1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2015, Joyent, Inc.
26 */
27
28 #include "lint.h"
29 #include "thr_uberdata.h"
30 #include <sys/rtpriocntl.h>
31 #include <sys/sdt.h>
32 #include <atomic.h>
33
34 #if defined(THREAD_DEBUG)
35 #define INCR32(x) (((x) != UINT32_MAX)? (x)++ : 0)
36 #define INCR(x) ((x)++)
37 #define DECR(x) ((x)--)
38 #define MAXINCR(m, x) ((m < ++x)? (m = x) : 0)
39 #else
40 #define INCR32(x)
41 #define INCR(x)
42 #define DECR(x)
43 #define MAXINCR(m, x)
44 #endif
45
46 /*
47 * This mutex is initialized to be held by lwp#1.
48 * It is used to block a thread that has returned from a mutex_lock()
49 * of a LOCK_PRIO_INHERIT mutex with an unrecoverable error.
50 */
51 mutex_t stall_mutex = DEFAULTMUTEX;
52
53 static int shared_mutex_held(mutex_t *);
54 static int mutex_queuelock_adaptive(mutex_t *);
55 static void mutex_wakeup_all(mutex_t *);
56
57 /*
58 * Lock statistics support functions.
59 */
60 void
record_begin_hold(tdb_mutex_stats_t * msp)61 record_begin_hold(tdb_mutex_stats_t *msp)
62 {
63 tdb_incr(msp->mutex_lock);
64 msp->mutex_begin_hold = gethrtime();
65 }
66
67 hrtime_t
record_hold_time(tdb_mutex_stats_t * msp)68 record_hold_time(tdb_mutex_stats_t *msp)
69 {
70 hrtime_t now = gethrtime();
71
72 if (msp->mutex_begin_hold)
73 msp->mutex_hold_time += now - msp->mutex_begin_hold;
74 msp->mutex_begin_hold = 0;
75 return (now);
76 }
77
78 /*
79 * Called once at library initialization.
80 */
81 void
mutex_setup(void)82 mutex_setup(void)
83 {
84 if (set_lock_byte(&stall_mutex.mutex_lockw))
85 thr_panic("mutex_setup() cannot acquire stall_mutex");
86 stall_mutex.mutex_owner = (uintptr_t)curthread;
87 }
88
89 /*
90 * The default spin count of 1000 is experimentally determined.
91 * On sun4u machines with any number of processors it could be raised
92 * to 10,000 but that (experimentally) makes almost no difference.
93 * The environment variable:
94 * _THREAD_ADAPTIVE_SPIN=count
95 * can be used to override and set the count in the range [0 .. 1,000,000].
96 */
97 int thread_adaptive_spin = 1000;
98 uint_t thread_max_spinners = 100;
99 int thread_queue_verify = 0;
100 static int ncpus;
101
102 /*
103 * Distinguish spinning for queue locks from spinning for regular locks.
104 * We try harder to acquire queue locks by spinning.
105 * The environment variable:
106 * _THREAD_QUEUE_SPIN=count
107 * can be used to override and set the count in the range [0 .. 1,000,000].
108 */
109 int thread_queue_spin = 10000;
110
111 #define ALL_ATTRIBUTES \
112 (LOCK_RECURSIVE | LOCK_ERRORCHECK | \
113 LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT | \
114 LOCK_ROBUST)
115
116 /*
117 * 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST,
118 * augmented by zero or more the flags:
119 * LOCK_RECURSIVE
120 * LOCK_ERRORCHECK
121 * LOCK_PRIO_INHERIT
122 * LOCK_PRIO_PROTECT
123 * LOCK_ROBUST
124 */
125 #pragma weak _mutex_init = mutex_init
126 /* ARGSUSED2 */
127 int
mutex_init(mutex_t * mp,int type,void * arg)128 mutex_init(mutex_t *mp, int type, void *arg)
129 {
130 int basetype = (type & ~ALL_ATTRIBUTES);
131 const pcclass_t *pccp;
132 int error = 0;
133 int ceil;
134
135 if (basetype == USYNC_PROCESS_ROBUST) {
136 /*
137 * USYNC_PROCESS_ROBUST is a deprecated historical type.
138 * We change it into (USYNC_PROCESS | LOCK_ROBUST) but
139 * retain the USYNC_PROCESS_ROBUST flag so we can return
140 * ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST
141 * mutexes will ever draw ELOCKUNMAPPED).
142 */
143 type |= (USYNC_PROCESS | LOCK_ROBUST);
144 basetype = USYNC_PROCESS;
145 }
146
147 if (type & LOCK_PRIO_PROTECT)
148 pccp = get_info_by_policy(SCHED_FIFO);
149 if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) ||
150 (type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT))
151 == (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) ||
152 ((type & LOCK_PRIO_PROTECT) &&
153 ((ceil = *(int *)arg) < pccp->pcc_primin ||
154 ceil > pccp->pcc_primax))) {
155 error = EINVAL;
156 } else if (type & LOCK_ROBUST) {
157 /*
158 * Callers of mutex_init() with the LOCK_ROBUST attribute
159 * are required to pass an initially all-zero mutex.
160 * Multiple calls to mutex_init() are allowed; all but
161 * the first return EBUSY. A call to mutex_init() is
162 * allowed to make an inconsistent robust lock consistent
163 * (for historical usage, even though the proper interface
164 * for this is mutex_consistent()). Note that we use
165 * atomic_or_16() to set the LOCK_INITED flag so as
166 * not to disturb surrounding bits (LOCK_OWNERDEAD, etc).
167 */
168 if (!(mp->mutex_flag & LOCK_INITED)) {
169 mp->mutex_type = (uint8_t)type;
170 atomic_or_16(&mp->mutex_flag, LOCK_INITED);
171 mp->mutex_magic = MUTEX_MAGIC;
172 } else if (type != mp->mutex_type ||
173 ((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) {
174 error = EINVAL;
175 } else if (mutex_consistent(mp) != 0) {
176 error = EBUSY;
177 }
178 /* register a process robust mutex with the kernel */
179 if (basetype == USYNC_PROCESS)
180 register_lock(mp);
181 } else {
182 (void) memset(mp, 0, sizeof (*mp));
183 mp->mutex_type = (uint8_t)type;
184 mp->mutex_flag = LOCK_INITED;
185 mp->mutex_magic = MUTEX_MAGIC;
186 }
187
188 if (error == 0 && (type & LOCK_PRIO_PROTECT)) {
189 mp->mutex_ceiling = ceil;
190 }
191
192 /*
193 * This should be at the beginning of the function,
194 * but for the sake of old broken applications that
195 * do not have proper alignment for their mutexes
196 * (and don't check the return code from mutex_init),
197 * we put it here, after initializing the mutex regardless.
198 */
199 if (error == 0 &&
200 ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
201 curthread->ul_misaligned == 0)
202 error = EINVAL;
203
204 return (error);
205 }
206
207 /*
208 * Delete mp from list of ceiling mutexes owned by curthread.
209 * Return 1 if the head of the chain was updated.
210 */
211 int
_ceil_mylist_del(mutex_t * mp)212 _ceil_mylist_del(mutex_t *mp)
213 {
214 ulwp_t *self = curthread;
215 mxchain_t **mcpp;
216 mxchain_t *mcp;
217
218 for (mcpp = &self->ul_mxchain;
219 (mcp = *mcpp) != NULL;
220 mcpp = &mcp->mxchain_next) {
221 if (mcp->mxchain_mx == mp) {
222 *mcpp = mcp->mxchain_next;
223 lfree(mcp, sizeof (*mcp));
224 return (mcpp == &self->ul_mxchain);
225 }
226 }
227 return (0);
228 }
229
230 /*
231 * Add mp to the list of ceiling mutexes owned by curthread.
232 * Return ENOMEM if no memory could be allocated.
233 */
234 int
_ceil_mylist_add(mutex_t * mp)235 _ceil_mylist_add(mutex_t *mp)
236 {
237 ulwp_t *self = curthread;
238 mxchain_t *mcp;
239
240 if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
241 return (ENOMEM);
242 mcp->mxchain_mx = mp;
243 mcp->mxchain_next = self->ul_mxchain;
244 self->ul_mxchain = mcp;
245 return (0);
246 }
247
248 /*
249 * Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below.
250 */
251 static void
set_rt_priority(ulwp_t * self,int prio)252 set_rt_priority(ulwp_t *self, int prio)
253 {
254 pcparms_t pcparm;
255
256 pcparm.pc_cid = self->ul_rtclassid;
257 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE;
258 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio;
259 (void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm);
260 }
261
262 /*
263 * Inherit priority from ceiling.
264 * This changes the effective priority, not the assigned priority.
265 */
266 void
_ceil_prio_inherit(int prio)267 _ceil_prio_inherit(int prio)
268 {
269 ulwp_t *self = curthread;
270
271 self->ul_epri = prio;
272 set_rt_priority(self, prio);
273 }
274
275 /*
276 * Waive inherited ceiling priority. Inherit from head of owned ceiling locks
277 * if holding at least one ceiling lock. If no ceiling locks are held at this
278 * point, disinherit completely, reverting back to assigned priority.
279 */
280 void
_ceil_prio_waive(void)281 _ceil_prio_waive(void)
282 {
283 ulwp_t *self = curthread;
284 mxchain_t *mcp = self->ul_mxchain;
285 int prio;
286
287 if (mcp == NULL) {
288 prio = self->ul_pri;
289 self->ul_epri = 0;
290 } else {
291 prio = mcp->mxchain_mx->mutex_ceiling;
292 self->ul_epri = prio;
293 }
294 set_rt_priority(self, prio);
295 }
296
297 /*
298 * Clear the lock byte. Retain the waiters byte and the spinners byte.
299 * Return the old value of the lock word.
300 */
301 static uint32_t
clear_lockbyte(volatile uint32_t * lockword)302 clear_lockbyte(volatile uint32_t *lockword)
303 {
304 uint32_t old;
305 uint32_t new;
306
307 do {
308 old = *lockword;
309 new = old & ~LOCKMASK;
310 } while (atomic_cas_32(lockword, old, new) != old);
311
312 return (old);
313 }
314
315 /*
316 * Same as clear_lockbyte(), but operates on mutex_lockword64.
317 * The mutex_ownerpid field is cleared along with the lock byte.
318 */
319 static uint64_t
clear_lockbyte64(volatile uint64_t * lockword64)320 clear_lockbyte64(volatile uint64_t *lockword64)
321 {
322 uint64_t old;
323 uint64_t new;
324
325 do {
326 old = *lockword64;
327 new = old & ~LOCKMASK64;
328 } while (atomic_cas_64(lockword64, old, new) != old);
329
330 return (old);
331 }
332
333 /*
334 * Similar to set_lock_byte(), which only tries to set the lock byte.
335 * Here, we attempt to set the lock byte AND the mutex_ownerpid, keeping
336 * the remaining bytes constant. This atomic operation is required for the
337 * correctness of process-shared robust locks, otherwise there would be
338 * a window or vulnerability in which the lock byte had been set but the
339 * mutex_ownerpid had not yet been set. If the process were to die in
340 * this window of vulnerability (due to some other thread calling exit()
341 * or the process receiving a fatal signal), the mutex would be left locked
342 * but without a process-ID to determine which process was holding the lock.
343 * The kernel would then be unable to mark the robust mutex as LOCK_OWNERDEAD
344 * when the process died. For all other cases of process-shared locks, this
345 * operation is just a convenience, for the sake of common code.
346 *
347 * This operation requires process-shared robust locks to be properly
348 * aligned on an 8-byte boundary, at least on sparc machines, lest the
349 * operation incur an alignment fault. This is automatic when locks
350 * are declared properly using the mutex_t or pthread_mutex_t data types
351 * and the application does not allocate dynamic memory on less than an
352 * 8-byte boundary. See the 'horrible hack' comments below for cases
353 * dealing with such broken applications.
354 */
355 static int
set_lock_byte64(volatile uint64_t * lockword64,pid_t ownerpid)356 set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid)
357 {
358 uint64_t old;
359 uint64_t new;
360
361 old = *lockword64 & ~LOCKMASK64;
362 new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64;
363 if (atomic_cas_64(lockword64, old, new) == old)
364 return (LOCKCLEAR);
365
366 return (LOCKSET);
367 }
368
369 /*
370 * Increment the spinners count in the mutex lock word.
371 * Return 0 on success. Return -1 if the count would overflow.
372 */
373 static int
spinners_incr(volatile uint32_t * lockword,uint8_t max_spinners)374 spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners)
375 {
376 uint32_t old;
377 uint32_t new;
378
379 do {
380 old = *lockword;
381 if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners)
382 return (-1);
383 new = old + (1 << SPINNERSHIFT);
384 } while (atomic_cas_32(lockword, old, new) != old);
385
386 return (0);
387 }
388
389 /*
390 * Decrement the spinners count in the mutex lock word.
391 * Return the new value of the lock word.
392 */
393 static uint32_t
spinners_decr(volatile uint32_t * lockword)394 spinners_decr(volatile uint32_t *lockword)
395 {
396 uint32_t old;
397 uint32_t new;
398
399 do {
400 new = old = *lockword;
401 if (new & SPINNERMASK)
402 new -= (1 << SPINNERSHIFT);
403 } while (atomic_cas_32(lockword, old, new) != old);
404
405 return (new);
406 }
407
408 /*
409 * Non-preemptive spin locks. Used by queue_lock().
410 * No lock statistics are gathered for these locks.
411 * No DTrace probes are provided for these locks.
412 */
413 void
spin_lock_set(mutex_t * mp)414 spin_lock_set(mutex_t *mp)
415 {
416 ulwp_t *self = curthread;
417
418 no_preempt(self);
419 if (set_lock_byte(&mp->mutex_lockw) == 0) {
420 mp->mutex_owner = (uintptr_t)self;
421 return;
422 }
423 /*
424 * Spin for a while, attempting to acquire the lock.
425 */
426 INCR32(self->ul_spin_lock_spin);
427 if (mutex_queuelock_adaptive(mp) == 0 ||
428 set_lock_byte(&mp->mutex_lockw) == 0) {
429 mp->mutex_owner = (uintptr_t)self;
430 return;
431 }
432 /*
433 * Try harder if we were previously at a no premption level.
434 */
435 if (self->ul_preempt > 1) {
436 INCR32(self->ul_spin_lock_spin2);
437 if (mutex_queuelock_adaptive(mp) == 0 ||
438 set_lock_byte(&mp->mutex_lockw) == 0) {
439 mp->mutex_owner = (uintptr_t)self;
440 return;
441 }
442 }
443 /*
444 * Give up and block in the kernel for the mutex.
445 */
446 INCR32(self->ul_spin_lock_sleep);
447 (void) ___lwp_mutex_timedlock(mp, NULL, self);
448 }
449
450 void
spin_lock_clear(mutex_t * mp)451 spin_lock_clear(mutex_t *mp)
452 {
453 ulwp_t *self = curthread;
454
455 mp->mutex_owner = 0;
456 if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) {
457 (void) ___lwp_mutex_wakeup(mp, 0);
458 INCR32(self->ul_spin_lock_wakeup);
459 }
460 preempt(self);
461 }
462
463 /*
464 * Allocate the sleep queue hash table.
465 */
466 void
queue_alloc(void)467 queue_alloc(void)
468 {
469 ulwp_t *self = curthread;
470 uberdata_t *udp = self->ul_uberdata;
471 queue_head_t *qp;
472 void *data;
473 int i;
474
475 /*
476 * No locks are needed; we call here only when single-threaded.
477 */
478 ASSERT(self == udp->ulwp_one);
479 ASSERT(!udp->uberflags.uf_mt);
480 if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
481 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
482 == MAP_FAILED)
483 thr_panic("cannot allocate thread queue_head table");
484 udp->queue_head = qp = (queue_head_t *)data;
485 for (i = 0; i < 2 * QHASHSIZE; qp++, i++) {
486 qp->qh_type = (i < QHASHSIZE)? MX : CV;
487 qp->qh_lock.mutex_flag = LOCK_INITED;
488 qp->qh_lock.mutex_magic = MUTEX_MAGIC;
489 qp->qh_hlist = &qp->qh_def_root;
490 #if defined(THREAD_DEBUG)
491 qp->qh_hlen = 1;
492 qp->qh_hmax = 1;
493 #endif
494 }
495 }
496
497 #if defined(THREAD_DEBUG)
498
499 /*
500 * Debugging: verify correctness of a sleep queue.
