1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38
39 #include "swap.h"
40 #include "internal.h"
41
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_INIT(0);
47
48 /*
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
53 */
54
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 #define ZSWAP_PARAM_UNSET ""
80
81 static int zswap_setup(void);
82
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 return zswap_enabled;
133 }
134
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
148 u8 *buffer;
149 struct mutex mutex;
150 bool is_sleepable;
151 };
152
153 /*
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
158 */
159 struct zswap_pool {
160 struct zpool *zpool;
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177
178 /*
179 * struct zswap_entry
180 *
181 * This structure contains the metadata for tracking a single compressed
182 * page within zswap.
183 *
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
186 * decompression.
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
195 */
196 struct zswap_entry {
197 swp_entry_t swpentry;
198 unsigned int length;
199 bool referenced;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
204 };
205
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 enum zswap_init_type {
217 ZSWAP_UNINIT,
218 ZSWAP_INIT_SUCCEED,
219 ZSWAP_INIT_FAILED
220 };
221
222 static enum zswap_init_type zswap_init_state;
223
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
243
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 int ret;
255
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
259 * create a pool.
260 */
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 return NULL;
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 return NULL;
265 }
266
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 if (!pool)
269 return NULL;
270
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
274 if (!pool->zpool) {
275 pr_err("%s zpool not available\n", type);
276 goto error;
277 }
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
285 goto error;
286 }
287
288 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
289 &pool->node);
290 if (ret)
291 goto error;
292
293 /* being the current pool takes 1 ref; this func expects the
294 * caller to always add the new pool as the current pool
295 */
296 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
298 if (ret)
299 goto ref_fail;
300 INIT_LIST_HEAD(&pool->list);
301
302 zswap_pool_debug("created", pool);
303
304 return pool;
305
306 ref_fail:
307 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
308 error:
309 if (pool->acomp_ctx)
310 free_percpu(pool->acomp_ctx);
311 if (pool->zpool)
312 zpool_destroy_pool(pool->zpool);
313 kfree(pool);
314 return NULL;
315 }
316
__zswap_pool_create_fallback(void)317 static struct zswap_pool *__zswap_pool_create_fallback(void)
318 {
319 bool has_comp, has_zpool;
320
321 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 if (!has_comp && strcmp(zswap_compressor,
323 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 pr_err("compressor %s not available, using default %s\n",
325 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 param_free_charp(&zswap_compressor);
327 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 }
330 if (!has_comp) {
331 pr_err("default compressor %s not available\n",
332 zswap_compressor);
333 param_free_charp(&zswap_compressor);
334 zswap_compressor = ZSWAP_PARAM_UNSET;
335 }
336
337 has_zpool = zpool_has_pool(zswap_zpool_type);
338 if (!has_zpool && strcmp(zswap_zpool_type,
339 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 pr_err("zpool %s not available, using default %s\n",
341 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 param_free_charp(&zswap_zpool_type);
343 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 has_zpool = zpool_has_pool(zswap_zpool_type);
345 }
346 if (!has_zpool) {
347 pr_err("default zpool %s not available\n",
348 zswap_zpool_type);
349 param_free_charp(&zswap_zpool_type);
350 zswap_zpool_type = ZSWAP_PARAM_UNSET;
351 }
352
353 if (!has_comp || !has_zpool)
354 return NULL;
355
356 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
357 }
358
zswap_pool_destroy(struct zswap_pool * pool)359 static void zswap_pool_destroy(struct zswap_pool *pool)
360 {
361 zswap_pool_debug("destroying", pool);
362
363 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 free_percpu(pool->acomp_ctx);
365
366 zpool_destroy_pool(pool->zpool);
367 kfree(pool);
368 }
369
__zswap_pool_release(struct work_struct * work)370 static void __zswap_pool_release(struct work_struct *work)
371 {
372 struct zswap_pool *pool = container_of(work, typeof(*pool),
373 release_work);
374
375 synchronize_rcu();
376
377 /* nobody should have been able to get a ref... */
378 WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 percpu_ref_exit(&pool->ref);
380
381 /* pool is now off zswap_pools list and has no references. */
382 zswap_pool_destroy(pool);
383 }
384
385 static struct zswap_pool *zswap_pool_current(void);
386
__zswap_pool_empty(struct percpu_ref * ref)387 static void __zswap_pool_empty(struct percpu_ref *ref)
388 {
389 struct zswap_pool *pool;
390
391 pool = container_of(ref, typeof(*pool), ref);
392
393 spin_lock_bh(&zswap_pools_lock);
394
395 WARN_ON(pool == zswap_pool_current());
396
397 list_del_rcu(&pool->list);
398
399 INIT_WORK(&pool->release_work, __zswap_pool_release);
400 schedule_work(&pool->release_work);
401
402 spin_unlock_bh(&zswap_pools_lock);
403 }
404
zswap_pool_tryget(struct zswap_pool * pool)405 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
406 {
407 if (!pool)
408 return 0;
409
410 return percpu_ref_tryget(&pool->ref);
411 }
412
413 /* The caller must already have a reference. */
zswap_pool_get(struct zswap_pool * pool)414 static void zswap_pool_get(struct zswap_pool *pool)
