xref: /linux/mm/zsmalloc.c (revision ba6ec09911b805778a2fed6d626bfe77b011a717)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 /*
19  * lock ordering:
20  *	page_lock
21  *	pool->migrate_lock
22  *	class->lock
23  *	zspage->lock
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/highmem.h>
32 #include <linux/string.h>
33 #include <linux/slab.h>
34 #include <linux/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/cpumask.h>
37 #include <linux/cpu.h>
38 #include <linux/vmalloc.h>
39 #include <linux/preempt.h>
40 #include <linux/spinlock.h>
41 #include <linux/sprintf.h>
42 #include <linux/shrinker.h>
43 #include <linux/types.h>
44 #include <linux/debugfs.h>
45 #include <linux/zsmalloc.h>
46 #include <linux/zpool.h>
47 #include <linux/migrate.h>
48 #include <linux/wait.h>
49 #include <linux/pagemap.h>
50 #include <linux/fs.h>
51 #include <linux/local_lock.h>
52 #include "zpdesc.h"
53 
54 #define ZSPAGE_MAGIC	0x58
55 
56 /*
57  * This must be power of 2 and greater than or equal to sizeof(link_free).
58  * These two conditions ensure that any 'struct link_free' itself doesn't
59  * span more than 1 page which avoids complex case of mapping 2 pages simply
60  * to restore link_free pointer values.
61  */
62 #define ZS_ALIGN		8
63 
64 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
65 
66 /*
67  * Object location (<PFN>, <obj_idx>) is encoded as
68  * a single (unsigned long) handle value.
69  *
70  * Note that object index <obj_idx> starts from 0.
71  *
72  * This is made more complicated by various memory models and PAE.
73  */
74 
75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
76 #ifdef MAX_PHYSMEM_BITS
77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
78 #else
79 /*
80  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
81  * be PAGE_SHIFT
82  */
83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
84 #endif
85 #endif
86 
87 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
88 
89 /*
90  * Head in allocated object should have OBJ_ALLOCATED_TAG
91  * to identify the object was allocated or not.
92  * It's okay to add the status bit in the least bit because
93  * header keeps handle which is 4byte-aligned address so we
94  * have room for two bit at least.
95  */
96 #define OBJ_ALLOCATED_TAG 1
97 
98 #define OBJ_TAG_BITS	1
99 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
100 
101 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
102 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
103 
104 #define HUGE_BITS	1
105 #define FULLNESS_BITS	4
106 #define CLASS_BITS	8
107 #define MAGIC_VAL_BITS	8
108 
109 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
110 
111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
112 #define ZS_MIN_ALLOC_SIZE \
113 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
114 /* each chunk includes extra space to keep handle */
115 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
116 
117 /*
118  * On systems with 4K page size, this gives 255 size classes! There is a
119  * trader-off here:
120  *  - Large number of size classes is potentially wasteful as free page are
121  *    spread across these classes
122  *  - Small number of size classes causes large internal fragmentation
123  *  - Probably its better to use specific size classes (empirically
124  *    determined). NOTE: all those class sizes must be set as multiple of
125  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
126  *
127  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
128  *  (reason above)
129  */
130 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
131 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
132 				      ZS_SIZE_CLASS_DELTA) + 1)
133 
134 /*
135  * Pages are distinguished by the ratio of used memory (that is the ratio
136  * of ->inuse objects to all objects that page can store). For example,
137  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
138  *
139  * The number of fullness groups is not random. It allows us to keep
140  * difference between the least busy page in the group (minimum permitted
141  * number of ->inuse objects) and the most busy page (maximum permitted
142  * number of ->inuse objects) at a reasonable value.
143  */
144 enum fullness_group {
145 	ZS_INUSE_RATIO_0,
146 	ZS_INUSE_RATIO_10,
147 	/* NOTE: 8 more fullness groups here */
148 	ZS_INUSE_RATIO_99       = 10,
149 	ZS_INUSE_RATIO_100,
150 	NR_FULLNESS_GROUPS,
151 };
152 
153 enum class_stat_type {
154 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
155 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
156 	ZS_OBJS_INUSE,
157 	NR_CLASS_STAT_TYPES,
158 };
159 
160 struct zs_size_stat {
161 	unsigned long objs[NR_CLASS_STAT_TYPES];
162 };
163 
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry *zs_stat_root;
166 #endif
167 
168 static size_t huge_class_size;
169 
170 struct size_class {
171 	spinlock_t lock;
172 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
173 	/*
174 	 * Size of objects stored in this class. Must be multiple
175 	 * of ZS_ALIGN.
176 	 */
177 	int size;
178 	int objs_per_zspage;
179 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
180 	int pages_per_zspage;
181 
182 	unsigned int index;
183 	struct zs_size_stat stats;
184 };
185 
186 /*
187  * Placed within free objects to form a singly linked list.
188  * For every zspage, zspage->freeobj gives head of this list.
189  *
190  * This must be power of 2 and less than or equal to ZS_ALIGN
191  */
192 struct link_free {
193 	union {
194 		/*
195 		 * Free object index;
196 		 * It's valid for non-allocated object
197 		 */
198 		unsigned long next;
199 		/*
200 		 * Handle of allocated object.
201 		 */
202 		unsigned long handle;
203 	};
204 };
205 
206 struct zs_pool {
207 	const char *name;
208 
209 	struct size_class *size_class[ZS_SIZE_CLASSES];
210 	struct kmem_cache *handle_cachep;
211 	struct kmem_cache *zspage_cachep;
212 
213 	atomic_long_t pages_allocated;
214 
215 	struct zs_pool_stats stats;
216 
217 	/* Compact classes */
218 	struct shrinker *shrinker;
219 
220 #ifdef CONFIG_ZSMALLOC_STAT
221 	struct dentry *stat_dentry;
222 #endif
223 #ifdef CONFIG_COMPACTION
224 	struct work_struct free_work;
225 #endif
226 	/* protect page/zspage migration */
227 	rwlock_t migrate_lock;
228 	atomic_t compaction_in_progress;
229 };
230 
zpdesc_set_first(struct zpdesc * zpdesc)231 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
232 {
233 	SetPagePrivate(zpdesc_page(zpdesc));
234 }
235 
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
237 {
238 	inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
239 }
240 
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
242 {
243 	dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
244 }
245 
alloc_zpdesc(gfp_t gfp)246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp)
247 {
248 	struct page *page = alloc_page(gfp);
249 
250 	return page_zpdesc(page);
251 }
252 
free_zpdesc(struct zpdesc * zpdesc)253 static inline void free_zpdesc(struct zpdesc *zpdesc)
254 {
255 	struct page *page = zpdesc_page(zpdesc);
256 
257 	__free_page(page);
258 }
259 
260 struct zspage {
261 	struct {
262 		unsigned int huge:HUGE_BITS;
263 		unsigned int fullness:FULLNESS_BITS;
264 		unsigned int class:CLASS_BITS + 1;
265 		unsigned int magic:MAGIC_VAL_BITS;
266 	};
267 	unsigned int inuse;
268 	unsigned int freeobj;
269 	struct zpdesc *first_zpdesc;
270 	struct list_head list; /* fullness list */
271 	struct zs_pool *pool;
272 	rwlock_t lock;
273 };
274 
275 struct mapping_area {
276 	local_lock_t lock;
277 	char *vm_buf; /* copy buffer for objects that span pages */
278 	char *vm_addr; /* address of kmap_local_page()'ed pages */
279 	enum zs_mapmode vm_mm; /* mapping mode */
280 };
281 
282 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)283 static void SetZsHugePage(struct zspage *zspage)
284 {
285 	zspage->huge = 1;
286 }
287 
ZsHugePage(struct zspage * zspage)288 static bool ZsHugePage(struct zspage *zspage)
289 {
290 	return zspage->huge;
291 }
292 
293 static void migrate_lock_init(struct zspage *zspage);
294 static void migrate_read_lock(struct zspage *zspage);
295 static void migrate_read_unlock(struct zspage *zspage);
296 static void migrate_write_lock(struct zspage *zspage);
297 static void migrate_write_unlock(struct zspage *zspage);
298 
299 #ifdef CONFIG_COMPACTION
300 static void kick_deferred_free(struct zs_pool *pool);
301 static void init_deferred_free(struct zs_pool *pool);
302 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
303 #else
kick_deferred_free(struct zs_pool * pool)304 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)305 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
307 #endif
308 
create_cache(struct zs_pool * pool)309 static int create_cache(struct zs_pool *pool)
310 {
311 	char *name;
312 
313 	name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
314 	if (!name)
315 		return -ENOMEM;
316 	pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
317 						0, 0, NULL);
318 	kfree(name);
319 	if (!pool->handle_cachep)
320 		return -EINVAL;
321 
322 	name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
323 	if (!name)
324 		return -ENOMEM;
325 	pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
326 						0, 0, NULL);
327 	kfree(name);
328 	if (!pool->zspage_cachep) {
329 		kmem_cache_destroy(pool->handle_cachep);
330 		pool->handle_cachep = NULL;
331 		return -EINVAL;
332 	}
333 
334 	return 0;
335 }
336 
destroy_cache(struct zs_pool * pool)337 static void destroy_cache(struct zs_pool *pool)
338 {
339 	kmem_cache_destroy(pool->handle_cachep);
340 	kmem_cache_destroy(pool->zspage_cachep);
341 }
342 
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
344 {
345 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
346 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
347 }
348 
cache_free_handle(struct zs_pool * pool,unsigned long handle)349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
350 {
351 	kmem_cache_free(pool->handle_cachep, (void *)handle);
352 }
353 
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
355 {
356 	return kmem_cache_zalloc(pool->zspage_cachep,
357 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359 
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
361 {
362 	kmem_cache_free(pool->zspage_cachep, zspage);
363 }
364 
365 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)366 static void record_obj(unsigned long handle, unsigned long obj)
367 {
368 	*(unsigned long *)handle = obj;
369 }
370 
371 /* zpool driver */
372 
373 #ifdef CONFIG_ZPOOL
374 
zs_zpool_create(const char * name,gfp_t gfp)375 static void *zs_zpool_create(const char *name, gfp_t gfp)
376 {
377 	/*
378 	 * Ignore global gfp flags: zs_malloc() may be invoked from
379 	 * different contexts and its caller must provide a valid
380 	 * gfp mask.
