1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/mutex.h>
26 #include <sys/debug.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/kmem.h>
30 #include <sys/thread.h>
31 #include <sys/id_space.h>
32 #include <sys/avl.h>
33 #include <sys/list.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
36 #include <sys/contract.h>
37 #include <sys/contract_impl.h>
38 #include <sys/contract/device.h>
39 #include <sys/contract/device_impl.h>
40 #include <sys/cmn_err.h>
41 #include <sys/nvpair.h>
42 #include <sys/policy.h>
43 #include <sys/ddi_impldefs.h>
44 #include <sys/ddi_implfuncs.h>
45 #include <sys/systm.h>
46 #include <sys/stat.h>
47 #include <sys/sunddi.h>
48 #include <sys/esunddi.h>
49 #include <sys/ddi.h>
50 #include <sys/fs/dv_node.h>
51 #include <sys/sunndi.h>
52 #undef ct_lock /* needed because clnt.h defines ct_lock as a macro */
53
54 /*
55 * Device Contracts
56 * -----------------
57 * This file contains the core code for the device contracts framework.
58 * A device contract is an agreement or a contract between a process and
59 * the kernel regarding the state of the device. A device contract may be
60 * created when a relationship is formed between a device and a process
61 * i.e. at open(2) time, or it may be created at some point after the device
62 * has been opened. A device contract once formed may be broken by either party.
63 * A device contract can be broken by the process by an explicit abandon of the
64 * contract or by an implicit abandon when the process exits. A device contract
65 * can be broken by the kernel either asynchronously (without negotiation) or
66 * synchronously (with negotiation). Exactly which happens depends on the device
67 * state transition. The following state diagram shows the transitions between
68 * device states. Only device state transitions currently supported by device
69 * contracts is shown.
70 *
71 * <-- A -->
72 * /-----------------> DEGRADED
73 * | |
74 * | |
75 * | | S
76 * | | |
77 * | | v
78 * v S --> v
79 * ONLINE ------------> OFFLINE
80 *
81 *
82 * In the figure above, the arrows indicate the direction of transition. The
83 * letter S refers to transitions which are inherently synchronous i.e.
84 * require negotiation and the letter A indicates transitions which are
85 * asynchronous i.e. are done without contract negotiations. A good example
86 * of a synchronous transition is the ONLINE -> OFFLINE transition. This
87 * transition cannot happen as long as there are consumers which have the
88 * device open. Thus some form of negotiation needs to happen between the
89 * consumers and the kernel to ensure that consumers either close devices
90 * or disallow the move to OFFLINE. Certain other transitions such as
91 * ONLINE --> DEGRADED for example, are inherently asynchronous i.e.
92 * non-negotiable. A device that suffers a fault that degrades its
93 * capabilities will become degraded irrespective of what consumers it has,
94 * so a negotiation in this case is pointless.
95 *
96 * The following device states are currently defined for device contracts:
97 *
98 * CT_DEV_EV_ONLINE
99 * The device is online and functioning normally
100 * CT_DEV_EV_DEGRADED
101 * The device is online but is functioning in a degraded capacity
102 * CT_DEV_EV_OFFLINE
103 * The device is offline and is no longer configured
104 *
105 * A typical consumer of device contracts starts out with a contract
106 * template and adds terms to that template. These include the
107 * "acceptable set" (A-set) term, which is a bitset of device states which
108 * are guaranteed by the contract. If the device moves out of a state in
109 * the A-set, the contract is broken. The breaking of the contract can
110 * be asynchronous in which case a critical contract event is sent to the
111 * contract holder but no negotiations take place. If the breaking of the
112 * contract is synchronous, negotations are opened between the affected
113 * consumer and the kernel. The kernel does this by sending a critical
114 * event to the consumer with the CTE_NEG flag set indicating that this
115 * is a negotiation event. The consumer can accept this change by sending
116 * a ACK message to the kernel. Alternatively, if it has the necessary
117 * privileges, it can send a NACK message to the kernel which will block
118 * the device state change. To NACK a negotiable event, a process must
119 * have the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
120 *
121 * Other terms include the "minor path" term, specified explicitly if the
122 * contract is not being created at open(2) time or specified implicitly
123 * if the contract is being created at open time via an activated template.
124 *
125 * A contract event is sent on any state change to which the contract
126 * owner has subscribed via the informative or critical event sets. Only
127 * critical events are guaranteed to be delivered. Since all device state
128 * changes are controlled by the kernel and cannot be arbitrarily generated
129 * by a non-privileged user, the {PRIV_CONTRACT_EVENT} privilege does not
130 * need to be asserted in a process's effective set to designate an event as
131 * critical. To ensure privacy, a process must either have the same effective
132 * userid as the contract holder or have the {PRIV_CONTRACT_OBSERVER} privilege
133 * asserted in its effective set in order to observe device contract events
134 * off the device contract type specific endpoint.
135 *
136 * Yet another term available with device contracts is the "non-negotiable"
137 * term. This term is used to pre-specify a NACK to any contract negotiation.
138 * This term is ignored for asynchronous state changes. For example, a
139 * provcess may have the A-set {ONLINE|DEGRADED} and make the contract
140 * non-negotiable. In this case, the device contract framework assumes a
141 * NACK for any transition to OFFLINE and blocks the offline. If the A-set
142 * is {ONLINE} and the non-negotiable term is set, transitions to OFFLINE
143 * are NACKed but transitions to DEGRADE succeed.
144 *
145 * The OFFLINE negotiation (if OFFLINE state is not in the A-set for a contract)
146 * happens just before the I/O framework attempts to offline a device
147 * (i.e. detach a device and set the offline flag so that it cannot be
148 * reattached). A device contract holder is expected to either NACK the offline
149 * (if privileged) or release the device and allow the offline to proceed.
150 *
151 * The DEGRADE contract event (if DEGRADE is not in the A-set for a contract)
152 * is generated just before the I/O framework transitions the device state
153 * to "degraded" (i.e. DEVI_DEVICE_DEGRADED in I/O framework terminology).
154 *
155 * The contract holder is expected to ACK or NACK a negotiation event
156 * within a certain period of time. If the ACK/NACK is not received
157 * within the timeout period, the device contract framework will behave
158 * as if the contract does not exist and will proceed with the event.
159 *
160 * Unlike a process contract a device contract does not need to exist
161 * once it is abandoned, since it does not define a fault boundary. It
162 * merely represents an agreement between a process and the kernel
163 * regarding the state of the device. Once the process has abandoned
164 * the contract (either implicitly via a process exit or explicitly)
165 * the kernel has no reason to retain the contract. As a result
166 * device contracts are neither inheritable nor need to exist in an
167 * orphan state.
168 *
169 * A device unlike a process may exist in multiple contracts and has
170 * a "life" outside a device contract. A device unlike a process
171 * may exist without an associated contract. Unlike a process contract
172 * a device contract may be formed after a binding relationship is
173 * formed between a process and a device.
174 *
175 * IMPLEMENTATION NOTES
176 * ====================
177 * DATA STRUCTURES
178 * ----------------
179 * The heart of the device contracts implementation is the device contract
180 * private cont_device_t (or ctd for short) data structure. It encapsulates
181 * the generic contract_t data structure and has a number of private
182 * fields.
183 * These include:
184 * cond_minor: The minor device that is the subject of the contract
185 * cond_aset: The bitset of states which are guaranteed by the
186 * contract
187 * cond_noneg: If set, indicates that the result of negotiation has
188 * been predefined to be a NACK
189 * In addition, there are other device identifiers such the devinfo node,
190 * dev_t and spec_type of the minor node. There are also a few fields that
191 * are used during negotiation to maintain state. See
192 * uts/common/sys/contract/device_impl.h
193 * for details.
194 * The ctd structure represents the device private part of a contract of
195 * type "device"
196 *
197 * Another data structure used by device contracts is ctmpl_device. It is
198 * the device contracts private part of the contract template structure. It
199 * encapsulates the generic template structure "ct_template_t" and includes
200 * the following device contract specific fields
201 * ctd_aset: The bitset of states that should be guaranteed by a
202 * contract
203 * ctd_noneg: If set, indicates that contract should NACK a
204 * negotiation
205 * ctd_minor: The devfs_path (without the /devices prefix) of the
206 * minor node that is the subject of the contract.
207 *
208 * ALGORITHMS
209 * ---------
210 * There are three sets of routines in this file
211 * Template related routines
212 * -------------------------
213 * These routines provide support for template related operations initated
214 * via the generic template operations. These include routines that dup
215 * a template, free it, and set various terms in the template
216 * (such as the minor node path, the acceptable state set (or A-set)
217 * and the non-negotiable term) as well as a routine to query the
218 * device specific portion of the template for the abovementioned terms.
219 * There is also a routine to create (ctmpl_device_create) that is used to
220 * create a contract from a template. This routine calls (after initial
221 * setup) the common function used to create a device contract
222 * (contract_device_create).
223 *
224 * core device contract implementation
225 * ----------------------------------
226 * These routines support the generic contract framework to provide
227 * functionality that allows contracts to be created, managed and
228 * destroyed. The contract_device_create() routine is a routine used
229 * to create a contract from a template (either via an explicit create
230 * operation on a template or implicitly via an open with an
231 * activated template.). The contract_device_free() routine assists
232 * in freeing the device contract specific parts. There are routines
233 * used to abandon (contract_device_abandon) a device contract as well
234 * as a routine to destroy (which despite its name does not destroy,
235 * it only moves a contract to a dead state) a contract.
236 * There is also a routine to return status information about a
237 * contract - the level of detail depends on what is requested by the
238 * user. A value of CTD_FIXED only returns fixed length fields such
239 * as the A-set, state of device and value of the "noneg" term. If
240 * CTD_ALL is specified, the minor node path is returned as well.
241 *
242 * In addition there are interfaces (contract_device_ack/nack) which
243 * are used to support negotiation between userland processes and
244 * device contracts. These interfaces record the acknowledgement
245 * or lack thereof for negotiation events and help determine if the
246 * negotiated event should occur.
247 *
248 * "backend routines"
249 * -----------------
250 * The backend routines form the interface between the I/O framework
251 * and the device contract subsystem. These routines, allow the I/O
252 * framework to call into the device contract subsystem to notify it of
253 * impending changes to a device state as well as to inform of the
254 * final disposition of such attempted state changes. Routines in this
255 * class include contract_device_offline() that indicates an attempt to
256 * offline a device, contract_device_degrade() that indicates that
257 * a device is moving to the degraded state and contract_device_negend()
258 * that is used by the I/O framework to inform the contracts subsystem of
259 * the final disposition of an attempted operation.
260 *
261 * SUMMARY
262 * -------
263 * A contract starts its life as a template. A process allocates a device
264 * contract template and sets various terms:
265 * The A-set
266 * The device minor node
267 * Critical and informative events
268 * The noneg i.e. no negotition term
269 * Setting of these terms in the template is done via the
270 * ctmpl_device_set() entry point in this file. A process can query a
271 * template to determine the terms already set in the template - this is
272 * facilitated by the ctmpl_device_get() routine.
