1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright © 2006-2015, Intel Corporation.
4 *
5 * Authors: Ashok Raj <ashok.raj@intel.com>
6 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
7 * David Woodhouse <David.Woodhouse@intel.com>
8 */
9
10 #ifndef _INTEL_IOMMU_H_
11 #define _INTEL_IOMMU_H_
12
13 #include <linux/types.h>
14 #include <linux/iova.h>
15 #include <linux/io.h>
16 #include <linux/idr.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/list.h>
19 #include <linux/iommu.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/dmar.h>
22 #include <linux/bitfield.h>
23 #include <linux/xarray.h>
24 #include <linux/perf_event.h>
25 #include <linux/pci.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/iommu.h>
29 #include <uapi/linux/iommufd.h>
30
31 /*
32 * VT-d hardware uses 4KiB page size regardless of host page size.
33 */
34 #define VTD_PAGE_SHIFT (12)
35 #define VTD_PAGE_SIZE (1UL << VTD_PAGE_SHIFT)
36 #define VTD_PAGE_MASK (((u64)-1) << VTD_PAGE_SHIFT)
37 #define VTD_PAGE_ALIGN(addr) (((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
38
39 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
40
41 #define VTD_STRIDE_SHIFT (9)
42 #define VTD_STRIDE_MASK (((u64)-1) << VTD_STRIDE_SHIFT)
43
44 #define DMA_PTE_READ BIT_ULL(0)
45 #define DMA_PTE_WRITE BIT_ULL(1)
46 #define DMA_PTE_LARGE_PAGE BIT_ULL(7)
47 #define DMA_PTE_SNP BIT_ULL(11)
48
49 #define DMA_FL_PTE_PRESENT BIT_ULL(0)
50 #define DMA_FL_PTE_US BIT_ULL(2)
51 #define DMA_FL_PTE_ACCESS BIT_ULL(5)
52 #define DMA_FL_PTE_DIRTY BIT_ULL(6)
53
54 #define DMA_SL_PTE_DIRTY_BIT 9
55 #define DMA_SL_PTE_DIRTY BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
56
57 #define ADDR_WIDTH_5LEVEL (57)
58 #define ADDR_WIDTH_4LEVEL (48)
59
60 #define CONTEXT_TT_MULTI_LEVEL 0
61 #define CONTEXT_TT_DEV_IOTLB 1
62 #define CONTEXT_TT_PASS_THROUGH 2
63 #define CONTEXT_PASIDE BIT_ULL(3)
64
65 /*
66 * Intel IOMMU register specification per version 1.0 public spec.
67 */
68 #define DMAR_VER_REG 0x0 /* Arch version supported by this IOMMU */
69 #define DMAR_CAP_REG 0x8 /* Hardware supported capabilities */
70 #define DMAR_ECAP_REG 0x10 /* Extended capabilities supported */
71 #define DMAR_GCMD_REG 0x18 /* Global command register */
72 #define DMAR_GSTS_REG 0x1c /* Global status register */
73 #define DMAR_RTADDR_REG 0x20 /* Root entry table */
74 #define DMAR_CCMD_REG 0x28 /* Context command reg */
75 #define DMAR_FSTS_REG 0x34 /* Fault Status register */
76 #define DMAR_FECTL_REG 0x38 /* Fault control register */
77 #define DMAR_FEDATA_REG 0x3c /* Fault event interrupt data register */
78 #define DMAR_FEADDR_REG 0x40 /* Fault event interrupt addr register */
79 #define DMAR_FEUADDR_REG 0x44 /* Upper address register */
80 #define DMAR_AFLOG_REG 0x58 /* Advanced Fault control */
81 #define DMAR_PMEN_REG 0x64 /* Enable Protected Memory Region */
82 #define DMAR_PLMBASE_REG 0x68 /* PMRR Low addr */
83 #define DMAR_PLMLIMIT_REG 0x6c /* PMRR low limit */
84 #define DMAR_PHMBASE_REG 0x70 /* pmrr high base addr */
85 #define DMAR_PHMLIMIT_REG 0x78 /* pmrr high limit */
86 #define DMAR_IQH_REG 0x80 /* Invalidation queue head register */
87 #define DMAR_IQT_REG 0x88 /* Invalidation queue tail register */
88 #define DMAR_IQ_SHIFT 4 /* Invalidation queue head/tail shift */
89 #define DMAR_IQA_REG 0x90 /* Invalidation queue addr register */
90 #define DMAR_ICS_REG 0x9c /* Invalidation complete status register */
91 #define DMAR_IQER_REG 0xb0 /* Invalidation queue error record register */
92 #define DMAR_IRTA_REG 0xb8 /* Interrupt remapping table addr register */
93 #define DMAR_PQH_REG 0xc0 /* Page request queue head register */
94 #define DMAR_PQT_REG 0xc8 /* Page request queue tail register */
95 #define DMAR_PQA_REG 0xd0 /* Page request queue address register */
96 #define DMAR_PRS_REG 0xdc /* Page request status register */
97 #define DMAR_PECTL_REG 0xe0 /* Page request event control register */
98 #define DMAR_PEDATA_REG 0xe4 /* Page request event interrupt data register */
99 #define DMAR_PEADDR_REG 0xe8 /* Page request event interrupt addr register */
100 #define DMAR_PEUADDR_REG 0xec /* Page request event Upper address register */
101 #define DMAR_MTRRCAP_REG 0x100 /* MTRR capability register */
102 #define DMAR_MTRRDEF_REG 0x108 /* MTRR default type register */
103 #define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
104 #define DMAR_MTRR_FIX16K_80000_REG 0x128
105 #define DMAR_MTRR_FIX16K_A0000_REG 0x130
106 #define DMAR_MTRR_FIX4K_C0000_REG 0x138
107 #define DMAR_MTRR_FIX4K_C8000_REG 0x140
108 #define DMAR_MTRR_FIX4K_D0000_REG 0x148
109 #define DMAR_MTRR_FIX4K_D8000_REG 0x150
110 #define DMAR_MTRR_FIX4K_E0000_REG 0x158
111 #define DMAR_MTRR_FIX4K_E8000_REG 0x160
112 #define DMAR_MTRR_FIX4K_F0000_REG 0x168
113 #define DMAR_MTRR_FIX4K_F8000_REG 0x170
114 #define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
115 #define DMAR_MTRR_PHYSMASK0_REG 0x188
116 #define DMAR_MTRR_PHYSBASE1_REG 0x190
117 #define DMAR_MTRR_PHYSMASK1_REG 0x198
118 #define DMAR_MTRR_PHYSBASE2_REG 0x1a0
119 #define DMAR_MTRR_PHYSMASK2_REG 0x1a8
120 #define DMAR_MTRR_PHYSBASE3_REG 0x1b0
121 #define DMAR_MTRR_PHYSMASK3_REG 0x1b8
122 #define DMAR_MTRR_PHYSBASE4_REG 0x1c0
123 #define DMAR_MTRR_PHYSMASK4_REG 0x1c8
124 #define DMAR_MTRR_PHYSBASE5_REG 0x1d0
125 #define DMAR_MTRR_PHYSMASK5_REG 0x1d8
126 #define DMAR_MTRR_PHYSBASE6_REG 0x1e0
127 #define DMAR_MTRR_PHYSMASK6_REG 0x1e8
128 #define DMAR_MTRR_PHYSBASE7_REG 0x1f0
