1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/DiagnosticPrinter.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/IntrinsicsHexagon.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <limits>
65 #include <utility>
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "hexagon-lowering"
70
71 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
72 cl::init(true), cl::Hidden,
73 cl::desc("Control jump table emission on Hexagon target"));
74
75 static cl::opt<bool>
76 EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
77 cl::desc("Enable Hexagon SDNode scheduling"));
78
79 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
80 cl::desc("Enable Fast Math processing"));
81
82 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
83 cl::init(5),
84 cl::desc("Set minimum jump tables"));
85
86 static cl::opt<int>
87 MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
88 cl::desc("Max #stores to inline memcpy"));
89
90 static cl::opt<int>
91 MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
92 cl::desc("Max #stores to inline memcpy"));
93
94 static cl::opt<int>
95 MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
96 cl::desc("Max #stores to inline memmove"));
97
98 static cl::opt<int>
99 MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
100 cl::init(4),
101 cl::desc("Max #stores to inline memmove"));
102
103 static cl::opt<int>
104 MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
105 cl::desc("Max #stores to inline memset"));
106
107 static cl::opt<int>
108 MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
109 cl::desc("Max #stores to inline memset"));
110
111 static cl::opt<bool> AlignLoads("hexagon-align-loads",
112 cl::Hidden, cl::init(false),
113 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
114
115 static cl::opt<bool>
116 DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
117 cl::init(false),
118 cl::desc("Disable minimum alignment of 1 for "
119 "arguments passed by value on stack"));
120
121 namespace {
122
123 class HexagonCCState : public CCState {
124 unsigned NumNamedVarArgParams = 0;
125
126 public:
HexagonCCState(CallingConv::ID CC,bool IsVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,unsigned NumNamedArgs)127 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
128 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
129 unsigned NumNamedArgs)
130 : CCState(CC, IsVarArg, MF, locs, C),
131 NumNamedVarArgParams(NumNamedArgs) {}
getNumNamedVarArgParams() const132 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
133 };
134
135 } // end anonymous namespace
136
137
138 // Implement calling convention for Hexagon.
139
CC_SkipOdd(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)140 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
141 CCValAssign::LocInfo &LocInfo,
142 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
143 static const MCPhysReg ArgRegs[] = {
144 Hexagon::R0, Hexagon::R1, Hexagon::R2,
145 Hexagon::R3, Hexagon::R4, Hexagon::R5
146 };
147 const unsigned NumArgRegs = std::size(ArgRegs);
148 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
149
150 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
151 if (RegNum != NumArgRegs && RegNum % 2 == 1)
152 State.AllocateReg(ArgRegs[RegNum]);
153
154 // Always return false here, as this function only makes sure that the first
155 // unallocated register has an even register number and does not actually
156 // allocate a register for the current argument.
157 return false;
158 }
159
160 #include "HexagonGenCallingConv.inc"
161
162
163 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const164 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
165 const {
166 return SDValue();
167 }
168
169 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
170 /// by "Src" to address "Dst" of size "Size". Alignment information is
171 /// specified by the specific parameter attribute. The copy will be passed as
172 /// a byval function parameter. Sometimes what we are copying is the end of a
173 /// larger object, the part that does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)174 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
175 SDValue Chain, ISD::ArgFlagsTy Flags,
176 SelectionDAG &DAG, const SDLoc &dl) {
177 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
178 return DAG.getMemcpy(
179 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
180 /*isVolatile=*/false, /*AlwaysInline=*/false,
181 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo());
182 }
183
184 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const185 HexagonTargetLowering::CanLowerReturn(
186 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
187 const SmallVectorImpl<ISD::OutputArg> &Outs,
188 LLVMContext &Context) const {
189 SmallVector<CCValAssign, 16> RVLocs;
190 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
191
192 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
193 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
194 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
195 }
196
197 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
198 // passed by value, the function prototype is modified to return void and
199 // the value is stored in memory pointed by a pointer passed by caller.
200 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const201 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
202 bool IsVarArg,
203 const SmallVectorImpl<ISD::OutputArg> &Outs,
204 const SmallVectorImpl<SDValue> &OutVals,
205 const SDLoc &dl, SelectionDAG &DAG) const {
206 // CCValAssign - represent the assignment of the return value to locations.
207 SmallVector<CCValAssign, 16> RVLocs;
208
209 // CCState - Info about the registers and stack slot.
210 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
211 *DAG.getContext());
212
213 // Analyze return values of ISD::RET
214 if (Subtarget.useHVXOps())
215 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
216 else
217 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
218
219 SDValue Glue;
220 SmallVector<SDValue, 4> RetOps(1, Chain);
221
222 // Copy the result values into the output registers.
223 for (unsigned i = 0; i != RVLocs.size(); ++i) {
224 CCValAssign &VA = RVLocs[i];
225 SDValue Val = OutVals[i];
226
227 switch (VA.getLocInfo()) {
228 default:
229 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
230 llvm_unreachable("Unknown loc info!");
231 case CCValAssign::Full:
232 break;
233 case CCValAssign::BCvt:
234 Val = DAG.getBitcast(VA.getLocVT(), Val);
235 break;
236 case CCValAssign::SExt:
237 Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
238 break;
239 case CCValAssign::ZExt:
240 Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
241 break;
242 case CCValAssign::AExt:
243 Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
244 break;
245 }
246
247 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue);
248
249 // Guarantee that all emitted copies are stuck together with flags.
250 Glue = Chain.getValue(1);
251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
252 }
253
254 RetOps[0] = Chain; // Update chain.
255
256 // Add the glue if we have it.
257 if (Glue.getNode())
258 RetOps.push_back(Glue);
259
260 return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps);
261 }
262
mayBeEmittedAsTailCall(const CallInst * CI) const263 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
264 // If either no tail call or told not to tail call at all, don't.
265 return CI->isTailCall();
266 }
267
getRegisterByName(const char * RegName,LLT VT,const MachineFunction &) const268 Register HexagonTargetLowering::getRegisterByName(
269 const char* RegName, LLT VT, const MachineFunction &) const {
270 // Just support r19, the linux kernel uses it.
271 Register Reg = StringSwitch<Register>(RegName)
272 .Case("r0", Hexagon::R0)
273 .Case("r1", Hexagon::R1)
274 .Case("r2", Hexagon::R2)
275 .Case("r3", Hexagon::R3)
276 .Case("r4", Hexagon::R4)
277 .Case("r5", Hexagon::R5)
278 .Case("r6", Hexagon::R6)
279 .Case("r7", Hexagon::R7)
280 .Case("r8", Hexagon::R8)
281 .Case("r9", Hexagon::R9)
282 .Case("r10", Hexagon::R10)
283 .Case("r11", Hexagon::R11)
284 .Case("r12", Hexagon::R12)
285 .Case("r13", Hexagon::R13)
286 .Case("r14", Hexagon::R14)
287 .Case("r15", Hexagon::R15)
288 .Case("r16", Hexagon::R16)
289 .Case("r17", Hexagon::R17)
290 .Case("r18", Hexagon::R18)
291 .Case("r19", Hexagon::R19)
292 .Case("r20", Hexagon::R20)
293 .Case("r21", Hexagon::R21)
294 .Case("r22", Hexagon::R22)
295 .Case("r23", Hexagon::R23)
296 .Case("r24", Hexagon::R24)
297 .Case("r25", Hexagon::R25)
298 .Case("r26", Hexagon::R26)
299 .Case("r27", Hexagon::R27)
300 .Case("r28", Hexagon::R28)
301 .Case("r29", Hexagon::R29)
302 .Case("r30", Hexagon::R30)
303 .Case("r31", Hexagon::R31)
304 .Case("r1:0", Hexagon::D0)
305 .Case("r3:2", Hexagon::D1)
306 .Case("r5:4", Hexagon::D2)
307 .Case("r7:6", Hexagon::D3)
308 .Case("r9:8", Hexagon::D4)
309 .Case("r11:10", Hexagon::D5)
310 .Case("r13:12", Hexagon::D6)
311 .Case("r15:14", Hexagon::D7)
312 .Case("r17:16", Hexagon::D8)
313 .Case("r19:18", Hexagon::D9)
314 .Case("r21:20", Hexagon::D10)
315 .Case("r23:22", Hexagon::D11)
316 .Case("r25:24", Hexagon::D12)
317 .Case("r27:26", Hexagon::D13)
318 .Case("r29:28", Hexagon::D14)
319 .Case("r31:30", Hexagon::D15)
320 .Case("sp", Hexagon::R29)
321 .Case("fp", Hexagon::R30)
322 .Case("lr", Hexagon::R31)
323 .Case("p0", Hexagon::P0)
324 .Case("p1", Hexagon::P1)
325 .Case("p2", Hexagon::P2)
326 .Case("p3", Hexagon::P3)
327 .Case("sa0", Hexagon::SA0)
328 .Case("lc0", Hexagon::LC0)
329 .Case("sa1", Hexagon::SA1)
330 .Case("lc1", Hexagon::LC1)
331 .Case("m0", Hexagon::M0)
332 .Case("m1", Hexagon::M1)
333 .Case("usr", Hexagon::USR)
334 .Case("ugp", Hexagon::UGP)
335 .Case("cs0", Hexagon::CS0)
336 .Case("cs1", Hexagon::CS1)
337 .Default(Register());
338 if (Reg)
339 return Reg;
340
341 report_fatal_error("Invalid register name global variable");
342 }
343
344 /// LowerCallResult - Lower the result values of an ISD::CALL into the
345 /// appropriate copies out of appropriate physical registers. This assumes that
346 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
347 /// being lowered. Returns a SDNode with the same number of values as the
348 /// ISD::CALL.
LowerCallResult(SDValue Chain,SDValue Glue,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const SmallVectorImpl<SDValue> & OutVals,SDValue Callee) const349 SDValue HexagonTargetLowering::LowerCallResult(
350 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
351 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
352 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
353 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
354 // Assign locations to each value returned by this call.
355 SmallVector<CCValAssign, 16> RVLocs;
356
357 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
358 *DAG.getContext());
359
360 if (Subtarget.useHVXOps())
361 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
362 else
363 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
364
365 // Copy all of the result registers out of their specified physreg.
366 for (unsigned i = 0; i != RVLocs.size(); ++i) {
367 SDValue RetVal;
368 if (RVLocs[i].getValVT() == MVT::i1) {
369 // Return values of type MVT::i1 require special handling. The reason
370 // is that MVT::i1 is associated with the PredRegs register class, but
371 // values of that type are still returned in R0. Generate an explicit
372 // copy into a predicate register from R0, and treat the value of the
373 // predicate register as the call result.
374 auto &MRI = DAG.getMachineFunction().getRegInfo();
375 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
376 MVT::i32, Glue);
377 // FR0 = (Value, Chain, Glue)
378 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
379 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
380 FR0.getValue(0), FR0.getValue(2));
381 // TPR = (Chain, Glue)
382 // Don't glue this CopyFromReg, because it copies from a virtual
383 // register. If it is glued to the call, InstrEmitter will add it
384 // as an implicit def to the call (EmitMachineNode).
385 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
386 Glue = TPR.getValue(1);
387 Chain = TPR.getValue(0);
388 } else {
389 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
390 RVLocs[i].getValVT(), Glue);
391 Glue = RetVal.getValue(2);
392 Chain = RetVal.getValue(1);
393 }
394 InVals.push_back(RetVal.getValue(0));
395 }
396
397 return Chain;
398 }
399
400 /// LowerCall - Functions arguments are copied from virtual regs to
401 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
402 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const403 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
404 SmallVectorImpl<SDValue> &InVals) const {
405 SelectionDAG &DAG = CLI.DAG;
406 SDLoc &dl = CLI.DL;
407 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
408 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
409 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
410 SDValue Chain = CLI.Chain;
411 SDValue Callee = CLI.Callee;
412 CallingConv::ID CallConv = CLI.CallConv;
413 bool IsVarArg = CLI.IsVarArg;
414 bool DoesNotReturn = CLI.DoesNotReturn;
415
416 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
417 MachineFunction &MF = DAG.getMachineFunction();
418 MachineFrameInfo &MFI = MF.getFrameInfo();
419 auto PtrVT = getPointerTy(MF.getDataLayout());
420
421 unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
422 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
423 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
424
425 // Linux ABI treats var-arg calls the same way as regular ones.
426 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
427
428 // Analyze operands of the call, assigning locations to each operand.
429 SmallVector<CCValAssign, 16> ArgLocs;
430 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
431 NumParams);
432
433 if (Subtarget.useHVXOps())
434 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
435 else if (DisableArgsMinAlignment)
436 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
437 else
438 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
439
440 if (CLI.IsTailCall) {
441 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
442 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443 IsVarArg, IsStructRet, StructAttrFlag, Outs,
444 OutVals, Ins, DAG);
445 for (const CCValAssign &VA : ArgLocs) {
446 if (VA.isMemLoc()) {
447 CLI.IsTailCall = false;
448 break;
449 }
450 }
451 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
452 : "Argument must be passed on stack. "
453 "Not eligible for Tail Call\n"));
454 }
455 // Get a count of how many bytes are to be pushed on the stack.
456 unsigned NumBytes = CCInfo.getStackSize();
457 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
458 SmallVector<SDValue, 8> MemOpChains;
459
460 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
461 SDValue StackPtr =
462 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
463
464 bool NeedsArgAlign = false;
465 Align LargestAlignSeen;
466 // Walk the register/memloc assignments, inserting copies/loads.
467 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
468 CCValAssign &VA = ArgLocs[i];
469 SDValue Arg = OutVals[i];
470 ISD::ArgFlagsTy Flags = Outs[i].Flags;
471 // Record if we need > 8 byte alignment on an argument.
472 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
473 NeedsArgAlign |= ArgAlign;
474
475 // Promote the value if needed.
476 switch (VA.getLocInfo()) {
477 default:
478 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
479 llvm_unreachable("Unknown loc info!");
480 case CCValAssign::Full:
481 break;
482 case CCValAssign::BCvt:
483 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
484 break;
485 case CCValAssign::SExt:
486 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
487 break;
488 case CCValAssign::ZExt:
489 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
490 break;
491 case CCValAssign::AExt:
492 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
493 break;
494 }
495
496 if (VA.isMemLoc()) {
497 unsigned LocMemOffset = VA.getLocMemOffset();
498 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
499 StackPtr.getValueType());
500 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
501 if (ArgAlign)
502 LargestAlignSeen = std::max(
503 LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
504 if (Flags.isByVal()) {
505 // The argument is a struct passed by value. According to LLVM, "Arg"
506 // is a pointer.
507 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
508 Flags, DAG, dl));
509 } else {
510 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
511 DAG.getMachineFunction(), LocMemOffset);
512 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
513 MemOpChains.push_back(S);
514 }
515 continue;
516 }
517
518 // Arguments that can be passed on register must be kept at RegsToPass
519 // vector.