501 */
502 void
QVERIFY(queue_head_t * qp)503 QVERIFY(queue_head_t *qp)
504 {
505 ulwp_t *self = curthread;
506 uberdata_t *udp = self->ul_uberdata;
507 queue_root_t *qrp;
508 ulwp_t *ulwp;
509 ulwp_t *prev;
510 uint_t index;
511 uint32_t cnt;
512 char qtype;
513 void *wchan;
514
515 ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
516 ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
517 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
518 cnt++;
519 ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) ||
520 (qrp->qr_head == NULL && qrp->qr_tail == NULL));
521 }
522 ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt);
523 qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
524 ASSERT(qp->qh_type == qtype);
525 if (!thread_queue_verify)
526 return;
527 /* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
528 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
529 for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL;
530 prev = ulwp, ulwp = ulwp->ul_link) {
531 cnt++;
532 if (ulwp->ul_writer)
533 ASSERT(prev == NULL || prev->ul_writer);
534 ASSERT(ulwp->ul_qtype == qtype);
535 ASSERT(ulwp->ul_wchan != NULL);
536 ASSERT(ulwp->ul_sleepq == qp);
537 wchan = ulwp->ul_wchan;
538 ASSERT(qrp->qr_wchan == wchan);
539 index = QUEUE_HASH(wchan, qtype);
540 ASSERT(&udp->queue_head[index] == qp);
541 }
542 ASSERT(qrp->qr_tail == prev);
543 }
544 ASSERT(qp->qh_qlen == cnt);
545 }
546
547 #else /* THREAD_DEBUG */
548
549 #define QVERIFY(qp)
550
551 #endif /* THREAD_DEBUG */
552
553 /*
554 * Acquire a queue head.
555 */
556 queue_head_t *
queue_lock(void * wchan,int qtype)557 queue_lock(void *wchan, int qtype)
558 {
559 uberdata_t *udp = curthread->ul_uberdata;
560 queue_head_t *qp;
561 queue_root_t *qrp;
562
563 ASSERT(qtype == MX || qtype == CV);
564
565 /*
566 * It is possible that we could be called while still single-threaded.
567 * If so, we call queue_alloc() to allocate the queue_head[] array.
568 */
569 if ((qp = udp->queue_head) == NULL) {
570 queue_alloc();
571 qp = udp->queue_head;
572 }
573 qp += QUEUE_HASH(wchan, qtype);
574 spin_lock_set(&qp->qh_lock);
575 for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next)
576 if (qrp->qr_wchan == wchan)
577 break;
578 if (qrp == NULL && qp->qh_def_root.qr_head == NULL) {
579 /* the default queue root is available; use it */
580 qrp = &qp->qh_def_root;
581 qrp->qr_wchan = wchan;
582 ASSERT(qrp->qr_next == NULL);
583 ASSERT(qrp->qr_tail == NULL &&
584 qrp->qr_rtcount == 0 && qrp->qr_qlen == 0);
585 }
586 qp->qh_wchan = wchan; /* valid until queue_unlock() is called */
587 qp->qh_root = qrp; /* valid until queue_unlock() is called */
588 INCR32(qp->qh_lockcount);
589 QVERIFY(qp);
590 return (qp);
591 }
592
593 /*
594 * Release a queue head.
595 */
596 void
queue_unlock(queue_head_t * qp)597 queue_unlock(queue_head_t *qp)
598 {
599 QVERIFY(qp);
600 spin_lock_clear(&qp->qh_lock);
601 }
602
603 /*
604 * For rwlock queueing, we must queue writers ahead of readers of the
605 * same priority. We do this by making writers appear to have a half
606 * point higher priority for purposes of priority comparisons below.
607 */
608 #define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
609
610 void
enqueue(queue_head_t * qp,ulwp_t * ulwp,int force_fifo)611 enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo)
612 {
613 queue_root_t *qrp;
614 ulwp_t **ulwpp;
615 ulwp_t *next;
616 int pri = CMP_PRIO(ulwp);
617
618 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
619 ASSERT(ulwp->ul_sleepq != qp);
620
621 if ((qrp = qp->qh_root) == NULL) {
622 /* use the thread's queue root for the linkage */
623 qrp = &ulwp->ul_queue_root;
624 qrp->qr_next = qp->qh_hlist;
625 qrp->qr_prev = NULL;
626 qrp->qr_head = NULL;
627 qrp->qr_tail = NULL;
628 qrp->qr_wchan = qp->qh_wchan;
629 qrp->qr_rtcount = 0;
630 qrp->qr_qlen = 0;
631 qrp->qr_qmax = 0;
632 qp->qh_hlist->qr_prev = qrp;
633 qp->qh_hlist = qrp;
634 qp->qh_root = qrp;
635 MAXINCR(qp->qh_hmax, qp->qh_hlen);
636 }
637
638 /*
639 * LIFO queue ordering is unfair and can lead to starvation,
640 * but it gives better performance for heavily contended locks.
641 * We use thread_queue_fifo (range is 0..8) to determine
642 * the frequency of FIFO vs LIFO queuing:
643 * 0 : every 256th time (almost always LIFO)
644 * 1 : every 128th time
645 * 2 : every 64th time
646 * 3 : every 32nd time
647 * 4 : every 16th time (the default value, mostly LIFO)
648 * 5 : every 8th time
649 * 6 : every 4th time
650 * 7 : every 2nd time
651 * 8 : every time (never LIFO, always FIFO)
652 * Note that there is always some degree of FIFO ordering.
653 * This breaks live lock conditions that occur in applications
654 * that are written assuming (incorrectly) that threads acquire
655 * locks fairly, that is, in roughly round-robin order.
656 * In any event, the queue is maintained in kernel priority order.
657 *
658 * If force_fifo is non-zero, fifo queueing is forced.
659 * SUSV3 requires this for semaphores.
660 */
661 if (qrp->qr_head == NULL) {
662 /*
663 * The queue is empty. LIFO/FIFO doesn't matter.
664 */
665 ASSERT(qrp->qr_tail == NULL);
666 ulwpp = &qrp->qr_head;
667 } else if (force_fifo |
668 (((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) {
669 /*
670 * Enqueue after the last thread whose priority is greater
671 * than or equal to the priority of the thread being queued.
672 * Attempt first to go directly onto the tail of the queue.
673 */
674 if (pri <= CMP_PRIO(qrp->qr_tail))
675 ulwpp = &qrp->qr_tail->ul_link;
676 else {
677 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
678 ulwpp = &next->ul_link)
679 if (pri > CMP_PRIO(next))
680 break;
681 }
682 } else {
683 /*
684 * Enqueue before the first thread whose priority is less
685 * than or equal to the priority of the thread being queued.
686 * Hopefully we can go directly onto the head of the queue.
687 */
688 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
689 ulwpp = &next->ul_link)
690 if (pri >= CMP_PRIO(next))
691 break;
692 }
693 if ((ulwp->ul_link = *ulwpp) == NULL)
694 qrp->qr_tail = ulwp;
695 *ulwpp = ulwp;
696
697 ulwp->ul_sleepq = qp;
698 ulwp->ul_wchan = qp->qh_wchan;
699 ulwp->ul_qtype = qp->qh_type;
700 if ((ulwp->ul_schedctl != NULL &&
701 ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) |
702 ulwp->ul_pilocks) {
703 ulwp->ul_rtqueued = 1;
704 qrp->qr_rtcount++;
705 }
706 MAXINCR(qrp->qr_qmax, qrp->qr_qlen);
707 MAXINCR(qp->qh_qmax, qp->qh_qlen);
708 }
709
710 /*
711 * Helper function for queue_slot() and queue_slot_rt().
712 * Try to find a non-suspended thread on the queue.
713 */
714 static ulwp_t **
queue_slot_runnable(ulwp_t ** ulwpp,ulwp_t ** prevp,int rt)715 queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt)
716 {
717 ulwp_t *ulwp;
718 ulwp_t **foundpp = NULL;
719 int priority = -1;
720 ulwp_t *prev;
721 int tpri;
722
723 for (prev = NULL;
724 (ulwp = *ulwpp) != NULL;
725 prev = ulwp, ulwpp = &ulwp->ul_link) {
726 if (ulwp->ul_stop) /* skip suspended threads */
727 continue;
728 tpri = rt? CMP_PRIO(ulwp) : 0;
729 if (tpri > priority) {
730 foundpp = ulwpp;
731 *prevp = prev;
732 priority = tpri;
733 if (!rt)
734 break;
735 }
736 }
737 return (foundpp);
738 }
739
740 /*
741 * For real-time, we search the entire queue because the dispatch
742 * (kernel) priorities may have changed since enqueueing.
743 */
744 static ulwp_t **
queue_slot_rt(ulwp_t ** ulwpp_org,ulwp_t ** prevp)745 queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp)
746 {
747 ulwp_t **ulwpp = ulwpp_org;
748 ulwp_t *ulwp = *ulwpp;
749 ulwp_t **foundpp = ulwpp;
750 int priority = CMP_PRIO(ulwp);
751 ulwp_t *prev;
752 int tpri;
753
754 for (prev = ulwp, ulwpp = &ulwp->ul_link;
755 (ulwp = *ulwpp) != NULL;
756 prev = ulwp, ulwpp = &ulwp->ul_link) {
757 tpri = CMP_PRIO(ulwp);
758 if (tpri > priority) {
759 foundpp = ulwpp;
760 *prevp = prev;
761 priority = tpri;
762 }
763 }
764 ulwp = *foundpp;
765
766 /*
767 * Try not to return a suspended thread.
768 * This mimics the old libthread's behavior.
769 */
770 if (ulwp->ul_stop &&
771 (ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) {
772 foundpp = ulwpp;
773 ulwp = *foundpp;
774 }
775 ulwp->ul_rt = 1;
776 return (foundpp);
777 }
778
779 ulwp_t **
queue_slot(queue_head_t * qp,ulwp_t ** prevp,int * more)780 queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more)
781 {
782 queue_root_t *qrp;
783 ulwp_t **ulwpp;
784 ulwp_t *ulwp;
785 int rt;
786
787 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
788
789 if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) {
790 *more = 0;
791 return (NULL); /* no lwps on the queue */
792 }
793 rt = (qrp->qr_rtcount != 0);
794 *prevp = NULL;
795 if (ulwp->ul_link == NULL) { /* only one lwp on the queue */
796 *more = 0;
797 ulwp->ul_rt = rt;
798 return (&qrp->qr_head);
799 }
800 *more = 1;
801
802 if (rt) /* real-time queue */
803 return (queue_slot_rt(&qrp->qr_head, prevp));
804 /*
805 * Try not to return a suspended thread.
806 * This mimics the old libthread's behavior.
807 */
808 if (ulwp->ul_stop &&
809 (ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) {
810 ulwp = *ulwpp;
811 ulwp->ul_rt = 0;
812 return (ulwpp);
813 }
814 /*
815 * The common case; just pick the first thread on the queue.
816 */
817 ulwp->ul_rt = 0;
818 return (&qrp->qr_head);
819 }
820
821 /*
822 * Common code for unlinking an lwp from a user-level sleep queue.
823 */
824 void
queue_unlink(queue_head_t * qp,ulwp_t ** ulwpp,ulwp_t * prev)825 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev)
826 {
827 queue_root_t *qrp = qp->qh_root;
828 queue_root_t *nqrp;
829 ulwp_t *ulwp = *ulwpp;
830 ulwp_t *next;
831
832 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
833 ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan);
834
835 DECR(qp->qh_qlen);
836 DECR(qrp->qr_qlen);
837 if (ulwp->ul_rtqueued) {
838 ulwp->ul_rtqueued = 0;
839 qrp->qr_rtcount--;
840 }
841 next = ulwp->ul_link;
842 *ulwpp = next;
843 ulwp->ul_link = NULL;
844 if (qrp->qr_tail == ulwp)
845 qrp->qr_tail = prev;
846 if (qrp == &ulwp->ul_queue_root) {
847 /*
848 * We can't continue to use the unlinked thread's
849 * queue root for the linkage.
850 */
851 queue_root_t *qr_next = qrp->qr_next;
852 queue_root_t *qr_prev = qrp->qr_prev;
853
854 if (qrp->qr_tail) {
855 /* switch to using the last thread's queue root */
856 ASSERT(qrp->qr_qlen != 0);
857 nqrp = &qrp->qr_tail->ul_queue_root;
858 *nqrp = *qrp;
859 if (qr_next)
860 qr_next->qr_prev = nqrp;
861 if (qr_prev)
862 qr_prev->qr_next = nqrp;
863 else
864 qp->qh_hlist = nqrp;
865 qp->qh_root = nqrp;
866 } else {
867 /* empty queue root; just delete from the hash list */
868 ASSERT(qrp->qr_qlen == 0);
869 if (qr_next)
870 qr_next->qr_prev = qr_prev;
871 if (qr_prev)
872 qr_prev->qr_next = qr_next;
873 else
874 qp->qh_hlist = qr_next;
875 qp->qh_root = NULL;
876 DECR(qp->qh_hlen);
877 }
878 }
879 }
880
881 ulwp_t *
dequeue(queue_head_t * qp,int * more)882 dequeue(queue_head_t *qp, int *more)
883 {
884 ulwp_t **ulwpp;
885 ulwp_t *ulwp;
886 ulwp_t *prev;
887
888 if ((ulwpp = queue_slot(qp, &prev, more)) == NULL)
889 return (NULL);
890 ulwp = *ulwpp;
891 queue_unlink(qp, ulwpp, prev);
892 ulwp->ul_sleepq = NULL;
893 ulwp->ul_wchan = NULL;
894 return (ulwp);
895 }
896
897 /*
898 * Return a pointer to the highest priority thread sleeping on wchan.
899 */
900 ulwp_t *
queue_waiter(queue_head_t * qp)901 queue_waiter(queue_head_t *qp)
902 {
903 ulwp_t **ulwpp;
904 ulwp_t *prev;
905 int more;
906
907 if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL)
908 return (NULL);
909 return (*ulwpp);
910 }
911
912 int
dequeue_self(queue_head_t * qp)913 dequeue_self(queue_head_t *qp)
914 {
915 ulwp_t *self = curthread;
916 queue_root_t *qrp;
917 ulwp_t **ulwpp;
918 ulwp_t *ulwp;
919 ulwp_t *prev;
920 int found = 0;
921
922 ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
923
924 /* find self on the sleep queue */
925 if ((qrp = qp->qh_root) != NULL) {
926 for (prev = NULL, ulwpp = &qrp->qr_head;
927 (ulwp = *ulwpp) != NULL;
928 prev = ulwp, ulwpp = &ulwp->ul_link) {
929 if (ulwp == self) {
930 queue_unlink(qp, ulwpp, prev);
931 self->ul_cvmutex = NULL;
932 self->ul_sleepq = NULL;
933 self->ul_wchan = NULL;
934 found = 1;
935 break;
936 }
937 }
938 }
939
940 if (!found)
941 thr_panic("dequeue_self(): curthread not found on queue");
942
943 return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL);
944 }
945
946 /*
947 * Called from call_user_handler() and _thrp_suspend() to take
948 * ourself off of our sleep queue so we can grab locks.
949 */
950 void
unsleep_self(void)951 unsleep_self(void)
952 {
953 ulwp_t *self = curthread;
954 queue_head_t *qp;
955
956 /*
957 * Calling enter_critical()/exit_critical() here would lead
958 * to recursion. Just manipulate self->ul_critical directly.
959 */
960 self->ul_critical++;
961 while (self->ul_sleepq != NULL) {
962 qp = queue_lock(self->ul_wchan, self->ul_qtype);
963 /*
964 * We may have been moved from a CV queue to a
965 * mutex queue while we were attempting queue_lock().
966 * If so, just loop around and try again.
967 * dequeue_self() clears self->ul_sleepq.
968 */
969 if (qp == self->ul_sleepq)
970 (void) dequeue_self(qp);
971 queue_unlock(qp);
972 }
973 self->ul_writer = 0;
974 self->ul_critical--;
975 }
976
977 /*
978 * Common code for calling the the ___lwp_mutex_timedlock() system call.
979 * Returns with mutex_owner and mutex_ownerpid set correctly.
980 */
981 static int
mutex_lock_kernel(mutex_t * mp,timespec_t * tsp,tdb_mutex_stats_t * msp)982 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
983 {
984 ulwp_t *self = curthread;
985 uberdata_t *udp = self->ul_uberdata;
986 int mtype = mp->mutex_type;
987 hrtime_t begin_sleep;
988 int acquired;
989 int error;
990
991 self->ul_sp = stkptr();
992 self->ul_wchan = mp;
993 if (__td_event_report(self, TD_SLEEP, udp)) {
994 self->ul_td_evbuf.eventnum = TD_SLEEP;
995 self->ul_td_evbuf.eventdata = mp;
996 tdb_event(TD_SLEEP, udp);
997 }
998 if (msp) {
999 tdb_incr(msp->mutex_sleep);
1000 begin_sleep = gethrtime();
1001 }
1002
1003 DTRACE_PROBE1(plockstat, mutex__block, mp);
1004
1005 for (;;) {
1006 /*
1007 * A return value of EOWNERDEAD or ELOCKUNMAPPED
1008 * means we successfully acquired the lock.
1009 */
1010 if ((error = ___lwp_mutex_timedlock(mp, tsp, self)) != 0 &&
1011 error != EOWNERDEAD && error != ELOCKUNMAPPED) {
1012 acquired = 0;
1013 break;
1014 }
1015
1016 if (mtype & USYNC_PROCESS) {
1017 /*
1018 * Defend against forkall(). We may be the child,
1019 * in which case we don't actually own the mutex.
1020 */
1021 enter_critical(self);
1022 if (mp->mutex_ownerpid == udp->pid) {
1023 exit_critical(self);
1024 acquired = 1;
1025 break;
1026 }
1027 exit_critical(self);
1028 } else {
1029 acquired = 1;
1030 break;
1031 }
1032 }
1033
1034 if (msp)
1035 msp->mutex_sleep_time += gethrtime() - begin_sleep;
1036 self->ul_wchan = NULL;
1037 self->ul_sp = 0;
1038
1039 if (acquired) {
1040 ASSERT(mp->mutex_owner == (uintptr_t)self);
1041 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1042 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1043 } else {
1044 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1045 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1046 }
1047
1048 return (error);
1049 }
1050
1051 /*
1052 * Common code for calling the ___lwp_mutex_trylock() system call.