129 #define DMAR_MTRR_PHYSMASK7_REG 0x1f8
130 #define DMAR_MTRR_PHYSBASE8_REG 0x200
131 #define DMAR_MTRR_PHYSMASK8_REG 0x208
132 #define DMAR_MTRR_PHYSBASE9_REG 0x210
133 #define DMAR_MTRR_PHYSMASK9_REG 0x218
134 #define DMAR_PERFCAP_REG 0x300
135 #define DMAR_PERFCFGOFF_REG 0x310
136 #define DMAR_PERFOVFOFF_REG 0x318
137 #define DMAR_PERFCNTROFF_REG 0x31c
138 #define DMAR_PERFINTRSTS_REG 0x324
139 #define DMAR_PERFINTRCTL_REG 0x328
140 #define DMAR_PERFEVNTCAP_REG 0x380
141 #define DMAR_ECMD_REG 0x400
142 #define DMAR_ECEO_REG 0x408
143 #define DMAR_ECRSP_REG 0x410
144 #define DMAR_ECCAP_REG 0x430
145
146 #define DMAR_IQER_REG_IQEI(reg) FIELD_GET(GENMASK_ULL(3, 0), reg)
147 #define DMAR_IQER_REG_ITESID(reg) FIELD_GET(GENMASK_ULL(47, 32), reg)
148 #define DMAR_IQER_REG_ICESID(reg) FIELD_GET(GENMASK_ULL(63, 48), reg)
149
150 #define OFFSET_STRIDE (9)
151
152 #define dmar_readq(a) readq(a)
153 #define dmar_writeq(a,v) writeq(v,a)
154 #define dmar_readl(a) readl(a)
155 #define dmar_writel(a, v) writel(v, a)
156
157 #define DMAR_VER_MAJOR(v) (((v) & 0xf0) >> 4)
158 #define DMAR_VER_MINOR(v) ((v) & 0x0f)
159
160 /*
161 * Decoding Capability Register
162 */
163 #define cap_esrtps(c) (((c) >> 63) & 1)
164 #define cap_esirtps(c) (((c) >> 62) & 1)
165 #define cap_ecmds(c) (((c) >> 61) & 1)
166 #define cap_fl5lp_support(c) (((c) >> 60) & 1)
167 #define cap_pi_support(c) (((c) >> 59) & 1)
168 #define cap_fl1gp_support(c) (((c) >> 56) & 1)
169 #define cap_read_drain(c) (((c) >> 55) & 1)
170 #define cap_write_drain(c) (((c) >> 54) & 1)
171 #define cap_max_amask_val(c) (((c) >> 48) & 0x3f)
172 #define cap_num_fault_regs(c) ((((c) >> 40) & 0xff) + 1)
173 #define cap_pgsel_inv(c) (((c) >> 39) & 1)
174
175 #define cap_super_page_val(c) (((c) >> 34) & 0xf)
176 #define cap_super_offset(c) (((find_first_bit(&cap_super_page_val(c), 4)) \
177 * OFFSET_STRIDE) + 21)
178
179 #define cap_fault_reg_offset(c) ((((c) >> 24) & 0x3ff) * 16)
180 #define cap_max_fault_reg_offset(c) \
181 (cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
182
183 #define cap_zlr(c) (((c) >> 22) & 1)
184 #define cap_isoch(c) (((c) >> 23) & 1)
185 #define cap_mgaw(c) ((((c) >> 16) & 0x3f) + 1)
186 #define cap_sagaw(c) (((c) >> 8) & 0x1f)
187 #define cap_caching_mode(c) (((c) >> 7) & 1)
188 #define cap_phmr(c) (((c) >> 6) & 1)
189 #define cap_plmr(c) (((c) >> 5) & 1)
190 #define cap_rwbf(c) (((c) >> 4) & 1)
191 #define cap_afl(c) (((c) >> 3) & 1)
192 #define cap_ndoms(c) (((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
193 /*
194 * Extended Capability Register
195 */
196
197 #define ecap_pms(e) (((e) >> 51) & 0x1)
198 #define ecap_rps(e) (((e) >> 49) & 0x1)
199 #define ecap_smpwc(e) (((e) >> 48) & 0x1)
200 #define ecap_flts(e) (((e) >> 47) & 0x1)
201 #define ecap_slts(e) (((e) >> 46) & 0x1)
202 #define ecap_slads(e) (((e) >> 45) & 0x1)
203 #define ecap_smts(e) (((e) >> 43) & 0x1)
204 #define ecap_dit(e) (((e) >> 41) & 0x1)
205 #define ecap_pds(e) (((e) >> 42) & 0x1)
206 #define ecap_pasid(e) (((e) >> 40) & 0x1)
207 #define ecap_pss(e) (((e) >> 35) & 0x1f)
208 #define ecap_eafs(e) (((e) >> 34) & 0x1)
209 #define ecap_nwfs(e) (((e) >> 33) & 0x1)
210 #define ecap_srs(e) (((e) >> 31) & 0x1)
211 #define ecap_ers(e) (((e) >> 30) & 0x1)
212 #define ecap_prs(e) (((e) >> 29) & 0x1)
213 #define ecap_broken_pasid(e) (((e) >> 28) & 0x1)
214 #define ecap_dis(e) (((e) >> 27) & 0x1)
215 #define ecap_nest(e) (((e) >> 26) & 0x1)
216 #define ecap_mts(e) (((e) >> 25) & 0x1)
217 #define ecap_iotlb_offset(e) ((((e) >> 8) & 0x3ff) * 16)
218 #define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
219 #define ecap_coherent(e) ((e) & 0x1)
220 #define ecap_qis(e) ((e) & 0x2)
221 #define ecap_pass_through(e) (((e) >> 6) & 0x1)
222 #define ecap_eim_support(e) (((e) >> 4) & 0x1)
223 #define ecap_ir_support(e) (((e) >> 3) & 0x1)
224 #define ecap_dev_iotlb_support(e) (((e) >> 2) & 0x1)
225 #define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
226 #define ecap_sc_support(e) (((e) >> 7) & 0x1) /* Snooping Control */
227
228 /*
229 * Decoding Perf Capability Register
230 */
231 #define pcap_num_cntr(p) ((p) & 0xffff)
232 #define pcap_cntr_width(p) (((p) >> 16) & 0x7f)
233 #define pcap_num_event_group(p) (((p) >> 24) & 0x1f)
234 #define pcap_filters_mask(p) (((p) >> 32) & 0x1f)
235 #define pcap_interrupt(p) (((p) >> 50) & 0x1)
236 /* The counter stride is calculated as 2 ^ (x+10) bytes */
237 #define pcap_cntr_stride(p) (1ULL << ((((p) >> 52) & 0x7) + 10))
238
239 /*
240 * Decoding Perf Event Capability Register
241 */
242 #define pecap_es(p) ((p) & 0xfffffff)
243
244 /* Virtual command interface capability */
245 #define vccap_pasid(v) (((v) & DMA_VCS_PAS)) /* PASID allocation */
246
247 /* IOTLB_REG */
248 #define DMA_TLB_FLUSH_GRANU_OFFSET 60
249 #define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
250 #define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
251 #define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
252 #define DMA_TLB_IIRG(type) ((type >> 60) & 3)
253 #define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
254 #define DMA_TLB_READ_DRAIN (((u64)1) << 49)
255 #define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
256 #define DMA_TLB_DID(id) (((u64)((id) & 0xffff)) << 32)
257 #define DMA_TLB_IVT (((u64)1) << 63)
258 #define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
259 #define DMA_TLB_MAX_SIZE (0x3f)
260
261 /* INVALID_DESC */
262 #define DMA_CCMD_INVL_GRANU_OFFSET 61
