1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes an abstract interface used to get information about a 10 // target machines register file. This information is used for a variety of 11 // purposed, especially register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H 16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/RegisterBank.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/MC/LaneBitmask.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Printable.h" 30 #include <cassert> 31 #include <cstdint> 32 33 namespace llvm { 34 35 class BitVector; 36 class DIExpression; 37 class LiveRegMatrix; 38 class MachineFunction; 39 class MachineInstr; 40 class RegScavenger; 41 class VirtRegMap; 42 class LiveIntervals; 43 class LiveInterval; 44 45 class TargetRegisterClass { 46 public: 47 using iterator = const MCPhysReg *; 48 using const_iterator = const MCPhysReg *; 49 using sc_iterator = const TargetRegisterClass* const *; 50 51 // Instance variables filled by tablegen, do not use! 52 const MCRegisterClass *MC; 53 const uint32_t *SubClassMask; 54 const uint16_t *SuperRegIndices; 55 const LaneBitmask LaneMask; 56 /// Classes with a higher priority value are assigned first by register 57 /// allocators using a greedy heuristic. The value is in the range [0,31]. 58 const uint8_t AllocationPriority; 59 60 // Change allocation priority heuristic used by greedy. 61 const bool GlobalPriority; 62 63 /// Configurable target specific flags. 64 const uint8_t TSFlags; 65 /// Whether the class supports two (or more) disjunct subregister indices. 66 const bool HasDisjunctSubRegs; 67 /// Whether a combination of subregisters can cover every register in the 68 /// class. See also the CoveredBySubRegs description in Target.td. 69 const bool CoveredBySubRegs; 70 const sc_iterator SuperClasses; 71 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 72 73 /// Return the register class ID number. getID()74 unsigned getID() const { return MC->getID(); } 75 76 /// begin/end - Return all of the registers in this class. 77 /// begin()78 iterator begin() const { return MC->begin(); } end()79 iterator end() const { return MC->end(); } 80 81 /// Return the number of registers in this class. getNumRegs()82 unsigned getNumRegs() const { return MC->getNumRegs(); } 83 getRegisters()84 ArrayRef<MCPhysReg> getRegisters() const { 85 return ArrayRef(begin(), getNumRegs()); 86 } 87 88 /// Return the specified register in the class. getRegister(unsigned i)89 MCRegister getRegister(unsigned i) const { 90 return MC->getRegister(i); 91 } 92 93 /// Return true if the specified register is included in this register class. 94 /// This does not include virtual registers. contains(Register Reg)95 bool contains(Register Reg) const { 96 /// FIXME: Historically this function has returned false when given vregs 97 /// but it should probably only receive physical registers 98 if (!Reg.isPhysical()) 99 return false; 100 return MC->contains(Reg.asMCReg()); 101 } 102 103 /// Return true if both registers are in this class. contains(Register Reg1,Register Reg2)104 bool contains(Register Reg1, Register Reg2) const { 105 /// FIXME: Historically this function has returned false when given a vregs 106 /// but it should probably only receive physical registers 107 if (!Reg1.isPhysical() || !Reg2.isPhysical()) 108 return false; 109 return MC->contains(Reg1.asMCReg(), Reg2.asMCReg()); 110 } 111 112 /// Return the cost of copying a value between two registers in this class. 113 /// A negative number means the register class is very expensive 114 /// to copy e.g. status flag register classes. getCopyCost()115 int getCopyCost() const { return MC->getCopyCost(); } 116 117 /// Return true if this register class may be used to create virtual 118 /// registers. isAllocatable()119 bool isAllocatable() const { return MC->isAllocatable(); } 120 121 /// Return true if this register class has a defined BaseClassOrder. isBaseClass()122 bool isBaseClass() const { return MC->isBaseClass(); } 123 124 /// Return true if the specified TargetRegisterClass 125 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)126 bool hasSubClass(const TargetRegisterClass *RC) const { 127 return RC != this && hasSubClassEq(RC); 128 } 129 130 /// Returns true if RC is a sub-class of or equal to this class. hasSubClassEq(const TargetRegisterClass * RC)131 bool hasSubClassEq(const TargetRegisterClass *RC) const { 132 unsigned ID = RC->getID(); 133 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 134 } 135 136 /// Return true if the specified TargetRegisterClass is a 137 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)138 bool hasSuperClass(const TargetRegisterClass *RC) const { 139 return RC->hasSubClass(this); 140 } 141 142 /// Returns true if RC is a super-class of or equal to this class. hasSuperClassEq(const TargetRegisterClass * RC)143 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 144 return RC->hasSubClassEq(this); 145 } 146 147 /// Returns a bit vector of subclasses, including this one. 148 /// The vector is indexed by class IDs. 149 /// 150 /// To use it, consider the returned array as a chunk of memory that 151 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 152 /// contains a bitset of the ID of the subclasses in big-endian style. 153 154 /// I.e., the representation of the memory from left to right at the 155 /// bit level looks like: 156 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 157 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 158 /// Where the number represents the class ID and XXX bits that 159 /// should be ignored. 160 /// 161 /// See the implementation of hasSubClassEq for an example of how it 162 /// can be used. getSubClassMask()163 const uint32_t *getSubClassMask() const { 164 return SubClassMask; 165 } 166 167 /// Returns a 0-terminated list of sub-register indices that project some 168 /// super-register class into this register class. The list has an entry for 169 /// each Idx such that: 170 /// 171 /// There exists SuperRC where: 172 /// For all Reg in SuperRC: 173 /// this->contains(Reg:Idx) getSuperRegIndices()174 const uint16_t *getSuperRegIndices() const { 175 return SuperRegIndices; 176 } 177 178 /// Returns a NULL-terminated list of super-classes. The 179 /// classes are ordered by ID which is also a topological ordering from large 180 /// to small classes. The list does NOT include the current class. getSuperClasses()181 sc_iterator getSuperClasses() const { 182 return SuperClasses; 183 } 184 185 /// Return true if this TargetRegisterClass is a subset 186 /// class of at least one other TargetRegisterClass. isASubClass()187 bool isASubClass() const { 188 return SuperClasses[0] != nullptr; 189 } 190 191 /// Returns the preferred order for allocating registers from this register 192 /// class in MF. The raw order comes directly from the .td file and may 193 /// include reserved registers that are not allocatable. 194 /// Register allocators should also make sure to allocate 195 /// callee-saved registers only after all the volatiles are used. The 196 /// RegisterClassInfo class provides filtered allocation orders with 197 /// callee-saved registers moved to the end. 198 /// 199 /// The MachineFunction argument can be used to tune the allocatable 200 /// registers based on the characteristics of the function, subtarget, or 201 /// other criteria. 202 /// 203 /// By default, this method returns all registers in the class. getRawAllocationOrder(const MachineFunction & MF)204 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 205 return OrderFunc ? OrderFunc(MF) : getRegisters(); 206 } 207 208 /// Returns the combination of all lane masks of register in this class. 