381 	 */
382 	return zs_create_pool(name);
383 }
384 
zs_zpool_destroy(void * pool)385 static void zs_zpool_destroy(void *pool)
386 {
387 	zs_destroy_pool(pool);
388 }
389 
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)390 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
391 			unsigned long *handle)
392 {
393 	*handle = zs_malloc(pool, size, gfp);
394 
395 	if (IS_ERR_VALUE(*handle))
396 		return PTR_ERR((void *)*handle);
397 	return 0;
398 }
zs_zpool_free(void * pool,unsigned long handle)399 static void zs_zpool_free(void *pool, unsigned long handle)
400 {
401 	zs_free(pool, handle);
402 }
403 
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)404 static void *zs_zpool_map(void *pool, unsigned long handle,
405 			enum zpool_mapmode mm)
406 {
407 	enum zs_mapmode zs_mm;
408 
409 	switch (mm) {
410 	case ZPOOL_MM_RO:
411 		zs_mm = ZS_MM_RO;
412 		break;
413 	case ZPOOL_MM_WO:
414 		zs_mm = ZS_MM_WO;
415 		break;
416 	case ZPOOL_MM_RW:
417 	default:
418 		zs_mm = ZS_MM_RW;
419 		break;
420 	}
421 
422 	return zs_map_object(pool, handle, zs_mm);
423 }
zs_zpool_unmap(void * pool,unsigned long handle)424 static void zs_zpool_unmap(void *pool, unsigned long handle)
425 {
426 	zs_unmap_object(pool, handle);
427 }
428 
zs_zpool_total_pages(void * pool)429 static u64 zs_zpool_total_pages(void *pool)
430 {
431 	return zs_get_total_pages(pool);
432 }
433 
434 static struct zpool_driver zs_zpool_driver = {
435 	.type =			  "zsmalloc",
436 	.owner =		  THIS_MODULE,
437 	.create =		  zs_zpool_create,
438 	.destroy =		  zs_zpool_destroy,
439 	.malloc_support_movable = true,
440 	.malloc =		  zs_zpool_malloc,
441 	.free =			  zs_zpool_free,
442 	.map =			  zs_zpool_map,
443 	.unmap =		  zs_zpool_unmap,
444 	.total_pages =		  zs_zpool_total_pages,
445 };
446 
447 MODULE_ALIAS("zpool-zsmalloc");
448 #endif /* CONFIG_ZPOOL */
449 
450 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
451 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
452 	.lock	= INIT_LOCAL_LOCK(lock),
453 };
454 
is_first_zpdesc(struct zpdesc * zpdesc)455 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
456 {
457 	return PagePrivate(zpdesc_page(zpdesc));
458 }
459 
460 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)461 static inline int get_zspage_inuse(struct zspage *zspage)
462 {
463 	return zspage->inuse;
464 }
465 
mod_zspage_inuse(struct zspage * zspage,int val)466 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
467 {
468 	zspage->inuse += val;
469 }
470 
get_first_zpdesc(struct zspage * zspage)471 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
472 {
473 	struct zpdesc *first_zpdesc = zspage->first_zpdesc;
474 
475 	VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
476 	return first_zpdesc;
477 }
478 
479 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffffff
480 
get_first_obj_offset(struct zpdesc * zpdesc)481 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
482 {
483 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
484 	return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
485 }
486 
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)487 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
488 {
489 	/* With 24 bits available, we can support offsets into 16 MiB pages. */
490 	BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
491 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
492 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
493 	zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
494 	zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
495 }
496 
get_freeobj(struct zspage * zspage)497 static inline unsigned int get_freeobj(struct zspage *zspage)
498 {
499 	return zspage->freeobj;
500 }
501 
set_freeobj(struct zspage * zspage,unsigned int obj)502 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
503 {
504 	zspage->freeobj = obj;
505 }
506 
zspage_class(struct zs_pool * pool,struct zspage * zspage)507 static struct size_class *zspage_class(struct zs_pool *pool,
508 				       struct zspage *zspage)
509 {
510 	return pool->size_class[zspage->class];
511 }
512 
513 /*
514  * zsmalloc divides the pool into various size classes where each
515  * class maintains a list of zspages where each zspage is divided
516  * into equal sized chunks. Each allocation falls into one of these
517  * classes depending on its size. This function returns index of the
518  * size class which has chunk size big enough to hold the given size.
519  */
get_size_class_index(int size)520 static int get_size_class_index(int size)
521 {
522 	int idx = 0;
523 
524 	if (likely(size > ZS_MIN_ALLOC_SIZE))
525 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
526 				ZS_SIZE_CLASS_DELTA);
527 
528 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
529 }
530 
class_stat_add(struct size_class * class,int type,unsigned long cnt)531 static inline void class_stat_add(struct size_class *class, int type,
532 				  unsigned long cnt)
533 {
534 	class->stats.objs[type] += cnt;
535 }
536 
class_stat_sub(struct size_class * class,int type,unsigned long cnt)537 static inline void class_stat_sub(struct size_class *class, int type,
538 				  unsigned long cnt)
539 {
540 	class->stats.objs[type] -= cnt;
541 }
542 
class_stat_read(struct size_class * class,int type)543 static inline unsigned long class_stat_read(struct size_class *class, int type)
544 {
545 	return class->stats.objs[type];
546 }
547 
548 #ifdef CONFIG_ZSMALLOC_STAT
549 
zs_stat_init(void)550 static void __init zs_stat_init(void)
551 {
552 	if (!debugfs_initialized()) {
553 		pr_warn("debugfs not available, stat dir not created\n");
554 		return;
555 	}
556 
557 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
558 }
559 
zs_stat_exit(void)560 static void __exit zs_stat_exit(void)
561 {
562 	debugfs_remove_recursive(zs_stat_root);
563 }
564 
565 static unsigned long zs_can_compact(struct size_class *class);
566 
zs_stats_size_show(struct seq_file * s,void * v)567 static int zs_stats_size_show(struct seq_file *s, void *v)
568 {
569 	int i, fg;
570 	struct zs_pool *pool = s->private;
571 	struct size_class *class;
572 	int objs_per_zspage;
573 	unsigned long obj_allocated, obj_used, pages_used, freeable;
574 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
575 	unsigned long total_freeable = 0;
576 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
577 
578 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
579 			"class", "size", "10%", "20%", "30%", "40%",
580 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
581 			"obj_allocated", "obj_used", "pages_used",
582 			"pages_per_zspage", "freeable");
583 
584 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
585 
586 		class = pool->size_class[i];
587 
588 		if (class->index != i)
589 			continue;
590 
591 		spin_lock(&class->lock);
592 
593 		seq_printf(s, " %5u %5u ", i, class->size);
594 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
595 			inuse_totals[fg] += class_stat_read(class, fg);
596 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
597 		}
598 
599 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
600 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
601 		freeable = zs_can_compact(class);
602 		spin_unlock(&class->lock);
603 
604 		objs_per_zspage = class->objs_per_zspage;
605 		pages_used = obj_allocated / objs_per_zspage *
606 				class->pages_per_zspage;
607 
608 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
609 			   obj_allocated, obj_used, pages_used,
610 			   class->pages_per_zspage, freeable);
611 
612 		total_objs += obj_allocated;
613 		total_used_objs += obj_used;
614 		total_pages += pages_used;
615 		total_freeable += freeable;
616 	}
617 
618 	seq_puts(s, "\n");
619 	seq_printf(s, " %5s %5s ", "Total", "");
620 
621 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
622 		seq_printf(s, "%9lu ", inuse_totals[fg]);
623 
624 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
625 		   total_objs, total_used_objs, total_pages, "",
626 		   total_freeable);
627 
628 	return 0;
629 }
630 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
631 
zs_pool_stat_create(struct zs_pool * pool,const char * name)632 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
633 {
634 	if (!zs_stat_root) {
635 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
636 		return;
637 	}
638 
639 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
640 
641 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
642 			    &zs_stats_size_fops);
643 }
644 
zs_pool_stat_destroy(struct zs_pool * pool)645 static void zs_pool_stat_destroy(struct zs_pool *pool)
646 {
647 	debugfs_remove_recursive(pool->stat_dentry);
648 }
649 
650 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)651 static void __init zs_stat_init(void)
652 {
653 }
654 
zs_stat_exit(void)655 static void __exit zs_stat_exit(void)
656 {
657 }
658 
zs_pool_stat_create(struct zs_pool * pool,const char * name)659 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
660 {
661 }
662 
zs_pool_stat_destroy(struct zs_pool * pool)663 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
664 {
665 }
666 #endif
667 
668 
669 /*
670  * For each size class, zspages are divided into different groups
671  * depending on their usage ratio. This function returns fullness
672  * status of the given page.