263 #define DMA_ID_TLB_GLOBAL_FLUSH (((u64)1) << 4)
264 #define DMA_ID_TLB_DSI_FLUSH (((u64)2) << 4)
265 #define DMA_ID_TLB_PSI_FLUSH (((u64)3) << 4)
266 #define DMA_ID_TLB_READ_DRAIN (((u64)1) << 7)
267 #define DMA_ID_TLB_WRITE_DRAIN (((u64)1) << 6)
268 #define DMA_ID_TLB_DID(id) (((u64)((id & 0xffff) << 16)))
269 #define DMA_ID_TLB_IH_NONLEAF (((u64)1) << 6)
270 #define DMA_ID_TLB_ADDR(addr) (addr)
271 #define DMA_ID_TLB_ADDR_MASK(mask) (mask)
272
273 /* PMEN_REG */
274 #define DMA_PMEN_EPM (((u32)1)<<31)
275 #define DMA_PMEN_PRS (((u32)1)<<0)
276
277 /* GCMD_REG */
278 #define DMA_GCMD_TE (((u32)1) << 31)
279 #define DMA_GCMD_SRTP (((u32)1) << 30)
280 #define DMA_GCMD_SFL (((u32)1) << 29)
281 #define DMA_GCMD_EAFL (((u32)1) << 28)
282 #define DMA_GCMD_WBF (((u32)1) << 27)
283 #define DMA_GCMD_QIE (((u32)1) << 26)
284 #define DMA_GCMD_SIRTP (((u32)1) << 24)
285 #define DMA_GCMD_IRE (((u32) 1) << 25)
286 #define DMA_GCMD_CFI (((u32) 1) << 23)
287
288 /* GSTS_REG */
289 #define DMA_GSTS_TES (((u32)1) << 31)
290 #define DMA_GSTS_RTPS (((u32)1) << 30)
291 #define DMA_GSTS_FLS (((u32)1) << 29)
292 #define DMA_GSTS_AFLS (((u32)1) << 28)
293 #define DMA_GSTS_WBFS (((u32)1) << 27)
294 #define DMA_GSTS_QIES (((u32)1) << 26)
295 #define DMA_GSTS_IRTPS (((u32)1) << 24)
296 #define DMA_GSTS_IRES (((u32)1) << 25)
297 #define DMA_GSTS_CFIS (((u32)1) << 23)
298
299 /* DMA_RTADDR_REG */
300 #define DMA_RTADDR_SMT (((u64)1) << 10)
301
302 /* CCMD_REG */
303 #define DMA_CCMD_ICC (((u64)1) << 63)
304 #define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
305 #define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
306 #define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
307 #define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
308 #define DMA_CCMD_MASK_NOBIT 0
309 #define DMA_CCMD_MASK_1BIT 1
310 #define DMA_CCMD_MASK_2BIT 2
311 #define DMA_CCMD_MASK_3BIT 3
312 #define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
313 #define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
314
315 /* ECMD_REG */
316 #define DMA_MAX_NUM_ECMD 256
317 #define DMA_MAX_NUM_ECMDCAP (DMA_MAX_NUM_ECMD / 64)
318 #define DMA_ECMD_REG_STEP 8
319 #define DMA_ECMD_ENABLE 0xf0
320 #define DMA_ECMD_DISABLE 0xf1
321 #define DMA_ECMD_FREEZE 0xf4
322 #define DMA_ECMD_UNFREEZE 0xf5
323 #define DMA_ECMD_OA_SHIFT 16
324 #define DMA_ECMD_ECRSP_IP 0x1
325 #define DMA_ECMD_ECCAP3 3
326 #define DMA_ECMD_ECCAP3_ECNTS BIT_ULL(48)
327 #define DMA_ECMD_ECCAP3_DCNTS BIT_ULL(49)
328 #define DMA_ECMD_ECCAP3_FCNTS BIT_ULL(52)
329 #define DMA_ECMD_ECCAP3_UFCNTS BIT_ULL(53)
330 #define DMA_ECMD_ECCAP3_ESSENTIAL (DMA_ECMD_ECCAP3_ECNTS | \
331 DMA_ECMD_ECCAP3_DCNTS | \
332 DMA_ECMD_ECCAP3_FCNTS | \
333 DMA_ECMD_ECCAP3_UFCNTS)
334
335 /* FECTL_REG */
336 #define DMA_FECTL_IM (((u32)1) << 31)
337
338 /* FSTS_REG */
339 #define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
340 #define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
341 #define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
342 #define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
343 #define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
344 #define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
345 #define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
346
347 /* FRCD_REG, 32 bits access */
348 #define DMA_FRCD_F (((u32)1) << 31)
349 #define dma_frcd_type(d) ((d >> 30) & 1)
350 #define dma_frcd_fault_reason(c) (c & 0xff)
351 #define dma_frcd_source_id(c) (c & 0xffff)
352 #define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
353 #define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
354 /* low 64 bit */
355 #define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
356
357 /* PRS_REG */
358 #define DMA_PRS_PPR ((u32)1)
359 #define DMA_PRS_PRO ((u32)2)
360
361 #define DMA_VCS_PAS ((u64)1)
362
363 /* PERFINTRSTS_REG */
364 #define DMA_PERFINTRSTS_PIS ((u32)1)
365
366 #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
367 do { \
368 cycles_t start_time = get_cycles(); \
369 while (1) { \
370 sts = op(iommu->reg + offset); \
371 if (cond) \
372 break; \
373 if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
374 panic("DMAR hardware is malfunctioning\n"); \
375 cpu_relax(); \
376 } \
377 } while (0)
378
379 #define QI_LENGTH 256 /* queue length */
380
381 enum {
382 QI_FREE,
383 QI_IN_USE,
384 QI_DONE,
385 QI_ABORT
386 };
387
388 #define QI_CC_TYPE 0x1
389 #define QI_IOTLB_TYPE 0x2
390 #define QI_DIOTLB_TYPE 0x3
391 #define QI_IEC_TYPE 0x4
392 #define QI_IWD_TYPE 0x5
393 #define QI_EIOTLB_TYPE 0x6
394 #define QI_PC_TYPE 0x7
395 #define QI_DEIOTLB_TYPE 0x8
396 #define QI_PGRP_RESP_TYPE 0x9
397 #define QI_PSTRM_RESP_TYPE 0xa
398
399 #define QI_IEC_SELECTIVE (((u64)1) << 4)
400 #define QI_IEC_IIDEX(idx) (((u64)(idx & 0xffff) << 32))
401 #define QI_IEC_IM(m) (((u64)(m & 0x1f) << 27))
402
403 #define QI_IWD_STATUS_DATA(d) (((u64)d) << 32)
404 #define QI_IWD_STATUS_WRITE (((u64)1) << 5)
405 #define QI_IWD_FENCE (((u64)1) << 6)
406 #define QI_IWD_PRQ_DRAIN (((u64)1) << 7)
407
408 #define QI_IOTLB_DID(did) (((u64)did) << 16)
409 #define QI_IOTLB_DR(dr) (((u64)dr) << 7)
410 #define QI_IOTLB_DW(dw) (((u64)dw) << 6)
411 #define QI_IOTLB_GRAN(gran) (((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
412 #define QI_IOTLB_ADDR(addr) (((u64)addr) & VTD_PAGE_MASK)
413 #define QI_IOTLB_IH(ih) (((u64)ih) << 6)
414 #define QI_IOTLB_AM(am) (((u8)am) & 0x3f)
415
416 #define QI_CC_FM(fm) (((u64)fm) << 48)