273 *
274 * Once all the appropriate terms are set, the contract is instantiated via
275 * one of two methods
276 * - via an explicit create operation - this is facilitated by the
277 * ctmpl_device_create() entry point
278 * - synchronously with the open(2) system call - this is achieved via the
279 * contract_device_open() routine.
280 * The core work for both these above functions is done by
281 * contract_device_create()
282 *
283 * A contract once created can be queried for its status. Support for
284 * status info is provided by both the common contracts framework and by
285 * the "device" contract type. If the level of detail requested is
286 * CTD_COMMON, only the common contract framework data is used. Higher
287 * levels of detail result in calls to contract_device_status() to supply
288 * device contract type specific status information.
289 *
290 * A contract once created may be abandoned either explicitly or implictly.
291 * In either case, the contract_device_abandon() function is invoked. This
292 * function merely calls contract_destroy() which moves the contract to
293 * the DEAD state. The device contract portion of destroy processing is
294 * provided by contract_device_destroy() which merely disassociates the
295 * contract from its device devinfo node. A contract in the DEAD state is
296 * not freed. It hanbgs around until all references to the contract are
297 * gone. When that happens, the contract is finally deallocated. The
298 * device contract specific portion of the free is done by
299 * contract_device_free() which finally frees the device contract specific
300 * data structure (cont_device_t).
301 *
302 * When a device undergoes a state change, the I/O framework calls the
303 * corresponding device contract entry point. For example, when a device
304 * is about to go OFFLINE, the routine contract_device_offline() is
305 * invoked. Similarly if a device moves to DEGRADED state, the routine
306 * contract_device_degrade() function is called. These functions call the
307 * core routine contract_device_publish(). This function determines via
308 * the function is_sync_neg() whether an event is a synchronous (i.e.
309 * negotiable) event or not. In the former case contract_device_publish()
310 * publishes a CTE_NEG event and then waits in wait_for_acks() for ACKs
311 * and/or NACKs from contract holders. In the latter case, it simply
312 * publishes the event and does not wait. In the negotiation case, ACKs or
313 * NACKs from userland consumers results in contract_device_ack_nack()
314 * being called where the result of the negotiation is recorded in the
315 * contract data structure. Once all outstanding contract owners have
316 * responded, the device contract code in wait_for_acks() determines the
317 * final result of the negotiation. A single NACK overrides all other ACKs
318 * If there is no NACK, then a single ACK will result in an overall ACK
319 * result. If there are no ACKs or NACKs, then the result CT_NONE is
320 * returned back to the I/O framework. Once the event is permitted or
321 * blocked, the I/O framework proceeds or aborts the state change. The
322 * I/O framework then calls contract_device_negend() with a result code
323 * indicating final disposition of the event. This call releases the
324 * barrier and other state associated with the previous negotiation,
325 * which permits the next event (if any) to come into the device contract
326 * framework.
327 *
328 * Finally, a device that has outstanding contracts may be removed from
329 * the system which results in its devinfo node being freed. The devinfo
330 * free routine in the I/O framework, calls into the device contract
331 * function - contract_device_remove_dip(). This routine, disassociates
332 * the dip from all contracts associated with the contract being freed,
333 * allowing the devinfo node to be freed.
334 *
335 * LOCKING
336 * ---------
337 * There are four sets of data that need to be protected by locks
338 *
339 * i) device contract specific portion of the contract template - This data
340 * is protected by the template lock ctmpl_lock.
341 *
342 * ii) device contract specific portion of the contract - This data is
343 * protected by the contract lock ct_lock
344 *
345 * iii) The linked list of contracts hanging off a devinfo node - This
346 * list is protected by the per-devinfo node lock devi_ct_lock
347 *
348 * iv) Finally there is a barrier, controlled by devi_ct_lock, devi_ct_cv
349 * and devi_ct_count that controls state changes to a dip
350 *
351 * The template lock is independent in that none of the other locks in this
352 * file may be taken while holding the template lock (and vice versa).
353 *
354 * The remaining three locks have the following lock order
355 *
356 * devi_ct_lock -> ct_count barrier -> ct_lock
357 *
358 */
359
360 static cont_device_t *contract_device_create(ctmpl_device_t *dtmpl, dev_t dev,
361 int spec_type, proc_t *owner, int *errorp);
362
363 /* barrier routines */
364 static void ct_barrier_acquire(dev_info_t *dip);
365 static void ct_barrier_release(dev_info_t *dip);
366 static int ct_barrier_held(dev_info_t *dip);
367 static int ct_barrier_empty(dev_info_t *dip);
368 static void ct_barrier_wait_for_release(dev_info_t *dip);
369 static int ct_barrier_wait_for_empty(dev_info_t *dip, int secs);
370 static void ct_barrier_decr(dev_info_t *dip);
371 static void ct_barrier_incr(dev_info_t *dip);
372
373 ct_type_t *device_type;
374
375 /*
376 * Macro predicates for determining when events should be sent and how.
377 */
378 #define EVSENDP(ctd, flag) \
379 ((ctd->cond_contract.ct_ev_info | ctd->cond_contract.ct_ev_crit) & flag)
380
381 #define EVINFOP(ctd, flag) \
382 ((ctd->cond_contract.ct_ev_crit & flag) == 0)
383
384 /*
385 * State transition table showing which transitions are synchronous and which
386 * are not.
387 */
388 struct ct_dev_negtable {
389 uint_t st_old;
390 uint_t st_new;
391 uint_t st_neg;
392 } ct_dev_negtable[] = {
393 {CT_DEV_EV_ONLINE, CT_DEV_EV_OFFLINE, 1},
394 {CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED, 0},
395 {CT_DEV_EV_DEGRADED, CT_DEV_EV_ONLINE, 0},
396 {CT_DEV_EV_DEGRADED, CT_DEV_EV_OFFLINE, 1},
397 {0}
398 };
399
400 /*
401 * Device contract template implementation
402 */
403
404 /*
405 * ctmpl_device_dup
406 *
407 * The device contract template dup entry point.
408 * This simply copies all the fields (generic as well as device contract
409 * specific) fields of the original.
410 */
411 static struct ct_template *
ctmpl_device_dup(struct ct_template * template)412 ctmpl_device_dup(struct ct_template *template)
413 {
414 ctmpl_device_t *new;
415 ctmpl_device_t *old = template->ctmpl_data;
416 char *buf;
417 char *minor;
418
419 new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
420 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
421
422 /*
423 * copy generic fields.
424 * ctmpl_copy returns with old template lock held
425 */
426 ctmpl_copy(&new->ctd_ctmpl, template);
427
428 new->ctd_ctmpl.ctmpl_data = new;
429 new->ctd_aset = old->ctd_aset;
430 new->ctd_minor = NULL;
431 new->ctd_noneg = old->ctd_noneg;
432
433 if (old->ctd_minor) {
434 ASSERT(strlen(old->ctd_minor) + 1 <= MAXPATHLEN);
435 bcopy(old->ctd_minor, buf, strlen(old->ctd_minor) + 1);
436 } else {
437 kmem_free(buf, MAXPATHLEN);
438 buf = NULL;
439 }
440
441 mutex_exit(&template->ctmpl_lock);
442 if (buf) {
443 minor = i_ddi_strdup(buf, KM_SLEEP);
444 kmem_free(buf, MAXPATHLEN);
445 buf = NULL;
446 } else {
447 minor = NULL;
448 }
449 mutex_enter(&template->ctmpl_lock);
450
451 if (minor) {
452 new->ctd_minor = minor;
453 }
454
455 ASSERT(buf == NULL);
456 return (&new->ctd_ctmpl);
457 }
458
459 /*
460 * ctmpl_device_free
461 *
462 * The device contract template free entry point. Just
463 * frees the template.
464 */
465 static void
ctmpl_device_free(struct ct_template * template)466 ctmpl_device_free(struct ct_template *template)
467 {
468 ctmpl_device_t *dtmpl = template->ctmpl_data;
469
470 if (dtmpl->ctd_minor)
471 kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
472
473 kmem_free(dtmpl, sizeof (ctmpl_device_t));
474 }
475
476 /*
477 * SAFE_EV is the set of events which a non-privileged process is
478 * allowed to make critical. An unprivileged device contract owner has
479 * no control over when a device changes state, so all device events
480 * can be in the critical set.
481 *
482 * EXCESS tells us if "value", a critical event set, requires
483 * additional privilege. For device contracts EXCESS currently
484 * evaluates to 0.
485 */
486 #define SAFE_EV (CT_DEV_ALLEVENT)
487 #define EXCESS(value) ((value) & ~SAFE_EV)
488
489
490 /*
491 * ctmpl_device_set
492 *
493 * The device contract template set entry point. Sets various terms in the
494 * template. The non-negotiable term can only be set if the process has
495 * the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
496 */
497 static int
ctmpl_device_set(struct ct_template * tmpl,ct_kparam_t * kparam,const cred_t * cr)498 ctmpl_device_set(struct ct_template *tmpl, ct_kparam_t *kparam,
499 const cred_t *cr)
500 {
501 ctmpl_device_t *dtmpl = tmpl->ctmpl_data;
502 ct_param_t *param = &kparam->param;
503 int error;
504 dev_info_t *dip;
505 int spec_type;
506 uint64_t param_value;
507 char *str_value;
508
509 ASSERT(MUTEX_HELD(&tmpl->ctmpl_lock));
510
511 if (param->ctpm_id == CTDP_MINOR) {
512 str_value = (char *)kparam->ctpm_kbuf;
513 str_value[param->ctpm_size - 1] = '\0';
514 } else {
515 if (param->ctpm_size < sizeof (uint64_t))
516 return (EINVAL);
517 param_value = *(uint64_t *)kparam->ctpm_kbuf;
518 }
519
520 switch (param->ctpm_id) {
521 case CTDP_ACCEPT:
522 if (param_value & ~CT_DEV_ALLEVENT)
523 return (EINVAL);
524 if (param_value == 0)
525 return (EINVAL);
526 if (param_value == CT_DEV_ALLEVENT)
527 return (EINVAL);
528
529 dtmpl->ctd_aset = param_value;
530 break;
531 case CTDP_NONEG:
532 if (param_value != CTDP_NONEG_SET &&
533 param_value != CTDP_NONEG_CLEAR)
534 return (EINVAL);
535
536 /*
537 * only privileged processes can designate a contract
538 * non-negotiatble.