415 {
416 percpu_ref_get(&pool->ref);
417 }
418
zswap_pool_put(struct zswap_pool * pool)419 static void zswap_pool_put(struct zswap_pool *pool)
420 {
421 percpu_ref_put(&pool->ref);
422 }
423
__zswap_pool_current(void)424 static struct zswap_pool *__zswap_pool_current(void)
425 {
426 struct zswap_pool *pool;
427
428 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
429 WARN_ONCE(!pool && zswap_has_pool,
430 "%s: no page storage pool!\n", __func__);
431
432 return pool;
433 }
434
zswap_pool_current(void)435 static struct zswap_pool *zswap_pool_current(void)
436 {
437 assert_spin_locked(&zswap_pools_lock);
438
439 return __zswap_pool_current();
440 }
441
zswap_pool_current_get(void)442 static struct zswap_pool *zswap_pool_current_get(void)
443 {
444 struct zswap_pool *pool;
445
446 rcu_read_lock();
447
448 pool = __zswap_pool_current();
449 if (!zswap_pool_tryget(pool))
450 pool = NULL;
451
452 rcu_read_unlock();
453
454 return pool;
455 }
456
457 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)458 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
459 {
460 struct zswap_pool *pool;
461
462 assert_spin_locked(&zswap_pools_lock);
463
464 list_for_each_entry_rcu(pool, &zswap_pools, list) {
465 if (strcmp(pool->tfm_name, compressor))
466 continue;
467 if (strcmp(zpool_get_type(pool->zpool), type))
468 continue;
469 /* if we can't get it, it's about to be destroyed */
470 if (!zswap_pool_tryget(pool))
471 continue;
472 return pool;
473 }
474
475 return NULL;
476 }
477
zswap_max_pages(void)478 static unsigned long zswap_max_pages(void)
479 {
480 return totalram_pages() * zswap_max_pool_percent / 100;
481 }
482
zswap_accept_thr_pages(void)483 static unsigned long zswap_accept_thr_pages(void)
484 {
485 return zswap_max_pages() * zswap_accept_thr_percent / 100;
486 }
487
zswap_total_pages(void)488 unsigned long zswap_total_pages(void)
489 {
490 struct zswap_pool *pool;
491 unsigned long total = 0;
492
493 rcu_read_lock();
494 list_for_each_entry_rcu(pool, &zswap_pools, list)
495 total += zpool_get_total_pages(pool->zpool);
496 rcu_read_unlock();
497
498 return total;
499 }
500
zswap_check_limits(void)501 static bool zswap_check_limits(void)
502 {
503 unsigned long cur_pages = zswap_total_pages();
504 unsigned long max_pages = zswap_max_pages();
505
506 if (cur_pages >= max_pages) {
507 zswap_pool_limit_hit++;
508 zswap_pool_reached_full = true;
509 } else if (zswap_pool_reached_full &&
510 cur_pages <= zswap_accept_thr_pages()) {
511 zswap_pool_reached_full = false;
512 }
513 return zswap_pool_reached_full;
514 }
515
516 /*********************************
517 * param callbacks
518 **********************************/
519
zswap_pool_changed(const char * s,const struct kernel_param * kp)520 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
521 {
522 /* no change required */
523 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
524 return false;
525 return true;
526 }
527
528 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)529 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
530 char *type, char *compressor)
531 {
532 struct zswap_pool *pool, *put_pool = NULL;
533 char *s = strstrip((char *)val);
534 int ret = 0;
535 bool new_pool = false;
536
537 mutex_lock(&zswap_init_lock);
538 switch (zswap_init_state) {
539 case ZSWAP_UNINIT:
540 /* if this is load-time (pre-init) param setting,
541 * don't create a pool; that's done during init.
542 */
543 ret = param_set_charp(s, kp);
544 break;
545 case ZSWAP_INIT_SUCCEED:
546 new_pool = zswap_pool_changed(s, kp);
547 break;
548 case ZSWAP_INIT_FAILED:
549 pr_err("can't set param, initialization failed\n");
550 ret = -ENODEV;
551 }
552 mutex_unlock(&zswap_init_lock);
553
554 /* no need to create a new pool, return directly */
555 if (!new_pool)
556 return ret;
557
558 if (!type) {
559 if (!zpool_has_pool(s)) {
560 pr_err("zpool %s not available\n", s);
561 return -ENOENT;
562 }
563 type = s;
564 } else if (!compressor) {
565 if (!crypto_has_acomp(s, 0, 0)) {
566 pr_err("compressor %s not available\n", s);
567 return -ENOENT;
568 }
569 compressor = s;
570 } else {
571 WARN_ON(1);
572 return -EINVAL;
573 }
574
575 spin_lock_bh(&zswap_pools_lock);
576
577 pool = zswap_pool_find_get(type, compressor);
578 if (pool) {
579 zswap_pool_debug("using existing", pool);
580 WARN_ON(pool == zswap_pool_current());
581 list_del_rcu(&pool->list);
582 }
583
584 spin_unlock_bh(&zswap_pools_lock);
585
586 if (!pool)
587 pool = zswap_pool_create(type, compressor);
588 else {
589 /*
590 * Restore the initial ref dropped by percpu_ref_kill()
591 * when the pool was decommissioned and switch it again
592 * to percpu mode.
593 */
594 percpu_ref_resurrect(&pool->ref);
595
596 /* Drop the ref from zswap_pool_find_get(). */
597 zswap_pool_put(pool);
598 }
599
600 if (pool)
601 ret = param_set_charp(s, kp);
602 else
603 ret = -EINVAL;
604
605 spin_lock_bh(&zswap_pools_lock);
606
607 if (!ret) {
608 put_pool = zswap_pool_current();
609 list_add_rcu(&pool->list, &zswap_pools);
610 zswap_has_pool = true;
611 } else if (pool) {
612 /* add the possibly pre-existing pool to the end of the pools
613 * list; if it's new (and empty) then it'll be removed and
614 * destroyed by the put after we drop the lock
615 */
616 list_add_tail_rcu(&pool->list, &zswap_pools);
617 put_pool = pool;
618 }
619
620 spin_unlock_bh(&zswap_pools_lock);
621
622 if (!zswap_has_pool && !pool) {
623 /* if initial pool creation failed, and this pool creation also
624 * failed, maybe both compressor and zpool params were bad.
625 * Allow changing this param, so pool creation will succeed
626 * when the other param is changed. We already verified this
627 * param is ok in the zpool_has_pool() or crypto_has_acomp()
628 * checks above.
