1479
1480 STRUCT_FSET(uarg, ctpm_id, param->ctpm_id);
1481 STRUCT_FSET(uarg, ctpm_size, kparam->ret_size);
1482 STRUCT_FSETP(uarg, ctpm_value, param->ctpm_value);
1483 if (copyout(STRUCT_BUF(uarg), uaddr, STRUCT_SIZE(uarg))) {
1484 r = EFAULT;
1485 goto error;
1486 }
1487 if (copyout(kparam->ctpm_kbuf, param->ctpm_value,
1488 MIN(kparam->ret_size, param->ctpm_size))) {
1489 r = EFAULT;
1490 }
1491
1492 error:
1493 kmem_free(kparam->ctpm_kbuf, param->ctpm_size);
1494
1495 return (r);
1496 }
1497
1498 /*
1499 * ctmpl_free
1500 *
1501 * Frees a template.
1502 */
1503 void
ctmpl_free(ct_template_t * template)1504 ctmpl_free(ct_template_t *template)
1505 {
1506 mutex_destroy(&template->ctmpl_lock);
1507 template->ctmpl_ops->ctop_free(template);
1508 }
1509
1510 /*
1511 * ctmpl_dup
1512 *
1513 * Creates a copy of a template.
1514 */
1515 ct_template_t *
ctmpl_dup(ct_template_t * template)1516 ctmpl_dup(ct_template_t *template)
1517 {
1518 ct_template_t *new;
1519
1520 if (template == NULL)
1521 return (NULL);
1522
1523 new = template->ctmpl_ops->ctop_dup(template);
1524 /*
1525 * ctmpl_lock was taken by ctop_dup's call to ctmpl_copy and
1526 * should have remain held until now.
1527 */
1528 mutex_exit(&template->ctmpl_lock);
1529
1530 return (new);
1531 }
1532
1533 /*
1534 * ctmpl_set
1535 *
1536 * Sets the requested terms of a template.
1537 */
1538 int
ctmpl_set(ct_template_t * template,ct_kparam_t * kparam,const cred_t * cr)1539 ctmpl_set(ct_template_t *template, ct_kparam_t *kparam, const cred_t *cr)
1540 {
1541 int result = 0;
1542 ct_param_t *param = &kparam->param;
1543 uint64_t param_value;
1544
1545 param_value = 0;
1546 if (param->ctpm_id == CTP_COOKIE ||
1547 param->ctpm_id == CTP_EV_INFO ||
1548 param->ctpm_id == CTP_EV_CRITICAL) {
1549 if (param->ctpm_size < sizeof (uint64_t)) {
1550 return (EINVAL);
1551 } else {
1552 param_value = *(uint64_t *)kparam->ctpm_kbuf;
1553 }
1554 }
1555
1556 mutex_enter(&template->ctmpl_lock);
1557 switch (param->ctpm_id) {
1558 case CTP_COOKIE:
1559 template->ctmpl_cookie = param_value;
1560 break;
1561 case CTP_EV_INFO:
1562 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents)
1563 result = EINVAL;
1564 else
1565 template->ctmpl_ev_info = param_value;
1566 break;
1567 case CTP_EV_CRITICAL:
1568 if (param_value & ~(uint64_t)template->ctmpl_ops->allevents) {
1569 result = EINVAL;
1570 break;
1571 } else if ((~template->ctmpl_ev_crit & param_value) == 0) {
1572 /*
1573 * Assume that a pure reduction of the critical
1574 * set is allowed by the contract type.
1575 */
1576 template->ctmpl_ev_crit = param_value;
1577 break;
1578 }
1579 /*
1580 * There may be restrictions on what we can make
1581 * critical, so we defer to the judgement of the
1582 * contract type.
1583 */
1584 /* FALLTHROUGH */
1585 default:
1586 result = template->ctmpl_ops->ctop_set(template, kparam, cr);
1587 }
1588 mutex_exit(&template->ctmpl_lock);
1589
1590 return (result);
1591 }
1592
1593 /*
1594 * ctmpl_get
1595 *
1596 * Obtains the requested terms from a template.
1597 *
1598 * If the term requested is a variable-sized term and the buffer
1599 * provided is too small for the data, we truncate the data and return
1600 * the buffer size necessary to fit the term in kparam->ret_size. If the
1601 * term requested is fix-sized (uint64_t) and the buffer provided is too
1602 * small, we return EINVAL. This should never happen if you're using
1603 * libcontract(3LIB), only if you call ioctl with a hand constructed
1604 * ct_param_t argument.
1605 *
1606 * Currently, only contract specific parameters have variable-sized
1607 * parameters.
1608 */
1609 int
ctmpl_get(ct_template_t * template,ct_kparam_t * kparam)1610 ctmpl_get(ct_template_t *template, ct_kparam_t *kparam)
1611 {
1612 int result = 0;
1613 ct_param_t *param = &kparam->param;
1614 uint64_t *param_value;
1615
1616 param_value = NULL;
1617 if (param->ctpm_id == CTP_COOKIE ||
1618 param->ctpm_id == CTP_EV_INFO ||
1619 param->ctpm_id == CTP_EV_CRITICAL) {
1620 if (param->ctpm_size < sizeof (uint64_t)) {
1621 return (EINVAL);
1622 } else {
1623 param_value = kparam->ctpm_kbuf;
1624 kparam->ret_size = sizeof (uint64_t);
1625 }
1626 }
1627
1628 mutex_enter(&template->ctmpl_lock);
1629 switch (param->ctpm_id) {
1630 case CTP_COOKIE:
1631 if (param_value != NULL)
1632 *param_value = template->ctmpl_cookie;
1633 break;
1634 case CTP_EV_INFO:
1635 if (param_value != NULL)
1636 *param_value = template->ctmpl_ev_info;
1637 break;
1638 case CTP_EV_CRITICAL:
1639 if (param_value != NULL)
1640 *param_value = template->ctmpl_ev_crit;
1641 break;
1642 default:
1643 result = template->ctmpl_ops->ctop_get(template, kparam);
1644 }
1645 mutex_exit(&template->ctmpl_lock);
1646
1647 return (result);
1648 }
1649
1650 /*
1651 * ctmpl_makecurrent
1652 *
1653 * Used by ctmpl_activate and ctmpl_clear to set the current thread's
1654 * active template. Frees the old active template, if there was one.