520 if (VA.isRegLoc())
521 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
522 }
523
524 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
525 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
526 Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
527 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
528 MFI.ensureMaxAlignment(LargestAlignSeen);
529 }
530 // Transform all store nodes into one single node because all store
531 // nodes are independent of each other.
532 if (!MemOpChains.empty())
533 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
534
535 SDValue Glue;
536 if (!CLI.IsTailCall) {
537 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
538 Glue = Chain.getValue(1);
539 }
540
541 // Build a sequence of copy-to-reg nodes chained together with token
542 // chain and flag operands which copy the outgoing args into registers.
543 // The Glue is necessary since all emitted instructions must be
544 // stuck together.
545 if (!CLI.IsTailCall) {
546 for (const auto &R : RegsToPass) {
547 Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
548 Glue = Chain.getValue(1);
549 }
550 } else {
551 // For tail calls lower the arguments to the 'real' stack slot.
552 //
553 // Force all the incoming stack arguments to be loaded from the stack
554 // before any new outgoing arguments are stored to the stack, because the
555 // outgoing stack slots may alias the incoming argument stack slots, and
556 // the alias isn't otherwise explicit. This is slightly more conservative
557 // than necessary, because it means that each store effectively depends
558 // on every argument instead of just those arguments it would clobber.
559 //
560 // Do not flag preceding copytoreg stuff together with the following stuff.
561 Glue = SDValue();
562 for (const auto &R : RegsToPass) {
563 Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
564 Glue = Chain.getValue(1);
565 }
566 Glue = SDValue();
567 }
568
569 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571
572 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574 // node so that legalize doesn't hack it.
575 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577 } else if (ExternalSymbolSDNode *S =
578 dyn_cast<ExternalSymbolSDNode>(Callee)) {
579 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580 }
581
582 // Returns a chain & a flag for retval copy to use.
583 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584 SmallVector<SDValue, 8> Ops;
585 Ops.push_back(Chain);
586 Ops.push_back(Callee);
587
588 // Add argument registers to the end of the list so that they are
589 // known live into the call.
590 for (const auto &R : RegsToPass)
591 Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
592
593 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
594 assert(Mask && "Missing call preserved mask for calling convention");
595 Ops.push_back(DAG.getRegisterMask(Mask));
596
597 if (Glue.getNode())
598 Ops.push_back(Glue);
599
600 if (CLI.IsTailCall) {
601 MFI.setHasTailCall();
602 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
603 }
604
605 // Set this here because we need to know this for "hasFP" in frame lowering.
606 // The target-independent code calls getFrameRegister before setting it, and
607 // getFrameRegister uses hasFP to determine whether the function has FP.
608 MFI.setHasCalls(true);
609
610 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
611 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
612 Glue = Chain.getValue(1);
613
614 // Create the CALLSEQ_END node.
615 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
616 Glue = Chain.getValue(1);
617
618 // Handle result values, copying them out of physregs into vregs that we
619 // return.
620 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
621 InVals, OutVals, Callee);
622 }
623
624 /// Returns true by value, base pointer and offset pointer and addressing
625 /// mode by reference if this node can be combined with a load / store to
626 /// form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const627 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
628 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
629 SelectionDAG &DAG) const {
630 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
631 if (!LSN)
632 return false;
633 EVT VT = LSN->getMemoryVT();
634 if (!VT.isSimple())
635 return false;
636 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
637 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
638 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
639 VT == MVT::v4i16 || VT == MVT::v8i8 ||
640 Subtarget.isHVXVectorType(VT.getSimpleVT());
641 if (!IsLegalType)
642 return false;
643
644 if (Op->getOpcode() != ISD::ADD)
645 return false;
646 Base = Op->getOperand(0);
647 Offset = Op->getOperand(1);
648 if (!isa<ConstantSDNode>(Offset.getNode()))
649 return false;
650 AM = ISD::POST_INC;
651
652 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
653 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
654 }
655
LowerFDIV(SDValue Op,SelectionDAG & DAG) const656 SDValue HexagonTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
657 if (DAG.getMachineFunction().getFunction().hasOptSize())
658 return SDValue();
659 else
660 return Op;
661 }
662
663 SDValue
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const664 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
665 MachineFunction &MF = DAG.getMachineFunction();
666 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
667 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
668 unsigned LR = HRI.getRARegister();
669
670 if ((Op.getOpcode() != ISD::INLINEASM &&
671 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
672 return Op;
673
674 unsigned NumOps = Op.getNumOperands();
675 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
676 --NumOps; // Ignore the flag operand.
677
678 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
679 const InlineAsm::Flag Flags(Op.getConstantOperandVal(i));
680 unsigned NumVals = Flags.getNumOperandRegisters();
681 ++i; // Skip the ID value.
682
683 switch (Flags.getKind()) {
684 default:
685 llvm_unreachable("Bad flags!");
686 case InlineAsm::Kind::RegUse:
687 case InlineAsm::Kind::Imm:
688 case InlineAsm::Kind::Mem:
689 i += NumVals;
690 break;
691 case InlineAsm::Kind::Clobber:
692 case InlineAsm::Kind::RegDef:
693 case InlineAsm::Kind::RegDefEarlyClobber: {
694 for (; NumVals; --NumVals, ++i) {
695 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
696 if (Reg != LR)
697 continue;
698 HMFI.setHasClobberLR(true);
699 return Op;
700 }
701 break;
702 }
703 }
704 }
705
706 return Op;
707 }
708
709 // Need to transform ISD::PREFETCH into something that doesn't inherit
710 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
711 // SDNPMayStore.
LowerPREFETCH(SDValue Op,SelectionDAG & DAG) const712 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
713 SelectionDAG &DAG) const {
714 SDValue Chain = Op.getOperand(0);
715 SDValue Addr = Op.getOperand(1);
716 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
717 // if the "reg" is fed by an "add".
718 SDLoc DL(Op);
719 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
720 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
721 }
722
723 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
724 // is marked as having side-effects, while the register read on Hexagon does
725 // not have any. TableGen refuses to accept the direct pattern from that node
726 // to the A4_tfrcpp.
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const727 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
728 SelectionDAG &DAG) const {
729 SDValue Chain = Op.getOperand(0);
730 SDLoc dl(Op);
731 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
732 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
733 }
734
735 // Custom-handle ISD::READSTEADYCOUNTER because the target-independent SDNode
736 // is marked as having side-effects, while the register read on Hexagon does
737 // not have any. TableGen refuses to accept the direct pattern from that node
738 // to the A4_tfrcpp.
LowerREADSTEADYCOUNTER(SDValue Op,SelectionDAG & DAG) const739 SDValue HexagonTargetLowering::LowerREADSTEADYCOUNTER(SDValue Op,
740 SelectionDAG &DAG) const {
741 SDValue Chain = Op.getOperand(0);
742 SDLoc dl(Op);
743 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
744 return DAG.getNode(HexagonISD::READTIMER, dl, VTs, Chain);
745 }
746
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const747 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
748 SelectionDAG &DAG) const {
749 SDValue Chain = Op.getOperand(0);
750 unsigned IntNo = Op.getConstantOperandVal(1);
751 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
752 if (IntNo == Intrinsic::hexagon_prefetch) {
753 SDValue Addr = Op.getOperand(2);
754 SDLoc DL(Op);
755 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
756 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
757 }
758 return SDValue();
759 }
760
761 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const762 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
763 SelectionDAG &DAG) const {
764 SDValue Chain = Op.getOperand(0);
765 SDValue Size = Op.getOperand(1);
766 SDValue Align = Op.getOperand(2);
767 SDLoc dl(Op);
768
769 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
770 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
771
772 unsigned A = AlignConst->getSExtValue();
773 auto &HFI = *Subtarget.getFrameLowering();
774 // "Zero" means natural stack alignment.
775 if (A == 0)
776 A = HFI.getStackAlign().value();
777
778 LLVM_DEBUG({
779 dbgs () << __func__ << " Align: " << A << " Size: ";
780 Size.getNode()->dump(&DAG);
781 dbgs() << "\n";
782 });
783
784 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
785 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
786 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
787
788 DAG.ReplaceAllUsesOfValueWith(Op, AA);
789 return AA;
790 }
791
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const792 SDValue HexagonTargetLowering::LowerFormalArguments(
793 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
794 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
795 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
796 MachineFunction &MF = DAG.getMachineFunction();
797 MachineFrameInfo &MFI = MF.getFrameInfo();
798 MachineRegisterInfo &MRI = MF.getRegInfo();
799
800 // Linux ABI treats var-arg calls the same way as regular ones.
801 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
802
803 // Assign locations to all of the incoming arguments.
804 SmallVector<CCValAssign, 16> ArgLocs;
805 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
806 *DAG.getContext(),
807 MF.getFunction().getFunctionType()->getNumParams());
808
809 if (Subtarget.useHVXOps())
810 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
811 else if (DisableArgsMinAlignment)
812 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
813 else
814 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
815
816 // For LLVM, in the case when returning a struct by value (>8byte),
817 // the first argument is a pointer that points to the location on caller's
818 // stack where the return value will be stored. For Hexagon, the location on
819 // caller's stack is passed only when the struct size is smaller than (and
820 // equal to) 8 bytes. If not, no address will be passed into callee and
821 // callee return the result direclty through R0/R1.
822 auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
823 switch (RC.getID()) {
824 case Hexagon::IntRegsRegClassID:
825 return Reg - Hexagon::R0 + 1;
826 case Hexagon::DoubleRegsRegClassID:
827 return (Reg - Hexagon::D0 + 1) * 2;
828 case Hexagon::HvxVRRegClassID:
829 return Reg - Hexagon::V0 + 1;
830 case Hexagon::HvxWRRegClassID:
831 return (Reg - Hexagon::W0 + 1) * 2;
832 }
833 llvm_unreachable("Unexpected register class");
834 };
835
836 auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
837 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
838 HFL.FirstVarArgSavedReg = 0;
839 HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
840
841 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
842 CCValAssign &VA = ArgLocs[i];
843 ISD::ArgFlagsTy Flags = Ins[i].Flags;
844 bool ByVal = Flags.isByVal();
845
846 // Arguments passed in registers:
847 // 1. 32- and 64-bit values and HVX vectors are passed directly,
848 // 2. Large structs are passed via an address, and the address is
849 // passed in a register.
850 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
851 llvm_unreachable("ByValSize must be bigger than 8 bytes");
852
853 bool InReg = VA.isRegLoc() &&
854 (!ByVal || (ByVal && Flags.getByValSize() > 8));
855
856 if (InReg) {
857 MVT RegVT = VA.getLocVT();
858 if (VA.getLocInfo() == CCValAssign::BCvt)
859 RegVT = VA.getValVT();
860
861 const TargetRegisterClass *RC = getRegClassFor(RegVT);
862 Register VReg = MRI.createVirtualRegister(RC);
863 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
864
865 // Treat values of type MVT::i1 specially: they are passed in
866 // registers of type i32, but they need to remain as values of
867 // type i1 for consistency of the argument lowering.
868 if (VA.getValVT() == MVT::i1) {
869 assert(RegVT.getSizeInBits() <= 32);
870 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
871 Copy, DAG.getConstant(1, dl, RegVT));
872 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
873 ISD::SETNE);
874 } else {
875 #ifndef NDEBUG
876 unsigned RegSize = RegVT.getSizeInBits();
877 assert(RegSize == 32 || RegSize == 64 ||
878 Subtarget.isHVXVectorType(RegVT));
879 #endif
880 }
881 InVals.push_back(Copy);
882 MRI.addLiveIn(VA.getLocReg(), VReg);
883 HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
884 } else {
885 assert(VA.isMemLoc() && "Argument should be passed in memory");
886
887 // If it's a byval parameter, then we need to compute the
888 // "real" size, not the size of the pointer.
889 unsigned ObjSize = Flags.isByVal()
890 ? Flags.getByValSize()
891 : VA.getLocVT().getStoreSizeInBits() / 8;
892
893 // Create the frame index object for this incoming parameter.
894 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
895 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
896 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
897
898 if (Flags.isByVal()) {
899 // If it's a pass-by-value aggregate, then do not dereference the stack
900 // location. Instead, we should generate a reference to the stack
901 // location.
902 InVals.push_back(FIN);
903 } else {
904 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
905 MachinePointerInfo::getFixedStack(MF, FI, 0));
906 InVals.push_back(L);
907 }
908 }
909 }
910
911 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
912 for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
913 MRI.addLiveIn(Hexagon::R0+i);
914 }
915
916 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
917 HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
918 HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
919
920 // Create Frame index for the start of register saved area.
921 int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
922 bool RequiresPadding = (NumVarArgRegs & 1);
923 int RegSaveAreaSizePlusPadding = RequiresPadding
924 ? (NumVarArgRegs + 1) * 4
925 : NumVarArgRegs * 4;
926
927 if (RegSaveAreaSizePlusPadding > 0) {
928 // The offset to saved register area should be 8 byte aligned.
929 int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
930 if (!(RegAreaStart % 8))
931 RegAreaStart = (RegAreaStart + 7) & -8;
932
933 int RegSaveAreaFrameIndex =
934 MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
935 HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
936
937 // This will point to the next argument passed via stack.
938 int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
939 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
940 HMFI.setVarArgsFrameIndex(FI);
941 } else {
942 // This will point to the next argument passed via stack, when
943 // there is no saved register area.
944 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
945 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
946 HMFI.setRegSavedAreaStartFrameIndex(FI);
947 HMFI.setVarArgsFrameIndex(FI);
948 }
949 }
950
951
952 if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
953 // This will point to the next argument passed via stack.
954 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
955 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
956 HMFI.setVarArgsFrameIndex(FI);
957 }
958
959 return Chain;
960 }
961
962 SDValue
LowerVASTART(SDValue Op,SelectionDAG & DAG) const963 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
964 // VASTART stores the address of the VarArgsFrameIndex slot into the
965 // memory location argument.
966 MachineFunction &MF = DAG.getMachineFunction();
967 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
968 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
969 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
970
971 if (!Subtarget.isEnvironmentMusl()) {
972 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
973 MachinePointerInfo(SV));
974 }
975 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
976 auto &HFL = *Subtarget.getFrameLowering();
977 SDLoc DL(Op);
978 SmallVector<SDValue, 8> MemOps;
979
980 // Get frame index of va_list.
981 SDValue FIN = Op.getOperand(1);
982
983 // If first Vararg register is odd, add 4 bytes to start of
984 // saved register area to point to the first register location.
985 // This is because the saved register area has to be 8 byte aligned.
986 // Incase of an odd start register, there will be 4 bytes of padding in
987 // the beginning of saved register area. If all registers area used up,
988 // the following condition will handle it correctly.
989 SDValue SavedRegAreaStartFrameIndex =
990 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
991
992 auto PtrVT = getPointerTy(DAG.getDataLayout());
993
994 if (HFL.FirstVarArgSavedReg & 1)
995 SavedRegAreaStartFrameIndex =
996 DAG.getNode(ISD::ADD, DL, PtrVT,
997 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
998 MVT::i32),
999 DAG.getIntPtrConstant(4, DL));
1000
1001 // Store the saved register area start pointer.
