1 //===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_ANALYSIS_VECTORUTILS_H
14 #define LLVM_ANALYSIS_VECTORUTILS_H
15
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopAccessAnalysis.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/VFABIDemangler.h"
21 #include "llvm/Support/CheckedArithmetic.h"
22
23 namespace llvm {
24 class TargetLibraryInfo;
25
26 /// The Vector Function Database.
27 ///
28 /// Helper class used to find the vector functions associated to a
29 /// scalar CallInst.
30 class VFDatabase {
31 /// The Module of the CallInst CI.
32 const Module *M;
33 /// The CallInst instance being queried for scalar to vector mappings.
34 const CallInst &CI;
35 /// List of vector functions descriptors associated to the call
36 /// instruction.
37 const SmallVector<VFInfo, 8> ScalarToVectorMappings;
38
39 /// Retrieve the scalar-to-vector mappings associated to the rule of
40 /// a vector Function ABI.
getVFABIMappings(const CallInst & CI,SmallVectorImpl<VFInfo> & Mappings)41 static void getVFABIMappings(const CallInst &CI,
42 SmallVectorImpl<VFInfo> &Mappings) {
43 if (!CI.getCalledFunction())
44 return;
45
46 const StringRef ScalarName = CI.getCalledFunction()->getName();
47
48 SmallVector<std::string, 8> ListOfStrings;
49 // The check for the vector-function-abi-variant attribute is done when
50 // retrieving the vector variant names here.
51 VFABI::getVectorVariantNames(CI, ListOfStrings);
52 if (ListOfStrings.empty())
53 return;
54 for (const auto &MangledName : ListOfStrings) {
55 const std::optional<VFInfo> Shape =
56 VFABI::tryDemangleForVFABI(MangledName, CI.getFunctionType());
57 // A match is found via scalar and vector names, and also by
58 // ensuring that the variant described in the attribute has a
59 // corresponding definition or declaration of the vector
60 // function in the Module M.
61 if (Shape && (Shape->ScalarName == ScalarName)) {
62 assert(CI.getModule()->getFunction(Shape->VectorName) &&
63 "Vector function is missing.");
64 Mappings.push_back(*Shape);
65 }
66 }
67 }
68
69 public:
70 /// Retrieve all the VFInfo instances associated to the CallInst CI.
getMappings(const CallInst & CI)71 static SmallVector<VFInfo, 8> getMappings(const CallInst &CI) {
72 SmallVector<VFInfo, 8> Ret;
73
74 // Get mappings from the Vector Function ABI variants.
75 getVFABIMappings(CI, Ret);
76
77 // Other non-VFABI variants should be retrieved here.
78
79 return Ret;
80 }
81
82 static bool hasMaskedVariant(const CallInst &CI,
83 std::optional<ElementCount> VF = std::nullopt) {
84 // Check whether we have at least one masked vector version of a scalar
85 // function. If no VF is specified then we check for any masked variant,
86 // otherwise we look for one that matches the supplied VF.
87 auto Mappings = VFDatabase::getMappings(CI);
88 for (VFInfo Info : Mappings)
89 if (!VF || Info.Shape.VF == *VF)
90 if (Info.isMasked())
91 return true;
92
93 return false;
94 }
95
96 /// Constructor, requires a CallInst instance.
VFDatabase(CallInst & CI)97 VFDatabase(CallInst &CI)
98 : M(CI.getModule()), CI(CI),
99 ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
100
101 /// \defgroup VFDatabase query interface.
102 ///
103 /// @{
104 /// Retrieve the Function with VFShape \p Shape.
getVectorizedFunction(const VFShape & Shape)105 Function *getVectorizedFunction(const VFShape &Shape) const {
106 if (Shape == VFShape::getScalarShape(CI.getFunctionType()))
107 return CI.getCalledFunction();
108
109 for (const auto &Info : ScalarToVectorMappings)
110 if (Info.Shape == Shape)
111 return M->getFunction(Info.VectorName);
112
113 return nullptr;
114 }
115 /// @}
116 };
117
118 template <typename T> class ArrayRef;
119 class DemandedBits;
120 template <typename InstTy> class InterleaveGroup;
121 class IRBuilderBase;
122 class Loop;
123 class ScalarEvolution;
124 class TargetTransformInfo;
125 class Type;
126 class Value;
127
128 namespace Intrinsic {
129 typedef unsigned ID;
130 }
131
132 /// A helper function for converting Scalar types to vector types. If
133 /// the incoming type is void, we return void. If the EC represents a
134 /// scalar, we return the scalar type.