1053 * Returns with mutex_owner and mutex_ownerpid set correctly.
1054 */
1055 int
mutex_trylock_kernel(mutex_t * mp)1056 mutex_trylock_kernel(mutex_t *mp)
1057 {
1058 ulwp_t *self = curthread;
1059 uberdata_t *udp = self->ul_uberdata;
1060 int mtype = mp->mutex_type;
1061 int error;
1062 int acquired;
1063
1064 for (;;) {
1065 /*
1066 * A return value of EOWNERDEAD or ELOCKUNMAPPED
1067 * means we successfully acquired the lock.
1068 */
1069 if ((error = ___lwp_mutex_trylock(mp, self)) != 0 &&
1070 error != EOWNERDEAD && error != ELOCKUNMAPPED) {
1071 acquired = 0;
1072 break;
1073 }
1074
1075 if (mtype & USYNC_PROCESS) {
1076 /*
1077 * Defend against forkall(). We may be the child,
1078 * in which case we don't actually own the mutex.
1079 */
1080 enter_critical(self);
1081 if (mp->mutex_ownerpid == udp->pid) {
1082 exit_critical(self);
1083 acquired = 1;
1084 break;
1085 }
1086 exit_critical(self);
1087 } else {
1088 acquired = 1;
1089 break;
1090 }
1091 }
1092
1093 if (acquired) {
1094 ASSERT(mp->mutex_owner == (uintptr_t)self);
1095 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1096 } else if (error != EBUSY) {
1097 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1098 }
1099
1100 return (error);
1101 }
1102
1103 volatile sc_shared_t *
setup_schedctl(void)1104 setup_schedctl(void)
1105 {
1106 ulwp_t *self = curthread;
1107 volatile sc_shared_t *scp;
1108 sc_shared_t *tmp;
1109
1110 if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
1111 !self->ul_vfork && /* not a child of vfork() */
1112 !self->ul_schedctl_called) { /* haven't been called before */
1113 enter_critical(self);
1114 self->ul_schedctl_called = &self->ul_uberdata->uberflags;
1115 if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
1116 self->ul_schedctl = scp = tmp;
1117 exit_critical(self);
1118 }
1119 /*
1120 * Unless the call to setup_schedctl() is surrounded
1121 * by enter_critical()/exit_critical(), the address
1122 * we are returning could be invalid due to a forkall()
1123 * having occurred in another thread.
1124 */
1125 return (scp);
1126 }
1127
1128 /*
1129 * Interfaces from libsched, incorporated into libc.
1130 * libsched.so.1 is now a filter library onto libc.
1131 */
1132 #pragma weak schedctl_lookup = schedctl_init
1133 schedctl_t *
schedctl_init(void)1134 schedctl_init(void)
1135 {
1136 volatile sc_shared_t *scp = setup_schedctl();
1137 return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
1138 }
1139
1140 void
schedctl_exit(void)1141 schedctl_exit(void)
1142 {
1143 }
1144
1145 /*
1146 * Contract private interface for java.
1147 * Set up the schedctl data if it doesn't exist yet.
1148 * Return a pointer to the pointer to the schedctl data.
1149 */
1150 volatile sc_shared_t *volatile *
_thr_schedctl(void)1151 _thr_schedctl(void)
1152 {
1153 ulwp_t *self = curthread;
1154 volatile sc_shared_t *volatile *ptr;
1155
1156 if (self->ul_vfork)
1157 return (NULL);
1158 if (*(ptr = &self->ul_schedctl) == NULL)
1159 (void) setup_schedctl();
1160 return (ptr);
1161 }
1162
1163 /*
1164 * Block signals and attempt to block preemption.
1165 * no_preempt()/preempt() must be used in pairs but can be nested.
1166 */
1167 void
no_preempt(ulwp_t * self)1168 no_preempt(ulwp_t *self)
1169 {
1170 volatile sc_shared_t *scp;
1171
1172 if (self->ul_preempt++ == 0) {
1173 enter_critical(self);
1174 if ((scp = self->ul_schedctl) != NULL ||
1175 (scp = setup_schedctl()) != NULL) {
1176 /*
1177 * Save the pre-existing preempt value.
1178 */
1179 self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
1180 scp->sc_preemptctl.sc_nopreempt = 1;
1181 }
1182 }
1183 }
1184
1185 /*
1186 * Undo the effects of no_preempt().
1187 */
1188 void
preempt(ulwp_t * self)1189 preempt(ulwp_t *self)
1190 {
1191 volatile sc_shared_t *scp;
1192
1193 ASSERT(self->ul_preempt > 0);
1194 if (--self->ul_preempt == 0) {
1195 if ((scp = self->ul_schedctl) != NULL) {
1196 /*
1197 * Restore the pre-existing preempt value.
1198 */
1199 scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
1200 if (scp->sc_preemptctl.sc_yield &&
1201 scp->sc_preemptctl.sc_nopreempt == 0) {
1202 yield();
1203 if (scp->sc_preemptctl.sc_yield) {
1204 /*
1205 * Shouldn't happen. This is either
1206 * a race condition or the thread
1207 * just entered the real-time class.
1208 */
1209 yield();
1210 scp->sc_preemptctl.sc_yield = 0;
1211 }
1212 }
1213 }
1214 exit_critical(self);
1215 }
1216 }
1217
1218 /*
1219 * If a call to preempt() would cause the current thread to yield or to
1220 * take deferred actions in exit_critical(), then unpark the specified
1221 * lwp so it can run while we delay. Return the original lwpid if the
1222 * unpark was not performed, else return zero. The tests are a repeat
1223 * of some of the tests in preempt(), above. This is a statistical
1224 * optimization solely for cond_sleep_queue(), below.
1225 */
1226 static lwpid_t
preempt_unpark(ulwp_t * self,lwpid_t lwpid)1227 preempt_unpark(ulwp_t *self, lwpid_t lwpid)
1228 {
1229 volatile sc_shared_t *scp = self->ul_schedctl;
1230
1231 ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
1232 if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
1233 (self->ul_curplease && self->ul_critical == 1)) {
1234 (void) __lwp_unpark(lwpid);
1235 lwpid = 0;
1236 }
1237 return (lwpid);
1238 }
1239
1240 /*
1241 * Spin for a while (if 'tryhard' is true), trying to grab the lock.
1242 * If this fails, return EBUSY and let the caller deal with it.
1243 * If this succeeds, return 0 with mutex_owner set to curthread.
1244 */
1245 static int
mutex_trylock_adaptive(mutex_t * mp,int tryhard)1246 mutex_trylock_adaptive(mutex_t *mp, int tryhard)
1247 {
1248 ulwp_t *self = curthread;
1249 int error = EBUSY;
1250 ulwp_t *ulwp;
1251 volatile sc_shared_t *scp;
1252 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
1253 volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner;
1254 uint32_t new_lockword;
1255 int count = 0;
1256 int max_count;
1257 uint8_t max_spinners;
1258
1259 ASSERT(!(mp->mutex_type & USYNC_PROCESS));
1260
1261 if (MUTEX_OWNED(mp, self))
1262 return (EBUSY);
1263
1264 enter_critical(self);
1265
1266 /* short-cut, not definitive (see below) */
1267 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
1268 ASSERT(mp->mutex_type & LOCK_ROBUST);
1269 error = ENOTRECOVERABLE;
1270 goto done;
1271 }
1272
1273 /*
1274 * Make one attempt to acquire the lock before
1275 * incurring the overhead of the spin loop.
1276 */
1277 if (set_lock_byte(lockp) == 0) {
1278 *ownerp = (uintptr_t)self;
1279 error = 0;
1280 goto done;
1281 }
1282 if (!tryhard)
1283 goto done;
1284 if (ncpus == 0)
1285 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1286 if ((max_spinners = self->ul_max_spinners) >= ncpus)
1287 max_spinners = ncpus - 1;
1288 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
1289 if (max_count == 0)
1290 goto done;
1291
1292 /*
1293 * This spin loop is unfair to lwps that have already dropped into
1294 * the kernel to sleep. They will starve on a highly-contended mutex.
1295 * This is just too bad. The adaptive spin algorithm is intended
1296 * to allow programs with highly-contended locks (that is, broken
1297 * programs) to execute with reasonable speed despite their contention.
1298 * Being fair would reduce the speed of such programs and well-written
1299 * programs will not suffer in any case.
1300 */
1301 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1)
1302 goto done;
1303 DTRACE_PROBE1(plockstat, mutex__spin, mp);
1304 for (count = 1; ; count++) {
1305 if (*lockp == 0 && set_lock_byte(lockp) == 0) {
1306 *ownerp = (uintptr_t)self;
1307 error = 0;
1308 break;
1309 }
1310 if (count == max_count)
1311 break;
1312 SMT_PAUSE();
1313 /*
1314 * Stop spinning if the mutex owner is not running on
1315 * a processor; it will not drop the lock any time soon
1316 * and we would just be wasting time to keep spinning.
1317 *
1318 * Note that we are looking at another thread (ulwp_t)
1319 * without ensuring that the other thread does not exit.
1320 * The scheme relies on ulwp_t structures never being
1321 * deallocated by the library (the library employs a free
1322 * list of ulwp_t structs that are reused when new threads
1323 * are created) and on schedctl shared memory never being
1324 * deallocated once created via __schedctl().
1325 *
1326 * Thus, the worst that can happen when the spinning thread
1327 * looks at the owner's schedctl data is that it is looking
1328 * at some other thread's schedctl data. This almost never
1329 * happens and is benign when it does.
1330 */
1331 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1332 ((scp = ulwp->ul_schedctl) == NULL ||
1333 scp->sc_state != SC_ONPROC))
1334 break;
1335 }
1336 new_lockword = spinners_decr(&mp->mutex_lockword);
1337 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
1338 /*
1339 * We haven't yet acquired the lock, the lock
1340 * is free, and there are no other spinners.
1341 * Make one final attempt to acquire the lock.
1342 *
1343 * This isn't strictly necessary since mutex_lock_queue()
1344 * (the next action this thread will take if it doesn't
1345 * acquire the lock here) makes one attempt to acquire
1346 * the lock before putting the thread to sleep.
1347 *
1348 * If the next action for this thread (on failure here)
1349 * were not to call mutex_lock_queue(), this would be
1350 * necessary for correctness, to avoid ending up with an
1351 * unheld mutex with waiters but no one to wake them up.
1352 */
1353 if (set_lock_byte(lockp) == 0) {
1354 *ownerp = (uintptr_t)self;
1355 error = 0;
1356 }
1357 count++;
1358 }
1359
1360 done:
1361 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1362 ASSERT(mp->mutex_type & LOCK_ROBUST);
1363 /*
1364 * We shouldn't own the mutex.
1365 * Just clear the lock; everyone has already been waked up.
1366 */
1367 *ownerp = 0;
1368 (void) clear_lockbyte(&mp->mutex_lockword);
1369 error = ENOTRECOVERABLE;
1370 }
1371
1372 exit_critical(self);
1373
1374 if (error) {
1375 if (count) {
1376 DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count);
1377 }
1378 if (error != EBUSY) {
1379 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1380 }
1381 } else {
1382 if (count) {
1383 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
1384 }
1385 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
1386 if (mp->mutex_flag & LOCK_OWNERDEAD) {
1387 ASSERT(mp->mutex_type & LOCK_ROBUST);
1388 error = EOWNERDEAD;
1389 }
1390 }
1391
1392 return (error);
1393 }
1394
1395 /*
1396 * Same as mutex_trylock_adaptive(), except specifically for queue locks.
1397 * The owner field is not set here; the caller (spin_lock_set()) sets it.
1398 */
1399 static int
mutex_queuelock_adaptive(mutex_t * mp)1400 mutex_queuelock_adaptive(mutex_t *mp)
1401 {
1402 ulwp_t *ulwp;
1403 volatile sc_shared_t *scp;
1404 volatile uint8_t *lockp;
1405 volatile uint64_t *ownerp;
1406 int count = curthread->ul_queue_spin;
1407
1408 ASSERT(mp->mutex_type == USYNC_THREAD);
1409
1410 if (count == 0)
1411 return (EBUSY);
1412
1413 lockp = (volatile uint8_t *)&mp->mutex_lockw;
1414 ownerp = (volatile uint64_t *)&mp->mutex_owner;
1415 while (--count >= 0) {
1416 if (*lockp == 0 && set_lock_byte(lockp) == 0)
1417 return (0);
1418 SMT_PAUSE();
1419 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1420 ((scp = ulwp->ul_schedctl) == NULL ||
1421 scp->sc_state != SC_ONPROC))
1422 break;
1423 }
1424
1425 return (EBUSY);
1426 }
1427
1428 /*
1429 * Like mutex_trylock_adaptive(), but for process-shared mutexes.
1430 * Spin for a while (if 'tryhard' is true), trying to grab the lock.
1431 * If this fails, return EBUSY and let the caller deal with it.
1432 * If this succeeds, return 0 with mutex_owner set to curthread
1433 * and mutex_ownerpid set to the current pid.
1434 */
1435 static int
mutex_trylock_process(mutex_t * mp,int tryhard)1436 mutex_trylock_process(mutex_t *mp, int tryhard)
1437 {
1438 ulwp_t *self = curthread;
1439 uberdata_t *udp = self->ul_uberdata;
1440 int error = EBUSY;
1441 volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64;
1442 uint32_t new_lockword;
1443 int count = 0;
1444 int max_count;
1445 uint8_t max_spinners;
1446
1447 #if defined(__sparc) && !defined(_LP64)
1448 /* horrible hack, necessary only on 32-bit sparc */
1449 int fix_alignment_problem =
1450 (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
1451 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST));
1452 #endif
1453
1454 ASSERT(mp->mutex_type & USYNC_PROCESS);
1455
1456 if (shared_mutex_held(mp))
1457 return (EBUSY);
1458
1459 enter_critical(self);
1460
1461 /* short-cut, not definitive (see below) */
1462 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
1463 ASSERT(mp->mutex_type & LOCK_ROBUST);
1464 error = ENOTRECOVERABLE;
1465 goto done;
1466 }
1467
1468 /*
1469 * Make one attempt to acquire the lock before
1470 * incurring the overhead of the spin loop.
1471 */
1472 #if defined(__sparc) && !defined(_LP64)
1473 /* horrible hack, necessary only on 32-bit sparc */
1474 if (fix_alignment_problem) {
1475 if (set_lock_byte(&mp->mutex_lockw) == 0) {
1476 mp->mutex_ownerpid = udp->pid;
1477 mp->mutex_owner = (uintptr_t)self;
1478 error = 0;
1479 goto done;
1480 }
1481 } else
1482 #endif
1483 if (set_lock_byte64(lockp, udp->pid) == 0) {
1484 mp->mutex_owner = (uintptr_t)self;
1485 /* mp->mutex_ownerpid was set by set_lock_byte64() */
1486 error = 0;
1487 goto done;
1488 }
1489 if (!tryhard)
1490 goto done;
1491 if (ncpus == 0)
1492 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1493 if ((max_spinners = self->ul_max_spinners) >= ncpus)
1494 max_spinners = ncpus - 1;
1495 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
1496 if (max_count == 0)
1497 goto done;
1498
1499 /*
1500 * This is a process-shared mutex.
1501 * We cannot know if the owner is running on a processor.
1502 * We just spin and hope that it is on a processor.
1503 */
1504 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1)
1505 goto done;
1506 DTRACE_PROBE1(plockstat, mutex__spin, mp);
1507 for (count = 1; ; count++) {
1508 #if defined(__sparc) && !defined(_LP64)
1509 /* horrible hack, necessary only on 32-bit sparc */
1510 if (fix_alignment_problem) {
1511 if ((*lockp & LOCKMASK64) == 0 &&
1512 set_lock_byte(&mp->mutex_lockw) == 0) {
1513 mp->mutex_ownerpid = udp->pid;
1514 mp->mutex_owner = (uintptr_t)self;
1515 error = 0;
1516 break;
1517 }
1518 } else
1519 #endif
1520 if ((*lockp & LOCKMASK64) == 0 &&
1521 set_lock_byte64(lockp, udp->pid) == 0) {
1522 mp->mutex_owner = (uintptr_t)self;
1523 /* mp->mutex_ownerpid was set by set_lock_byte64() */
1524 error = 0;
1525 break;
1526 }
1527 if (count == max_count)
1528 break;
1529 SMT_PAUSE();
1530 }
1531 new_lockword = spinners_decr(&mp->mutex_lockword);
1532 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
1533 /*
1534 * We haven't yet acquired the lock, the lock
1535 * is free, and there are no other spinners.
1536 * Make one final attempt to acquire the lock.
1537 *
1538 * This isn't strictly necessary since mutex_lock_kernel()
1539 * (the next action this thread will take if it doesn't
1540 * acquire the lock here) makes one attempt to acquire
1541 * the lock before putting the thread to sleep.