629 */
630 ret = param_set_charp(s, kp);
631 }
632
633 /* drop the ref from either the old current pool,
634 * or the new pool we failed to add
635 */
636 if (put_pool)
637 percpu_ref_kill(&put_pool->ref);
638
639 return ret;
640 }
641
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)642 static int zswap_compressor_param_set(const char *val,
643 const struct kernel_param *kp)
644 {
645 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
646 }
647
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)648 static int zswap_zpool_param_set(const char *val,
649 const struct kernel_param *kp)
650 {
651 return __zswap_param_set(val, kp, NULL, zswap_compressor);
652 }
653
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)654 static int zswap_enabled_param_set(const char *val,
655 const struct kernel_param *kp)
656 {
657 int ret = -ENODEV;
658
659 /* if this is load-time (pre-init) param setting, only set param. */
660 if (system_state != SYSTEM_RUNNING)
661 return param_set_bool(val, kp);
662
663 mutex_lock(&zswap_init_lock);
664 switch (zswap_init_state) {
665 case ZSWAP_UNINIT:
666 if (zswap_setup())
667 break;
668 fallthrough;
669 case ZSWAP_INIT_SUCCEED:
670 if (!zswap_has_pool)
671 pr_err("can't enable, no pool configured\n");
672 else
673 ret = param_set_bool(val, kp);
674 break;
675 case ZSWAP_INIT_FAILED:
676 pr_err("can't enable, initialization failed\n");
677 }
678 mutex_unlock(&zswap_init_lock);
679
680 return ret;
681 }
682
683 /*********************************
684 * lru functions
685 **********************************/
686
687 /* should be called under RCU */
688 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)689 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
690 {
691 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
692 }
693 #else
mem_cgroup_from_entry(struct zswap_entry * entry)694 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
695 {
696 return NULL;
697 }
698 #endif
699
entry_to_nid(struct zswap_entry * entry)700 static inline int entry_to_nid(struct zswap_entry *entry)
701 {
702 return page_to_nid(virt_to_page(entry));
703 }
704
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)705 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
706 {
707 int nid = entry_to_nid(entry);
708 struct mem_cgroup *memcg;
709
710 /*
711 * Note that it is safe to use rcu_read_lock() here, even in the face of
712 * concurrent memcg offlining:
713 *
714 * 1. list_lru_add() is called before list_lru_one is dead. The
715 * new entry will be reparented to memcg's parent's list_lru.
716 * 2. list_lru_add() is called after list_lru_one is dead. The
717 * new entry will be added directly to memcg's parent's list_lru.
718 *
719 * Similar reasoning holds for list_lru_del().
720 */
721 rcu_read_lock();
722 memcg = mem_cgroup_from_entry(entry);
723 /* will always succeed */
724 list_lru_add(list_lru, &entry->lru, nid, memcg);
725 rcu_read_unlock();
726 }
727
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)728 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
729 {
730 int nid = entry_to_nid(entry);
731 struct mem_cgroup *memcg;
732
733 rcu_read_lock();
734 memcg = mem_cgroup_from_entry(entry);
735 /* will always succeed */
736 list_lru_del(list_lru, &entry->lru, nid, memcg);
737 rcu_read_unlock();
738 }
739
zswap_lruvec_state_init(struct lruvec * lruvec)740 void zswap_lruvec_state_init(struct lruvec *lruvec)
741 {
742 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
743 }
744
zswap_folio_swapin(struct folio * folio)745 void zswap_folio_swapin(struct folio *folio)
746 {
747 struct lruvec *lruvec;
748
749 if (folio) {
750 lruvec = folio_lruvec(folio);
751 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
752 }
753 }
754
755 /*
756 * This function should be called when a memcg is being offlined.
757 *
758 * Since the global shrinker shrink_worker() may hold a reference
759 * of the memcg, we must check and release the reference in
760 * zswap_next_shrink.
761 *
762 * shrink_worker() must handle the case where this function releases
763 * the reference of memcg being shrunk.
764 */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)765 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
766 {
767 /* lock out zswap shrinker walking memcg tree */
768 spin_lock(&zswap_shrink_lock);
769 if (zswap_next_shrink == memcg) {
770 do {
771 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
772 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
773 }
774 spin_unlock(&zswap_shrink_lock);
775 }
776
777 /*********************************
778 * zswap entry functions
779 **********************************/
780 static struct kmem_cache *zswap_entry_cache;
781
zswap_entry_cache_alloc(gfp_t gfp,int nid)782 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
783 {
784 struct zswap_entry *entry;
785 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
786 if (!entry)
787 return NULL;
788 return entry;
789 }
790
zswap_entry_cache_free(struct zswap_entry * entry)791 static void zswap_entry_cache_free(struct zswap_entry *entry)
792 {
793 kmem_cache_free(zswap_entry_cache, entry);
794 }
795
796 /*
797 * Carries out the common pattern of freeing and entry's zpool allocation,
798 * freeing the entry itself, and decrementing the number of stored pages.
799 */
zswap_entry_free(struct zswap_entry * entry)800 static void zswap_entry_free(struct zswap_entry *entry)
801 {
802 zswap_lru_del(&zswap_list_lru, entry);
803 zpool_free(entry->pool->zpool, entry->handle);
804 zswap_pool_put(entry->pool);
805 if (entry->objcg) {
806 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
807 obj_cgroup_put(entry->objcg);
808 }
809 zswap_entry_cache_free(entry);
810 atomic_long_dec(&zswap_stored_pages);
811 }
812
813 /*********************************
814 * compressed storage functions
815 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)816 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
817 {
818 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
819 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
820 struct crypto_acomp *acomp;
821 struct acomp_req *req;
822 int ret;
823
824 mutex_init(&acomp_ctx->mutex);
825
826 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
827 if (!acomp_ctx->buffer)
828 return -ENOMEM;
829
830 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
831 if (IS_ERR(acomp)) {
832 pr_err("could not alloc crypto acomp %s : %ld\n",
833 pool->tfm_name, PTR_ERR(acomp));
834 ret = PTR_ERR(acomp);
835 goto acomp_fail;
836 }
837 acomp_ctx->acomp = acomp;
838 acomp_ctx->is_sleepable = acomp_is_async(acomp);
839
840 req = acomp_request_alloc(acomp_ctx->acomp);
841 if (!req) {
842 pr_err("could not alloc crypto acomp_request %s\n",
843 pool->tfm_name);
844 ret = -ENOMEM;
845 goto req_fail;
846 }
847 acomp_ctx->req = req;
848
849 crypto_init_wait(&acomp_ctx->wait);
850 /*
851 * if the backend of acomp is async zip, crypto_req_done() will wakeup
852 * crypto_wait_req(); if the backend of acomp is scomp, the callback
853 * won't be called, crypto_wait_req() will return without blocking.