1655 */
1656 static void
ctmpl_makecurrent(ct_template_t * template,ct_template_t * new)1657 ctmpl_makecurrent(ct_template_t *template, ct_template_t *new)
1658 {
1659 klwp_t *curlwp = ttolwp(curthread);
1660 proc_t *p = curproc;
1661 ct_template_t *old;
1662
1663 mutex_enter(&p->p_lock);
1664 old = curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index];
1665 curlwp->lwp_ct_active[template->ctmpl_type->ct_type_index] = new;
1666 mutex_exit(&p->p_lock);
1667
1668 if (old)
1669 ctmpl_free(old);
1670 }
1671
1672 /*
1673 * ctmpl_activate
1674 *
1675 * Copy the specified template as the current thread's activate
1676 * template of that type.
1677 */
1678 void
ctmpl_activate(ct_template_t * template)1679 ctmpl_activate(ct_template_t *template)
1680 {
1681 ctmpl_makecurrent(template, ctmpl_dup(template));
1682 }
1683
1684 /*
1685 * ctmpl_clear
1686 *
1687 * Clears the current thread's activate template of the same type as
1688 * the specified template.
1689 */
1690 void
ctmpl_clear(ct_template_t * template)1691 ctmpl_clear(ct_template_t *template)
1692 {
1693 ctmpl_makecurrent(template, NULL);
1694 }
1695
1696 /*
1697 * ctmpl_create
1698 *
1699 * Creates a new contract using the specified template.
1700 */
1701 int
ctmpl_create(ct_template_t * template,ctid_t * ctidp)1702 ctmpl_create(ct_template_t *template, ctid_t *ctidp)
1703 {
1704 return (template->ctmpl_ops->ctop_create(template, ctidp));
1705 }
1706
1707 /*
1708 * ctmpl_init
1709 *
1710 * Initializes the common portion of a new contract template.
1711 */
1712 void
ctmpl_init(ct_template_t * new,ctmplops_t * ops,ct_type_t * type,void * data)1713 ctmpl_init(ct_template_t *new, ctmplops_t *ops, ct_type_t *type, void *data)
1714 {
1715 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1716 new->ctmpl_ops = ops;
1717 new->ctmpl_type = type;
1718 new->ctmpl_data = data;
1719 new->ctmpl_ev_info = new->ctmpl_ev_crit = 0;
1720 new->ctmpl_cookie = 0;
1721 }
1722
1723 /*
1724 * ctmpl_copy
1725 *
1726 * Copies the common portions of a contract template. Intended for use
1727 * by a contract type's ctop_dup template op. Returns with the old
1728 * template's lock held, which will should remain held until the
1729 * template op returns (it is dropped by ctmpl_dup).
1730 */
1731 void
ctmpl_copy(ct_template_t * new,ct_template_t * old)1732 ctmpl_copy(ct_template_t *new, ct_template_t *old)
1733 {
1734 mutex_init(&new->ctmpl_lock, NULL, MUTEX_DEFAULT, NULL);
1735 mutex_enter(&old->ctmpl_lock);
1736 new->ctmpl_ops = old->ctmpl_ops;
1737 new->ctmpl_type = old->ctmpl_type;
1738 new->ctmpl_ev_crit = old->ctmpl_ev_crit;
1739 new->ctmpl_ev_info = old->ctmpl_ev_info;
1740 new->ctmpl_cookie = old->ctmpl_cookie;
1741 }
1742
1743 /*
1744 * ctmpl_create_inval
1745 *
1746 * Returns EINVAL. Provided for the convenience of those contract
1747 * types which don't support ct_tmpl_create(3contract) and would
1748 * otherwise need to create their own stub for the ctop_create template
1749 * op.
1750 */
1751 /*ARGSUSED*/
1752 int
ctmpl_create_inval(ct_template_t * template,ctid_t * ctidp)1753 ctmpl_create_inval(ct_template_t *template, ctid_t *ctidp)
1754 {
1755 return (EINVAL);
1756 }
1757
1758
1759 /*
1760 * cte_queue_create
1761 *
1762 * Initializes a queue of a particular type. If dynamic is set, the
1763 * queue is to be freed when its last listener is removed after being
1764 * drained.
1765 */
1766 static void
cte_queue_create(ct_equeue_t * q,ct_listnum_t list,int maxinf,int dynamic)1767 cte_queue_create(ct_equeue_t *q, ct_listnum_t list, int maxinf, int dynamic)
1768 {
1769 mutex_init(&q->ctq_lock, NULL, MUTEX_DEFAULT, NULL);
1770 q->ctq_listno = list;
1771 list_create(&q->ctq_events, sizeof (ct_kevent_t),
1772 offsetof(ct_kevent_t, cte_nodes[list].ctm_node));
1773 list_create(&q->ctq_listeners, sizeof (ct_listener_t),
1774 offsetof(ct_listener_t, ctl_allnode));
1775 list_create(&q->ctq_tail, sizeof (ct_listener_t),
1776 offsetof(ct_listener_t, ctl_tailnode));
1777 gethrestime(&q->ctq_atime);
1778 q->ctq_nlisteners = 0;
1779 q->ctq_nreliable = 0;
1780 q->ctq_ninf = 0;
1781 q->ctq_max = maxinf;
1782
1783 /*
1784 * Bundle queues and contract queues are embedded in other
1785 * structures and are implicitly referenced counted by virtue
1786 * of their vnodes' indirect hold on their contracts. Process
1787 * bundle queues are dynamically allocated and may persist
1788 * after the death of the process, so they must be explicitly
1789 * reference counted.