ToVectorTy(Type * Scalar,ElementCount EC)135 inline Type *ToVectorTy(Type *Scalar, ElementCount EC) {
136 if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar())
137 return Scalar;
138 return VectorType::get(Scalar, EC);
139 }
140
ToVectorTy(Type * Scalar,unsigned VF)141 inline Type *ToVectorTy(Type *Scalar, unsigned VF) {
142 return ToVectorTy(Scalar, ElementCount::getFixed(VF));
143 }
144
145 /// Identify if the intrinsic is trivially vectorizable.
146 /// This method returns true if the intrinsic's argument types are all scalars
147 /// for the scalar form of the intrinsic and all vectors (or scalars handled by
148 /// isVectorIntrinsicWithScalarOpAtArg) for the vector form of the intrinsic.
149 bool isTriviallyVectorizable(Intrinsic::ID ID);
150
151 /// Identifies if the vector form of the intrinsic has a scalar operand.
152 bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
153 unsigned ScalarOpdIdx);
154
155 /// Identifies if the vector form of the intrinsic is overloaded on the type of
156 /// the operand at index \p OpdIdx, or on the return type if \p OpdIdx is -1.
157 bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx);
158
159 /// Returns intrinsic ID for call.
160 /// For the input call instruction it finds mapping intrinsic and returns
161 /// its intrinsic ID, in case it does not found it return not_intrinsic.
162 Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI,
163 const TargetLibraryInfo *TLI);
164
165 /// Given a vector and an element number, see if the scalar value is
166 /// already around as a register, for example if it were inserted then extracted
167 /// from the vector.
168 Value *findScalarElement(Value *V, unsigned EltNo);
169
170 /// If all non-negative \p Mask elements are the same value, return that value.
171 /// If all elements are negative (undefined) or \p Mask contains different
172 /// non-negative values, return -1.
173 int getSplatIndex(ArrayRef<int> Mask);
174
175 /// Get splat value if the input is a splat vector or return nullptr.
176 /// The value may be extracted from a splat constants vector or from
177 /// a sequence of instructions that broadcast a single value into a vector.
178 Value *getSplatValue(const Value *V);
179
180 /// Return true if each element of the vector value \p V is poisoned or equal to
181 /// every other non-poisoned element. If an index element is specified, either
182 /// every element of the vector is poisoned or the element at that index is not
183 /// poisoned and equal to every other non-poisoned element.
184 /// This may be more powerful than the related getSplatValue() because it is
185 /// not limited by finding a scalar source value to a splatted vector.
186 bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);
187
188 /// Transform a shuffle mask's output demanded element mask into demanded
189 /// element masks for the 2 operands, returns false if the mask isn't valid.
190 /// Both \p DemandedLHS and \p DemandedRHS are initialised to [SrcWidth].
191 /// \p AllowUndefElts permits "-1" indices to be treated as undef.
192 bool getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
193 const APInt &DemandedElts, APInt &DemandedLHS,
194 APInt &DemandedRHS, bool AllowUndefElts = false);
195
196 /// Replace each shuffle mask index with the scaled sequential indices for an
197 /// equivalent mask of narrowed elements. Mask elements that are less than 0
198 /// (sentinel values) are repeated in the output mask.
199 ///
200 /// Example with Scale = 4:
201 /// <4 x i32> <3, 2, 0, -1> -->
202 /// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1>
203 ///
204 /// This is the reverse process of widening shuffle mask elements, but it always
205 /// succeeds because the indexes can always be multiplied (scaled up) to map to
206 /// narrower vector elements.