1002 SDValue Store =
1003 DAG.getStore(Op.getOperand(0), DL,
1004 SavedRegAreaStartFrameIndex,
1005 FIN, MachinePointerInfo(SV));
1006 MemOps.push_back(Store);
1007
1008 // Store saved register area end pointer.
1009 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1010 FIN, DAG.getIntPtrConstant(4, DL));
1011 Store = DAG.getStore(Op.getOperand(0), DL,
1012 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1013 PtrVT),
1014 FIN, MachinePointerInfo(SV, 4));
1015 MemOps.push_back(Store);
1016
1017 // Store overflow area pointer.
1018 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1019 FIN, DAG.getIntPtrConstant(4, DL));
1020 Store = DAG.getStore(Op.getOperand(0), DL,
1021 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1022 PtrVT),
1023 FIN, MachinePointerInfo(SV, 8));
1024 MemOps.push_back(Store);
1025
1026 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1027 }
1028
1029 SDValue
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const1030 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1031 // Assert that the linux ABI is enabled for the current compilation.
1032 assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1033 SDValue Chain = Op.getOperand(0);
1034 SDValue DestPtr = Op.getOperand(1);
1035 SDValue SrcPtr = Op.getOperand(2);
1036 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1037 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1038 SDLoc DL(Op);
1039 // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1040 // we need to memcopy 12 bytes from va_list to another similar list.
1041 return DAG.getMemcpy(
1042 Chain, DL, DestPtr, SrcPtr, DAG.getIntPtrConstant(12, DL), Align(4),
1043 /*isVolatile*/ false, false, /*CI=*/nullptr, std::nullopt,
1044 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1045 }
1046
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1047 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1048 const SDLoc &dl(Op);
1049 SDValue LHS = Op.getOperand(0);
1050 SDValue RHS = Op.getOperand(1);
1051 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1052 MVT ResTy = ty(Op);
1053 MVT OpTy = ty(LHS);
1054
1055 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1056 MVT ElemTy = OpTy.getVectorElementType();
1057 assert(ElemTy.isScalarInteger());
1058 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1059 OpTy.getVectorNumElements());
1060 return DAG.getSetCC(dl, ResTy,
1061 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1062 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1063 }
1064
1065 // Treat all other vector types as legal.
1066 if (ResTy.isVector())
1067 return Op;
1068
1069 // Comparisons of short integers should use sign-extend, not zero-extend,
1070 // since we can represent small negative values in the compare instructions.
1071 // The LLVM default is to use zero-extend arbitrarily in these cases.
1072 auto isSExtFree = [this](SDValue N) {
1073 switch (N.getOpcode()) {
1074 case ISD::TRUNCATE: {
1075 // A sign-extend of a truncate of a sign-extend is free.
1076 SDValue Op = N.getOperand(0);
1077 if (Op.getOpcode() != ISD::AssertSext)
1078 return false;
1079 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1080 unsigned ThisBW = ty(N).getSizeInBits();
1081 unsigned OrigBW = OrigTy.getSizeInBits();
1082 // The type that was sign-extended to get the AssertSext must be
1083 // narrower than the type of N (so that N has still the same value
1084 // as the original).
1085 return ThisBW >= OrigBW;
1086 }
1087 case ISD::LOAD:
1088 // We have sign-extended loads.
1089 return true;
1090 }
1091 return false;
1092 };
1093
1094 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1095 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1096 bool IsNegative = C && C->getAPIntValue().isNegative();
1097 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1098 return DAG.getSetCC(dl, ResTy,
1099 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1100 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1101 }
1102
1103 return SDValue();
1104 }
1105
1106 SDValue
LowerVSELECT(SDValue Op,SelectionDAG & DAG) const1107 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1108 SDValue PredOp = Op.getOperand(0);
1109 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1110 MVT OpTy = ty(Op1);
1111 const SDLoc &dl(Op);
1112
1113 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1114 MVT ElemTy = OpTy.getVectorElementType();
1115 assert(ElemTy.isScalarInteger());
1116 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1117 OpTy.getVectorNumElements());
1118 // Generate (trunc (select (_, sext, sext))).
1119 return DAG.getSExtOrTrunc(
1120 DAG.getSelect(dl, WideTy, PredOp,
1121 DAG.getSExtOrTrunc(Op1, dl, WideTy),
1122 DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1123 dl, OpTy);
1124 }
1125
1126 return SDValue();
1127 }
1128
1129 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1130 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1131 EVT ValTy = Op.getValueType();
1132 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1133 Constant *CVal = nullptr;
1134 bool isVTi1Type = false;
1135 if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1136 if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1137 IRBuilder<> IRB(CV->getContext());
1138 SmallVector<Constant*, 128> NewConst;
1139 unsigned VecLen = CV->getNumOperands();
1140 assert(isPowerOf2_32(VecLen) &&
1141 "conversion only supported for pow2 VectorSize");
1142 for (unsigned i = 0; i < VecLen; ++i)
1143 NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1144
1145 CVal = ConstantVector::get(NewConst);
1146 isVTi1Type = true;
1147 }
1148 }
1149 Align Alignment = CPN->getAlign();
1150 bool IsPositionIndependent = isPositionIndependent();
1151 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1152
1153 unsigned Offset = 0;
1154 SDValue T;
1155 if (CPN->isMachineConstantPoolEntry())
1156 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1157 Offset, TF);
1158 else if (isVTi1Type)
1159 T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1160 else
1161 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1162 TF);
1163
1164 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1165 "Inconsistent target flag encountered");
1166
1167 if (IsPositionIndependent)
1168 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1169 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1170 }
1171
1172 SDValue
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1173 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1174 EVT VT = Op.getValueType();
1175 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1176 if (isPositionIndependent()) {
1177 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1178 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1179 }
1180
1181 SDValue T = DAG.getTargetJumpTable(Idx, VT);
1182 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1183 }
1184
1185 SDValue
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1186 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1187 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1188 MachineFunction &MF = DAG.getMachineFunction();
1189 MachineFrameInfo &MFI = MF.getFrameInfo();
1190 MFI.setReturnAddressIsTaken(true);
1191
1192 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1193 return SDValue();
1194
1195 EVT VT = Op.getValueType();
1196 SDLoc dl(Op);
1197 unsigned Depth = Op.getConstantOperandVal(0);
1198 if (Depth) {
1199 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1200 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1201 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1202 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1203 MachinePointerInfo());
1204 }
1205
1206 // Return LR, which contains the return address. Mark it an implicit live-in.
1207 Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1208 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1209 }
1210
1211 SDValue
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1212 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1213 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1214 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1215 MFI.setFrameAddressIsTaken(true);
1216
1217 EVT VT = Op.getValueType();
1218 SDLoc dl(Op);
1219 unsigned Depth = Op.getConstantOperandVal(0);
1220 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1221 HRI.getFrameRegister(), VT);
1222 while (Depth--)
1223 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1224 MachinePointerInfo());
1225 return FrameAddr;
1226 }
1227
1228 SDValue
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const1229 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1230 SDLoc dl(Op);
1231 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1232 }
1233
1234 SDValue
LowerGLOBALADDRESS(SDValue Op,SelectionDAG & DAG) const1235 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1236 SDLoc dl(Op);
1237 auto *GAN = cast<GlobalAddressSDNode>(Op);
1238 auto PtrVT = getPointerTy(DAG.getDataLayout());
1239 auto *GV = GAN->getGlobal();
1240 int64_t Offset = GAN->getOffset();
1241
1242 auto &HLOF = *HTM.getObjFileLowering();
1243 Reloc::Model RM = HTM.getRelocationModel();
1244
1245 if (RM == Reloc::Static) {
1246 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1247 const GlobalObject *GO = GV->getAliaseeObject();
1248 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1249 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1250 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1251 }
1252
1253 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(GV);
1254 if (UsePCRel) {
1255 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1256 HexagonII::MO_PCREL);
1257 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1258 }
1259
1260 // Use GOT index.
1261 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1262 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1263 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1264 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1265 }
1266
1267 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1268 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1269 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1270 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1271 SDLoc dl(Op);
1272 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1273
1274 Reloc::Model RM = HTM.getRelocationModel();
1275 if (RM == Reloc::Static) {
1276 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1277 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1278 }
1279
1280 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1281 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1282 }
1283
1284 SDValue
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const1285 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1286 const {
1287 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1288 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1289 HexagonII::MO_PCREL);
1290 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1291 }
1292
1293 SDValue
GetDynamicTLSAddr(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue Glue,EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags) const1294 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1295 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1296 unsigned char OperandFlags) const {
1297 MachineFunction &MF = DAG.getMachineFunction();
1298 MachineFrameInfo &MFI = MF.getFrameInfo();
1299 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1300 SDLoc dl(GA);
1301 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1302 GA->getValueType(0),
1303 GA->getOffset(),
1304 OperandFlags);
1305 // Create Operands for the call.The Operands should have the following:
1306 // 1. Chain SDValue
1307 // 2. Callee which in this case is the Global address value.
1308 // 3. Registers live into the call.In this case its R0, as we
1309 // have just one argument to be passed.
1310 // 4. Glue.
1311 // Note: The order is important.
1312
1313 const auto &HRI = *Subtarget.getRegisterInfo();
1314 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1315 assert(Mask && "Missing call preserved mask for calling convention");
1316 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1317 DAG.getRegisterMask(Mask), Glue };
1318 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1319
1320 // Inform MFI that function has calls.
1321 MFI.setAdjustsStack(true);
1322
1323 Glue = Chain.getValue(1);
1324 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1325 }
1326
1327 //
1328 // Lower using the intial executable model for TLS addresses
1329 //
1330 SDValue
LowerToTLSInitialExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1331 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1332 SelectionDAG &DAG) const {
1333 SDLoc dl(GA);
1334 int64_t Offset = GA->getOffset();
1335 auto PtrVT = getPointerTy(DAG.getDataLayout());
1336
1337 // Get the thread pointer.
1338 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1339
1340 bool IsPositionIndependent = isPositionIndependent();
1341 unsigned char TF =
1342 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1343
1344 // First generate the TLS symbol address
1345 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1346 Offset, TF);
1347
1348 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1349
1350 if (IsPositionIndependent) {
1351 // Generate the GOT pointer in case of position independent code
1352 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1353
1354 // Add the TLS Symbol address to GOT pointer.This gives
1355 // GOT relative relocation for the symbol.
1356 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1357 }
1358
1359 // Load the offset value for TLS symbol.This offset is relative to
1360 // thread pointer.
1361 SDValue LoadOffset =
1362 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1363
1364 // Address of the thread local variable is the add of thread
1365 // pointer and the offset of the variable.
1366 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1367 }
1368
1369 //
1370 // Lower using the local executable model for TLS addresses
1371 //
1372 SDValue
LowerToTLSLocalExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1373 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1374 SelectionDAG &DAG) const {
1375 SDLoc dl(GA);
1376 int64_t Offset = GA->getOffset();
1377 auto PtrVT = getPointerTy(DAG.getDataLayout());
1378
1379 // Get the thread pointer.
1380 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1381 // Generate the TLS symbol address
1382 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1383 HexagonII::MO_TPREL);
1384 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1385
1386 // Address of the thread local variable is the add of thread
1387 // pointer and the offset of the variable.
1388 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1389 }
1390
1391 //
1392 // Lower using the general dynamic model for TLS addresses
1393 //
1394 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1395 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1396 SelectionDAG &DAG) const {
1397 SDLoc dl(GA);
1398 int64_t Offset = GA->getOffset();
1399 auto PtrVT = getPointerTy(DAG.getDataLayout());
1400
1401 // First generate the TLS symbol address
1402 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1403 HexagonII::MO_GDGOT);
1404
1405 // Then, generate the GOT pointer
1406 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1407
1408 // Add the TLS symbol and the GOT pointer
1409 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1410 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1411
1412 // Copy over the argument to R0
1413 SDValue InGlue;
1414 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue);
1415 InGlue = Chain.getValue(1);
1416
1417 unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1418 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1419 : HexagonII::MO_GDPLT;
1420
1421 return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT,
1422 Hexagon::R0, Flags);
1423 }
1424
1425 //
1426 // Lower TLS addresses.
1427 //
1428 // For now for dynamic models, we only support the general dynamic model.
1429 //
1430 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1431 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1432 SelectionDAG &DAG) const {
1433 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1434
1435 switch (HTM.getTLSModel(GA->getGlobal())) {
1436 case TLSModel::GeneralDynamic:
1437 case TLSModel::LocalDynamic:
1438 return LowerToTLSGeneralDynamicModel(GA, DAG);
1439 case TLSModel::InitialExec:
1440 return LowerToTLSInitialExecModel(GA, DAG);
1441 case TLSModel::LocalExec:
1442 return LowerToTLSLocalExecModel(GA, DAG);
1443 }
1444 llvm_unreachable("Bogus TLS model");
1445 }
1446
1447 //===----------------------------------------------------------------------===//
1448 // TargetLowering Implementation
1449 //===----------------------------------------------------------------------===//
1450
HexagonTargetLowering(const TargetMachine & TM,const HexagonSubtarget & ST)1451 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1452 const HexagonSubtarget &ST)
1453 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1454 Subtarget(ST) {
1455 auto &HRI = *Subtarget.getRegisterInfo();
1456
1457 setPrefLoopAlignment(Align(16));
1458 setMinFunctionAlignment(Align(4));
1459 setPrefFunctionAlignment(Align(16));
1460 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1461 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1462 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1463
1464 setMaxAtomicSizeInBitsSupported(64);
1465 setMinCmpXchgSizeInBits(32);
1466
1467 if (EnableHexSDNodeSched)
1468 setSchedulingPreference(Sched::VLIW);
1469 else
1470 setSchedulingPreference(Sched::Source);
1471
1472 // Limits for inline expansion of memcpy/memmove
1473 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1474 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1475 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1476 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1477 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1478 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1479
1480 //
1481 // Set up register classes.
1482 //
1483
1484 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1485 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1486 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1487 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1488 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1489 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1490 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1491 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1492 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1493 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1494 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1495
1496 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1497 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1498
1499 //
1500 // Handling of scalar operations.
1501 //
1502 // All operations default to "legal", except:
1503 // - indexed loads and stores (pre-/post-incremented),
1504 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1505 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1506 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1507 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1508 // which default to "expand" for at least one type.
1509
1510 // Misc operations.
1511 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1512 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1513 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1514 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1515 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1516 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1517 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1518 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1519 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1520 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1521 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1522 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Custom);
1523 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1524 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1525 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1526 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1527 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1528
1529 // Custom legalize GlobalAddress nodes into CONST32.
1530 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1531 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1532 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1533
1534 // Hexagon needs to optimize cases with negative constants.
