1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6
7 #define lcode_c
8 #define LUA_CORE
9
10 #include "lprefix.h"
11
12
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdlib.h>
17
18 #include "lua.h"
19
20 #include "lcode.h"
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lgc.h"
24 #include "llex.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lopcodes.h"
28 #include "lparser.h"
29 #include "lstring.h"
30 #include "ltable.h"
31 #include "lvm.h"
32
33
34 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
35 #define MAXREGS 255
36
37
38 #define hasjumps(e) ((e)->t != (e)->f)
39
40
41 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
42
43
44
45 /* semantic error */
luaK_semerror(LexState * ls,const char * msg)46 l_noret luaK_semerror (LexState *ls, const char *msg) {
47 ls->t.token = 0; /* remove "near <token>" from final message */
48 luaX_syntaxerror(ls, msg);
49 }
50
51
52 /*
53 ** If expression is a numeric constant, fills 'v' with its value
54 ** and returns 1. Otherwise, returns 0.
55 */
tonumeral(const expdesc * e,TValue * v)56 static int tonumeral (const expdesc *e, TValue *v) {
57 if (hasjumps(e))
58 return 0; /* not a numeral */
59 switch (e->k) {
60 case VKINT:
61 if (v) setivalue(v, e->u.ival);
62 return 1;
63 case VKFLT:
64 if (v) setfltvalue(v, e->u.nval);
65 return 1;
66 default: return 0;
67 }
68 }
69
70
71 /*
72 ** Get the constant value from a constant expression
73 */
const2val(FuncState * fs,const expdesc * e)74 static TValue *const2val (FuncState *fs, const expdesc *e) {
75 lua_assert(e->k == VCONST);
76 return &fs->ls->dyd->actvar.arr[e->u.info].k;
77 }
78
79
80 /*
81 ** If expression is a constant, fills 'v' with its value
82 ** and returns 1. Otherwise, returns 0.
83 */
luaK_exp2const(FuncState * fs,const expdesc * e,TValue * v)84 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
85 if (hasjumps(e))
86 return 0; /* not a constant */
87 switch (e->k) {
88 case VFALSE:
89 setbfvalue(v);
90 return 1;
91 case VTRUE:
92 setbtvalue(v);
93 return 1;
94 case VNIL:
95 setnilvalue(v);
96 return 1;
97 case VKSTR: {
98 setsvalue(fs->ls->L, v, e->u.strval);
99 return 1;
100 }
101 case VCONST: {
102 setobj(fs->ls->L, v, const2val(fs, e));
103 return 1;
104 }
105 default: return tonumeral(e, v);
106 }
107 }
108
109
110 /*
111 ** Return the previous instruction of the current code. If there
112 ** may be a jump target between the current instruction and the
113 ** previous one, return an invalid instruction (to avoid wrong
114 ** optimizations).
115 */
previousinstruction(FuncState * fs)116 static Instruction *previousinstruction (FuncState *fs) {
117 static const Instruction invalidinstruction = ~(Instruction)0;
118 if (fs->pc > fs->lasttarget)
119 return &fs->f->code[fs->pc - 1]; /* previous instruction */
120 else
121 return cast(Instruction*, &invalidinstruction);
122 }
123
124
125 /*
126 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
127 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
128 ** range of previous instruction instead of emitting a new one. (For
129 ** instance, 'local a; local b' will generate a single opcode.)
130 */
luaK_nil(FuncState * fs,int from,int n)131 void luaK_nil (FuncState *fs, int from, int n) {
132 int l = from + n - 1; /* last register to set nil */
133 Instruction *previous = previousinstruction(fs);
134 if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
135 int pfrom = GETARG_A(*previous); /* get previous range */
136 int pl = pfrom + GETARG_B(*previous);
137 if ((pfrom <= from && from <= pl + 1) ||
138 (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
139 if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
140 if (pl > l) l = pl; /* l = max(l, pl) */
141 SETARG_A(*previous, from);
142 SETARG_B(*previous, l - from);
143 return;
144 } /* else go through */
145 }
146 luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
147 }
148
149
150 /*
151 ** Gets the destination address of a jump instruction. Used to traverse
152 ** a list of jumps.
153 */
getjump(FuncState * fs,int pc)154 static int getjump (FuncState *fs, int pc) {
155 int offset = GETARG_sJ(fs->f->code[pc]);
156 if (offset == NO_JUMP) /* point to itself represents end of list */
157 return NO_JUMP; /* end of list */
158 else
159 return (pc+1)+offset; /* turn offset into absolute position */
160 }
161
162
163 /*
164 ** Fix jump instruction at position 'pc' to jump to 'dest'.
165 ** (Jump addresses are relative in Lua)
166 */
fixjump(FuncState * fs,int pc,int dest)167 static void fixjump (FuncState *fs, int pc, int dest) {
168 Instruction *jmp = &fs->f->code[pc];
169 int offset = dest - (pc + 1);
170 lua_assert(dest != NO_JUMP);
171 if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
172 luaX_syntaxerror(fs->ls, "control structure too long");
173 lua_assert(GET_OPCODE(*jmp) == OP_JMP);
174 SETARG_sJ(*jmp, offset);
175 }
176
177
178 /*
179 ** Concatenate jump-list 'l2' into jump-list 'l1'
180 */
luaK_concat(FuncState * fs,int * l1,int l2)181 void luaK_concat (FuncState *fs, int *l1, int l2) {
182 if (l2 == NO_JUMP) return; /* nothing to concatenate? */
183 else if (*l1 == NO_JUMP) /* no original list? */
184 *l1 = l2; /* 'l1' points to 'l2' */
185 else {
186 int list = *l1;
187 int next;
188 while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
189 list = next;
190 fixjump(fs, list, l2); /* last element links to 'l2' */
191 }
192 }
193
194
195 /*
196 ** Create a jump instruction and return its position, so its destination
197 ** can be fixed later (with 'fixjump').
198 */
luaK_jump(FuncState * fs)199 int luaK_jump (FuncState *fs) {
200 return codesJ(fs, OP_JMP, NO_JUMP, 0);
201 }
202
203
204 /*
205 ** Code a 'return' instruction
206 */
luaK_ret(FuncState * fs,int first,int nret)207 void luaK_ret (FuncState *fs, int first, int nret) {
208 OpCode op;
209 switch (nret) {
210 case 0: op = OP_RETURN0; break;
211 case 1: op = OP_RETURN1; break;
212 default: op = OP_RETURN; break;
213 }
214 luaK_codeABC(fs, op, first, nret + 1, 0);
215 }
216
217
218 /*
219 ** Code a "conditional jump", that is, a test or comparison opcode
220 ** followed by a jump. Return jump position.
221 */
condjump(FuncState * fs,OpCode op,int A,int B,int C,int k)222 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
223 luaK_codeABCk(fs, op, A, B, C, k);
224 return luaK_jump(fs);
225 }
226
227
228 /*
229 ** returns current 'pc' and marks it as a jump target (to avoid wrong
230 ** optimizations with consecutive instructions not in the same basic block).
231 */
luaK_getlabel(FuncState * fs)232 int luaK_getlabel (FuncState *fs) {
233 fs->lasttarget = fs->pc;
234 return fs->pc;
235 }
236
237
238 /*
239 ** Returns the position of the instruction "controlling" a given
240 ** jump (that is, its condition), or the jump itself if it is
241 ** unconditional.
242 */
getjumpcontrol(FuncState * fs,int pc)243 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
244 Instruction *pi = &fs->f->code[pc];
245 if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
246 return pi-1;
247 else
248 return pi;
249 }
250
251
252 /*
253 ** Patch destination register for a TESTSET instruction.