539 */
540 if (param_value == CTDP_NONEG_SET &&
541 (error = secpolicy_sys_devices(cr)) != 0) {
542 return (error);
543 }
544
545 dtmpl->ctd_noneg = param_value;
546 break;
547
548 case CTDP_MINOR:
549 if (*str_value != '/' ||
550 strncmp(str_value, "/devices/",
551 strlen("/devices/")) == 0 ||
552 strstr(str_value, "../devices/") != NULL ||
553 strchr(str_value, ':') == NULL) {
554 return (EINVAL);
555 }
556
557 spec_type = 0;
558 dip = NULL;
559 if (resolve_pathname(str_value, &dip, NULL, &spec_type) != 0) {
560 return (ERANGE);
561 }
562 ddi_release_devi(dip);
563
564 if (spec_type != S_IFCHR && spec_type != S_IFBLK) {
565 return (EINVAL);
566 }
567
568 if (dtmpl->ctd_minor != NULL) {
569 kmem_free(dtmpl->ctd_minor,
570 strlen(dtmpl->ctd_minor) + 1);
571 }
572 dtmpl->ctd_minor = i_ddi_strdup(str_value, KM_SLEEP);
573 break;
574 case CTP_EV_CRITICAL:
575 /*
576 * Currently for device contracts, any event
577 * may be added to the critical set. We retain the
578 * following code however for future enhancements.
579 */
580 if (EXCESS(param_value) &&
581 (error = secpolicy_contract_event(cr)) != 0)
582 return (error);
583 tmpl->ctmpl_ev_crit = param_value;
584 break;
585 default:
586 return (EINVAL);
587 }
588
589 return (0);
590 }
591
592 /*
593 * ctmpl_device_get
594 *
595 * The device contract template get entry point. Simply fetches and
596 * returns the value of the requested term.
597 */
598 static int
ctmpl_device_get(struct ct_template * template,ct_kparam_t * kparam)599 ctmpl_device_get(struct ct_template *template, ct_kparam_t *kparam)
600 {
601 ctmpl_device_t *dtmpl = template->ctmpl_data;
602 ct_param_t *param = &kparam->param;
603 uint64_t *param_value = kparam->ctpm_kbuf;
604
605 ASSERT(MUTEX_HELD(&template->ctmpl_lock));
606
607 if (param->ctpm_id == CTDP_ACCEPT ||
608 param->ctpm_id == CTDP_NONEG) {
609 if (param->ctpm_size < sizeof (uint64_t))
610 return (EINVAL);
611 kparam->ret_size = sizeof (uint64_t);
612 }
613
614 switch (param->ctpm_id) {
615 case CTDP_ACCEPT:
616 *param_value = dtmpl->ctd_aset;
617 break;
618 case CTDP_NONEG:
619 *param_value = dtmpl->ctd_noneg;
620 break;
621 case CTDP_MINOR:
622 if (dtmpl->ctd_minor) {
623 kparam->ret_size = strlcpy((char *)kparam->ctpm_kbuf,
624 dtmpl->ctd_minor, param->ctpm_size);
625 kparam->ret_size++;
626 } else {
627 return (ENOENT);
628 }
629 break;
630 default:
631 return (EINVAL);
632 }
633
634 return (0);
635 }
636
637 /*
638 * Device contract type specific portion of creating a contract using
639 * a specified template
640 */
641 /*ARGSUSED*/
642 int
ctmpl_device_create(ct_template_t * template,ctid_t * ctidp)643 ctmpl_device_create(ct_template_t *template, ctid_t *ctidp)
644 {
645 ctmpl_device_t *dtmpl;
646 char *buf;
647 dev_t dev;
648 int spec_type;
649 int error;
650 cont_device_t *ctd;
651
652 if (ctidp == NULL)
653 return (EINVAL);
654
655 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
656
657 dtmpl = template->ctmpl_data;
658
659 mutex_enter(&template->ctmpl_lock);
660 if (dtmpl->ctd_minor == NULL) {
661 /* incomplete template */
662 mutex_exit(&template->ctmpl_lock);
663 kmem_free(buf, MAXPATHLEN);
664 return (EINVAL);
665 } else {
666 ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
667 bcopy(dtmpl->ctd_minor, buf, strlen(dtmpl->ctd_minor) + 1);
668 }
669 mutex_exit(&template->ctmpl_lock);
670
671 spec_type = 0;
672 dev = NODEV;
673 if (resolve_pathname(buf, NULL, &dev, &spec_type) != 0 ||
674 dev == NODEV || dev == DDI_DEV_T_ANY || dev == DDI_DEV_T_NONE ||
675 (spec_type != S_IFCHR && spec_type != S_IFBLK)) {
676 CT_DEBUG((CE_WARN,
677 "tmpl_create: failed to find device: %s", buf));
678 kmem_free(buf, MAXPATHLEN);
679 return (ERANGE);
680 }
681 kmem_free(buf, MAXPATHLEN);
682
683 ctd = contract_device_create(template->ctmpl_data,
684 dev, spec_type, curproc, &error);
685
686 if (ctd == NULL) {
687 CT_DEBUG((CE_WARN, "Failed to create device contract for "
688 "process (%d) with device (devt = %lu, spec_type = %s)",
689 curproc->p_pid, dev,
690 spec_type == S_IFCHR ? "S_IFCHR" : "S_IFBLK"));
691 return (error);
692 }
693
694 mutex_enter(&ctd->cond_contract.ct_lock);
695 *ctidp = ctd->cond_contract.ct_id;
696 mutex_exit(&ctd->cond_contract.ct_lock);
697
698 return (0);
699 }
700
701 /*
702 * Device contract specific template entry points
703 */
704 static ctmplops_t ctmpl_device_ops = {
705 ctmpl_device_dup, /* ctop_dup */
706 ctmpl_device_free, /* ctop_free */
707 ctmpl_device_set, /* ctop_set */
708 ctmpl_device_get, /* ctop_get */
709 ctmpl_device_create, /* ctop_create */
710 CT_DEV_ALLEVENT /* all device events bitmask */
711 };
712
713
714 /*
715 * Device contract implementation
716 */
717
718 /*
719 * contract_device_default
720 *
721 * The device contract default template entry point. Creates a
722 * device contract template with a default A-set and no "noneg" ,
723 * with informative degrade events and critical offline events.
724 * There is no default minor path.
725 */
726 static ct_template_t *
contract_device_default(void)727 contract_device_default(void)
728 {
729 ctmpl_device_t *new;
730
731 new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
732 ctmpl_init(&new->ctd_ctmpl, &ctmpl_device_ops, device_type, new);
733
734 new->ctd_aset = CT_DEV_EV_ONLINE | CT_DEV_EV_DEGRADED;
735 new->ctd_noneg = 0;
736 new->ctd_ctmpl.ctmpl_ev_info = CT_DEV_EV_DEGRADED;
737 new->ctd_ctmpl.ctmpl_ev_crit = CT_DEV_EV_OFFLINE;
738
739 return (&new->ctd_ctmpl);
740 }
741
742 /*
743 * contract_device_free
744 *
745 * Destroys the device contract specific portion of a contract and
746 * frees the contract.
747 */
748 static void
contract_device_free(contract_t * ct)749 contract_device_free(contract_t *ct)
750 {
751 cont_device_t *ctd = ct->ct_data;
752
753 ASSERT(ctd->cond_minor);
754 ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
755 kmem_free(ctd->cond_minor, strlen(ctd->cond_minor) + 1);
756
757 ASSERT(ctd->cond_devt != DDI_DEV_T_ANY &&
758 ctd->cond_devt != DDI_DEV_T_NONE && ctd->cond_devt != NODEV);
759
760 ASSERT(ctd->cond_spec == S_IFBLK || ctd->cond_spec == S_IFCHR);
761
762 ASSERT(!(ctd->cond_aset & ~CT_DEV_ALLEVENT));
763 ASSERT(ctd->cond_noneg == 0 || ctd->cond_noneg == 1);
764
765 ASSERT(!(ctd->cond_currev_type & ~CT_DEV_ALLEVENT));
766 ASSERT(!(ctd->cond_currev_ack & ~(CT_ACK | CT_NACK)));
767
768 ASSERT((ctd->cond_currev_id > 0) ^ (ctd->cond_currev_type == 0));
769 ASSERT((ctd->cond_currev_id > 0) || (ctd->cond_currev_ack == 0));
770
771 ASSERT(!list_link_active(&ctd->cond_next));
772
773 kmem_free(ctd, sizeof (cont_device_t));
774 }
775
776 /*
777 * contract_device_abandon
778 *
779 * The device contract abandon entry point.
780 */
781 static void
contract_device_abandon(contract_t * ct)782 contract_device_abandon(contract_t *ct)
783 {
784 ASSERT(MUTEX_HELD(&ct->ct_lock));
785
786 /*
787 * device contracts cannot be inherited or orphaned.
788 * Move the contract to the DEAD_STATE. It will be freed
789 * once all references to it are gone.
790 */
791 contract_destroy(ct);
792 }
793
794 /*
795 * contract_device_destroy
796 *
797 * The device contract destroy entry point.
798 * Called from contract_destroy() to do any type specific destroy. Note
799 * that destroy is a misnomer - this does not free the contract, it only
800 * moves it to the dead state. A contract is actually freed via
801 * contract_rele() -> contract_dtor(), contop_free()
802 */
803 static void
contract_device_destroy(contract_t * ct)804 contract_device_destroy(contract_t *ct)
805 {
806 cont_device_t *ctd;
807 dev_info_t *dip;
808
809 ASSERT(MUTEX_HELD(&ct->ct_lock));
810
811 for (;;) {
812 ctd = ct->ct_data;
813 dip = ctd->cond_dip;
814 if (dip == NULL) {
815 /*
816 * The dip has been removed, this is a dangling contract
817 * Check that dip linkages are NULL
818 */
819 ASSERT(!list_link_active(&ctd->cond_next));
820 CT_DEBUG((CE_NOTE, "contract_device_destroy:"
821 " contract has no devinfo node. contract ctid : %d",
822 ct->ct_id));
823 return;
824 }
825
826 /*
827 * The intended lock order is : devi_ct_lock -> ct_count
828 * barrier -> ct_lock.
829 * However we can't do this here as dropping the ct_lock allows
830 * a race condition with i_ddi_free_node()/
831 * contract_device_remove_dip() which may free off dip before
832 * we can take devi_ct_lock. So use mutex_tryenter to avoid
833 * dropping ct_lock until we have acquired devi_ct_lock.
834 */
835 if (mutex_tryenter(&(DEVI(dip)->devi_ct_lock)) != 0)
836 break;
837 mutex_exit(&ct->ct_lock);
838 delay(drv_usectohz(1000));
839 mutex_enter(&ct->ct_lock);
840 }
841 mutex_exit(&ct->ct_lock);
842
843 /*
844 * Waiting for the barrier to be released is strictly speaking not
845 * necessary. But it simplifies the implementation of
846 * contract_device_publish() by establishing the invariant that
847 * device contracts cannot go away during negotiation.