673  */
get_fullness_group(struct size_class * class,struct zspage * zspage)674 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
675 {
676 	int inuse, objs_per_zspage, ratio;
677 
678 	inuse = get_zspage_inuse(zspage);
679 	objs_per_zspage = class->objs_per_zspage;
680 
681 	if (inuse == 0)
682 		return ZS_INUSE_RATIO_0;
683 	if (inuse == objs_per_zspage)
684 		return ZS_INUSE_RATIO_100;
685 
686 	ratio = 100 * inuse / objs_per_zspage;
687 	/*
688 	 * Take integer division into consideration: a page with one inuse
689 	 * object out of 127 possible, will end up having 0 usage ratio,
690 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
691 	 */
692 	return ratio / 10 + 1;
693 }
694 
695 /*
696  * Each size class maintains various freelists and zspages are assigned
697  * to one of these freelists based on the number of live objects they
698  * have. This functions inserts the given zspage into the freelist
699  * identified by <class, fullness_group>.
700  */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)701 static void insert_zspage(struct size_class *class,
702 				struct zspage *zspage,
703 				int fullness)
704 {
705 	class_stat_add(class, fullness, 1);
706 	list_add(&zspage->list, &class->fullness_list[fullness]);
707 	zspage->fullness = fullness;
708 }
709 
710 /*
711  * This function removes the given zspage from the freelist identified
712  * by <class, fullness_group>.
713  */
remove_zspage(struct size_class * class,struct zspage * zspage)714 static void remove_zspage(struct size_class *class, struct zspage *zspage)
715 {
716 	int fullness = zspage->fullness;
717 
718 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
719 
720 	list_del_init(&zspage->list);
721 	class_stat_sub(class, fullness, 1);
722 }
723 
724 /*
725  * Each size class maintains zspages in different fullness groups depending
726  * on the number of live objects they contain. When allocating or freeing
727  * objects, the fullness status of the page can change, for instance, from
728  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
729  * checks if such a status change has occurred for the given page and
730  * accordingly moves the page from the list of the old fullness group to that
731  * of the new fullness group.
732  */
fix_fullness_group(struct size_class * class,struct zspage * zspage)733 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
734 {
735 	int newfg;
736 
737 	newfg = get_fullness_group(class, zspage);
738 	if (newfg == zspage->fullness)
739 		goto out;
740 
741 	remove_zspage(class, zspage);
742 	insert_zspage(class, zspage, newfg);
743 out:
744 	return newfg;
745 }
746 
get_zspage(struct zpdesc * zpdesc)747 static struct zspage *get_zspage(struct zpdesc *zpdesc)
748 {
749 	struct zspage *zspage = zpdesc->zspage;
750 
751 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
752 	return zspage;
753 }
754 
get_next_zpdesc(struct zpdesc * zpdesc)755 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
756 {
757 	struct zspage *zspage = get_zspage(zpdesc);
758 
759 	if (unlikely(ZsHugePage(zspage)))
760 		return NULL;
761 
762 	return zpdesc->next;
763 }
764 
765 /**
766  * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
767  * @obj: the encoded object value
768  * @zpdesc: zpdesc object resides in zspage
769  * @obj_idx: object index
770  */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)771 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
772 				unsigned int *obj_idx)
773 {
774 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
775 	*obj_idx = (obj & OBJ_INDEX_MASK);
776 }
777 
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)778 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
779 {
780 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
781 }
782 
783 /**
784  * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
785  * @zpdesc: zpdesc object resides in zspage
786  * @obj_idx: object index
787  */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)788 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
789 {
790 	unsigned long obj;
791 
792 	obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
793 	obj |= obj_idx & OBJ_INDEX_MASK;
794 
795 	return obj;
796 }
797 
handle_to_obj(unsigned long handle)798 static unsigned long handle_to_obj(unsigned long handle)
799 {
800 	return *(unsigned long *)handle;
801 }
802 
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)803 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
804 				 unsigned long *phandle)
805 {
806 	unsigned long handle;
807 	struct zspage *zspage = get_zspage(zpdesc);
808 
809 	if (unlikely(ZsHugePage(zspage))) {
810 		VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
811 		handle = zpdesc->handle;
812 	} else
813 		handle = *(unsigned long *)obj;
814 
815 	if (!(handle & OBJ_ALLOCATED_TAG))
816 		return false;
817 
818 	/* Clear all tags before returning the handle */
819 	*phandle = handle & ~OBJ_TAG_MASK;
820 	return true;
821 }
822 
reset_zpdesc(struct zpdesc * zpdesc)823 static void reset_zpdesc(struct zpdesc *zpdesc)
824 {
825 	struct page *page = zpdesc_page(zpdesc);
826 
827 	__ClearPageMovable(page);
828 	ClearPagePrivate(page);
829 	zpdesc->zspage = NULL;
830 	zpdesc->next = NULL;
831 	__ClearPageZsmalloc(page);
832 }
833 
trylock_zspage(struct zspage * zspage)834 static int trylock_zspage(struct zspage *zspage)
835 {
836 	struct zpdesc *cursor, *fail;
837 
838 	for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
839 					get_next_zpdesc(cursor)) {
840 		if (!zpdesc_trylock(cursor)) {
841 			fail = cursor;
842 			goto unlock;
843 		}
844 	}
845 
846 	return 1;
847 unlock:
848 	for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
849 					get_next_zpdesc(cursor))
850 		zpdesc_unlock(cursor);
851 
852 	return 0;
853 }
854 
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)855 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
856 				struct zspage *zspage)
857 {
858 	struct zpdesc *zpdesc, *next;
859 
860 	assert_spin_locked(&class->lock);
861 
862 	VM_BUG_ON(get_zspage_inuse(zspage));
863 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
864 
865 	next = zpdesc = get_first_zpdesc(zspage);
866 	do {
867 		VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
868 		next = get_next_zpdesc(zpdesc);
869 		reset_zpdesc(zpdesc);
870 		zpdesc_unlock(zpdesc);
871 		zpdesc_dec_zone_page_state(zpdesc);
872 		zpdesc_put(zpdesc);
873 		zpdesc = next;
874 	} while (zpdesc != NULL);
875 
876 	cache_free_zspage(pool, zspage);
877 
878 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
879 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
880 }
881 
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)882 static void free_zspage(struct zs_pool *pool, struct size_class *class,
883 				struct zspage *zspage)
884 {
885 	VM_BUG_ON(get_zspage_inuse(zspage));
886 	VM_BUG_ON(list_empty(&zspage->list));
887 
888 	/*
889 	 * Since zs_free couldn't be sleepable, this function cannot call
890 	 * lock_page. The page locks trylock_zspage got will be released
891 	 * by __free_zspage.
892 	 */
893 	if (!trylock_zspage(zspage)) {
894 		kick_deferred_free(pool);
895 		return;
896 	}
897 
898 	remove_zspage(class, zspage);
899 	__free_zspage(pool, class, zspage);
900 }
901 
902 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)903 static void init_zspage(struct size_class *class, struct zspage *zspage)
904 {
905 	unsigned int freeobj = 1;
906 	unsigned long off = 0;
907 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
908 
909 	while (zpdesc) {
910 		struct zpdesc *next_zpdesc;
911 		struct link_free *link;
912 		void *vaddr;
913 
914 		set_first_obj_offset(zpdesc, off);
915 
916 		vaddr = kmap_local_zpdesc(zpdesc);
917 		link = (struct link_free *)vaddr + off / sizeof(*link);
918 
919 		while ((off += class->size) < PAGE_SIZE) {
920 			link->next = freeobj++ << OBJ_TAG_BITS;
921 			link += class->size / sizeof(*link);
922 		}
923 
924 		/*
925 		 * We now come to the last (full or partial) object on this
926 		 * page, which must point to the first object on the next
927 		 * page (if present)
928 		 */
929 		next_zpdesc = get_next_zpdesc(zpdesc);
930 		if (next_zpdesc) {
931 			link->next = freeobj++ << OBJ_TAG_BITS;
932 		} else {
933 			/*
934 			 * Reset OBJ_TAG_BITS bit to last link to tell
935 			 * whether it's allocated object or not.
936 			 */
937 			link->next = -1UL << OBJ_TAG_BITS;
938 		}
939 		kunmap_local(vaddr);
940 		zpdesc = next_zpdesc;
941 		off %= PAGE_SIZE;
942 	}
943 
944 	set_freeobj(zspage, 0);
945 }
946 
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])947 static void create_page_chain(struct size_class *class, struct zspage *zspage,
948 				struct zpdesc *zpdescs[])
949 {
950 	int i;
951 	struct zpdesc *zpdesc;
952 	struct zpdesc *prev_zpdesc = NULL;
953 	int nr_zpdescs = class->pages_per_zspage;
954 
955 	/*
956 	 * Allocate individual pages and link them together as:
957 	 * 1. all pages are linked together using zpdesc->next
958 	 * 2. each sub-page point to zspage using zpdesc->zspage
959 	 *
960 	 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
961 	 * has this flag set).