254 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
255 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
256 ** register. Otherwise, change instruction to a simple 'TEST' (produces
257 ** no register value)
258 */
patchtestreg(FuncState * fs,int node,int reg)259 static int patchtestreg (FuncState *fs, int node, int reg) {
260 Instruction *i = getjumpcontrol(fs, node);
261 if (GET_OPCODE(*i) != OP_TESTSET)
262 return 0; /* cannot patch other instructions */
263 if (reg != NO_REG && reg != GETARG_B(*i))
264 SETARG_A(*i, reg);
265 else {
266 /* no register to put value or register already has the value;
267 change instruction to simple test */
268 *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
269 }
270 return 1;
271 }
272
273
274 /*
275 ** Traverse a list of tests ensuring no one produces a value
276 */
removevalues(FuncState * fs,int list)277 static void removevalues (FuncState *fs, int list) {
278 for (; list != NO_JUMP; list = getjump(fs, list))
279 patchtestreg(fs, list, NO_REG);
280 }
281
282
283 /*
284 ** Traverse a list of tests, patching their destination address and
285 ** registers: tests producing values jump to 'vtarget' (and put their
286 ** values in 'reg'), other tests jump to 'dtarget'.
287 */
patchlistaux(FuncState * fs,int list,int vtarget,int reg,int dtarget)288 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
289 int dtarget) {
290 while (list != NO_JUMP) {
291 int next = getjump(fs, list);
292 if (patchtestreg(fs, list, reg))
293 fixjump(fs, list, vtarget);
294 else
295 fixjump(fs, list, dtarget); /* jump to default target */
296 list = next;
297 }
298 }
299
300
301 /*
302 ** Path all jumps in 'list' to jump to 'target'.
303 ** (The assert means that we cannot fix a jump to a forward address
304 ** because we only know addresses once code is generated.)
305 */
luaK_patchlist(FuncState * fs,int list,int target)306 void luaK_patchlist (FuncState *fs, int list, int target) {
307 lua_assert(target <= fs->pc);
308 patchlistaux(fs, list, target, NO_REG, target);
309 }
310
311
luaK_patchtohere(FuncState * fs,int list)312 void luaK_patchtohere (FuncState *fs, int list) {
313 int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
314 luaK_patchlist(fs, list, hr);
315 }
316
317
318 /* limit for difference between lines in relative line info. */
319 #define LIMLINEDIFF 0x80
320
321
322 /*
323 ** Save line info for a new instruction. If difference from last line
324 ** does not fit in a byte, of after that many instructions, save a new
325 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
326 ** in 'lineinfo' signals the existence of this absolute information.)
327 ** Otherwise, store the difference from last line in 'lineinfo'.
328 */
savelineinfo(FuncState * fs,Proto * f,int line)329 static void savelineinfo (FuncState *fs, Proto *f, int line) {
330 int linedif = line - fs->previousline;
331 int pc = fs->pc - 1; /* last instruction coded */
332 if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
333 luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
334 f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
335 f->abslineinfo[fs->nabslineinfo].pc = pc;
336 f->abslineinfo[fs->nabslineinfo++].line = line;
337 linedif = ABSLINEINFO; /* signal that there is absolute information */
338 fs->iwthabs = 1; /* restart counter */
339 }
340 luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
341 MAX_INT, "opcodes");
342 f->lineinfo[pc] = linedif;
343 fs->previousline = line; /* last line saved */
344 }
345
346
347 /*
348 ** Remove line information from the last instruction.
349 ** If line information for that instruction is absolute, set 'iwthabs'
350 ** above its max to force the new (replacing) instruction to have
351 ** absolute line info, too.
352 */
removelastlineinfo(FuncState * fs)353 static void removelastlineinfo (FuncState *fs) {
354 Proto *f = fs->f;
355 int pc = fs->pc - 1; /* last instruction coded */
356 if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
357 fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
358 fs->iwthabs--; /* undo previous increment */
359 }
360 else { /* absolute line information */
361 lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
362 fs->nabslineinfo--; /* remove it */
363 fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
364 }
365 }
366
367
368 /*
369 ** Remove the last instruction created, correcting line information
370 ** accordingly.
371 */
removelastinstruction(FuncState * fs)372 static void removelastinstruction (FuncState *fs) {
373 removelastlineinfo(fs);
374 fs->pc--;
375 }
376
377
378 /*
379 ** Emit instruction 'i', checking for array sizes and saving also its
380 ** line information. Return 'i' position.
381 */
luaK_code(FuncState * fs,Instruction i)382 int luaK_code (FuncState *fs, Instruction i) {
383 Proto *f = fs->f;
384 /* put new instruction in code array */
385 luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
386 MAX_INT, "opcodes");
387 f->code[fs->pc++] = i;
388 savelineinfo(fs, f, fs->ls->lastline);
389 return fs->pc - 1; /* index of new instruction */
390 }
391
392
393 /*
394 ** Format and emit an 'iABC' instruction. (Assertions check consistency
395 ** of parameters versus opcode.)
396 */
luaK_codeABCk(FuncState * fs,OpCode o,int a,int b,int c,int k)397 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
398 lua_assert(getOpMode(o) == iABC);
399 lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
400 c <= MAXARG_C && (k & ~1) == 0);
401 return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
402 }
403
404
405 /*
406 ** Format and emit an 'iABx' instruction.
407 */
luaK_codeABx(FuncState * fs,OpCode o,int a,unsigned int bc)408 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
409 lua_assert(getOpMode(o) == iABx);
410 lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
411 return luaK_code(fs, CREATE_ABx(o, a, bc));
412 }
413
414
415 /*
416 ** Format and emit an 'iAsBx' instruction.
417 */
luaK_codeAsBx(FuncState * fs,OpCode o,int a,int bc)418 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
419 unsigned int b = bc + OFFSET_sBx;
420 lua_assert(getOpMode(o) == iAsBx);
421 lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
422 return luaK_code(fs, CREATE_ABx(o, a, b));
423 }
424
425
426 /*
427 ** Format and emit an 'isJ' instruction.
428 */
codesJ(FuncState * fs,OpCode o,int sj,int k)429 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
430 unsigned int j = sj + OFFSET_sJ;
431 lua_assert(getOpMode(o) == isJ);
432 lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
433 return luaK_code(fs, CREATE_sJ(o, j, k));
434 }
435
436
437 /*
438 ** Emit an "extra argument" instruction (format 'iAx')
439 */
codeextraarg(FuncState * fs,int a)440 static int codeextraarg (FuncState *fs, int a) {
441 lua_assert(a <= MAXARG_Ax);
442 return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
443 }
444
445
446 /*
447 ** Emit a "load constant" instruction, using either 'OP_LOADK'
448 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
449 ** instruction with "extra argument".
450 */
luaK_codek(FuncState * fs,int reg,int k)451 static int luaK_codek (FuncState *fs, int reg, int k) {
452 if (k <= MAXARG_Bx)
453 return luaK_codeABx(fs, OP_LOADK, reg, k);
454 else {
455 int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
456 codeextraarg(fs, k);
457 return p;
458 }
459 }
460
461
462 /*
463 ** Check register-stack level, keeping track of its maximum size
464 ** in field 'maxstacksize'
465 */
luaK_checkstack(FuncState * fs,int n)466 void luaK_checkstack (FuncState *fs, int n) {
467 int newstack = fs->freereg + n;
468 if (newstack > fs->f->maxstacksize) {
469 if (newstack >= MAXREGS)
470 luaX_syntaxerror(fs->ls,
471 "function or expression needs too many registers");
472 fs->f->maxstacksize = cast_byte(newstack);
473 }
474 }
475
476
477 /*
478 ** Reserve 'n' registers in register stack
479 */
luaK_reserveregs(FuncState * fs,int n)480 void luaK_reserveregs (FuncState *fs, int n) {
481 luaK_checkstack(fs, n);
482 fs->freereg += n;
483 }
484
485
486 /*
487 ** Free register 'reg', if it is neither a constant index nor
488 ** a local variable.