848 */
849 ct_barrier_wait_for_release(dip);
850 mutex_enter(&ct->ct_lock);
851
852 list_remove(&(DEVI(dip)->devi_ct), ctd);
853 ctd->cond_dip = NULL; /* no longer linked to dip */
854 contract_rele(ct); /* remove hold for dip linkage */
855
856 mutex_exit(&ct->ct_lock);
857 mutex_exit(&(DEVI(dip)->devi_ct_lock));
858 mutex_enter(&ct->ct_lock);
859 }
860
861 /*
862 * contract_device_status
863 *
864 * The device contract status entry point. Called when level of "detail"
865 * is either CTD_FIXED or CTD_ALL
866 *
867 */
868 static void
contract_device_status(contract_t * ct,zone_t * zone,int detail,nvlist_t * nvl,void * status,model_t model)869 contract_device_status(contract_t *ct, zone_t *zone, int detail, nvlist_t *nvl,
870 void *status, model_t model)
871 {
872 cont_device_t *ctd = ct->ct_data;
873
874 ASSERT(detail == CTD_FIXED || detail == CTD_ALL);
875
876 mutex_enter(&ct->ct_lock);
877 contract_status_common(ct, zone, status, model);
878
879 /*
880 * There's no need to hold the contract lock while accessing static
881 * data like aset or noneg. But since we need the lock to access other
882 * data like state, we hold it anyway.
883 */
884 VERIFY(nvlist_add_uint32(nvl, CTDS_STATE, ctd->cond_state) == 0);
885 VERIFY(nvlist_add_uint32(nvl, CTDS_ASET, ctd->cond_aset) == 0);
886 VERIFY(nvlist_add_uint32(nvl, CTDS_NONEG, ctd->cond_noneg) == 0);
887
888 if (detail == CTD_FIXED) {
889 mutex_exit(&ct->ct_lock);
890 return;
891 }
892
893 ASSERT(ctd->cond_minor);
894 VERIFY(nvlist_add_string(nvl, CTDS_MINOR, ctd->cond_minor) == 0);
895
896 mutex_exit(&ct->ct_lock);
897 }
898
899 /*
900 * Converts a result integer into the corresponding string. Used for printing
901 * messages
902 */
903 static char *
result_str(uint_t result)904 result_str(uint_t result)
905 {
906 switch (result) {
907 case CT_ACK:
908 return ("CT_ACK");
909 case CT_NACK:
910 return ("CT_NACK");
911 case CT_NONE:
912 return ("CT_NONE");
913 default:
914 return ("UNKNOWN");
915 }
916 }
917
918 /*
919 * Converts a device state integer constant into the corresponding string.
920 * Used to print messages.
921 */
922 static char *
state_str(uint_t state)923 state_str(uint_t state)
924 {
925 switch (state) {
926 case CT_DEV_EV_ONLINE:
927 return ("ONLINE");
928 case CT_DEV_EV_DEGRADED:
929 return ("DEGRADED");
930 case CT_DEV_EV_OFFLINE:
931 return ("OFFLINE");
932 default:
933 return ("UNKNOWN");
934 }
935 }
936
937 /*
938 * Routine that determines if a particular CT_DEV_EV_? event corresponds to a
939 * synchronous state change or not.
940 */
941 static int
is_sync_neg(uint_t old,uint_t new)942 is_sync_neg(uint_t old, uint_t new)
943 {
944 int i;
945
946 ASSERT(old & CT_DEV_ALLEVENT);
947 ASSERT(new & CT_DEV_ALLEVENT);
948
949 if (old == new) {
950 CT_DEBUG((CE_WARN, "is_sync_neg: transition to same state: %s",
951 state_str(new)));
952 return (-2);
953 }
954
955 for (i = 0; ct_dev_negtable[i].st_new != 0; i++) {
956 if (old == ct_dev_negtable[i].st_old &&
957 new == ct_dev_negtable[i].st_new) {
958 return (ct_dev_negtable[i].st_neg);
959 }
960 }
961
962 CT_DEBUG((CE_WARN, "is_sync_neg: Unsupported state transition: "
963 "old = %s -> new = %s", state_str(old), state_str(new)));
964
965 return (-1);
966 }
967
968 /*
969 * Used to cleanup cached dv_nodes so that when a device is released by
970 * a contract holder, its devinfo node can be successfully detached.
971 */
972 static int
contract_device_dvclean(dev_info_t * dip)973 contract_device_dvclean(dev_info_t *dip)
974 {
975 char *devnm;
976 dev_info_t *pdip;
977 int error;
978
979 ASSERT(dip);
980
981 /* pdip can be NULL if we have contracts against the root dip */
982 pdip = ddi_get_parent(dip);
983
984 if (pdip && DEVI_BUSY_OWNED(pdip) || !pdip && DEVI_BUSY_OWNED(dip)) {
985 char *path;
986
987 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
988 (void) ddi_pathname(dip, path);
989 CT_DEBUG((CE_WARN, "ct_dv_clean: Parent node is busy owned, "
990 "device=%s", path));
991 kmem_free(path, MAXPATHLEN);
992 return (EDEADLOCK);
993 }
994
995 if (pdip) {
996 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
997 (void) ddi_deviname(dip, devnm);
998 error = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
999 kmem_free(devnm, MAXNAMELEN + 1);
1000 } else {
1001 error = devfs_clean(dip, NULL, DV_CLEAN_FORCE);
1002 }
1003
1004 return (error);
1005 }
1006
1007 /*
1008 * Endpoint of a ct_ctl_ack() or ct_ctl_nack() call from userland.
1009 * Results in the ACK or NACK being recorded on the dip for one particular
1010 * contract. The device contracts framework evaluates the ACK/NACKs for all
1011 * contracts against a device to determine if a particular device state change
1012 * should be allowed.
1013 */
1014 static int
contract_device_ack_nack(contract_t * ct,uint_t evtype,uint64_t evid,uint_t cmd)1015 contract_device_ack_nack(contract_t *ct, uint_t evtype, uint64_t evid,
1016 uint_t cmd)
1017 {
1018 cont_device_t *ctd = ct->ct_data;
1019 dev_info_t *dip;
1020 ctid_t ctid;
1021 int error;
1022
1023 ctid = ct->ct_id;
1024
1025 CT_DEBUG((CE_NOTE, "ack_nack: entered: ctid %d", ctid));
1026
1027 mutex_enter(&ct->ct_lock);
1028 CT_DEBUG((CE_NOTE, "ack_nack: contract lock acquired: %d", ctid));
1029
1030 dip = ctd->cond_dip;
1031
1032 ASSERT(ctd->cond_minor);
1033 ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
1034
1035 /*
1036 * Negotiation only if new state is not in A-set
1037 */
1038 ASSERT(!(ctd->cond_aset & evtype));
1039
1040 /*
1041 * Negotiation only if transition is synchronous
1042 */
1043 ASSERT(is_sync_neg(ctd->cond_state, evtype));
1044
1045 /*
1046 * We shouldn't be negotiating if the "noneg" flag is set
1047 */
1048 ASSERT(!ctd->cond_noneg);
1049
1050 if (dip)
1051 ndi_hold_devi(dip);
1052
1053 mutex_exit(&ct->ct_lock);
1054
1055 /*
1056 * dv_clean only if !NACK and offline state change
1057 */
1058 if (cmd != CT_NACK && evtype == CT_DEV_EV_OFFLINE && dip) {
1059 CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: %d", ctid));
1060 error = contract_device_dvclean(dip);
1061 if (error != 0) {
1062 CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: failed: %d",
1063 ctid));
1064 ddi_release_devi(dip);
1065 }
1066 }
1067
1068 mutex_enter(&ct->ct_lock);
1069
1070 if (dip)
1071 ddi_release_devi(dip);
1072
1073 if (dip == NULL) {
1074 if (ctd->cond_currev_id != evid) {
1075 CT_DEBUG((CE_WARN, "%sACK for non-current event "
1076 "(type=%s, id=%llu) on removed device",
1077 cmd == CT_NACK ? "N" : "",
1078 state_str(evtype), (unsigned long long)evid));
1079 CT_DEBUG((CE_NOTE, "ack_nack: error: ESRCH, ctid: %d",
1080 ctid));
1081 } else {
1082 ASSERT(ctd->cond_currev_type == evtype);
1083 CT_DEBUG((CE_WARN, "contract_ack: no such device: "
1084 "ctid: %d", ctid));
1085 }
1086 error = (ct->ct_state == CTS_DEAD) ? ESRCH :
1087 ((cmd == CT_NACK) ? ETIMEDOUT : 0);
1088 mutex_exit(&ct->ct_lock);
1089 return (error);
1090 }
1091
1092 /*
1093 * Must follow lock order: devi_ct_lock -> ct_count barrier - >ct_lock
1094 */
1095 mutex_exit(&ct->ct_lock);
1096
1097 mutex_enter(&DEVI(dip)->devi_ct_lock);
1098 mutex_enter(&ct->ct_lock);
1099 if (ctd->cond_currev_id != evid) {
1100 char *buf;
1101 mutex_exit(&ct->ct_lock);
1102 mutex_exit(&DEVI(dip)->devi_ct_lock);
1103 ndi_hold_devi(dip);
1104 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1105 (void) ddi_pathname(dip, buf);
1106 ddi_release_devi(dip);
1107 CT_DEBUG((CE_WARN, "%sACK for non-current event"
1108 "(type=%s, id=%llu) on device %s",
1109 cmd == CT_NACK ? "N" : "",
1110 state_str(evtype), (unsigned long long)evid, buf));
1111 kmem_free(buf, MAXPATHLEN);
1112 CT_DEBUG((CE_NOTE, "ack_nack: error: %d, ctid: %d",
1113 cmd == CT_NACK ? ETIMEDOUT : 0, ctid));
1114 return (cmd == CT_ACK ? 0 : ETIMEDOUT);
1115 }
1116
1117 ASSERT(ctd->cond_currev_type == evtype);
1118 ASSERT(cmd == CT_ACK || cmd == CT_NACK);
1119
1120 CT_DEBUG((CE_NOTE, "ack_nack: setting %sACK for ctid: %d",
1121 cmd == CT_NACK ? "N" : "", ctid));
1122
1123 ctd->cond_currev_ack = cmd;
1124 mutex_exit(&ct->ct_lock);
1125
1126 ct_barrier_decr(dip);
1127 mutex_exit(&DEVI(dip)->devi_ct_lock);
1128
1129 CT_DEBUG((CE_NOTE, "ack_nack: normal exit: ctid: %d", ctid));
1130
1131 return (0);
1132 }
1133
1134 /*
1135 * Invoked when a userland contract holder approves (i.e. ACKs) a state change
1136 */
1137 static int
contract_device_ack(contract_t * ct,uint_t evtype,uint64_t evid)1138 contract_device_ack(contract_t *ct, uint_t evtype, uint64_t evid)
1139 {
1140 return (contract_device_ack_nack(ct, evtype, evid, CT_ACK));
1141 }
1142
1143 /*
1144 * Invoked when a userland contract holder blocks (i.e. NACKs) a state change
1145 */
1146 static int
contract_device_nack(contract_t * ct,uint_t evtype,uint64_t evid)1147 contract_device_nack(contract_t *ct, uint_t evtype, uint64_t evid)
1148 {
1149 return (contract_device_ack_nack(ct, evtype, evid, CT_NACK));
1150 }
1151
1152 /*
1153 * Creates a new contract synchronously with the breaking of an existing
1154 * contract. Currently not supported.