962 	 */
963 	for (i = 0; i < nr_zpdescs; i++) {
964 		zpdesc = zpdescs[i];
965 		zpdesc->zspage = zspage;
966 		zpdesc->next = NULL;
967 		if (i == 0) {
968 			zspage->first_zpdesc = zpdesc;
969 			zpdesc_set_first(zpdesc);
970 			if (unlikely(class->objs_per_zspage == 1 &&
971 					class->pages_per_zspage == 1))
972 				SetZsHugePage(zspage);
973 		} else {
974 			prev_zpdesc->next = zpdesc;
975 		}
976 		prev_zpdesc = zpdesc;
977 	}
978 }
979 
980 /*
981  * Allocate a zspage for the given size class
982  */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)983 static struct zspage *alloc_zspage(struct zs_pool *pool,
984 					struct size_class *class,
985 					gfp_t gfp)
986 {
987 	int i;
988 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
989 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
990 
991 	if (!zspage)
992 		return NULL;
993 
994 	zspage->magic = ZSPAGE_MAGIC;
995 	migrate_lock_init(zspage);
996 
997 	for (i = 0; i < class->pages_per_zspage; i++) {
998 		struct zpdesc *zpdesc;
999 
1000 		zpdesc = alloc_zpdesc(gfp);
1001 		if (!zpdesc) {
1002 			while (--i >= 0) {
1003 				zpdesc_dec_zone_page_state(zpdescs[i]);
1004 				__zpdesc_clear_zsmalloc(zpdescs[i]);
1005 				free_zpdesc(zpdescs[i]);
1006 			}
1007 			cache_free_zspage(pool, zspage);
1008 			return NULL;
1009 		}
1010 		__zpdesc_set_zsmalloc(zpdesc);
1011 
1012 		zpdesc_inc_zone_page_state(zpdesc);
1013 		zpdescs[i] = zpdesc;
1014 	}
1015 
1016 	create_page_chain(class, zspage, zpdescs);
1017 	init_zspage(class, zspage);
1018 	zspage->pool = pool;
1019 	zspage->class = class->index;
1020 
1021 	return zspage;
1022 }
1023 
find_get_zspage(struct size_class * class)1024 static struct zspage *find_get_zspage(struct size_class *class)
1025 {
1026 	int i;
1027 	struct zspage *zspage;
1028 
1029 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1030 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1031 						  struct zspage, list);
1032 		if (zspage)
1033 			break;
1034 	}
1035 
1036 	return zspage;
1037 }
1038 
__zs_cpu_up(struct mapping_area * area)1039 static inline int __zs_cpu_up(struct mapping_area *area)
1040 {
1041 	/*
1042 	 * Make sure we don't leak memory if a cpu UP notification
1043 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1044 	 */
1045 	if (area->vm_buf)
1046 		return 0;
1047 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1048 	if (!area->vm_buf)
1049 		return -ENOMEM;
1050 	return 0;
1051 }
1052 
__zs_cpu_down(struct mapping_area * area)1053 static inline void __zs_cpu_down(struct mapping_area *area)
1054 {
1055 	kfree(area->vm_buf);
1056 	area->vm_buf = NULL;
1057 }
1058 
__zs_map_object(struct mapping_area * area,struct zpdesc * zpdescs[2],int off,int size)1059 static void *__zs_map_object(struct mapping_area *area,
1060 			struct zpdesc *zpdescs[2], int off, int size)
1061 {
1062 	size_t sizes[2];
1063 	char *buf = area->vm_buf;
1064 
1065 	/* disable page faults to match kmap_local_page() return conditions */
1066 	pagefault_disable();
1067 
1068 	/* no read fastpath */
1069 	if (area->vm_mm == ZS_MM_WO)
1070 		goto out;
1071 
1072 	sizes[0] = PAGE_SIZE - off;
1073 	sizes[1] = size - sizes[0];
1074 
1075 	/* copy object to per-cpu buffer */
1076 	memcpy_from_page(buf, zpdesc_page(zpdescs[0]), off, sizes[0]);
1077 	memcpy_from_page(buf + sizes[0], zpdesc_page(zpdescs[1]), 0, sizes[1]);
1078 out:
1079 	return area->vm_buf;
1080 }
1081 
__zs_unmap_object(struct mapping_area * area,struct zpdesc * zpdescs[2],int off,int size)1082 static void __zs_unmap_object(struct mapping_area *area,
1083 			struct zpdesc *zpdescs[2], int off, int size)
1084 {
1085 	size_t sizes[2];
1086 	char *buf;
1087 
1088 	/* no write fastpath */
1089 	if (area->vm_mm == ZS_MM_RO)
1090 		goto out;
1091 
1092 	buf = area->vm_buf;
1093 	buf = buf + ZS_HANDLE_SIZE;
1094 	size -= ZS_HANDLE_SIZE;
1095 	off += ZS_HANDLE_SIZE;
1096 
1097 	sizes[0] = PAGE_SIZE - off;
1098 	sizes[1] = size - sizes[0];
1099 
1100 	/* copy per-cpu buffer to object */
1101 	memcpy_to_page(zpdesc_page(zpdescs[0]), off, buf, sizes[0]);
1102 	memcpy_to_page(zpdesc_page(zpdescs[1]), 0, buf + sizes[0], sizes[1]);
1103 
1104 out:
1105 	/* enable page faults to match kunmap_local() return conditions */
1106 	pagefault_enable();
1107 }
1108 
zs_cpu_prepare(unsigned int cpu)1109 static int zs_cpu_prepare(unsigned int cpu)
1110 {
1111 	struct mapping_area *area;
1112 
1113 	area = &per_cpu(zs_map_area, cpu);
1114 	return __zs_cpu_up(area);
1115 }
1116 
zs_cpu_dead(unsigned int cpu)1117 static int zs_cpu_dead(unsigned int cpu)
1118 {
1119 	struct mapping_area *area;
1120 
1121 	area = &per_cpu(zs_map_area, cpu);
1122 	__zs_cpu_down(area);
1123 	return 0;
1124 }
1125 
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1126 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1127 					int objs_per_zspage)
1128 {
1129 	if (prev->pages_per_zspage == pages_per_zspage &&
1130 		prev->objs_per_zspage == objs_per_zspage)
1131 		return true;
1132 
1133 	return false;
1134 }
1135 
zspage_full(struct size_class * class,struct zspage * zspage)1136 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1137 {
1138 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1139 }
1140 
zspage_empty(struct zspage * zspage)1141 static bool zspage_empty(struct zspage *zspage)
1142 {
1143 	return get_zspage_inuse(zspage) == 0;
1144 }
1145 
1146 /**
1147  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1148  * that hold objects of the provided size.
1149  * @pool: zsmalloc pool to use
1150  * @size: object size
1151  *
1152  * Context: Any context.
1153  *
1154  * Return: the index of the zsmalloc &size_class that hold objects of the
1155  * provided size.
1156  */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1157 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1158 {
1159 	struct size_class *class;
1160 
1161 	class = pool->size_class[get_size_class_index(size)];
1162 
1163 	return class->index;
1164 }
1165 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1166 
zs_get_total_pages(struct zs_pool * pool)1167 unsigned long zs_get_total_pages(struct zs_pool *pool)
1168 {
1169 	return atomic_long_read(&pool->pages_allocated);
1170 }
1171 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1172 
1173 /**
1174  * zs_map_object - get address of allocated object from handle.
1175  * @pool: pool from which the object was allocated
1176  * @handle: handle returned from zs_malloc
1177  * @mm: mapping mode to use
1178  *
1179  * Before using an object allocated from zs_malloc, it must be mapped using
1180  * this function. When done with the object, it must be unmapped using
1181  * zs_unmap_object.
1182  *
1183  * Only one object can be mapped per cpu at a time. There is no protection
1184  * against nested mappings.
1185  *
1186  * This function returns with preemption and page faults disabled.
1187  */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1188 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1189 			enum zs_mapmode mm)
1190 {
1191 	struct zspage *zspage;
1192 	struct zpdesc *zpdesc;
1193 	unsigned long obj, off;
1194 	unsigned int obj_idx;
1195 
1196 	struct size_class *class;
1197 	struct mapping_area *area;
1198 	struct zpdesc *zpdescs[2];
1199 	void *ret;
1200 
1201 	/*
1202 	 * Because we use per-cpu mapping areas shared among the
1203 	 * pools/users, we can't allow mapping in interrupt context
1204 	 * because it can corrupt another users mappings.
1205 	 */
1206 	BUG_ON(in_interrupt());
1207 
1208 	/* It guarantees it can get zspage from handle safely */
1209 	read_lock(&pool->migrate_lock);
1210 	obj = handle_to_obj(handle);
1211 	obj_to_location(obj, &zpdesc, &obj_idx);
1212 	zspage = get_zspage(zpdesc);
1213 
1214 	/*
1215 	 * migration cannot move any zpages in this zspage. Here, class->lock
1216 	 * is too heavy since callers would take some time until they calls
1217 	 * zs_unmap_object API so delegate the locking from class to zspage
1218 	 * which is smaller granularity.