489 )
490 */
freereg(FuncState * fs,int reg)491 static void freereg (FuncState *fs, int reg) {
492 if (reg >= luaY_nvarstack(fs)) {
493 fs->freereg--;
494 lua_assert(reg == fs->freereg);
495 }
496 }
497
498
499 /*
500 ** Free two registers in proper order
501 */
freeregs(FuncState * fs,int r1,int r2)502 static void freeregs (FuncState *fs, int r1, int r2) {
503 if (r1 > r2) {
504 freereg(fs, r1);
505 freereg(fs, r2);
506 }
507 else {
508 freereg(fs, r2);
509 freereg(fs, r1);
510 }
511 }
512
513
514 /*
515 ** Free register used by expression 'e' (if any)
516 */
freeexp(FuncState * fs,expdesc * e)517 static void freeexp (FuncState *fs, expdesc *e) {
518 if (e->k == VNONRELOC)
519 freereg(fs, e->u.info);
520 }
521
522
523 /*
524 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
525 ** order.
526 */
freeexps(FuncState * fs,expdesc * e1,expdesc * e2)527 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
528 int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
529 int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
530 freeregs(fs, r1, r2);
531 }
532
533
534 /*
535 ** Add constant 'v' to prototype's list of constants (field 'k').
536 ** Use scanner's table to cache position of constants in constant list
537 ** and try to reuse constants. Because some values should not be used
538 ** as keys (nil cannot be a key, integer keys can collapse with float
539 ** keys), the caller must provide a useful 'key' for indexing the cache.
540 ** Note that all functions share the same table, so entering or exiting
541 ** a function can make some indices wrong.
542 */
addk(FuncState * fs,TValue * key,TValue * v)543 static int addk (FuncState *fs, TValue *key, TValue *v) {
544 TValue val;
545 lua_State *L = fs->ls->L;
546 Proto *f = fs->f;
547 const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
548 int k, oldsize;
549 if (ttisinteger(idx)) { /* is there an index there? */
550 k = cast_int(ivalue(idx));
551 /* correct value? (warning: must distinguish floats from integers!) */
552 if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
553 luaV_rawequalobj(&f->k[k], v))
554 return k; /* reuse index */
555 }
556 /* constant not found; create a new entry */
557 oldsize = f->sizek;
558 k = fs->nk;
559 /* numerical value does not need GC barrier;
560 table has no metatable, so it does not need to invalidate cache */
561 setivalue(&val, k);
562 luaH_finishset(L, fs->ls->h, key, idx, &val);
563 luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
564 while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
565 setobj(L, &f->k[k], v);
566 fs->nk++;
567 luaC_barrier(L, f, v);
568 return k;
569 }
570
571
572 /*
573 ** Add a string to list of constants and return its index.
574 */
stringK(FuncState * fs,TString * s)575 static int stringK (FuncState *fs, TString *s) {
576 TValue o;
577 setsvalue(fs->ls->L, &o, s);
578 return addk(fs, &o, &o); /* use string itself as key */
579 }
580
581
582 /*
583 ** Add an integer to list of constants and return its index.
584 */
luaK_intK(FuncState * fs,lua_Integer n)585 static int luaK_intK (FuncState *fs, lua_Integer n) {
586 TValue o;
587 setivalue(&o, n);
588 return addk(fs, &o, &o); /* use integer itself as key */
589 }
590
591 /*
592 ** Add a float to list of constants and return its index. Floats
593 ** with integral values need a different key, to avoid collision
594 ** with actual integers. To that, we add to the number its smaller
595 ** power-of-two fraction that is still significant in its scale.
596 ** For doubles, that would be 1/2^52.
597 ** (This method is not bulletproof: there may be another float
598 ** with that value, and for floats larger than 2^53 the result is
599 ** still an integer. At worst, this only wastes an entry with
600 ** a duplicate.)
601 */
luaK_numberK(FuncState * fs,lua_Number r)602 static int luaK_numberK (FuncState *fs, lua_Number r) {
603 TValue o;
604 lua_Integer ik;
605 setfltvalue(&o, r);
606 #ifndef LUA_AVOID_FLOAT
607 if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
608 return addk(fs, &o, &o); /* use number itself as key */
609 else { /* must build an alternative key */
610 const int nbm = l_floatatt(MANT_DIG);
611 const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
612 const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
613 TValue kv;
614 setfltvalue(&kv, k);
615 /* result is not an integral value, unless value is too large */
616 lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
617 l_mathop(fabs)(r) >= l_mathop(1e6));
618 return addk(fs, &kv, &o);
619 }
620 #else
621 /*
622 ** When we're avoiding floats, allow any collision since floats are ints.
623 */
624 return addk(fs, &o, &o); /* use number itself as key */
625 #endif
626 }
627
628
629 /*
630 ** Add a false to list of constants and return its index.
631 */
boolF(FuncState * fs)632 static int boolF (FuncState *fs) {
633 TValue o;
634 setbfvalue(&o);
635 return addk(fs, &o, &o); /* use boolean itself as key */
636 }
637
638
639 /*
640 ** Add a true to list of constants and return its index.
641 */
boolT(FuncState * fs)642 static int boolT (FuncState *fs) {
643 TValue o;
644 setbtvalue(&o);
645 return addk(fs, &o, &o); /* use boolean itself as key */
646 }
647
648
649 /*
650 ** Add nil to list of constants and return its index.
651 */
nilK(FuncState * fs)652 static int nilK (FuncState *fs) {
653 TValue k, v;
654 setnilvalue(&v);
655 /* cannot use nil as key; instead use table itself to represent nil */
656 sethvalue(fs->ls->L, &k, fs->ls->h);
657 return addk(fs, &k, &v);
658 }
659
660
661 /*
662 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
663 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
664 ** overflows in the hidden addition inside 'int2sC'.
665 */
fitsC(lua_Integer i)666 static int fitsC (lua_Integer i) {
667 return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
668 }
669
670
671 /*
672 ** Check whether 'i' can be stored in an 'sBx' operand.
673 */
fitsBx(lua_Integer i)674 static int fitsBx (lua_Integer i) {
675 return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
676 }
677
678
luaK_int(FuncState * fs,int reg,lua_Integer i)679 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
680 if (fitsBx(i))
681 luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
682 else
683 luaK_codek(fs, reg, luaK_intK(fs, i));
684 }
685
686
luaK_float(FuncState * fs,int reg,lua_Number f)687 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
688 lua_Integer fi;
689 if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
690 luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
691 else
692 luaK_codek(fs, reg, luaK_numberK(fs, f));
693 }
694
695
696 /*
697 ** Convert a constant in 'v' into an expression description 'e'
698 */
const2exp(TValue * v,expdesc * e)699 static void const2exp (TValue *v, expdesc *e) {
700 switch (ttypetag(v)) {
701 case LUA_VNUMINT:
702 e->k = VKINT; e->u.ival = ivalue(v);
703 break;
704 case LUA_VNUMFLT:
705 e->k = VKFLT; e->u.nval = fltvalue(v);
706 break;
707 case LUA_VFALSE:
708 e->k = VFALSE;
709 break;
710 case LUA_VTRUE:
711 e->k = VTRUE;
712 break;
713 case LUA_VNIL:
714 e->k = VNIL;
715 break;
716 case LUA_VSHRSTR: case LUA_VLNGSTR:
717 e->k = VKSTR; e->u.strval = tsvalue(v);
718 break;
719 default: lua_assert(0);
720 }
721 }
722
723
724 /*
725 ** Fix an expression to return the number of results 'nresults'.