854 */
855 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 crypto_req_done, &acomp_ctx->wait);
857
858 return 0;
859
860 req_fail:
861 crypto_free_acomp(acomp_ctx->acomp);
862 acomp_fail:
863 kfree(acomp_ctx->buffer);
864 return ret;
865 }
866
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)867 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
868 {
869 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
870 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
871
872 if (!IS_ERR_OR_NULL(acomp_ctx)) {
873 if (!IS_ERR_OR_NULL(acomp_ctx->req))
874 acomp_request_free(acomp_ctx->req);
875 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
876 crypto_free_acomp(acomp_ctx->acomp);
877 kfree(acomp_ctx->buffer);
878 }
879
880 return 0;
881 }
882
zswap_compress(struct page * page,struct zswap_entry * entry,struct zswap_pool * pool)883 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
884 struct zswap_pool *pool)
885 {
886 struct crypto_acomp_ctx *acomp_ctx;
887 struct scatterlist input, output;
888 int comp_ret = 0, alloc_ret = 0;
889 unsigned int dlen = PAGE_SIZE;
890 unsigned long handle;
891 struct zpool *zpool;
892 char *buf;
893 gfp_t gfp;
894 u8 *dst;
895
896 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
897
898 mutex_lock(&acomp_ctx->mutex);
899
900 dst = acomp_ctx->buffer;
901 sg_init_table(&input, 1);
902 sg_set_page(&input, page, PAGE_SIZE, 0);
903
904 /*
905 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
906 * and hardware-accelerators may won't check the dst buffer size, so
907 * giving the dst buffer with enough length to avoid buffer overflow.
908 */
909 sg_init_one(&output, dst, PAGE_SIZE * 2);
910 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
911
912 /*
913 * it maybe looks a little bit silly that we send an asynchronous request,
914 * then wait for its completion synchronously. This makes the process look
915 * synchronous in fact.
916 * Theoretically, acomp supports users send multiple acomp requests in one
917 * acomp instance, then get those requests done simultaneously. but in this
918 * case, zswap actually does store and load page by page, there is no
919 * existing method to send the second page before the first page is done
920 * in one thread doing zwap.
921 * but in different threads running on different cpu, we have different
922 * acomp instance, so multiple threads can do (de)compression in parallel.
923 */
924 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
925 dlen = acomp_ctx->req->dlen;
926 if (comp_ret)
927 goto unlock;
928
929 zpool = pool->zpool;
930 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
931 if (zpool_malloc_support_movable(zpool))
932 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
933 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
934 if (alloc_ret)
935 goto unlock;
936
937 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
938 memcpy(buf, dst, dlen);
939 zpool_unmap_handle(zpool, handle);
940
941 entry->handle = handle;
942 entry->length = dlen;
943
944 unlock:
945 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
946 zswap_reject_compress_poor++;
947 else if (comp_ret)
948 zswap_reject_compress_fail++;
949 else if (alloc_ret)
950 zswap_reject_alloc_fail++;
951
952 mutex_unlock(&acomp_ctx->mutex);
953 return comp_ret == 0 && alloc_ret == 0;
954 }
955
zswap_decompress(struct zswap_entry * entry,struct folio * folio)956 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
957 {
958 struct zpool *zpool = entry->pool->zpool;
959 struct scatterlist input, output;
960 struct crypto_acomp_ctx *acomp_ctx;
961 u8 *src;
962
963 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
964 mutex_lock(&acomp_ctx->mutex);
965
966 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
967 /*
968 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
969 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
970 * resort to copying the buffer to a temporary one.
971 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
972 * such as a kmap address of high memory or even ever a vmap address.
973 * However, sg_init_one is only equipped to handle linearly mapped low memory.
974 * In such cases, we also must copy the buffer to a temporary and lowmem one.
975 */
976 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
977 !virt_addr_valid(src)) {
978 memcpy(acomp_ctx->buffer, src, entry->length);
979 src = acomp_ctx->buffer;
980 zpool_unmap_handle(zpool, entry->handle);
981 }
982
983 sg_init_one(&input, src, entry->length);
984 sg_init_table(&output, 1);
985 sg_set_folio(&output, folio, PAGE_SIZE, 0);
986 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
987 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
988 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
989 mutex_unlock(&acomp_ctx->mutex);
990
991 if (src != acomp_ctx->buffer)
992 zpool_unmap_handle(zpool, entry->handle);
993 }
994
995 /*********************************
996 * writeback code
997 **********************************/
998 /*
999 * Attempts to free an entry by adding a folio to the swap cache,
1000 * decompressing the entry data into the folio, and issuing a
1001 * bio write to write the folio back to the swap device.
1002 *
1003 * This can be thought of as a "resumed writeback" of the folio
1004 * to the swap device. We are basically resuming the same swap
1005 * writeback path that was intercepted with the zswap_store()
1006 * in the first place. After the folio has been decompressed into
1007 * the swap cache, the compressed version stored by zswap can be
1008 * freed.
1009 */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1010 static int zswap_writeback_entry(struct zswap_entry *entry,
1011 swp_entry_t swpentry)
1012 {
1013 struct xarray *tree;
1014 pgoff_t offset = swp_offset(swpentry);
1015 struct folio *folio;
1016 struct mempolicy *mpol;
1017 bool folio_was_allocated;
1018 struct writeback_control wbc = {
1019 .sync_mode = WB_SYNC_NONE,
1020 };
1021
1022 /* try to allocate swap cache folio */
1023 mpol = get_task_policy(current);
1024 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1025 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1026 if (!folio)
1027 return -ENOMEM;
1028
1029 /*
1030 * Found an existing folio, we raced with swapin or concurrent
1031 * shrinker. We generally writeback cold folios from zswap, and
1032 * swapin means the folio just became hot, so skip this folio.
1033 * For unlikely concurrent shrinker case, it will be unlinked
1034 * and freed when invalidated by the concurrent shrinker anyway.
1035 */
1036 if (!folio_was_allocated) {
1037 folio_put(folio);
1038 return -EEXIST;
1039 }
1040
1041 /*
1042 * folio is locked, and the swapcache is now secured against
1043 * concurrent swapping to and from the slot, and concurrent
1044 * swapoff so we can safely dereference the zswap tree here.
1045 * Verify that the swap entry hasn't been invalidated and recycled
1046 * behind our backs, to avoid overwriting a new swap folio with
1047 * old compressed data. Only when this is successful can the entry
1048 * be dereferenced.