417 #define QI_CC_SID(sid) (((u64)sid) << 32)
418 #define QI_CC_DID(did) (((u64)did) << 16)
419 #define QI_CC_GRAN(gran) (((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
420
421 #define QI_DEV_IOTLB_SID(sid) ((u64)((sid) & 0xffff) << 32)
422 #define QI_DEV_IOTLB_QDEP(qdep) (((qdep) & 0x1f) << 16)
423 #define QI_DEV_IOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
424 #define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
425 ((u64)((pfsid >> 4) & 0xfff) << 52))
426 #define QI_DEV_IOTLB_SIZE 1
427 #define QI_DEV_IOTLB_MAX_INVS 32
428
429 #define QI_PC_PASID(pasid) (((u64)pasid) << 32)
430 #define QI_PC_DID(did) (((u64)did) << 16)
431 #define QI_PC_GRAN(gran) (((u64)gran) << 4)
432
433 /* PASID cache invalidation granu */
434 #define QI_PC_ALL_PASIDS 0
435 #define QI_PC_PASID_SEL 1
436 #define QI_PC_GLOBAL 3
437
438 #define QI_EIOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
439 #define QI_EIOTLB_IH(ih) (((u64)ih) << 6)
440 #define QI_EIOTLB_AM(am) (((u64)am) & 0x3f)
441 #define QI_EIOTLB_PASID(pasid) (((u64)pasid) << 32)
442 #define QI_EIOTLB_DID(did) (((u64)did) << 16)
443 #define QI_EIOTLB_GRAN(gran) (((u64)gran) << 4)
444
445 /* QI Dev-IOTLB inv granu */
446 #define QI_DEV_IOTLB_GRAN_ALL 1
447 #define QI_DEV_IOTLB_GRAN_PASID_SEL 0
448
449 #define QI_DEV_EIOTLB_ADDR(a) ((u64)(a) & VTD_PAGE_MASK)
450 #define QI_DEV_EIOTLB_SIZE (((u64)1) << 11)
451 #define QI_DEV_EIOTLB_PASID(p) ((u64)((p) & 0xfffff) << 32)
452 #define QI_DEV_EIOTLB_SID(sid) ((u64)((sid) & 0xffff) << 16)
453 #define QI_DEV_EIOTLB_QDEP(qd) ((u64)((qd) & 0x1f) << 4)
454 #define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
455 ((u64)((pfsid >> 4) & 0xfff) << 52))
456 #define QI_DEV_EIOTLB_MAX_INVS 32
457
458 /* Page group response descriptor QW0 */
459 #define QI_PGRP_PASID_P(p) (((u64)(p)) << 4)
460 #define QI_PGRP_RESP_CODE(res) (((u64)(res)) << 12)
461 #define QI_PGRP_DID(rid) (((u64)(rid)) << 16)
462 #define QI_PGRP_PASID(pasid) (((u64)(pasid)) << 32)
463
464 /* Page group response descriptor QW1 */
465 #define QI_PGRP_LPIG(x) (((u64)(x)) << 2)
466 #define QI_PGRP_IDX(idx) (((u64)(idx)) << 3)
467
468
469 #define QI_RESP_SUCCESS 0x0
470 #define QI_RESP_INVALID 0x1
471 #define QI_RESP_FAILURE 0xf
472
473 #define QI_GRAN_NONG_PASID 2
474 #define QI_GRAN_PSI_PASID 3
475
476 #define qi_shift(iommu) (DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
477
478 struct qi_desc {
479 u64 qw0;
480 u64 qw1;
481 u64 qw2;
482 u64 qw3;
483 };
484
485 struct q_inval {
486 raw_spinlock_t q_lock;
487 void *desc; /* invalidation queue */
488 int *desc_status; /* desc status */
489 int free_head; /* first free entry */
490 int free_tail; /* last free entry */
491 int free_cnt;
492 };
493
494 /* Page Request Queue depth */
495 #define PRQ_ORDER 4
496 #define PRQ_SIZE (SZ_4K << PRQ_ORDER)
497 #define PRQ_RING_MASK (PRQ_SIZE - 0x20)
498 #define PRQ_DEPTH (PRQ_SIZE >> 5)
499
500 struct dmar_pci_notify_info;
501
502 #ifdef CONFIG_IRQ_REMAP
503 #define INTR_REMAP_TABLE_REG_SIZE 0xf
504 #define INTR_REMAP_TABLE_REG_SIZE_MASK 0xf
505
506 #define INTR_REMAP_TABLE_ENTRIES 65536
507
508 struct irq_domain;
509
510 struct ir_table {
511 struct irte *base;
512 unsigned long *bitmap;
513 };
514
515 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
516 #else
517 static inline void
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)518 intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
519 #endif
520
521 struct iommu_flush {
522 void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
523 u8 fm, u64 type);
524 void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
525 unsigned int size_order, u64 type);
526 };
527
528 enum {
529 SR_DMAR_FECTL_REG,
530 SR_DMAR_FEDATA_REG,
531 SR_DMAR_FEADDR_REG,
532 SR_DMAR_FEUADDR_REG,
533 MAX_SR_DMAR_REGS
534 };
535
536 #define VTD_FLAG_TRANS_PRE_ENABLED (1 << 0)
537 #define VTD_FLAG_IRQ_REMAP_PRE_ENABLED (1 << 1)
538 #define VTD_FLAG_SVM_CAPABLE (1 << 2)
539
540 #define sm_supported(iommu) (intel_iommu_sm && ecap_smts((iommu)->ecap))
541 #define pasid_supported(iommu) (sm_supported(iommu) && \
542 ecap_pasid((iommu)->ecap))
543 #define ssads_supported(iommu) (sm_supported(iommu) && \
544 ecap_slads((iommu)->ecap))
545 #define nested_supported(iommu) (sm_supported(iommu) && \
546 ecap_nest((iommu)->ecap))
547
548 struct pasid_entry;
549 struct pasid_state_entry;
550 struct page_req_dsc;
551
552 /*
553 * 0: Present
554 * 1-11: Reserved
555 * 12-63: Context Ptr (12 - (haw-1))
556 * 64-127: Reserved
557 */
558 struct root_entry {
559 u64 lo;
560 u64 hi;
561 };
562
563 /*
564 * low 64 bits:
565 * 0: present
566 * 1: fault processing disable
567 * 2-3: translation type
568 * 12-63: address space root
569 * high 64 bits:
570 * 0-2: address width
571 * 3-6: aval
572 * 8-23: domain id
573 */
574 struct context_entry {
575 u64 lo;
576 u64 hi;
577 };
578
579 struct iommu_domain_info {
580 struct intel_iommu *iommu;
581 unsigned int refcnt; /* Refcount of devices per iommu */
582 u16 did; /* Domain ids per IOMMU. Use u16 since
583 * domain ids are 16 bit wide according
584 * to VT-d spec, section 9.3 */
585 };
586
587 /*
588 * We start simply by using a fixed size for the batched descriptors. This
589 * size is currently sufficient for our needs. Future improvements could
590 * involve dynamically allocating the batch buffer based on actual demand,
591 * allowing us to adjust the batch size for optimal performance in different
592 * scenarios.