726 ** 'e' must be a multi-ret expression (function call or vararg).
727 */
luaK_setreturns(FuncState * fs,expdesc * e,int nresults)728 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
729 Instruction *pc = &getinstruction(fs, e);
730 if (e->k == VCALL) /* expression is an open function call? */
731 SETARG_C(*pc, nresults + 1);
732 else {
733 lua_assert(e->k == VVARARG);
734 SETARG_C(*pc, nresults + 1);
735 SETARG_A(*pc, fs->freereg);
736 luaK_reserveregs(fs, 1);
737 }
738 }
739
740
741 /*
742 ** Convert a VKSTR to a VK
743 */
str2K(FuncState * fs,expdesc * e)744 static void str2K (FuncState *fs, expdesc *e) {
745 lua_assert(e->k == VKSTR);
746 e->u.info = stringK(fs, e->u.strval);
747 e->k = VK;
748 }
749
750
751 /*
752 ** Fix an expression to return one result.
753 ** If expression is not a multi-ret expression (function call or
754 ** vararg), it already returns one result, so nothing needs to be done.
755 ** Function calls become VNONRELOC expressions (as its result comes
756 ** fixed in the base register of the call), while vararg expressions
757 ** become VRELOC (as OP_VARARG puts its results where it wants).
758 ** (Calls are created returning one result, so that does not need
759 ** to be fixed.)
760 */
luaK_setoneret(FuncState * fs,expdesc * e)761 void luaK_setoneret (FuncState *fs, expdesc *e) {
762 if (e->k == VCALL) { /* expression is an open function call? */
763 /* already returns 1 value */
764 lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
765 e->k = VNONRELOC; /* result has fixed position */
766 e->u.info = GETARG_A(getinstruction(fs, e));
767 }
768 else if (e->k == VVARARG) {
769 SETARG_C(getinstruction(fs, e), 2);
770 e->k = VRELOC; /* can relocate its simple result */
771 }
772 }
773
774
775 /*
776 ** Ensure that expression 'e' is not a variable (nor a <const>).
777 ** (Expression still may have jump lists.)
778 */
luaK_dischargevars(FuncState * fs,expdesc * e)779 void luaK_dischargevars (FuncState *fs, expdesc *e) {
780 switch (e->k) {
781 case VCONST: {
782 const2exp(const2val(fs, e), e);
783 break;
784 }
785 case VLOCAL: { /* already in a register */
786 e->u.info = e->u.var.ridx;
787 e->k = VNONRELOC; /* becomes a non-relocatable value */
788 break;
789 }
790 case VUPVAL: { /* move value to some (pending) register */
791 e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
792 e->k = VRELOC;
793 break;
794 }
795 case VINDEXUP: {
796 e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
797 e->k = VRELOC;
798 break;
799 }
800 case VINDEXI: {
801 freereg(fs, e->u.ind.t);
802 e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
803 e->k = VRELOC;
804 break;
805 }
806 case VINDEXSTR: {
807 freereg(fs, e->u.ind.t);
808 e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
809 e->k = VRELOC;
810 break;
811 }
812 case VINDEXED: {
813 freeregs(fs, e->u.ind.t, e->u.ind.idx);
814 e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
815 e->k = VRELOC;
816 break;
817 }
818 case VVARARG: case VCALL: {
819 luaK_setoneret(fs, e);
820 break;
821 }
822 default: break; /* there is one value available (somewhere) */
823 }
824 }
825
826
827 /*
828 ** Ensure expression value is in register 'reg', making 'e' a
829 ** non-relocatable expression.
830 ** (Expression still may have jump lists.)
831 */
discharge2reg(FuncState * fs,expdesc * e,int reg)832 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
833 luaK_dischargevars(fs, e);
834 switch (e->k) {
835 case VNIL: {
836 luaK_nil(fs, reg, 1);
837 break;
838 }
839 case VFALSE: {
840 luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
841 break;
842 }
843 case VTRUE: {
844 luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
845 break;
846 }
847 case VKSTR: {
848 str2K(fs, e);
849 } /* FALLTHROUGH */
850 case VK: {
851 luaK_codek(fs, reg, e->u.info);
852 break;
853 }
854 case VKFLT: {
855 luaK_float(fs, reg, e->u.nval);
856 break;
857 }
858 case VKINT: {
859 luaK_int(fs, reg, e->u.ival);
860 break;
861 }
862 case VRELOC: {
863 Instruction *pc = &getinstruction(fs, e);
864 SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
865 break;
866 }
867 case VNONRELOC: {
868 if (reg != e->u.info)
869 luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
870 break;
871 }
872 default: {
873 lua_assert(e->k == VJMP);
874 return; /* nothing to do... */
875 }
876 }
877 e->u.info = reg;
878 e->k = VNONRELOC;
879 }
880
881
882 /*
883 ** Ensure expression value is in a register, making 'e' a
884 ** non-relocatable expression.
885 ** (Expression still may have jump lists.)
886 */
discharge2anyreg(FuncState * fs,expdesc * e)887 static void discharge2anyreg (FuncState *fs, expdesc *e) {
888 if (e->k != VNONRELOC) { /* no fixed register yet? */
889 luaK_reserveregs(fs, 1); /* get a register */
890 discharge2reg(fs, e, fs->freereg-1); /* put value there */
891 }
892 }
893
894
code_loadbool(FuncState * fs,int A,OpCode op)895 static int code_loadbool (FuncState *fs, int A, OpCode op) {
896 luaK_getlabel(fs); /* those instructions may be jump targets */
897 return luaK_codeABC(fs, op, A, 0, 0);
898 }
899
900
901 /*
902 ** check whether list has any jump that do not produce a value
903 ** or produce an inverted value
904 */
need_value(FuncState * fs,int list)905 static int need_value (FuncState *fs, int list) {
906 for (; list != NO_JUMP; list = getjump(fs, list)) {
907 Instruction i = *getjumpcontrol(fs, list);
908 if (GET_OPCODE(i) != OP_TESTSET) return 1;
909 }
910 return 0; /* not found */
911 }
912
913
914 /*
915 ** Ensures final expression result (which includes results from its
916 ** jump lists) is in register 'reg'.
917 ** If expression has jumps, need to patch these jumps either to
918 ** its final position or to "load" instructions (for those tests
919 ** that do not produce values).
920 */
exp2reg(FuncState * fs,expdesc * e,int reg)921 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
922 discharge2reg(fs, e, reg);
923 if (e->k == VJMP) /* expression itself is a test? */
924 luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
925 if (hasjumps(e)) {
926 int final; /* position after whole expression */
927 int p_f = NO_JUMP; /* position of an eventual LOAD false */
928 int p_t = NO_JUMP; /* position of an eventual LOAD true */
929 if (need_value(fs, e->t) || need_value(fs, e->f)) {
930 int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
931 p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
932 p_t = code_loadbool(fs, reg, OP_LOADTRUE);
933 /* jump around these booleans if 'e' is not a test */
934 luaK_patchtohere(fs, fj);
935 }
936 final = luaK_getlabel(fs);
937 patchlistaux(fs, e->f, final, reg, p_f);
938 patchlistaux(fs, e->t, final, reg, p_t);
939 }
940 e->f = e->t = NO_JUMP;
941 e->u.info = reg;
942 e->k = VNONRELOC;
943 }
944
945
946 /*
947 ** Ensures final expression result is in next available register.