207 void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
208 SmallVectorImpl<int> &ScaledMask);
209
210 /// Try to transform a shuffle mask by replacing elements with the scaled index
211 /// for an equivalent mask of widened elements. If all mask elements that would
212 /// map to a wider element of the new mask are the same negative number
213 /// (sentinel value), that element of the new mask is the same value. If any
214 /// element in a given slice is negative and some other element in that slice is
215 /// not the same value, return false (partial matches with sentinel values are
216 /// not allowed).
217 ///
218 /// Example with Scale = 4:
219 /// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> -->
220 /// <4 x i32> <3, 2, 0, -1>
221 ///
222 /// This is the reverse process of narrowing shuffle mask elements if it
223 /// succeeds. This transform is not always possible because indexes may not
224 /// divide evenly (scale down) to map to wider vector elements.
225 bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
226 SmallVectorImpl<int> &ScaledMask);
227
228 /// Attempt to narrow/widen the \p Mask shuffle mask to the \p NumDstElts target
229 /// width. Internally this will call narrowShuffleMaskElts/widenShuffleMaskElts.
230 /// This will assert unless NumDstElts is a multiple of Mask.size (or vice-versa).
231 /// Returns false on failure, and ScaledMask will be in an undefined state.
232 bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
233 SmallVectorImpl<int> &ScaledMask);
234
235 /// Repetitively apply `widenShuffleMaskElts()` for as long as it succeeds,
236 /// to get the shuffle mask with widest possible elements.
237 void getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
238 SmallVectorImpl<int> &ScaledMask);
239
240 /// Splits and processes shuffle mask depending on the number of input and
241 /// output registers. The function does 2 main things: 1) splits the
242 /// source/destination vectors into real registers; 2) do the mask analysis to
243 /// identify which real registers are permuted. Then the function processes
244 /// resulting registers mask using provided action items. If no input register
245 /// is defined, \p NoInputAction action is used. If only 1 input register is
246 /// used, \p SingleInputAction is used, otherwise \p ManyInputsAction is used to
247 /// process > 2 input registers and masks.
248 /// \param Mask Original shuffle mask.
249 /// \param NumOfSrcRegs Number of source registers.
250 /// \param NumOfDestRegs Number of destination registers.
251 /// \param NumOfUsedRegs Number of actually used destination registers.
252 void processShuffleMasks(
253 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
254 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
255 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
256 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction);
257
258 /// Compute the demanded elements mask of horizontal binary operations. A
259 /// horizontal operation combines two adjacent elements in a vector operand.
260 /// This function returns a mask for the elements that correspond to the first
261 /// operand of this horizontal combination. For example, for two vectors
262 /// [X1, X2, X3, X4] and [Y1, Y2, Y3, Y4], the resulting mask can include the
263 /// elements X1, X3, Y1, and Y3. To get the other operands, simply shift the
264 /// result of this function to the left by 1.
265 ///
266 /// \param VectorBitWidth the total bit width of the vector
267 /// \param DemandedElts the demanded elements mask for the operation
268 /// \param DemandedLHS the demanded elements mask for the left operand
269 /// \param DemandedRHS the demanded elements mask for the right operand
270 void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth,
271 const APInt &DemandedElts,
272 APInt &DemandedLHS,
273 APInt &DemandedRHS);
274
275 /// Compute a map of integer instructions to their minimum legal type
276 /// size.
277 ///
278 /// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
279 /// type (e.g. i32) whenever arithmetic is performed on them.
280 ///
281 /// For targets with native i8 or i16 operations, usually InstCombine can shrink
282 /// the arithmetic type down again. However InstCombine refuses to create
283 /// illegal types, so for targets without i8 or i16 registers, the lengthening
284 /// and shrinking remains.
285 ///
286 /// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
287 /// their scalar equivalents do not, so during vectorization it is important to
288 /// remove these lengthens and truncates when deciding the profitability of
289 /// vectorization.
290 ///
291 /// This function analyzes the given range of instructions and determines the
292 /// minimum type size each can be converted to. It attempts to remove or
293 /// minimize type size changes across each def-use chain, so for example in the
294 /// following code:
295 ///
296 /// %1 = load i8, i8*
297 /// %2 = add i8 %1, 2
298 /// %3 = load i16, i16*
299 /// %4 = zext i8 %2 to i32
300 /// %5 = zext i16 %3 to i32
301 /// %6 = add i32 %4, %5
302 /// %7 = trunc i32 %6 to i16
303 ///
304 /// Instruction %6 must be done at least in i16, so computeMinimumValueSizes
305 /// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}.