1535 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1536 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1537 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1538 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1539
1540 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1541 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1542 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1543 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1544 if (Subtarget.isEnvironmentMusl())
1545 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1546 else
1547 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1548
1549 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1550 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1551 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1552
1553 if (EmitJumpTables)
1554 setMinimumJumpTableEntries(MinimumJumpTables);
1555 else
1556 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1557 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1558
1559 for (unsigned LegalIntOp :
1560 {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1561 setOperationAction(LegalIntOp, MVT::i32, Legal);
1562 setOperationAction(LegalIntOp, MVT::i64, Legal);
1563 }
1564
1565 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1566 // but they only operate on i64.
1567 for (MVT VT : MVT::integer_valuetypes()) {
1568 setOperationAction(ISD::UADDO, VT, Custom);
1569 setOperationAction(ISD::USUBO, VT, Custom);
1570 setOperationAction(ISD::SADDO, VT, Expand);
1571 setOperationAction(ISD::SSUBO, VT, Expand);
1572 setOperationAction(ISD::UADDO_CARRY, VT, Expand);
1573 setOperationAction(ISD::USUBO_CARRY, VT, Expand);
1574 }
1575 setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
1576 setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
1577
1578 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1579 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1580 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1581 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1582
1583 // Popcount can count # of 1s in i64 but returns i32.
1584 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1585 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1586 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1587 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1588
1589 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1590 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1591 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1592 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1593
1594 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1595 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1596 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1597 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1598
1599 for (unsigned IntExpOp :
1600 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1601 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1602 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1603 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1604 for (MVT VT : MVT::integer_valuetypes())
1605 setOperationAction(IntExpOp, VT, Expand);
1606 }
1607
1608 for (unsigned FPExpOp :
1609 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1610 ISD::FPOW, ISD::FCOPYSIGN}) {
1611 for (MVT VT : MVT::fp_valuetypes())
1612 setOperationAction(FPExpOp, VT, Expand);
1613 }
1614
1615 // No extending loads from i32.
1616 for (MVT VT : MVT::integer_valuetypes()) {
1617 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1618 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1619 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1620 }
1621 // Turn FP truncstore into trunc + store.
1622 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1623 // Turn FP extload into load/fpextend.
1624 for (MVT VT : MVT::fp_valuetypes())
1625 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1626
1627 // Expand BR_CC and SELECT_CC for all integer and fp types.
1628 for (MVT VT : MVT::integer_valuetypes()) {
1629 setOperationAction(ISD::BR_CC, VT, Expand);
1630 setOperationAction(ISD::SELECT_CC, VT, Expand);
1631 }
1632 for (MVT VT : MVT::fp_valuetypes()) {
1633 setOperationAction(ISD::BR_CC, VT, Expand);
1634 setOperationAction(ISD::SELECT_CC, VT, Expand);
1635 }
1636 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1637
1638 //
1639 // Handling of vector operations.
1640 //
1641
1642 // Set the action for vector operations to "expand", then override it with
1643 // either "custom" or "legal" for specific cases.
1644 static const unsigned VectExpOps[] = {
1645 // Integer arithmetic:
1646 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1647 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1648 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1649 // Logical/bit:
1650 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1651 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::BSWAP, ISD::BITREVERSE,
1652 // Floating point arithmetic/math functions:
1653 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1654 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1655 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1656 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1657 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1658 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP,
1659 // Misc:
1660 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1661 // Vector:
1662 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1663 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1664 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1665 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE,
1666 ISD::SPLAT_VECTOR,
1667 };
1668
1669 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1670 for (unsigned VectExpOp : VectExpOps)
1671 setOperationAction(VectExpOp, VT, Expand);
1672
1673 // Expand all extending loads and truncating stores:
1674 for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1675 if (TargetVT == VT)
1676 continue;
1677 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1678 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1679 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1680 setTruncStoreAction(VT, TargetVT, Expand);
1681 }
1682
1683 // Normalize all inputs to SELECT to be vectors of i32.
1684 if (VT.getVectorElementType() != MVT::i32) {
1685 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1686 setOperationAction(ISD::SELECT, VT, Promote);
1687 AddPromotedToType(ISD::SELECT, VT, VT32);
1688 }
1689 setOperationAction(ISD::SRA, VT, Custom);
1690 setOperationAction(ISD::SHL, VT, Custom);
1691 setOperationAction(ISD::SRL, VT, Custom);
1692 }
1693
1694 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1695 // are legal.
1696 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1697 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1698 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1699 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1700 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1701 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1702
1703 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal);
1704 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1705 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1706
1707 // Types natively supported:
1708 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1709 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1710 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1712 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1713 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1714 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1715 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1716
1717 setOperationAction(ISD::ADD, NativeVT, Legal);
1718 setOperationAction(ISD::SUB, NativeVT, Legal);
1719 setOperationAction(ISD::MUL, NativeVT, Legal);
1720 setOperationAction(ISD::AND, NativeVT, Legal);
1721 setOperationAction(ISD::OR, NativeVT, Legal);
1722 setOperationAction(ISD::XOR, NativeVT, Legal);
1723
1724 if (NativeVT.getVectorElementType() != MVT::i1) {
1725 setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1726 setOperationAction(ISD::BSWAP, NativeVT, Legal);
1727 setOperationAction(ISD::BITREVERSE, NativeVT, Legal);
1728 }
1729 }
1730
1731 for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1732 setOperationAction(ISD::SMIN, VT, Legal);
1733 setOperationAction(ISD::SMAX, VT, Legal);
1734 setOperationAction(ISD::UMIN, VT, Legal);
1735 setOperationAction(ISD::UMAX, VT, Legal);
1736 }
1737
1738 // Custom lower unaligned loads.
1739 // Also, for both loads and stores, verify the alignment of the address
1740 // in case it is a compile-time constant. This is a usability feature to
1741 // provide a meaningful error message to users.
1742 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1743 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1744 setOperationAction(ISD::LOAD, VT, Custom);
1745 setOperationAction(ISD::STORE, VT, Custom);
1746 }
1747
1748 // Custom-lower load/stores of boolean vectors.
1749 for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1750 setOperationAction(ISD::LOAD, VT, Custom);
1751 setOperationAction(ISD::STORE, VT, Custom);
1752 }
1753
1754 // Normalize integer compares to EQ/GT/UGT
1755 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1756 MVT::v2i32}) {
1757 setCondCodeAction(ISD::SETNE, VT, Expand);
1758 setCondCodeAction(ISD::SETLE, VT, Expand);
1759 setCondCodeAction(ISD::SETGE, VT, Expand);
1760 setCondCodeAction(ISD::SETLT, VT, Expand);
1761 setCondCodeAction(ISD::SETULE, VT, Expand);
1762 setCondCodeAction(ISD::SETUGE, VT, Expand);
1763 setCondCodeAction(ISD::SETULT, VT, Expand);
1764 }
1765
1766 // Normalize boolean compares to [U]LE/[U]LT
1767 for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1768 setCondCodeAction(ISD::SETGE, VT, Expand);
1769 setCondCodeAction(ISD::SETGT, VT, Expand);
1770 setCondCodeAction(ISD::SETUGE, VT, Expand);
1771 setCondCodeAction(ISD::SETUGT, VT, Expand);
1772 }
1773
1774 // Custom-lower bitcasts from i8 to v8i1.
1775 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1776 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1777 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
1778 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1779 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1780 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1781 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1782
1783 // V5+.
1784 setOperationAction(ISD::FMA, MVT::f64, Expand);
1785 setOperationAction(ISD::FADD, MVT::f64, Expand);
1786 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1787 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1788 setOperationAction(ISD::FDIV, MVT::f32, Custom);
1789
1790 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1791 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1792
1793 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1794 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1795 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1796 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1797 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1798 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1799 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1800 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1801 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1802 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1803 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1804 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1805
1806 // Special handling for half-precision floating point conversions.
1807 // Lower half float conversions into library calls.
1808 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1809 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1810 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1811 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1812
1813 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1814 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1815 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1816 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1817
1818 // Handling of indexed loads/stores: default is "expand".
1819 //
1820 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1821 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1822 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1823 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1824 }
1825
1826 // Subtarget-specific operation actions.
1827 //
1828 if (Subtarget.hasV60Ops()) {
1829 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1830 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1831 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1832 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1833 }
1834 if (Subtarget.hasV66Ops()) {
1835 setOperationAction(ISD::FADD, MVT::f64, Legal);
1836 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1837 }
1838 if (Subtarget.hasV67Ops()) {
1839 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1840 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1841 setOperationAction(ISD::FMUL, MVT::f64, Legal);
1842 }
1843
1844 setTargetDAGCombine(ISD::OR);
1845 setTargetDAGCombine(ISD::TRUNCATE);
1846 setTargetDAGCombine(ISD::VSELECT);
1847
1848 if (Subtarget.useHVXOps())
1849 initializeHVXLowering();
1850
1851 computeRegisterProperties(&HRI);
1852
1853 //
1854 // Library calls for unsupported operations
1855 //
1856 bool FastMath = EnableFastMath;
1857
1858 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1859 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1860 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1861 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1862 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1863 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1864 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1865 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1866
1867 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1868 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1869 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1870 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1871 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1872 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1873
1874 // This is the only fast library function for sqrtd.
1875 if (FastMath)
1876 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1877
1878 // Prefix is: nothing for "slow-math",
1879 // "fast2_" for V5+ fast-math double-precision
1880 // (actually, keep fast-math and fast-math2 separate for now)
1881 if (FastMath) {
1882 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1883 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1884 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1885 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1886 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1887 } else {
1888 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1889 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1890 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1891 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1892 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1893 }
1894
1895 if (FastMath)
1896 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1897 else
1898 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1899
1900 // Routines to handle fp16 storage type.
1901 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1902 setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1903 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1904 }
1905
getTargetNodeName(unsigned Opcode) const1906 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1907 switch ((HexagonISD::NodeType)Opcode) {
1908 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1909 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1910 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1911 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1912 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1913 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1914 case HexagonISD::CALL: return "HexagonISD::CALL";
1915 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1916 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1917 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1918 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1919 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1920 case HexagonISD::CP: return "HexagonISD::CP";
1921 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1922 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1923 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1924 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1925 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1926 case HexagonISD::JT: return "HexagonISD::JT";
1927 case HexagonISD::RET_GLUE: return "HexagonISD::RET_GLUE";
1928 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1929 case HexagonISD::VASL: return "HexagonISD::VASL";
1930 case HexagonISD::VASR: return "HexagonISD::VASR";
1931 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1932 case HexagonISD::MFSHL: return "HexagonISD::MFSHL";
1933 case HexagonISD::MFSHR: return "HexagonISD::MFSHR";
1934 case HexagonISD::SSAT: return "HexagonISD::SSAT";
1935 case HexagonISD::USAT: return "HexagonISD::USAT";
1936 case HexagonISD::SMUL_LOHI: return "HexagonISD::SMUL_LOHI";
1937 case HexagonISD::UMUL_LOHI: return "HexagonISD::UMUL_LOHI";
1938 case HexagonISD::USMUL_LOHI: return "HexagonISD::USMUL_LOHI";
1939 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1940 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1941 case HexagonISD::VROR: return "HexagonISD::VROR";
1942 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1943 case HexagonISD::READTIMER: return "HexagonISD::READTIMER";
1944 case HexagonISD::PTRUE: return "HexagonISD::PTRUE";
1945 case HexagonISD::PFALSE: return "HexagonISD::PFALSE";
1946 case HexagonISD::D2P: return "HexagonISD::D2P";
1947 case HexagonISD::P2D: return "HexagonISD::P2D";
1948 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1949 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1950 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1951 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1952 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1953 case HexagonISD::TL_EXTEND: return "HexagonISD::TL_EXTEND";
1954 case HexagonISD::TL_TRUNCATE: return "HexagonISD::TL_TRUNCATE";
1955 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1956 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1957 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1958 case HexagonISD::ISEL: return "HexagonISD::ISEL";
1959 case HexagonISD::OP_END: break;
1960 }
1961 return nullptr;
1962 }
1963
1964 bool
validateConstPtrAlignment(SDValue Ptr,Align NeedAlign,const SDLoc & dl,SelectionDAG & DAG) const1965 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1966 const SDLoc &dl, SelectionDAG &DAG) const {
1967 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1968 if (!CA)
1969 return true;
1970 unsigned Addr = CA->getZExtValue();
1971 Align HaveAlign =
1972 Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign;
1973 if (HaveAlign >= NeedAlign)
1974 return true;
1975
1976 static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1977
1978 struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1979 DiagnosticInfoMisalignedTrap(StringRef M)
1980 : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1981 void print(DiagnosticPrinter &DP) const override {
1982 DP << Msg;
1983 }
1984 static bool classof(const DiagnosticInfo *DI) {
1985 return DI->getKind() == DK_MisalignedTrap;
1986 }
1987 StringRef Msg;
1988 };
1989
1990 std::string ErrMsg;
1991 raw_string_ostream O(ErrMsg);
1992 O << "Misaligned constant address: " << format_hex(Addr, 10)
1993 << " has alignment " << HaveAlign.value()
1994 << ", but the memory access requires " << NeedAlign.value();
1995 if (DebugLoc DL = dl.getDebugLoc())
1996 DL.print(O << ", at ");
1997 O << ". The instruction has been replaced with a trap.";
1998
1999 DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
2000 return false;
2001 }
2002
2003 SDValue
replaceMemWithUndef(SDValue Op,SelectionDAG & DAG) const2004 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
2005 const {
2006 const SDLoc &dl(Op);
2007 auto *LS = cast<LSBaseSDNode>(Op.getNode());
2008 assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
2009
2010 SDValue Chain = LS->getChain();
2011 SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
2012 if (LS->getOpcode() == ISD::LOAD)
2013 return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
2014 return Trap;
2015 }
2016
2017 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
2018 // intrinsic.
isBrevLdIntrinsic(const Value * Inst)2019 static bool isBrevLdIntrinsic(const Value *Inst) {
2020 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
2021 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
2022 ID == Intrinsic::hexagon_L2_loadri_pbr ||
2023 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
2024 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
2025 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2026 ID == Intrinsic::hexagon_L2_loadrub_pbr);
2027 }
2028
2029 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2030 // instruction. So far we only handle bitcast, extract value and bit reverse
2031 // load intrinsic instructions. Should we handle CGEP ?
getBrevLdObject(Value * V)2032 static Value *getBrevLdObject(Value *V) {
2033 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2034 Operator::getOpcode(V) == Instruction::BitCast)
2035 V = cast<Operator>(V)->getOperand(0);
2036 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2037 V = cast<Instruction>(V)->getOperand(0);
2038 return V;
2039 }
2040
2041 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2042 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2043 // edge is returned.
returnEdge(const PHINode * PN,Value * IntrBaseVal)2044 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2045 const BasicBlock *Parent = PN->getParent();
2046 int Idx = -1;
2047 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2048 BasicBlock *Blk = PN->getIncomingBlock(i);
2049 // Determine if the back edge is originated from intrinsic.