1219 	 */
1220 	migrate_read_lock(zspage);
1221 	read_unlock(&pool->migrate_lock);
1222 
1223 	class = zspage_class(pool, zspage);
1224 	off = offset_in_page(class->size * obj_idx);
1225 
1226 	local_lock(&zs_map_area.lock);
1227 	area = this_cpu_ptr(&zs_map_area);
1228 	area->vm_mm = mm;
1229 	if (off + class->size <= PAGE_SIZE) {
1230 		/* this object is contained entirely within a page */
1231 		area->vm_addr = kmap_local_zpdesc(zpdesc);
1232 		ret = area->vm_addr + off;
1233 		goto out;
1234 	}
1235 
1236 	/* this object spans two pages */
1237 	zpdescs[0] = zpdesc;
1238 	zpdescs[1] = get_next_zpdesc(zpdesc);
1239 	BUG_ON(!zpdescs[1]);
1240 
1241 	ret = __zs_map_object(area, zpdescs, off, class->size);
1242 out:
1243 	if (likely(!ZsHugePage(zspage)))
1244 		ret += ZS_HANDLE_SIZE;
1245 
1246 	return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(zs_map_object);
1249 
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1250 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1251 {
1252 	struct zspage *zspage;
1253 	struct zpdesc *zpdesc;
1254 	unsigned long obj, off;
1255 	unsigned int obj_idx;
1256 
1257 	struct size_class *class;
1258 	struct mapping_area *area;
1259 
1260 	obj = handle_to_obj(handle);
1261 	obj_to_location(obj, &zpdesc, &obj_idx);
1262 	zspage = get_zspage(zpdesc);
1263 	class = zspage_class(pool, zspage);
1264 	off = offset_in_page(class->size * obj_idx);
1265 
1266 	area = this_cpu_ptr(&zs_map_area);
1267 	if (off + class->size <= PAGE_SIZE)
1268 		kunmap_local(area->vm_addr);
1269 	else {
1270 		struct zpdesc *zpdescs[2];
1271 
1272 		zpdescs[0] = zpdesc;
1273 		zpdescs[1] = get_next_zpdesc(zpdesc);
1274 		BUG_ON(!zpdescs[1]);
1275 
1276 		__zs_unmap_object(area, zpdescs, off, class->size);
1277 	}
1278 	local_unlock(&zs_map_area.lock);
1279 
1280 	migrate_read_unlock(zspage);
1281 }
1282 EXPORT_SYMBOL_GPL(zs_unmap_object);
1283 
1284 /**
1285  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1286  *                        zsmalloc &size_class.
1287  * @pool: zsmalloc pool to use
1288  *
1289  * The function returns the size of the first huge class - any object of equal
1290  * or bigger size will be stored in zspage consisting of a single physical
1291  * page.
1292  *
1293  * Context: Any context.
1294  *
1295  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1296  */
zs_huge_class_size(struct zs_pool * pool)1297 size_t zs_huge_class_size(struct zs_pool *pool)
1298 {
1299 	return huge_class_size;
1300 }
1301 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1302 
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1303 static unsigned long obj_malloc(struct zs_pool *pool,
1304 				struct zspage *zspage, unsigned long handle)
1305 {
1306 	int i, nr_zpdesc, offset;
1307 	unsigned long obj;
1308 	struct link_free *link;
1309 	struct size_class *class;
1310 
1311 	struct zpdesc *m_zpdesc;
1312 	unsigned long m_offset;
1313 	void *vaddr;
1314 
1315 	class = pool->size_class[zspage->class];
1316 	obj = get_freeobj(zspage);
1317 
1318 	offset = obj * class->size;
1319 	nr_zpdesc = offset >> PAGE_SHIFT;
1320 	m_offset = offset_in_page(offset);
1321 	m_zpdesc = get_first_zpdesc(zspage);
1322 
1323 	for (i = 0; i < nr_zpdesc; i++)
1324 		m_zpdesc = get_next_zpdesc(m_zpdesc);
1325 
1326 	vaddr = kmap_local_zpdesc(m_zpdesc);
1327 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1328 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1329 	if (likely(!ZsHugePage(zspage)))
1330 		/* record handle in the header of allocated chunk */
1331 		link->handle = handle | OBJ_ALLOCATED_TAG;
1332 	else
1333 		zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1334 
1335 	kunmap_local(vaddr);
1336 	mod_zspage_inuse(zspage, 1);
1337 
1338 	obj = location_to_obj(m_zpdesc, obj);
1339 	record_obj(handle, obj);
1340 
1341 	return obj;
1342 }
1343 
1344 
1345 /**
1346  * zs_malloc - Allocate block of given size from pool.
1347  * @pool: pool to allocate from
1348  * @size: size of block to allocate
1349  * @gfp: gfp flags when allocating object
1350  *
1351  * On success, handle to the allocated object is returned,
1352  * otherwise an ERR_PTR().
1353  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1354  */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1355 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1356 {
1357 	unsigned long handle;
1358 	struct size_class *class;
1359 	int newfg;
1360 	struct zspage *zspage;
1361 
1362 	if (unlikely(!size))
1363 		return (unsigned long)ERR_PTR(-EINVAL);
1364 
1365 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1366 		return (unsigned long)ERR_PTR(-ENOSPC);
1367 
1368 	handle = cache_alloc_handle(pool, gfp);
1369 	if (!handle)
1370 		return (unsigned long)ERR_PTR(-ENOMEM);
1371 
1372 	/* extra space in chunk to keep the handle */
1373 	size += ZS_HANDLE_SIZE;
1374 	class = pool->size_class[get_size_class_index(size)];
1375 
1376 	/* class->lock effectively protects the zpage migration */
1377 	spin_lock(&class->lock);
1378 	zspage = find_get_zspage(class);
1379 	if (likely(zspage)) {
1380 		obj_malloc(pool, zspage, handle);
1381 		/* Now move the zspage to another fullness group, if required */
1382 		fix_fullness_group(class, zspage);
1383 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1384 
1385 		goto out;
1386 	}
1387 
1388 	spin_unlock(&class->lock);
1389 
1390 	zspage = alloc_zspage(pool, class, gfp);
1391 	if (!zspage) {
1392 		cache_free_handle(pool, handle);
1393 		return (unsigned long)ERR_PTR(-ENOMEM);
1394 	}
1395 
1396 	spin_lock(&class->lock);
1397 	obj_malloc(pool, zspage, handle);
1398 	newfg = get_fullness_group(class, zspage);
1399 	insert_zspage(class, zspage, newfg);
1400 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1401 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1402 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1403 
1404 	/* We completely set up zspage so mark them as movable */
1405 	SetZsPageMovable(pool, zspage);
1406 out:
1407 	spin_unlock(&class->lock);
1408 
1409 	return handle;
1410 }
1411 EXPORT_SYMBOL_GPL(zs_malloc);
1412 
obj_free(int class_size,unsigned long obj)1413 static void obj_free(int class_size, unsigned long obj)
1414 {
1415 	struct link_free *link;
1416 	struct zspage *zspage;
1417 	struct zpdesc *f_zpdesc;
1418 	unsigned long f_offset;
1419 	unsigned int f_objidx;
1420 	void *vaddr;
1421 
1422 
1423 	obj_to_location(obj, &f_zpdesc, &f_objidx);
1424 	f_offset = offset_in_page(class_size * f_objidx);
1425 	zspage = get_zspage(f_zpdesc);
1426 
1427 	vaddr = kmap_local_zpdesc(f_zpdesc);
1428 	link = (struct link_free *)(vaddr + f_offset);
1429 
1430 	/* Insert this object in containing zspage's freelist */
1431 	if (likely(!ZsHugePage(zspage)))
1432 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1433 	else
1434 		f_zpdesc->handle = 0;
1435 	set_freeobj(zspage, f_objidx);
1436 
1437 	kunmap_local(vaddr);
1438 	mod_zspage_inuse(zspage, -1);
1439 }
1440 
zs_free(struct zs_pool * pool,unsigned long handle)1441 void zs_free(struct zs_pool *pool, unsigned long handle)
1442 {
1443 	struct zspage *zspage;
1444 	struct zpdesc *f_zpdesc;
1445 	unsigned long obj;
1446 	struct size_class *class;
1447 	int fullness;
1448 
1449 	if (IS_ERR_OR_NULL((void *)handle))
1450 		return;
1451 
1452 	/*
1453 	 * The pool->migrate_lock protects the race with zpage's migration
1454 	 * so it's safe to get the page from handle.