209 /// The lane masks of the registers are the combination of all lane masks 210 /// of their subregisters. Returns 1 if there are no subregisters. getLaneMask()211 LaneBitmask getLaneMask() const { 212 return LaneMask; 213 } 214 }; 215 216 /// Extra information, not in MCRegisterDesc, about registers. 217 /// These are used by codegen, not by MC. 218 struct TargetRegisterInfoDesc { 219 const uint8_t *CostPerUse; // Extra cost of instructions using register. 220 unsigned NumCosts; // Number of cost values associated with each register. 221 const bool 222 *InAllocatableClass; // Register belongs to an allocatable regclass. 223 }; 224 225 /// Each TargetRegisterClass has a per register weight, and weight 226 /// limit which must be less than the limits of its pressure sets. 227 struct RegClassWeight { 228 unsigned RegWeight; 229 unsigned WeightLimit; 230 }; 231 232 /// TargetRegisterInfo base class - We assume that the target defines a static 233 /// array of TargetRegisterDesc objects that represent all of the machine 234 /// registers that the target has. As such, we simply have to track a pointer 235 /// to this array so that we can turn register number into a register 236 /// descriptor. 237 /// 238 class TargetRegisterInfo : public MCRegisterInfo { 239 public: 240 using regclass_iterator = const TargetRegisterClass * const *; 241 using vt_iterator = const MVT::SimpleValueType *; 242 struct RegClassInfo { 243 unsigned RegSize, SpillSize, SpillAlignment; 244 unsigned VTListOffset; 245 }; 246 247 /// SubRegCoveredBits - Emitted by tablegen: bit range covered by a subreg 248 /// index, -1 in any being invalid. 249 struct SubRegCoveredBits { 250 uint16_t Offset; 251 uint16_t Size; 252 }; 253 254 private: 255 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 256 const char *const *SubRegIndexNames; // Names of subreg indexes. 257 const SubRegCoveredBits *SubRegIdxRanges; // Pointer to the subreg covered 258 // bit ranges array. 259 260 // Pointer to array of lane masks, one per sub-reg index. 261 const LaneBitmask *SubRegIndexLaneMasks; 262 263 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 264 LaneBitmask CoveringLanes; 265 const RegClassInfo *const RCInfos; 266 const MVT::SimpleValueType *const RCVTLists; 267 unsigned HwMode; 268 269 protected: 270 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RCB, 271 regclass_iterator RCE, const char *const *SRINames, 272 const SubRegCoveredBits *SubIdxRanges, 273 const LaneBitmask *SRILaneMasks, LaneBitmask CoveringLanes, 274 const RegClassInfo *const RCIs, 275 const MVT::SimpleValueType *const RCVTLists, 276 unsigned Mode = 0); 277 virtual ~TargetRegisterInfo(); 278 279 public: 280 /// Return the number of registers for the function. (may overestimate) getNumSupportedRegs(const MachineFunction &)281 virtual unsigned getNumSupportedRegs(const MachineFunction &) const { 282 return getNumRegs(); 283 } 284 285 // Register numbers can represent physical registers, virtual registers, and 286 // sometimes stack slots. The unsigned values are divided into these ranges: 287 // 288 // 0 Not a register, can be used as a sentinel. 289 // [1;2^30) Physical registers assigned by TableGen. 290 // [2^30;2^31) Stack slots. (Rarely used.) 291 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 292 // 293 // Further sentinels can be allocated from the small negative integers. 294 // DenseMapInfo<unsigned> uses -1u and -2u. 295 296 /// Return the size in bits of a register from class RC. getRegSizeInBits(const TargetRegisterClass & RC)297 TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const { 298 return TypeSize::getFixed(getRegClassInfo(RC).RegSize); 299 } 300 301 /// Return the size in bytes of the stack slot allocated to hold a spilled 302 /// copy of a register from class RC. getSpillSize(const TargetRegisterClass & RC)303 unsigned getSpillSize(const TargetRegisterClass &RC) const { 304 return getRegClassInfo(RC).SpillSize / 8; 305 } 306 307 /// Return the minimum required alignment in bytes for a spill slot for 308 /// a register of this class. getSpillAlign(const TargetRegisterClass & RC)309 Align getSpillAlign(const TargetRegisterClass &RC) const { 310 return Align(getRegClassInfo(RC).SpillAlignment / 8); 311 } 312 313 /// Return true if the given TargetRegisterClass has the ValueType T. isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)314 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { 315 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) 316 if (MVT(*I) == T) 317 return true; 318 return false; 319 } 320 321 /// Return true if the given TargetRegisterClass is compatible with LLT T. isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)322 bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const { 323 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) { 324 MVT VT(*I); 325 if (VT == MVT::Untyped) 326 return true; 327 328 if (LLT(VT) == T) 329 return true; 330 } 331 return false; 332 } 333 334 /// Loop over all of the value types that can be represented by values 335 /// in the given register class. legalclasstypes_begin(const TargetRegisterClass & RC)336 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { 337 return &RCVTLists[getRegClassInfo(RC).VTListOffset]; 338 } 339 legalclasstypes_end(const TargetRegisterClass & RC)340 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { 341 vt_iterator I = legalclasstypes_begin(RC); 342 while (*I != MVT::Other) 343 ++I; 344 return I; 345 } 346 347 /// Returns the Register Class of a physical register of the given type, 348 /// picking the most sub register class of the right type that contains this 349 /// physreg. 350 const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg, 351 MVT VT = MVT::Other) const; 352 353 /// Returns the Register Class of a physical register of the given type, 354 /// picking the most sub register class of the right type that contains this 355 /// physreg. If there is no register class compatible with the given type, 356 /// returns nullptr. 357 const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg, 358 LLT Ty = LLT()) const; 359 360 /// Return the maximal subclass of the given register class that is 361 /// allocatable or NULL. 362 const TargetRegisterClass * 363 getAllocatableClass(const TargetRegisterClass *RC) const; 364 365 /// Returns a bitset indexed by register number indicating if a register is 366 /// allocatable or not. If a register class is specified, returns the subset 367 /// for the class. 368 BitVector getAllocatableSet(const MachineFunction &MF, 369 const TargetRegisterClass *RC = nullptr) const; 370 371 /// Get a list of cost values for all registers that correspond to the index 372 /// returned by RegisterCostTableIndex. getRegisterCosts(const MachineFunction & MF)373 ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const { 374 unsigned Idx = getRegisterCostTableIndex(MF); 375 unsigned NumRegs = getNumRegs(); 376 assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds"); 377 378 return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs); 379 } 380 381 /// Return true if the register is in the allocation of any register class. isInAllocatableClass(MCRegister RegNo)382 bool isInAllocatableClass(MCRegister RegNo) const { 383 return InfoDesc->InAllocatableClass[RegNo]; 384 } 385 386 /// Return the human-readable symbolic target-specific 387 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)388 const char *getSubRegIndexName(unsigned SubIdx) const { 389 assert(SubIdx && SubIdx < getNumSubRegIndices() && 390 "This is not a subregister index"); 391 return SubRegIndexNames[SubIdx-1]; 392 } 393 394 /// Get the size of the bit range covered by a sub-register index. 