1790 */
1791 q->ctq_flags = dynamic ? CTQ_REFFED : 0;
1792 }
1793
1794 /*
1795 * cte_queue_destroy
1796 *
1797 * Destroys the specified queue. The queue is freed if referenced
1798 * counted.
1799 */
1800 static void
cte_queue_destroy(ct_equeue_t * q)1801 cte_queue_destroy(ct_equeue_t *q)
1802 {
1803 ASSERT(q->ctq_flags & CTQ_DEAD);
1804 ASSERT(q->ctq_nlisteners == 0);
1805 ASSERT(q->ctq_nreliable == 0);
1806 list_destroy(&q->ctq_events);
1807 list_destroy(&q->ctq_listeners);
1808 list_destroy(&q->ctq_tail);
1809 mutex_destroy(&q->ctq_lock);
1810 if (q->ctq_flags & CTQ_REFFED)
1811 kmem_free(q, sizeof (ct_equeue_t));
1812 }
1813
1814 /*
1815 * cte_hold
1816 *
1817 * Takes a hold on the specified event.
1818 */
1819 static void
cte_hold(ct_kevent_t * e)1820 cte_hold(ct_kevent_t *e)
1821 {
1822 mutex_enter(&e->cte_lock);
1823 ASSERT(e->cte_refs > 0);
1824 e->cte_refs++;
1825 mutex_exit(&e->cte_lock);
1826 }
1827
1828 /*
1829 * cte_rele
1830 *
1831 * Releases a hold on the specified event. If the caller had the last
1832 * reference, frees the event and releases its hold on the contract
1833 * that generated it.
1834 */
1835 static void
cte_rele(ct_kevent_t * e)1836 cte_rele(ct_kevent_t *e)
1837 {
1838 mutex_enter(&e->cte_lock);
1839 ASSERT(e->cte_refs > 0);
1840 if (--e->cte_refs) {
1841 mutex_exit(&e->cte_lock);
1842 return;
1843 }
1844
1845 contract_rele(e->cte_contract);
1846
1847 mutex_destroy(&e->cte_lock);
1848 nvlist_free(e->cte_data);
1849 nvlist_free(e->cte_gdata);
1850 kmem_free(e, sizeof (ct_kevent_t));
1851 }
1852
1853 /*
1854 * cte_qrele
1855 *
1856 * Remove this listener's hold on the specified event, removing and
1857 * releasing the queue's hold on the event if appropriate.
1858 */
1859 static void
cte_qrele(ct_equeue_t * q,ct_listener_t * l,ct_kevent_t * e)1860 cte_qrele(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1861 {
1862 ct_member_t *member = &e->cte_nodes[q->ctq_listno];
1863
1864 ASSERT(MUTEX_HELD(&q->ctq_lock));
1865
1866 if (l->ctl_flags & CTLF_RELIABLE)
1867 member->ctm_nreliable--;
1868 if ((--member->ctm_refs == 0) && member->ctm_trimmed) {
1869 member->ctm_trimmed = 0;
1870 list_remove(&q->ctq_events, e);
1871 cte_rele(e);
1872 }
1873 }
1874
1875 /*
1876 * cte_qmove
1877 *
1878 * Move this listener to the specified event in the queue.
1879 */
1880 static ct_kevent_t *
cte_qmove(ct_equeue_t * q,ct_listener_t * l,ct_kevent_t * e)1881 cte_qmove(ct_equeue_t *q, ct_listener_t *l, ct_kevent_t *e)
1882 {
1883 ct_kevent_t *olde;
1884
1885 ASSERT(MUTEX_HELD(&q->ctq_lock));
1886 ASSERT(l->ctl_equeue == q);
1887
1888 if ((olde = l->ctl_position) == NULL)
1889 list_remove(&q->ctq_tail, l);
1890
1891 while (e != NULL && e->cte_nodes[q->ctq_listno].ctm_trimmed)
1892 e = list_next(&q->ctq_events, e);
1893
1894 if (e != NULL) {
1895 e->cte_nodes[q->ctq_listno].ctm_refs++;
1896 if (l->ctl_flags & CTLF_RELIABLE)
1897 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
1898 } else {
1899 list_insert_tail(&q->ctq_tail, l);
1900 }
1901
1902 l->ctl_position = e;
1903 if (olde)
1904 cte_qrele(q, l, olde);
1905
1906 return (e);
1907 }
1908
1909 /*
1910 * cte_checkcred
1911 *
1912 * Determines if the specified event's contract is owned by a process
1913 * with the same effective uid as the specified credential. Called
1914 * after a failed call to contract_owned with locked set. Because it
1915 * drops the queue lock, its caller (cte_qreadable) needs to make sure
1916 * we're still in the same place after we return. Returns 1 on
1917 * success.
1918 */
1919 static int
cte_checkcred(ct_equeue_t * q,ct_kevent_t * e,const cred_t * cr)1920 cte_checkcred(ct_equeue_t *q, ct_kevent_t *e, const cred_t *cr)
1921 {
1922 int result;
1923 contract_t *ct = e->cte_contract;
1924
1925 cte_hold(e);
1926 mutex_exit(&q->ctq_lock);
1927 result = curproc->p_zone->zone_uniqid == ct->ct_czuniqid &&
1928 contract_checkcred(ct, cr);
1929 mutex_enter(&q->ctq_lock);
1930 cte_rele(e);
1931
1932 return (result);
1933 }
1934
1935 /*
1936 * cte_qreadable
1937 *
1938 * Ensures that the listener is pointing to a valid event that the
1939 * caller has the credentials to read. Returns 0 if we can read the
1940 * event we're pointing to.