1542 *
1543 * If the next action for this thread (on failure here)
1544 * were not to call mutex_lock_kernel(), this would be
1545 * necessary for correctness, to avoid ending up with an
1546 * unheld mutex with waiters but no one to wake them up.
1547 */
1548 #if defined(__sparc) && !defined(_LP64)
1549 /* horrible hack, necessary only on 32-bit sparc */
1550 if (fix_alignment_problem) {
1551 if (set_lock_byte(&mp->mutex_lockw) == 0) {
1552 mp->mutex_ownerpid = udp->pid;
1553 mp->mutex_owner = (uintptr_t)self;
1554 error = 0;
1555 }
1556 } else
1557 #endif
1558 if (set_lock_byte64(lockp, udp->pid) == 0) {
1559 mp->mutex_owner = (uintptr_t)self;
1560 /* mp->mutex_ownerpid was set by set_lock_byte64() */
1561 error = 0;
1562 }
1563 count++;
1564 }
1565
1566 done:
1567 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1568 ASSERT(mp->mutex_type & LOCK_ROBUST);
1569 /*
1570 * We shouldn't own the mutex.
1571 * Just clear the lock; everyone has already been waked up.
1572 */
1573 mp->mutex_owner = 0;
1574 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
1575 (void) clear_lockbyte64(&mp->mutex_lockword64);
1576 error = ENOTRECOVERABLE;
1577 }
1578
1579 exit_critical(self);
1580
1581 if (error) {
1582 if (count) {
1583 DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count);
1584 }
1585 if (error != EBUSY) {
1586 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1587 }
1588 } else {
1589 if (count) {
1590 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
1591 }
1592 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
1593 if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1594 ASSERT(mp->mutex_type & LOCK_ROBUST);
1595 if (mp->mutex_flag & LOCK_OWNERDEAD)
1596 error = EOWNERDEAD;
1597 else if (mp->mutex_type & USYNC_PROCESS_ROBUST)
1598 error = ELOCKUNMAPPED;
1599 else
1600 error = EOWNERDEAD;
1601 }
1602 }
1603
1604 return (error);
1605 }
1606
1607 /*
1608 * Mutex wakeup code for releasing a USYNC_THREAD mutex.
1609 * Returns the lwpid of the thread that was dequeued, if any.
1610 * The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
1611 * to wake up the specified lwp.
1612 */
1613 static lwpid_t
mutex_wakeup(mutex_t * mp)1614 mutex_wakeup(mutex_t *mp)
1615 {
1616 lwpid_t lwpid = 0;
1617 int more;
1618 queue_head_t *qp;
1619 ulwp_t *ulwp;
1620
1621 /*
1622 * Dequeue a waiter from the sleep queue. Don't touch the mutex
1623 * waiters bit if no one was found on the queue because the mutex
1624 * might have been deallocated or reallocated for another purpose.
1625 */
1626 qp = queue_lock(mp, MX);
1627 if ((ulwp = dequeue(qp, &more)) != NULL) {
1628 lwpid = ulwp->ul_lwpid;
1629 mp->mutex_waiters = more;
1630 }
1631 queue_unlock(qp);
1632 return (lwpid);
1633 }
1634
1635 /*
1636 * Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex.
1637 */
1638 static void
mutex_wakeup_all(mutex_t * mp)1639 mutex_wakeup_all(mutex_t *mp)
1640 {
1641 queue_head_t *qp;
1642 queue_root_t *qrp;
1643 int nlwpid = 0;
1644 int maxlwps = MAXLWPS;
1645 ulwp_t *ulwp;
1646 lwpid_t buffer[MAXLWPS];
1647 lwpid_t *lwpid = buffer;
1648
1649 /*
1650 * Walk the list of waiters and prepare to wake up all of them.
1651 * The waiters flag has already been cleared from the mutex.
1652 *
1653 * We keep track of lwpids that are to be unparked in lwpid[].
1654 * __lwp_unpark_all() is called to unpark all of them after
1655 * they have been removed from the sleep queue and the sleep
1656 * queue lock has been dropped. If we run out of space in our
1657 * on-stack buffer, we need to allocate more but we can't call
1658 * lmalloc() because we are holding a queue lock when the overflow
1659 * occurs and lmalloc() acquires a lock. We can't use alloca()
1660 * either because the application may have allocated a small
1661 * stack and we don't want to overrun the stack. So we call
1662 * alloc_lwpids() to allocate a bigger buffer using the mmap()
1663 * system call directly since that path acquires no locks.
1664 */
1665 qp = queue_lock(mp, MX);
1666 for (;;) {
1667 if ((qrp = qp->qh_root) == NULL ||
1668 (ulwp = qrp->qr_head) == NULL)
1669 break;
1670 ASSERT(ulwp->ul_wchan == mp);
1671 queue_unlink(qp, &qrp->qr_head, NULL);
1672 ulwp->ul_sleepq = NULL;
1673 ulwp->ul_wchan = NULL;
1674 if (nlwpid == maxlwps)
1675 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
1676 lwpid[nlwpid++] = ulwp->ul_lwpid;
1677 }
1678
1679 if (nlwpid == 0) {
1680 queue_unlock(qp);
1681 } else {
1682 mp->mutex_waiters = 0;
1683 no_preempt(curthread);
1684 queue_unlock(qp);
1685 if (nlwpid == 1)
1686 (void) __lwp_unpark(lwpid[0]);
1687 else
1688 (void) __lwp_unpark_all(lwpid, nlwpid);
1689 preempt(curthread);
1690 }
1691
1692 if (lwpid != buffer)
1693 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
1694 }
1695
1696 /*
1697 * Release a process-private mutex.
1698 * As an optimization, if there are waiters but there are also spinners
1699 * attempting to acquire the mutex, then don't bother waking up a waiter;
1700 * one of the spinners will acquire the mutex soon and it would be a waste
1701 * of resources to wake up some thread just to have it spin for a while
1702 * and then possibly go back to sleep. See mutex_trylock_adaptive().
1703 */
1704 static lwpid_t
mutex_unlock_queue(mutex_t * mp,int release_all)1705 mutex_unlock_queue(mutex_t *mp, int release_all)
1706 {
1707 ulwp_t *self = curthread;
1708 lwpid_t lwpid = 0;
1709 uint32_t old_lockword;
1710
1711 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1712 sigoff(self);
1713 mp->mutex_owner = 0;
1714 old_lockword = clear_lockbyte(&mp->mutex_lockword);
1715 if ((old_lockword & WAITERMASK) &&
1716 (release_all || (old_lockword & SPINNERMASK) == 0)) {
1717 no_preempt(self); /* ensure a prompt wakeup */
1718 if (release_all)
1719 mutex_wakeup_all(mp);
1720 else
1721 lwpid = mutex_wakeup(mp);
1722 if (lwpid == 0)
1723 preempt(self);
1724 }
1725 sigon(self);
1726 return (lwpid);
1727 }
1728
1729 /*
1730 * Like mutex_unlock_queue(), but for process-shared mutexes.
1731 */
1732 static void
mutex_unlock_process(mutex_t * mp,int release_all)1733 mutex_unlock_process(mutex_t *mp, int release_all)
1734 {
1735 ulwp_t *self = curthread;
1736 uint64_t old_lockword64;
1737
1738 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1739 sigoff(self);
1740 mp->mutex_owner = 0;
1741 #if defined(__sparc) && !defined(_LP64)
1742 /* horrible hack, necessary only on 32-bit sparc */
1743 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
1744 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)) {
1745 uint32_t old_lockword;
1746 mp->mutex_ownerpid = 0;
1747 old_lockword = clear_lockbyte(&mp->mutex_lockword);
1748 if ((old_lockword & WAITERMASK) &&
1749 (release_all || (old_lockword & SPINNERMASK) == 0)) {
1750 no_preempt(self); /* ensure a prompt wakeup */
1751 (void) ___lwp_mutex_wakeup(mp, release_all);
1752 preempt(self);
1753 }
1754 sigon(self);
1755 return;
1756 }
1757 #endif
1758 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
1759 old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64);
1760 if ((old_lockword64 & WAITERMASK64) &&
1761 (release_all || (old_lockword64 & SPINNERMASK64) == 0)) {
1762 no_preempt(self); /* ensure a prompt wakeup */
1763 (void) ___lwp_mutex_wakeup(mp, release_all);
1764 preempt(self);
1765 }
1766 sigon(self);
1767 }
1768
1769 void
stall(void)1770 stall(void)
1771 {
1772 for (;;)
1773 (void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
1774 }
1775
1776 /*
1777 * Acquire a USYNC_THREAD mutex via user-level sleep queues.
1778 * We failed set_lock_byte(&mp->mutex_lockw) before coming here.
1779 * If successful, returns with mutex_owner set correctly.
1780 */
1781 int
mutex_lock_queue(ulwp_t * self,tdb_mutex_stats_t * msp,mutex_t * mp,timespec_t * tsp)1782 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
1783 timespec_t *tsp)
1784 {
1785 uberdata_t *udp = curthread->ul_uberdata;
1786 queue_head_t *qp;
1787 hrtime_t begin_sleep;
1788 int error = 0;
1789
1790 self->ul_sp = stkptr();
1791 if (__td_event_report(self, TD_SLEEP, udp)) {
1792 self->ul_wchan = mp;
1793 self->ul_td_evbuf.eventnum = TD_SLEEP;
1794 self->ul_td_evbuf.eventdata = mp;
1795 tdb_event(TD_SLEEP, udp);
1796 }
1797 if (msp) {
1798 tdb_incr(msp->mutex_sleep);
1799 begin_sleep = gethrtime();
1800 }
1801
1802 DTRACE_PROBE1(plockstat, mutex__block, mp);
1803
1804 /*
1805 * Put ourself on the sleep queue, and while we are
1806 * unable to grab the lock, go park in the kernel.
1807 * Take ourself off the sleep queue after we acquire the lock.
1808 * The waiter bit can be set/cleared only while holding the queue lock.
1809 */
1810 qp = queue_lock(mp, MX);
1811 enqueue(qp, self, 0);
1812 mp->mutex_waiters = 1;
1813 for (;;) {
1814 if (set_lock_byte(&mp->mutex_lockw) == 0) {
1815 mp->mutex_owner = (uintptr_t)self;
1816 mp->mutex_waiters = dequeue_self(qp);
1817 break;
1818 }
1819 set_parking_flag(self, 1);
1820 queue_unlock(qp);
1821 /*
1822 * __lwp_park() will return the residual time in tsp
1823 * if we are unparked before the timeout expires.
1824 */
1825 error = __lwp_park(tsp, 0);
1826 set_parking_flag(self, 0);
1827 /*
1828 * We could have taken a signal or suspended ourself.
1829 * If we did, then we removed ourself from the queue.
1830 * Someone else may have removed us from the queue
1831 * as a consequence of mutex_unlock(). We may have
1832 * gotten a timeout from __lwp_park(). Or we may still
1833 * be on the queue and this is just a spurious wakeup.
1834 */
1835 qp = queue_lock(mp, MX);
1836 if (self->ul_sleepq == NULL) {
1837 if (error) {
1838 mp->mutex_waiters = queue_waiter(qp)? 1 : 0;
1839 if (error != EINTR)
1840 break;
1841 error = 0;
1842 }
1843 if (set_lock_byte(&mp->mutex_lockw) == 0) {
1844 mp->mutex_owner = (uintptr_t)self;
1845 break;
1846 }
1847 enqueue(qp, self, 0);
1848 mp->mutex_waiters = 1;
1849 }
1850 ASSERT(self->ul_sleepq == qp &&
1851 self->ul_qtype == MX &&
1852 self->ul_wchan == mp);
1853 if (error) {
1854 if (error != EINTR) {
1855 mp->mutex_waiters = dequeue_self(qp);
1856 break;
1857 }
1858 error = 0;
1859 }
1860 }
1861 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
1862 self->ul_wchan == NULL);
1863 self->ul_sp = 0;
1864
1865 ASSERT(error == 0 || error == EINVAL || error == ETIME);
1866
1867 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1868 ASSERT(mp->mutex_type & LOCK_ROBUST);
1869 /*
1870 * We shouldn't own the mutex.
1871 * Just clear the lock; everyone has already been waked up.
1872 */
1873 mp->mutex_owner = 0;
1874 (void) clear_lockbyte(&mp->mutex_lockword);
1875 error = ENOTRECOVERABLE;
1876 }
1877
1878 queue_unlock(qp);
1879
1880 if (msp)
1881 msp->mutex_sleep_time += gethrtime() - begin_sleep;
1882
1883 if (error) {
1884 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1885 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1886 } else {
1887 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1888 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1889 if (mp->mutex_flag & LOCK_OWNERDEAD) {
1890 ASSERT(mp->mutex_type & LOCK_ROBUST);
1891 error = EOWNERDEAD;
1892 }
1893 }
1894
1895 return (error);
1896 }
1897
1898 static int
mutex_recursion(mutex_t * mp,int mtype,int try)1899 mutex_recursion(mutex_t *mp, int mtype, int try)
1900 {
1901 ASSERT(mutex_held(mp));
1902 ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK));
1903 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
1904
1905 if (mtype & LOCK_RECURSIVE) {
1906 if (mp->mutex_rcount == RECURSION_MAX) {
1907 DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN);
1908 return (EAGAIN);
1909 }
1910 mp->mutex_rcount++;
1911 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
1912 return (0);
1913 }
1914 if (try == MUTEX_LOCK) {
1915 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1916 return (EDEADLK);
1917 }
1918 return (EBUSY);
1919 }
1920
1921 /*
1922 * Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so
1923 * it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary.
1924 * We use tdb_hash_lock here and in the synch object tracking code in
1925 * the tdb_agent.c file. There is no conflict between these two usages.
1926 */
1927 void
register_lock(mutex_t * mp)1928 register_lock(mutex_t *mp)
1929 {
1930 uberdata_t *udp = curthread->ul_uberdata;
1931 uint_t hash = LOCK_HASH(mp);
1932 robust_t *rlp;
1933 robust_t *invalid;
1934 robust_t **rlpp;
1935 robust_t **table;
1936
1937 if ((table = udp->robustlocks) == NULL) {
1938 lmutex_lock(&udp->tdb_hash_lock);
1939 if ((table = udp->robustlocks) == NULL) {
1940 table = lmalloc(LOCKHASHSZ * sizeof (robust_t *));
1941 membar_producer();
1942 udp->robustlocks = table;
1943 }
1944 lmutex_unlock(&udp->tdb_hash_lock);
1945 }
1946 membar_consumer();
1947
1948 /*
1949 * First search the registered table with no locks held.
1950 * This is safe because the table never shrinks
1951 * and we can only get a false negative.
1952 */
1953 for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) {
1954 if (rlp->robust_lock == mp) /* already registered */
1955 return;
1956 }
1957
1958 /*
1959 * The lock was not found.
1960 * Repeat the operation with tdb_hash_lock held.
1961 */
1962 lmutex_lock(&udp->tdb_hash_lock);
1963
1964 invalid = NULL;
1965 for (rlpp = &table[hash];
1966 (rlp = *rlpp) != NULL;
1967 rlpp = &rlp->robust_next) {
1968 if (rlp->robust_lock == mp) { /* already registered */
1969 lmutex_unlock(&udp->tdb_hash_lock);
1970 return;
1971 }
1972 /* remember the first invalid entry, if any */
1973 if (rlp->robust_lock == INVALID_ADDR && invalid == NULL)
1974 invalid = rlp;
1975 }
1976
1977 /*
1978 * The lock has never been registered.
1979 * Add it to the table and register it now.
1980 */
1981 if ((rlp = invalid) != NULL) {
1982 /*
1983 * Reuse the invalid entry we found above.
1984 * The linkages are still correct.
1985 */
1986 rlp->robust_lock = mp;
1987 membar_producer();
1988 } else {
1989 /*
1990 * Allocate a new entry and add it to
1991 * the hash table and to the global list.
1992 */
1993 rlp = lmalloc(sizeof (*rlp));
1994 rlp->robust_lock = mp;
1995 rlp->robust_next = NULL;
1996 rlp->robust_list = udp->robustlist;
1997 udp->robustlist = rlp;
1998 membar_producer();
1999 *rlpp = rlp;
2000 }
2001
2002 lmutex_unlock(&udp->tdb_hash_lock);
2003
2004 (void) ___lwp_mutex_register(mp, &rlp->robust_lock);
2005 }
2006
2007 /*
2008 * This is called in the child of fork()/forkall() to start over
2009 * with a clean slate. (Each process must register its own locks.)
2010 * No locks are needed because all other threads are suspended or gone.
2011 */
2012 void
unregister_locks(void)2013 unregister_locks(void)
2014 {
2015 uberdata_t *udp = curthread->ul_uberdata;
2016 robust_t **table;
2017 robust_t *rlp;
2018 robust_t *next;
2019
2020 /*
2021 * Do this first, before calling lfree().
2022 */
2023 table = udp->robustlocks;
2024 udp->robustlocks = NULL;
2025 rlp = udp->robustlist;
2026 udp->robustlist = NULL;
2027
2028 /*
2029 * Do this by traversing the global list, not the hash table.