395 /// If the index isn't continuous, return the sum of the sizes of its parts. 396 /// If the index is used to access subregisters of different sizes, return -1. 397 unsigned getSubRegIdxSize(unsigned Idx) const; 398 399 /// Get the offset of the bit range covered by a sub-register index. 400 /// If an Offset doesn't make sense (the index isn't continuous, or is used to 401 /// access sub-registers at different offsets), return -1. 402 unsigned getSubRegIdxOffset(unsigned Idx) const; 403 404 /// Return a bitmask representing the parts of a register that are covered by 405 /// SubIdx \see LaneBitmask. 406 /// 407 /// SubIdx == 0 is allowed, it has the lane mask ~0u. getSubRegIndexLaneMask(unsigned SubIdx)408 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 409 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 410 return SubRegIndexLaneMasks[SubIdx]; 411 } 412 413 /// Try to find one or more subregister indexes to cover \p LaneMask. 414 /// 415 /// If this is possible, returns true and appends the best matching set of 416 /// indexes to \p Indexes. If this is not possible, returns false. 417 bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI, 418 const TargetRegisterClass *RC, 419 LaneBitmask LaneMask, 420 SmallVectorImpl<unsigned> &Indexes) const; 421 422 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 423 /// used to determine if sub-registers overlap - they can't be used to 424 /// determine if a set of sub-registers completely cover another 425 /// sub-register. 426 /// 427 /// The X86 general purpose registers have two lanes corresponding to the 428 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 429 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 430 /// sub_32bit sub-register. 431 /// 432 /// On the other hand, the ARM NEON lanes fully cover their registers: The 433 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 434 /// This is related to the CoveredBySubRegs property on register definitions. 435 /// 436 /// This function returns a bit mask of lanes that completely cover their 437 /// sub-registers. More precisely, given: 438 /// 439 /// Covering = getCoveringLanes(); 440 /// MaskA = getSubRegIndexLaneMask(SubA); 441 /// MaskB = getSubRegIndexLaneMask(SubB); 442 /// 443 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 444 /// SubB. getCoveringLanes()445 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 446 447 /// Returns true if the two registers are equal or alias each other. 448 /// The registers may be virtual registers. regsOverlap(Register RegA,Register RegB)449 bool regsOverlap(Register RegA, Register RegB) const { 450 if (RegA == RegB) 451 return true; 452 if (RegA.isPhysical() && RegB.isPhysical()) 453 return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg()); 454 return false; 455 } 456 457 /// Returns true if Reg contains RegUnit. hasRegUnit(MCRegister Reg,Register RegUnit)458 bool hasRegUnit(MCRegister Reg, Register RegUnit) const { 459 for (MCRegUnit Unit : regunits(Reg)) 460 if (Register(Unit) == RegUnit) 461 return true; 462 return false; 463 } 464 465 /// Returns the original SrcReg unless it is the target of a copy-like 466 /// operation, in which case we chain backwards through all such operations 467 /// to the ultimate source register. If a physical register is encountered, 468 /// we stop the search. 469 virtual Register lookThruCopyLike(Register SrcReg, 470 const MachineRegisterInfo *MRI) const; 471 472 /// Find the original SrcReg unless it is the target of a copy-like operation, 473 /// in which case we chain backwards through all such operations to the 474 /// ultimate source register. If a physical register is encountered, we stop 475 /// the search. 476 /// Return the original SrcReg if all the definitions in the chain only have 477 /// one user and not a physical register. 478 virtual Register 479 lookThruSingleUseCopyChain(Register SrcReg, 480 const MachineRegisterInfo *MRI) const; 481 482 /// Return a null-terminated list of all of the callee-saved registers on 483 /// this target. The register should be in the order of desired callee-save 484 /// stack frame offset. The first register is closest to the incoming stack 485 /// pointer if stack grows down, and vice versa. 486 /// Notice: This function does not take into account disabled CSRs. 487 /// In most cases you will want to use instead the function 488 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. 489 virtual const MCPhysReg* 490 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 491 492 /// Return a mask of call-preserved registers for the given calling convention 493 /// on the current function. The mask should include all call-preserved 494 /// aliases. This is used by the register allocator to determine which 495 /// registers can be live across a call. 496 /// 497 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 498 /// A set bit indicates that all bits of the corresponding register are 499 /// preserved across the function call. The bit mask is expected to be 500 /// sub-register complete, i.e. if A is preserved, so are all its 501 /// sub-registers. 502 /// 503 /// Bits are numbered from the LSB, so the bit for physical register Reg can 504 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 505 /// 506 /// A NULL pointer means that no register mask will be used, and call 507 /// instructions should use implicit-def operands to indicate call clobbered 508 /// registers. 509 /// getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)510 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 511 CallingConv::ID) const { 512 // The default mask clobbers everything. All targets should override. 513 return nullptr; 514 } 515 516 /// Return a register mask for the registers preserved by the unwinder, 517 /// or nullptr if no custom mask is needed. 518 virtual const uint32_t * getCustomEHPadPreservedMask(const MachineFunction & MF)519 getCustomEHPadPreservedMask(const MachineFunction &MF) const { 520 return nullptr; 521 } 522 523 /// Return a register mask that clobbers everything. getNoPreservedMask()524 virtual const uint32_t *getNoPreservedMask() const { 525 llvm_unreachable("target does not provide no preserved mask"); 526 } 527 528 /// Return a list of all of the registers which are clobbered "inside" a call 529 /// to the given function. For example, these might be needed for PLT 530 /// sequences of long-branch veneers. 531 virtual ArrayRef<MCPhysReg> getIntraCallClobberedRegs(const MachineFunction * MF)532 getIntraCallClobberedRegs(const MachineFunction *MF) const { 533 return {}; 534 } 535 536 /// Return true if all bits that are set in mask \p mask0 are also set in 537 /// \p mask1. 538 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 539 540 /// Return all the call-preserved register masks defined for this target. 541 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 542 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 543 544 /// Returns a bitset indexed by physical register number indicating if a 545 /// register is a special register that has particular uses and should be 546 /// considered unavailable at all times, e.g. stack pointer, return address. 547 /// A reserved register: 548 /// - is not allocatable 549 /// - is considered always live 550 /// - is ignored by liveness tracking 551 /// It is often necessary to reserve the super registers of a reserved 552 /// register as well, to avoid them getting allocated indirectly. You may use 553 /// markSuperRegs() and checkAllSuperRegsMarked() in this case. 554 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 555 556 /// Returns either a string explaining why the given register is reserved for 557 /// this function, or an empty optional if no explanation has been written. 