306 ///
307 /// If the optional TargetTransformInfo is provided, this function tries harder
308 /// to do less work by only looking at illegal types.
309 MapVector<Instruction*, uint64_t>
310 computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
311 DemandedBits &DB,
312 const TargetTransformInfo *TTI=nullptr);
313
314 /// Compute the union of two access-group lists.
315 ///
316 /// If the list contains just one access group, it is returned directly. If the
317 /// list is empty, returns nullptr.
318 MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);
319
320 /// Compute the access-group list of access groups that @p Inst1 and @p Inst2
321 /// are both in. If either instruction does not access memory at all, it is
322 /// considered to be in every list.
323 ///
324 /// If the list contains just one access group, it is returned directly. If the
325 /// list is empty, returns nullptr.
326 MDNode *intersectAccessGroups(const Instruction *Inst1,
327 const Instruction *Inst2);
328
329 /// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath,
330 /// MD_nontemporal, MD_access_group, MD_mmra].
331 /// For K in Kinds, we get the MDNode for K from each of the
332 /// elements of VL, compute their "intersection" (i.e., the most generic
333 /// metadata value that covers all of the individual values), and set I's
334 /// metadata for M equal to the intersection value.
335 ///
336 /// This function always sets a (possibly null) value for each K in Kinds.
337 Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);
338
339 /// Create a mask that filters the members of an interleave group where there
340 /// are gaps.
341 ///
342 /// For example, the mask for \p Group with interleave-factor 3
343 /// and \p VF 4, that has only its first member present is:
344 ///
345 /// <1,0,0,1,0,0,1,0,0,1,0,0>
346 ///
347 /// Note: The result is a mask of 0's and 1's, as opposed to the other
348 /// create[*]Mask() utilities which create a shuffle mask (mask that
349 /// consists of indices).
350 Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
351 const InterleaveGroup<Instruction> &Group);
352
353 /// Create a mask with replicated elements.
354 ///
355 /// This function creates a shuffle mask for replicating each of the \p VF
356 /// elements in a vector \p ReplicationFactor times. It can be used to
357 /// transform a mask of \p VF elements into a mask of
358 /// \p VF * \p ReplicationFactor elements used by a predicated
359 /// interleaved-group of loads/stores whose Interleaved-factor ==
360 /// \p ReplicationFactor.
361 ///
362 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
363 ///
364 /// <0,0,0,1,1,1,2,2,2,3,3,3>
365 llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor,
366 unsigned VF);
367
368 /// Create an interleave shuffle mask.
369 ///
370 /// This function creates a shuffle mask for interleaving \p NumVecs vectors of
371 /// vectorization factor \p VF into a single wide vector. The mask is of the
372 /// form:
373 ///
374 /// <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...>
375 ///
376 /// For example, the mask for VF = 4 and NumVecs = 2 is:
377 ///
378 /// <0, 4, 1, 5, 2, 6, 3, 7>.
379 llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);
380
381 /// Create a stride shuffle mask.
382 ///
383 /// This function creates a shuffle mask whose elements begin at \p Start and
384 /// are incremented by \p Stride. The mask can be used to deinterleave an
385 /// interleaved vector into separate vectors of vectorization factor \p VF. The
386 /// mask is of the form:
387 ///
388 /// <Start, Start + Stride, ..., Start + Stride * (VF - 1)>
389 ///
390 /// For example, the mask for Start = 0, Stride = 2, and VF = 4 is:
391 ///
392 /// <0, 2, 4, 6>
393 llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride,
394 unsigned VF);
395
396 /// Create a sequential shuffle mask.
397 ///
398 /// This function creates shuffle mask whose elements are sequential and begin
399 /// at \p Start. The mask contains \p NumInts integers and is padded with \p
400 /// NumUndefs undef values. The mask is of the form:
401 ///
402 /// <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs>
403 ///
404 /// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is:
405 ///
406 /// <0, 1, 2, 3, undef, undef, undef, undef>
407 llvm::SmallVector<int, 16>
408 createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);
409
410 /// Given a shuffle mask for a binary shuffle, create the equivalent shuffle
411 /// mask assuming both operands are identical. This assumes that the unary
412 /// shuffle will use elements from operand 0 (operand 1 will be unused).