1155 */
1156 /*ARGSUSED*/
1157 static int
contract_device_newct(contract_t * ct)1158 contract_device_newct(contract_t *ct)
1159 {
1160 return (ENOTSUP);
1161 }
1162
1163 /*
1164 * Core device contract implementation entry points
1165 */
1166 static contops_t contract_device_ops = {
1167 contract_device_free, /* contop_free */
1168 contract_device_abandon, /* contop_abandon */
1169 contract_device_destroy, /* contop_destroy */
1170 contract_device_status, /* contop_status */
1171 contract_device_ack, /* contop_ack */
1172 contract_device_nack, /* contop_nack */
1173 contract_qack_notsup, /* contop_qack */
1174 contract_device_newct /* contop_newct */
1175 };
1176
1177 /*
1178 * contract_device_init
1179 *
1180 * Initializes the device contract type.
1181 */
1182 void
contract_device_init(void)1183 contract_device_init(void)
1184 {
1185 device_type = contract_type_init(CTT_DEVICE, "device",
1186 &contract_device_ops, contract_device_default);
1187 }
1188
1189 /*
1190 * contract_device_create
1191 *
1192 * create a device contract given template "tmpl" and the "owner" process.
1193 * May fail and return NULL if project.max-contracts would have been exceeded.
1194 *
1195 * Common device contract creation routine called for both open-time and
1196 * non-open time device contract creation
1197 */
1198 static cont_device_t *
contract_device_create(ctmpl_device_t * dtmpl,dev_t dev,int spec_type,proc_t * owner,int * errorp)1199 contract_device_create(ctmpl_device_t *dtmpl, dev_t dev, int spec_type,
1200 proc_t *owner, int *errorp)
1201 {
1202 cont_device_t *ctd;
1203 char *minor;
1204 char *path;
1205 dev_info_t *dip;
1206
1207 ASSERT(dtmpl != NULL);
1208 ASSERT(dev != NODEV && dev != DDI_DEV_T_ANY && dev != DDI_DEV_T_NONE);
1209 ASSERT(spec_type == S_IFCHR || spec_type == S_IFBLK);
1210 ASSERT(errorp);
1211
1212 *errorp = 0;
1213
1214 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1215
1216 mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1217 ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
1218 bcopy(dtmpl->ctd_minor, path, strlen(dtmpl->ctd_minor) + 1);
1219 mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1220
1221 dip = e_ddi_hold_devi_by_path(path, 0);
1222 if (dip == NULL) {
1223 cmn_err(CE_WARN, "contract_create: Cannot find devinfo node "
1224 "for device path (%s)", path);
1225 kmem_free(path, MAXPATHLEN);
1226 *errorp = ERANGE;
1227 return (NULL);
1228 }
1229
1230 /*
1231 * Lock out any parallel contract negotiations
1232 */
1233 mutex_enter(&(DEVI(dip)->devi_ct_lock));
1234 ct_barrier_acquire(dip);
1235 mutex_exit(&(DEVI(dip)->devi_ct_lock));
1236
1237 minor = i_ddi_strdup(path, KM_SLEEP);
1238 kmem_free(path, MAXPATHLEN);
1239
1240 (void) contract_type_pbundle(device_type, owner);
1241
1242 ctd = kmem_zalloc(sizeof (cont_device_t), KM_SLEEP);
1243
1244 /*
1245 * Only we hold a refernce to this contract. Safe to access
1246 * the fields without a ct_lock
1247 */
1248 ctd->cond_minor = minor;
1249 /*
1250 * It is safe to set the dip pointer in the contract
1251 * as the contract will always be destroyed before the dip
1252 * is released
1253 */
1254 ctd->cond_dip = dip;
1255 ctd->cond_devt = dev;
1256 ctd->cond_spec = spec_type;
1257
1258 /*
1259 * Since we are able to lookup the device, it is either
1260 * online or degraded
1261 */
1262 ctd->cond_state = DEVI_IS_DEVICE_DEGRADED(dip) ?
1263 CT_DEV_EV_DEGRADED : CT_DEV_EV_ONLINE;
1264
1265 mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1266 ctd->cond_aset = dtmpl->ctd_aset;
1267 ctd->cond_noneg = dtmpl->ctd_noneg;
1268
1269 /*
1270 * contract_ctor() initailizes the common portion of a contract
1271 * contract_dtor() destroys the common portion of a contract
1272 */
1273 if (contract_ctor(&ctd->cond_contract, device_type, &dtmpl->ctd_ctmpl,
1274 ctd, 0, owner, B_TRUE)) {
1275 mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1276 /*
1277 * contract_device_free() destroys the type specific
1278 * portion of a contract and frees the contract.
1279 * The "minor" path and "cred" is a part of the type specific
1280 * portion of the contract and will be freed by
1281 * contract_device_free()
1282 */
1283 contract_device_free(&ctd->cond_contract);
1284
1285 /* release barrier */
1286 mutex_enter(&(DEVI(dip)->devi_ct_lock));
1287 ct_barrier_release(dip);
1288 mutex_exit(&(DEVI(dip)->devi_ct_lock));
1289
1290 ddi_release_devi(dip);
1291 *errorp = EAGAIN;
1292 return (NULL);
1293 }
1294 mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1295
1296 mutex_enter(&ctd->cond_contract.ct_lock);
1297 ctd->cond_contract.ct_ntime.ctm_total = CT_DEV_ACKTIME;
1298 ctd->cond_contract.ct_qtime.ctm_total = CT_DEV_ACKTIME;
1299 ctd->cond_contract.ct_ntime.ctm_start = -1;
1300 ctd->cond_contract.ct_qtime.ctm_start = -1;
1301 mutex_exit(&ctd->cond_contract.ct_lock);
1302
1303 /*
1304 * Insert device contract into list hanging off the dip
1305 * Bump up the ref-count on the contract to reflect this
1306 */
1307 contract_hold(&ctd->cond_contract);
1308 mutex_enter(&(DEVI(dip)->devi_ct_lock));
1309 list_insert_tail(&(DEVI(dip)->devi_ct), ctd);
1310
1311 /* release barrier */
1312 ct_barrier_release(dip);
1313 mutex_exit(&(DEVI(dip)->devi_ct_lock));
1314
1315 ddi_release_devi(dip);
1316
1317 return (ctd);
1318 }
1319
1320 /*
1321 * Called when a device is successfully opened to create an open-time contract
1322 * i.e. synchronously with a device open.
1323 */
1324 int
contract_device_open(dev_t dev,int spec_type,contract_t ** ctpp)1325 contract_device_open(dev_t dev, int spec_type, contract_t **ctpp)
1326 {
1327 ctmpl_device_t *dtmpl;
1328 ct_template_t *tmpl;
1329 cont_device_t *ctd;
1330 char *path;
1331 klwp_t *lwp;
1332 int error;
1333
1334 if (ctpp)
1335 *ctpp = NULL;
1336
1337 /*
1338 * Check if we are in user-context i.e. if we have an lwp
1339 */
1340 lwp = ttolwp(curthread);
1341 if (lwp == NULL) {
1342 CT_DEBUG((CE_NOTE, "contract_open: Not user-context"));
1343 return (0);
1344 }
1345
1346 tmpl = ctmpl_dup(lwp->lwp_ct_active[device_type->ct_type_index]);
1347 if (tmpl == NULL) {
1348 return (0);
1349 }
1350 dtmpl = tmpl->ctmpl_data;
1351
1352 /*
1353 * If the user set a minor path in the template before an open,
1354 * ignore it. We use the minor path of the actual minor opened.
1355 */
1356 mutex_enter(&tmpl->ctmpl_lock);
1357 if (dtmpl->ctd_minor != NULL) {
1358 CT_DEBUG((CE_NOTE, "contract_device_open(): Process %d: "
1359 "ignoring device minor path in active template: %s",
1360 curproc->p_pid, dtmpl->ctd_minor));
1361 /*
1362 * This is a copy of the actual activated template.
1363 * Safe to make changes such as freeing the minor
1364 * path in the template.
1365 */
1366 kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
1367 dtmpl->ctd_minor = NULL;
1368 }
1369 mutex_exit(&tmpl->ctmpl_lock);
1370
1371 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1372
1373 if (ddi_dev_pathname(dev, spec_type, path) != DDI_SUCCESS) {
1374 CT_DEBUG((CE_NOTE, "contract_device_open(): Failed to derive "
1375 "minor path from dev_t,spec {%lu, %d} for process (%d)",
1376 dev, spec_type, curproc->p_pid));
1377 ctmpl_free(tmpl);
1378 kmem_free(path, MAXPATHLEN);
1379 return (1);
1380 }
1381
1382 mutex_enter(&tmpl->ctmpl_lock);
1383 ASSERT(dtmpl->ctd_minor == NULL);
1384 dtmpl->ctd_minor = path;
1385 mutex_exit(&tmpl->ctmpl_lock);
1386
1387 ctd = contract_device_create(dtmpl, dev, spec_type, curproc, &error);
1388
1389 mutex_enter(&tmpl->ctmpl_lock);
1390 ASSERT(dtmpl->ctd_minor);
1391 dtmpl->ctd_minor = NULL;
1392 mutex_exit(&tmpl->ctmpl_lock);
1393 ctmpl_free(tmpl);
1394 kmem_free(path, MAXPATHLEN);
1395
1396 if (ctd == NULL) {
1397 cmn_err(CE_NOTE, "contract_device_open(): Failed to "
1398 "create device contract for process (%d) holding "
1399 "device (devt = %lu, spec_type = %d)",
1400 curproc->p_pid, dev, spec_type);
1401 return (1);
1402 }
1403
1404 if (ctpp) {
1405 mutex_enter(&ctd->cond_contract.ct_lock);
1406 *ctpp = &ctd->cond_contract;
1407 mutex_exit(&ctd->cond_contract.ct_lock);
1408 }
1409 return (0);
1410 }
1411
1412 /*
1413 * Called during contract negotiation by the device contract framework to wait
1414 * for ACKs or NACKs from contract holders. If all responses are not received
1415 * before a specified timeout, this routine times out.