1941 */
1942 static int
cte_qreadable(ct_equeue_t * q,ct_listener_t * l,const cred_t * cr,uint64_t zuniqid,int crit)1943 cte_qreadable(ct_equeue_t *q, ct_listener_t *l, const cred_t *cr,
1944 uint64_t zuniqid, int crit)
1945 {
1946 ct_kevent_t *e, *next;
1947 contract_t *ct;
1948
1949 ASSERT(MUTEX_HELD(&q->ctq_lock));
1950 ASSERT(l->ctl_equeue == q);
1951
1952 if (l->ctl_flags & CTLF_COPYOUT)
1953 return (1);
1954
1955 next = l->ctl_position;
1956 while (e = cte_qmove(q, l, next)) {
1957 ct = e->cte_contract;
1958 /*
1959 * Check obvious things first. If we are looking for a
1960 * critical message, is this one? If we aren't in the
1961 * global zone, is this message meant for us?
1962 */
1963 if ((crit && (e->cte_flags & (CTE_INFO | CTE_ACK))) ||
1964 (cr != NULL && zuniqid != GLOBAL_ZONEUNIQID &&
1965 zuniqid != contract_getzuniqid(ct))) {
1966
1967 next = list_next(&q->ctq_events, e);
1968
1969 /*
1970 * Next, see if our effective uid equals that of owner
1971 * or author of the contract. Since we are holding the
1972 * queue lock, contract_owned can't always check if we
1973 * have the same effective uid as the contract's
1974 * owner. If it comes to that, it fails and we take
1975 * the slow(er) path.
1976 */
1977 } else if (cr != NULL && !contract_owned(ct, cr, B_TRUE)) {
1978
1979 /*
1980 * At this point we either don't have any claim
1981 * to this contract or we match the effective
1982 * uid of the owner but couldn't tell. We
1983 * first test for a NULL holder so that events
1984 * from orphans and inherited contracts avoid
1985 * the penalty phase.
1986 */
1987 if (e->cte_contract->ct_owner == NULL &&
1988 !secpolicy_contract_observer_choice(cr))
1989 next = list_next(&q->ctq_events, e);
1990
1991 /*
1992 * cte_checkcred will juggle locks to see if we
1993 * have the same uid as the event's contract's
1994 * current owner. If it succeeds, we have to
1995 * make sure we are in the same point in the
1996 * queue.
1997 */
1998 else if (cte_checkcred(q, e, cr) &&
1999 l->ctl_position == e)
2000 break;
2001
2002 /*
2003 * cte_checkcred failed; see if we're in the
2004 * same place.
2005 */
2006 else if (l->ctl_position == e)
2007 if (secpolicy_contract_observer_choice(cr))
2008 break;
2009 else
2010 next = list_next(&q->ctq_events, e);
2011
2012 /*
2013 * cte_checkcred failed, and our position was
2014 * changed. Start from there.
2015 */
2016 else
2017 next = l->ctl_position;
2018 } else {
2019 break;
2020 }
2021 }
2022
2023 /*
2024 * We check for CTLF_COPYOUT again in case we dropped the queue
2025 * lock in cte_checkcred.
2026 */
2027 return ((l->ctl_flags & CTLF_COPYOUT) || (l->ctl_position == NULL));
2028 }
2029
2030 /*
2031 * cte_qwakeup
2032 *
2033 * Wakes up any waiting listeners and points them at the specified event.
2034 */
2035 static void
cte_qwakeup(ct_equeue_t * q,ct_kevent_t * e)2036 cte_qwakeup(ct_equeue_t *q, ct_kevent_t *e)
2037 {
2038 ct_listener_t *l;
2039
2040 ASSERT(MUTEX_HELD(&q->ctq_lock));
2041
2042 while (l = list_head(&q->ctq_tail)) {
2043 list_remove(&q->ctq_tail, l);
2044 e->cte_nodes[q->ctq_listno].ctm_refs++;
2045 if (l->ctl_flags & CTLF_RELIABLE)
2046 e->cte_nodes[q->ctq_listno].ctm_nreliable++;
2047 l->ctl_position = e;
2048 cv_signal(&l->ctl_cv);
2049 pollwakeup(&l->ctl_pollhead, POLLIN);
2050 }
2051 }
2052
2053 /*
2054 * cte_copy
2055 *
2056 * Copies events from the specified contract event queue to the
2057 * end of the specified process bundle queue. Only called from
2058 * contract_adopt.
2059 *
2060 * We copy to the end of the target queue instead of mixing the events
2061 * in their proper order because otherwise the act of adopting a
2062 * contract would require a process to reset all process bundle
2063 * listeners it needed to see the new events. This would, in turn,
2064 * require the process to keep track of which preexisting events had
2065 * already been processed.
2066 */
2067 static void
cte_copy(ct_equeue_t * q,ct_equeue_t * newq)2068 cte_copy(ct_equeue_t *q, ct_equeue_t *newq)
2069 {
2070 ct_kevent_t *e, *first = NULL;
2071
2072 VERIFY(q->ctq_listno == CTEL_CONTRACT);
2073 VERIFY(newq->ctq_listno == CTEL_PBUNDLE);
2074
2075 mutex_enter(&q->ctq_lock);
2076 mutex_enter(&newq->ctq_lock);
2077
2078 /*
2079 * For now, only copy critical events.
2080 */
2081 for (e = list_head(&q->ctq_events); e != NULL;
2082 e = list_next(&q->ctq_events, e)) {
2083 if ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0) {
2084 if (first == NULL)
2085 first = e;
2086 /*
2087 * It is possible for adoption to race with an owner's
2088 * cte_publish_all(); we must only enqueue events that
2089 * have not already been enqueued.