948 */
luaK_exp2nextreg(FuncState * fs,expdesc * e)949 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
950 luaK_dischargevars(fs, e);
951 freeexp(fs, e);
952 luaK_reserveregs(fs, 1);
953 exp2reg(fs, e, fs->freereg - 1);
954 }
955
956
957 /*
958 ** Ensures final expression result is in some (any) register
959 ** and return that register.
960 */
luaK_exp2anyreg(FuncState * fs,expdesc * e)961 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
962 luaK_dischargevars(fs, e);
963 if (e->k == VNONRELOC) { /* expression already has a register? */
964 if (!hasjumps(e)) /* no jumps? */
965 return e->u.info; /* result is already in a register */
966 if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
967 exp2reg(fs, e, e->u.info); /* put final result in it */
968 return e->u.info;
969 }
970 /* else expression has jumps and cannot change its register
971 to hold the jump values, because it is a local variable.
972 Go through to the default case. */
973 }
974 luaK_exp2nextreg(fs, e); /* default: use next available register */
975 return e->u.info;
976 }
977
978
979 /*
980 ** Ensures final expression result is either in a register
981 ** or in an upvalue.
982 */
luaK_exp2anyregup(FuncState * fs,expdesc * e)983 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
984 if (e->k != VUPVAL || hasjumps(e))
985 luaK_exp2anyreg(fs, e);
986 }
987
988
989 /*
990 ** Ensures final expression result is either in a register
991 ** or it is a constant.
992 */
luaK_exp2val(FuncState * fs,expdesc * e)993 void luaK_exp2val (FuncState *fs, expdesc *e) {
994 if (hasjumps(e))
995 luaK_exp2anyreg(fs, e);
996 else
997 luaK_dischargevars(fs, e);
998 }
999
1000
1001 /*
1002 ** Try to make 'e' a K expression with an index in the range of R/K
1003 ** indices. Return true iff succeeded.
1004 */
luaK_exp2K(FuncState * fs,expdesc * e)1005 static int luaK_exp2K (FuncState *fs, expdesc *e) {
1006 if (!hasjumps(e)) {
1007 int info;
1008 switch (e->k) { /* move constants to 'k' */
1009 case VTRUE: info = boolT(fs); break;
1010 case VFALSE: info = boolF(fs); break;
1011 case VNIL: info = nilK(fs); break;
1012 case VKINT: info = luaK_intK(fs, e->u.ival); break;
1013 case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1014 case VKSTR: info = stringK(fs, e->u.strval); break;
1015 case VK: info = e->u.info; break;
1016 default: return 0; /* not a constant */
1017 }
1018 if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
1019 e->k = VK; /* make expression a 'K' expression */
1020 e->u.info = info;
1021 return 1;
1022 }
1023 }
1024 /* else, expression doesn't fit; leave it unchanged */
1025 return 0;
1026 }
1027
1028
1029 /*
1030 ** Ensures final expression result is in a valid R/K index
1031 ** (that is, it is either in a register or in 'k' with an index
1032 ** in the range of R/K indices).
1033 ** Returns 1 iff expression is K.
1034 */
luaK_exp2RK(FuncState * fs,expdesc * e)1035 int luaK_exp2RK (FuncState *fs, expdesc *e) {
1036 if (luaK_exp2K(fs, e))
1037 return 1;
1038 else { /* not a constant in the right range: put it in a register */
1039 luaK_exp2anyreg(fs, e);
1040 return 0;
1041 }
1042 }
1043
1044
codeABRK(FuncState * fs,OpCode o,int a,int b,expdesc * ec)1045 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1046 expdesc *ec) {
1047 int k = luaK_exp2RK(fs, ec);
1048 luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1049 }
1050
1051
1052 /*
1053 ** Generate code to store result of expression 'ex' into variable 'var'.
1054 */
luaK_storevar(FuncState * fs,expdesc * var,expdesc * ex)1055 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1056 switch (var->k) {
1057 case VLOCAL: {
1058 freeexp(fs, ex);
1059 exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
1060 return;
1061 }
1062 case VUPVAL: {
1063 int e = luaK_exp2anyreg(fs, ex);
1064 luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1065 break;
1066 }
1067 case VINDEXUP: {
1068 codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1069 break;
1070 }
1071 case VINDEXI: {
1072 codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1073 break;
1074 }
1075 case VINDEXSTR: {
1076 codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1077 break;
1078 }
1079 case VINDEXED: {
1080 codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1081 break;
1082 }
1083 default: lua_assert(0); /* invalid var kind to store */
1084 }
1085 freeexp(fs, ex);
1086 }
1087
1088
1089 /*
1090 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1091 */
luaK_self(FuncState * fs,expdesc * e,expdesc * key)1092 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1093 int ereg;
1094 luaK_exp2anyreg(fs, e);
1095 ereg = e->u.info; /* register where 'e' was placed */
1096 freeexp(fs, e);
1097 e->u.info = fs->freereg; /* base register for op_self */
1098 e->k = VNONRELOC; /* self expression has a fixed register */
1099 luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1100 codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1101 freeexp(fs, key);
1102 }
1103
1104
1105 /*
1106 ** Negate condition 'e' (where 'e' is a comparison).
1107 */
negatecondition(FuncState * fs,expdesc * e)1108 static void negatecondition (FuncState *fs, expdesc *e) {
1109 Instruction *pc = getjumpcontrol(fs, e->u.info);
1110 lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1111 GET_OPCODE(*pc) != OP_TEST);
1112 SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1113 }
1114
1115
1116 /*
1117 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1118 ** is true, code will jump if 'e' is true.) Return jump position.
1119 ** Optimize when 'e' is 'not' something, inverting the condition
1120 ** and removing the 'not'.
1121 */
jumponcond(FuncState * fs,expdesc * e,int cond)1122 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1123 if (e->k == VRELOC) {
1124 Instruction ie = getinstruction(fs, e);
1125 if (GET_OPCODE(ie) == OP_NOT) {
1126 removelastinstruction(fs); /* remove previous OP_NOT */
1127 return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1128 }
1129 /* else go through */
1130 }
1131 discharge2anyreg(fs, e);
1132 freeexp(fs, e);
1133 return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1134 }
1135
1136
1137 /*
1138 ** Emit code to go through if 'e' is true, jump otherwise.
1139 */
luaK_goiftrue(FuncState * fs,expdesc * e)1140 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1141 int pc; /* pc of new jump */
1142 luaK_dischargevars(fs, e);
1143 switch (e->k) {
1144 case VJMP: { /* condition? */
1145 negatecondition(fs, e); /* jump when it is false */
1146 pc = e->u.info; /* save jump position */
1147 break;
1148 }
1149 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1150 pc = NO_JUMP; /* always true; do nothing */
1151 break;
1152 }
1153 default: {
1154 pc = jumponcond(fs, e, 0); /* jump when false */
1155 break;
1156 }
1157 }
1158 luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1159 luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1160 e->t = NO_JUMP;
1161 }
1162
1163
1164 /*
1165 ** Emit code to go through if 'e' is false, jump otherwise.