593 */
594 #define QI_MAX_BATCHED_DESC_COUNT 16
595 struct qi_batch {
596 struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
597 unsigned int index;
598 };
599
600 struct dmar_domain {
601 int nid; /* node id */
602 struct xarray iommu_array; /* Attached IOMMU array */
603
604 u8 iommu_coherency: 1; /* indicate coherency of iommu access */
605 u8 force_snooping : 1; /* Create IOPTEs with snoop control */
606 u8 set_pte_snp:1;
607 u8 use_first_level:1; /* DMA translation for the domain goes
608 * through the first level page table,
609 * otherwise, goes through the second
610 * level.
611 */
612 u8 dirty_tracking:1; /* Dirty tracking is enabled */
613 u8 nested_parent:1; /* Has other domains nested on it */
614 u8 has_mappings:1; /* Has mappings configured through
615 * iommu_map() interface.
616 */
617
618 spinlock_t lock; /* Protect device tracking lists */
619 struct list_head devices; /* all devices' list */
620 struct list_head dev_pasids; /* all attached pasids */
621
622 spinlock_t cache_lock; /* Protect the cache tag list */
623 struct list_head cache_tags; /* Cache tag list */
624 struct qi_batch *qi_batch; /* Batched QI descriptors */
625
626 int iommu_superpage;/* Level of superpages supported:
627 0 == 4KiB (no superpages), 1 == 2MiB,
628 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
629 union {
630 /* DMA remapping domain */
631 struct {
632 /* virtual address */
633 struct dma_pte *pgd;
634 /* max guest address width */
635 int gaw;
636 /*
637 * adjusted guest address width:
638 * 0: level 2 30-bit
639 * 1: level 3 39-bit
640 * 2: level 4 48-bit
641 * 3: level 5 57-bit
642 */
643 int agaw;
644 /* maximum mapped address */
645 u64 max_addr;
646 /* Protect the s1_domains list */
647 spinlock_t s1_lock;
648 /* Track s1_domains nested on this domain */
649 struct list_head s1_domains;
650 };
651
652 /* Nested user domain */
653 struct {
654 /* parent page table which the user domain is nested on */
655 struct dmar_domain *s2_domain;
656 /* page table attributes */
657 struct iommu_hwpt_vtd_s1 s1_cfg;
658 /* link to parent domain siblings */
659 struct list_head s2_link;
660 };
661
662 /* SVA domain */
663 struct {
664 struct mmu_notifier notifier;
665 };
666 };
667
668 struct iommu_domain domain; /* generic domain data structure for
669 iommu core */
670 };
671
672 /*
673 * In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
674 * But in practice, there are only 14 counters for the existing
675 * platform. Setting the max number of counters to 64 should be good
676 * enough for a long time. Also, supporting more than 64 counters
677 * requires more extras, e.g., extra freeze and overflow registers,
678 * which is not necessary for now.
679 */
680 #define IOMMU_PMU_IDX_MAX 64
681
682 struct iommu_pmu {
683 struct intel_iommu *iommu;
684 u32 num_cntr; /* Number of counters */
685 u32 num_eg; /* Number of event group */
686 u32 cntr_width; /* Counter width */
687 u32 cntr_stride; /* Counter Stride */
688 u32 filter; /* Bitmask of filter support */
689 void __iomem *base; /* the PerfMon base address */
690 void __iomem *cfg_reg; /* counter configuration base address */
691 void __iomem *cntr_reg; /* counter 0 address*/
692 void __iomem *overflow; /* overflow status register */
693
694 u64 *evcap; /* Indicates all supported events */
695 u32 **cntr_evcap; /* Supported events of each counter. */
696
697 struct pmu pmu;
698 DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
699 struct perf_event *event_list[IOMMU_PMU_IDX_MAX];
700 unsigned char irq_name[16];
701 };
702
703 #define IOMMU_IRQ_ID_OFFSET_PRQ (DMAR_UNITS_SUPPORTED)
704 #define IOMMU_IRQ_ID_OFFSET_PERF (2 * DMAR_UNITS_SUPPORTED)
705
706 struct intel_iommu {
707 void __iomem *reg; /* Pointer to hardware regs, virtual addr */
708 u64 reg_phys; /* physical address of hw register set */
709 u64 reg_size; /* size of hw register set */
710 u64 cap;
711 u64 ecap;
712 u64 vccap;
713 u64 ecmdcap[DMA_MAX_NUM_ECMDCAP];
714 u32 gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
715 raw_spinlock_t register_lock; /* protect register handling */
716 int seq_id; /* sequence id of the iommu */
717 int agaw; /* agaw of this iommu */
718 int msagaw; /* max sagaw of this iommu */
719 unsigned int irq, pr_irq, perf_irq;
720 u16 segment; /* PCI segment# */
721 unsigned char name[16]; /* Device Name */
722
723 #ifdef CONFIG_INTEL_IOMMU
724 /* mutex to protect domain_ida */
725 struct mutex did_lock;
726 struct ida domain_ida; /* domain id allocator */
727 unsigned long *copied_tables; /* bitmap of copied tables */
728 spinlock_t lock; /* protect context, domain ids */
729 struct root_entry *root_entry; /* virtual address */
730
731 struct iommu_flush flush;
732 #endif
733 struct page_req_dsc *prq;
734 unsigned char prq_name[16]; /* Name for PRQ interrupt */
735 unsigned long prq_seq_number;
736 struct completion prq_complete;
737 struct iopf_queue *iopf_queue;
738 unsigned char iopfq_name[16];
739 /* Synchronization between fault report and iommu device release. */
740 struct mutex iopf_lock;
741 struct q_inval *qi; /* Queued invalidation info */
742 u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
743
744 /* rb tree for all probed devices */
745 struct rb_root device_rbtree;
746 /* protect the device_rbtree */
747 spinlock_t device_rbtree_lock;
748
749 #ifdef CONFIG_IRQ_REMAP
750 struct ir_table *ir_table; /* Interrupt remapping info */
751 struct irq_domain *ir_domain;
752 #endif
753 struct iommu_device iommu; /* IOMMU core code handle */
754 int node;
755 u32 flags; /* Software defined flags */
756
757 struct dmar_drhd_unit *drhd;
758 void *perf_statistic;
759
760 struct iommu_pmu *pmu;
761 };
762
763 /* PCI domain-device relationship */
764 struct device_domain_info {
765 struct list_head link; /* link to domain siblings */
766 u32 segment; /* PCI segment number */
767 u8 bus; /* PCI bus number */
768 u8 devfn; /* PCI devfn number */
769 u16 pfsid; /* SRIOV physical function source ID */
770 u8 pasid_supported:3;
771 u8 pasid_enabled:1;
772 u8 pri_supported:1;
773 u8 pri_enabled:1;
774 u8 ats_supported:1;
775 u8 ats_enabled:1;
776 u8 dtlb_extra_inval:1; /* Quirk for devices need extra flush */
777 u8 domain_attached:1; /* Device has domain attached */
778 u8 ats_qdep;
779 unsigned int iopf_refcount;
780 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
781 struct intel_iommu *iommu; /* IOMMU used by this device */
782 struct dmar_domain *domain; /* pointer to domain */
783 struct pasid_table *pasid_table; /* pasid table */
784 /* device tracking node(lookup by PCI RID) */
785 struct rb_node node;
786 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
787 struct dentry *debugfs_dentry; /* pointer to device directory dentry */
788 #endif
789 };
790
791 struct dev_pasid_info {
792 struct list_head link_domain; /* link to domain siblings */
793 struct device *dev;
794 ioasid_t pasid;
795 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
796 struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
797 #endif
798 };
799
__iommu_flush_cache(struct intel_iommu * iommu,void * addr,int size)800 static inline void __iommu_flush_cache(
801 struct intel_iommu *iommu, void *addr, int size)
802 {
803 if (!ecap_coherent(iommu->ecap))
804 clflush_cache_range(addr, size);
805 }
806
807 /* Convert generic struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)808 static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
809 {
810 return container_of(dom, struct dmar_domain, domain);
811 }
812
813 /*
814 * Domain ID 0 and 1 are reserved:
815 *
816 * If Caching mode is set, then invalid translations are tagged
817 * with domain-id 0, hence we need to pre-allocate it. We also
818 * use domain-id 0 as a marker for non-allocated domain-id, so
819 * make sure it is not used for a real domain.