558 /// The absence of an explanation does not mean that the register is not 559 /// reserved (meaning, you should check that PhysReg is in fact reserved 560 /// before calling this). 561 virtual std::optional<std::string> explainReservedReg(const MachineFunction & MF,MCRegister PhysReg)562 explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const { 563 return {}; 564 } 565 566 /// Returns false if we can't guarantee that Physreg, specified as an IR asm 567 /// clobber constraint, will be preserved across the statement. isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)568 virtual bool isAsmClobberable(const MachineFunction &MF, 569 MCRegister PhysReg) const { 570 return true; 571 } 572 573 /// Returns true if PhysReg cannot be written to in inline asm statements. isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)574 virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF, 575 unsigned PhysReg) const { 576 return false; 577 } 578 579 /// Returns true if PhysReg is unallocatable and constant throughout the 580 /// function. Used by MachineRegisterInfo::isConstantPhysReg(). isConstantPhysReg(MCRegister PhysReg)581 virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; } 582 583 /// Returns true if the register class is considered divergent. isDivergentRegClass(const TargetRegisterClass * RC)584 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const { 585 return false; 586 } 587 588 /// Returns true if the register is considered uniform. isUniformReg(const MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register Reg)589 virtual bool isUniformReg(const MachineRegisterInfo &MRI, 590 const RegisterBankInfo &RBI, Register Reg) const { 591 return false; 592 } 593 594 /// Returns true if MachineLoopInfo should analyze the given physreg 595 /// for loop invariance. shouldAnalyzePhysregInMachineLoopInfo(MCRegister R)596 virtual bool shouldAnalyzePhysregInMachineLoopInfo(MCRegister R) const { 597 return false; 598 } 599 600 /// Physical registers that may be modified within a function but are 601 /// guaranteed to be restored before any uses. This is useful for targets that 602 /// have call sequences where a GOT register may be updated by the caller 603 /// prior to a call and is guaranteed to be restored (also by the caller) 604 /// after the call. isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)605 virtual bool isCallerPreservedPhysReg(MCRegister PhysReg, 606 const MachineFunction &MF) const { 607 return false; 608 } 609 610 /// This is a wrapper around getCallPreservedMask(). 611 /// Return true if the register is preserved after the call. 612 virtual bool isCalleeSavedPhysReg(MCRegister PhysReg, 613 const MachineFunction &MF) const; 614 615 /// Returns true if PhysReg can be used as an argument to a function. isArgumentRegister(const MachineFunction & MF,MCRegister PhysReg)616 virtual bool isArgumentRegister(const MachineFunction &MF, 617 MCRegister PhysReg) const { 618 return false; 619 } 620 621 /// Returns true if PhysReg is a fixed register. isFixedRegister(const MachineFunction & MF,MCRegister PhysReg)622 virtual bool isFixedRegister(const MachineFunction &MF, 623 MCRegister PhysReg) const { 624 return false; 625 } 626 627 /// Returns true if PhysReg is a general purpose register. isGeneralPurposeRegister(const MachineFunction & MF,MCRegister PhysReg)628 virtual bool isGeneralPurposeRegister(const MachineFunction &MF, 629 MCRegister PhysReg) const { 630 return false; 631 } 632 633 /// Prior to adding the live-out mask to a stackmap or patchpoint 634 /// instruction, provide the target the opportunity to adjust it (mainly to 635 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)636 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {} 637 638 /// Return a super-register of the specified register 639 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)640 MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx, 641 const TargetRegisterClass *RC) const { 642 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 643 } 644 645 /// Return a subclass of the specified register 646 /// class A so that each register in it has a sub-register of the 647 /// specified sub-register index which is in the specified register class B. 648 /// 649 /// TableGen will synthesize missing A sub-classes. 650 virtual const TargetRegisterClass * 651 getMatchingSuperRegClass(const TargetRegisterClass *A, 652 const TargetRegisterClass *B, unsigned Idx) const; 653 654 // For a copy-like instruction that defines a register of class DefRC with 655 // subreg index DefSubReg, reading from another source with class SrcRC and 656 // subregister SrcSubReg return true if this is a preferable copy 657 // instruction or an earlier use should be used. 658 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 659 unsigned DefSubReg, 660 const TargetRegisterClass *SrcRC, 661 unsigned SrcSubReg) const; 662 663 /// Returns the largest legal sub-class of RC that 664 /// supports the sub-register index Idx. 665 /// If no such sub-class exists, return NULL. 666 /// If all registers in RC already have an Idx sub-register, return RC. 667 /// 668 /// TableGen generates a version of this function that is good enough in most 669 /// cases. Targets can override if they have constraints that TableGen 670 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 671 /// supported by the full GR32 register class in 64-bit mode, but only by the 672 /// GR32_ABCD regiister class in 32-bit mode. 673 /// 674 /// TableGen will synthesize missing RC sub-classes. 675 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)676 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 677 assert(Idx == 0 && "Target has no sub-registers"); 678 return RC; 679 } 680 681 /// Return a register class that can be used for a subregister copy from/into 682 /// \p SuperRC at \p SubRegIdx. 683 virtual const TargetRegisterClass * getSubRegisterClass(const TargetRegisterClass * SuperRC,unsigned SubRegIdx)684 getSubRegisterClass(const TargetRegisterClass *SuperRC, 685 unsigned SubRegIdx) const { 686 return nullptr; 687 } 688 689 /// Return the subregister index you get from composing 690 /// two subregister indices. 691 /// 692 /// The special null sub-register index composes as the identity. 693 /// 694 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 695 /// returns c. Note that composeSubRegIndices does not tell you about illegal 696 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 697 /// b, composeSubRegIndices doesn't tell you. 698 /// 699 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 700 /// ssub_0:S0 - ssub_3:S3 subregs. 701 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. composeSubRegIndices(unsigned a,unsigned b)702 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 703 if (!a) return b; 704 if (!b) return a; 705 return composeSubRegIndicesImpl(a, b); 706 } 707 708 /// Transforms a LaneMask computed for one subregister to the lanemask that 709 /// would have been computed when composing the subsubregisters with IdxA 710 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)711 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 712 LaneBitmask Mask) const { 713 if (!IdxA) 714 return Mask; 715 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 716 } 717 718 /// Transform a lanemask given for a virtual register to the corresponding 719 /// lanemask before using subregister with index \p IdxA. 720 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 721 /// valie lane mask (no invalid bits set) the following holds: 722 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 723 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 724 /// => X1 == Mask reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)725 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 726 LaneBitmask LaneMask) const { 727 if (!IdxA) 728 return LaneMask; 729 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 730 } 731 732 /// Debugging helper: dump register in human readable form to dbgs() stream. 