1049 */
1050 tree = swap_zswap_tree(swpentry);
1051 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1052 delete_from_swap_cache(folio);
1053 folio_unlock(folio);
1054 folio_put(folio);
1055 return -ENOMEM;
1056 }
1057
1058 zswap_decompress(entry, folio);
1059
1060 count_vm_event(ZSWPWB);
1061 if (entry->objcg)
1062 count_objcg_events(entry->objcg, ZSWPWB, 1);
1063
1064 zswap_entry_free(entry);
1065
1066 /* folio is up to date */
1067 folio_mark_uptodate(folio);
1068
1069 /* move it to the tail of the inactive list after end_writeback */
1070 folio_set_reclaim(folio);
1071
1072 /* start writeback */
1073 __swap_writepage(folio, &wbc);
1074 folio_put(folio);
1075
1076 return 0;
1077 }
1078
1079 /*********************************
1080 * shrinker functions
1081 **********************************/
1082 /*
1083 * The dynamic shrinker is modulated by the following factors:
1084 *
1085 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1086 * the entry a second chance) before rotating it in the LRU list. If the
1087 * entry is considered again by the shrinker, with its referenced bit unset,
1088 * it is written back. The writeback rate as a result is dynamically
1089 * adjusted by the pool activities - if the pool is dominated by new entries
1090 * (i.e lots of recent zswapouts), these entries will be protected and
1091 * the writeback rate will slow down. On the other hand, if the pool has a
1092 * lot of stagnant entries, these entries will be reclaimed immediately,
1093 * effectively increasing the writeback rate.
1094 *
1095 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1096 * overshrinking and should slow down. We maintain a swapins counter, which
1097 * is consumed and subtract from the number of eligible objects on the LRU
1098 * in zswap_shrinker_count().
1099 *
1100 * 3. Compression ratio. The better the workload compresses, the less gains we
1101 * can expect from writeback. We scale down the number of objects available
1102 * for reclaim by this ratio.
1103 */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,void * arg)1104 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1105 void *arg)
1106 {
1107 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1108 bool *encountered_page_in_swapcache = (bool *)arg;
1109 swp_entry_t swpentry;
1110 enum lru_status ret = LRU_REMOVED_RETRY;
1111 int writeback_result;
1112
1113 /*
1114 * Second chance algorithm: if the entry has its referenced bit set, give it
1115 * a second chance. Only clear the referenced bit and rotate it in the
1116 * zswap's LRU list.
1117 */
1118 if (entry->referenced) {
1119 entry->referenced = false;
1120 return LRU_ROTATE;
1121 }
1122
1123 /*
1124 * As soon as we drop the LRU lock, the entry can be freed by
1125 * a concurrent invalidation. This means the following:
1126 *
1127 * 1. We extract the swp_entry_t to the stack, allowing
1128 * zswap_writeback_entry() to pin the swap entry and
1129 * then validate the zwap entry against that swap entry's
1130 * tree using pointer value comparison. Only when that
1131 * is successful can the entry be dereferenced.
1132 *
1133 * 2. Usually, objects are taken off the LRU for reclaim. In
1134 * this case this isn't possible, because if reclaim fails
1135 * for whatever reason, we have no means of knowing if the
1136 * entry is alive to put it back on the LRU.
1137 *
1138 * So rotate it before dropping the lock. If the entry is
1139 * written back or invalidated, the free path will unlink
1140 * it. For failures, rotation is the right thing as well.
1141 *
1142 * Temporary failures, where the same entry should be tried
1143 * again immediately, almost never happen for this shrinker.
1144 * We don't do any trylocking; -ENOMEM comes closest,
1145 * but that's extremely rare and doesn't happen spuriously
1146 * either. Don't bother distinguishing this case.
1147 */
1148 list_move_tail(item, &l->list);
1149
1150 /*
1151 * Once the lru lock is dropped, the entry might get freed. The
1152 * swpentry is copied to the stack, and entry isn't deref'd again
1153 * until the entry is verified to still be alive in the tree.
1154 */
1155 swpentry = entry->swpentry;
1156
1157 /*
1158 * It's safe to drop the lock here because we return either
1159 * LRU_REMOVED_RETRY or LRU_RETRY.
1160 */
1161 spin_unlock(&l->lock);
1162
1163 writeback_result = zswap_writeback_entry(entry, swpentry);
1164
1165 if (writeback_result) {
1166 zswap_reject_reclaim_fail++;
1167 ret = LRU_RETRY;
1168
1169 /*
1170 * Encountering a page already in swap cache is a sign that we are shrinking
1171 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1172 * shrinker context).
1173 */
1174 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1175 ret = LRU_STOP;
1176 *encountered_page_in_swapcache = true;
1177 }
1178 } else {
1179 zswap_written_back_pages++;
1180 }
1181
1182 return ret;
1183 }
1184
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1185 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1186 struct shrink_control *sc)
1187 {
1188 unsigned long shrink_ret;
1189 bool encountered_page_in_swapcache = false;
1190
1191 if (!zswap_shrinker_enabled ||
1192 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1193 sc->nr_scanned = 0;
1194 return SHRINK_STOP;
1195 }
1196
1197 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1198 &encountered_page_in_swapcache);
1199
1200 if (encountered_page_in_swapcache)
1201 return SHRINK_STOP;
1202
1203 return shrink_ret ? shrink_ret : SHRINK_STOP;
1204 }
1205
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1206 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1207 struct shrink_control *sc)
1208 {
1209 struct mem_cgroup *memcg = sc->memcg;
1210 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1211 atomic_long_t *nr_disk_swapins =
1212 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1213 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1214 nr_remain;
1215
1216 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1217 return 0;
1218
1219 /*
1220 * The shrinker resumes swap writeback, which will enter block
1221 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1222 * rules (may_enter_fs()), which apply on a per-folio basis.
1223 */
1224 if (!gfp_has_io_fs(sc->gfp_mask))
1225 return 0;
1226
1227 /*
1228 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1229 * have them per-node and thus per-lruvec. Careful if memcg is
1230 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1231 * for the lruvec, but not for memcg_page_state().
1232 *
1233 * Without memcg, use the zswap pool-wide metrics.
1234 */
1235 if (!mem_cgroup_disabled()) {
1236 mem_cgroup_flush_stats(memcg);
1237 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1238 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1239 } else {
1240 nr_backing = zswap_total_pages();
1241 nr_stored = atomic_long_read(&zswap_stored_pages);
1242 }
1243
1244 if (!nr_stored)
1245 return 0;
1246
1247 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1248 if (!nr_freeable)
1249 return 0;
1250
1251 /*
1252 * Subtract from the lru size the number of pages that are recently swapped
1253 * in from disk. The idea is that had we protect the zswap's LRU by this
1254 * amount of pages, these disk swapins would not have happened.
1255 */
1256 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1257 do {
1258 if (nr_freeable >= nr_disk_swapins_cur)
1259 nr_remain = 0;
1260 else
1261 nr_remain = nr_disk_swapins_cur - nr_freeable;
1262 } while (!atomic_long_try_cmpxchg(
1263 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1264
1265 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1266 if (!nr_freeable)
1267 return 0;
1268
1269 /*
1270 * Scale the number of freeable pages by the memory saving factor.