820 *
821 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
822 * entry for first-level or pass-through translation modes should
823 * be programmed with a domain id different from those used for
824 * second-level or nested translation. We reserve a domain id for
825 * this purpose. This domain id is also used for identity domain
826 * in legacy mode.
827 */
828 #define FLPT_DEFAULT_DID 1
829 #define IDA_START_DID 2
830
831 /* Retrieve the domain ID which has allocated to the domain */
832 static inline u16
domain_id_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)833 domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
834 {
835 struct iommu_domain_info *info =
836 xa_load(&domain->iommu_array, iommu->seq_id);
837
838 return info->did;
839 }
840
841 static inline u16
iommu_domain_did(struct iommu_domain * domain,struct intel_iommu * iommu)842 iommu_domain_did(struct iommu_domain *domain, struct intel_iommu *iommu)
843 {
844 if (domain->type == IOMMU_DOMAIN_SVA ||
845 domain->type == IOMMU_DOMAIN_IDENTITY)
846 return FLPT_DEFAULT_DID;
847 return domain_id_iommu(to_dmar_domain(domain), iommu);
848 }
849
dev_is_real_dma_subdevice(struct device * dev)850 static inline bool dev_is_real_dma_subdevice(struct device *dev)
851 {
852 return dev && dev_is_pci(dev) &&
853 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
854 }
855
856 /*
857 * 0: readable
858 * 1: writable
859 * 2-6: reserved
860 * 7: super page
861 * 8-10: available
862 * 11: snoop behavior
863 * 12-63: Host physical address
864 */
865 struct dma_pte {
866 u64 val;
867 };
868
dma_clear_pte(struct dma_pte * pte)869 static inline void dma_clear_pte(struct dma_pte *pte)
870 {
871 pte->val = 0;
872 }
873
dma_pte_addr(struct dma_pte * pte)874 static inline u64 dma_pte_addr(struct dma_pte *pte)
875 {
876 #ifdef CONFIG_64BIT
877 return pte->val & VTD_PAGE_MASK;
878 #else
879 /* Must have a full atomic 64-bit read */
880 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
881 #endif
882 }
883
dma_pte_present(struct dma_pte * pte)884 static inline bool dma_pte_present(struct dma_pte *pte)
885 {
886 return (pte->val & 3) != 0;
887 }
888
dma_sl_pte_test_and_clear_dirty(struct dma_pte * pte,unsigned long flags)889 static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
890 unsigned long flags)
891 {
892 if (flags & IOMMU_DIRTY_NO_CLEAR)
893 return (pte->val & DMA_SL_PTE_DIRTY) != 0;
894
895 return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
896 (unsigned long *)&pte->val);
897 }
898
dma_pte_superpage(struct dma_pte * pte)899 static inline bool dma_pte_superpage(struct dma_pte *pte)
900 {
901 return (pte->val & DMA_PTE_LARGE_PAGE);
902 }
903
first_pte_in_page(struct dma_pte * pte)904 static inline bool first_pte_in_page(struct dma_pte *pte)
905 {
906 return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
907 }
908
nr_pte_to_next_page(struct dma_pte * pte)909 static inline int nr_pte_to_next_page(struct dma_pte *pte)
910 {
911 return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
912 (struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
913 }
914
context_present(struct context_entry * context)915 static inline bool context_present(struct context_entry *context)
916 {
917 return (context->lo & 1);
918 }
919
920 #define LEVEL_STRIDE (9)
921 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
922 #define MAX_AGAW_WIDTH (64)
923 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
924
agaw_to_level(int agaw)925 static inline int agaw_to_level(int agaw)
926 {
927 return agaw + 2;
928 }
929
agaw_to_width(int agaw)930 static inline int agaw_to_width(int agaw)
931 {
932 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
933 }
934
width_to_agaw(int width)935 static inline int width_to_agaw(int width)
936 {
937 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
938 }
939
level_to_offset_bits(int level)940 static inline unsigned int level_to_offset_bits(int level)
941 {
942 return (level - 1) * LEVEL_STRIDE;
943 }
944
pfn_level_offset(u64 pfn,int level)945 static inline int pfn_level_offset(u64 pfn, int level)
946 {
947 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
948 }
949
level_mask(int level)950 static inline u64 level_mask(int level)
951 {
952 return -1ULL << level_to_offset_bits(level);
953 }
954
level_size(int level)955 static inline u64 level_size(int level)
956 {
957 return 1ULL << level_to_offset_bits(level);
958 }
959
align_to_level(u64 pfn,int level)960 static inline u64 align_to_level(u64 pfn, int level)
961 {
962 return (pfn + level_size(level) - 1) & level_mask(level);
963 }
964
lvl_to_nr_pages(unsigned int lvl)965 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
966 {
967 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
968 }
969
context_set_present(struct context_entry * context)970 static inline void context_set_present(struct context_entry *context)
971 {
972 context->lo |= 1;
973 }
974
context_set_fault_enable(struct context_entry * context)975 static inline void context_set_fault_enable(struct context_entry *context)
976 {
977 context->lo &= (((u64)-1) << 2) | 1;
978 }
979
context_set_translation_type(struct context_entry * context,unsigned long value)980 static inline void context_set_translation_type(struct context_entry *context,
981 unsigned long value)
982 {
983 context->lo &= (((u64)-1) << 4) | 3;
984 context->lo |= (value & 3) << 2;
985 }
986
context_set_address_root(struct context_entry * context,unsigned long value)987 static inline void context_set_address_root(struct context_entry *context,
988 unsigned long value)
989 {
990 context->lo &= ~VTD_PAGE_MASK;
991 context->lo |= value & VTD_PAGE_MASK;
992 }
993
context_set_address_width(struct context_entry * context,unsigned long value)994 static inline void context_set_address_width(struct context_entry *context,
995 unsigned long value)
996 {
997 context->hi |= value & 7;
998 }
999
context_set_domain_id(struct context_entry * context,unsigned long value)1000 static inline void context_set_domain_id(struct context_entry *context,
1001 unsigned long value)
1002 {
1003 context->hi |= (value & ((1 << 16) - 1)) << 8;
1004 }
1005
context_set_pasid(struct context_entry * context)1006 static inline void context_set_pasid(struct context_entry *context)
1007 {
1008 context->lo |= CONTEXT_PASIDE;
1009 }
1010
context_domain_id(struct context_entry * c)1011 static inline int context_domain_id(struct context_entry *c)
1012 {
1013 return((c->hi >> 8) & 0xffff);
1014 }
1015
context_clear_entry(struct context_entry * context)1016 static inline void context_clear_entry(struct context_entry *context)
1017 {
1018 context->lo = 0;
1019 context->hi = 0;
1020 }
1021
1022 #ifdef CONFIG_INTEL_IOMMU
context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1023 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1024 {
1025 if (!iommu->copied_tables)
1026 return false;
1027
1028 return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1029 }
1030
1031 static inline void
set_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1032 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1033 {
1034 set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1035 }
1036
1037 static inline void
clear_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1038 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1039 {
1040 clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1041 }
1042 #endif /* CONFIG_INTEL_IOMMU */
1043
1044 /*
1045 * Set the RID_PASID field of a scalable mode context entry. The
1046 * IOMMU hardware will use the PASID value set in this field for
1047 * DMA translations of DMA requests without PASID.