2050 if (Blk == Parent) {
2051 Value *BackEdgeVal = PN->getIncomingValue(i);
2052 Value *BaseVal;
2053 // Loop over till we return the same Value or we hit the IntrBaseVal.
2054 do {
2055 BaseVal = BackEdgeVal;
2056 BackEdgeVal = getBrevLdObject(BackEdgeVal);
2057 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2058 // If the getBrevLdObject returns IntrBaseVal, we should return the
2059 // incoming edge.
2060 if (IntrBaseVal == BackEdgeVal)
2061 continue;
2062 Idx = i;
2063 break;
2064 } else // Set the node to incoming edge.
2065 Idx = i;
2066 }
2067 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2068 return PN->getIncomingValue(Idx);
2069 }
2070
2071 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2072 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2073 // memoperand might help alias analysis to figure out the dependencies.
getUnderLyingObjectForBrevLdIntr(Value * V)2074 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2075 Value *IntrBaseVal = V;
2076 Value *BaseVal;
2077 // Loop over till we return the same Value, implies we either figure out
2078 // the object or we hit a PHI
2079 do {
2080 BaseVal = V;
2081 V = getBrevLdObject(V);
2082 } while (BaseVal != V);
2083
2084 // Identify the object from PHINode.
2085 if (const PHINode *PN = dyn_cast<PHINode>(V))
2086 return returnEdge(PN, IntrBaseVal);
2087 // For non PHI nodes, the object is the last value returned by getBrevLdObject
2088 else
2089 return V;
2090 }
2091
2092 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2093 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2094 /// true and store the intrinsic information into the IntrinsicInfo that was
2095 /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const2096 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2097 const CallInst &I,
2098 MachineFunction &MF,
2099 unsigned Intrinsic) const {
2100 switch (Intrinsic) {
2101 case Intrinsic::hexagon_L2_loadrd_pbr:
2102 case Intrinsic::hexagon_L2_loadri_pbr:
2103 case Intrinsic::hexagon_L2_loadrh_pbr:
2104 case Intrinsic::hexagon_L2_loadruh_pbr:
2105 case Intrinsic::hexagon_L2_loadrb_pbr:
2106 case Intrinsic::hexagon_L2_loadrub_pbr: {
2107 Info.opc = ISD::INTRINSIC_W_CHAIN;
2108 auto &DL = I.getDataLayout();
2109 auto &Cont = I.getCalledFunction()->getParent()->getContext();
2110 // The intrinsic function call is of the form { ElTy, i8* }
2111 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2112 // should be derived from ElTy.
2113 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2114 Info.memVT = MVT::getVT(ElTy);
2115 llvm::Value *BasePtrVal = I.getOperand(0);
2116 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2117 // The offset value comes through Modifier register. For now, assume the
2118 // offset is 0.
2119 Info.offset = 0;
2120 Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2121 Info.flags = MachineMemOperand::MOLoad;
2122 return true;
2123 }
2124 case Intrinsic::hexagon_V6_vgathermw:
2125 case Intrinsic::hexagon_V6_vgathermw_128B:
2126 case Intrinsic::hexagon_V6_vgathermh:
2127 case Intrinsic::hexagon_V6_vgathermh_128B:
2128 case Intrinsic::hexagon_V6_vgathermhw:
2129 case Intrinsic::hexagon_V6_vgathermhw_128B:
2130 case Intrinsic::hexagon_V6_vgathermwq:
2131 case Intrinsic::hexagon_V6_vgathermwq_128B:
2132 case Intrinsic::hexagon_V6_vgathermhq:
2133 case Intrinsic::hexagon_V6_vgathermhq_128B:
2134 case Intrinsic::hexagon_V6_vgathermhwq:
2135 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2136 const Module &M = *I.getParent()->getParent()->getParent();
2137 Info.opc = ISD::INTRINSIC_W_CHAIN;
2138 Type *VecTy = I.getArgOperand(1)->getType();
2139 Info.memVT = MVT::getVT(VecTy);
2140 Info.ptrVal = I.getArgOperand(0);
2141 Info.offset = 0;
2142 Info.align =
2143 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2144 Info.flags = MachineMemOperand::MOLoad |
2145 MachineMemOperand::MOStore |
2146 MachineMemOperand::MOVolatile;
2147 return true;
2148 }
2149 default:
2150 break;
2151 }
2152 return false;
2153 }
2154
hasBitTest(SDValue X,SDValue Y) const2155 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2156 return X.getValueType().isScalarInteger(); // 'tstbit'
2157 }
2158
isTruncateFree(Type * Ty1,Type * Ty2) const2159 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2160 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2161 }
2162
isTruncateFree(EVT VT1,EVT VT2) const2163 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2164 if (!VT1.isSimple() || !VT2.isSimple())
2165 return false;
2166 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2167 }
2168
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const2169 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2170 const MachineFunction &MF, EVT VT) const {
2171 return isOperationLegalOrCustom(ISD::FMA, VT);
2172 }
2173
2174 // Should we expand the build vector with shuffles?
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const2175 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2176 unsigned DefinedValues) const {
2177 return false;
2178 }
2179
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const2180 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2181 unsigned Index) const {
2182 assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2183 if (!ResVT.isSimple() || !SrcVT.isSimple())
2184 return false;
2185
2186 MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2187 if (ResTy.getVectorElementType() != MVT::i1)
2188 return true;
2189
2190 // Non-HVX bool vectors are relatively cheap.
2191 return SrcTy.getVectorNumElements() <= 8;
2192 }
2193
isTargetCanonicalConstantNode(SDValue Op) const2194 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2195 return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2196 TargetLowering::isTargetCanonicalConstantNode(Op);
2197 }
2198
isShuffleMaskLegal(ArrayRef<int> Mask,EVT VT) const2199 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2200 EVT VT) const {
2201 return true;
2202 }
2203
2204 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const2205 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2206 unsigned VecLen = VT.getVectorMinNumElements();
2207 MVT ElemTy = VT.getVectorElementType();
2208
2209 if (VecLen == 1 || VT.isScalableVector())
2210 return TargetLoweringBase::TypeScalarizeVector;
2211
2212 if (Subtarget.useHVXOps()) {
2213 unsigned Action = getPreferredHvxVectorAction(VT);
2214 if (Action != ~0u)
2215 return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2216 }
2217
2218 // Always widen (remaining) vectors of i1.
2219 if (ElemTy == MVT::i1)
2220 return TargetLoweringBase::TypeWidenVector;
2221 // Widen non-power-of-2 vectors. Such types cannot be split right now,
2222 // and computeRegisterProperties will override "split" with "widen",
2223 // which can cause other issues.
2224 if (!isPowerOf2_32(VecLen))
2225 return TargetLoweringBase::TypeWidenVector;
2226
2227 return TargetLoweringBase::TypeSplitVector;
2228 }
2229
2230 TargetLoweringBase::LegalizeAction
getCustomOperationAction(SDNode & Op) const2231 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2232 if (Subtarget.useHVXOps()) {
2233 unsigned Action = getCustomHvxOperationAction(Op);
2234 if (Action != ~0u)
2235 return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2236 }
2237 return TargetLoweringBase::Legal;
2238 }
2239
2240 std::pair<SDValue, int>
getBaseAndOffset(SDValue Addr) const2241 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2242 if (Addr.getOpcode() == ISD::ADD) {
2243 SDValue Op1 = Addr.getOperand(1);
2244 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2245 return { Addr.getOperand(0), CN->getSExtValue() };
2246 }
2247 return { Addr, 0 };
2248 }
2249
2250 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
2251 // to select data from, V3 is the permutation.
2252 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2253 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2254 const {
2255 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2256 ArrayRef<int> AM = SVN->getMask();
2257 assert(AM.size() <= 8 && "Unexpected shuffle mask");
2258 unsigned VecLen = AM.size();
2259
2260 MVT VecTy = ty(Op);
2261 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2262 "HVX shuffles should be legal");
2263 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2264
2265 SDValue Op0 = Op.getOperand(0);
2266 SDValue Op1 = Op.getOperand(1);
2267 const SDLoc &dl(Op);
2268
2269 // If the inputs are not the same as the output, bail. This is not an
2270 // error situation, but complicates the handling and the default expansion
2271 // (into BUILD_VECTOR) should be adequate.
2272 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2273 return SDValue();
2274
2275 // Normalize the mask so that the first non-negative index comes from
2276 // the first operand.
2277 SmallVector<int,8> Mask(AM.begin(), AM.end());
2278 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2279 if (F == AM.size())
2280 return DAG.getUNDEF(VecTy);
2281 if (AM[F] >= int(VecLen)) {
2282 ShuffleVectorSDNode::commuteMask(Mask);
2283 std::swap(Op0, Op1);
2284 }
2285
2286 // Express the shuffle mask in terms of bytes.
2287 SmallVector<int,8> ByteMask;
2288 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2289 for (int M : Mask) {
2290 if (M < 0) {
2291 for (unsigned j = 0; j != ElemBytes; ++j)
2292 ByteMask.push_back(-1);
2293 } else {
2294 for (unsigned j = 0; j != ElemBytes; ++j)
2295 ByteMask.push_back(M*ElemBytes + j);
2296 }
2297 }
2298 assert(ByteMask.size() <= 8);
2299
2300 // All non-undef (non-negative) indexes are well within [0..127], so they
2301 // fit in a single byte. Build two 64-bit words:
2302 // - MaskIdx where each byte is the corresponding index (for non-negative
2303 // indexes), and 0xFF for negative indexes, and
2304 // - MaskUnd that has 0xFF for each negative index.
2305 uint64_t MaskIdx = 0;
2306 uint64_t MaskUnd = 0;
2307 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2308 unsigned S = 8*i;
2309 uint64_t M = ByteMask[i] & 0xFF;
2310 if (M == 0xFF)
2311 MaskUnd |= M << S;
2312 MaskIdx |= M << S;
2313 }
2314
2315 if (ByteMask.size() == 4) {
2316 // Identity.
2317 if (MaskIdx == (0x03020100 | MaskUnd))
2318 return Op0;
2319 // Byte swap.
2320 if (MaskIdx == (0x00010203 | MaskUnd)) {
2321 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2322 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2323 return DAG.getBitcast(VecTy, T1);
2324 }
2325
2326 // Byte packs.
2327 SDValue Concat10 =
2328 getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2329 if (MaskIdx == (0x06040200 | MaskUnd))
2330 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2331 if (MaskIdx == (0x07050301 | MaskUnd))
2332 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2333
2334 SDValue Concat01 =
2335 getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2336 if (MaskIdx == (0x02000604 | MaskUnd))
2337 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2338 if (MaskIdx == (0x03010705 | MaskUnd))
2339 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2340 }
2341
2342 if (ByteMask.size() == 8) {
2343 // Identity.
2344 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2345 return Op0;
2346 // Byte swap.
2347 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2348 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2349 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2350 return DAG.getBitcast(VecTy, T1);
2351 }
2352
2353 // Halfword picks.
2354 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2355 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2356 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2357 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2358 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2359 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2360 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2361 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2362 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2363 VectorPair P = opSplit(Op0, dl, DAG);
2364 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2365 }
2366
2367 // Byte packs.
2368 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2369 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2370 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2371 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2372 }
2373
2374 return SDValue();
2375 }
2376
2377 SDValue
getSplatValue(SDValue Op,SelectionDAG & DAG) const2378 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2379 switch (Op.getOpcode()) {
2380 case ISD::BUILD_VECTOR:
2381 if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2382 return S;
2383 break;
2384 case ISD::SPLAT_VECTOR:
2385 return Op.getOperand(0);
2386 }
2387 return SDValue();
2388 }
2389
2390 // Create a Hexagon-specific node for shifting a vector by an integer.
2391 SDValue
getVectorShiftByInt(SDValue Op,SelectionDAG & DAG) const2392 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2393 const {
2394 unsigned NewOpc;
2395 switch (Op.getOpcode()) {
2396 case ISD::SHL:
2397 NewOpc = HexagonISD::VASL;
2398 break;
2399 case ISD::SRA:
2400 NewOpc = HexagonISD::VASR;
2401 break;
2402 case ISD::SRL:
2403 NewOpc = HexagonISD::VLSR;
2404 break;
2405 default:
2406 llvm_unreachable("Unexpected shift opcode");
2407 }
2408
2409 if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2410 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2411 return SDValue();
2412 }
2413
2414 SDValue
LowerVECTOR_SHIFT(SDValue Op,SelectionDAG & DAG) const2415 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2416 const SDLoc &dl(Op);
2417
2418 // First try to convert the shift (by vector) to a shift by a scalar.
2419 // If we first split the shift, the shift amount will become 'extract
2420 // subvector', and will no longer be recognized as scalar.
2421 SDValue Res = Op;
2422 if (SDValue S = getVectorShiftByInt(Op, DAG))
2423 Res = S;
2424
2425 unsigned Opc = Res.getOpcode();
2426 switch (Opc) {
2427 case HexagonISD::VASR:
2428 case HexagonISD::VLSR:
2429 case HexagonISD::VASL:
2430 break;
2431 default:
2432 // No instructions for shifts by non-scalars.
2433 return SDValue();
2434 }
2435
2436 MVT ResTy = ty(Res);
2437 if (ResTy.getVectorElementType() != MVT::i8)
2438 return Res;
2439
2440 // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2441 assert(ResTy.getVectorElementType() == MVT::i8);
2442 SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2443
2444 auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2445 MVT Ty = ty(V);
2446 MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2447 SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2448 : DAG.getZExtOrTrunc(V, dl, ExtTy);
2449 SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2450 return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2451 };
2452
2453 if (ResTy.getSizeInBits() == 32)
2454 return ShiftPartI8(Opc, Val, Amt);
2455
2456 auto [LoV, HiV] = opSplit(Val, dl, DAG);
2457 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2458 {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2459 }
2460
2461 SDValue
LowerROTL(SDValue Op,SelectionDAG & DAG) const2462 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2463 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2464 return Op;
2465 return SDValue();
2466 }
2467
2468 SDValue
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const2469 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2470 MVT ResTy = ty(Op);
2471 SDValue InpV = Op.getOperand(0);
2472 MVT InpTy = ty(InpV);
2473 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2474 const SDLoc &dl(Op);
2475
2476 // Handle conversion from i8 to v8i1.
2477 if (InpTy == MVT::i8) {
2478 if (ResTy == MVT::v8i1) {
2479 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2480 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2481 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2482 }
2483 return SDValue();
2484 }
2485
2486 return Op;
2487 }
2488
2489 bool
getBuildVectorConstInts(ArrayRef<SDValue> Values,MVT VecTy,SelectionDAG & DAG,MutableArrayRef<ConstantInt * > Consts) const2490 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2491 MVT VecTy, SelectionDAG &DAG,
2492 MutableArrayRef<ConstantInt*> Consts) const {
2493 MVT ElemTy = VecTy.getVectorElementType();
2494 unsigned ElemWidth = ElemTy.getSizeInBits();
2495 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2496 bool AllConst = true;
2497
2498 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2499 SDValue V = Values[i];
2500 if (V.isUndef()) {
2501 Consts[i] = ConstantInt::get(IntTy, 0);
2502 continue;
2503 }
2504 // Make sure to always cast to IntTy.