1416 */
1417 static uint_t
wait_for_acks(dev_info_t * dip,dev_t dev,int spec_type,uint_t evtype)1418 wait_for_acks(dev_info_t *dip, dev_t dev, int spec_type, uint_t evtype)
1419 {
1420 cont_device_t *ctd;
1421 int timed_out = 0;
1422 int result = CT_NONE;
1423 int ack;
1424 char *f = "wait_for_acks";
1425
1426 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
1427 ASSERT(dip);
1428 ASSERT(evtype & CT_DEV_ALLEVENT);
1429 ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1430 ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1431 (spec_type == S_IFBLK || spec_type == S_IFCHR));
1432
1433 CT_DEBUG((CE_NOTE, "%s: entered: dip: %p", f, (void *)dip));
1434
1435 if (ct_barrier_wait_for_empty(dip, CT_DEV_ACKTIME) == -1) {
1436 /*
1437 * some contract owner(s) didn't respond in time
1438 */
1439 CT_DEBUG((CE_NOTE, "%s: timed out: %p", f, (void *)dip));
1440 timed_out = 1;
1441 }
1442
1443 ack = 0;
1444 for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1445 ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1446
1447 mutex_enter(&ctd->cond_contract.ct_lock);
1448
1449 ASSERT(ctd->cond_dip == dip);
1450
1451 if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1452 mutex_exit(&ctd->cond_contract.ct_lock);
1453 continue;
1454 }
1455 if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1456 mutex_exit(&ctd->cond_contract.ct_lock);
1457 continue;
1458 }
1459
1460 /* skip if non-negotiable contract */
1461 if (ctd->cond_noneg) {
1462 mutex_exit(&ctd->cond_contract.ct_lock);
1463 continue;
1464 }
1465
1466 ASSERT(ctd->cond_currev_type == evtype);
1467 if (ctd->cond_currev_ack == CT_NACK) {
1468 CT_DEBUG((CE_NOTE, "%s: found a NACK,result = NACK: %p",
1469 f, (void *)dip));
1470 mutex_exit(&ctd->cond_contract.ct_lock);
1471 return (CT_NACK);
1472 } else if (ctd->cond_currev_ack == CT_ACK) {
1473 ack = 1;
1474 CT_DEBUG((CE_NOTE, "%s: found a ACK: %p",
1475 f, (void *)dip));
1476 }
1477 mutex_exit(&ctd->cond_contract.ct_lock);
1478 }
1479
1480 if (ack) {
1481 result = CT_ACK;
1482 CT_DEBUG((CE_NOTE, "%s: result = ACK, dip=%p", f, (void *)dip));
1483 } else if (timed_out) {
1484 result = CT_NONE;
1485 CT_DEBUG((CE_NOTE, "%s: result = NONE (timed-out), dip=%p",
1486 f, (void *)dip));
1487 } else {
1488 CT_DEBUG((CE_NOTE, "%s: result = NONE, dip=%p",
1489 f, (void *)dip));
1490 }
1491
1492
1493 return (result);
1494 }
1495
1496 /*
1497 * Determines the current state of a device (i.e a devinfo node
1498 */
1499 static int
get_state(dev_info_t * dip)1500 get_state(dev_info_t *dip)
1501 {
1502 if (DEVI_IS_DEVICE_OFFLINE(dip) || DEVI_IS_DEVICE_DOWN(dip))
1503 return (CT_DEV_EV_OFFLINE);
1504 else if (DEVI_IS_DEVICE_DEGRADED(dip))
1505 return (CT_DEV_EV_DEGRADED);
1506 else
1507 return (CT_DEV_EV_ONLINE);
1508 }
1509
1510 /*
1511 * Sets the current state of a device in a device contract
1512 */
1513 static void
set_cond_state(dev_info_t * dip)1514 set_cond_state(dev_info_t *dip)
1515 {
1516 uint_t state = get_state(dip);
1517 cont_device_t *ctd;
1518
1519 /* verify that barrier is held */
1520 ASSERT(ct_barrier_held(dip));
1521
1522 for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1523 ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1524 mutex_enter(&ctd->cond_contract.ct_lock);
1525 ASSERT(ctd->cond_dip == dip);
1526 ctd->cond_state = state;
1527 mutex_exit(&ctd->cond_contract.ct_lock);
1528 }
1529 }
1530
1531 /*
1532 * Core routine called by event-specific routines when an event occurs.
1533 * Determines if an event should be be published, and if it is to be
1534 * published, whether a negotiation should take place. Also implements
1535 * NEGEND events which publish the final disposition of an event after
1536 * negotiations are complete.
1537 *
1538 * When an event occurs on a minor node, this routine walks the list of
1539 * contracts hanging off a devinfo node and for each contract on the affected
1540 * dip, evaluates the following cases
1541 *
1542 * a. an event that is synchronous, breaks the contract and NONEG not set
1543 * - bumps up the outstanding negotiation counts on the dip
1544 * - marks the dip as undergoing negotiation (devi_ct_neg)
1545 * - event of type CTE_NEG is published
1546 * b. an event that is synchronous, breaks the contract and NONEG is set
1547 * - sets the final result to CT_NACK, event is blocked
1548 * - does not publish an event
1549 * c. event is asynchronous and breaks the contract
1550 * - publishes a critical event irrespect of whether the NONEG
1551 * flag is set, since the contract will be broken and contract
1552 * owner needs to be informed.
1553 * d. No contract breakage but the owner has subscribed to the event
1554 * - publishes the event irrespective of the NONEG event as the
1555 * owner has explicitly subscribed to the event.
1556 * e. NEGEND event
1557 * - publishes a critical event. Should only be doing this if
1558 * if NONEG is not set.
1559 * f. all other events
1560 * - Since a contract is not broken and this event has not been
1561 * subscribed to, this event does not need to be published for
1562 * for this contract.
1563 *
1564 * Once an event is published, what happens next depends on the type of
1565 * event:
1566 *
1567 * a. NEGEND event
1568 * - cleanup all state associated with the preceding negotiation
1569 * and return CT_ACK to the caller of contract_device_publish()
1570 * b. NACKed event
1571 * - One or more contracts had the NONEG term, so the event was
1572 * blocked. Return CT_NACK to the caller.
1573 * c. Negotiated event
1574 * - Call wait_for_acks() to wait for responses from contract
1575 * holders. The end result is either CT_ACK (event is permitted),
1576 * CT_NACK (event is blocked) or CT_NONE (no contract owner)
1577 * responded. This result is returned back to the caller.
1578 * d. All other events
1579 * - If the event was asynchronous (i.e. not negotiated) or
1580 * a contract was not broken return CT_ACK to the caller.
1581 */
1582 static uint_t
contract_device_publish(dev_info_t * dip,dev_t dev,int spec_type,uint_t evtype,nvlist_t * tnvl)1583 contract_device_publish(dev_info_t *dip, dev_t dev, int spec_type,
1584 uint_t evtype, nvlist_t *tnvl)
1585 {
1586 cont_device_t *ctd;
1587 uint_t result = CT_NONE;
1588 uint64_t evid = 0;
1589 uint64_t nevid = 0;
1590 char *path = NULL;
1591 int negend;
1592 int match;
1593 int sync = 0;
1594 contract_t *ct;
1595 ct_kevent_t *event;
1596 nvlist_t *nvl;
1597 int broken = 0;
1598
1599 ASSERT(dip);
1600 ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1601 ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1602 (spec_type == S_IFBLK || spec_type == S_IFCHR));
1603 ASSERT(evtype == 0 || (evtype & CT_DEV_ALLEVENT));
1604
1605 /* Is this a synchronous state change ? */
1606 if (evtype != CT_EV_NEGEND) {
1607 sync = is_sync_neg(get_state(dip), evtype);
1608 /* NOP if unsupported transition */
1609 if (sync == -2 || sync == -1) {
1610 DEVI(dip)->devi_flags |= DEVI_CT_NOP;
1611 result = (sync == -2) ? CT_ACK : CT_NONE;
1612 goto out;
1613 }
1614 CT_DEBUG((CE_NOTE, "publish: is%s sync state change",
1615 sync ? "" : " not"));
1616 } else if (DEVI(dip)->devi_flags & DEVI_CT_NOP) {
1617 DEVI(dip)->devi_flags &= ~DEVI_CT_NOP;
1618 result = CT_ACK;
1619 goto out;
1620 }
1621
1622 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1623 (void) ddi_pathname(dip, path);
1624
1625 mutex_enter(&(DEVI(dip)->devi_ct_lock));
1626
1627 /*
1628 * Negotiation end - set the state of the device in the contract
1629 */
1630 if (evtype == CT_EV_NEGEND) {
1631 CT_DEBUG((CE_NOTE, "publish: negend: setting cond state"));
1632 set_cond_state(dip);
1633 }
1634
1635 /*
1636 * If this device didn't go through negotiation, don't publish
1637 * a NEGEND event - simply release the barrier to allow other
1638 * device events in.
1639 */
1640 negend = 0;
1641 if (evtype == CT_EV_NEGEND && !DEVI(dip)->devi_ct_neg) {
1642 CT_DEBUG((CE_NOTE, "publish: no negend reqd. release barrier"));
1643 ct_barrier_release(dip);
1644 mutex_exit(&(DEVI(dip)->devi_ct_lock));
1645 result = CT_ACK;
1646 goto out;
1647 } else if (evtype == CT_EV_NEGEND) {
1648 /*
1649 * There are negotiated contract breakages that
1650 * need a NEGEND event
1651 */
1652 ASSERT(ct_barrier_held(dip));
1653 negend = 1;
1654 CT_DEBUG((CE_NOTE, "publish: setting negend flag"));
1655 } else {
1656 /*
1657 * This is a new event, not a NEGEND event. Wait for previous
1658 * contract events to complete.
1659 */
1660 ct_barrier_acquire(dip);
1661 }
1662
1663
1664 match = 0;
1665 for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1666 ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1667
1668 ctid_t ctid;
1669 size_t len = strlen(path);
1670
1671 mutex_enter(&ctd->cond_contract.ct_lock);
1672
1673 ASSERT(ctd->cond_dip == dip);
1674 ASSERT(ctd->cond_minor);
1675 ASSERT(strncmp(ctd->cond_minor, path, len) == 0 &&
1676 ctd->cond_minor[len] == ':');
1677
1678 if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1679 mutex_exit(&ctd->cond_contract.ct_lock);
1680 continue;
1681 }
1682 if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1683 mutex_exit(&ctd->cond_contract.ct_lock);
1684 continue;
1685 }
1686
1687 /* We have a matching contract */
1688 match = 1;
1689 ctid = ctd->cond_contract.ct_id;
1690 CT_DEBUG((CE_NOTE, "publish: found matching contract: %d",
1691 ctid));
1692
1693 /*
1694 * There are 4 possible cases
1695 * 1. A contract is broken (dev not in acceptable state) and
1696 * the state change is synchronous - start negotiation
1697 * by sending a CTE_NEG critical event.
1698 * 2. A contract is broken and the state change is
1699 * asynchronous - just send a critical event and
1700 * break the contract.