2090 */
2091 if (!list_link_active((list_node_t *)
2092 ((uintptr_t)e + newq->ctq_events.list_offset))) {
2093 list_insert_tail(&newq->ctq_events, e);
2094 cte_hold(e);
2095 }
2096 }
2097 }
2098
2099 mutex_exit(&q->ctq_lock);
2100
2101 if (first)
2102 cte_qwakeup(newq, first);
2103
2104 mutex_exit(&newq->ctq_lock);
2105 }
2106
2107 /*
2108 * cte_trim
2109 *
2110 * Trims unneeded events from an event queue. Algorithm works as
2111 * follows:
2112 *
2113 * Removes all informative and acknowledged critical events until the
2114 * first referenced event is found.
2115 *
2116 * If a contract is specified, removes all events (regardless of
2117 * acknowledgement) generated by that contract until the first event
2118 * referenced by a reliable listener is found. Reference events are
2119 * removed by marking them "trimmed". Such events will be removed
2120 * when the last reference is dropped and will be skipped by future
2121 * listeners.
2122 *
2123 * This is pretty basic. Ideally this should remove from the middle of
2124 * the list (i.e. beyond the first referenced event), and even
2125 * referenced events.
2126 */
2127 static void
cte_trim(ct_equeue_t * q,contract_t * ct)2128 cte_trim(ct_equeue_t *q, contract_t *ct)
2129 {
2130 ct_kevent_t *e, *next;
2131 int flags, stopper;
2132 int start = 1;
2133
2134 VERIFY(MUTEX_HELD(&q->ctq_lock));
2135
2136 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2137 next = list_next(&q->ctq_events, e);
2138 flags = e->cte_flags;
2139 stopper = (q->ctq_listno != CTEL_PBUNDLE) &&
2140 (e->cte_nodes[q->ctq_listno].ctm_nreliable > 0);
2141 if (e->cte_nodes[q->ctq_listno].ctm_refs == 0) {
2142 if ((start && (flags & (CTE_INFO | CTE_ACK))) ||
2143 (e->cte_contract == ct)) {
2144 /*
2145 * Toss informative and ACKed critical messages.
2146 */
2147 list_remove(&q->ctq_events, e);
2148 cte_rele(e);
2149 }
2150 } else if ((e->cte_contract == ct) && !stopper) {
2151 ASSERT(q->ctq_nlisteners != 0);
2152 e->cte_nodes[q->ctq_listno].ctm_trimmed = 1;
2153 } else if (ct && !stopper) {
2154 start = 0;
2155 } else {
2156 /*
2157 * Don't free messages past the first reader.
2158 */
2159 break;
2160 }
2161 }
2162 }
2163
2164 /*
2165 * cte_queue_drain
2166 *
2167 * Drain all events from the specified queue, and mark it dead. If
2168 * "ack" is set, acknowledge any critical events we find along the
2169 * way.
2170 */
2171 static void
cte_queue_drain(ct_equeue_t * q,int ack)2172 cte_queue_drain(ct_equeue_t *q, int ack)
2173 {
2174 ct_kevent_t *e, *next;
2175 ct_listener_t *l;
2176
2177 mutex_enter(&q->ctq_lock);
2178
2179 for (e = list_head(&q->ctq_events); e != NULL; e = next) {
2180 next = list_next(&q->ctq_events, e);
2181 if (ack && ((e->cte_flags & (CTE_INFO | CTE_ACK)) == 0)) {
2182 /*
2183 * Make sure critical messages are eventually
2184 * removed from the bundle queues.
2185 */
2186 mutex_enter(&e->cte_lock);
2187 e->cte_flags |= CTE_ACK;
2188 mutex_exit(&e->cte_lock);
2189 ASSERT(MUTEX_HELD(&e->cte_contract->ct_lock));
2190 e->cte_contract->ct_evcnt--;
2191 }
2192 list_remove(&q->ctq_events, e);
2193 e->cte_nodes[q->ctq_listno].ctm_refs = 0;
2194 e->cte_nodes[q->ctq_listno].ctm_nreliable = 0;
2195 e->cte_nodes[q->ctq_listno].ctm_trimmed = 0;
2196 cte_rele(e);
2197 }
2198
2199 /*
2200 * This is necessary only because of CTEL_PBUNDLE listeners;
2201 * the events they point to can move from one pbundle to
2202 * another. Fortunately, this only happens if the contract is
2203 * inherited, which (in turn) only happens if the process
2204 * exits, which means it's an all-or-nothing deal. If this
2205 * wasn't the case, we would instead need to keep track of
2206 * listeners on a per-event basis, not just a per-queue basis.
2207 * This would have the side benefit of letting us clean up
2208 * trimmed events sooner (i.e. immediately), but would
2209 * unfortunately make events even bigger than they already
2210 * are.
2211 */
2212 for (l = list_head(&q->ctq_listeners); l;
2213 l = list_next(&q->ctq_listeners, l)) {
2214 l->ctl_flags |= CTLF_DEAD;
2215 if (l->ctl_position) {
2216 l->ctl_position = NULL;
2217 list_insert_tail(&q->ctq_tail, l);
2218 }
2219 cv_broadcast(&l->ctl_cv);
2220 }
2221
2222 /*
2223 * Disallow events.
2224 */
2225 q->ctq_flags |= CTQ_DEAD;
2226
2227 /*
2228 * If we represent the last reference to a reference counted
2229 * process bundle queue, free it.
2230 */
2231 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_nlisteners == 0))
2232 cte_queue_destroy(q);
2233 else
2234 mutex_exit(&q->ctq_lock);
2235 }
2236
2237 /*
2238 * cte_publish
2239 *
2240 * Publishes an event to a specific queue. Only called by
2241 * cte_publish_all.