2505 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2506 const ConstantInt *CI = CN->getConstantIntValue();
2507 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2508 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2509 const ConstantFP *CF = CN->getConstantFPValue();
2510 APInt A = CF->getValueAPF().bitcastToAPInt();
2511 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2512 } else {
2513 AllConst = false;
2514 }
2515 }
2516 return AllConst;
2517 }
2518
2519 SDValue
buildVector32(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2520 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2521 MVT VecTy, SelectionDAG &DAG) const {
2522 MVT ElemTy = VecTy.getVectorElementType();
2523 assert(VecTy.getVectorNumElements() == Elem.size());
2524
2525 SmallVector<ConstantInt*,4> Consts(Elem.size());
2526 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2527
2528 unsigned First, Num = Elem.size();
2529 for (First = 0; First != Num; ++First) {
2530 if (!isUndef(Elem[First]))
2531 break;
2532 }
2533 if (First == Num)
2534 return DAG.getUNDEF(VecTy);
2535
2536 if (AllConst &&
2537 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2538 return getZero(dl, VecTy, DAG);
2539
2540 if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2541 assert(Elem.size() == 2);
2542 if (AllConst) {
2543 // The 'Consts' array will have all values as integers regardless
2544 // of the vector element type.
2545 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2546 Consts[1]->getZExtValue() << 16;
2547 return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2548 }
2549 SDValue E0, E1;
2550 if (ElemTy == MVT::f16) {
2551 E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2552 E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2553 } else {
2554 E0 = Elem[0];
2555 E1 = Elem[1];
2556 }
2557 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2558 return DAG.getBitcast(VecTy, N);
2559 }
2560
2561 if (ElemTy == MVT::i8) {
2562 // First try generating a constant.
2563 if (AllConst) {
2564 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2565 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2566 (Consts[2]->getZExtValue() & 0xFF) << 16 |
2567 Consts[3]->getZExtValue() << 24;
2568 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2569 }
2570
2571 // Then try splat.
2572 bool IsSplat = true;
2573 for (unsigned i = First+1; i != Num; ++i) {
2574 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2575 continue;
2576 IsSplat = false;
2577 break;
2578 }
2579 if (IsSplat) {
2580 // Legalize the operand of SPLAT_VECTOR.
2581 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2582 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2583 }
2584
2585 // Generate
2586 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2587 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2588 assert(Elem.size() == 4);
2589 SDValue Vs[4];
2590 for (unsigned i = 0; i != 4; ++i) {
2591 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2592 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2593 }
2594 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2595 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2596 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2597 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2598 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2599
2600 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2601 return DAG.getBitcast(MVT::v4i8, R);
2602 }
2603
2604 #ifndef NDEBUG
2605 dbgs() << "VecTy: " << VecTy << '\n';
2606 #endif
2607 llvm_unreachable("Unexpected vector element type");
2608 }
2609
2610 SDValue
buildVector64(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2611 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2612 MVT VecTy, SelectionDAG &DAG) const {
2613 MVT ElemTy = VecTy.getVectorElementType();
2614 assert(VecTy.getVectorNumElements() == Elem.size());
2615
2616 SmallVector<ConstantInt*,8> Consts(Elem.size());
2617 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2618
2619 unsigned First, Num = Elem.size();
2620 for (First = 0; First != Num; ++First) {
2621 if (!isUndef(Elem[First]))
2622 break;
2623 }
2624 if (First == Num)
2625 return DAG.getUNDEF(VecTy);
2626
2627 if (AllConst &&
2628 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2629 return getZero(dl, VecTy, DAG);
2630
2631 // First try splat if possible.
2632 if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2633 bool IsSplat = true;
2634 for (unsigned i = First+1; i != Num; ++i) {
2635 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2636 continue;
2637 IsSplat = false;
2638 break;
2639 }
2640 if (IsSplat) {
2641 // Legalize the operand of SPLAT_VECTOR
2642 SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2643 : Elem[First];
2644 SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2645 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2646 }
2647 }
2648
2649 // Then try constant.
2650 if (AllConst) {
2651 uint64_t Val = 0;
2652 unsigned W = ElemTy.getSizeInBits();
2653 uint64_t Mask = (1ull << W) - 1;
2654 for (unsigned i = 0; i != Num; ++i)
2655 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2656 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2657 return DAG.getBitcast(VecTy, V0);
2658 }
2659
2660 // Build two 32-bit vectors and concatenate.
2661 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2662 SDValue L = (ElemTy == MVT::i32)
2663 ? Elem[0]
2664 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2665 SDValue H = (ElemTy == MVT::i32)
2666 ? Elem[1]
2667 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2668 return getCombine(H, L, dl, VecTy, DAG);
2669 }
2670
2671 SDValue
extractVector(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ValTy,MVT ResTy,SelectionDAG & DAG) const2672 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2673 const SDLoc &dl, MVT ValTy, MVT ResTy,
2674 SelectionDAG &DAG) const {
2675 MVT VecTy = ty(VecV);
2676 assert(!ValTy.isVector() ||
2677 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2678 if (VecTy.getVectorElementType() == MVT::i1)
2679 return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2680
2681 unsigned VecWidth = VecTy.getSizeInBits();
2682 unsigned ValWidth = ValTy.getSizeInBits();
2683 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2684 assert((VecWidth % ElemWidth) == 0);
2685 assert(VecWidth == 32 || VecWidth == 64);
2686
2687 // Cast everything to scalar integer types.
2688 MVT ScalarTy = tyScalar(VecTy);
2689 VecV = DAG.getBitcast(ScalarTy, VecV);
2690
2691 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2692 SDValue ExtV;
2693
2694 if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2695 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2696 if (VecWidth == 64 && ValWidth == 32) {
2697 assert(Off == 0 || Off == 32);
2698 ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2699 } else if (Off == 0 && (ValWidth % 8) == 0) {
2700 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2701 } else {
2702 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2703 // The return type of EXTRACTU must be the same as the type of the
2704 // input vector.
2705 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2706 {VecV, WidthV, OffV});
2707 }
2708 } else {
2709 if (ty(IdxV) != MVT::i32)
2710 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2711 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2712 DAG.getConstant(ElemWidth, dl, MVT::i32));
2713 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2714 {VecV, WidthV, OffV});
2715 }
2716
2717 // Cast ExtV to the requested result type.
2718 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2719 ExtV = DAG.getBitcast(ResTy, ExtV);
2720 return ExtV;
2721 }
2722
2723 SDValue
extractVectorPred(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ValTy,MVT ResTy,SelectionDAG & DAG) const2724 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2725 const SDLoc &dl, MVT ValTy, MVT ResTy,
2726 SelectionDAG &DAG) const {
2727 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2728 // without any coprocessors).
2729 MVT VecTy = ty(VecV);
2730 unsigned VecWidth = VecTy.getSizeInBits();
2731 unsigned ValWidth = ValTy.getSizeInBits();
2732 assert(VecWidth == VecTy.getVectorNumElements() &&
2733 "Vector elements should equal vector width size");
2734 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2735
2736 // Check if this is an extract of the lowest bit.
2737 if (isNullConstant(IdxV) && ValTy.getSizeInBits() == 1) {
2738 // Extracting the lowest bit is a no-op, but it changes the type,
2739 // so it must be kept as an operation to avoid errors related to
2740 // type mismatches.
2741 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2742 }
2743
2744 // If the value extracted is a single bit, use tstbit.
2745 if (ValWidth == 1) {
2746 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2747 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2748 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2749 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2750 }
2751
2752 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2753 // a predicate register. The elements of the vector are repeated
2754 // in the register (if necessary) so that the total number is 8.
2755 // The extracted subvector will need to be expanded in such a way.
2756 unsigned Scale = VecWidth / ValWidth;
2757
2758 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2759 // position 0.
2760 assert(ty(IdxV) == MVT::i32);
2761 unsigned VecRep = 8 / VecWidth;
2762 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2763 DAG.getConstant(8*VecRep, dl, MVT::i32));
2764 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2765 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2766 while (Scale > 1) {
2767 // The longest possible subvector is at most 32 bits, so it is always
2768 // contained in the low subregister.
2769 T1 = LoHalf(T1, DAG);
2770 T1 = expandPredicate(T1, dl, DAG);
2771 Scale /= 2;
2772 }
2773
2774 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2775 }
2776
2777 SDValue
insertVector(SDValue VecV,SDValue ValV,SDValue IdxV,const SDLoc & dl,MVT ValTy,SelectionDAG & DAG) const2778 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2779 const SDLoc &dl, MVT ValTy,
2780 SelectionDAG &DAG) const {
2781 MVT VecTy = ty(VecV);
2782 if (VecTy.getVectorElementType() == MVT::i1)
2783 return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2784
2785 unsigned VecWidth = VecTy.getSizeInBits();
2786 unsigned ValWidth = ValTy.getSizeInBits();
2787 assert(VecWidth == 32 || VecWidth == 64);
2788 assert((VecWidth % ValWidth) == 0);
2789
2790 // Cast everything to scalar integer types.
2791 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2792 // The actual type of ValV may be different than ValTy (which is related
2793 // to the vector type).
2794 unsigned VW = ty(ValV).getSizeInBits();
2795 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2796 VecV = DAG.getBitcast(ScalarTy, VecV);
2797 if (VW != VecWidth)
2798 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2799
2800 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2801 SDValue InsV;
2802
2803 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2804 unsigned W = C->getZExtValue() * ValWidth;
2805 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2806 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2807 {VecV, ValV, WidthV, OffV});
2808 } else {
2809 if (ty(IdxV) != MVT::i32)
2810 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2811 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2812 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2813 {VecV, ValV, WidthV, OffV});
2814 }
2815
2816 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2817 }
2818
2819 SDValue
insertVectorPred(SDValue VecV,SDValue ValV,SDValue IdxV,const SDLoc & dl,MVT ValTy,SelectionDAG & DAG) const2820 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2821 SDValue IdxV, const SDLoc &dl,
2822 MVT ValTy, SelectionDAG &DAG) const {
2823 MVT VecTy = ty(VecV);
2824 unsigned VecLen = VecTy.getVectorNumElements();
2825
2826 if (ValTy == MVT::i1) {
2827 SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2828 SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2829 SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2830 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2831 SDValue Ins =
2832 DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2833 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2834 }
2835
2836 assert(ValTy.getVectorElementType() == MVT::i1);
2837 SDValue ValR = ValTy.isVector()
2838 ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2839 : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2840
2841 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2842 assert(Scale > 1);
2843
2844 for (unsigned R = Scale; R > 1; R /= 2) {
2845 ValR = contractPredicate(ValR, dl, DAG);
2846 ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2847 }
2848
2849 SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2850 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2851 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2852 SDValue Ins =
2853 DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2854 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2855 }
2856
2857 SDValue
expandPredicate(SDValue Vec32,const SDLoc & dl,SelectionDAG & DAG) const2858 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2859 SelectionDAG &DAG) const {
2860 assert(ty(Vec32).getSizeInBits() == 32);
2861 if (isUndef(Vec32))
2862 return DAG.getUNDEF(MVT::i64);
2863 SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2864 SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2865 return DAG.getBitcast(MVT::i64, X);
2866 }
2867
2868 SDValue
contractPredicate(SDValue Vec64,const SDLoc & dl,SelectionDAG & DAG) const2869 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2870 SelectionDAG &DAG) const {
2871 assert(ty(Vec64).getSizeInBits() == 64);
2872 if (isUndef(Vec64))
2873 return DAG.getUNDEF(MVT::i32);
2874 // Collect even bytes:
2875 SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2876 SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2877 {0, 2, 4, 6, 1, 3, 5, 7});
2878 return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2879 MVT::i32, DAG);
2880 }
2881
2882 SDValue
getZero(const SDLoc & dl,MVT Ty,SelectionDAG & DAG) const2883 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2884 const {
2885 if (Ty.isVector()) {
2886 unsigned W = Ty.getSizeInBits();
2887 if (W <= 64)
2888 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2889 return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2890 }
2891
2892 if (Ty.isInteger())
2893 return DAG.getConstant(0, dl, Ty);
2894 if (Ty.isFloatingPoint())
2895 return DAG.getConstantFP(0.0, dl, Ty);
2896 llvm_unreachable("Invalid type for zero");
2897 }
2898
2899 SDValue
appendUndef(SDValue Val,MVT ResTy,SelectionDAG & DAG) const2900 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2901 const {
2902 MVT ValTy = ty(Val);
2903 assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2904
2905 unsigned ValLen = ValTy.getVectorNumElements();
2906 unsigned ResLen = ResTy.getVectorNumElements();
2907 if (ValLen == ResLen)
2908 return Val;
2909
2910 const SDLoc &dl(Val);
2911 assert(ValLen < ResLen);
2912 assert(ResLen % ValLen == 0);
2913
2914 SmallVector<SDValue, 4> Concats = {Val};
2915 for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2916 Concats.push_back(DAG.getUNDEF(ValTy));
2917
2918 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2919 }
2920
2921 SDValue
getCombine(SDValue Hi,SDValue Lo,const SDLoc & dl,MVT ResTy,SelectionDAG & DAG) const2922 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2923 MVT ResTy, SelectionDAG &DAG) const {
2924 MVT ElemTy = ty(Hi);
2925 assert(ElemTy == ty(Lo));
2926
2927 if (!ElemTy.isVector()) {
2928 assert(ElemTy.isScalarInteger());
2929 MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2930 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2931 return DAG.getBitcast(ResTy, Pair);
2932 }
2933
2934 unsigned Width = ElemTy.getSizeInBits();
2935 MVT IntTy = MVT::getIntegerVT(Width);
2936 MVT PairTy = MVT::getIntegerVT(2 * Width);
2937 SDValue Pair =
2938 DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2939 {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2940 return DAG.getBitcast(ResTy, Pair);
2941 }
2942
2943 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2944 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2945 MVT VecTy = ty(Op);
2946 unsigned BW = VecTy.getSizeInBits();
2947 const SDLoc &dl(Op);
2948 SmallVector<SDValue,8> Ops;
2949 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2950 Ops.push_back(Op.getOperand(i));
2951
2952 if (BW == 32)
2953 return buildVector32(Ops, dl, VecTy, DAG);
2954 if (BW == 64)
2955 return buildVector64(Ops, dl, VecTy, DAG);
2956
2957 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2958 // Check if this is a special case or all-0 or all-1.
2959 bool All0 = true, All1 = true;
2960 for (SDValue P : Ops) {
2961 auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2962 if (CN == nullptr) {
2963 All0 = All1 = false;
2964 break;
2965 }
2966 uint32_t C = CN->getZExtValue();
2967 All0 &= (C == 0);
2968 All1 &= (C == 1);
2969 }
2970 if (All0)
2971 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2972 if (All1)
2973 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2974
2975 // For each i1 element in the resulting predicate register, put 1
2976 // shifted by the index of the element into a general-purpose register,
2977 // then or them together and transfer it back into a predicate register.