1166 */
luaK_goiffalse(FuncState * fs,expdesc * e)1167 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1168 int pc; /* pc of new jump */
1169 luaK_dischargevars(fs, e);
1170 switch (e->k) {
1171 case VJMP: {
1172 pc = e->u.info; /* already jump if true */
1173 break;
1174 }
1175 case VNIL: case VFALSE: {
1176 pc = NO_JUMP; /* always false; do nothing */
1177 break;
1178 }
1179 default: {
1180 pc = jumponcond(fs, e, 1); /* jump if true */
1181 break;
1182 }
1183 }
1184 luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1185 luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1186 e->f = NO_JUMP;
1187 }
1188
1189
1190 /*
1191 ** Code 'not e', doing constant folding.
1192 */
codenot(FuncState * fs,expdesc * e)1193 static void codenot (FuncState *fs, expdesc *e) {
1194 switch (e->k) {
1195 case VNIL: case VFALSE: {
1196 e->k = VTRUE; /* true == not nil == not false */
1197 break;
1198 }
1199 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1200 e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1201 break;
1202 }
1203 case VJMP: {
1204 negatecondition(fs, e);
1205 break;
1206 }
1207 case VRELOC:
1208 case VNONRELOC: {
1209 discharge2anyreg(fs, e);
1210 freeexp(fs, e);
1211 e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1212 e->k = VRELOC;
1213 break;
1214 }
1215 default: lua_assert(0); /* cannot happen */
1216 }
1217 /* interchange true and false lists */
1218 { int temp = e->f; e->f = e->t; e->t = temp; }
1219 removevalues(fs, e->f); /* values are useless when negated */
1220 removevalues(fs, e->t);
1221 }
1222
1223
1224 /*
1225 ** Check whether expression 'e' is a small literal string
1226 */
isKstr(FuncState * fs,expdesc * e)1227 static int isKstr (FuncState *fs, expdesc *e) {
1228 return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1229 ttisshrstring(&fs->f->k[e->u.info]));
1230 }
1231
1232 /*
1233 ** Check whether expression 'e' is a literal integer.
1234 */
luaK_isKint(expdesc * e)1235 int luaK_isKint (expdesc *e) {
1236 return (e->k == VKINT && !hasjumps(e));
1237 }
1238
1239
1240 /*
1241 ** Check whether expression 'e' is a literal integer in
1242 ** proper range to fit in register C
1243 */
isCint(expdesc * e)1244 static int isCint (expdesc *e) {
1245 return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1246 }
1247
1248
1249 /*
1250 ** Check whether expression 'e' is a literal integer in
1251 ** proper range to fit in register sC
1252 */
isSCint(expdesc * e)1253 static int isSCint (expdesc *e) {
1254 return luaK_isKint(e) && fitsC(e->u.ival);
1255 }
1256
1257
1258 /*
1259 ** Check whether expression 'e' is a literal integer or float in
1260 ** proper range to fit in a register (sB or sC).
1261 */
isSCnumber(expdesc * e,int * pi,int * isfloat)1262 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1263 lua_Integer i;
1264 if (e->k == VKINT)
1265 i = e->u.ival;
1266 else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1267 *isfloat = 1;
1268 else
1269 return 0; /* not a number */
1270 if (!hasjumps(e) && fitsC(i)) {
1271 *pi = int2sC(cast_int(i));
1272 return 1;
1273 }
1274 else
1275 return 0;
1276 }
1277
1278
1279 /*
1280 ** Create expression 't[k]'. 't' must have its final result already in a
1281 ** register or upvalue. Upvalues can only be indexed by literal strings.
1282 ** Keys can be literal strings in the constant table or arbitrary
1283 ** values in registers.
1284 */
luaK_indexed(FuncState * fs,expdesc * t,expdesc * k)1285 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1286 if (k->k == VKSTR)
1287 str2K(fs, k);
1288 lua_assert(!hasjumps(t) &&
1289 (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1290 if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1291 luaK_exp2anyreg(fs, t); /* put it in a register */
1292 if (t->k == VUPVAL) {
1293 t->u.ind.t = t->u.info; /* upvalue index */
1294 t->u.ind.idx = k->u.info; /* literal string */
1295 t->k = VINDEXUP;
1296 }
1297 else {
1298 /* register index of the table */
1299 t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1300 if (isKstr(fs, k)) {
1301 t->u.ind.idx = k->u.info; /* literal string */
1302 t->k = VINDEXSTR;
1303 }
1304 else if (isCint(k)) {
1305 t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1306 t->k = VINDEXI;
1307 }
1308 else {
1309 t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1310 t->k = VINDEXED;
1311 }
1312 }
1313 }
1314
1315
1316 /*
1317 ** Return false if folding can raise an error.
1318 ** Bitwise operations need operands convertible to integers; division
1319 ** operations cannot have 0 as divisor.
1320 */
validop(int op,TValue * v1,TValue * v2)1321 static int validop (int op, TValue *v1, TValue *v2) {
1322 switch (op) {
1323 case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1324 case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1325 lua_Integer i;
1326 return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1327 luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1328 }
1329 case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1330 return (nvalue(v2) != 0);
1331 default: return 1; /* everything else is valid */
1332 }
1333 }
1334
1335
1336 /*
1337 ** Try to "constant-fold" an operation; return 1 iff successful.
1338 ** (In this case, 'e1' has the final result.)
1339 */
constfolding(FuncState * fs,int op,expdesc * e1,const expdesc * e2)1340 static int constfolding (FuncState *fs, int op, expdesc *e1,
1341 const expdesc *e2) {
1342 TValue v1, v2, res;
1343 if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1344 return 0; /* non-numeric operands or not safe to fold */
1345 luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1346 if (ttisinteger(&res)) {
1347 e1->k = VKINT;
1348 e1->u.ival = ivalue(&res);
1349 }
1350 else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1351 lua_Number n = fltvalue(&res);
1352 if (luai_numisnan(n) || n == 0)
1353 return 0;
1354 e1->k = VKFLT;
1355 e1->u.nval = n;
1356 }
1357 return 1;
1358 }
1359
1360
1361 /*
1362 ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
1363 */
binopr2op(BinOpr opr,BinOpr baser,OpCode base)1364 l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1365 lua_assert(baser <= opr &&
1366 ((baser == OPR_ADD && opr <= OPR_SHR) ||
1367 (baser == OPR_LT && opr <= OPR_LE)));
1368 return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1369 }
1370
1371
1372 /*
1373 ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
1374 */
unopr2op(UnOpr opr)1375 l_sinline OpCode unopr2op (UnOpr opr) {
1376 return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1377 cast_int(OP_UNM));
1378 }
1379
1380
1381 /*
1382 ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
1383 */
binopr2TM(BinOpr opr)1384 l_sinline TMS binopr2TM (BinOpr opr) {
1385 lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1386 return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1387 }
1388
1389
1390 /*
1391 ** Emit code for unary expressions that "produce values"
1392 ** (everything but 'not').
1393 ** Expression to produce final result will be encoded in 'e'.
1394 */
codeunexpval(FuncState * fs,OpCode op,expdesc * e,int line)1395 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1396 int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1397 freeexp(fs, e);
1398 e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1399 e->k = VRELOC; /* all those operations are relocatable */
1400 luaK_fixline(fs, line);
1401 }
1402
1403
1404 /*
1405 ** Emit code for binary expressions that "produce values"
1406 ** (everything but logical operators 'and'/'or' and comparison
1407 ** operators).
1408 ** Expression to produce final result will be encoded in 'e1'.
1409 */
finishbinexpval(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int v2,int flip,int line,OpCode mmop,TMS event)1410 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1411 OpCode op, int v2, int flip, int line,
1412 OpCode mmop, TMS event) {
1413 int v1 = luaK_exp2anyreg(fs, e1);
1414 int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1415 freeexps(fs, e1, e2);
1416 e1->u.info = pc;
1417 e1->k = VRELOC; /* all those operations are relocatable */
1418 luaK_fixline(fs, line);
1419 luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1420 luaK_fixline(fs, line);
1421 }
1422
1423
1424 /*
1425 ** Emit code for binary expressions that "produce values" over
1426 ** two registers.