1455 	 */
1456 	read_lock(&pool->migrate_lock);
1457 	obj = handle_to_obj(handle);
1458 	obj_to_zpdesc(obj, &f_zpdesc);
1459 	zspage = get_zspage(f_zpdesc);
1460 	class = zspage_class(pool, zspage);
1461 	spin_lock(&class->lock);
1462 	read_unlock(&pool->migrate_lock);
1463 
1464 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1465 	obj_free(class->size, obj);
1466 
1467 	fullness = fix_fullness_group(class, zspage);
1468 	if (fullness == ZS_INUSE_RATIO_0)
1469 		free_zspage(pool, class, zspage);
1470 
1471 	spin_unlock(&class->lock);
1472 	cache_free_handle(pool, handle);
1473 }
1474 EXPORT_SYMBOL_GPL(zs_free);
1475 
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1476 static void zs_object_copy(struct size_class *class, unsigned long dst,
1477 				unsigned long src)
1478 {
1479 	struct zpdesc *s_zpdesc, *d_zpdesc;
1480 	unsigned int s_objidx, d_objidx;
1481 	unsigned long s_off, d_off;
1482 	void *s_addr, *d_addr;
1483 	int s_size, d_size, size;
1484 	int written = 0;
1485 
1486 	s_size = d_size = class->size;
1487 
1488 	obj_to_location(src, &s_zpdesc, &s_objidx);
1489 	obj_to_location(dst, &d_zpdesc, &d_objidx);
1490 
1491 	s_off = offset_in_page(class->size * s_objidx);
1492 	d_off = offset_in_page(class->size * d_objidx);
1493 
1494 	if (s_off + class->size > PAGE_SIZE)
1495 		s_size = PAGE_SIZE - s_off;
1496 
1497 	if (d_off + class->size > PAGE_SIZE)
1498 		d_size = PAGE_SIZE - d_off;
1499 
1500 	s_addr = kmap_local_zpdesc(s_zpdesc);
1501 	d_addr = kmap_local_zpdesc(d_zpdesc);
1502 
1503 	while (1) {
1504 		size = min(s_size, d_size);
1505 		memcpy(d_addr + d_off, s_addr + s_off, size);
1506 		written += size;
1507 
1508 		if (written == class->size)
1509 			break;
1510 
1511 		s_off += size;
1512 		s_size -= size;
1513 		d_off += size;
1514 		d_size -= size;
1515 
1516 		/*
1517 		 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1518 		 * calls must occurs in reverse order of calls to kmap_local_page().
1519 		 * So, to call kunmap_local(s_addr) we should first call
1520 		 * kunmap_local(d_addr). For more details see
1521 		 * Documentation/mm/highmem.rst.
1522 		 */
1523 		if (s_off >= PAGE_SIZE) {
1524 			kunmap_local(d_addr);
1525 			kunmap_local(s_addr);
1526 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1527 			s_addr = kmap_local_zpdesc(s_zpdesc);
1528 			d_addr = kmap_local_zpdesc(d_zpdesc);
1529 			s_size = class->size - written;
1530 			s_off = 0;
1531 		}
1532 
1533 		if (d_off >= PAGE_SIZE) {
1534 			kunmap_local(d_addr);
1535 			d_zpdesc = get_next_zpdesc(d_zpdesc);
1536 			d_addr = kmap_local_zpdesc(d_zpdesc);
1537 			d_size = class->size - written;
1538 			d_off = 0;
1539 		}
1540 	}
1541 
1542 	kunmap_local(d_addr);
1543 	kunmap_local(s_addr);
1544 }
1545 
1546 /*
1547  * Find alloced object in zspage from index object and
1548  * return handle.
1549  */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1550 static unsigned long find_alloced_obj(struct size_class *class,
1551 				      struct zpdesc *zpdesc, int *obj_idx)
1552 {
1553 	unsigned int offset;
1554 	int index = *obj_idx;
1555 	unsigned long handle = 0;
1556 	void *addr = kmap_local_zpdesc(zpdesc);
1557 
1558 	offset = get_first_obj_offset(zpdesc);
1559 	offset += class->size * index;
1560 
1561 	while (offset < PAGE_SIZE) {
1562 		if (obj_allocated(zpdesc, addr + offset, &handle))
1563 			break;
1564 
1565 		offset += class->size;
1566 		index++;
1567 	}
1568 
1569 	kunmap_local(addr);
1570 
1571 	*obj_idx = index;
1572 
1573 	return handle;
1574 }
1575 
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1576 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1577 			   struct zspage *dst_zspage)
1578 {
1579 	unsigned long used_obj, free_obj;
1580 	unsigned long handle;
1581 	int obj_idx = 0;
1582 	struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1583 	struct size_class *class = pool->size_class[src_zspage->class];
1584 
1585 	while (1) {
1586 		handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1587 		if (!handle) {
1588 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1589 			if (!s_zpdesc)
1590 				break;
1591 			obj_idx = 0;
1592 			continue;
1593 		}
1594 
1595 		used_obj = handle_to_obj(handle);
1596 		free_obj = obj_malloc(pool, dst_zspage, handle);
1597 		zs_object_copy(class, free_obj, used_obj);
1598 		obj_idx++;
1599 		obj_free(class->size, used_obj);
1600 
1601 		/* Stop if there is no more space */
1602 		if (zspage_full(class, dst_zspage))
1603 			break;
1604 
1605 		/* Stop if there are no more objects to migrate */
1606 		if (zspage_empty(src_zspage))
1607 			break;
1608 	}
1609 }
1610 
isolate_src_zspage(struct size_class * class)1611 static struct zspage *isolate_src_zspage(struct size_class *class)
1612 {
1613 	struct zspage *zspage;
1614 	int fg;
1615 
1616 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1617 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1618 						  struct zspage, list);
1619 		if (zspage) {
1620 			remove_zspage(class, zspage);
1621 			return zspage;
1622 		}
1623 	}
1624 
1625 	return zspage;
1626 }
1627 
isolate_dst_zspage(struct size_class * class)1628 static struct zspage *isolate_dst_zspage(struct size_class *class)
1629 {
1630 	struct zspage *zspage;
1631 	int fg;
1632 
1633 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1634 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1635 						  struct zspage, list);
1636 		if (zspage) {
1637 			remove_zspage(class, zspage);
1638 			return zspage;
1639 		}
1640 	}
1641 
1642 	return zspage;
1643 }
1644 
1645 /*
1646  * putback_zspage - add @zspage into right class's fullness list
1647  * @class: destination class
1648  * @zspage: target page
1649  *
1650  * Return @zspage's fullness status
1651  */
putback_zspage(struct size_class * class,struct zspage * zspage)1652 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1653 {
1654 	int fullness;
1655 
1656 	fullness = get_fullness_group(class, zspage);
1657 	insert_zspage(class, zspage, fullness);
1658 
1659 	return fullness;
1660 }
1661 
1662 #ifdef CONFIG_COMPACTION
1663 /*
1664  * To prevent zspage destroy during migration, zspage freeing should
1665  * hold locks of all pages in the zspage.
1666  */
lock_zspage(struct zspage * zspage)1667 static void lock_zspage(struct zspage *zspage)
1668 {
1669 	struct zpdesc *curr_zpdesc, *zpdesc;
1670 
1671 	/*
1672 	 * Pages we haven't locked yet can be migrated off the list while we're
1673 	 * trying to lock them, so we need to be careful and only attempt to
1674 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1675 	 * may no longer belong to the zspage. This means that we may wait for
1676 	 * the wrong page to unlock, so we must take a reference to the page
1677 	 * prior to waiting for it to unlock outside migrate_read_lock().
1678 	 */
1679 	while (1) {
1680 		migrate_read_lock(zspage);
1681 		zpdesc = get_first_zpdesc(zspage);
1682 		if (zpdesc_trylock(zpdesc))
1683 			break;
1684 		zpdesc_get(zpdesc);
1685 		migrate_read_unlock(zspage);
1686 		zpdesc_wait_locked(zpdesc);
1687 		zpdesc_put(zpdesc);
1688 	}
1689 
1690 	curr_zpdesc = zpdesc;
1691 	while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1692 		if (zpdesc_trylock(zpdesc)) {
1693 			curr_zpdesc = zpdesc;
1694 		} else {
1695 			zpdesc_get(zpdesc);
1696 			migrate_read_unlock(zspage);
1697 			zpdesc_wait_locked(zpdesc);
1698 			zpdesc_put(zpdesc);
1699 			migrate_read_lock(zspage);
1700 		}
1701 	}
1702 	migrate_read_unlock(zspage);
1703 }
1704 #endif /* CONFIG_COMPACTION */
1705 
migrate_lock_init(struct zspage * zspage)1706 static void migrate_lock_init(struct zspage *zspage)
1707 {
1708 	rwlock_init(&zspage->lock);
1709 }
1710 
migrate_read_lock(struct zspage * zspage)1711 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1712 {
1713 	read_lock(&zspage->lock);
1714 }
1715 
migrate_read_unlock(struct zspage * zspage)1716 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1717 {
1718 	read_unlock(&zspage->lock);
1719 }
1720 
migrate_write_lock(struct zspage * zspage)1721 static void migrate_write_lock(struct zspage *zspage)
1722 {
1723 	write_lock(&zspage->lock);
1724 }
1725 
migrate_write_unlock(struct zspage * zspage)1726 static void migrate_write_unlock(struct zspage *zspage)
1727 {
1728 	write_unlock(&zspage->lock);
1729 }
1730 
1731 #ifdef CONFIG_COMPACTION
1732 
1733 static const struct movable_operations zsmalloc_mops;
1734 
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1735 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1736 				struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1737 {
1738 	struct zpdesc *zpdesc;
1739 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1740 	unsigned int first_obj_offset;
1741 	int idx = 0;
1742 
1743 	zpdesc = get_first_zpdesc(zspage);
1744 	do {
1745 		if (zpdesc == oldzpdesc)
1746 			zpdescs[idx] = newzpdesc;
1747 		else
1748 			zpdescs[idx] = zpdesc;
1749 		idx++;
1750 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1751 
1752 	create_page_chain(class, zspage, zpdescs);
1753 	first_obj_offset = get_first_obj_offset(oldzpdesc);
1754 	set_first_obj_offset(newzpdesc, first_obj_offset);
1755 	if (unlikely(ZsHugePage(zspage)))
1756 		newzpdesc->handle = oldzpdesc->handle;
1757 	__zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1758 }
1759 
zs_page_isolate(struct page * page,isolate_mode_t mode)1760 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1761 {
1762 	/*
1763 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1764 	 * lock_zspage in free_zspage.