733 static void dumpReg(Register Reg, unsigned SubRegIndex = 0, 734 const TargetRegisterInfo *TRI = nullptr); 735 736 /// Return target defined base register class for a physical register. 737 /// This is the register class with the lowest BaseClassOrder containing the 738 /// register. 739 /// Will be nullptr if the register is not in any base register class. getPhysRegBaseClass(MCRegister Reg)740 virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const { 741 return nullptr; 742 } 743 744 protected: 745 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)746 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 747 llvm_unreachable("Target has no sub-registers"); 748 } 749 750 /// Overridden by TableGen in targets that have sub-registers. 751 virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)752 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 753 llvm_unreachable("Target has no sub-registers"); 754 } 755 reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)756 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 757 LaneBitmask) const { 758 llvm_unreachable("Target has no sub-registers"); 759 } 760 761 /// Return the register cost table index. This implementation is sufficient 762 /// for most architectures and can be overriden by targets in case there are 763 /// multiple cost values associated with each register. getRegisterCostTableIndex(const MachineFunction & MF)764 virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const { 765 return 0; 766 } 767 768 public: 769 /// Find a common super-register class if it exists. 770 /// 771 /// Find a register class, SuperRC and two sub-register indices, PreA and 772 /// PreB, such that: 773 /// 774 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 775 /// 776 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 777 /// 778 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 779 /// 780 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 781 /// requirements, and there is no register class with a smaller spill size 782 /// that satisfies the requirements. 783 /// 784 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 785 /// 786 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 787 /// that case, the returned register class will be a sub-class of the 788 /// corresponding argument register class. 789 /// 790 /// The function returns NULL if no register class can be found. 791 const TargetRegisterClass* 792 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 793 const TargetRegisterClass *RCB, unsigned SubB, 794 unsigned &PreA, unsigned &PreB) const; 795 796 //===--------------------------------------------------------------------===// 797 // Register Class Information 798 // 799 protected: getRegClassInfo(const TargetRegisterClass & RC)800 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const { 801 return RCInfos[getNumRegClasses() * HwMode + RC.getID()]; 802 } 803 804 public: 805 /// Register class iterators regclass_begin()806 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()807 regclass_iterator regclass_end() const { return RegClassEnd; } regclasses()808 iterator_range<regclass_iterator> regclasses() const { 809 return make_range(regclass_begin(), regclass_end()); 810 } 811 getNumRegClasses()812 unsigned getNumRegClasses() const { 813 return (unsigned)(regclass_end()-regclass_begin()); 814 } 815 816 /// Returns the register class associated with the enumeration value. 817 /// See class MCOperandInfo. getRegClass(unsigned i)818 const TargetRegisterClass *getRegClass(unsigned i) const { 819 assert(i < getNumRegClasses() && "Register Class ID out of range"); 820 return RegClassBegin[i]; 821 } 822 823 /// Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)824 const char *getRegClassName(const TargetRegisterClass *Class) const { 825 return MCRegisterInfo::getRegClassName(Class->MC); 826 } 827 828 /// Find the largest common subclass of A and B. 829 /// Return NULL if there is no common subclass. 830 const TargetRegisterClass * 831 getCommonSubClass(const TargetRegisterClass *A, 832 const TargetRegisterClass *B) const; 833 834 /// Returns a TargetRegisterClass used for pointer values. 835 /// If a target supports multiple different pointer register classes, 836 /// kind specifies which one is indicated. 837 virtual const TargetRegisterClass * 838 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 839 llvm_unreachable("Target didn't implement getPointerRegClass!"); 840 } 841 842 /// Returns a legal register class to copy a register in the specified class 843 /// to or from. If it is possible to copy the register directly without using 844 /// a cross register class copy, return the specified RC. Returns NULL if it 845 /// is not possible to copy between two registers of the specified class. 846 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)847 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 848 return RC; 849 } 850 851 /// Returns the largest super class of RC that is legal to use in the current 852 /// sub-target and has the same spill size. 853 /// The returned register class can be used to create virtual registers which 854 /// means that all its registers can be copied and spilled. 855 virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)856 getLargestLegalSuperClass(const TargetRegisterClass *RC, 857 const MachineFunction &) const { 858 /// The default implementation is very conservative and doesn't allow the 859 /// register allocator to inflate register classes. 860 return RC; 861 } 862 863 /// Return the register pressure "high water mark" for the specific register 864 /// class. The scheduler is in high register pressure mode (for the specific 865 /// register class) if it goes over the limit. 866 /// 867 /// Note: this is the old register pressure model that relies on a manually 868 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)869 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 870 MachineFunction &MF) const { 871 return 0; 872 } 873 874 /// Return a heuristic for the machine scheduler to compare the profitability 875 /// of increasing one register pressure set versus another. The scheduler 876 /// will prefer increasing the register pressure of the set which returns 877 /// the largest value for this function. getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)878 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 879 unsigned PSetID) const { 880 return PSetID; 881 } 882 883 /// Get the weight in units of pressure for this register class. 884 virtual const RegClassWeight &getRegClassWeight( 885 const TargetRegisterClass *RC) const = 0; 886 887 /// Returns size in bits of a phys/virtual/generic register. 888 TypeSize getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const; 889 890 /// Get the weight in units of pressure for this register unit. 891 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 892 893 /// Get the number of dimensions of register pressure. 894 virtual unsigned getNumRegPressureSets() const = 0; 895 896 /// Get the name of this register unit pressure set. 897 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 898 899 /// Get the register unit pressure limit for this dimension. 900 /// This limit must be adjusted dynamically for reserved registers. 