1427 */
codebinexpval(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1428 static void codebinexpval (FuncState *fs, BinOpr opr,
1429 expdesc *e1, expdesc *e2, int line) {
1430 OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1431 int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
1432 /* 'e1' must be already in a register or it is a constant */
1433 lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1434 e1->k == VNONRELOC || e1->k == VRELOC);
1435 lua_assert(OP_ADD <= op && op <= OP_SHR);
1436 finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1437 }
1438
1439
1440 /*
1441 ** Code binary operators with immediate operands.
1442 */
codebini(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2,int flip,int line,TMS event)1443 static void codebini (FuncState *fs, OpCode op,
1444 expdesc *e1, expdesc *e2, int flip, int line,
1445 TMS event) {
1446 int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1447 lua_assert(e2->k == VKINT);
1448 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1449 }
1450
1451
1452 /*
1453 ** Code binary operators with K operand.
1454 */
codebinK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1455 static void codebinK (FuncState *fs, BinOpr opr,
1456 expdesc *e1, expdesc *e2, int flip, int line) {
1457 TMS event = binopr2TM(opr);
1458 int v2 = e2->u.info; /* K index */
1459 OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1460 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1461 }
1462
1463
1464 /* Try to code a binary operator negating its second operand.
1465 ** For the metamethod, 2nd operand must keep its original value.
1466 */
finishbinexpneg(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int line,TMS event)1467 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1468 OpCode op, int line, TMS event) {
1469 if (!luaK_isKint(e2))
1470 return 0; /* not an integer constant */
1471 else {
1472 lua_Integer i2 = e2->u.ival;
1473 if (!(fitsC(i2) && fitsC(-i2)))
1474 return 0; /* not in the proper range */
1475 else { /* operating a small integer constant */
1476 int v2 = cast_int(i2);
1477 finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1478 /* correct metamethod argument */
1479 SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1480 return 1; /* successfully coded */
1481 }
1482 }
1483 }
1484
1485
swapexps(expdesc * e1,expdesc * e2)1486 static void swapexps (expdesc *e1, expdesc *e2) {
1487 expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1488 }
1489
1490
1491 /*
1492 ** Code binary operators with no constant operand.
1493 */
codebinNoK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1494 static void codebinNoK (FuncState *fs, BinOpr opr,
1495 expdesc *e1, expdesc *e2, int flip, int line) {
1496 if (flip)
1497 swapexps(e1, e2); /* back to original order */
1498 codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
1499 }
1500
1501
1502 /*
1503 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1504 ** constant in the proper range, use variant opcodes with K operands.
1505 */
codearith(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1506 static void codearith (FuncState *fs, BinOpr opr,
1507 expdesc *e1, expdesc *e2, int flip, int line) {
1508 if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
1509 codebinK(fs, opr, e1, e2, flip, line);
1510 else /* 'e2' is neither an immediate nor a K operand */
1511 codebinNoK(fs, opr, e1, e2, flip, line);
1512 }
1513
1514
1515 /*
1516 ** Code commutative operators ('+', '*'). If first operand is a
1517 ** numeric constant, change order of operands to try to use an
1518 ** immediate or K operator.
1519 */
codecommutative(FuncState * fs,BinOpr op,expdesc * e1,expdesc * e2,int line)1520 static void codecommutative (FuncState *fs, BinOpr op,
1521 expdesc *e1, expdesc *e2, int line) {
1522 int flip = 0;
1523 if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1524 swapexps(e1, e2); /* change order */
1525 flip = 1;
1526 }
1527 if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1528 codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1529 else
1530 codearith(fs, op, e1, e2, flip, line);
1531 }
1532
1533
1534 /*
1535 ** Code bitwise operations; they are all commutative, so the function
1536 ** tries to put an integer constant as the 2nd operand (a K operand).
1537 */
codebitwise(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1538 static void codebitwise (FuncState *fs, BinOpr opr,
1539 expdesc *e1, expdesc *e2, int line) {
1540 int flip = 0;
1541 if (e1->k == VKINT) {
1542 swapexps(e1, e2); /* 'e2' will be the constant operand */
1543 flip = 1;
1544 }
1545 if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
1546 codebinK(fs, opr, e1, e2, flip, line);
1547 else /* no constants */
1548 codebinNoK(fs, opr, e1, e2, flip, line);
1549 }
1550
1551
1552 /*
1553 ** Emit code for order comparisons. When using an immediate operand,
1554 ** 'isfloat' tells whether the original value was a float.
1555 */
codeorder(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1556 static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1557 int r1, r2;
1558 int im;
1559 int isfloat = 0;
1560 OpCode op;
1561 if (isSCnumber(e2, &im, &isfloat)) {
1562 /* use immediate operand */
1563 r1 = luaK_exp2anyreg(fs, e1);
1564 r2 = im;
1565 op = binopr2op(opr, OPR_LT, OP_LTI);
1566 }
1567 else if (isSCnumber(e1, &im, &isfloat)) {
1568 /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1569 r1 = luaK_exp2anyreg(fs, e2);
1570 r2 = im;
1571 op = binopr2op(opr, OPR_LT, OP_GTI);
1572 }
1573 else { /* regular case, compare two registers */
1574 r1 = luaK_exp2anyreg(fs, e1);
1575 r2 = luaK_exp2anyreg(fs, e2);
1576 op = binopr2op(opr, OPR_LT, OP_LT);
1577 }
1578 freeexps(fs, e1, e2);
1579 e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1580 e1->k = VJMP;
1581 }
1582
1583
1584 /*
1585 ** Emit code for equality comparisons ('==', '~=').
1586 ** 'e1' was already put as RK by 'luaK_infix'.
1587 */
codeeq(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1588 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1589 int r1, r2;
1590 int im;
1591 int isfloat = 0; /* not needed here, but kept for symmetry */
1592 OpCode op;
1593 if (e1->k != VNONRELOC) {
1594 lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1595 swapexps(e1, e2);
1596 }
1597 r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1598 if (isSCnumber(e2, &im, &isfloat)) {
1599 op = OP_EQI;
1600 r2 = im; /* immediate operand */
1601 }
1602 else if (luaK_exp2RK(fs, e2)) { /* 2nd expression is constant? */
1603 op = OP_EQK;
1604 r2 = e2->u.info; /* constant index */
1605 }
1606 else {
1607 op = OP_EQ; /* will compare two registers */
1608 r2 = luaK_exp2anyreg(fs, e2);
1609 }
1610 freeexps(fs, e1, e2);
1611 e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1612 e1->k = VJMP;
1613 }
1614
1615
1616 /*
1617 ** Apply prefix operation 'op' to expression 'e'.
1618 */
luaK_prefix(FuncState * fs,UnOpr opr,expdesc * e,int line)1619 void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1620 static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1621 luaK_dischargevars(fs, e);
1622 switch (opr) {
1623 case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1624 if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1625 break;
1626 /* else */ /* FALLTHROUGH */
1627 case OPR_LEN:
1628 codeunexpval(fs, unopr2op(opr), e, line);
1629 break;
1630 case OPR_NOT: codenot(fs, e); break;
1631 default: lua_assert(0);
1632 }
1633 }
1634
1635
1636 /*
1637 ** Process 1st operand 'v' of binary operation 'op' before reading
1638 ** 2nd operand.