2242 */
2243 static void
cte_publish(ct_equeue_t * q,ct_kevent_t * e,timespec_t * tsp,boolean_t mayexist)2244 cte_publish(ct_equeue_t *q, ct_kevent_t *e, timespec_t *tsp, boolean_t mayexist)
2245 {
2246 ASSERT(MUTEX_HELD(&q->ctq_lock));
2247
2248 q->ctq_atime = *tsp;
2249
2250 /*
2251 * If this event may already exist on this queue, check to see if it
2252 * is already there and return if so.
2253 */
2254 if (mayexist && list_link_active((list_node_t *)((uintptr_t)e +
2255 q->ctq_events.list_offset))) {
2256 mutex_exit(&q->ctq_lock);
2257 cte_rele(e);
2258 return;
2259 }
2260
2261 /*
2262 * Don't publish if the event is informative and there aren't
2263 * any listeners, or if the queue has been shut down.
2264 */
2265 if (((q->ctq_nlisteners == 0) && (e->cte_flags & (CTE_INFO|CTE_ACK))) ||
2266 (q->ctq_flags & CTQ_DEAD)) {
2267 mutex_exit(&q->ctq_lock);
2268 cte_rele(e);
2269 return;
2270 }
2271
2272 /*
2273 * Enqueue event
2274 */
2275 VERIFY(!list_link_active((list_node_t *)
2276 ((uintptr_t)e + q->ctq_events.list_offset)));
2277 list_insert_tail(&q->ctq_events, e);
2278
2279 /*
2280 * Check for waiting listeners
2281 */
2282 cte_qwakeup(q, e);
2283
2284 /*
2285 * Trim unnecessary events from the queue.
2286 */
2287 cte_trim(q, NULL);
2288 mutex_exit(&q->ctq_lock);
2289 }
2290
2291 /*
2292 * cte_publish_all
2293 *
2294 * Publish an event to all necessary event queues. The event, e, must
2295 * be zallocated by the caller, and the event's flags and type must be
2296 * set. The rest of the event's fields are initialized here.
2297 */
2298 uint64_t
cte_publish_all(contract_t * ct,ct_kevent_t * e,nvlist_t * data,nvlist_t * gdata)2299 cte_publish_all(contract_t *ct, ct_kevent_t *e, nvlist_t *data, nvlist_t *gdata)
2300 {
2301 ct_equeue_t *q;
2302 timespec_t ts;
2303 uint64_t evid;
2304 ct_kevent_t *negev;
2305 int negend;
2306
2307 e->cte_contract = ct;
2308 e->cte_data = data;
2309 e->cte_gdata = gdata;
2310 e->cte_refs = 3;
2311 evid = e->cte_id = atomic_inc_64_nv(&ct->ct_type->ct_type_evid);
2312 contract_hold(ct);
2313
2314 /*
2315 * For a negotiation event we set the ct->ct_nevent field of the
2316 * contract for the duration of the negotiation
2317 */
2318 negend = 0;
2319 if (e->cte_flags & CTE_NEG) {
2320 cte_hold(e);
2321 ct->ct_nevent = e;
2322 } else if (e->cte_type == CT_EV_NEGEND) {
2323 negend = 1;
2324 }
2325
2326 gethrestime(&ts);
2327
2328 /*
2329 * ct_evtlock simply (and only) ensures that two events sent
2330 * from the same contract are delivered to all queues in the
2331 * same order.
2332 */
2333 mutex_enter(&ct->ct_evtlock);
2334
2335 /*
2336 * CTEL_CONTRACT - First deliver to the contract queue, acking
2337 * the event if the contract has been orphaned.
2338 */
2339 mutex_enter(&ct->ct_lock);
2340 mutex_enter(&ct->ct_events.ctq_lock);
2341 if ((e->cte_flags & CTE_INFO) == 0) {
2342 if (ct->ct_state >= CTS_ORPHAN)
2343 e->cte_flags |= CTE_ACK;
2344 else
2345 ct->ct_evcnt++;
2346 }
2347 mutex_exit(&ct->ct_lock);
2348 cte_publish(&ct->ct_events, e, &ts, B_FALSE);
2349
2350 /*
2351 * CTEL_BUNDLE - Next deliver to the contract type's bundle
2352 * queue.
2353 */
2354 mutex_enter(&ct->ct_type->ct_type_events.ctq_lock);
2355 cte_publish(&ct->ct_type->ct_type_events, e, &ts, B_FALSE);
2356
2357 /*
2358 * CTEL_PBUNDLE - Finally, if the contract has an owner,
2359 * deliver to the owner's process bundle queue.
2360 */
2361 mutex_enter(&ct->ct_lock);
2362 if (ct->ct_owner) {
2363 /*
2364 * proc_exit doesn't free event queues until it has
2365 * abandoned all contracts.
2366 */
2367 ASSERT(ct->ct_owner->p_ct_equeue);
2368 ASSERT(ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index]);
2369 q = ct->ct_owner->p_ct_equeue[ct->ct_type->ct_type_index];
2370 mutex_enter(&q->ctq_lock);
2371 mutex_exit(&ct->ct_lock);
2372
2373 /*
2374 * It is possible for this code to race with adoption; we
2375 * publish the event indicating that the event may already
2376 * be enqueued because adoption beat us to it (in which case
2377 * cte_pubish() does nothing).
2378 */
2379 cte_publish(q, e, &ts, B_TRUE);
2380 } else {
2381 mutex_exit(&ct->ct_lock);
2382 cte_rele(e);
2383 }
2384
2385 if (negend) {
2386 mutex_enter(&ct->ct_lock);
2387 negev = ct->ct_nevent;
2388 ct->ct_nevent = NULL;
2389 cte_rele(negev);
2390 mutex_exit(&ct->ct_lock);
2391 }
2392
2393 mutex_exit(&ct->ct_evtlock);
2394
2395 return (evid);
2396 }
2397
2398 /*
2399 * cte_add_listener
2400 *
2401 * Add a new listener to an event queue.