413 llvm::SmallVector<int, 16> createUnaryMask(ArrayRef<int> Mask,
414 unsigned NumElts);
415
416 /// Concatenate a list of vectors.
417 ///
418 /// This function generates code that concatenate the vectors in \p Vecs into a
419 /// single large vector. The number of vectors should be greater than one, and
420 /// their element types should be the same. The number of elements in the
421 /// vectors should also be the same; however, if the last vector has fewer
422 /// elements, it will be padded with undefs.
423 Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);
424
425 /// Given a mask vector of i1, Return true if all of the elements of this
426 /// predicate mask are known to be false or undef. That is, return true if all
427 /// lanes can be assumed inactive.
428 bool maskIsAllZeroOrUndef(Value *Mask);
429
430 /// Given a mask vector of i1, Return true if all of the elements of this
431 /// predicate mask are known to be true or undef. That is, return true if all
432 /// lanes can be assumed active.
433 bool maskIsAllOneOrUndef(Value *Mask);
434
435 /// Given a mask vector of i1, Return true if any of the elements of this
436 /// predicate mask are known to be true or undef. That is, return true if at
437 /// least one lane can be assumed active.
438 bool maskContainsAllOneOrUndef(Value *Mask);
439
440 /// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y)
441 /// for each lane which may be active.
442 APInt possiblyDemandedEltsInMask(Value *Mask);
443
444 /// The group of interleaved loads/stores sharing the same stride and
445 /// close to each other.
446 ///
447 /// Each member in this group has an index starting from 0, and the largest
448 /// index should be less than interleaved factor, which is equal to the absolute
449 /// value of the access's stride.
450 ///
451 /// E.g. An interleaved load group of factor 4:
452 /// for (unsigned i = 0; i < 1024; i+=4) {
453 /// a = A[i]; // Member of index 0
454 /// b = A[i+1]; // Member of index 1
455 /// d = A[i+3]; // Member of index 3
456 /// ...
457 /// }
458 ///
459 /// An interleaved store group of factor 4:
460 /// for (unsigned i = 0; i < 1024; i+=4) {
461 /// ...
462 /// A[i] = a; // Member of index 0
463 /// A[i+1] = b; // Member of index 1
464 /// A[i+2] = c; // Member of index 2
465 /// A[i+3] = d; // Member of index 3
466 /// }
467 ///
468 /// Note: the interleaved load group could have gaps (missing members), but
469 /// the interleaved store group doesn't allow gaps.
470 template <typename InstTy> class InterleaveGroup {
471 public:
InterleaveGroup(uint32_t Factor,bool Reverse,Align Alignment)472 InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
473 : Factor(Factor), Reverse(Reverse), Alignment(Alignment),
474 InsertPos(nullptr) {}
475
InterleaveGroup(InstTy * Instr,int32_t Stride,Align Alignment)476 InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
477 : Alignment(Alignment), InsertPos(Instr) {
478 Factor = std::abs(Stride);
479 assert(Factor > 1 && "Invalid interleave factor");
480
481 Reverse = Stride < 0;
482 Members[0] = Instr;
483 }
484
isReverse()485 bool isReverse() const { return Reverse; }
getFactor()486 uint32_t getFactor() const { return Factor; }
getAlign()487 Align getAlign() const { return Alignment; }
getNumMembers()488 uint32_t getNumMembers() const { return Members.size(); }
489
490 /// Try to insert a new member \p Instr with index \p Index and
491 /// alignment \p NewAlign. The index is related to the leader and it could be
492 /// negative if it is the new leader.
493 ///
494 /// \returns false if the instruction doesn't belong to the group.
insertMember(InstTy * Instr,int32_t Index,Align NewAlign)495 bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) {
496 // Make sure the key fits in an int32_t.