1701 * 3. Contract is not broken, but consumer has subscribed
1702 * to the event as a critical or informative event
1703 * - just send the appropriate event
1704 * 4. contract waiting for negend event - just send the critical
1705 * NEGEND event.
1706 */
1707 broken = 0;
1708 if (!negend && !(evtype & ctd->cond_aset)) {
1709 broken = 1;
1710 CT_DEBUG((CE_NOTE, "publish: Contract broken: %d",
1711 ctid));
1712 }
1713
1714 /*
1715 * Don't send event if
1716 * - contract is not broken AND
1717 * - contract holder has not subscribed to this event AND
1718 * - contract not waiting for a NEGEND event
1719 */
1720 if (!broken && !EVSENDP(ctd, evtype) &&
1721 !ctd->cond_neg) {
1722 CT_DEBUG((CE_NOTE, "contract_device_publish(): "
1723 "contract (%d): no publish reqd: event %d",
1724 ctd->cond_contract.ct_id, evtype));
1725 mutex_exit(&ctd->cond_contract.ct_lock);
1726 continue;
1727 }
1728
1729 /*
1730 * Note: need to kmem_zalloc() the event so mutexes are
1731 * initialized automatically
1732 */
1733 ct = &ctd->cond_contract;
1734 event = kmem_zalloc(sizeof (ct_kevent_t), KM_SLEEP);
1735 event->cte_type = evtype;
1736
1737 if (broken && sync) {
1738 CT_DEBUG((CE_NOTE, "publish: broken + sync: "
1739 "ctid: %d", ctid));
1740 ASSERT(!negend);
1741 ASSERT(ctd->cond_currev_id == 0);
1742 ASSERT(ctd->cond_currev_type == 0);
1743 ASSERT(ctd->cond_currev_ack == 0);
1744 ASSERT(ctd->cond_neg == 0);
1745 if (ctd->cond_noneg) {
1746 /* Nothing to publish. Event has been blocked */
1747 CT_DEBUG((CE_NOTE, "publish: sync and noneg:"
1748 "not publishing blocked ev: ctid: %d",
1749 ctid));
1750 result = CT_NACK;
1751 kmem_free(event, sizeof (ct_kevent_t));
1752 mutex_exit(&ctd->cond_contract.ct_lock);
1753 continue;
1754 }
1755 event->cte_flags = CTE_NEG; /* critical neg. event */
1756 ctd->cond_currev_type = event->cte_type;
1757 ct_barrier_incr(dip);
1758 DEVI(dip)->devi_ct_neg = 1; /* waiting for negend */
1759 ctd->cond_neg = 1;
1760 } else if (broken && !sync) {
1761 CT_DEBUG((CE_NOTE, "publish: broken + async: ctid: %d",
1762 ctid));
1763 ASSERT(!negend);
1764 ASSERT(ctd->cond_currev_id == 0);
1765 ASSERT(ctd->cond_currev_type == 0);
1766 ASSERT(ctd->cond_currev_ack == 0);
1767 ASSERT(ctd->cond_neg == 0);
1768 event->cte_flags = 0; /* critical event */
1769 } else if (EVSENDP(ctd, event->cte_type)) {
1770 CT_DEBUG((CE_NOTE, "publish: event suscrib: ctid: %d",
1771 ctid));
1772 ASSERT(!negend);
1773 ASSERT(ctd->cond_currev_id == 0);
1774 ASSERT(ctd->cond_currev_type == 0);
1775 ASSERT(ctd->cond_currev_ack == 0);
1776 ASSERT(ctd->cond_neg == 0);
1777 event->cte_flags = EVINFOP(ctd, event->cte_type) ?
1778 CTE_INFO : 0;
1779 } else if (ctd->cond_neg) {
1780 CT_DEBUG((CE_NOTE, "publish: NEGEND: ctid: %d", ctid));
1781 ASSERT(negend);
1782 ASSERT(ctd->cond_noneg == 0);
1783 nevid = ctd->cond_contract.ct_nevent ?
1784 ctd->cond_contract.ct_nevent->cte_id : 0;
1785 ASSERT(ctd->cond_currev_id == nevid);
1786 event->cte_flags = 0; /* NEGEND is always critical */
1787 ctd->cond_currev_id = 0;
1788 ctd->cond_currev_type = 0;
1789 ctd->cond_currev_ack = 0;
1790 ctd->cond_neg = 0;
1791 } else {
1792 CT_DEBUG((CE_NOTE, "publish: not publishing event for "
1793 "ctid: %d, evtype: %d",
1794 ctd->cond_contract.ct_id, event->cte_type));
1795 ASSERT(!negend);
1796 ASSERT(ctd->cond_currev_id == 0);
1797 ASSERT(ctd->cond_currev_type == 0);
1798 ASSERT(ctd->cond_currev_ack == 0);
1799 ASSERT(ctd->cond_neg == 0);
1800 kmem_free(event, sizeof (ct_kevent_t));
1801 mutex_exit(&ctd->cond_contract.ct_lock);
1802 continue;
1803 }
1804
1805 nvl = NULL;
1806 if (tnvl) {
1807 VERIFY(nvlist_dup(tnvl, &nvl, 0) == 0);
1808 if (negend) {
1809 int32_t newct = 0;
1810 ASSERT(ctd->cond_noneg == 0);
1811 VERIFY(nvlist_add_uint64(nvl, CTS_NEVID, nevid)
1812 == 0);
1813 VERIFY(nvlist_lookup_int32(nvl, CTS_NEWCT,
1814 &newct) == 0);
1815 VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
1816 newct == 1 ? 0 :
1817 ctd->cond_contract.ct_id) == 0);
1818 CT_DEBUG((CE_NOTE, "publish: negend: ctid: %d "
1819 "CTS_NEVID: %llu, CTS_NEWCT: %s",
1820 ctid, (unsigned long long)nevid,
1821 newct ? "success" : "failure"));
1822
1823 }
1824 }
1825
1826 if (ctd->cond_neg) {
1827 ASSERT(ctd->cond_contract.ct_ntime.ctm_start == -1);
1828 ASSERT(ctd->cond_contract.ct_qtime.ctm_start == -1);
1829 ctd->cond_contract.ct_ntime.ctm_start = ddi_get_lbolt();
1830 ctd->cond_contract.ct_qtime.ctm_start =
1831 ctd->cond_contract.ct_ntime.ctm_start;
1832 }
1833
1834 /*
1835 * by holding the dip's devi_ct_lock we ensure that
1836 * all ACK/NACKs are held up until we have finished
1837 * publishing to all contracts.
1838 */
1839 mutex_exit(&ctd->cond_contract.ct_lock);
1840 evid = cte_publish_all(ct, event, nvl, NULL);
1841 mutex_enter(&ctd->cond_contract.ct_lock);
1842
1843 if (ctd->cond_neg) {
1844 ASSERT(!negend);
1845 ASSERT(broken);
1846 ASSERT(sync);
1847 ASSERT(!ctd->cond_noneg);
1848 CT_DEBUG((CE_NOTE, "publish: sync break, setting evid"
1849 ": %d", ctid));
1850 ctd->cond_currev_id = evid;
1851 } else if (negend) {
1852 ctd->cond_contract.ct_ntime.ctm_start = -1;
1853 ctd->cond_contract.ct_qtime.ctm_start = -1;
1854 }
1855 mutex_exit(&ctd->cond_contract.ct_lock);
1856 }
1857
1858 /*
1859 * If "negend" set counter back to initial state (-1) so that
1860 * other events can be published. Also clear the negotiation flag
1861 * on dip.
1862 *
1863 * 0 .. n are used for counting.
1864 * -1 indicates counter is available for use.
1865 */
1866 if (negend) {
1867 /*
1868 * devi_ct_count not necessarily 0. We may have
1869 * timed out in which case, count will be non-zero.
1870 */
1871 ct_barrier_release(dip);
1872 DEVI(dip)->devi_ct_neg = 0;
1873 CT_DEBUG((CE_NOTE, "publish: negend: reset dip state: dip=%p",
1874 (void *)dip));
1875 } else if (DEVI(dip)->devi_ct_neg) {
1876 ASSERT(match);
1877 ASSERT(!ct_barrier_empty(dip));
1878 CT_DEBUG((CE_NOTE, "publish: sync count=%d, dip=%p",
1879 DEVI(dip)->devi_ct_count, (void *)dip));
1880 } else {
1881 /*
1882 * for non-negotiated events or subscribed events or no
1883 * matching contracts
1884 */
1885 ASSERT(ct_barrier_empty(dip));
1886 ASSERT(DEVI(dip)->devi_ct_neg == 0);
1887 CT_DEBUG((CE_NOTE, "publish: async/non-nego/subscrib/no-match: "
1888 "dip=%p", (void *)dip));
1889
1890 /*
1891 * only this function when called from contract_device_negend()
1892 * can reset the counter to READY state i.e. -1. This function
1893 * is so called for every event whether a NEGEND event is needed
1894 * or not, but the negend event is only published if the event
1895 * whose end they signal is a negotiated event for the contract.
1896 */
1897 }
1898
1899 if (!match) {
1900 /* No matching contracts */
1901 CT_DEBUG((CE_NOTE, "publish: No matching contract"));
1902 result = CT_NONE;
1903 } else if (result == CT_NACK) {
1904 /* a non-negotiable contract exists and this is a neg. event */
1905 CT_DEBUG((CE_NOTE, "publish: found 1 or more NONEG contract"));
1906 (void) wait_for_acks(dip, dev, spec_type, evtype);
1907 } else if (DEVI(dip)->devi_ct_neg) {
1908 /* one or more contracts going through negotations */
1909 CT_DEBUG((CE_NOTE, "publish: sync contract: waiting"));
1910 result = wait_for_acks(dip, dev, spec_type, evtype);
1911 } else {
1912 /* no negotiated contracts or no broken contracts or NEGEND */
1913 CT_DEBUG((CE_NOTE, "publish: async/no-break/negend"));
1914 result = CT_ACK;
1915 }
1916
1917 /*
1918 * Release the lock only now so that the only point where we
1919 * drop the lock is in wait_for_acks(). This is so that we don't
1920 * miss cv_signal/cv_broadcast from contract holders
1921 */
1922 CT_DEBUG((CE_NOTE, "publish: dropping devi_ct_lock"));
1923 mutex_exit(&(DEVI(dip)->devi_ct_lock));
1924
1925 out:
1926 nvlist_free(tnvl);
1927 if (path)
1928 kmem_free(path, MAXPATHLEN);
1929
1930
1931 CT_DEBUG((CE_NOTE, "publish: result = %s", result_str(result)));
1932 return (result);
1933 }
1934
1935
1936 /*
1937 * contract_device_offline
1938 *
1939 * Event publishing routine called by I/O framework when a device is offlined.