2402 */
2403 void
cte_add_listener(ct_equeue_t * q,ct_listener_t * l)2404 cte_add_listener(ct_equeue_t *q, ct_listener_t *l)
2405 {
2406 cv_init(&l->ctl_cv, NULL, CV_DEFAULT, NULL);
2407 l->ctl_equeue = q;
2408 l->ctl_position = NULL;
2409 l->ctl_flags = 0;
2410
2411 mutex_enter(&q->ctq_lock);
2412 list_insert_head(&q->ctq_tail, l);
2413 list_insert_head(&q->ctq_listeners, l);
2414 q->ctq_nlisteners++;
2415 mutex_exit(&q->ctq_lock);
2416 }
2417
2418 /*
2419 * cte_remove_listener
2420 *
2421 * Remove a listener from an event queue. No other queue activities
2422 * (e.g. cte_get event) may be in progress at this endpoint when this
2423 * is called.
2424 */
2425 void
cte_remove_listener(ct_listener_t * l)2426 cte_remove_listener(ct_listener_t *l)
2427 {
2428 ct_equeue_t *q = l->ctl_equeue;
2429 ct_kevent_t *e;
2430
2431 mutex_enter(&q->ctq_lock);
2432
2433 ASSERT((l->ctl_flags & (CTLF_COPYOUT|CTLF_RESET)) == 0);
2434
2435 if ((e = l->ctl_position) != NULL)
2436 cte_qrele(q, l, e);
2437 else
2438 list_remove(&q->ctq_tail, l);
2439 l->ctl_position = NULL;
2440
2441 q->ctq_nlisteners--;
2442 list_remove(&q->ctq_listeners, l);
2443
2444 if (l->ctl_flags & CTLF_RELIABLE)
2445 q->ctq_nreliable--;
2446
2447 /*
2448 * If we are a the last listener of a dead reference counted
2449 * queue (i.e. a process bundle) we free it. Otherwise we just
2450 * trim any events which may have been kept around for our
2451 * benefit.
2452 */
2453 if ((q->ctq_flags & CTQ_REFFED) && (q->ctq_flags & CTQ_DEAD) &&
2454 (q->ctq_nlisteners == 0)) {
2455 cte_queue_destroy(q);
2456 } else {
2457 cte_trim(q, NULL);
2458 mutex_exit(&q->ctq_lock);
2459 }
2460 }
2461
2462 /*
2463 * cte_reset_listener
2464 *
2465 * Moves a listener's queue pointer to the beginning of the queue.
2466 */
2467 void
cte_reset_listener(ct_listener_t * l)2468 cte_reset_listener(ct_listener_t *l)
2469 {
2470 ct_equeue_t *q = l->ctl_equeue;
2471
2472 mutex_enter(&q->ctq_lock);
2473
2474 /*
2475 * We allow an asynchronous reset because it doesn't make a
2476 * whole lot of sense to make reset block or fail. We already
2477 * have most of the mechanism needed thanks to queue trimming,
2478 * so implementing it isn't a big deal.
2479 */
2480 if (l->ctl_flags & CTLF_COPYOUT)
2481 l->ctl_flags |= CTLF_RESET;
2482
2483 (void) cte_qmove(q, l, list_head(&q->ctq_events));
2484
2485 /*
2486 * Inform blocked readers.
2487 */
2488 cv_broadcast(&l->ctl_cv);
2489 pollwakeup(&l->ctl_pollhead, POLLIN);
2490 mutex_exit(&q->ctq_lock);
2491 }
2492
2493 /*
2494 * cte_next_event
2495 *
2496 * Moves the event pointer for the specified listener to the next event
2497 * on the queue. To avoid races, this movement only occurs if the
2498 * specified event id matches that of the current event. This is used
2499 * primarily to skip events that have been read but whose extended data
2500 * haven't been copied out.
2501 */
2502 int
cte_next_event(ct_listener_t * l,uint64_t id)2503 cte_next_event(ct_listener_t *l, uint64_t id)
2504 {
2505 ct_equeue_t *q = l->ctl_equeue;
2506 ct_kevent_t *old;
2507
2508 mutex_enter(&q->ctq_lock);
2509
2510 if (l->ctl_flags & CTLF_COPYOUT)
2511 l->ctl_flags |= CTLF_RESET;
2512
2513 if (((old = l->ctl_position) != NULL) && (old->cte_id == id))
2514 (void) cte_qmove(q, l, list_next(&q->ctq_events, old));
2515
2516 mutex_exit(&q->ctq_lock);
2517
2518 return (0);
2519 }
2520
2521 /*
2522 * cte_get_event
2523 *
2524 * Reads an event from an event endpoint. If "nonblock" is clear, we
2525 * block until a suitable event is ready. If "crit" is set, we only
2526 * read critical events. Note that while "cr" is the caller's cred,
2527 * "zuniqid" is the unique id of the zone the calling contract
2528 * filesystem was mounted in.
2529 */
2530 int
cte_get_event(ct_listener_t * l,int nonblock,void * uaddr,const cred_t * cr,uint64_t zuniqid,int crit)2531 cte_get_event(ct_listener_t *l, int nonblock, void *uaddr, const cred_t *cr,
2532 uint64_t zuniqid, int crit)
2533 {
2534 ct_equeue_t *q = l->ctl_equeue;
2535 ct_kevent_t *temp;
2536 int result = 0;
2537 int partial = 0;
2538 size_t size, gsize, len;
2539 model_t mdl = get_udatamodel();
2540 STRUCT_DECL(ct_event, ev);
2541 STRUCT_INIT(ev, mdl);
2542
2543 /*
2544 * cte_qreadable checks for CTLF_COPYOUT as well as ensures
2545 * that there exists, and we are pointing to, an appropriate
2546 * event. It may temporarily drop ctq_lock, but that doesn't
2547 * really matter to us.