1048 */
1049 static inline void
context_set_sm_rid2pasid(struct context_entry * context,unsigned long pasid)1050 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1051 {
1052 context->hi |= pasid & ((1 << 20) - 1);
1053 }
1054
1055 /*
1056 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1057 * entry.
1058 */
context_set_sm_dte(struct context_entry * context)1059 static inline void context_set_sm_dte(struct context_entry *context)
1060 {
1061 context->lo |= BIT_ULL(2);
1062 }
1063
1064 /*
1065 * Set the PRE(Page Request Enable) field of a scalable mode context
1066 * entry.
1067 */
context_set_sm_pre(struct context_entry * context)1068 static inline void context_set_sm_pre(struct context_entry *context)
1069 {
1070 context->lo |= BIT_ULL(4);
1071 }
1072
1073 /*
1074 * Clear the PRE(Page Request Enable) field of a scalable mode context
1075 * entry.
1076 */
context_clear_sm_pre(struct context_entry * context)1077 static inline void context_clear_sm_pre(struct context_entry *context)
1078 {
1079 context->lo &= ~BIT_ULL(4);
1080 }
1081
1082 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)1083 static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
1084 {
1085 host_addr &= ~PAGE_MASK;
1086 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1087 }
1088
1089 /* Return a size from number of VTD pages. */
nrpages_to_size(unsigned long npages)1090 static inline unsigned long nrpages_to_size(unsigned long npages)
1091 {
1092 return npages << VTD_PAGE_SHIFT;
1093 }
1094
qi_desc_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type,struct qi_desc * desc)1095 static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1096 unsigned int size_order, u64 type,
1097 struct qi_desc *desc)
1098 {
1099 u8 dw = 0, dr = 0;
1100 int ih = 0;
1101
1102 if (cap_write_drain(iommu->cap))
1103 dw = 1;
1104
1105 if (cap_read_drain(iommu->cap))
1106 dr = 1;
1107
1108 desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1109 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1110 desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1111 | QI_IOTLB_AM(size_order);
1112 desc->qw2 = 0;
1113 desc->qw3 = 0;
1114 }
1115
qi_desc_dev_iotlb(u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned int mask,struct qi_desc * desc)1116 static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
1117 unsigned int mask, struct qi_desc *desc)
1118 {
1119 if (mask) {
1120 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1121 desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1122 } else {
1123 desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
1124 }
1125
1126 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1127 qdep = 0;
1128
1129 desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1130 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1131 desc->qw2 = 0;
1132 desc->qw3 = 0;
1133 }
1134
qi_desc_piotlb(u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih,struct qi_desc * desc)1135 static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
1136 unsigned long npages, bool ih,
1137 struct qi_desc *desc)
1138 {
1139 if (npages == -1) {
1140 desc->qw0 = QI_EIOTLB_PASID(pasid) |
1141 QI_EIOTLB_DID(did) |
1142 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1143 QI_EIOTLB_TYPE;
1144 desc->qw1 = 0;
1145 } else {
1146 int mask = ilog2(__roundup_pow_of_two(npages));
1147 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1148
1149 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1150 addr = ALIGN_DOWN(addr, align);
1151
1152 desc->qw0 = QI_EIOTLB_PASID(pasid) |
1153 QI_EIOTLB_DID(did) |
1154 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1155 QI_EIOTLB_TYPE;
1156 desc->qw1 = QI_EIOTLB_ADDR(addr) |
1157 QI_EIOTLB_IH(ih) |
1158 QI_EIOTLB_AM(mask);
1159 }
1160 }
1161
qi_desc_dev_iotlb_pasid(u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order,struct qi_desc * desc)1162 static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
1163 u16 qdep, u64 addr,
1164 unsigned int size_order,
1165 struct qi_desc *desc)
1166 {
1167 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1168
1169 desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1170 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1171 QI_DEV_IOTLB_PFSID(pfsid);
1172
1173 /*
1174 * If S bit is 0, we only flush a single page. If S bit is set,
1175 * The least significant zero bit indicates the invalidation address
1176 * range. VT-d spec 6.5.2.6.
1177 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1178 * size order = 0 is PAGE_SIZE 4KB
1179 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1180 * ECAP.
1181 */
1182 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1183 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1184 addr, size_order);
1185
1186 /* Take page address */
1187 desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
1188
1189 if (size_order) {
1190 /*
1191 * Existing 0s in address below size_order may be the least
1192 * significant bit, we must set them to 1s to avoid having
1193 * smaller size than desired.
1194 */
1195 desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1196 VTD_PAGE_SHIFT);
1197 /* Clear size_order bit to indicate size */
1198 desc->qw1 &= ~mask;
1199 /* Set the S bit to indicate flushing more than 1 page */
1200 desc->qw1 |= QI_DEV_EIOTLB_SIZE;
1201 }
1202 }
1203
1204 /* Convert value to context PASID directory size field coding. */
1205 #define context_pdts(pds) (((pds) & 0x7) << 9)
1206
1207 struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
1208
1209 int dmar_enable_qi(struct intel_iommu *iommu);
1210 void dmar_disable_qi(struct intel_iommu *iommu);
1211 int dmar_reenable_qi(struct intel_iommu *iommu);
1212 void qi_global_iec(struct intel_iommu *iommu);
1213
1214 void qi_flush_context(struct intel_iommu *iommu, u16 did,
1215 u16 sid, u8 fm, u64 type);
1216 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1217 unsigned int size_order, u64 type);
1218 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1219 u16 qdep, u64 addr, unsigned mask);
1220
1221 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1222 unsigned long npages, bool ih);
1223
1224 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1225 u32 pasid, u16 qdep, u64 addr,
1226 unsigned int size_order);
1227 void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
1228 unsigned long address, unsigned long pages,
1229 u32 pasid, u16 qdep);
1230 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
1231 u32 pasid);
1232
1233 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1234 unsigned int count, unsigned long options);
1235
1236 void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1237 unsigned int size_order, u64 type);
1238 /*
1239 * Options used in qi_submit_sync:
1240 * QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
1241 */
1242 #define QI_OPT_WAIT_DRAIN BIT(0)
1243
1244 int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1245 void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1246 void device_block_translation(struct device *dev);
1247 int paging_domain_compatible(struct iommu_domain *domain, struct device *dev);
1248
1249 struct dev_pasid_info *
1250 domain_add_dev_pasid(struct iommu_domain *domain,
1251 struct device *dev, ioasid_t pasid);
1252 void domain_remove_dev_pasid(struct iommu_domain *domain,
1253 struct device *dev, ioasid_t pasid);
1254
1255 int __domain_setup_first_level(struct intel_iommu *iommu,
1256 struct device *dev, ioasid_t pasid,
1257 u16 did, pgd_t *pgd, int flags,
1258 struct iommu_domain *old);
1259
1260 int dmar_ir_support(void);
1261
1262 void iommu_flush_write_buffer(struct intel_iommu *iommu);
1263 struct iommu_domain *
1264 intel_iommu_domain_alloc_nested(struct device *dev, struct iommu_domain *parent,
1265 u32 flags,
1266 const struct iommu_user_data *user_data);
1267 struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
1268
1269 enum cache_tag_type {
1270 CACHE_TAG_IOTLB,
1271 CACHE_TAG_DEVTLB,
1272 CACHE_TAG_NESTING_IOTLB,
1273 CACHE_TAG_NESTING_DEVTLB,
1274 };
1275
1276 struct cache_tag {
1277 struct list_head node;
1278 enum cache_tag_type type;
1279 struct intel_iommu *iommu;
1280 /*
1281 * The @dev field represents the location of the cache. For IOTLB, it
1282 * resides on the IOMMU hardware. @dev stores the device pointer to
1283 * the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
1284 * @dev stores the device pointer to that endpoint.