2030 */
2031 while (rlp != NULL) {
2032 next = rlp->robust_list;
2033 lfree(rlp, sizeof (*rlp));
2034 rlp = next;
2035 }
2036 if (table != NULL)
2037 lfree(table, LOCKHASHSZ * sizeof (robust_t *));
2038 }
2039
2040 /*
2041 * Returns with mutex_owner set correctly.
2042 */
2043 int
mutex_lock_internal(mutex_t * mp,timespec_t * tsp,int try)2044 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
2045 {
2046 ulwp_t *self = curthread;
2047 uberdata_t *udp = self->ul_uberdata;
2048 int mtype = mp->mutex_type;
2049 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2050 int error = 0;
2051 int noceil = try & MUTEX_NOCEIL;
2052 uint8_t ceil;
2053 int myprio;
2054
2055 try &= ~MUTEX_NOCEIL;
2056 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
2057
2058 if (!self->ul_schedctl_called)
2059 (void) setup_schedctl();
2060
2061 if (msp && try == MUTEX_TRY)
2062 tdb_incr(msp->mutex_try);
2063
2064 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp))
2065 return (mutex_recursion(mp, mtype, try));
2066
2067 if (self->ul_error_detection && try == MUTEX_LOCK &&
2068 tsp == NULL && mutex_held(mp))
2069 lock_error(mp, "mutex_lock", NULL, NULL);
2070
2071 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
2072 update_sched(self);
2073 if (self->ul_cid != self->ul_rtclassid) {
2074 DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM);
2075 return (EPERM);
2076 }
2077 ceil = mp->mutex_ceiling;
2078 myprio = self->ul_epri? self->ul_epri : self->ul_pri;
2079 if (myprio > ceil) {
2080 DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL);
2081 return (EINVAL);
2082 }
2083 if ((error = _ceil_mylist_add(mp)) != 0) {
2084 DTRACE_PROBE2(plockstat, mutex__error, mp, error);
2085 return (error);
2086 }
2087 if (myprio < ceil)
2088 _ceil_prio_inherit(ceil);
2089 }
2090
2091 if ((mtype & (USYNC_PROCESS | LOCK_ROBUST))
2092 == (USYNC_PROCESS | LOCK_ROBUST))
2093 register_lock(mp);
2094
2095 if (mtype & LOCK_PRIO_INHERIT) {
2096 /* go straight to the kernel */
2097 if (try == MUTEX_TRY)
2098 error = mutex_trylock_kernel(mp);
2099 else /* MUTEX_LOCK */
2100 error = mutex_lock_kernel(mp, tsp, msp);
2101 /*
2102 * The kernel never sets or clears the lock byte
2103 * for LOCK_PRIO_INHERIT mutexes.
2104 * Set it here for consistency.
2105 */
2106 switch (error) {
2107 case 0:
2108 self->ul_pilocks++;
2109 mp->mutex_lockw = LOCKSET;
2110 break;
2111 case EOWNERDEAD:
2112 case ELOCKUNMAPPED:
2113 self->ul_pilocks++;
2114 mp->mutex_lockw = LOCKSET;
2115 /* FALLTHROUGH */
2116 case ENOTRECOVERABLE:
2117 ASSERT(mtype & LOCK_ROBUST);
2118 break;
2119 case EDEADLK:
2120 if (try == MUTEX_TRY) {
2121 error = EBUSY;
2122 } else if (tsp != NULL) { /* simulate a timeout */
2123 /*
2124 * Note: mutex_timedlock() never returns EINTR.
2125 */
2126 timespec_t ts = *tsp;
2127 timespec_t rts;
2128
2129 while (__nanosleep(&ts, &rts) == EINTR)
2130 ts = rts;
2131 error = ETIME;
2132 } else { /* simulate a deadlock */
2133 stall();
2134 }
2135 break;
2136 }
2137 } else if (mtype & USYNC_PROCESS) {
2138 error = mutex_trylock_process(mp, try == MUTEX_LOCK);
2139 if (error == EBUSY && try == MUTEX_LOCK)
2140 error = mutex_lock_kernel(mp, tsp, msp);
2141 } else { /* USYNC_THREAD */
2142 error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK);
2143 if (error == EBUSY && try == MUTEX_LOCK)
2144 error = mutex_lock_queue(self, msp, mp, tsp);
2145 }
2146
2147 switch (error) {
2148 case 0:
2149 case EOWNERDEAD:
2150 case ELOCKUNMAPPED:
2151 if (mtype & LOCK_ROBUST)
2152 remember_lock(mp);
2153 if (msp)
2154 record_begin_hold(msp);
2155 break;
2156 default:
2157 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
2158 (void) _ceil_mylist_del(mp);
2159 if (myprio < ceil)
2160 _ceil_prio_waive();
2161 }
2162 if (try == MUTEX_TRY) {
2163 if (msp)
2164 tdb_incr(msp->mutex_try_fail);
2165 if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2166 self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2167 tdb_event(TD_LOCK_TRY, udp);
2168 }
2169 }
2170 break;
2171 }
2172
2173 return (error);
2174 }
2175
2176 int
fast_process_lock(mutex_t * mp,timespec_t * tsp,int mtype,int try)2177 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
2178 {
2179 ulwp_t *self = curthread;
2180 uberdata_t *udp = self->ul_uberdata;
2181
2182 /*
2183 * We know that USYNC_PROCESS is set in mtype and that
2184 * zero, one, or both of the flags LOCK_RECURSIVE and
2185 * LOCK_ERRORCHECK are set, and that no other flags are set.
2186 */
2187 ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0);
2188 enter_critical(self);
2189 #if defined(__sparc) && !defined(_LP64)
2190 /* horrible hack, necessary only on 32-bit sparc */
2191 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2192 self->ul_misaligned) {
2193 if (set_lock_byte(&mp->mutex_lockw) == 0) {
2194 mp->mutex_ownerpid = udp->pid;
2195 mp->mutex_owner = (uintptr_t)self;
2196 exit_critical(self);
2197 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2198 return (0);
2199 }
2200 } else
2201 #endif
2202 if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) {
2203 mp->mutex_owner = (uintptr_t)self;
2204 /* mp->mutex_ownerpid was set by set_lock_byte64() */
2205 exit_critical(self);
2206 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2207 return (0);
2208 }
2209 exit_critical(self);
2210
2211 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp))
2212 return (mutex_recursion(mp, mtype, try));
2213
2214 if (try == MUTEX_LOCK) {
2215 if (mutex_trylock_process(mp, 1) == 0)
2216 return (0);
2217 return (mutex_lock_kernel(mp, tsp, NULL));
2218 }
2219
2220 if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2221 self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2222 tdb_event(TD_LOCK_TRY, udp);
2223 }
2224 return (EBUSY);
2225 }
2226
2227 static int
mutex_lock_impl(mutex_t * mp,timespec_t * tsp)2228 mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
2229 {
2230 ulwp_t *self = curthread;
2231 int mtype = mp->mutex_type;
2232 uberflags_t *gflags;
2233
2234 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2235 self->ul_error_detection && self->ul_misaligned == 0)
2236 lock_error(mp, "mutex_lock", NULL, "mutex is misaligned");
2237
2238 /*
2239 * Optimize the case of USYNC_THREAD, including
2240 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2241 * no error detection, no lock statistics,
2242 * and the process has only a single thread.
2243 * (Most likely a traditional single-threaded application.)
2244 */
2245 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2246 self->ul_uberdata->uberflags.uf_all) == 0) {
2247 /*
2248 * Only one thread exists so we don't need an atomic operation.
2249 * We do, however, need to protect against signals.
2250 */
2251 if (mp->mutex_lockw == 0) {
2252 sigoff(self);
2253 mp->mutex_lockw = LOCKSET;
2254 mp->mutex_owner = (uintptr_t)self;
2255 sigon(self);
2256 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2257 return (0);
2258 }
2259 if (mtype && MUTEX_OWNER(mp) == self)
2260 return (mutex_recursion(mp, mtype, MUTEX_LOCK));
2261 /*
2262 * We have reached a deadlock, probably because the
2263 * process is executing non-async-signal-safe code in
2264 * a signal handler and is attempting to acquire a lock
2265 * that it already owns. This is not surprising, given
2266 * bad programming practices over the years that has
2267 * resulted in applications calling printf() and such
2268 * in their signal handlers. Unless the user has told
2269 * us that the signal handlers are safe by setting:
2270 * export _THREAD_ASYNC_SAFE=1
2271 * we return EDEADLK rather than actually deadlocking.
2272 */
2273 if (tsp == NULL &&
2274 MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
2275 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
2276 return (EDEADLK);
2277 }
2278 }
2279
2280 /*
2281 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2282 * no error detection, and no lock statistics.
2283 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2284 */
2285 if ((gflags = self->ul_schedctl_called) != NULL &&
2286 (gflags->uf_trs_ted |
2287 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
2288 if (mtype & USYNC_PROCESS)
2289 return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
2290 sigoff(self);
2291 if (set_lock_byte(&mp->mutex_lockw) == 0) {
2292 mp->mutex_owner = (uintptr_t)self;
2293 sigon(self);
2294 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2295 return (0);
2296 }
2297 sigon(self);
2298 if (mtype && MUTEX_OWNER(mp) == self)
2299 return (mutex_recursion(mp, mtype, MUTEX_LOCK));
2300 if (mutex_trylock_adaptive(mp, 1) != 0)
2301 return (mutex_lock_queue(self, NULL, mp, tsp));
2302 return (0);
2303 }
2304
2305 /* else do it the long way */
2306 return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
2307 }
2308
2309 #pragma weak pthread_mutex_lock = mutex_lock
2310 #pragma weak _mutex_lock = mutex_lock
2311 int
mutex_lock(mutex_t * mp)2312 mutex_lock(mutex_t *mp)
2313 {
2314 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2315 return (mutex_lock_impl(mp, NULL));
2316 }
2317
2318 void
mutex_enter(mutex_t * mp)2319 mutex_enter(mutex_t *mp)
2320 {
2321 int ret;
2322 int attr = mp->mutex_type & ALL_ATTRIBUTES;
2323
2324 /*
2325 * Require LOCK_ERRORCHECK, accept LOCK_RECURSIVE.
2326 */
2327 if (attr != LOCK_ERRORCHECK &&
2328 attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) {
2329 mutex_panic(mp, "mutex_enter: bad mutex type");
2330 }
2331 ret = mutex_lock(mp);
2332 if (ret == EDEADLK) {
2333 mutex_panic(mp, "recursive mutex_enter");
2334 } else if (ret == EAGAIN) {
2335 mutex_panic(mp, "excessive recursive mutex_enter");
2336 } else if (ret != 0) {
2337 mutex_panic(mp, "unknown mutex_enter failure");
2338 }
2339 }
2340
2341 int
pthread_mutex_timedlock(pthread_mutex_t * _RESTRICT_KYWD mp,const struct timespec * _RESTRICT_KYWD abstime)2342 pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp,
2343 const struct timespec *_RESTRICT_KYWD abstime)
2344 {
2345 timespec_t tslocal;
2346 int error;
2347
2348 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2349 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
2350 error = mutex_lock_impl((mutex_t *)mp, &tslocal);
2351 if (error == ETIME)
2352 error = ETIMEDOUT;
2353 return (error);
2354 }
2355
2356 int
pthread_mutex_reltimedlock_np(pthread_mutex_t * _RESTRICT_KYWD mp,const struct timespec * _RESTRICT_KYWD reltime)2357 pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp,
2358 const struct timespec *_RESTRICT_KYWD reltime)
2359 {
2360 timespec_t tslocal;
2361 int error;
2362
2363 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2364 tslocal = *reltime;
2365 error = mutex_lock_impl((mutex_t *)mp, &tslocal);
2366 if (error == ETIME)
2367 error = ETIMEDOUT;
2368 return (error);
2369 }
2370
2371 #pragma weak pthread_mutex_trylock = mutex_trylock
2372 int
mutex_trylock(mutex_t * mp)2373 mutex_trylock(mutex_t *mp)
2374 {
2375 ulwp_t *self = curthread;
2376 uberdata_t *udp = self->ul_uberdata;
2377 int mtype = mp->mutex_type;
2378 uberflags_t *gflags;
2379
2380 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2381
2382 /*
2383 * Optimize the case of USYNC_THREAD, including
2384 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2385 * no error detection, no lock statistics,
2386 * and the process has only a single thread.
2387 * (Most likely a traditional single-threaded application.)
2388 */
2389 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2390 udp->uberflags.uf_all) == 0) {
2391 /*
2392 * Only one thread exists so we don't need an atomic operation.
2393 * We do, however, need to protect against signals.
2394 */
2395 if (mp->mutex_lockw == 0) {
2396 sigoff(self);
2397 mp->mutex_lockw = LOCKSET;
2398 mp->mutex_owner = (uintptr_t)self;
2399 sigon(self);
2400 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2401 return (0);
2402 }
2403 if (mtype && MUTEX_OWNER(mp) == self)
2404 return (mutex_recursion(mp, mtype, MUTEX_TRY));
2405 return (EBUSY);
2406 }
2407
2408 /*
2409 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2410 * no error detection, and no lock statistics.
2411 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2412 */
2413 if ((gflags = self->ul_schedctl_called) != NULL &&
2414 (gflags->uf_trs_ted |
2415 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
2416 if (mtype & USYNC_PROCESS)
2417 return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
2418 sigoff(self);
2419 if (set_lock_byte(&mp->mutex_lockw) == 0) {
2420 mp->mutex_owner = (uintptr_t)self;
2421 sigon(self);
2422 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2423 return (0);
2424 }
2425 sigon(self);
2426 if (mtype && MUTEX_OWNER(mp) == self)
2427 return (mutex_recursion(mp, mtype, MUTEX_TRY));
2428 if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2429 self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2430 tdb_event(TD_LOCK_TRY, udp);
2431 }
2432 return (EBUSY);
2433 }
2434
2435 /* else do it the long way */
2436 return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
2437 }
2438
2439 int
mutex_unlock_internal(mutex_t * mp,int retain_robust_flags)2440 mutex_unlock_internal(mutex_t *mp, int retain_robust_flags)
2441 {
2442 ulwp_t *self = curthread;
2443 uberdata_t *udp = self->ul_uberdata;
2444 int mtype = mp->mutex_type;
2445 tdb_mutex_stats_t *msp;
2446 int error = 0;
2447 int release_all;
2448 lwpid_t lwpid;
2449
2450 if ((mtype & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
2451 !mutex_held(mp))
2452 return (EPERM);
2453
2454 if (self->ul_error_detection && !mutex_held(mp))
2455 lock_error(mp, "mutex_unlock", NULL, NULL);
2456
2457 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2458 mp->mutex_rcount--;
2459 DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2460 return (0);
2461 }
2462
2463 if ((msp = MUTEX_STATS(mp, udp)) != NULL)
2464 (void) record_hold_time(msp);
2465
2466 if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) &&
2467 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
2468 ASSERT(mtype & LOCK_ROBUST);
2469 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
2470 mp->mutex_flag |= LOCK_NOTRECOVERABLE;
2471 }
2472 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
2473
2474 if (mtype & LOCK_PRIO_INHERIT) {
2475 no_preempt(self);
2476 mp->mutex_owner = 0;
2477 /* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */
2478 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2479 mp->mutex_lockw = LOCKCLEAR;
2480 self->ul_pilocks--;
2481 error = ___lwp_mutex_unlock(mp);
2482 preempt(self);
2483 } else if (mtype & USYNC_PROCESS) {
2484 mutex_unlock_process(mp, release_all);
2485 } else { /* USYNC_THREAD */
2486 if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) {
2487 (void) __lwp_unpark(lwpid);
2488 preempt(self);
2489 }
2490 }
2491
2492 if (mtype & LOCK_ROBUST)
2493 forget_lock(mp);
2494
2495 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
2496 _ceil_prio_waive();
2497
2498 return (error);
2499 }
2500
2501 #pragma weak pthread_mutex_unlock = mutex_unlock
2502 #pragma weak _mutex_unlock = mutex_unlock
2503 int
mutex_unlock(mutex_t * mp)2504 mutex_unlock(mutex_t *mp)
2505 {
2506 ulwp_t *self = curthread;
2507 int mtype = mp->mutex_type;
2508 uberflags_t *gflags;
2509 lwpid_t lwpid;
2510 short el;
2511
2512 /*
2513 * Optimize the case of USYNC_THREAD, including
2514 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2515 * no error detection, no lock statistics,
2516 * and the process has only a single thread.
2517 * (Most likely a traditional single-threaded application.)
2518 */
2519 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2520 self->ul_uberdata->uberflags.uf_all) == 0) {
2521 if (mtype) {
2522 /*
2523 * At this point we know that one or both of the
2524 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2525 */
2526 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2527 return (EPERM);
2528 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2529 mp->mutex_rcount--;
2530 DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2531 return (0);
2532 }
2533 }
2534 /*
2535 * Only one thread exists so we don't need an atomic operation.
2536 * Also, there can be no waiters.
2537 */
2538 sigoff(self);
2539 mp->mutex_owner = 0;
2540 mp->mutex_lockword = 0;
2541 sigon(self);
2542 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2543 return (0);
2544 }
2545
2546 /*
2547 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2548 * no error detection, and no lock statistics.