1765 	 */
1766 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1767 
1768 	return true;
1769 }
1770 
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1771 static int zs_page_migrate(struct page *newpage, struct page *page,
1772 		enum migrate_mode mode)
1773 {
1774 	struct zs_pool *pool;
1775 	struct size_class *class;
1776 	struct zspage *zspage;
1777 	struct zpdesc *dummy;
1778 	struct zpdesc *newzpdesc = page_zpdesc(newpage);
1779 	struct zpdesc *zpdesc = page_zpdesc(page);
1780 	void *s_addr, *d_addr, *addr;
1781 	unsigned int offset;
1782 	unsigned long handle;
1783 	unsigned long old_obj, new_obj;
1784 	unsigned int obj_idx;
1785 
1786 	VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1787 
1788 	/* We're committed, tell the world that this is a Zsmalloc page. */
1789 	__zpdesc_set_zsmalloc(newzpdesc);
1790 
1791 	/* The page is locked, so this pointer must remain valid */
1792 	zspage = get_zspage(zpdesc);
1793 	pool = zspage->pool;
1794 
1795 	/*
1796 	 * The pool migrate_lock protects the race between zpage migration
1797 	 * and zs_free.
1798 	 */
1799 	write_lock(&pool->migrate_lock);
1800 	class = zspage_class(pool, zspage);
1801 
1802 	/*
1803 	 * the class lock protects zpage alloc/free in the zspage.
1804 	 */
1805 	spin_lock(&class->lock);
1806 	/* the migrate_write_lock protects zpage access via zs_map_object */
1807 	migrate_write_lock(zspage);
1808 
1809 	offset = get_first_obj_offset(zpdesc);
1810 	s_addr = kmap_local_zpdesc(zpdesc);
1811 
1812 	/*
1813 	 * Here, any user cannot access all objects in the zspage so let's move.
1814 	 */
1815 	d_addr = kmap_local_zpdesc(newzpdesc);
1816 	copy_page(d_addr, s_addr);
1817 	kunmap_local(d_addr);
1818 
1819 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1820 					addr += class->size) {
1821 		if (obj_allocated(zpdesc, addr, &handle)) {
1822 
1823 			old_obj = handle_to_obj(handle);
1824 			obj_to_location(old_obj, &dummy, &obj_idx);
1825 			new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1826 			record_obj(handle, new_obj);
1827 		}
1828 	}
1829 	kunmap_local(s_addr);
1830 
1831 	replace_sub_page(class, zspage, newzpdesc, zpdesc);
1832 	/*
1833 	 * Since we complete the data copy and set up new zspage structure,
1834 	 * it's okay to release migration_lock.
1835 	 */
1836 	write_unlock(&pool->migrate_lock);
1837 	spin_unlock(&class->lock);
1838 	migrate_write_unlock(zspage);
1839 
1840 	zpdesc_get(newzpdesc);
1841 	if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1842 		zpdesc_dec_zone_page_state(zpdesc);
1843 		zpdesc_inc_zone_page_state(newzpdesc);
1844 	}
1845 
1846 	reset_zpdesc(zpdesc);
1847 	zpdesc_put(zpdesc);
1848 
1849 	return MIGRATEPAGE_SUCCESS;
1850 }
1851 
zs_page_putback(struct page * page)1852 static void zs_page_putback(struct page *page)
1853 {
1854 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1855 }
1856 
1857 static const struct movable_operations zsmalloc_mops = {
1858 	.isolate_page = zs_page_isolate,
1859 	.migrate_page = zs_page_migrate,
1860 	.putback_page = zs_page_putback,
1861 };
1862 
1863 /*
1864  * Caller should hold page_lock of all pages in the zspage
1865  * In here, we cannot use zspage meta data.
1866  */
async_free_zspage(struct work_struct * work)1867 static void async_free_zspage(struct work_struct *work)
1868 {
1869 	int i;
1870 	struct size_class *class;
1871 	struct zspage *zspage, *tmp;
1872 	LIST_HEAD(free_pages);
1873 	struct zs_pool *pool = container_of(work, struct zs_pool,
1874 					free_work);
1875 
1876 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1877 		class = pool->size_class[i];
1878 		if (class->index != i)
1879 			continue;
1880 
1881 		spin_lock(&class->lock);
1882 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1883 				 &free_pages);
1884 		spin_unlock(&class->lock);
1885 	}
1886 
1887 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1888 		list_del(&zspage->list);
1889 		lock_zspage(zspage);
1890 
1891 		class = zspage_class(pool, zspage);
1892 		spin_lock(&class->lock);
1893 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1894 		__free_zspage(pool, class, zspage);
1895 		spin_unlock(&class->lock);
1896 	}
1897 };
1898 
kick_deferred_free(struct zs_pool * pool)1899 static void kick_deferred_free(struct zs_pool *pool)
1900 {
1901 	schedule_work(&pool->free_work);
1902 }
1903 
zs_flush_migration(struct zs_pool * pool)1904 static void zs_flush_migration(struct zs_pool *pool)
1905 {
1906 	flush_work(&pool->free_work);
1907 }
1908 
init_deferred_free(struct zs_pool * pool)1909 static void init_deferred_free(struct zs_pool *pool)
1910 {
1911 	INIT_WORK(&pool->free_work, async_free_zspage);
1912 }
1913 
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1914 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1915 {
1916 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1917 
1918 	do {
1919 		WARN_ON(!zpdesc_trylock(zpdesc));
1920 		__zpdesc_set_movable(zpdesc, &zsmalloc_mops);
1921 		zpdesc_unlock(zpdesc);
1922 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1923 }
1924 #else
zs_flush_migration(struct zs_pool * pool)1925 static inline void zs_flush_migration(struct zs_pool *pool) { }
1926 #endif
1927 
1928 /*
1929  *
1930  * Based on the number of unused allocated objects calculate
1931  * and return the number of pages that we can free.
1932  */
zs_can_compact(struct size_class * class)1933 static unsigned long zs_can_compact(struct size_class *class)
1934 {
1935 	unsigned long obj_wasted;
1936 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1937 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1938 
1939 	if (obj_allocated <= obj_used)
1940 		return 0;
1941 
1942 	obj_wasted = obj_allocated - obj_used;
1943 	obj_wasted /= class->objs_per_zspage;
1944 
1945 	return obj_wasted * class->pages_per_zspage;
1946 }
1947 
__zs_compact(struct zs_pool * pool,struct size_class * class)1948 static unsigned long __zs_compact(struct zs_pool *pool,
1949 				  struct size_class *class)
1950 {
1951 	struct zspage *src_zspage = NULL;
1952 	struct zspage *dst_zspage = NULL;
1953 	unsigned long pages_freed = 0;
1954 
1955 	/*
1956 	 * protect the race between zpage migration and zs_free
1957 	 * as well as zpage allocation/free
1958 	 */
1959 	write_lock(&pool->migrate_lock);
1960 	spin_lock(&class->lock);
1961 	while (zs_can_compact(class)) {
1962 		int fg;
1963 
1964 		if (!dst_zspage) {
1965 			dst_zspage = isolate_dst_zspage(class);
1966 			if (!dst_zspage)
1967 				break;
1968 		}
1969 
1970 		src_zspage = isolate_src_zspage(class);
1971 		if (!src_zspage)
1972 			break;
1973 
1974 		migrate_write_lock(src_zspage);
1975 		migrate_zspage(pool, src_zspage, dst_zspage);
1976 		migrate_write_unlock(src_zspage);
1977 
1978 		fg = putback_zspage(class, src_zspage);
1979 		if (fg == ZS_INUSE_RATIO_0) {
1980 			free_zspage(pool, class, src_zspage);
1981 			pages_freed += class->pages_per_zspage;
1982 		}
1983 		src_zspage = NULL;
1984 
1985 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1986 		    || rwlock_is_contended(&pool->migrate_lock)) {
1987 			putback_zspage(class, dst_zspage);
1988 			dst_zspage = NULL;
1989 
1990 			spin_unlock(&class->lock);
1991 			write_unlock(&pool->migrate_lock);
1992 			cond_resched();
1993 			write_lock(&pool->migrate_lock);
1994 			spin_lock(&class->lock);
1995 		}
1996 	}
1997 
1998 	if (src_zspage)
1999 		putback_zspage(class, src_zspage);
2000 
2001 	if (dst_zspage)
2002 		putback_zspage(class, dst_zspage);
2003 
2004 	spin_unlock(&class->lock);
2005 	write_unlock(&pool->migrate_lock);
2006 
2007 	return pages_freed;
2008 }
2009 
zs_compact(struct zs_pool * pool)2010 unsigned long zs_compact(struct zs_pool *pool)
2011 {
2012 	int i;
2013 	struct size_class *class;
2014 	unsigned long pages_freed = 0;
2015 
2016 	/*
2017 	 * Pool compaction is performed under pool->migrate_lock so it is basically
2018 	 * single-threaded. Having more than one thread in __zs_compact()
2019 	 * will increase pool->migrate_lock contention, which will impact other
2020 	 * zsmalloc operations that need pool->migrate_lock.