1271 * This ensures that the better zswap compresses memory, the fewer
1272 * pages we will evict to swap (as it will otherwise incur IO for
1273 * relatively small memory saving).
1274 */
1275 return mult_frac(nr_freeable, nr_backing, nr_stored);
1276 }
1277
zswap_alloc_shrinker(void)1278 static struct shrinker *zswap_alloc_shrinker(void)
1279 {
1280 struct shrinker *shrinker;
1281
1282 shrinker =
1283 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1284 if (!shrinker)
1285 return NULL;
1286
1287 shrinker->scan_objects = zswap_shrinker_scan;
1288 shrinker->count_objects = zswap_shrinker_count;
1289 shrinker->batch = 0;
1290 shrinker->seeks = DEFAULT_SEEKS;
1291 return shrinker;
1292 }
1293
shrink_memcg(struct mem_cgroup * memcg)1294 static int shrink_memcg(struct mem_cgroup *memcg)
1295 {
1296 int nid, shrunk = 0, scanned = 0;
1297
1298 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1299 return -ENOENT;
1300
1301 /*
1302 * Skip zombies because their LRUs are reparented and we would be
1303 * reclaiming from the parent instead of the dead memcg.
1304 */
1305 if (memcg && !mem_cgroup_online(memcg))
1306 return -ENOENT;
1307
1308 for_each_node_state(nid, N_NORMAL_MEMORY) {
1309 unsigned long nr_to_walk = 1;
1310
1311 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1312 &shrink_memcg_cb, NULL, &nr_to_walk);
1313 scanned += 1 - nr_to_walk;
1314 }
1315
1316 if (!scanned)
1317 return -ENOENT;
1318
1319 return shrunk ? 0 : -EAGAIN;
1320 }
1321
shrink_worker(struct work_struct * w)1322 static void shrink_worker(struct work_struct *w)
1323 {
1324 struct mem_cgroup *memcg;
1325 int ret, failures = 0, attempts = 0;
1326 unsigned long thr;
1327
1328 /* Reclaim down to the accept threshold */
1329 thr = zswap_accept_thr_pages();
1330
1331 /*
1332 * Global reclaim will select cgroup in a round-robin fashion from all
1333 * online memcgs, but memcgs that have no pages in zswap and
1334 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1335 * candidates for shrinking.
1336 *
1337 * Shrinking will be aborted if we encounter the following
1338 * MAX_RECLAIM_RETRIES times:
1339 * - No writeback-candidate memcgs found in a memcg tree walk.
1340 * - Shrinking a writeback-candidate memcg failed.
1341 *
1342 * We save iteration cursor memcg into zswap_next_shrink,
1343 * which can be modified by the offline memcg cleaner
1344 * zswap_memcg_offline_cleanup().
1345 *
1346 * Since the offline cleaner is called only once, we cannot leave an
1347 * offline memcg reference in zswap_next_shrink.
1348 * We can rely on the cleaner only if we get online memcg under lock.
1349 *
1350 * If we get an offline memcg, we cannot determine if the cleaner has
1351 * already been called or will be called later. We must put back the
1352 * reference before returning from this function. Otherwise, the
1353 * offline memcg left in zswap_next_shrink will hold the reference
1354 * until the next run of shrink_worker().
1355 */
1356 do {
1357 /*
1358 * Start shrinking from the next memcg after zswap_next_shrink.
1359 * When the offline cleaner has already advanced the cursor,
1360 * advancing the cursor here overlooks one memcg, but this
1361 * should be negligibly rare.
1362 *
1363 * If we get an online memcg, keep the extra reference in case
1364 * the original one obtained by mem_cgroup_iter() is dropped by
1365 * zswap_memcg_offline_cleanup() while we are shrinking the
1366 * memcg.
1367 */
1368 spin_lock(&zswap_shrink_lock);
1369 do {
1370 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1371 zswap_next_shrink = memcg;
1372 } while (memcg && !mem_cgroup_tryget_online(memcg));
1373 spin_unlock(&zswap_shrink_lock);
1374
1375 if (!memcg) {
1376 /*
1377 * Continue shrinking without incrementing failures if
1378 * we found candidate memcgs in the last tree walk.
1379 */
1380 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1381 break;
1382
1383 attempts = 0;
1384 goto resched;
1385 }
1386
1387 ret = shrink_memcg(memcg);
1388 /* drop the extra reference */
1389 mem_cgroup_put(memcg);
1390
1391 /*
1392 * There are no writeback-candidate pages in the memcg.
1393 * This is not an issue as long as we can find another memcg
1394 * with pages in zswap. Skip this without incrementing attempts
1395 * and failures.
1396 */
1397 if (ret == -ENOENT)
1398 continue;
1399 ++attempts;
1400
1401 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1402 break;
1403 resched:
1404 cond_resched();
1405 } while (zswap_total_pages() > thr);
1406 }
1407
1408 /*********************************
1409 * main API
1410 **********************************/
1411
zswap_store_page(struct page * page,struct obj_cgroup * objcg,struct zswap_pool * pool)1412 static ssize_t zswap_store_page(struct page *page,
1413 struct obj_cgroup *objcg,
1414 struct zswap_pool *pool)
1415 {
1416 swp_entry_t page_swpentry = page_swap_entry(page);
1417 struct zswap_entry *entry, *old;
1418
1419 /* allocate entry */
1420 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1421 if (!entry) {
1422 zswap_reject_kmemcache_fail++;
1423 return -EINVAL;
1424 }
1425
1426 if (!zswap_compress(page, entry, pool))
1427 goto compress_failed;
1428
1429 old = xa_store(swap_zswap_tree(page_swpentry),
1430 swp_offset(page_swpentry),
1431 entry, GFP_KERNEL);
1432 if (xa_is_err(old)) {
1433 int err = xa_err(old);
1434
1435 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1436 zswap_reject_alloc_fail++;
1437 goto store_failed;
1438 }
1439
1440 /*
1441 * We may have had an existing entry that became stale when
1442 * the folio was redirtied and now the new version is being
1443 * swapped out. Get rid of the old.
1444 */
1445 if (old)
1446 zswap_entry_free(old);
1447
1448 /*
1449 * The entry is successfully compressed and stored in the tree, there is
1450 * no further possibility of failure. Grab refs to the pool and objcg.