497 std::optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey);
498 if (!MaybeKey)
499 return false;
500 int32_t Key = *MaybeKey;
501
502 // Skip if the key is used for either the tombstone or empty special values.
503 if (DenseMapInfo<int32_t>::getTombstoneKey() == Key ||
504 DenseMapInfo<int32_t>::getEmptyKey() == Key)
505 return false;
506
507 // Skip if there is already a member with the same index.
508 if (Members.contains(Key))
509 return false;
510
511 if (Key > LargestKey) {
512 // The largest index is always less than the interleave factor.
513 if (Index >= static_cast<int32_t>(Factor))
514 return false;
515
516 LargestKey = Key;
517 } else if (Key < SmallestKey) {
518
519 // Make sure the largest index fits in an int32_t.
520 std::optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key);
521 if (!MaybeLargestIndex)
522 return false;
523
524 // The largest index is always less than the interleave factor.
525 if (*MaybeLargestIndex >= static_cast<int64_t>(Factor))
526 return false;
527
528 SmallestKey = Key;
529 }
530
531 // It's always safe to select the minimum alignment.
532 Alignment = std::min(Alignment, NewAlign);
533 Members[Key] = Instr;
534 return true;
535 }
536
537 /// Get the member with the given index \p Index
538 ///
539 /// \returns nullptr if contains no such member.
getMember(uint32_t Index)540 InstTy *getMember(uint32_t Index) const {
541 int32_t Key = SmallestKey + Index;
542 return Members.lookup(Key);
543 }
544
545 /// Get the index for the given member. Unlike the key in the member
546 /// map, the index starts from 0.
getIndex(const InstTy * Instr)547 uint32_t getIndex(const InstTy *Instr) const {
548 for (auto I : Members) {
549 if (I.second == Instr)
550 return I.first - SmallestKey;
551 }
552
553 llvm_unreachable("InterleaveGroup contains no such member");
554 }
555
getInsertPos()556 InstTy *getInsertPos() const { return InsertPos; }
setInsertPos(InstTy * Inst)557 void setInsertPos(InstTy *Inst) { InsertPos = Inst; }
558
559 /// Add metadata (e.g. alias info) from the instructions in this group to \p
560 /// NewInst.
561 ///
562 /// FIXME: this function currently does not add noalias metadata a'la
563 /// addNewMedata. To do that we need to compute the intersection of the
564 /// noalias info from all members.
565 void addMetadata(InstTy *NewInst) const;
566
567 /// Returns true if this Group requires a scalar iteration to handle gaps.
requiresScalarEpilogue()568 bool requiresScalarEpilogue() const {
569 // If the last member of the Group exists, then a scalar epilog is not
570 // needed for this group.
571 if (getMember(getFactor() - 1))
572 return false;
573
574 // We have a group with gaps. It therefore can't be a reversed access,
575 // because such groups get invalidated (TODO).
576 assert(!isReverse() && "Group should have been invalidated");
577
578 // This is a group of loads, with gaps, and without a last-member
579 return true;
580 }
581
582 private:
583 uint32_t Factor; // Interleave Factor.
584 bool Reverse;
585 Align Alignment;
586 DenseMap<int32_t, InstTy *> Members;
587 int32_t SmallestKey = 0;
588 int32_t LargestKey = 0;
589
590 // To avoid breaking dependences, vectorized instructions of an interleave
591 // group should be inserted at either the first load or the last store in
592 // program order.
593 //
594 // E.g. %even = load i32 // Insert Position
595 // %add = add i32 %even // Use of %even
596 // %odd = load i32
597 //
598 // store i32 %even
599 // %odd = add i32 // Def of %odd
600 // store i32 %odd // Insert Position
601 InstTy *InsertPos;
602 };
603
604 /// Drive the analysis of interleaved memory accesses in the loop.
605 ///
606 /// Use this class to analyze interleaved accesses only when we can vectorize
607 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
608 /// on interleaved accesses is unsafe.
609 ///
610 /// The analysis collects interleave groups and records the relationships
611 /// between the member and the group in a map.
