xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/PostOrderIterator.h (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file builds on the ADT/GraphTraits.h file to build a generic graph
11 /// post order iterator.  This should work over any graph type that has a
12 /// GraphTraits specialization.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include <iterator>
24 #include <optional>
25 #include <set>
26 #include <utility>
27 
28 namespace llvm {
29 
30 // The po_iterator_storage template provides access to the set of already
31 // visited nodes during the po_iterator's depth-first traversal.
32 //
33 // The default implementation simply contains a set of visited nodes, while
34 // the External=true version uses a reference to an external set.
35 //
36 // It is possible to prune the depth-first traversal in several ways:
37 //
38 // - When providing an external set that already contains some graph nodes,
39 //   those nodes won't be visited again. This is useful for restarting a
40 //   post-order traversal on a graph with nodes that aren't dominated by a
41 //   single node.
42 //
43 // - By providing a custom SetType class, unwanted graph nodes can be excluded
44 //   by having the insert() function return false. This could for example
45 //   confine a CFG traversal to blocks in a specific loop.
46 //
47 // - Finally, by specializing the po_iterator_storage template itself, graph
48 //   edges can be pruned by returning false in the insertEdge() function. This
49 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
50 //
51 // A specialized po_iterator_storage class can observe both the pre-order and
52 // the post-order. The insertEdge() function is called in a pre-order, while
53 // the finishPostorder() function is called just before the po_iterator moves
54 // on to the next node.
55 
56 /// Default po_iterator_storage implementation with an internal set object.
57 template<class SetType, bool External>
58 class po_iterator_storage {
59   SetType Visited;
60 
61 public:
62   // Return true if edge destination should be visited.
63   template <typename NodeRef>
64   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
65     return Visited.insert(To).second;
66   }
67 
68   // Called after all children of BB have been visited.
69   template <typename NodeRef> void finishPostorder(NodeRef BB) {}
70 };
71 
72 /// Specialization of po_iterator_storage that references an external set.
73 template<class SetType>
74 class po_iterator_storage<SetType, true> {
75   SetType &Visited;
76 
77 public:
78   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
79   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
80 
81   // Return true if edge destination should be visited, called with From = 0 for
82   // the root node.
83   // Graph edges can be pruned by specializing this function.
84   template <class NodeRef>
85   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
86     return Visited.insert(To).second;
87   }
88 
89   // Called after all children of BB have been visited.
90   template <class NodeRef> void finishPostorder(NodeRef BB) {}
91 };
92 
93 template <class GraphT,
94           class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
95           bool ExtStorage = false, class GT = GraphTraits<GraphT>>
96 class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
97 public:
98   using iterator_category = std::forward_iterator_tag;
99   using value_type = typename GT::NodeRef;
100   using difference_type = std::ptrdiff_t;
101   using pointer = value_type *;
102   using reference = const value_type &;
103 
104 private:
105   using NodeRef = typename GT::NodeRef;
106   using ChildItTy = typename GT::ChildIteratorType;
107 
108   /// Used to maintain the ordering.
109   /// First element is basic block pointer, second is iterator for the next
110   /// child to visit, third is the end iterator.
111   SmallVector<std::tuple<NodeRef, ChildItTy, ChildItTy>, 8> VisitStack;
112 
113   po_iterator(NodeRef BB) {
114     this->insertEdge(std::optional<NodeRef>(), BB);
115     VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
116     traverseChild();
117   }
118 
119   po_iterator() = default; // End is when stack is empty.
120 
121   po_iterator(NodeRef BB, SetType &S)
122       : po_iterator_storage<SetType, ExtStorage>(S) {
123     if (this->insertEdge(std::optional<NodeRef>(), BB)) {
124       VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
125       traverseChild();
126     }
127   }
128 
129   po_iterator(SetType &S)
130       : po_iterator_storage<SetType, ExtStorage>(S) {
131   } // End is when stack is empty.
132 
133   void traverseChild() {
134     while (true) {
135       auto &Entry = VisitStack.back();
136       if (std::get<1>(Entry) == std::get<2>(Entry))
137         break;
138       NodeRef BB = *std::get<1>(Entry)++;
139       if (this->insertEdge(std::optional<NodeRef>(std::get<0>(Entry)), BB)) {
140         // If the block is not visited...
141         VisitStack.emplace_back(BB, GT::child_begin(BB), GT::child_end(BB));
142       }
143     }
144   }
145 
146 public:
147   // Provide static "constructors"...