1639 */
luaK_infix(FuncState * fs,BinOpr op,expdesc * v)1640 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1641 luaK_dischargevars(fs, v);
1642 switch (op) {
1643 case OPR_AND: {
1644 luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1645 break;
1646 }
1647 case OPR_OR: {
1648 luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1649 break;
1650 }
1651 case OPR_CONCAT: {
1652 luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1653 break;
1654 }
1655 case OPR_ADD: case OPR_SUB:
1656 case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1657 case OPR_MOD: case OPR_POW:
1658 case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1659 case OPR_SHL: case OPR_SHR: {
1660 if (!tonumeral(v, NULL))
1661 luaK_exp2anyreg(fs, v);
1662 /* else keep numeral, which may be folded or used as an immediate
1663 operand */
1664 break;
1665 }
1666 case OPR_EQ: case OPR_NE: {
1667 if (!tonumeral(v, NULL))
1668 luaK_exp2RK(fs, v);
1669 /* else keep numeral, which may be an immediate operand */
1670 break;
1671 }
1672 case OPR_LT: case OPR_LE:
1673 case OPR_GT: case OPR_GE: {
1674 int dummy, dummy2;
1675 if (!isSCnumber(v, &dummy, &dummy2))
1676 luaK_exp2anyreg(fs, v);
1677 /* else keep numeral, which may be an immediate operand */
1678 break;
1679 }
1680 default: lua_assert(0);
1681 }
1682 }
1683
1684 /*
1685 ** Create code for '(e1 .. e2)'.
1686 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1687 ** because concatenation is right associative), merge both CONCATs.
1688 */
codeconcat(FuncState * fs,expdesc * e1,expdesc * e2,int line)1689 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1690 Instruction *ie2 = previousinstruction(fs);
1691 if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1692 int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1693 lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1694 freeexp(fs, e2);
1695 SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1696 SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1697 }
1698 else { /* 'e2' is not a concatenation */
1699 luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1700 freeexp(fs, e2);
1701 luaK_fixline(fs, line);
1702 }
1703 }
1704
1705
1706 /*
1707 ** Finalize code for binary operation, after reading 2nd operand.
1708 */
luaK_posfix(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1709 void luaK_posfix (FuncState *fs, BinOpr opr,
1710 expdesc *e1, expdesc *e2, int line) {
1711 luaK_dischargevars(fs, e2);
1712 if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1713 return; /* done by folding */
1714 switch (opr) {
1715 case OPR_AND: {
1716 lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1717 luaK_concat(fs, &e2->f, e1->f);
1718 *e1 = *e2;
1719 break;
1720 }
1721 case OPR_OR: {
1722 lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1723 luaK_concat(fs, &e2->t, e1->t);
1724 *e1 = *e2;
1725 break;
1726 }
1727 case OPR_CONCAT: { /* e1 .. e2 */
1728 luaK_exp2nextreg(fs, e2);
1729 codeconcat(fs, e1, e2, line);
1730 break;
1731 }
1732 case OPR_ADD: case OPR_MUL: {
1733 codecommutative(fs, opr, e1, e2, line);
1734 break;
1735 }
1736 case OPR_SUB: {
1737 if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1738 break; /* coded as (r1 + -I) */
1739 /* ELSE */
1740 } /* FALLTHROUGH */
1741 case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1742 codearith(fs, opr, e1, e2, 0, line);
1743 break;
1744 }
1745 case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1746 codebitwise(fs, opr, e1, e2, line);
1747 break;
1748 }
1749 case OPR_SHL: {
1750 if (isSCint(e1)) {
1751 swapexps(e1, e2);
1752 codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1753 }
1754 else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1755 /* coded as (r1 >> -I) */;
1756 }
1757 else /* regular case (two registers) */
1758 codebinexpval(fs, opr, e1, e2, line);
1759 break;
1760 }
1761 case OPR_SHR: {
1762 if (isSCint(e2))
1763 codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1764 else /* regular case (two registers) */
1765 codebinexpval(fs, opr, e1, e2, line);
1766 break;
1767 }
1768 case OPR_EQ: case OPR_NE: {
1769 codeeq(fs, opr, e1, e2);
1770 break;
1771 }
1772 case OPR_GT: case OPR_GE: {
1773 /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1774 swapexps(e1, e2);
1775 opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1776 } /* FALLTHROUGH */
1777 case OPR_LT: case OPR_LE: {
1778 codeorder(fs, opr, e1, e2);
1779 break;
1780 }
1781 default: lua_assert(0);
1782 }
1783 }
1784
1785
1786 /*
1787 ** Change line information associated with current position, by removing
1788 ** previous info and adding it again with new line.
1789 */
luaK_fixline(FuncState * fs,int line)1790 void luaK_fixline (FuncState *fs, int line) {
1791 removelastlineinfo(fs);
1792 savelineinfo(fs, fs->f, line);
1793 }
1794
1795
luaK_settablesize(FuncState * fs,int pc,int ra,int asize,int hsize)1796 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1797 Instruction *inst = &fs->f->code[pc];
1798 int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1799 int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1800 int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1801 int k = (extra > 0); /* true iff needs extra argument */
1802 *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1803 *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1804 }
1805
1806
1807 /*
1808 ** Emit a SETLIST instruction.
1809 ** 'base' is register that keeps table;
1810 ** 'nelems' is #table plus those to be stored now;
1811 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1812 ** table (or LUA_MULTRET to add up to stack top).
1813 */
luaK_setlist(FuncState * fs,int base,int nelems,int tostore)1814 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1815 lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1816 if (tostore == LUA_MULTRET)
1817 tostore = 0;
1818 if (nelems <= MAXARG_C)
1819 luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1820 else {
1821 int extra = nelems / (MAXARG_C + 1);
1822 nelems %= (MAXARG_C + 1);
1823 luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1824 codeextraarg(fs, extra);
1825 }
1826 fs->freereg = base + 1; /* free registers with list values */
1827 }
1828
1829
1830 /*
1831 ** return the final target of a jump (skipping jumps to jumps)
1832 */
finaltarget(Instruction * code,int i)1833 static int finaltarget (Instruction *code, int i) {
1834 int count;
1835 for (count = 0; count < 100; count++) { /* avoid infinite loops */
1836 Instruction pc = code[i];
1837 if (GET_OPCODE(pc) != OP_JMP)
1838 break;
1839 else
1840 i += GETARG_sJ(pc) + 1;
1841 }
1842 return i;
1843 }
1844
1845
1846 /*
1847 ** Do a final pass over the code of a function, doing small peephole
1848 ** optimizations and adjustments.
1849 */
luaK_finish(FuncState * fs)1850 void luaK_finish (FuncState *fs) {
1851 int i;
1852 Proto *p = fs->f;
1853 for (i = 0; i < fs->pc; i++) {
1854 Instruction *pc = &p->code[i];
1855 lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1856 switch (GET_OPCODE(*pc)) {
1857 case OP_RETURN0: case OP_RETURN1: {
1858 if (!(fs->needclose || p->is_vararg))
1859 break; /* no extra work */
1860 /* else use OP_RETURN to do the extra work */
1861 SET_OPCODE(*pc, OP_RETURN);
1862 } /* FALLTHROUGH */
1863 case OP_RETURN: case OP_TAILCALL: {
1864 if (fs->needclose)
1865 SETARG_k(*pc, 1); /* signal that it needs to close */
1866 if (p->is_vararg)
1867 SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1868 break;
1869 }
1870 case OP_JMP: {
1871 int target = finaltarget(p->code, i);
1872 fixjump(fs, i, target);
1873 break;
1874 }
1875 default: break;
1876 }
1877 }
1878 }
1879