901 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 902 unsigned Idx) const = 0; 903 904 /// Get the dimensions of register pressure impacted by this register class. 905 /// Returns a -1 terminated array of pressure set IDs. 906 virtual const int *getRegClassPressureSets( 907 const TargetRegisterClass *RC) const = 0; 908 909 /// Get the dimensions of register pressure impacted by this register unit. 910 /// Returns a -1 terminated array of pressure set IDs. 911 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 912 913 /// Get a list of 'hint' registers that the register allocator should try 914 /// first when allocating a physical register for the virtual register 915 /// VirtReg. These registers are effectively moved to the front of the 916 /// allocation order. If true is returned, regalloc will try to only use 917 /// hints to the greatest extent possible even if it means spilling. 918 /// 919 /// The Order argument is the allocation order for VirtReg's register class 920 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 921 /// come from Order, and they must not be reserved. 922 /// 923 /// The default implementation of this function will only add target 924 /// independent register allocation hints. Targets that override this 925 /// function should typically call this default implementation as well and 926 /// expect to see generic copy hints added. 927 virtual bool 928 getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order, 929 SmallVectorImpl<MCPhysReg> &Hints, 930 const MachineFunction &MF, 931 const VirtRegMap *VRM = nullptr, 932 const LiveRegMatrix *Matrix = nullptr) const; 933 934 /// A callback to allow target a chance to update register allocation hints 935 /// when a register is "changed" (e.g. coalesced) to another register. 936 /// e.g. On ARM, some virtual registers should target register pairs, 937 /// if one of pair is coalesced to another register, the allocation hint of 938 /// the other half of the pair should be changed to point to the new register. updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)939 virtual void updateRegAllocHint(Register Reg, Register NewReg, 940 MachineFunction &MF) const { 941 // Do nothing. 942 } 943 944 /// Allow the target to reverse allocation order of local live ranges. This 945 /// will generally allocate shorter local live ranges first. For targets with 946 /// many registers, this could reduce regalloc compile time by a large 947 /// factor. It is disabled by default for three reasons: 948 /// (1) Top-down allocation is simpler and easier to debug for targets that 949 /// don't benefit from reversing the order. 950 /// (2) Bottom-up allocation could result in poor evicition decisions on some 951 /// targets affecting the performance of compiled code. 952 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()953 virtual bool reverseLocalAssignment() const { return false; } 954 955 /// Allow the target to override the cost of using a callee-saved register for 956 /// the first time. Default value of 0 means we will use a callee-saved 957 /// register if it is available. getCSRFirstUseCost()958 virtual unsigned getCSRFirstUseCost() const { return 0; } 959 960 /// Returns true if the target requires (and can make use of) the register 961 /// scavenger. requiresRegisterScavenging(const MachineFunction & MF)962 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 963 return false; 964 } 965 966 /// Returns true if the target wants to use frame pointer based accesses to 967 /// spill to the scavenger emergency spill slot. useFPForScavengingIndex(const MachineFunction & MF)968 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 969 return true; 970 } 971 972 /// Returns true if the target requires post PEI scavenging of registers for 973 /// materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)974 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 975 return false; 976 } 977 978 /// Returns true if the target requires using the RegScavenger directly for 979 /// frame elimination despite using requiresFrameIndexScavenging. requiresFrameIndexReplacementScavenging(const MachineFunction & MF)980 virtual bool requiresFrameIndexReplacementScavenging( 981 const MachineFunction &MF) const { 982 return false; 983 } 984 985 /// Returns true if the target wants the LocalStackAllocation pass to be run 986 /// and virtual base registers used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)987 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 988 return false; 989 } 990 991 /// Return true if target has reserved a spill slot in the stack frame of 992 /// the given function for the specified register. e.g. On x86, if the frame 993 /// register is required, the first fixed stack object is reserved as its 994 /// spill slot. This tells PEI not to create a new stack frame 995 /// object for the given register. It should be called only after 996 /// determineCalleeSaves(). hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)997 virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg, 998 int &FrameIdx) const { 999 return false; 1000 } 1001 1002 /// Returns true if the live-ins should be tracked after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)1003 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 1004 return true; 1005 } 1006 1007 /// True if the stack can be realigned for the target. 1008 virtual bool canRealignStack(const MachineFunction &MF) const; 1009 1010 /// True if storage within the function requires the stack pointer to be 1011 /// aligned more than the normal calling convention calls for. 1012 virtual bool shouldRealignStack(const MachineFunction &MF) const; 1013 1014 /// True if stack realignment is required and still possible. hasStackRealignment(const MachineFunction & MF)1015 bool hasStackRealignment(const MachineFunction &MF) const { 1016 return shouldRealignStack(MF) && canRealignStack(MF); 1017 } 1018 1019 /// Get the offset from the referenced frame index in the instruction, 1020 /// if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)1021 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 1022 int Idx) const { 1023 return 0; 1024 } 1025 1026 /// Returns true if the instruction's frame index reference would be better 1027 /// served by a base register other than FP or SP. 1028 /// Used by LocalStackFrameAllocation to determine which frame index 1029 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)1030 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1031 return false; 1032 } 1033 1034 /// Insert defining instruction(s) for a pointer to FrameIdx before 1035 /// insertion point I. Return materialized frame pointer. materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)1036 virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB, 1037 int FrameIdx, 1038 int64_t Offset) const { 1039 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 1040 "target"); 1041 } 1042 1043 /// Resolve a frame index operand of an instruction 1044 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)1045 virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1046 int64_t Offset) const { 1047 llvm_unreachable("resolveFrameIndex does not exist on this target"); 1048 } 1049 1050 /// Determine whether a given base register plus offset immediate is 1051 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)1052 virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, 1053 int64_t Offset) const { 1054 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 1055 } 1056 1057 /// Gets the DWARF expression opcodes for \p Offset. 