612 class InterleavedAccessInfo {
613 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI,const LoopAccessInfo * LAI)614 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
615 DominatorTree *DT, LoopInfo *LI,
616 const LoopAccessInfo *LAI)
617 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
618
~InterleavedAccessInfo()619 ~InterleavedAccessInfo() { invalidateGroups(); }
620
621 /// Analyze the interleaved accesses and collect them in interleave
622 /// groups. Substitute symbolic strides using \p Strides.
623 /// Consider also predicated loads/stores in the analysis if
624 /// \p EnableMaskedInterleavedGroup is true.
625 void analyzeInterleaving(bool EnableMaskedInterleavedGroup);
626
627 /// Invalidate groups, e.g., in case all blocks in loop will be predicated
628 /// contrary to original assumption. Although we currently prevent group
629 /// formation for predicated accesses, we may be able to relax this limitation
630 /// in the future once we handle more complicated blocks. Returns true if any
631 /// groups were invalidated.
invalidateGroups()632 bool invalidateGroups() {
633 if (InterleaveGroups.empty()) {
634 assert(
635 !RequiresScalarEpilogue &&
636 "RequiresScalarEpilog should not be set without interleave groups");
637 return false;
638 }
639
640 InterleaveGroupMap.clear();
641 for (auto *Ptr : InterleaveGroups)
642 delete Ptr;
643 InterleaveGroups.clear();
644 RequiresScalarEpilogue = false;
645 return true;
646 }
647
648 /// Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr)649 bool isInterleaved(Instruction *Instr) const {
650 return InterleaveGroupMap.contains(Instr);
651 }
652
653 /// Get the interleave group that \p Instr belongs to.
654 ///
655 /// \returns nullptr if doesn't have such group.
656 InterleaveGroup<Instruction> *
getInterleaveGroup(const Instruction * Instr)657 getInterleaveGroup(const Instruction *Instr) const {
658 return InterleaveGroupMap.lookup(Instr);
659 }
660
661 iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>>
getInterleaveGroups()662 getInterleaveGroups() {
663 return make_range(InterleaveGroups.begin(), InterleaveGroups.end());
664 }
665
666 /// Returns true if an interleaved group that may access memory
667 /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue()668 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
669
670 /// Invalidate groups that require a scalar epilogue (due to gaps). This can
671 /// happen when optimizing for size forbids a scalar epilogue, and the gap
672 /// cannot be filtered by masking the load/store.
673 void invalidateGroupsRequiringScalarEpilogue();
674
675 /// Returns true if we have any interleave groups.
hasGroups()676 bool hasGroups() const { return !InterleaveGroups.empty(); }
677
678 private:
679 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
680 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
681 /// The interleaved access analysis can also add new predicates (for example
682 /// by versioning strides of pointers).
683 PredicatedScalarEvolution &PSE;
684
685 Loop *TheLoop;
686 DominatorTree *DT;
687 LoopInfo *LI;
688 const LoopAccessInfo *LAI;
689
690 /// True if the loop may contain non-reversed interleaved groups with
691 /// out-of-bounds accesses. We ensure we don't speculatively access memory
692 /// out-of-bounds by executing at least one scalar epilogue iteration.
693 bool RequiresScalarEpilogue = false;
694
695 /// Holds the relationships between the members and the interleave group.
696 DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap;
697
698 SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;
699
700 /// Holds dependences among the memory accesses in the loop. It maps a source
701 /// access to a set of dependent sink accesses.
702 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
703
704 /// The descriptor for a strided memory access.
705 struct StrideDescriptor {
706 StrideDescriptor() = default;
StrideDescriptorStrideDescriptor707 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
708 Align Alignment)
709 : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}
710
711 // The access's stride. It is negative for a reverse access.
712 int64_t Stride = 0;
713
714 // The scalar expression of this access.
715 const SCEV *Scev = nullptr;
716
717 // The size of the memory object.
718 uint64_t Size = 0;
719
720 // The alignment of this access.
721 Align Alignment;
722 };
723
724 /// A type for holding instructions and their stride descriptors.
725 using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
726
727 /// Create a new interleave group with the given instruction \p Instr,
728 /// stride \p Stride and alignment \p Align.
729 ///
730 /// \returns the newly created interleave group.