2549 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2550 */
2551 if ((gflags = self->ul_schedctl_called) != NULL) {
2552 if (((el = gflags->uf_trs_ted) | mtype) == 0) {
2553 fast_unlock:
2554 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
2555 (void) __lwp_unpark(lwpid);
2556 preempt(self);
2557 }
2558 return (0);
2559 }
2560 if (el) /* error detection or lock statistics */
2561 goto slow_unlock;
2562 if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2563 /*
2564 * At this point we know that one or both of the
2565 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2566 */
2567 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2568 return (EPERM);
2569 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2570 mp->mutex_rcount--;
2571 DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2572 return (0);
2573 }
2574 goto fast_unlock;
2575 }
2576 if ((mtype &
2577 ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2578 /*
2579 * At this point we know that zero, one, or both of the
2580 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
2581 * that the USYNC_PROCESS flag is set.
2582 */
2583 if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
2584 return (EPERM);
2585 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2586 mp->mutex_rcount--;
2587 DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2588 return (0);
2589 }
2590 mutex_unlock_process(mp, 0);
2591 return (0);
2592 }
2593 }
2594
2595 /* else do it the long way */
2596 slow_unlock:
2597 return (mutex_unlock_internal(mp, 0));
2598 }
2599
2600 void
mutex_exit(mutex_t * mp)2601 mutex_exit(mutex_t *mp)
2602 {
2603 int ret;
2604 int attr = mp->mutex_type & ALL_ATTRIBUTES;
2605
2606 if (attr != LOCK_ERRORCHECK &&
2607 attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) {
2608 mutex_panic(mp, "mutex_exit: bad mutex type");
2609 }
2610 ret = mutex_unlock(mp);
2611 if (ret == EPERM) {
2612 mutex_panic(mp, "mutex_exit: not owner");
2613 } else if (ret != 0) {
2614 mutex_panic(mp, "unknown mutex_exit failure");
2615 }
2616
2617 }
2618
2619 /*
2620 * Internally to the library, almost all mutex lock/unlock actions
2621 * go through these lmutex_ functions, to protect critical regions.
2622 * We replicate a bit of code from mutex_lock() and mutex_unlock()
2623 * to make these functions faster since we know that the mutex type
2624 * of all internal locks is USYNC_THREAD. We also know that internal
2625 * locking can never fail, so we panic if it does.
2626 */
2627 void
lmutex_lock(mutex_t * mp)2628 lmutex_lock(mutex_t *mp)
2629 {
2630 ulwp_t *self = curthread;
2631 uberdata_t *udp = self->ul_uberdata;
2632
2633 ASSERT(mp->mutex_type == USYNC_THREAD);
2634
2635 enter_critical(self);
2636 /*
2637 * Optimize the case of no lock statistics and only a single thread.
2638 * (Most likely a traditional single-threaded application.)
2639 */
2640 if (udp->uberflags.uf_all == 0) {
2641 /*
2642 * Only one thread exists; the mutex must be free.
2643 */
2644 ASSERT(mp->mutex_lockw == 0);
2645 mp->mutex_lockw = LOCKSET;
2646 mp->mutex_owner = (uintptr_t)self;
2647 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2648 } else {
2649 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2650
2651 if (!self->ul_schedctl_called)
2652 (void) setup_schedctl();
2653
2654 if (set_lock_byte(&mp->mutex_lockw) == 0) {
2655 mp->mutex_owner = (uintptr_t)self;
2656 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2657 } else if (mutex_trylock_adaptive(mp, 1) != 0) {
2658 (void) mutex_lock_queue(self, msp, mp, NULL);
2659 }
2660
2661 if (msp)
2662 record_begin_hold(msp);
2663 }
2664 }
2665
2666 void
lmutex_unlock(mutex_t * mp)2667 lmutex_unlock(mutex_t *mp)
2668 {
2669 ulwp_t *self = curthread;
2670 uberdata_t *udp = self->ul_uberdata;
2671
2672 ASSERT(mp->mutex_type == USYNC_THREAD);
2673
2674 /*
2675 * Optimize the case of no lock statistics and only a single thread.
2676 * (Most likely a traditional single-threaded application.)
2677 */
2678 if (udp->uberflags.uf_all == 0) {
2679 /*
2680 * Only one thread exists so there can be no waiters.
2681 */
2682 mp->mutex_owner = 0;
2683 mp->mutex_lockword = 0;
2684 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2685 } else {
2686 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2687 lwpid_t lwpid;
2688
2689 if (msp)
2690 (void) record_hold_time(msp);
2691 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
2692 (void) __lwp_unpark(lwpid);
2693 preempt(self);
2694 }
2695 }
2696 exit_critical(self);
2697 }
2698
2699 /*
2700 * For specialized code in libc, like the asynchronous i/o code,
2701 * the following sig_*() locking primitives are used in order
2702 * to make the code asynchronous signal safe. Signals are
2703 * deferred while locks acquired by these functions are held.
2704 */
2705 void
sig_mutex_lock(mutex_t * mp)2706 sig_mutex_lock(mutex_t *mp)
2707 {
2708 ulwp_t *self = curthread;
2709
2710 sigoff(self);
2711 (void) mutex_lock(mp);
2712 }
2713
2714 void
sig_mutex_unlock(mutex_t * mp)2715 sig_mutex_unlock(mutex_t *mp)
2716 {
2717 ulwp_t *self = curthread;
2718
2719 (void) mutex_unlock(mp);
2720 sigon(self);
2721 }
2722
2723 int
sig_mutex_trylock(mutex_t * mp)2724 sig_mutex_trylock(mutex_t *mp)
2725 {
2726 ulwp_t *self = curthread;
2727 int error;
2728
2729 sigoff(self);
2730 if ((error = mutex_trylock(mp)) != 0)
2731 sigon(self);
2732 return (error);
2733 }
2734
2735 /*
2736 * sig_cond_wait() is a cancellation point.
2737 */
2738 int
sig_cond_wait(cond_t * cv,mutex_t * mp)2739 sig_cond_wait(cond_t *cv, mutex_t *mp)
2740 {
2741 int error;
2742
2743 ASSERT(curthread->ul_sigdefer != 0);
2744 pthread_testcancel();
2745 error = __cond_wait(cv, mp);
2746 if (error == EINTR && curthread->ul_cursig) {
2747 sig_mutex_unlock(mp);
2748 /* take the deferred signal here */
2749 sig_mutex_lock(mp);
2750 }
2751 pthread_testcancel();
2752 return (error);
2753 }
2754
2755 /*
2756 * sig_cond_reltimedwait() is a cancellation point.
2757 */
2758 int
sig_cond_reltimedwait(cond_t * cv,mutex_t * mp,const timespec_t * ts)2759 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
2760 {
2761 int error;
2762
2763 ASSERT(curthread->ul_sigdefer != 0);
2764 pthread_testcancel();
2765 error = __cond_reltimedwait(cv, mp, ts);
2766 if (error == EINTR && curthread->ul_cursig) {
2767 sig_mutex_unlock(mp);
2768 /* take the deferred signal here */
2769 sig_mutex_lock(mp);
2770 }
2771 pthread_testcancel();
2772 return (error);
2773 }
2774
2775 /*
2776 * For specialized code in libc, like the stdio code.
2777 * the following cancel_safe_*() locking primitives are used in
2778 * order to make the code cancellation-safe. Cancellation is
2779 * deferred while locks acquired by these functions are held.
2780 */
2781 void
cancel_safe_mutex_lock(mutex_t * mp)2782 cancel_safe_mutex_lock(mutex_t *mp)
2783 {
2784 (void) mutex_lock(mp);
2785 curthread->ul_libc_locks++;
2786 }
2787
2788 int
cancel_safe_mutex_trylock(mutex_t * mp)2789 cancel_safe_mutex_trylock(mutex_t *mp)
2790 {
2791 int error;
2792
2793 if ((error = mutex_trylock(mp)) == 0)
2794 curthread->ul_libc_locks++;
2795 return (error);
2796 }
2797
2798 void
cancel_safe_mutex_unlock(mutex_t * mp)2799 cancel_safe_mutex_unlock(mutex_t *mp)
2800 {
2801 ulwp_t *self = curthread;
2802
2803 ASSERT(self->ul_libc_locks != 0);
2804
2805 (void) mutex_unlock(mp);
2806
2807 /*
2808 * Decrement the count of locks held by cancel_safe_mutex_lock().
2809 * If we are then in a position to terminate cleanly and
2810 * if there is a pending cancellation and cancellation
2811 * is not disabled and we received EINTR from a recent
2812 * system call then perform the cancellation action now.
2813 */
2814 if (--self->ul_libc_locks == 0 &&
2815 !(self->ul_vfork | self->ul_nocancel |
2816 self->ul_critical | self->ul_sigdefer) &&
2817 cancel_active())
2818 pthread_exit(PTHREAD_CANCELED);
2819 }
2820
2821 static int
shared_mutex_held(mutex_t * mparg)2822 shared_mutex_held(mutex_t *mparg)
2823 {
2824 /*
2825 * The 'volatile' is necessary to make sure the compiler doesn't
2826 * reorder the tests of the various components of the mutex.
2827 * They must be tested in this order:
2828 * mutex_lockw
2829 * mutex_owner
2830 * mutex_ownerpid
2831 * This relies on the fact that everywhere mutex_lockw is cleared,
2832 * mutex_owner and mutex_ownerpid are cleared before mutex_lockw
2833 * is cleared, and that everywhere mutex_lockw is set, mutex_owner
2834 * and mutex_ownerpid are set after mutex_lockw is set, and that
2835 * mutex_lockw is set or cleared with a memory barrier.
2836 */
2837 volatile mutex_t *mp = (volatile mutex_t *)mparg;
2838 ulwp_t *self = curthread;
2839 uberdata_t *udp = self->ul_uberdata;
2840
2841 return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid);
2842 }
2843
2844 #pragma weak _mutex_held = mutex_held
2845 int
mutex_held(mutex_t * mparg)2846 mutex_held(mutex_t *mparg)
2847 {
2848 volatile mutex_t *mp = (volatile mutex_t *)mparg;
2849
2850 if (mparg->mutex_type & USYNC_PROCESS)
2851 return (shared_mutex_held(mparg));
2852 return (MUTEX_OWNED(mp, curthread));
2853 }
2854
2855 #pragma weak pthread_mutex_destroy = mutex_destroy
2856 #pragma weak _mutex_destroy = mutex_destroy
2857 int
mutex_destroy(mutex_t * mp)2858 mutex_destroy(mutex_t *mp)
2859 {
2860 if (mp->mutex_type & USYNC_PROCESS)
2861 forget_lock(mp);
2862 (void) memset(mp, 0, sizeof (*mp));
2863 tdb_sync_obj_deregister(mp);
2864 return (0);
2865 }
2866
2867 #pragma weak pthread_mutex_consistent_np = mutex_consistent
2868 #pragma weak pthread_mutex_consistent = mutex_consistent
2869 int
mutex_consistent(mutex_t * mp)2870 mutex_consistent(mutex_t *mp)
2871 {
2872 /*
2873 * Do this only for an inconsistent, initialized robust lock
2874 * that we hold. For all other cases, return EINVAL.
2875 */
2876 if (mutex_held(mp) &&
2877 (mp->mutex_type & LOCK_ROBUST) &&
2878 (mp->mutex_flag & LOCK_INITED) &&
2879 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
2880 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
2881 mp->mutex_rcount = 0;
2882 return (0);
2883 }
2884 return (EINVAL);
2885 }
2886
2887 /*
2888 * Spin locks are separate from ordinary mutexes,
2889 * but we use the same data structure for them.
2890 */
2891
2892 int
pthread_spin_init(pthread_spinlock_t * lock,int pshared)2893 pthread_spin_init(pthread_spinlock_t *lock, int pshared)
2894 {
2895 mutex_t *mp = (mutex_t *)lock;
2896
2897 (void) memset(mp, 0, sizeof (*mp));
2898 if (pshared == PTHREAD_PROCESS_SHARED)
2899 mp->mutex_type = USYNC_PROCESS;
2900 else
2901 mp->mutex_type = USYNC_THREAD;
2902 mp->mutex_flag = LOCK_INITED;
2903 mp->mutex_magic = MUTEX_MAGIC;
2904
2905 /*
2906 * This should be at the beginning of the function,
2907 * but for the sake of old broken applications that
2908 * do not have proper alignment for their mutexes
2909 * (and don't check the return code from pthread_spin_init),
2910 * we put it here, after initializing the mutex regardless.
2911 */
2912 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2913 curthread->ul_misaligned == 0)
2914 return (EINVAL);
2915
2916 return (0);
2917 }
2918
2919 int
pthread_spin_destroy(pthread_spinlock_t * lock)2920 pthread_spin_destroy(pthread_spinlock_t *lock)
2921 {
2922 (void) memset(lock, 0, sizeof (*lock));
2923 return (0);
2924 }
2925
2926 int
pthread_spin_trylock(pthread_spinlock_t * lock)2927 pthread_spin_trylock(pthread_spinlock_t *lock)
2928 {
2929 mutex_t *mp = (mutex_t *)lock;
2930 ulwp_t *self = curthread;
2931 int error = 0;
2932
2933 no_preempt(self);
2934 if (set_lock_byte(&mp->mutex_lockw) != 0)
2935 error = EBUSY;
2936 else {
2937 mp->mutex_owner = (uintptr_t)self;
2938 if (mp->mutex_type == USYNC_PROCESS)
2939 mp->mutex_ownerpid = self->ul_uberdata->pid;
2940 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2941 }
2942 preempt(self);
2943 return (error);
2944 }
2945
2946 int
pthread_spin_lock(pthread_spinlock_t * lock)2947 pthread_spin_lock(pthread_spinlock_t *lock)
2948 {
2949 mutex_t *mp = (mutex_t *)lock;
2950 ulwp_t *self = curthread;
2951 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
2952 int count = 0;
2953
2954 ASSERT(!self->ul_critical || self->ul_bindflags);
2955
2956 DTRACE_PROBE1(plockstat, mutex__spin, mp);
2957
2958 /*
2959 * We don't care whether the owner is running on a processor.
2960 * We just spin because that's what this interface requires.
2961 */
2962 for (;;) {
2963 if (*lockp == 0) { /* lock byte appears to be clear */
2964 no_preempt(self);
2965 if (set_lock_byte(lockp) == 0)
2966 break;
2967 preempt(self);
2968 }
2969 if (count < INT_MAX)
2970 count++;
2971 SMT_PAUSE();
2972 }
2973 mp->mutex_owner = (uintptr_t)self;
2974 if (mp->mutex_type == USYNC_PROCESS)
2975 mp->mutex_ownerpid = self->ul_uberdata->pid;
2976 preempt(self);
2977 if (count) {
2978 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
2979 }
2980 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
2981 return (0);
2982 }
2983
2984 int
pthread_spin_unlock(pthread_spinlock_t * lock)2985 pthread_spin_unlock(pthread_spinlock_t *lock)
2986 {
2987 mutex_t *mp = (mutex_t *)lock;
2988 ulwp_t *self = curthread;
2989
2990 no_preempt(self);
2991 mp->mutex_owner = 0;
2992 mp->mutex_ownerpid = 0;
2993 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2994 (void) atomic_swap_32(&mp->mutex_lockword, 0);
2995 preempt(self);
2996 return (0);
2997 }
2998
2999 #define INITIAL_LOCKS 8 /* initial size of ul_heldlocks.array */
3000
3001 /*
3002 * Find/allocate an entry for 'lock' in our array of held locks.
3003 */
3004 static mutex_t **
find_lock_entry(mutex_t * lock)3005 find_lock_entry(mutex_t *lock)
3006 {
3007 ulwp_t *self = curthread;
3008 mutex_t **remembered = NULL;
3009 mutex_t **lockptr;
3010 uint_t nlocks;
3011
3012 if ((nlocks = self->ul_heldlockcnt) != 0)
3013 lockptr = self->ul_heldlocks.array;
3014 else {
3015 nlocks = 1;
3016 lockptr = &self->ul_heldlocks.single;
3017 }
3018
3019 for (; nlocks; nlocks--, lockptr++) {
3020 if (*lockptr == lock)
3021 return (lockptr);
3022 if (*lockptr == NULL && remembered == NULL)
3023 remembered = lockptr;
3024 }
3025 if (remembered != NULL) {
3026 *remembered = lock;
3027 return (remembered);
3028 }
3029
3030 /*
3031 * No entry available. Allocate more space, converting
3032 * the single entry into an array of entries if necessary.
3033 */
3034 if ((nlocks = self->ul_heldlockcnt) == 0) {
3035 /*
3036 * Initial allocation of the array.
3037 * Convert the single entry into an array.
3038 */
3039 self->ul_heldlockcnt = nlocks = INITIAL_LOCKS;
3040 lockptr = lmalloc(nlocks * sizeof (mutex_t *));
3041 /*
3042 * The single entry becomes the first entry in the array.
3043 */
3044 *lockptr = self->ul_heldlocks.single;
3045 self->ul_heldlocks.array = lockptr;
3046 /*
3047 * Return the next available entry in the array.
3048 */
3049 *++lockptr = lock;
3050 return (lockptr);
3051 }
3052 /*
3053 * Reallocate the array, double the size each time.