1058 virtual void getOffsetOpcodes(const StackOffset &Offset, 1059 SmallVectorImpl<uint64_t> &Ops) const; 1060 1061 /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr. 1062 DIExpression * 1063 prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags, 1064 const StackOffset &Offset) const; 1065 1066 /// Spill the register so it can be used by the register scavenger. 1067 /// Return true if the register was spilled, false otherwise. 1068 /// If this function does not spill the register, the scavenger 1069 /// will instead spill it to the emergency spill slot. saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)1070 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 1071 MachineBasicBlock::iterator I, 1072 MachineBasicBlock::iterator &UseMI, 1073 const TargetRegisterClass *RC, 1074 Register Reg) const { 1075 return false; 1076 } 1077 1078 /// Process frame indices in reverse block order. This changes the behavior of 1079 /// the RegScavenger passed to eliminateFrameIndex. If this is true targets 1080 /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets 1081 /// should prefer reverse scavenging behavior. 1082 /// TODO: Remove this when all targets return true. eliminateFrameIndicesBackwards()1083 virtual bool eliminateFrameIndicesBackwards() const { return true; } 1084 1085 /// This method must be overriden to eliminate abstract frame indices from 1086 /// instructions which may use them. The instruction referenced by the 1087 /// iterator contains an MO_FrameIndex operand which must be eliminated by 1088 /// this method. This method may modify or replace the specified instruction, 1089 /// as long as it keeps the iterator pointing at the finished product. 1090 /// SPAdj is the SP adjustment due to call frame setup instruction. 1091 /// FIOperandNum is the FI operand number. 1092 /// Returns true if the current instruction was removed and the iterator 1093 /// is not longer valid 1094 virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI, 1095 int SPAdj, unsigned FIOperandNum, 1096 RegScavenger *RS = nullptr) const = 0; 1097 1098 /// Return the assembly name for \p Reg. getRegAsmName(MCRegister Reg)1099 virtual StringRef getRegAsmName(MCRegister Reg) const { 1100 // FIXME: We are assuming that the assembly name is equal to the TableGen 1101 // name converted to lower case 1102 // 1103 // The TableGen name is the name of the definition for this register in the 1104 // target's tablegen files. For example, the TableGen name of 1105 // def EAX : Register <...>; is "EAX" 1106 return StringRef(getName(Reg)); 1107 } 1108 1109 //===--------------------------------------------------------------------===// 1110 /// Subtarget Hooks 1111 1112 /// SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1113 virtual bool shouldCoalesce(MachineInstr *MI, 1114 const TargetRegisterClass *SrcRC, 1115 unsigned SubReg, 1116 const TargetRegisterClass *DstRC, 1117 unsigned DstSubReg, 1118 const TargetRegisterClass *NewRC, 1119 LiveIntervals &LIS) const 1120 { return true; } 1121 1122 /// Region split has a high compile time cost especially for large live range. 1123 /// This method is used to decide whether or not \p VirtReg should 1124 /// go through this expensive splitting heuristic. 1125 virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF, 1126 const LiveInterval &VirtReg) const; 1127 1128 /// Last chance recoloring has a high compile time cost especially for 1129 /// targets with a lot of registers. 1130 /// This method is used to decide whether or not \p VirtReg should 1131 /// go through this expensive heuristic. 1132 /// When this target hook is hit, by returning false, there is a high 1133 /// chance that the register allocation will fail altogether (usually with 1134 /// "ran out of registers"). 1135 /// That said, this error usually points to another problem in the 1136 /// optimization pipeline. 1137 virtual bool shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1138 shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF, 1139 const LiveInterval &VirtReg) const { 1140 return true; 1141 } 1142 1143 /// Deferred spilling delays the spill insertion of a virtual register 1144 /// after every other allocation. By deferring the spilling, it is 1145 /// sometimes possible to eliminate that spilling altogether because 1146 /// something else could have been eliminated, thus leaving some space 1147 /// for the virtual register. 1148 /// However, this comes with a compile time impact because it adds one 1149 /// more stage to the greedy register allocator. 1150 /// This method is used to decide whether \p VirtReg should use the deferred 1151 /// spilling stage instead of being spilled right away. 1152 virtual bool shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1153 shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF, 1154 const LiveInterval &VirtReg) const { 1155 return false; 1156 } 1157 1158 /// When prioritizing live ranges in register allocation, if this hook returns 1159 /// true then the AllocationPriority of the register class will be treated as 1160 /// more important than whether the range is local to a basic block or global. 1161 virtual bool regClassPriorityTrumpsGlobalness(const MachineFunction & MF)1162 regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const { 1163 return false; 1164 } 1165 1166 //===--------------------------------------------------------------------===// 1167 /// Debug information queries. 1168 1169 /// getFrameRegister - This method should return the register used as a base 1170 /// for values allocated in the current stack frame. 1171 virtual Register getFrameRegister(const MachineFunction &MF) const = 0; 1172 1173 /// Mark a register and all its aliases as reserved in the given set. 1174 void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const; 1175 1176 /// Returns true if for every register in the set all super registers are part 1177 /// of the set as well. 1178 bool checkAllSuperRegsMarked(const BitVector &RegisterSet, 1179 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; 1180 1181 virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1182 getConstrainedRegClassForOperand(const MachineOperand &MO, 1183 const MachineRegisterInfo &MRI) const { 1184 return nullptr; 1185 } 1186 1187 /// Returns the physical register number of sub-register "Index" 1188 /// for physical register RegNo. Return zero if the sub-register does not 1189 /// exist. getSubReg(MCRegister Reg,unsigned Idx)1190 inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const { 1191 return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx); 1192 } 1193 1194 /// Some targets have non-allocatable registers that aren't technically part 1195 /// of the explicit callee saved register list, but should be handled as such 1196 /// in certain cases. isNonallocatableRegisterCalleeSave(MCRegister Reg)1197 virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const { 1198 return false; 1199 } 1200 1201 /// Returns the Largest Super Class that is being initialized. There 1202 /// should be a Pseudo Instruction implemented for the super class 1203 /// that is being returned to ensure that Init Undef can apply the 1204 /// initialization correctly. 1205 virtual const TargetRegisterClass * getLargestSuperClass(const TargetRegisterClass * RC)1206 getLargestSuperClass(const TargetRegisterClass *RC) const { 1207 llvm_unreachable("Unexpected target register class."); 1208 } 1209 1210 /// Returns if the architecture being targeted has the required Pseudo 1211 /// Instructions for initializing the register. By default this returns false, 1212 /// but where it is overriden for an architecture, the behaviour will be 1213 /// different. This can either be a check to ensure the Register Class is 1214 /// present, or to return true as an indication the architecture supports the 1215 /// pass. If using the method that does not check for the Register Class, it 1216 /// is imperative to ensure all required Pseudo Instructions are implemented, 1217 /// otherwise compilation may fail with an `Unexpected register class` error. 