1285 */
1286 struct device *dev;
1287 u16 domain_id;
1288 ioasid_t pasid;
1289 unsigned int users;
1290 };
1291
1292 int cache_tag_assign_domain(struct dmar_domain *domain,
1293 struct device *dev, ioasid_t pasid);
1294 void cache_tag_unassign_domain(struct dmar_domain *domain,
1295 struct device *dev, ioasid_t pasid);
1296 void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
1297 unsigned long end, int ih);
1298 void cache_tag_flush_all(struct dmar_domain *domain);
1299 void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
1300 unsigned long end);
1301
1302 void intel_context_flush_no_pasid(struct device_domain_info *info,
1303 struct context_entry *context, u16 did);
1304
1305 int intel_iommu_enable_prq(struct intel_iommu *iommu);
1306 int intel_iommu_finish_prq(struct intel_iommu *iommu);
1307 void intel_iommu_page_response(struct device *dev, struct iopf_fault *evt,
1308 struct iommu_page_response *msg);
1309 void intel_iommu_drain_pasid_prq(struct device *dev, u32 pasid);
1310
1311 int intel_iommu_enable_iopf(struct device *dev);
1312 void intel_iommu_disable_iopf(struct device *dev);
1313
iopf_for_domain_set(struct iommu_domain * domain,struct device * dev)1314 static inline int iopf_for_domain_set(struct iommu_domain *domain,
1315 struct device *dev)
1316 {
1317 if (!domain || !domain->iopf_handler)
1318 return 0;
1319
1320 return intel_iommu_enable_iopf(dev);
1321 }
1322
iopf_for_domain_remove(struct iommu_domain * domain,struct device * dev)1323 static inline void iopf_for_domain_remove(struct iommu_domain *domain,
1324 struct device *dev)
1325 {
1326 if (!domain || !domain->iopf_handler)
1327 return;
1328
1329 intel_iommu_disable_iopf(dev);
1330 }
1331
iopf_for_domain_replace(struct iommu_domain * new,struct iommu_domain * old,struct device * dev)1332 static inline int iopf_for_domain_replace(struct iommu_domain *new,
1333 struct iommu_domain *old,
1334 struct device *dev)
1335 {
1336 int ret;
1337
1338 ret = iopf_for_domain_set(new, dev);
1339 if (ret)
1340 return ret;
1341
1342 iopf_for_domain_remove(old, dev);
1343
1344 return 0;
1345 }
1346
1347 #ifdef CONFIG_INTEL_IOMMU_SVM
1348 void intel_svm_check(struct intel_iommu *iommu);
1349 struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1350 struct mm_struct *mm);
1351 #else
intel_svm_check(struct intel_iommu * iommu)1352 static inline void intel_svm_check(struct intel_iommu *iommu) {}
intel_svm_domain_alloc(struct device * dev,struct mm_struct * mm)1353 static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1354 struct mm_struct *mm)
1355 {
1356 return ERR_PTR(-ENODEV);
1357 }
1358 #endif
1359
1360 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
1361 void intel_iommu_debugfs_init(void);
1362 void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
1363 void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
1364 void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
1365 void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
1366 #else
intel_iommu_debugfs_init(void)1367 static inline void intel_iommu_debugfs_init(void) {}
intel_iommu_debugfs_create_dev(struct device_domain_info * info)1368 static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_remove_dev(struct device_domain_info * info)1369 static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info * dev_pasid)1370 static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info * dev_pasid)1371 static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
1372 #endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
1373
1374 extern const struct attribute_group *intel_iommu_groups[];
1375 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
1376 u8 devfn, int alloc);
1377
1378 extern const struct iommu_ops intel_iommu_ops;
1379
1380 #ifdef CONFIG_INTEL_IOMMU
1381 extern int intel_iommu_sm;
1382 int iommu_calculate_agaw(struct intel_iommu *iommu);
1383 int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
1384 int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
1385
ecmd_has_pmu_essential(struct intel_iommu * iommu)1386 static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
1387 {
1388 return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
1389 DMA_ECMD_ECCAP3_ESSENTIAL;
1390 }
1391
1392 extern int dmar_disabled;
1393 extern int intel_iommu_enabled;
1394 #else
iommu_calculate_agaw(struct intel_iommu * iommu)1395 static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
1396 {
1397 return 0;
1398 }
iommu_calculate_max_sagaw(struct intel_iommu * iommu)1399 static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
1400 {
1401 return 0;
1402 }
1403 #define dmar_disabled (1)
1404 #define intel_iommu_enabled (0)
1405 #define intel_iommu_sm (0)
1406 #endif
1407
decode_prq_descriptor(char * str,size_t size,u64 dw0,u64 dw1,u64 dw2,u64 dw3)1408 static inline const char *decode_prq_descriptor(char *str, size_t size,
1409 u64 dw0, u64 dw1, u64 dw2, u64 dw3)
1410 {
1411 char *buf = str;
1412 int bytes;
1413
1414 bytes = snprintf(buf, size,
1415 "rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
1416 FIELD_GET(GENMASK_ULL(31, 16), dw0),
1417 FIELD_GET(GENMASK_ULL(63, 12), dw1),
1418 dw1 & BIT_ULL(0) ? 'r' : '-',
1419 dw1 & BIT_ULL(1) ? 'w' : '-',
1420 dw0 & BIT_ULL(52) ? 'x' : '-',
1421 dw0 & BIT_ULL(53) ? 'p' : '-',
1422 dw1 & BIT_ULL(2) ? 'l' : '-',
1423 FIELD_GET(GENMASK_ULL(51, 32), dw0),
1424 FIELD_GET(GENMASK_ULL(11, 3), dw1));
1425
1426 /* Private Data */
1427 if (dw0 & BIT_ULL(9)) {
1428 size -= bytes;
1429 buf += bytes;
1430 snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
1431 }
1432
1433 return str;
1434 }
1435
1436 #endif
1437