2978 SDValue Rs[8];
2979 SDValue Z = getZero(dl, MVT::i32, DAG);
2980 // Always produce 8 bits, repeat inputs if necessary.
2981 unsigned Rep = 8 / VecTy.getVectorNumElements();
2982 for (unsigned i = 0; i != 8; ++i) {
2983 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2984 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2985 }
2986 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2987 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2988 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2989 }
2990 // Move the value directly to a predicate register.
2991 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2992 }
2993
2994 return SDValue();
2995 }
2996
2997 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const2998 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2999 SelectionDAG &DAG) const {
3000 MVT VecTy = ty(Op);
3001 const SDLoc &dl(Op);
3002 if (VecTy.getSizeInBits() == 64) {
3003 assert(Op.getNumOperands() == 2);
3004 return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
3005 }
3006
3007 MVT ElemTy = VecTy.getVectorElementType();
3008 if (ElemTy == MVT::i1) {
3009 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
3010 MVT OpTy = ty(Op.getOperand(0));
3011 // Scale is how many times the operands need to be contracted to match
3012 // the representation in the target register.
3013 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
3014 assert(Scale == Op.getNumOperands() && Scale > 1);
3015
3016 // First, convert all bool vectors to integers, then generate pairwise
3017 // inserts to form values of doubled length. Up until there are only
3018 // two values left to concatenate, all of these values will fit in a
3019 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
3020 SmallVector<SDValue,4> Words[2];
3021 unsigned IdxW = 0;
3022
3023 for (SDValue P : Op.getNode()->op_values()) {
3024 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3025 for (unsigned R = Scale; R > 1; R /= 2) {
3026 W = contractPredicate(W, dl, DAG);
3027 W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3028 }
3029 W = LoHalf(W, DAG);
3030 Words[IdxW].push_back(W);
3031 }
3032
3033 while (Scale > 2) {
3034 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3035 Words[IdxW ^ 1].clear();
3036
3037 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3038 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3039 // Insert W1 into W0 right next to the significant bits of W0.
3040 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3041 {W0, W1, WidthV, WidthV});
3042 Words[IdxW ^ 1].push_back(T);
3043 }
3044 IdxW ^= 1;
3045 Scale /= 2;
3046 }
3047
3048 // At this point there should only be two words left, and Scale should be 2.
3049 assert(Scale == 2 && Words[IdxW].size() == 2);
3050
3051 SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3052 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3053 }
3054
3055 return SDValue();
3056 }
3057
3058 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3059 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3060 SelectionDAG &DAG) const {
3061 SDValue Vec = Op.getOperand(0);
3062 MVT ElemTy = ty(Vec).getVectorElementType();
3063 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3064 }
3065
3066 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const3067 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3068 SelectionDAG &DAG) const {
3069 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3070 ty(Op), ty(Op), DAG);
3071 }
3072
3073 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3074 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3075 SelectionDAG &DAG) const {
3076 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3077 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3078 }
3079
3080 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const3081 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3082 SelectionDAG &DAG) const {
3083 SDValue ValV = Op.getOperand(1);
3084 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3085 SDLoc(Op), ty(ValV), DAG);
3086 }
3087
3088 bool
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const3089 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3090 // Assuming the caller does not have either a signext or zeroext modifier, and
3091 // only one value is accepted, any reasonable truncation is allowed.
3092 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3093 return false;
3094
3095 // FIXME: in principle up to 64-bit could be made safe, but it would be very
3096 // fragile at the moment: any support for multiple value returns would be
3097 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3098 return Ty1->getPrimitiveSizeInBits() <= 32;
3099 }
3100
3101 SDValue
LowerLoad(SDValue Op,SelectionDAG & DAG) const3102 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3103 MVT Ty = ty(Op);
3104 const SDLoc &dl(Op);
3105 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3106 MVT MemTy = LN->getMemoryVT().getSimpleVT();
3107 ISD::LoadExtType ET = LN->getExtensionType();
3108
3109 bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3110 if (LoadPred) {
3111 SDValue NL = DAG.getLoad(
3112 LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3113 LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3114 /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3115 LN->getAAInfo(), LN->getRanges());
3116 LN = cast<LoadSDNode>(NL.getNode());
3117 }
3118
3119 Align ClaimAlign = LN->getAlign();
3120 if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3121 return replaceMemWithUndef(Op, DAG);
3122
3123 // Call LowerUnalignedLoad for all loads, it recognizes loads that
3124 // don't need extra aligning.
3125 SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3126 if (LoadPred) {
3127 SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3128 if (ET == ISD::SEXTLOAD) {
3129 TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3130 } else if (ET != ISD::NON_EXTLOAD) {
3131 TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3132 }
3133 SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3134 return DAG.getMergeValues({TP, Ch}, dl);
3135 }
3136 return LU;
3137 }
3138
3139 SDValue
LowerStore(SDValue Op,SelectionDAG & DAG) const3140 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3141 const SDLoc &dl(Op);
3142 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3143 SDValue Val = SN->getValue();
3144 MVT Ty = ty(Val);
3145
3146 if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3147 // Store the exact predicate (all bits).
3148 SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3149 SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3150 MVT::i8, SN->getMemOperand());
3151 if (SN->isIndexed()) {
3152 NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3153 SN->getAddressingMode());
3154 }
3155 SN = cast<StoreSDNode>(NS.getNode());
3156 }
3157
3158 Align ClaimAlign = SN->getAlign();
3159 if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3160 return replaceMemWithUndef(Op, DAG);
3161
3162 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3163 Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3164 if (ClaimAlign < NeedAlign)
3165 return expandUnalignedStore(SN, DAG);
3166 return SDValue(SN, 0);
3167 }
3168
3169 SDValue
LowerUnalignedLoad(SDValue Op,SelectionDAG & DAG) const3170 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3171 const {
3172 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3173 MVT LoadTy = ty(Op);
3174 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3175 unsigned HaveAlign = LN->getAlign().value();
3176 if (HaveAlign >= NeedAlign)
3177 return Op;
3178
3179 const SDLoc &dl(Op);
3180 const DataLayout &DL = DAG.getDataLayout();
3181 LLVMContext &Ctx = *DAG.getContext();
3182
3183 // If the load aligning is disabled or the load can be broken up into two
3184 // smaller legal loads, do the default (target-independent) expansion.
3185 bool DoDefault = false;
3186 // Handle it in the default way if this is an indexed load.
3187 if (!LN->isUnindexed())
3188 DoDefault = true;
3189
3190 if (!AlignLoads) {
3191 if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3192 *LN->getMemOperand()))
3193 return Op;
3194 DoDefault = true;
3195 }
3196 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3197 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3198 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3199 : MVT::getVectorVT(MVT::i8, HaveAlign);
3200 DoDefault =
3201 allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3202 }
3203 if (DoDefault) {
3204 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3205 return DAG.getMergeValues({P.first, P.second}, dl);
3206 }
3207
3208 // The code below generates two loads, both aligned as NeedAlign, and
3209 // with the distance of NeedAlign between them. For that to cover the
3210 // bits that need to be loaded (and without overlapping), the size of
3211 // the loads should be equal to NeedAlign. This is true for all loadable
3212 // types, but add an assertion in case something changes in the future.
3213 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3214
3215 unsigned LoadLen = NeedAlign;
3216 SDValue Base = LN->getBasePtr();
3217 SDValue Chain = LN->getChain();
3218 auto BO = getBaseAndOffset(Base);
3219 unsigned BaseOpc = BO.first.getOpcode();
3220 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3221 return Op;
3222
3223 if (BO.second % LoadLen != 0) {
3224 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3225 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3226 BO.second -= BO.second % LoadLen;
3227 }
3228 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3229 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3230 DAG.getConstant(NeedAlign, dl, MVT::i32))
3231 : BO.first;
3232 SDValue Base0 =
3233 DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::getFixed(BO.second), dl);
3234 SDValue Base1 = DAG.getMemBasePlusOffset(
3235 BaseNoOff, TypeSize::getFixed(BO.second + LoadLen), dl);
3236
3237 MachineMemOperand *WideMMO = nullptr;
3238 if (MachineMemOperand *MMO = LN->getMemOperand()) {
3239 MachineFunction &MF = DAG.getMachineFunction();
3240 WideMMO = MF.getMachineMemOperand(
3241 MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3242 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3243 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3244 }
3245
3246 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3247 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3248
3249 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3250 {Load1, Load0, BaseNoOff.getOperand(0)});
3251 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3252 Load0.getValue(1), Load1.getValue(1));
3253 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3254 return M;
3255 }
3256
3257 SDValue
LowerUAddSubO(SDValue Op,SelectionDAG & DAG) const3258 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3259 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3260 auto *CY = dyn_cast<ConstantSDNode>(Y);
3261 if (!CY)
3262 return SDValue();
3263
3264 const SDLoc &dl(Op);
3265 SDVTList VTs = Op.getNode()->getVTList();
3266 assert(VTs.NumVTs == 2);
3267 assert(VTs.VTs[1] == MVT::i1);
3268 unsigned Opc = Op.getOpcode();
3269
3270 if (CY) {
3271 uint64_t VY = CY->getZExtValue();
3272 assert(VY != 0 && "This should have been folded");
3273 // X +/- 1
3274 if (VY != 1)
3275 return SDValue();
3276
3277 if (Opc == ISD::UADDO) {
3278 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3279 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3280 ISD::SETEQ);
3281 return DAG.getMergeValues({Op, Ov}, dl);
3282 }
3283 if (Opc == ISD::USUBO) {
3284 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3285 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3286 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3287 return DAG.getMergeValues({Op, Ov}, dl);
3288 }
3289 }
3290
3291 return SDValue();
3292 }
3293
LowerUAddSubOCarry(SDValue Op,SelectionDAG & DAG) const3294 SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op,
3295 SelectionDAG &DAG) const {
3296 const SDLoc &dl(Op);
3297 unsigned Opc = Op.getOpcode();
3298 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3299
3300 if (Opc == ISD::UADDO_CARRY)
3301 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3302 { X, Y, C });
3303
3304 EVT CarryTy = C.getValueType();
3305 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3306 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3307 SDValue Out[] = { SubC.getValue(0),
3308 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3309 return DAG.getMergeValues(Out, dl);
3310 }
3311
3312 SDValue
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const3313 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3314 SDValue Chain = Op.getOperand(0);
3315 SDValue Offset = Op.getOperand(1);
3316 SDValue Handler = Op.getOperand(2);
3317 SDLoc dl(Op);
3318 auto PtrVT = getPointerTy(DAG.getDataLayout());
3319
3320 // Mark function as containing a call to EH_RETURN.
3321 HexagonMachineFunctionInfo *FuncInfo =
3322 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3323 FuncInfo->setHasEHReturn();
3324
3325 unsigned OffsetReg = Hexagon::R28;
3326
3327 SDValue StoreAddr =
3328 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3329 DAG.getIntPtrConstant(4, dl));
3330 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3331 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3332
3333 // Not needed we already use it as explict input to EH_RETURN.
3334 // MF.getRegInfo().addLiveOut(OffsetReg);
3335
3336 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3337 }
3338
3339 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const3340 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3341 unsigned Opc = Op.getOpcode();
3342
3343 // Handle INLINEASM first.
3344 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3345 return LowerINLINEASM(Op, DAG);
3346
3347 if (isHvxOperation(Op.getNode(), DAG)) {
3348 // If HVX lowering returns nothing, try the default lowering.
3349 if (SDValue V = LowerHvxOperation(Op, DAG))
3350 return V;
3351 }
3352
3353 switch (Opc) {
3354 default:
3355 #ifndef NDEBUG
3356 Op.getNode()->dumpr(&DAG);
3357 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3358 errs() << "Error: check for a non-legal type in this operation\n";
3359 #endif
3360 llvm_unreachable("Should not custom lower this!");
3361
3362 case ISD::FDIV:
3363 return LowerFDIV(Op, DAG);
3364 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3365 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
3366 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
3367 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
3368 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3369 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3370 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3371 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
3372 case ISD::LOAD: return LowerLoad(Op, DAG);
3373 case ISD::STORE: return LowerStore(Op, DAG);
3374 case ISD::UADDO:
3375 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
3376 case ISD::UADDO_CARRY:
3377 case ISD::USUBO_CARRY: return LowerUAddSubOCarry(Op, DAG);
3378 case ISD::SRA:
3379 case ISD::SHL:
3380 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
3381 case ISD::ROTL: return LowerROTL(Op, DAG);
3382 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3383 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3384 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
3385 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3386 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3387 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3388 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
3389 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
3390 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3391 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3392 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
3393 case ISD::VASTART: return LowerVASTART(Op, DAG);
3394 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3395 case ISD::SETCC: return LowerSETCC(Op, DAG);
3396 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
3397 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3398 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3399 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
3400 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
3401 case ISD::READSTEADYCOUNTER: return LowerREADSTEADYCOUNTER(Op, DAG);
3402 break;
3403 }
3404
3405 return SDValue();
3406 }
3407
3408 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3409 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3410 SmallVectorImpl<SDValue> &Results,
3411 SelectionDAG &DAG) const {
3412 if (isHvxOperation(N, DAG)) {
3413 LowerHvxOperationWrapper(N, Results, DAG);
3414 if (!Results.empty())
3415 return;
3416 }
3417
3418 SDValue Op(N, 0);
3419 unsigned Opc = N->getOpcode();
3420
3421 switch (Opc) {
3422 case HexagonISD::SSAT:
3423 case HexagonISD::USAT:
3424 Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3425 break;
3426 case ISD::STORE:
3427 // We are only custom-lowering stores to verify the alignment of the
3428 // address if it is a compile-time constant. Since a store can be
3429 // modified during type-legalization (the value being stored may need
3430 // legalization), return empty Results here to indicate that we don't
3431 // really make any changes in the custom lowering.
3432 return;
3433 default:
3434 TargetLowering::LowerOperationWrapper(N, Results, DAG);
3435 break;
3436 }
3437 }
3438
3439 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3440 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3441 SmallVectorImpl<SDValue> &Results,
3442 SelectionDAG &DAG) const {
3443 if (isHvxOperation(N, DAG)) {
3444 ReplaceHvxNodeResults(N, Results, DAG);
3445 if (!Results.empty())
3446 return;
3447 }
3448
3449 const SDLoc &dl(N);
3450 switch (N->getOpcode()) {
3451 case ISD::SRL:
3452 case ISD::SRA:
3453 case ISD::SHL:
3454 return;
3455 case ISD::BITCAST:
3456 // Handle a bitcast from v8i1 to i8.