1218 virtual bool doesRegClassHavePseudoInitUndef(const TargetRegisterClass * RC)1219 doesRegClassHavePseudoInitUndef(const TargetRegisterClass *RC) const { 1220 return false; 1221 } 1222 }; 1223 1224 //===----------------------------------------------------------------------===// 1225 // SuperRegClassIterator 1226 //===----------------------------------------------------------------------===// 1227 // 1228 // Iterate over the possible super-registers for a given register class. The 1229 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 1230 // possible classes of super-registers. 1231 // 1232 // Each bit mask will have at least one set bit, and each set bit in Mask 1233 // corresponds to a SuperRC such that: 1234 // 1235 // For all Reg in SuperRC: Reg:Idx is in RC. 1236 // 1237 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 1238 // also satisfies the above requirement, assuming Reg:0 == Reg. 1239 // 1240 class SuperRegClassIterator { 1241 const unsigned RCMaskWords; 1242 unsigned SubReg = 0; 1243 const uint16_t *Idx; 1244 const uint32_t *Mask; 1245 1246 public: 1247 /// Create a SuperRegClassIterator that visits all the super-register classes 1248 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 1249 SuperRegClassIterator(const TargetRegisterClass *RC, 1250 const TargetRegisterInfo *TRI, 1251 bool IncludeSelf = false) 1252 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 1253 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { 1254 if (!IncludeSelf) 1255 ++*this; 1256 } 1257 1258 /// Returns true if this iterator is still pointing at a valid entry. isValid()1259 bool isValid() const { return Idx; } 1260 1261 /// Returns the current sub-register index. getSubReg()1262 unsigned getSubReg() const { return SubReg; } 1263 1264 /// Returns the bit mask of register classes that getSubReg() projects into 1265 /// RC. 1266 /// See TargetRegisterClass::getSubClassMask() for how to use it. getMask()1267 const uint32_t *getMask() const { return Mask; } 1268 1269 /// Advance iterator to the next entry. 1270 void operator++() { 1271 assert(isValid() && "Cannot move iterator past end."); 1272 Mask += RCMaskWords; 1273 SubReg = *Idx++; 1274 if (!SubReg) 1275 Idx = nullptr; 1276 } 1277 }; 1278 1279 //===----------------------------------------------------------------------===// 1280 // BitMaskClassIterator 1281 //===----------------------------------------------------------------------===// 1282 /// This class encapuslates the logic to iterate over bitmask returned by 1283 /// the various RegClass related APIs. 1284 /// E.g., this class can be used to iterate over the subclasses provided by 1285 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1286 class BitMaskClassIterator { 1287 /// Total number of register classes. 1288 const unsigned NumRegClasses; 1289 /// Base index of CurrentChunk. 1290 /// In other words, the number of bit we read to get at the 1291 /// beginning of that chunck. 1292 unsigned Base = 0; 1293 /// Adjust base index of CurrentChunk. 1294 /// Base index + how many bit we read within CurrentChunk. 1295 unsigned Idx = 0; 1296 /// Current register class ID. 1297 unsigned ID = 0; 1298 /// Mask we are iterating over. 1299 const uint32_t *Mask; 1300 /// Current chunk of the Mask we are traversing. 1301 uint32_t CurrentChunk; 1302 1303 /// Move ID to the next set bit. moveToNextID()1304 void moveToNextID() { 1305 // If the current chunk of memory is empty, move to the next one, 1306 // while making sure we do not go pass the number of register 1307 // classes. 1308 while (!CurrentChunk) { 1309 // Move to the next chunk. 1310 Base += 32; 1311 if (Base >= NumRegClasses) { 1312 ID = NumRegClasses; 1313 return; 1314 } 1315 CurrentChunk = *++Mask; 1316 Idx = Base; 1317 } 1318 // Otherwise look for the first bit set from the right 1319 // (representation of the class ID is big endian). 1320 // See getSubClassMask for more details on the representation. 1321 unsigned Offset = llvm::countr_zero(CurrentChunk); 1322 // Add the Offset to the adjusted base number of this chunk: Idx. 1323 // This is the ID of the register class. 1324 ID = Idx + Offset; 1325 1326 // Consume the zeros, if any, and the bit we just read 1327 // so that we are at the right spot for the next call. 1328 // Do not do Offset + 1 because Offset may be 31 and 32 1329 // will be UB for the shift, though in that case we could 1330 // have make the chunk being equal to 0, but that would 1331 // have introduced a if statement. 1332 moveNBits(Offset); 1333 moveNBits(1); 1334 } 1335 1336 /// Move \p NumBits Bits forward in CurrentChunk. moveNBits(unsigned NumBits)1337 void moveNBits(unsigned NumBits) { 1338 assert(NumBits < 32 && "Undefined behavior spotted!"); 1339 // Consume the bit we read for the next call. 1340 CurrentChunk >>= NumBits; 1341 // Adjust the base for the chunk. 1342 Idx += NumBits; 1343 } 1344 1345 public: 1346 /// Create a BitMaskClassIterator that visits all the register classes 1347 /// represented by \p Mask. 1348 /// 1349 /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1350 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1351 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) { 1352 // Move to the first ID. 1353 moveToNextID(); 1354 } 1355 1356 /// Returns true if this iterator is still pointing at a valid entry. isValid()1357 bool isValid() const { return getID() != NumRegClasses; } 1358 1359 /// Returns the current register class ID. getID()1360 unsigned getID() const { return ID; } 1361 1362 /// Advance iterator to the next entry. 1363 void operator++() { 1364 assert(isValid() && "Cannot move iterator past end."); 1365 moveToNextID(); 1366 } 1367 }; 1368 1369 // This is useful when building IndexedMaps keyed on virtual registers 1370 struct VirtReg2IndexFunctor { 1371 using argument_type = Register; operatorVirtReg2IndexFunctor1372 unsigned operator()(Register Reg) const { 1373 return Register::virtReg2Index(Reg); 1374 } 1375 }; 1376 1377 /// Prints virtual and physical registers with or without a TRI instance. 1378 /// 1379 /// The format is: 1380 /// %noreg - NoRegister 1381 /// %5 - a virtual register. 1382 /// %5:sub_8bit - a virtual register with sub-register index (with TRI). 1383 /// %eax - a physical register 1384 /// %physreg17 - a physical register when no TRI instance given. 1385 /// 1386 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n'; 1387 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr, 1388 unsigned SubIdx = 0, 1389 const MachineRegisterInfo *MRI = nullptr); 1390 1391 /// Create Printable object to print register units on a \ref raw_ostream. 1392 /// 1393 /// Register units are named after their root registers: 1394 /// 1395 /// al - Single root. 1396 /// fp0~st7 - Dual roots. 1397 /// 1398 /// Usage: OS << printRegUnit(Unit, TRI) << '\n'; 1399 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1400 1401 /// Create Printable object to print virtual registers and physical 1402 /// registers on a \ref raw_ostream. 1403 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1404 1405 /// Create Printable object to print register classes or register banks 1406 /// on a \ref raw_ostream. 1407 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, 1408 const TargetRegisterInfo *TRI); 1409 1410 } // end namespace llvm 1411 1412 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H 1413