2021 	 */
2022 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2023 		return 0;
2024 
2025 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2026 		class = pool->size_class[i];
2027 		if (class->index != i)
2028 			continue;
2029 		pages_freed += __zs_compact(pool, class);
2030 	}
2031 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2032 	atomic_set(&pool->compaction_in_progress, 0);
2033 
2034 	return pages_freed;
2035 }
2036 EXPORT_SYMBOL_GPL(zs_compact);
2037 
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2038 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2039 {
2040 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2041 }
2042 EXPORT_SYMBOL_GPL(zs_pool_stats);
2043 
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2044 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2045 		struct shrink_control *sc)
2046 {
2047 	unsigned long pages_freed;
2048 	struct zs_pool *pool = shrinker->private_data;
2049 
2050 	/*
2051 	 * Compact classes and calculate compaction delta.
2052 	 * Can run concurrently with a manually triggered
2053 	 * (by user) compaction.
2054 	 */
2055 	pages_freed = zs_compact(pool);
2056 
2057 	return pages_freed ? pages_freed : SHRINK_STOP;
2058 }
2059 
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2060 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2061 		struct shrink_control *sc)
2062 {
2063 	int i;
2064 	struct size_class *class;
2065 	unsigned long pages_to_free = 0;
2066 	struct zs_pool *pool = shrinker->private_data;
2067 
2068 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2069 		class = pool->size_class[i];
2070 		if (class->index != i)
2071 			continue;
2072 
2073 		pages_to_free += zs_can_compact(class);
2074 	}
2075 
2076 	return pages_to_free;
2077 }
2078 
zs_unregister_shrinker(struct zs_pool * pool)2079 static void zs_unregister_shrinker(struct zs_pool *pool)
2080 {
2081 	shrinker_free(pool->shrinker);
2082 }
2083 
zs_register_shrinker(struct zs_pool * pool)2084 static int zs_register_shrinker(struct zs_pool *pool)
2085 {
2086 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2087 	if (!pool->shrinker)
2088 		return -ENOMEM;
2089 
2090 	pool->shrinker->scan_objects = zs_shrinker_scan;
2091 	pool->shrinker->count_objects = zs_shrinker_count;
2092 	pool->shrinker->batch = 0;
2093 	pool->shrinker->private_data = pool;
2094 
2095 	shrinker_register(pool->shrinker);
2096 
2097 	return 0;
2098 }
2099 
calculate_zspage_chain_size(int class_size)2100 static int calculate_zspage_chain_size(int class_size)
2101 {
2102 	int i, min_waste = INT_MAX;
2103 	int chain_size = 1;
2104 
2105 	if (is_power_of_2(class_size))
2106 		return chain_size;
2107 
2108 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2109 		int waste;
2110 
2111 		waste = (i * PAGE_SIZE) % class_size;
2112 		if (waste < min_waste) {
2113 			min_waste = waste;
2114 			chain_size = i;
2115 		}
2116 	}
2117 
2118 	return chain_size;
2119 }
2120 
2121 /**
2122  * zs_create_pool - Creates an allocation pool to work from.
2123  * @name: pool name to be created
2124  *
2125  * This function must be called before anything when using
2126  * the zsmalloc allocator.
2127  *
2128  * On success, a pointer to the newly created pool is returned,
2129  * otherwise NULL.
2130  */
zs_create_pool(const char * name)2131 struct zs_pool *zs_create_pool(const char *name)
2132 {
2133 	int i;
2134 	struct zs_pool *pool;
2135 	struct size_class *prev_class = NULL;
2136 
2137 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2138 	if (!pool)
2139 		return NULL;
2140 
2141 	init_deferred_free(pool);
2142 	rwlock_init(&pool->migrate_lock);
2143 	atomic_set(&pool->compaction_in_progress, 0);
2144 
2145 	pool->name = kstrdup(name, GFP_KERNEL);
2146 	if (!pool->name)
2147 		goto err;
2148 
2149 	if (create_cache(pool))
2150 		goto err;
2151 
2152 	/*
2153 	 * Iterate reversely, because, size of size_class that we want to use
2154 	 * for merging should be larger or equal to current size.
2155 	 */
2156 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2157 		int size;
2158 		int pages_per_zspage;
2159 		int objs_per_zspage;
2160 		struct size_class *class;
2161 		int fullness;
2162 
2163 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2164 		if (size > ZS_MAX_ALLOC_SIZE)
2165 			size = ZS_MAX_ALLOC_SIZE;
2166 		pages_per_zspage = calculate_zspage_chain_size(size);
2167 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2168 
2169 		/*
2170 		 * We iterate from biggest down to smallest classes,
2171 		 * so huge_class_size holds the size of the first huge
2172 		 * class. Any object bigger than or equal to that will
2173 		 * endup in the huge class.
2174 		 */
2175 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2176 				!huge_class_size) {
2177 			huge_class_size = size;
2178 			/*
2179 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2180 			 * handle. We need to subtract it, because zs_malloc()
2181 			 * unconditionally adds handle size before it performs
2182 			 * size class search - so object may be smaller than
2183 			 * huge class size, yet it still can end up in the huge
2184 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2185 			 * right before class lookup.
2186 			 */
2187 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2188 		}
2189 
2190 		/*
2191 		 * size_class is used for normal zsmalloc operation such
2192 		 * as alloc/free for that size. Although it is natural that we
2193 		 * have one size_class for each size, there is a chance that we
2194 		 * can get more memory utilization if we use one size_class for
2195 		 * many different sizes whose size_class have same
2196 		 * characteristics. So, we makes size_class point to
2197 		 * previous size_class if possible.
2198 		 */
2199 		if (prev_class) {
2200 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2201 				pool->size_class[i] = prev_class;
2202 				continue;
2203 			}
2204 		}
2205 
2206 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2207 		if (!class)
2208 			goto err;
2209 
2210 		class->size = size;
2211 		class->index = i;
2212 		class->pages_per_zspage = pages_per_zspage;
2213 		class->objs_per_zspage = objs_per_zspage;
2214 		spin_lock_init(&class->lock);
2215 		pool->size_class[i] = class;
2216 
2217 		fullness = ZS_INUSE_RATIO_0;
2218 		while (fullness < NR_FULLNESS_GROUPS) {
2219 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2220 			fullness++;
2221 		}
2222 
2223 		prev_class = class;
2224 	}
2225 
2226 	/* debug only, don't abort if it fails */
2227 	zs_pool_stat_create(pool, name);
2228 
2229 	/*
2230 	 * Not critical since shrinker is only used to trigger internal
2231 	 * defragmentation of the pool which is pretty optional thing.  If
2232 	 * registration fails we still can use the pool normally and user can
2233 	 * trigger compaction manually. Thus, ignore return code.
2234 	 */
2235 	zs_register_shrinker(pool);
2236 
2237 	return pool;
2238 
2239 err:
2240 	zs_destroy_pool(pool);
2241 	return NULL;
2242 }
2243 EXPORT_SYMBOL_GPL(zs_create_pool);
2244 
zs_destroy_pool(struct zs_pool * pool)2245 void zs_destroy_pool(struct zs_pool *pool)
2246 {
2247 	int i;
2248 
2249 	zs_unregister_shrinker(pool);
2250 	zs_flush_migration(pool);
2251 	zs_pool_stat_destroy(pool);
2252 
2253 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2254 		int fg;
2255 		struct size_class *class = pool->size_class[i];
2256 
2257 		if (!class)
2258 			continue;
2259 
2260 		if (class->index != i)
2261 			continue;
2262 
2263 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2264 			if (list_empty(&class->fullness_list[fg]))
2265 				continue;
2266 
2267 			pr_err("Class-%d fullness group %d is not empty\n",
2268 			       class->size, fg);
2269 		}
2270 		kfree(class);
2271 	}
2272 
2273 	destroy_cache(pool);
2274 	kfree(pool->name);
2275 	kfree(pool);
2276 }
2277 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2278 
zs_init(void)2279 static int __init zs_init(void)
2280 {
2281 	int ret;
2282 
2283 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2284 				zs_cpu_prepare, zs_cpu_dead);
2285 	if (ret)
2286 		goto out;
2287 
2288 #ifdef CONFIG_ZPOOL
2289 	zpool_register_driver(&zs_zpool_driver);
2290 #endif
2291 
2292 	zs_stat_init();
2293 
2294 	return 0;
2295 
2296 out:
2297 	return ret;
2298 }
2299 
zs_exit(void)2300 static void __exit zs_exit(void)
2301 {
2302 #ifdef CONFIG_ZPOOL
2303 	zpool_unregister_driver(&zs_zpool_driver);
2304 #endif
2305 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2306 
2307 	zs_stat_exit();
2308 }
2309 
2310 module_init(zs_init);
2311 module_exit(zs_exit);
2312 
2313 MODULE_LICENSE("Dual BSD/GPL");
2314 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2315 MODULE_DESCRIPTION("zsmalloc memory allocator");
2316