1451 * These refs will be dropped by zswap_entry_free() when the entry is
1452 * removed from the tree.
1453 */
1454 zswap_pool_get(pool);
1455 if (objcg)
1456 obj_cgroup_get(objcg);
1457
1458 /*
1459 * We finish initializing the entry while it's already in xarray.
1460 * This is safe because:
1461 *
1462 * 1. Concurrent stores and invalidations are excluded by folio lock.
1463 *
1464 * 2. Writeback is excluded by the entry not being on the LRU yet.
1465 * The publishing order matters to prevent writeback from seeing
1466 * an incoherent entry.
1467 */
1468 entry->pool = pool;
1469 entry->swpentry = page_swpentry;
1470 entry->objcg = objcg;
1471 entry->referenced = true;
1472 if (entry->length) {
1473 INIT_LIST_HEAD(&entry->lru);
1474 zswap_lru_add(&zswap_list_lru, entry);
1475 }
1476
1477 return entry->length;
1478
1479 store_failed:
1480 zpool_free(pool->zpool, entry->handle);
1481 compress_failed:
1482 zswap_entry_cache_free(entry);
1483 return -EINVAL;
1484 }
1485
zswap_store(struct folio * folio)1486 bool zswap_store(struct folio *folio)
1487 {
1488 long nr_pages = folio_nr_pages(folio);
1489 swp_entry_t swp = folio->swap;
1490 struct obj_cgroup *objcg = NULL;
1491 struct mem_cgroup *memcg = NULL;
1492 struct zswap_pool *pool;
1493 size_t compressed_bytes = 0;
1494 bool ret = false;
1495 long index;
1496
1497 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1498 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1499
1500 if (!zswap_enabled)
1501 goto check_old;
1502
1503 objcg = get_obj_cgroup_from_folio(folio);
1504 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1505 memcg = get_mem_cgroup_from_objcg(objcg);
1506 if (shrink_memcg(memcg)) {
1507 mem_cgroup_put(memcg);
1508 goto put_objcg;
1509 }
1510 mem_cgroup_put(memcg);
1511 }
1512
1513 if (zswap_check_limits())
1514 goto put_objcg;
1515
1516 pool = zswap_pool_current_get();
1517 if (!pool)
1518 goto put_objcg;
1519
1520 if (objcg) {
1521 memcg = get_mem_cgroup_from_objcg(objcg);
1522 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1523 mem_cgroup_put(memcg);
1524 goto put_pool;
1525 }
1526 mem_cgroup_put(memcg);
1527 }
1528
1529 for (index = 0; index < nr_pages; ++index) {
1530 struct page *page = folio_page(folio, index);
1531 ssize_t bytes;
1532
1533 bytes = zswap_store_page(page, objcg, pool);
1534 if (bytes < 0)
1535 goto put_pool;
1536 compressed_bytes += bytes;
1537 }
1538
1539 if (objcg) {
1540 obj_cgroup_charge_zswap(objcg, compressed_bytes);
1541 count_objcg_events(objcg, ZSWPOUT, nr_pages);
1542 }
1543
1544 atomic_long_add(nr_pages, &zswap_stored_pages);
1545 count_vm_events(ZSWPOUT, nr_pages);
1546
1547 ret = true;
1548
1549 put_pool:
1550 zswap_pool_put(pool);
1551 put_objcg:
1552 obj_cgroup_put(objcg);
1553 if (!ret && zswap_pool_reached_full)
1554 queue_work(shrink_wq, &zswap_shrink_work);
1555 check_old:
1556 /*
1557 * If the zswap store fails or zswap is disabled, we must invalidate
1558 * the possibly stale entries which were previously stored at the
1559 * offsets corresponding to each page of the folio. Otherwise,
1560 * writeback could overwrite the new data in the swapfile.
1561 */
1562 if (!ret) {
1563 unsigned type = swp_type(swp);
1564 pgoff_t offset = swp_offset(swp);
1565 struct zswap_entry *entry;
1566 struct xarray *tree;
1567
1568 for (index = 0; index < nr_pages; ++index) {
1569 tree = swap_zswap_tree(swp_entry(type, offset + index));
1570 entry = xa_erase(tree, offset + index);
1571 if (entry)
1572 zswap_entry_free(entry);
1573 }
1574 }
1575
1576 return ret;
1577 }
1578
zswap_load(struct folio * folio)1579 bool zswap_load(struct folio *folio)
1580 {
1581 swp_entry_t swp = folio->swap;
1582 pgoff_t offset = swp_offset(swp);
1583 bool swapcache = folio_test_swapcache(folio);
1584 struct xarray *tree = swap_zswap_tree(swp);
1585 struct zswap_entry *entry;
1586
1587 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1588
1589 if (zswap_never_enabled())
1590 return false;
1591
1592 /*
1593 * Large folios should not be swapped in while zswap is being used, as
1594 * they are not properly handled. Zswap does not properly load large
1595 * folios, and a large folio may only be partially in zswap.
1596 *
1597 * Return true without marking the folio uptodate so that an IO error is
1598 * emitted (e.g. do_swap_page() will sigbus).
1599 */
1600 if (WARN_ON_ONCE(folio_test_large(folio)))
1601 return true;
1602
1603 /*
1604 * When reading into the swapcache, invalidate our entry. The
1605 * swapcache can be the authoritative owner of the page and
1606 * its mappings, and the pressure that results from having two
1607 * in-memory copies outweighs any benefits of caching the
1608 * compression work.
1609 *
1610 * (Most swapins go through the swapcache. The notable
1611 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1612 * files, which reads into a private page and may free it if
1613 * the fault fails. We remain the primary owner of the entry.)