3054 */
3055 lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *));
3056 (void) memcpy(lockptr, self->ul_heldlocks.array,
3057 nlocks * sizeof (mutex_t *));
3058 lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
3059 self->ul_heldlocks.array = lockptr;
3060 self->ul_heldlockcnt *= 2;
3061 /*
3062 * Return the next available entry in the newly allocated array.
3063 */
3064 *(lockptr += nlocks) = lock;
3065 return (lockptr);
3066 }
3067
3068 /*
3069 * Insert 'lock' into our list of held locks.
3070 * Currently only used for LOCK_ROBUST mutexes.
3071 */
3072 void
remember_lock(mutex_t * lock)3073 remember_lock(mutex_t *lock)
3074 {
3075 (void) find_lock_entry(lock);
3076 }
3077
3078 /*
3079 * Remove 'lock' from our list of held locks.
3080 * Currently only used for LOCK_ROBUST mutexes.
3081 */
3082 void
forget_lock(mutex_t * lock)3083 forget_lock(mutex_t *lock)
3084 {
3085 *find_lock_entry(lock) = NULL;
3086 }
3087
3088 /*
3089 * Free the array of held locks.
3090 */
3091 void
heldlock_free(ulwp_t * ulwp)3092 heldlock_free(ulwp_t *ulwp)
3093 {
3094 uint_t nlocks;
3095
3096 if ((nlocks = ulwp->ul_heldlockcnt) != 0)
3097 lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
3098 ulwp->ul_heldlockcnt = 0;
3099 ulwp->ul_heldlocks.array = NULL;
3100 }
3101
3102 /*
3103 * Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD.
3104 * Called from _thrp_exit() to deal with abandoned locks.
3105 */
3106 void
heldlock_exit(void)3107 heldlock_exit(void)
3108 {
3109 ulwp_t *self = curthread;
3110 mutex_t **lockptr;
3111 uint_t nlocks;
3112 mutex_t *mp;
3113
3114 if ((nlocks = self->ul_heldlockcnt) != 0)
3115 lockptr = self->ul_heldlocks.array;
3116 else {
3117 nlocks = 1;
3118 lockptr = &self->ul_heldlocks.single;
3119 }
3120
3121 for (; nlocks; nlocks--, lockptr++) {
3122 /*
3123 * The kernel takes care of transitioning held
3124 * LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD.
3125 * We avoid that case here.
3126 */
3127 if ((mp = *lockptr) != NULL &&
3128 mutex_held(mp) &&
3129 (mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) ==
3130 LOCK_ROBUST) {
3131 mp->mutex_rcount = 0;
3132 if (!(mp->mutex_flag & LOCK_UNMAPPED))
3133 mp->mutex_flag |= LOCK_OWNERDEAD;
3134 (void) mutex_unlock_internal(mp, 1);
3135 }
3136 }
3137
3138 heldlock_free(self);
3139 }
3140
3141 #pragma weak _cond_init = cond_init
3142 /* ARGSUSED2 */
3143 int
cond_init(cond_t * cvp,int type,void * arg)3144 cond_init(cond_t *cvp, int type, void *arg)
3145 {
3146 if (type != USYNC_THREAD && type != USYNC_PROCESS)
3147 return (EINVAL);
3148 (void) memset(cvp, 0, sizeof (*cvp));
3149 cvp->cond_type = (uint16_t)type;
3150 cvp->cond_magic = COND_MAGIC;
3151
3152 /*
3153 * This should be at the beginning of the function,
3154 * but for the sake of old broken applications that
3155 * do not have proper alignment for their condvars
3156 * (and don't check the return code from cond_init),
3157 * we put it here, after initializing the condvar regardless.
3158 */
3159 if (((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) &&
3160 curthread->ul_misaligned == 0)
3161 return (EINVAL);
3162
3163 return (0);
3164 }
3165
3166 /*
3167 * cond_sleep_queue(): utility function for cond_wait_queue().
3168 *
3169 * Go to sleep on a condvar sleep queue, expect to be waked up
3170 * by someone calling cond_signal() or cond_broadcast() or due
3171 * to receiving a UNIX signal or being cancelled, or just simply
3172 * due to a spurious wakeup (like someome calling forkall()).
3173 *
3174 * The associated mutex is *not* reacquired before returning.
3175 * That must be done by the caller of cond_sleep_queue().
3176 */
3177 static int
cond_sleep_queue(cond_t * cvp,mutex_t * mp,timespec_t * tsp)3178 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3179 {
3180 ulwp_t *self = curthread;
3181 queue_head_t *qp;
3182 queue_head_t *mqp;
3183 lwpid_t lwpid;
3184 int signalled;
3185 int error;
3186 int cv_wake;
3187 int release_all;
3188
3189 /*
3190 * Put ourself on the CV sleep queue, unlock the mutex, then
3191 * park ourself and unpark a candidate lwp to grab the mutex.
3192 * We must go onto the CV sleep queue before dropping the
3193 * mutex in order to guarantee atomicity of the operation.
3194 */
3195 self->ul_sp = stkptr();
3196 qp = queue_lock(cvp, CV);
3197 enqueue(qp, self, 0);
3198 cvp->cond_waiters_user = 1;
3199 self->ul_cvmutex = mp;
3200 self->ul_cv_wake = cv_wake = (tsp != NULL);
3201 self->ul_signalled = 0;
3202 if (mp->mutex_flag & LOCK_OWNERDEAD) {
3203 mp->mutex_flag &= ~LOCK_OWNERDEAD;
3204 mp->mutex_flag |= LOCK_NOTRECOVERABLE;
3205 }
3206 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
3207 lwpid = mutex_unlock_queue(mp, release_all);
3208 for (;;) {
3209 set_parking_flag(self, 1);
3210 queue_unlock(qp);
3211 if (lwpid != 0) {
3212 lwpid = preempt_unpark(self, lwpid);
3213 preempt(self);
3214 }
3215 /*
3216 * We may have a deferred signal present,
3217 * in which case we should return EINTR.
3218 * Also, we may have received a SIGCANCEL; if so
3219 * and we are cancelable we should return EINTR.
3220 * We force an immediate EINTR return from
3221 * __lwp_park() by turning our parking flag off.
3222 */
3223 if (self->ul_cursig != 0 ||
3224 (self->ul_cancelable && self->ul_cancel_pending))
3225 set_parking_flag(self, 0);
3226 /*
3227 * __lwp_park() will return the residual time in tsp
3228 * if we are unparked before the timeout expires.
3229 */
3230 error = __lwp_park(tsp, lwpid);
3231 set_parking_flag(self, 0);
3232 lwpid = 0; /* unpark the other lwp only once */
3233 /*
3234 * We were waked up by cond_signal(), cond_broadcast(),
3235 * by an interrupt or timeout (EINTR or ETIME),
3236 * or we may just have gotten a spurious wakeup.
3237 */
3238 qp = queue_lock(cvp, CV);
3239 if (!cv_wake)
3240 mqp = queue_lock(mp, MX);
3241 if (self->ul_sleepq == NULL)
3242 break;
3243 /*
3244 * We are on either the condvar sleep queue or the
3245 * mutex sleep queue. Break out of the sleep if we
3246 * were interrupted or we timed out (EINTR or ETIME).
3247 * Else this is a spurious wakeup; continue the loop.
3248 */
3249 if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */
3250 if (error) {
3251 mp->mutex_waiters = dequeue_self(mqp);
3252 break;
3253 }
3254 tsp = NULL; /* no more timeout */
3255 } else if (self->ul_sleepq == qp) { /* condvar queue */
3256 if (error) {
3257 cvp->cond_waiters_user = dequeue_self(qp);
3258 break;
3259 }
3260 /*
3261 * Else a spurious wakeup on the condvar queue.
3262 * __lwp_park() has already adjusted the timeout.
3263 */
3264 } else {
3265 thr_panic("cond_sleep_queue(): thread not on queue");
3266 }
3267 if (!cv_wake)
3268 queue_unlock(mqp);
3269 }
3270
3271 self->ul_sp = 0;
3272 self->ul_cv_wake = 0;
3273 ASSERT(self->ul_cvmutex == NULL);
3274 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
3275 self->ul_wchan == NULL);
3276
3277 signalled = self->ul_signalled;
3278 self->ul_signalled = 0;
3279 queue_unlock(qp);
3280 if (!cv_wake)
3281 queue_unlock(mqp);
3282
3283 /*
3284 * If we were concurrently cond_signal()d and any of:
3285 * received a UNIX signal, were cancelled, or got a timeout,
3286 * then perform another cond_signal() to avoid consuming it.
3287 */
3288 if (error && signalled)
3289 (void) cond_signal(cvp);
3290
3291 return (error);
3292 }
3293
3294 static void
cond_wait_check_alignment(cond_t * cvp,mutex_t * mp)3295 cond_wait_check_alignment(cond_t *cvp, mutex_t *mp)
3296 {
3297 if ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1))
3298 lock_error(mp, "cond_wait", cvp, "mutex is misaligned");
3299 if ((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1))
3300 lock_error(mp, "cond_wait", cvp, "condvar is misaligned");
3301 }
3302
3303 int
cond_wait_queue(cond_t * cvp,mutex_t * mp,timespec_t * tsp)3304 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3305 {
3306 ulwp_t *self = curthread;
3307 int error;
3308 int merror;
3309
3310 if (self->ul_error_detection && self->ul_misaligned == 0)
3311 cond_wait_check_alignment(cvp, mp);
3312
3313 /*
3314 * The old thread library was programmed to defer signals
3315 * while in cond_wait() so that the associated mutex would
3316 * be guaranteed to be held when the application signal
3317 * handler was invoked.
3318 *
3319 * We do not behave this way by default; the state of the
3320 * associated mutex in the signal handler is undefined.
3321 *
3322 * To accommodate applications that depend on the old
3323 * behavior, the _THREAD_COND_WAIT_DEFER environment
3324 * variable can be set to 1 and we will behave in the
3325 * old way with respect to cond_wait().
3326 */
3327 if (self->ul_cond_wait_defer)
3328 sigoff(self);
3329
3330 error = cond_sleep_queue(cvp, mp, tsp);
3331
3332 /*
3333 * Reacquire the mutex.
3334 */
3335 if ((merror = mutex_lock_impl(mp, NULL)) != 0)
3336 error = merror;
3337
3338 /*
3339 * Take any deferred signal now, after we have reacquired the mutex.
3340 */
3341 if (self->ul_cond_wait_defer)
3342 sigon(self);
3343
3344 return (error);
3345 }
3346
3347 /*
3348 * cond_sleep_kernel(): utility function for cond_wait_kernel().
3349 * See the comment ahead of cond_sleep_queue(), above.
3350 */
3351 static int
cond_sleep_kernel(cond_t * cvp,mutex_t * mp,timespec_t * tsp)3352 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3353 {
3354 int mtype = mp->mutex_type;
3355 ulwp_t *self = curthread;
3356 int error;
3357
3358 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
3359 _ceil_prio_waive();
3360
3361 self->ul_sp = stkptr();
3362 self->ul_wchan = cvp;
3363 sigoff(self);
3364 mp->mutex_owner = 0;
3365 /* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */
3366 if (mtype & LOCK_PRIO_INHERIT) {
3367 mp->mutex_lockw = LOCKCLEAR;
3368 self->ul_pilocks--;
3369 }
3370 /*
3371 * ___lwp_cond_wait() returns immediately with EINTR if
3372 * set_parking_flag(self,0) is called on this lwp before it
3373 * goes to sleep in the kernel. sigacthandler() calls this
3374 * when a deferred signal is noted. This assures that we don't
3375 * get stuck in ___lwp_cond_wait() with all signals blocked
3376 * due to taking a deferred signal before going to sleep.
3377 */
3378 set_parking_flag(self, 1);
3379 if (self->ul_cursig != 0 ||
3380 (self->ul_cancelable && self->ul_cancel_pending))
3381 set_parking_flag(self, 0);
3382 error = ___lwp_cond_wait(cvp, mp, tsp, 1);
3383 set_parking_flag(self, 0);
3384 sigon(self);
3385 self->ul_sp = 0;
3386 self->ul_wchan = NULL;
3387 return (error);
3388 }
3389
3390 int
cond_wait_kernel(cond_t * cvp,mutex_t * mp,timespec_t * tsp)3391 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3392 {
3393 ulwp_t *self = curthread;
3394 int error;
3395 int merror;
3396
3397 if (self->ul_error_detection && self->ul_misaligned == 0)
3398 cond_wait_check_alignment(cvp, mp);
3399
3400 /*
3401 * See the large comment in cond_wait_queue(), above.
3402 */
3403 if (self->ul_cond_wait_defer)
3404 sigoff(self);
3405
3406 error = cond_sleep_kernel(cvp, mp, tsp);
3407
3408 /*
3409 * Override the return code from ___lwp_cond_wait()
3410 * with any non-zero return code from mutex_lock().
3411 * This addresses robust lock failures in particular;
3412 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE
3413 * errors in order to take corrective action.
3414 */
3415 if ((merror = mutex_lock_impl(mp, NULL)) != 0)
3416 error = merror;
3417
3418 /*
3419 * Take any deferred signal now, after we have reacquired the mutex.
3420 */
3421 if (self->ul_cond_wait_defer)
3422 sigon(self);
3423
3424 return (error);
3425 }
3426
3427 /*
3428 * Common code for cond_wait() and cond_timedwait()
3429 */
3430 int
cond_wait_common(cond_t * cvp,mutex_t * mp,timespec_t * tsp)3431 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3432 {
3433 int mtype = mp->mutex_type;
3434 hrtime_t begin_sleep = 0;
3435 ulwp_t *self = curthread;
3436 uberdata_t *udp = self->ul_uberdata;
3437 tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3438 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
3439 uint8_t rcount;
3440 int error = 0;
3441
3442 /*
3443 * The SUSV3 Posix spec for pthread_cond_timedwait() states:
3444 * Except in the case of [ETIMEDOUT], all these error checks
3445 * shall act as if they were performed immediately at the
3446 * beginning of processing for the function and shall cause
3447 * an error return, in effect, prior to modifying the state
3448 * of the mutex specified by mutex or the condition variable
3449 * specified by cond.
3450 * Therefore, we must return EINVAL now if the timout is invalid.
3451 */
3452 if (tsp != NULL &&
3453 (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
3454 return (EINVAL);
3455
3456 if (__td_event_report(self, TD_SLEEP, udp)) {
3457 self->ul_sp = stkptr();
3458 self->ul_wchan = cvp;
3459 self->ul_td_evbuf.eventnum = TD_SLEEP;
3460 self->ul_td_evbuf.eventdata = cvp;
3461 tdb_event(TD_SLEEP, udp);
3462 self->ul_sp = 0;
3463 }
3464 if (csp) {
3465 if (tsp)
3466 tdb_incr(csp->cond_timedwait);
3467 else
3468 tdb_incr(csp->cond_wait);
3469 }
3470 if (msp)
3471 begin_sleep = record_hold_time(msp);
3472 else if (csp)
3473 begin_sleep = gethrtime();
3474
3475 if (self->ul_error_detection) {
3476 if (!mutex_held(mp))
3477 lock_error(mp, "cond_wait", cvp, NULL);
3478 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
3479 lock_error(mp, "recursive mutex in cond_wait",
3480 cvp, NULL);
3481 if (cvp->cond_type & USYNC_PROCESS) {
3482 if (!(mtype & USYNC_PROCESS))
3483 lock_error(mp, "cond_wait", cvp,
3484 "condvar process-shared, "
3485 "mutex process-private");
3486 } else {
3487 if (mtype & USYNC_PROCESS)
3488 lock_error(mp, "cond_wait", cvp,
3489 "condvar process-private, "
3490 "mutex process-shared");
3491 }
3492 }
3493
3494 /*
3495 * We deal with recursive mutexes by completely
3496 * dropping the lock and restoring the recursion
3497 * count after waking up. This is arguably wrong,
3498 * but it obeys the principle of least astonishment.
3499 */
3500 rcount = mp->mutex_rcount;
3501 mp->mutex_rcount = 0;
3502 if ((mtype &
3503 (USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) |
3504 (cvp->cond_type & USYNC_PROCESS))
3505 error = cond_wait_kernel(cvp, mp, tsp);
3506 else
3507 error = cond_wait_queue(cvp, mp, tsp);
3508 mp->mutex_rcount = rcount;
3509
3510 if (csp) {
3511 hrtime_t lapse = gethrtime() - begin_sleep;
3512 if (tsp == NULL)
3513 csp->cond_wait_sleep_time += lapse;
3514 else {
3515 csp->cond_timedwait_sleep_time += lapse;
3516 if (error == ETIME)
3517 tdb_incr(csp->cond_timedwait_timeout);
3518 }
3519 }
3520 return (error);
3521 }
3522
3523 /*
3524 * cond_wait() is a cancellation point but __cond_wait() is not.
3525 * Internally, libc calls the non-cancellation version.
3526 * Other libraries need to use pthread_setcancelstate(), as appropriate,
3527 * since __cond_wait() is not exported from libc.