3457 if (N->getValueType(0) == MVT::i8) {
3458 if (N->getOperand(0).getValueType() == MVT::v8i1) {
3459 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3460 N->getOperand(0), DAG);
3461 SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3462 Results.push_back(T);
3463 }
3464 }
3465 break;
3466 }
3467 }
3468
3469 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const3470 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3471 DAGCombinerInfo &DCI) const {
3472 if (isHvxOperation(N, DCI.DAG)) {
3473 if (SDValue V = PerformHvxDAGCombine(N, DCI))
3474 return V;
3475 return SDValue();
3476 }
3477
3478 SDValue Op(N, 0);
3479 const SDLoc &dl(Op);
3480 unsigned Opc = Op.getOpcode();
3481
3482 if (Opc == ISD::TRUNCATE) {
3483 SDValue Op0 = Op.getOperand(0);
3484 // fold (truncate (build pair x, y)) -> (truncate x) or x
3485 if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3486 EVT TruncTy = Op.getValueType();
3487 SDValue Elem0 = Op0.getOperand(0);
3488 // if we match the low element of the pair, just return it.
3489 if (Elem0.getValueType() == TruncTy)
3490 return Elem0;
3491 // otherwise, if the low part is still too large, apply the truncate.
3492 if (Elem0.getValueType().bitsGT(TruncTy))
3493 return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3494 }
3495 }
3496
3497 if (DCI.isBeforeLegalizeOps())
3498 return SDValue();
3499
3500 if (Opc == HexagonISD::P2D) {
3501 SDValue P = Op.getOperand(0);
3502 switch (P.getOpcode()) {
3503 case HexagonISD::PTRUE:
3504 return DCI.DAG.getConstant(-1, dl, ty(Op));
3505 case HexagonISD::PFALSE:
3506 return getZero(dl, ty(Op), DCI.DAG);
3507 default:
3508 break;
3509 }
3510 } else if (Opc == ISD::VSELECT) {
3511 // This is pretty much duplicated in HexagonISelLoweringHVX...
3512 //
3513 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3514 SDValue Cond = Op.getOperand(0);
3515 if (Cond->getOpcode() == ISD::XOR) {
3516 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3517 if (C1->getOpcode() == HexagonISD::PTRUE) {
3518 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3519 Op.getOperand(2), Op.getOperand(1));
3520 return VSel;
3521 }
3522 }
3523 } else if (Opc == ISD::TRUNCATE) {
3524 SDValue Op0 = Op.getOperand(0);
3525 // fold (truncate (build pair x, y)) -> (truncate x) or x
3526 if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3527 MVT TruncTy = ty(Op);
3528 SDValue Elem0 = Op0.getOperand(0);
3529 // if we match the low element of the pair, just return it.
3530 if (ty(Elem0) == TruncTy)
3531 return Elem0;
3532 // otherwise, if the low part is still too large, apply the truncate.
3533 if (ty(Elem0).bitsGT(TruncTy))
3534 return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3535 }
3536 } else if (Opc == ISD::OR) {
3537 // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3538 // if s >= 32
3539 auto fold0 = [&, this](SDValue Op) {
3540 if (ty(Op) != MVT::i64)
3541 return SDValue();
3542 SDValue Shl = Op.getOperand(0);
3543 SDValue Zxt = Op.getOperand(1);
3544 if (Shl.getOpcode() != ISD::SHL)
3545 std::swap(Shl, Zxt);
3546
3547 if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3548 return SDValue();
3549
3550 SDValue Z = Zxt.getOperand(0);
3551 auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3552 if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3553 unsigned A = Amt->getZExtValue();
3554 SDValue S = Shl.getOperand(0);
3555 SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3556 DCI.DAG.getConstant(A - 32, dl, MVT::i32));
3557 SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3558 SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3559 return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3560 }
3561 return SDValue();
3562 };
3563
3564 if (SDValue R = fold0(Op))
3565 return R;
3566 }
3567
3568 return SDValue();
3569 }
3570
3571 /// Returns relocation base for the given PIC jumptable.
3572 SDValue
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const3573 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3574 SelectionDAG &DAG) const {
3575 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3576 EVT VT = Table.getValueType();
3577 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3578 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3579 }
3580
3581 //===----------------------------------------------------------------------===//
3582 // Inline Assembly Support
3583 //===----------------------------------------------------------------------===//
3584
3585 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3586 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3587 if (Constraint.size() == 1) {
3588 switch (Constraint[0]) {
3589 case 'q':
3590 case 'v':
3591 if (Subtarget.useHVXOps())
3592 return C_RegisterClass;
3593 break;
3594 case 'a':
3595 return C_RegisterClass;
3596 default:
3597 break;
3598 }
3599 }
3600 return TargetLowering::getConstraintType(Constraint);
3601 }
3602
3603 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3604 HexagonTargetLowering::getRegForInlineAsmConstraint(
3605 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3606
3607 if (Constraint.size() == 1) {
3608 switch (Constraint[0]) {
3609 case 'r': // R0-R31
3610 switch (VT.SimpleTy) {
3611 default:
3612 return {0u, nullptr};
3613 case MVT::i1:
3614 case MVT::i8:
3615 case MVT::i16:
3616 case MVT::i32:
3617 case MVT::f32:
3618 return {0u, &Hexagon::IntRegsRegClass};
3619 case MVT::i64:
3620 case MVT::f64:
3621 return {0u, &Hexagon::DoubleRegsRegClass};
3622 }
3623 break;
3624 case 'a': // M0-M1
3625 if (VT != MVT::i32)
3626 return {0u, nullptr};
3627 return {0u, &Hexagon::ModRegsRegClass};
3628 case 'q': // q0-q3
3629 switch (VT.getSizeInBits()) {
3630 default:
3631 return {0u, nullptr};
3632 case 64:
3633 case 128:
3634 return {0u, &Hexagon::HvxQRRegClass};
3635 }
3636 break;
3637 case 'v': // V0-V31
3638 switch (VT.getSizeInBits()) {
3639 default:
3640 return {0u, nullptr};
3641 case 512:
3642 return {0u, &Hexagon::HvxVRRegClass};
3643 case 1024:
3644 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3645 return {0u, &Hexagon::HvxVRRegClass};
3646 return {0u, &Hexagon::HvxWRRegClass};
3647 case 2048:
3648 return {0u, &Hexagon::HvxWRRegClass};
3649 }
3650 break;
3651 default:
3652 return {0u, nullptr};
3653 }
3654 }
3655
3656 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3657 }
3658
3659 /// isFPImmLegal - Returns true if the target can instruction select the
3660 /// specified FP immediate natively. If false, the legalizer will
3661 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const3662 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3663 bool ForCodeSize) const {
3664 return true;
3665 }
3666
3667 /// isLegalAddressingMode - Return true if the addressing mode represented by
3668 /// AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const3669 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3670 const AddrMode &AM, Type *Ty,
3671 unsigned AS, Instruction *I) const {
3672 if (Ty->isSized()) {
3673 // When LSR detects uses of the same base address to access different
3674 // types (e.g. unions), it will assume a conservative type for these
3675 // uses:
3676 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
3677 // The type Ty passed here would then be "void". Skip the alignment
3678 // checks, but do not return false right away, since that confuses
3679 // LSR into crashing.
3680 Align A = DL.getABITypeAlign(Ty);
3681 // The base offset must be a multiple of the alignment.
3682 if (!isAligned(A, AM.BaseOffs))
3683 return false;
3684 // The shifted offset must fit in 11 bits.
3685 if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3686 return false;
3687 }
3688
3689 // No global is ever allowed as a base.
3690 if (AM.BaseGV)
3691 return false;
3692
3693 int Scale = AM.Scale;
3694 if (Scale < 0)
3695 Scale = -Scale;
3696 switch (Scale) {
3697 case 0: // No scale reg, "r+i", "r", or just "i".
3698 break;
3699 default: // No scaled addressing mode.
3700 return false;
3701 }
3702 return true;
3703 }
3704
3705 /// Return true if folding a constant offset with the given GlobalAddress is
3706 /// legal. It is frequently not legal in PIC relocation models.
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const3707 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3708 const {
3709 return HTM.getRelocationModel() == Reloc::Static;
3710 }
3711
3712 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3713 /// icmp immediate, that is the target has icmp instructions which can compare
3714 /// a register against the immediate without having to materialize the
3715 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const3716 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3717 return Imm >= -512 && Imm <= 511;
3718 }
3719
3720 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3721 /// for tail call optimization. Targets which want to do tail call
3722 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,bool IsCalleeStructRet,bool IsCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3723 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3724 SDValue Callee,
3725 CallingConv::ID CalleeCC,
3726 bool IsVarArg,
3727 bool IsCalleeStructRet,
3728 bool IsCallerStructRet,
3729 const SmallVectorImpl<ISD::OutputArg> &Outs,
3730 const SmallVectorImpl<SDValue> &OutVals,
3731 const SmallVectorImpl<ISD::InputArg> &Ins,
3732 SelectionDAG& DAG) const {
3733 const Function &CallerF = DAG.getMachineFunction().getFunction();
3734 CallingConv::ID CallerCC = CallerF.getCallingConv();
3735 bool CCMatch = CallerCC == CalleeCC;
3736
3737 // ***************************************************************************
3738 // Look for obvious safe cases to perform tail call optimization that do not
3739 // require ABI changes.
3740 // ***************************************************************************
3741
3742 // If this is a tail call via a function pointer, then don't do it!
3743 if (!isa<GlobalAddressSDNode>(Callee) &&
3744 !isa<ExternalSymbolSDNode>(Callee)) {
3745 return false;
3746 }
3747
3748 // Do not optimize if the calling conventions do not match and the conventions
3749 // used are not C or Fast.
3750 if (!CCMatch) {
3751 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3752 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3753 // If R & E, then ok.
3754 if (!R || !E)
3755 return false;
3756 }
3757
3758 // Do not tail call optimize vararg calls.
3759 if (IsVarArg)
3760 return false;
3761
3762 // Also avoid tail call optimization if either caller or callee uses struct
3763 // return semantics.
3764 if (IsCalleeStructRet || IsCallerStructRet)
3765 return false;
3766
3767 // In addition to the cases above, we also disable Tail Call Optimization if
3768 // the calling convention code that at least one outgoing argument needs to
3769 // go on the stack. We cannot check that here because at this point that
3770 // information is not available.
3771 return true;
3772 }
3773
3774 /// Returns the target specific optimal type for load and store operations as
3775 /// a result of memset, memcpy, and memmove lowering.
3776 ///
3777 /// If DstAlign is zero that means it's safe to destination alignment can
3778 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3779 /// a need to check it against alignment requirement, probably because the
3780 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3781 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3782 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3783 /// does not need to be loaded. It returns EVT::Other if the type should be
3784 /// determined using generic target-independent logic.
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const3785 EVT HexagonTargetLowering::getOptimalMemOpType(
3786 const MemOp &Op, const AttributeList &FuncAttributes) const {
3787 if (Op.size() >= 8 && Op.isAligned(Align(8)))
3788 return MVT::i64;
3789 if (Op.size() >= 4 && Op.isAligned(Align(4)))
3790 return MVT::i32;
3791 if (Op.size() >= 2 && Op.isAligned(Align(2)))
3792 return MVT::i16;
3793 return MVT::Other;
3794 }
3795
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,unsigned * Fast) const3796 bool HexagonTargetLowering::allowsMemoryAccess(
3797 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3798 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3799 MVT SVT = VT.getSimpleVT();
3800 if (Subtarget.isHVXVectorType(SVT, true))
3801 return allowsHvxMemoryAccess(SVT, Flags, Fast);
3802 return TargetLoweringBase::allowsMemoryAccess(
3803 Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3804 }
3805
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,unsigned * Fast) const3806 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3807 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3808 unsigned *Fast) const {
3809 MVT SVT = VT.getSimpleVT();
3810 if (Subtarget.isHVXVectorType(SVT, true))
3811 return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3812 if (Fast)
3813 *Fast = 0;
3814 return false;
3815 }
3816
3817 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const3818 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3819 MVT VT) const {
3820 if (Subtarget.isHVXVectorType(VT, true)) {
3821 unsigned BitWidth = VT.getSizeInBits();
3822 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3823
3824 if (VT.getVectorElementType() == MVT::i1)
3825 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3826 if (BitWidth == VecWidth)
3827 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3828 assert(BitWidth == 2 * VecWidth);
3829 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3830 }
3831
3832 return TargetLowering::findRepresentativeClass(TRI, VT);
3833 }
3834
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const3835 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3836 ISD::LoadExtType ExtTy, EVT NewVT) const {
3837 // TODO: This may be worth removing. Check regression tests for diffs.
3838 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3839 return false;
3840
3841 auto *L = cast<LoadSDNode>(Load);
3842 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3843 // Small-data object, do not shrink.
3844 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3845 return false;
3846 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3847 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3848 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3849 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3850 }
3851 return true;
3852 }
3853
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const3854 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3855 SDNode *Node) const {
3856 AdjustHvxInstrPostInstrSelection(MI, Node);
3857 }
3858
emitLoadLinked(IRBuilderBase & Builder,Type * ValueTy,Value * Addr,AtomicOrdering Ord) const3859 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3860 Type *ValueTy, Value *Addr,
3861 AtomicOrdering Ord) const {
3862 BasicBlock *BB = Builder.GetInsertBlock();
3863 Module *M = BB->getParent()->getParent();
3864 unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3865 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3866 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3867 : Intrinsic::hexagon_L4_loadd_locked;
3868 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3869
3870 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3871
3872 return Builder.CreateBitCast(Call, ValueTy);
3873 }
3874
3875 /// Perform a store-conditional operation to Addr. Return the status of the
3876 /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilderBase & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const3877 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3878 Value *Val, Value *Addr,
3879 AtomicOrdering Ord) const {
3880 BasicBlock *BB = Builder.GetInsertBlock();
3881 Module *M = BB->getParent()->getParent();
3882 Type *Ty = Val->getType();
3883 unsigned SZ = Ty->getPrimitiveSizeInBits();
3884
3885 Type *CastTy = Builder.getIntNTy(SZ);
3886 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3887 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3888 : Intrinsic::hexagon_S4_stored_locked;
3889 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3890
3891 Val = Builder.CreateBitCast(Val, CastTy);
3892
3893 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3894 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3895 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3896 return Ext;
3897 }
3898
3899 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const3900 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3901 // Do not expand loads and stores that don't exceed 64 bits.
3902 return LI->getType()->getPrimitiveSizeInBits() > 64
3903 ? AtomicExpansionKind::LLOnly
3904 : AtomicExpansionKind::None;
3905 }
3906
3907 TargetLowering::AtomicExpansionKind
shouldExpandAtomicStoreInIR(StoreInst * SI) const3908 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3909 // Do not expand loads and stores that don't exceed 64 bits.
3910 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3911 ? AtomicExpansionKind::Expand
3912 : AtomicExpansionKind::None;
3913 }
3914
3915 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const3916 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3917 AtomicCmpXchgInst *AI) const {
3918 return AtomicExpansionKind::LLSC;
3919 }
3920