1940 */
1941 ct_ack_t
contract_device_offline(dev_info_t * dip,dev_t dev,int spec_type)1942 contract_device_offline(dev_info_t *dip, dev_t dev, int spec_type)
1943 {
1944 nvlist_t *nvl;
1945 uint_t result;
1946 uint_t evtype;
1947
1948 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1949
1950 evtype = CT_DEV_EV_OFFLINE;
1951 result = contract_device_publish(dip, dev, spec_type, evtype, nvl);
1952
1953 /*
1954 * If a contract offline is NACKED, the framework expects us to call
1955 * NEGEND ourselves, since we know the final result
1956 */
1957 if (result == CT_NACK) {
1958 contract_device_negend(dip, dev, spec_type, CT_EV_FAILURE);
1959 }
1960
1961 return (result);
1962 }
1963
1964 /*
1965 * contract_device_degrade
1966 *
1967 * Event publishing routine called by I/O framework when a device
1968 * moves to degrade state.
1969 */
1970 /*ARGSUSED*/
1971 void
contract_device_degrade(dev_info_t * dip,dev_t dev,int spec_type)1972 contract_device_degrade(dev_info_t *dip, dev_t dev, int spec_type)
1973 {
1974 nvlist_t *nvl;
1975 uint_t evtype;
1976
1977 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1978
1979 evtype = CT_DEV_EV_DEGRADED;
1980 (void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1981 }
1982
1983 /*
1984 * contract_device_undegrade
1985 *
1986 * Event publishing routine called by I/O framework when a device
1987 * moves from degraded state to online state.
1988 */
1989 /*ARGSUSED*/
1990 void
contract_device_undegrade(dev_info_t * dip,dev_t dev,int spec_type)1991 contract_device_undegrade(dev_info_t *dip, dev_t dev, int spec_type)
1992 {
1993 nvlist_t *nvl;
1994 uint_t evtype;
1995
1996 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1997
1998 evtype = CT_DEV_EV_ONLINE;
1999 (void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
2000 }
2001
2002 /*
2003 * For all contracts which have undergone a negotiation (because the device
2004 * moved out of the acceptable state for that contract and the state
2005 * change is synchronous i.e. requires negotiation) this routine publishes
2006 * a CT_EV_NEGEND event with the final disposition of the event.
2007 *
2008 * This event is always a critical event.
2009 */
2010 void
contract_device_negend(dev_info_t * dip,dev_t dev,int spec_type,int result)2011 contract_device_negend(dev_info_t *dip, dev_t dev, int spec_type, int result)
2012 {
2013 nvlist_t *nvl;
2014 uint_t evtype;
2015
2016 ASSERT(result == CT_EV_SUCCESS || result == CT_EV_FAILURE);
2017
2018 CT_DEBUG((CE_NOTE, "contract_device_negend(): entered: result: %d, "
2019 "dip: %p", result, (void *)dip));
2020
2021 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2022 VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
2023 result == CT_EV_SUCCESS ? 1 : 0) == 0);
2024
2025 evtype = CT_EV_NEGEND;
2026 (void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
2027
2028 CT_DEBUG((CE_NOTE, "contract_device_negend(): exit dip: %p",
2029 (void *)dip));
2030 }
2031
2032 /*
2033 * Wrapper routine called by other subsystems (such as LDI) to start
2034 * negotiations when a synchronous device state change occurs.
2035 * Returns CT_ACK or CT_NACK.
2036 */
2037 ct_ack_t
contract_device_negotiate(dev_info_t * dip,dev_t dev,int spec_type,uint_t evtype)2038 contract_device_negotiate(dev_info_t *dip, dev_t dev, int spec_type,
2039 uint_t evtype)
2040 {
2041 int result;
2042
2043 ASSERT(dip);
2044 ASSERT(dev != NODEV);
2045 ASSERT(dev != DDI_DEV_T_ANY);
2046 ASSERT(dev != DDI_DEV_T_NONE);
2047 ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2048
2049 switch (evtype) {
2050 case CT_DEV_EV_OFFLINE:
2051 result = contract_device_offline(dip, dev, spec_type);
2052 break;
2053 default:
2054 cmn_err(CE_PANIC, "contract_device_negotiate(): Negotiation "
2055 "not supported: event (%d) for dev_t (%lu) and spec (%d), "
2056 "dip (%p)", evtype, dev, spec_type, (void *)dip);
2057 result = CT_NACK;
2058 break;
2059 }
2060
2061 return (result);
2062 }
2063
2064 /*
2065 * A wrapper routine called by other subsystems (such as the LDI) to
2066 * finalize event processing for a state change event. For synchronous
2067 * state changes, this publishes NEGEND events. For asynchronous i.e.
2068 * non-negotiable events this publishes the event.
2069 */
2070 void
contract_device_finalize(dev_info_t * dip,dev_t dev,int spec_type,uint_t evtype,int ct_result)2071 contract_device_finalize(dev_info_t *dip, dev_t dev, int spec_type,
2072 uint_t evtype, int ct_result)
2073 {
2074 ASSERT(dip);
2075 ASSERT(dev != NODEV);
2076 ASSERT(dev != DDI_DEV_T_ANY);
2077 ASSERT(dev != DDI_DEV_T_NONE);
2078 ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2079
2080 switch (evtype) {
2081 case CT_DEV_EV_OFFLINE:
2082 contract_device_negend(dip, dev, spec_type, ct_result);
2083 break;
2084 case CT_DEV_EV_DEGRADED:
2085 contract_device_degrade(dip, dev, spec_type);
2086 contract_device_negend(dip, dev, spec_type, ct_result);
2087 break;
2088 case CT_DEV_EV_ONLINE:
2089 contract_device_undegrade(dip, dev, spec_type);
2090 contract_device_negend(dip, dev, spec_type, ct_result);
2091 break;
2092 default:
2093 cmn_err(CE_PANIC, "contract_device_finalize(): Unsupported "
2094 "event (%d) for dev_t (%lu) and spec (%d), dip (%p)",
2095 evtype, dev, spec_type, (void *)dip);
2096 break;
2097 }
2098 }
2099
2100 /*
2101 * Called by I/O framework when a devinfo node is freed to remove the
2102 * association between a devinfo node and its contracts.
2103 */
2104 void
contract_device_remove_dip(dev_info_t * dip)2105 contract_device_remove_dip(dev_info_t *dip)
2106 {
2107 cont_device_t *ctd;
2108 cont_device_t *next;
2109 contract_t *ct;
2110
2111 mutex_enter(&(DEVI(dip)->devi_ct_lock));
2112 ct_barrier_wait_for_release(dip);
2113
2114 for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL; ctd = next) {
2115 next = list_next(&(DEVI(dip)->devi_ct), ctd);
2116 list_remove(&(DEVI(dip)->devi_ct), ctd);
2117 ct = &ctd->cond_contract;
2118 /*
2119 * Unlink the dip associated with this contract
2120 */
2121 mutex_enter(&ct->ct_lock);
2122 ASSERT(ctd->cond_dip == dip);
2123 ctd->cond_dip = NULL; /* no longer linked to dip */
2124 contract_rele(ct); /* remove hold for dip linkage */
2125 CT_DEBUG((CE_NOTE, "ct: remove_dip: removed dip from contract: "
2126 "ctid: %d", ct->ct_id));
2127 mutex_exit(&ct->ct_lock);
2128 }
2129 ASSERT(list_is_empty(&(DEVI(dip)->devi_ct)));
2130 mutex_exit(&(DEVI(dip)->devi_ct_lock));
2131 }
2132
2133 /*
2134 * Barrier related routines
2135 */
2136 static void
ct_barrier_acquire(dev_info_t * dip)2137 ct_barrier_acquire(dev_info_t *dip)
2138 {
2139 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2140 CT_DEBUG((CE_NOTE, "ct_barrier_acquire: waiting for barrier"));
2141 while (DEVI(dip)->devi_ct_count != -1)
2142 cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2143 DEVI(dip)->devi_ct_count = 0;
2144 CT_DEBUG((CE_NOTE, "ct_barrier_acquire: thread owns barrier"));
2145 }
2146
2147 static void
ct_barrier_release(dev_info_t * dip)2148 ct_barrier_release(dev_info_t *dip)
2149 {
2150 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2151 ASSERT(DEVI(dip)->devi_ct_count != -1);
2152 DEVI(dip)->devi_ct_count = -1;
2153 cv_broadcast(&(DEVI(dip)->devi_ct_cv));
2154 CT_DEBUG((CE_NOTE, "ct_barrier_release: Released barrier"));
2155 }
2156
2157 static int
ct_barrier_held(dev_info_t * dip)2158 ct_barrier_held(dev_info_t *dip)
2159 {
2160 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2161 return (DEVI(dip)->devi_ct_count != -1);
2162 }
2163
2164 static int
ct_barrier_empty(dev_info_t * dip)2165 ct_barrier_empty(dev_info_t *dip)
2166 {
2167 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2168 ASSERT(DEVI(dip)->devi_ct_count != -1);
2169 return (DEVI(dip)->devi_ct_count == 0);
2170 }
2171
2172 static void
ct_barrier_wait_for_release(dev_info_t * dip)2173 ct_barrier_wait_for_release(dev_info_t *dip)
2174 {
2175 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2176 while (DEVI(dip)->devi_ct_count != -1)
2177 cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2178 }
2179
2180 static void
ct_barrier_decr(dev_info_t * dip)2181 ct_barrier_decr(dev_info_t *dip)
2182 {
2183 CT_DEBUG((CE_NOTE, "barrier_decr: ct_count before decr: %d",
2184 DEVI(dip)->devi_ct_count));
2185
2186 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2187 ASSERT(DEVI(dip)->devi_ct_count > 0);
2188
2189 DEVI(dip)->devi_ct_count--;
2190 if (DEVI(dip)->devi_ct_count == 0) {
2191 cv_broadcast(&DEVI(dip)->devi_ct_cv);
2192 CT_DEBUG((CE_NOTE, "barrier_decr: cv_broadcast"));
2193 }
2194 }
2195
2196 static void
ct_barrier_incr(dev_info_t * dip)2197 ct_barrier_incr(dev_info_t *dip)
2198 {
2199 ASSERT(ct_barrier_held(dip));
2200 DEVI(dip)->devi_ct_count++;
2201 }
2202
2203 static int
ct_barrier_wait_for_empty(dev_info_t * dip,int secs)2204 ct_barrier_wait_for_empty(dev_info_t *dip, int secs)
2205 {
2206 clock_t abstime;
2207
2208 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2209
2210 abstime = ddi_get_lbolt() + drv_usectohz(secs*1000000);
2211 while (DEVI(dip)->devi_ct_count) {
2212 if (cv_timedwait(&(DEVI(dip)->devi_ct_cv),
2213 &(DEVI(dip)->devi_ct_lock), abstime) == -1) {
2214 return (-1);
2215 }
2216 }
2217 return (0);
2218 }
2219