3528 */
3529 int
__cond_wait(cond_t * cvp,mutex_t * mp)3530 __cond_wait(cond_t *cvp, mutex_t *mp)
3531 {
3532 ulwp_t *self = curthread;
3533 uberdata_t *udp = self->ul_uberdata;
3534 uberflags_t *gflags;
3535
3536 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3537 !mutex_held(mp))
3538 return (EPERM);
3539
3540 /*
3541 * Optimize the common case of USYNC_THREAD plus
3542 * no error detection, no lock statistics, and no event tracing.
3543 */
3544 if ((gflags = self->ul_schedctl_called) != NULL &&
3545 (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
3546 self->ul_td_events_enable |
3547 udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
3548 return (cond_wait_queue(cvp, mp, NULL));
3549
3550 /*
3551 * Else do it the long way.
3552 */
3553 return (cond_wait_common(cvp, mp, NULL));
3554 }
3555
3556 #pragma weak _cond_wait = cond_wait
3557 int
cond_wait(cond_t * cvp,mutex_t * mp)3558 cond_wait(cond_t *cvp, mutex_t *mp)
3559 {
3560 int error;
3561
3562 _cancelon();
3563 error = __cond_wait(cvp, mp);
3564 if (error == EINTR)
3565 _canceloff();
3566 else
3567 _canceloff_nocancel();
3568 return (error);
3569 }
3570
3571 /*
3572 * pthread_cond_wait() is a cancellation point.
3573 */
3574 int
pthread_cond_wait(pthread_cond_t * _RESTRICT_KYWD cvp,pthread_mutex_t * _RESTRICT_KYWD mp)3575 pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp,
3576 pthread_mutex_t *_RESTRICT_KYWD mp)
3577 {
3578 int error;
3579
3580 error = cond_wait((cond_t *)cvp, (mutex_t *)mp);
3581 return ((error == EINTR)? 0 : error);
3582 }
3583
3584 /*
3585 * cond_timedwait() is a cancellation point but __cond_timedwait() is not.
3586 */
3587 int
__cond_timedwait(cond_t * cvp,mutex_t * mp,const timespec_t * abstime)3588 __cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
3589 {
3590 clockid_t clock_id = cvp->cond_clockid;
3591 timespec_t reltime;
3592 int error;
3593
3594 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3595 !mutex_held(mp))
3596 return (EPERM);
3597
3598 if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
3599 clock_id = CLOCK_REALTIME;
3600 abstime_to_reltime(clock_id, abstime, &reltime);
3601 error = cond_wait_common(cvp, mp, &reltime);
3602 if (error == ETIME && clock_id == CLOCK_HIGHRES) {
3603 /*
3604 * Don't return ETIME if we didn't really get a timeout.
3605 * This can happen if we return because someone resets
3606 * the system clock. Just return zero in this case,
3607 * giving a spurious wakeup but not a timeout.
3608 */
3609 if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
3610 abstime->tv_nsec > gethrtime())
3611 error = 0;
3612 }
3613 return (error);
3614 }
3615
3616 int
cond_timedwait(cond_t * cvp,mutex_t * mp,const timespec_t * abstime)3617 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
3618 {
3619 int error;
3620
3621 _cancelon();
3622 error = __cond_timedwait(cvp, mp, abstime);
3623 if (error == EINTR)
3624 _canceloff();
3625 else
3626 _canceloff_nocancel();
3627 return (error);
3628 }
3629
3630 /*
3631 * pthread_cond_timedwait() is a cancellation point.
3632 */
3633 int
pthread_cond_timedwait(pthread_cond_t * _RESTRICT_KYWD cvp,pthread_mutex_t * _RESTRICT_KYWD mp,const struct timespec * _RESTRICT_KYWD abstime)3634 pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp,
3635 pthread_mutex_t *_RESTRICT_KYWD mp,
3636 const struct timespec *_RESTRICT_KYWD abstime)
3637 {
3638 int error;
3639
3640 error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime);
3641 if (error == ETIME)
3642 error = ETIMEDOUT;
3643 else if (error == EINTR)
3644 error = 0;
3645 return (error);
3646 }
3647
3648 /*
3649 * cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not.
3650 */
3651 int
__cond_reltimedwait(cond_t * cvp,mutex_t * mp,const timespec_t * reltime)3652 __cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
3653 {
3654 timespec_t tslocal = *reltime;
3655
3656 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3657 !mutex_held(mp))
3658 return (EPERM);
3659
3660 return (cond_wait_common(cvp, mp, &tslocal));
3661 }
3662
3663 int
cond_reltimedwait(cond_t * cvp,mutex_t * mp,const timespec_t * reltime)3664 cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
3665 {
3666 int error;
3667
3668 _cancelon();
3669 error = __cond_reltimedwait(cvp, mp, reltime);
3670 if (error == EINTR)
3671 _canceloff();
3672 else
3673 _canceloff_nocancel();
3674 return (error);
3675 }
3676
3677 int
pthread_cond_reltimedwait_np(pthread_cond_t * _RESTRICT_KYWD cvp,pthread_mutex_t * _RESTRICT_KYWD mp,const struct timespec * _RESTRICT_KYWD reltime)3678 pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp,
3679 pthread_mutex_t *_RESTRICT_KYWD mp,
3680 const struct timespec *_RESTRICT_KYWD reltime)
3681 {
3682 int error;
3683
3684 error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime);
3685 if (error == ETIME)
3686 error = ETIMEDOUT;
3687 else if (error == EINTR)
3688 error = 0;
3689 return (error);
3690 }
3691
3692 #pragma weak pthread_cond_signal = cond_signal
3693 #pragma weak _cond_signal = cond_signal
3694 int
cond_signal(cond_t * cvp)3695 cond_signal(cond_t *cvp)
3696 {
3697 ulwp_t *self = curthread;
3698 uberdata_t *udp = self->ul_uberdata;
3699 tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3700 int error = 0;
3701 int more;
3702 lwpid_t lwpid;
3703 queue_head_t *qp;
3704 mutex_t *mp;
3705 queue_head_t *mqp;
3706 ulwp_t **ulwpp;
3707 ulwp_t *ulwp;
3708 ulwp_t *prev;
3709
3710 if (csp)
3711 tdb_incr(csp->cond_signal);
3712
3713 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
3714 error = _lwp_cond_signal(cvp);
3715
3716 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
3717 return (error);
3718
3719 /*
3720 * Move someone from the condvar sleep queue to the mutex sleep
3721 * queue for the mutex that he will acquire on being waked up.
3722 * We can do this only if we own the mutex he will acquire.
3723 * If we do not own the mutex, or if his ul_cv_wake flag
3724 * is set, just dequeue and unpark him.
3725 */
3726 qp = queue_lock(cvp, CV);
3727 ulwpp = queue_slot(qp, &prev, &more);
3728 cvp->cond_waiters_user = more;
3729 if (ulwpp == NULL) { /* no one on the sleep queue */
3730 queue_unlock(qp);
3731 return (error);
3732 }
3733 ulwp = *ulwpp;
3734
3735 /*
3736 * Inform the thread that he was the recipient of a cond_signal().
3737 * This lets him deal with cond_signal() and, concurrently,
3738 * one or more of a cancellation, a UNIX signal, or a timeout.
3739 * These latter conditions must not consume a cond_signal().
3740 */
3741 ulwp->ul_signalled = 1;
3742
3743 /*
3744 * Dequeue the waiter but leave his ul_sleepq non-NULL
3745 * while we move him to the mutex queue so that he can
3746 * deal properly with spurious wakeups.
3747 */
3748 queue_unlink(qp, ulwpp, prev);
3749
3750 mp = ulwp->ul_cvmutex; /* the mutex he will acquire */
3751 ulwp->ul_cvmutex = NULL;
3752 ASSERT(mp != NULL);
3753
3754 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3755 /* just wake him up */
3756 lwpid = ulwp->ul_lwpid;
3757 no_preempt(self);
3758 ulwp->ul_sleepq = NULL;
3759 ulwp->ul_wchan = NULL;
3760 queue_unlock(qp);
3761 (void) __lwp_unpark(lwpid);
3762 preempt(self);
3763 } else {
3764 /* move him to the mutex queue */
3765 mqp = queue_lock(mp, MX);
3766 enqueue(mqp, ulwp, 0);
3767 mp->mutex_waiters = 1;
3768 queue_unlock(mqp);
3769 queue_unlock(qp);
3770 }
3771
3772 return (error);
3773 }
3774
3775 /*
3776 * Utility function called by mutex_wakeup_all(), cond_broadcast(),
3777 * and rw_queue_release() to (re)allocate a big buffer to hold the
3778 * lwpids of all the threads to be set running after they are removed
3779 * from their sleep queues. Since we are holding a queue lock, we
3780 * cannot call any function that might acquire a lock. mmap(), munmap(),
3781 * lwp_unpark_all() are simple system calls and are safe in this regard.
3782 */
3783 lwpid_t *
alloc_lwpids(lwpid_t * lwpid,int * nlwpid_ptr,int * maxlwps_ptr)3784 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr)
3785 {
3786 /*
3787 * Allocate NEWLWPS ids on the first overflow.
3788 * Double the allocation each time after that.
3789 */
3790 int nlwpid = *nlwpid_ptr;
3791 int maxlwps = *maxlwps_ptr;
3792 int first_allocation;
3793 int newlwps;
3794 void *vaddr;
3795
3796 ASSERT(nlwpid == maxlwps);
3797
3798 first_allocation = (maxlwps == MAXLWPS);
3799 newlwps = first_allocation? NEWLWPS : 2 * maxlwps;
3800 vaddr = mmap(NULL, newlwps * sizeof (lwpid_t),
3801 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0);
3802
3803 if (vaddr == MAP_FAILED) {
3804 /*
3805 * Let's hope this never happens.
3806 * If it does, then we have a terrible
3807 * thundering herd on our hands.
3808 */
3809 (void) __lwp_unpark_all(lwpid, nlwpid);
3810 *nlwpid_ptr = 0;
3811 } else {
3812 (void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t));
3813 if (!first_allocation)
3814 (void) munmap((caddr_t)lwpid,
3815 maxlwps * sizeof (lwpid_t));
3816 lwpid = vaddr;
3817 *maxlwps_ptr = newlwps;
3818 }
3819
3820 return (lwpid);
3821 }
3822
3823 #pragma weak pthread_cond_broadcast = cond_broadcast
3824 #pragma weak _cond_broadcast = cond_broadcast
3825 int
cond_broadcast(cond_t * cvp)3826 cond_broadcast(cond_t *cvp)
3827 {
3828 ulwp_t *self = curthread;
3829 uberdata_t *udp = self->ul_uberdata;
3830 tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3831 int error = 0;
3832 queue_head_t *qp;
3833 queue_root_t *qrp;
3834 mutex_t *mp;
3835 mutex_t *mp_cache = NULL;
3836 queue_head_t *mqp = NULL;
3837 ulwp_t *ulwp;
3838 int nlwpid = 0;
3839 int maxlwps = MAXLWPS;
3840 lwpid_t buffer[MAXLWPS];
3841 lwpid_t *lwpid = buffer;
3842
3843 if (csp)
3844 tdb_incr(csp->cond_broadcast);
3845
3846 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */
3847 error = _lwp_cond_broadcast(cvp);
3848
3849 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */
3850 return (error);
3851
3852 /*
3853 * Move everyone from the condvar sleep queue to the mutex sleep
3854 * queue for the mutex that they will acquire on being waked up.
3855 * We can do this only if we own the mutex they will acquire.
3856 * If we do not own the mutex, or if their ul_cv_wake flag
3857 * is set, just dequeue and unpark them.
3858 *
3859 * We keep track of lwpids that are to be unparked in lwpid[].
3860 * __lwp_unpark_all() is called to unpark all of them after
3861 * they have been removed from the sleep queue and the sleep
3862 * queue lock has been dropped. If we run out of space in our
3863 * on-stack buffer, we need to allocate more but we can't call
3864 * lmalloc() because we are holding a queue lock when the overflow
3865 * occurs and lmalloc() acquires a lock. We can't use alloca()
3866 * either because the application may have allocated a small
3867 * stack and we don't want to overrun the stack. So we call
3868 * alloc_lwpids() to allocate a bigger buffer using the mmap()
3869 * system call directly since that path acquires no locks.
3870 */
3871 qp = queue_lock(cvp, CV);
3872 cvp->cond_waiters_user = 0;
3873 for (;;) {
3874 if ((qrp = qp->qh_root) == NULL ||
3875 (ulwp = qrp->qr_head) == NULL)
3876 break;
3877 ASSERT(ulwp->ul_wchan == cvp);
3878 queue_unlink(qp, &qrp->qr_head, NULL);
3879 mp = ulwp->ul_cvmutex; /* his mutex */
3880 ulwp->ul_cvmutex = NULL;
3881 ASSERT(mp != NULL);
3882 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3883 /* just wake him up */
3884 ulwp->ul_sleepq = NULL;
3885 ulwp->ul_wchan = NULL;
3886 if (nlwpid == maxlwps)
3887 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
3888 lwpid[nlwpid++] = ulwp->ul_lwpid;
3889 } else {
3890 /* move him to the mutex queue */
3891 if (mp != mp_cache) {
3892 mp_cache = mp;
3893 if (mqp != NULL)
3894 queue_unlock(mqp);
3895 mqp = queue_lock(mp, MX);
3896 }
3897 enqueue(mqp, ulwp, 0);
3898 mp->mutex_waiters = 1;
3899 }
3900 }
3901 if (mqp != NULL)
3902 queue_unlock(mqp);
3903 if (nlwpid == 0) {
3904 queue_unlock(qp);
3905 } else {
3906 no_preempt(self);
3907 queue_unlock(qp);
3908 if (nlwpid == 1)
3909 (void) __lwp_unpark(lwpid[0]);
3910 else
3911 (void) __lwp_unpark_all(lwpid, nlwpid);
3912 preempt(self);
3913 }
3914 if (lwpid != buffer)
3915 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
3916 return (error);
3917 }
3918
3919 #pragma weak pthread_cond_destroy = cond_destroy
3920 int
cond_destroy(cond_t * cvp)3921 cond_destroy(cond_t *cvp)
3922 {
3923 cvp->cond_magic = 0;
3924 tdb_sync_obj_deregister(cvp);
3925 return (0);
3926 }
3927
3928 #if defined(THREAD_DEBUG)
3929 void
assert_no_libc_locks_held(void)3930 assert_no_libc_locks_held(void)
3931 {
3932 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
3933 }
3934
3935 /* protected by link_lock */
3936 uint64_t spin_lock_spin;
3937 uint64_t spin_lock_spin2;
3938 uint64_t spin_lock_sleep;
3939 uint64_t spin_lock_wakeup;
3940
3941 /*
3942 * Record spin lock statistics.
3943 * Called by a thread exiting itself in thrp_exit().
3944 * Also called via atexit() from the thread calling
3945 * exit() to do all the other threads as well.
3946 */
3947 void
record_spin_locks(ulwp_t * ulwp)3948 record_spin_locks(ulwp_t *ulwp)
3949 {
3950 spin_lock_spin += ulwp->ul_spin_lock_spin;
3951 spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
3952 spin_lock_sleep += ulwp->ul_spin_lock_sleep;
3953 spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
3954 ulwp->ul_spin_lock_spin = 0;
3955 ulwp->ul_spin_lock_spin2 = 0;
3956 ulwp->ul_spin_lock_sleep = 0;
3957 ulwp->ul_spin_lock_wakeup = 0;
3958 }
3959
3960 /*
3961 * atexit function: dump the queue statistics to stderr.
3962 */
3963 #include <stdio.h>
3964 void
dump_queue_statistics(void)3965 dump_queue_statistics(void)
3966 {
3967 uberdata_t *udp = curthread->ul_uberdata;
3968 queue_head_t *qp;
3969 int qn;
3970 uint64_t spin_lock_total = 0;
3971
3972 if (udp->queue_head == NULL || thread_queue_dump == 0)
3973 return;
3974
3975 if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
3976 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0)
3977 return;
3978 for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
3979 if (qp->qh_lockcount == 0)
3980 continue;
3981 spin_lock_total += qp->qh_lockcount;
3982 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
3983 (u_longlong_t)qp->qh_lockcount,
3984 qp->qh_qmax, qp->qh_hmax) < 0)
3985 return;
3986 }
3987
3988 if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
3989 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0)
3990 return;
3991 for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
3992 if (qp->qh_lockcount == 0)
3993 continue;
3994 spin_lock_total += qp->qh_lockcount;
3995 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
3996 (u_longlong_t)qp->qh_lockcount,
3997 qp->qh_qmax, qp->qh_hmax) < 0)
3998 return;
3999 }
4000
4001 (void) fprintf(stderr, "\n spin_lock_total = %10llu\n",
4002 (u_longlong_t)spin_lock_total);
4003 (void) fprintf(stderr, " spin_lock_spin = %10llu\n",
4004 (u_longlong_t)spin_lock_spin);
4005 (void) fprintf(stderr, " spin_lock_spin2 = %10llu\n",
4006 (u_longlong_t)spin_lock_spin2);
4007 (void) fprintf(stderr, " spin_lock_sleep = %10llu\n",
4008 (u_longlong_t)spin_lock_sleep);
4009 (void) fprintf(stderr, " spin_lock_wakeup = %10llu\n",
4010 (u_longlong_t)spin_lock_wakeup);
4011 }
4012 #endif
4013