2548 */
2549 mutex_enter(&q->ctq_lock);
2550 while (cte_qreadable(q, l, cr, zuniqid, crit)) {
2551 if (nonblock) {
2552 result = EAGAIN;
2553 goto error;
2554 }
2555 if (q->ctq_flags & CTQ_DEAD) {
2556 result = EIDRM;
2557 goto error;
2558 }
2559 result = cv_wait_sig(&l->ctl_cv, &q->ctq_lock);
2560 if (result == 0) {
2561 result = EINTR;
2562 goto error;
2563 }
2564 }
2565 temp = l->ctl_position;
2566 cte_hold(temp);
2567 l->ctl_flags |= CTLF_COPYOUT;
2568 mutex_exit(&q->ctq_lock);
2569
2570 /*
2571 * We now have an event. Copy in the user event structure to
2572 * see how much space we have to work with.
2573 */
2574 result = copyin(uaddr, STRUCT_BUF(ev), STRUCT_SIZE(ev));
2575 if (result)
2576 goto copyerr;
2577
2578 /*
2579 * Determine what data we have and what the user should be
2580 * allowed to see.
2581 */
2582 size = gsize = 0;
2583 if (temp->cte_data) {
2584 VERIFY(nvlist_size(temp->cte_data, &size,
2585 NV_ENCODE_NATIVE) == 0);
2586 ASSERT(size != 0);
2587 }
2588 if (zuniqid == GLOBAL_ZONEUNIQID && temp->cte_gdata) {
2589 VERIFY(nvlist_size(temp->cte_gdata, &gsize,
2590 NV_ENCODE_NATIVE) == 0);
2591 ASSERT(gsize != 0);
2592 }
2593
2594 /*
2595 * If we have enough space, copy out the extended event data.
2596 */
2597 len = size + gsize;
2598 if (len) {
2599 if (STRUCT_FGET(ev, ctev_nbytes) >= len) {
2600 char *buf = kmem_alloc(len, KM_SLEEP);
2601
2602 if (size)
2603 VERIFY(nvlist_pack(temp->cte_data, &buf, &size,
2604 NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2605 if (gsize) {
2606 char *tmp = buf + size;
2607
2608 VERIFY(nvlist_pack(temp->cte_gdata, &tmp,
2609 &gsize, NV_ENCODE_NATIVE, KM_SLEEP) == 0);
2610 }
2611
2612 /* This shouldn't have changed */
2613 ASSERT(size + gsize == len);
2614 result = copyout(buf, STRUCT_FGETP(ev, ctev_buffer),
2615 len);
2616 kmem_free(buf, len);
2617 if (result)
2618 goto copyerr;
2619 } else {
2620 partial = 1;
2621 }
2622 }
2623
2624 /*
2625 * Copy out the common event data.
2626 */
2627 STRUCT_FSET(ev, ctev_id, temp->cte_contract->ct_id);
2628 STRUCT_FSET(ev, ctev_evid, temp->cte_id);
2629 STRUCT_FSET(ev, ctev_cttype,
2630 temp->cte_contract->ct_type->ct_type_index);
2631 STRUCT_FSET(ev, ctev_flags, temp->cte_flags &
2632 (CTE_ACK|CTE_INFO|CTE_NEG));
2633 STRUCT_FSET(ev, ctev_type, temp->cte_type);
2634 STRUCT_FSET(ev, ctev_nbytes, len);
2635 STRUCT_FSET(ev, ctev_goffset, size);
2636 result = copyout(STRUCT_BUF(ev), uaddr, STRUCT_SIZE(ev));
2637
2638 copyerr:
2639 /*
2640 * Only move our location in the queue if all copyouts were
2641 * successful, the caller provided enough space for the entire
2642 * event, and our endpoint wasn't reset or otherwise moved by
2643 * another thread.
2644 */
2645 mutex_enter(&q->ctq_lock);
2646 if (result)
2647 result = EFAULT;
2648 else if (!partial && ((l->ctl_flags & CTLF_RESET) == 0) &&
2649 (l->ctl_position == temp))
2650 (void) cte_qmove(q, l, list_next(&q->ctq_events, temp));
2651 l->ctl_flags &= ~(CTLF_COPYOUT|CTLF_RESET);
2652 /*
2653 * Signal any readers blocked on our CTLF_COPYOUT.
2654 */
2655 cv_signal(&l->ctl_cv);
2656 cte_rele(temp);
2657
2658 error:
2659 mutex_exit(&q->ctq_lock);
2660 return (result);
2661 }
2662
2663 /*
2664 * cte_set_reliable
2665 *
2666 * Requests that events be reliably delivered to an event endpoint.
2667 * Unread informative and acknowledged critical events will not be
2668 * removed from the queue until this listener reads or skips them.
2669 * Because a listener could maliciously request reliable delivery and
2670 * then do nothing, this requires that PRIV_CONTRACT_EVENT be in the
2671 * caller's effective set.
2672 */
2673 int
cte_set_reliable(ct_listener_t * l,const cred_t * cr)2674 cte_set_reliable(ct_listener_t *l, const cred_t *cr)
2675 {
2676 ct_equeue_t *q = l->ctl_equeue;
2677 int error;
2678
2679 if ((error = secpolicy_contract_event(cr)) != 0)
2680 return (error);
2681
2682 mutex_enter(&q->ctq_lock);
2683 if ((l->ctl_flags & CTLF_RELIABLE) == 0) {
2684 l->ctl_flags |= CTLF_RELIABLE;
2685 q->ctq_nreliable++;
2686 if (l->ctl_position != NULL)
2687 l->ctl_position->cte_nodes[q->ctq_listno].
2688 ctm_nreliable++;
2689 }
2690 mutex_exit(&q->ctq_lock);
2691
2692 return (0);
2693 }
2694