148   static po_iterator begin(const GraphT &G) {
149     return po_iterator(GT::getEntryNode(G));
150   }
151   static po_iterator end(const GraphT &G) { return po_iterator(); }
152 
153   static po_iterator begin(const GraphT &G, SetType &S) {
154     return po_iterator(GT::getEntryNode(G), S);
155   }
156   static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
157 
158   bool operator==(const po_iterator &x) const {
159     return VisitStack == x.VisitStack;
160   }
161   bool operator!=(const po_iterator &x) const { return !(*this == x); }
162 
163   reference operator*() const { return std::get<0>(VisitStack.back()); }
164 
165   // This is a nonstandard operator-> that dereferences the pointer an extra
166   // time... so that you can actually call methods ON the BasicBlock, because
167   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
168   //
169   NodeRef operator->() const { return **this; }
170 
171   po_iterator &operator++() { // Preincrement
172     this->finishPostorder(std::get<0>(VisitStack.back()));
173     VisitStack.pop_back();
174     if (!VisitStack.empty())
175       traverseChild();
176     return *this;
177   }
178 
179   po_iterator operator++(int) { // Postincrement
180     po_iterator tmp = *this;
181     ++*this;
182     return tmp;
183   }
184 };
185 
186 // Provide global constructors that automatically figure out correct types...
187 //
188 template <class T>
189 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
190 template <class T>
191 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
192 
193 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
194   return make_range(po_begin(G), po_end(G));
195 }
196 
197 // Provide global definitions of external postorder iterators...
198 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
199 struct po_ext_iterator : public po_iterator<T, SetType, true> {
200   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
201   po_iterator<T, SetType, true>(V) {}
202 };
203 
204 template<class T, class SetType>
205 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
206   return po_ext_iterator<T, SetType>::begin(G, S);
207 }
208 
209 template<class T, class SetType>
210 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
211   return po_ext_iterator<T, SetType>::end(G, S);
212 }
213 
214 template <class T, class SetType>
215 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
216   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
217 }
218 
219 // Provide global definitions of inverse post order iterators...
220 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
221           bool External = false>
222 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
223   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
224      po_iterator<Inverse<T>, SetType, External> (V) {}
225 };
226 
227 template <class T>
228 ipo_iterator<T> ipo_begin(const T &G) {
229   return ipo_iterator<T>::begin(G);
230 }
231 
232 template <class T>
233 ipo_iterator<T> ipo_end(const T &G){
234   return ipo_iterator<T>::end(G);
235 }
236 
237 template <class T>
238 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
239   return make_range(ipo_begin(G), ipo_end(G));
240 }
241 
242 // Provide global definitions of external inverse postorder iterators...
243 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
244 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
245   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
246     ipo_iterator<T, SetType, true>(V) {}
247   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
248     ipo_iterator<T, SetType, true>(V) {}
249 };
250 
251 template <class T, class SetType>
252 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
253   return ipo_ext_iterator<T, SetType>::begin(G, S);
254 }
255 
256 template <class T, class SetType>
257 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
258   return ipo_ext_iterator<T, SetType>::end(G, S);
259 }
260 
261 template <class T, class SetType>
262 iterator_range<ipo_ext_iterator<T, SetType>>
263 inverse_post_order_ext(const T &G, SetType &S) {
264   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
265 }
266 
267 //===--------------------------------------------------------------------===//
268 // Reverse Post Order CFG iterator code
269 //===--------------------------------------------------------------------===//
270 //
271 // This is used to visit basic blocks in a method in reverse post order.  This
272 // class is awkward to use because I don't know a good incremental algorithm to
273 // computer RPO from a graph.  Because of this, the construction of the
274 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
275 // with a postorder iterator to build the data structures).  The moral of this
276 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
277 //
278 // Because it does the traversal in its constructor, it won't invalidate when
279 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
280 // rely on this behavior (i.e. GVN).
281 //
282 // This class should be used like this:
283 // {
284 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
285 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
286 //      ...
287 //   }
288 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
289 //      ...
290 //   }
291 // }
292 //
293 
294 template<class GraphT, class GT = GraphTraits<GraphT>>
295 class ReversePostOrderTraversal {
296   using NodeRef = typename GT::NodeRef;
297 
298   using VecTy = SmallVector<NodeRef, 8>;
299   VecTy Blocks; // Block list in normal PO order
300 
301   void Initialize(const GraphT &G) {
302     std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
303   }
304 
305 public:
306   using rpo_iterator = typename VecTy::reverse_iterator;
307   using const_rpo_iterator = typename VecTy::const_reverse_iterator;
308 
309   ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
310 
311   // Because we want a reverse post order, use reverse iterators from the vector
312   rpo_iterator begin() { return Blocks.rbegin(); }
313   const_rpo_iterator begin() const { return Blocks.rbegin(); }
314   rpo_iterator end() { return Blocks.rend(); }
315   const_rpo_iterator end() const { return Blocks.rend(); }
316 };
317 
318 } // end namespace llvm
319 
320 #endif // LLVM_ADT_POSTORDERITERATOR_H
321