731 InterleaveGroup<Instruction> *
createInterleaveGroup(Instruction * Instr,int Stride,Align Alignment)732 createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) {
733 assert(!InterleaveGroupMap.count(Instr) &&
734 "Already in an interleaved access group");
735 InterleaveGroupMap[Instr] =
736 new InterleaveGroup<Instruction>(Instr, Stride, Alignment);
737 InterleaveGroups.insert(InterleaveGroupMap[Instr]);
738 return InterleaveGroupMap[Instr];
739 }
740
741 /// Release the group and remove all the relationships.
releaseGroup(InterleaveGroup<Instruction> * Group)742 void releaseGroup(InterleaveGroup<Instruction> *Group) {
743 InterleaveGroups.erase(Group);
744 releaseGroupWithoutRemovingFromSet(Group);
745 }
746
747 /// Do everything necessary to release the group, apart from removing it from
748 /// the InterleaveGroups set.
releaseGroupWithoutRemovingFromSet(InterleaveGroup<Instruction> * Group)749 void releaseGroupWithoutRemovingFromSet(InterleaveGroup<Instruction> *Group) {
750 for (unsigned i = 0; i < Group->getFactor(); i++)
751 if (Instruction *Member = Group->getMember(i))
752 InterleaveGroupMap.erase(Member);
753
754 delete Group;
755 }
756
757 /// Collect all the accesses with a constant stride in program order.
758 void collectConstStrideAccesses(
759 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
760 const DenseMap<Value *, const SCEV *> &Strides);
761
762 /// Returns true if \p Stride is allowed in an interleaved group.
763 static bool isStrided(int Stride);
764
765 /// Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB)766 bool isPredicated(BasicBlock *BB) const {
767 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
768 }
769
770 /// Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid()771 bool areDependencesValid() const {
772 return LAI && LAI->getDepChecker().getDependences();
773 }
774
775 /// Returns true if memory accesses \p A and \p B can be reordered, if
776 /// necessary, when constructing interleaved groups.
777 ///
778 /// \p A must precede \p B in program order. We return false if reordering is
779 /// not necessary or is prevented because \p A and \p B may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * A,StrideEntry * B)780 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
781 StrideEntry *B) const {
782 // Code motion for interleaved accesses can potentially hoist strided loads
783 // and sink strided stores. The code below checks the legality of the
784 // following two conditions:
785 //
786 // 1. Potentially moving a strided load (B) before any store (A) that
787 // precedes B, or
788 //
789 // 2. Potentially moving a strided store (A) after any load or store (B)
790 // that A precedes.
791 //
792 // It's legal to reorder A and B if we know there isn't a dependence from A
793 // to B. Note that this determination is conservative since some
794 // dependences could potentially be reordered safely.
795
796 // A is potentially the source of a dependence.
797 auto *Src = A->first;
798 auto SrcDes = A->second;
799
800 // B is potentially the sink of a dependence.
801 auto *Sink = B->first;
802 auto SinkDes = B->second;
803
804 // Code motion for interleaved accesses can't violate WAR dependences.
805 // Thus, reordering is legal if the source isn't a write.
806 if (!Src->mayWriteToMemory())
807 return true;
808
809 // At least one of the accesses must be strided.
810 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
811 return true;
812
813 // If dependence information is not available from LoopAccessInfo,
814 // conservatively assume the instructions can't be reordered.
815 if (!areDependencesValid())
816 return false;
817
818 // If we know there is a dependence from source to sink, assume the
819 // instructions can't be reordered. Otherwise, reordering is legal.
820 return !Dependences.contains(Src) || !Dependences.lookup(Src).count(Sink);
821 }
822
823 /// Collect the dependences from LoopAccessInfo.
824 ///
825 /// We process the dependences once during the interleaved access analysis to
826 /// enable constant-time dependence queries.
collectDependences()827 void collectDependences() {
828 if (!areDependencesValid())
829 return;
830 const auto &DepChecker = LAI->getDepChecker();
831 auto *Deps = DepChecker.getDependences();
832 for (auto Dep : *Deps)
833 Dependences[Dep.getSource(DepChecker)].insert(
834 Dep.getDestination(DepChecker));
835 }
836 };
837
838 } // llvm namespace
839
840 #endif
841