1614 */
1615 if (swapcache)
1616 entry = xa_erase(tree, offset);
1617 else
1618 entry = xa_load(tree, offset);
1619
1620 if (!entry)
1621 return false;
1622
1623 zswap_decompress(entry, folio);
1624
1625 count_vm_event(ZSWPIN);
1626 if (entry->objcg)
1627 count_objcg_events(entry->objcg, ZSWPIN, 1);
1628
1629 if (swapcache) {
1630 zswap_entry_free(entry);
1631 folio_mark_dirty(folio);
1632 }
1633
1634 folio_mark_uptodate(folio);
1635 return true;
1636 }
1637
zswap_invalidate(swp_entry_t swp)1638 void zswap_invalidate(swp_entry_t swp)
1639 {
1640 pgoff_t offset = swp_offset(swp);
1641 struct xarray *tree = swap_zswap_tree(swp);
1642 struct zswap_entry *entry;
1643
1644 if (xa_empty(tree))
1645 return;
1646
1647 entry = xa_erase(tree, offset);
1648 if (entry)
1649 zswap_entry_free(entry);
1650 }
1651
zswap_swapon(int type,unsigned long nr_pages)1652 int zswap_swapon(int type, unsigned long nr_pages)
1653 {
1654 struct xarray *trees, *tree;
1655 unsigned int nr, i;
1656
1657 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1658 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1659 if (!trees) {
1660 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1661 return -ENOMEM;
1662 }
1663
1664 for (i = 0; i < nr; i++)
1665 xa_init(trees + i);
1666
1667 nr_zswap_trees[type] = nr;
1668 zswap_trees[type] = trees;
1669 return 0;
1670 }
1671
zswap_swapoff(int type)1672 void zswap_swapoff(int type)
1673 {
1674 struct xarray *trees = zswap_trees[type];
1675 unsigned int i;
1676
1677 if (!trees)
1678 return;
1679
1680 /* try_to_unuse() invalidated all the entries already */
1681 for (i = 0; i < nr_zswap_trees[type]; i++)
1682 WARN_ON_ONCE(!xa_empty(trees + i));
1683
1684 kvfree(trees);
1685 nr_zswap_trees[type] = 0;
1686 zswap_trees[type] = NULL;
1687 }
1688
1689 /*********************************
1690 * debugfs functions
1691 **********************************/
1692 #ifdef CONFIG_DEBUG_FS
1693 #include <linux/debugfs.h>
1694
1695 static struct dentry *zswap_debugfs_root;
1696
debugfs_get_total_size(void * data,u64 * val)1697 static int debugfs_get_total_size(void *data, u64 *val)
1698 {
1699 *val = zswap_total_pages() * PAGE_SIZE;
1700 return 0;
1701 }
1702 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1703
debugfs_get_stored_pages(void * data,u64 * val)1704 static int debugfs_get_stored_pages(void *data, u64 *val)
1705 {
1706 *val = atomic_long_read(&zswap_stored_pages);
1707 return 0;
1708 }
1709 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1710
zswap_debugfs_init(void)1711 static int zswap_debugfs_init(void)
1712 {
1713 if (!debugfs_initialized())
1714 return -ENODEV;
1715
1716 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1717
1718 debugfs_create_u64("pool_limit_hit", 0444,
1719 zswap_debugfs_root, &zswap_pool_limit_hit);
1720 debugfs_create_u64("reject_reclaim_fail", 0444,
1721 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1722 debugfs_create_u64("reject_alloc_fail", 0444,
1723 zswap_debugfs_root, &zswap_reject_alloc_fail);
1724 debugfs_create_u64("reject_kmemcache_fail", 0444,
1725 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1726 debugfs_create_u64("reject_compress_fail", 0444,
1727 zswap_debugfs_root, &zswap_reject_compress_fail);
1728 debugfs_create_u64("reject_compress_poor", 0444,
1729 zswap_debugfs_root, &zswap_reject_compress_poor);
1730 debugfs_create_u64("written_back_pages", 0444,
1731 zswap_debugfs_root, &zswap_written_back_pages);
1732 debugfs_create_file("pool_total_size", 0444,
1733 zswap_debugfs_root, NULL, &total_size_fops);
1734 debugfs_create_file("stored_pages", 0444,
1735 zswap_debugfs_root, NULL, &stored_pages_fops);
1736
1737 return 0;
1738 }
1739 #else
zswap_debugfs_init(void)1740 static int zswap_debugfs_init(void)
1741 {
1742 return 0;
1743 }
1744 #endif
1745
1746 /*********************************
1747 * module init and exit
1748 **********************************/
zswap_setup(void)1749 static int zswap_setup(void)
1750 {
1751 struct zswap_pool *pool;
1752 int ret;
1753
1754 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1755 if (!zswap_entry_cache) {
1756 pr_err("entry cache creation failed\n");
1757 goto cache_fail;
1758 }
1759
1760 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1761 "mm/zswap_pool:prepare",
1762 zswap_cpu_comp_prepare,
1763 zswap_cpu_comp_dead);
1764 if (ret)
1765 goto hp_fail;
1766
1767 shrink_wq = alloc_workqueue("zswap-shrink",
1768 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1769 if (!shrink_wq)
1770 goto shrink_wq_fail;
1771
1772 zswap_shrinker = zswap_alloc_shrinker();
1773 if (!zswap_shrinker)
1774 goto shrinker_fail;
1775 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1776 goto lru_fail;
1777 shrinker_register(zswap_shrinker);
1778
1779 INIT_WORK(&zswap_shrink_work, shrink_worker);
1780
1781 pool = __zswap_pool_create_fallback();
1782 if (pool) {
1783 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1784 zpool_get_type(pool->zpool));
1785 list_add(&pool->list, &zswap_pools);
1786 zswap_has_pool = true;
1787 static_branch_enable(&zswap_ever_enabled);
1788 } else {
1789 pr_err("pool creation failed\n");
1790 zswap_enabled = false;
1791 }
1792
1793 if (zswap_debugfs_init())
1794 pr_warn("debugfs initialization failed\n");
1795 zswap_init_state = ZSWAP_INIT_SUCCEED;
1796 return 0;
1797
1798 lru_fail:
1799 shrinker_free(zswap_shrinker);
1800 shrinker_fail:
1801 destroy_workqueue(shrink_wq);
1802 shrink_wq_fail:
1803 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1804 hp_fail:
1805 kmem_cache_destroy(zswap_entry_cache);
1806 cache_fail:
1807 /* if built-in, we aren't unloaded on failure; don't allow use */
1808 zswap_init_state = ZSWAP_INIT_FAILED;
1809 zswap_enabled = false;
1810 return -ENOMEM;
1811 }
1812
zswap_init(void)1813 static int __init zswap_init(void)
1814 {
1815 if (!zswap_enabled)
1816 return 0;
1817 return zswap_setup();
1818 }
1819 /* must be late so crypto has time to come up */
1820 late_initcall(zswap_init);
1821
1822 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1823 MODULE_DESCRIPTION("Compressed cache for swap pages");
1824