1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All Rights Reserved.
6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7 * Copyright (c) 2018 Matthew Macy
8 * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * UNIX Domain (Local) Sockets
37 *
38 * This is an implementation of UNIX (local) domain sockets. Each socket has
39 * an associated struct unpcb (UNIX protocol control block). Stream sockets
40 * may be connected to 0 or 1 other socket. Datagram sockets may be
41 * connected to 0, 1, or many other sockets. Sockets may be created and
42 * connected in pairs (socketpair(2)), or bound/connected to using the file
43 * system name space. For most purposes, only the receive socket buffer is
44 * used, as sending on one socket delivers directly to the receive socket
45 * buffer of a second socket.
46 *
47 * The implementation is substantially complicated by the fact that
48 * "ancillary data", such as file descriptors or credentials, may be passed
49 * across UNIX domain sockets. The potential for passing UNIX domain sockets
50 * over other UNIX domain sockets requires the implementation of a simple
51 * garbage collector to find and tear down cycles of disconnected sockets.
52 *
53 * TODO:
54 * RDM
55 * rethink name space problems
56 * need a proper out-of-band
57 */
58
59 #include "opt_ddb.h"
60
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93
94 #include <net/vnet.h>
95
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99
100 #include <security/mac/mac_framework.h>
101
102 #include <vm/uma.h>
103
104 MALLOC_DECLARE(M_FILECAPS);
105
106 static struct domain localdomain;
107
108 static uma_zone_t unp_zone;
109 static unp_gen_t unp_gencnt; /* (l) */
110 static u_int unp_count; /* (l) Count of local sockets. */
111 static ino_t unp_ino; /* Prototype for fake inode numbers. */
112 static int unp_rights; /* (g) File descriptors in flight. */
113 static struct unp_head unp_shead; /* (l) List of stream sockets. */
114 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */
115 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */
116 static struct mtx_pool *unp_vp_mtxpool;
117
118 struct unp_defer {
119 SLIST_ENTRY(unp_defer) ud_link;
120 struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124
125 static const struct sockaddr sun_noname = {
126 .sa_len = sizeof(sun_noname),
127 .sa_family = AF_LOCAL,
128 };
129
130 /*
131 * Garbage collection of cyclic file descriptor/socket references occurs
132 * asynchronously in a taskqueue context in order to avoid recursion and
133 * reentrance in the UNIX domain socket, file descriptor, and socket layer
134 * code. See unp_gc() for a full description.
135 */
136 static struct timeout_task unp_gc_task;
137
138 /*
139 * The close of unix domain sockets attached as SCM_RIGHTS is
140 * postponed to the taskqueue, to avoid arbitrary recursion depth.
141 * The attached sockets might have another sockets attached.
142 */
143 static struct task unp_defer_task;
144
145 /*
146 * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147 * however the notion of send buffer still makes sense with them. Its size is
148 * the amount of space that a send(2) syscall may copyin(9) before checking
149 * with the receive buffer of a peer. Although not linked anywhere yet,
150 * pointed to by a stack variable, effectively it is a buffer that needs to be
151 * sized.
152 *
153 * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154 * and don't really want to reserve the sendspace. Their recvspace should be
155 * large enough for at least one max-size datagram plus address.
156 */
157 static u_long unpst_sendspace = 64*1024;
158 static u_long unpst_recvspace = 64*1024;
159 static u_long unpdg_maxdgram = 8*1024; /* support 8KB syslog msgs */
160 static u_long unpdg_recvspace = 16*1024;
161 static u_long unpsp_sendspace = 64*1024;
162 static u_long unpsp_recvspace = 64*1024;
163
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165 "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168 "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171 "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174 "SOCK_SEQPACKET");
175
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 &unpdg_maxdgram, 0, "Maximum datagram size.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189 "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191 &unp_defers_count, 0,
192 "File descriptors deferred to taskqueue for close.");
193
194 /*
195 * Locking and synchronization:
196 *
197 * Several types of locks exist in the local domain socket implementation:
198 * - a global linkage lock
199 * - a global connection list lock
200 * - the mtxpool lock
201 * - per-unpcb mutexes
202 *
203 * The linkage lock protects the global socket lists, the generation number
204 * counter and garbage collector state.
205 *
206 * The connection list lock protects the list of referring sockets in a datagram
207 * socket PCB. This lock is also overloaded to protect a global list of
208 * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209 * messages. To avoid recursion, such references are released by a dedicated
210 * thread.
211 *
212 * The mtxpool lock protects the vnode from being modified while referenced.
213 * Lock ordering rules require that it be acquired before any PCB locks.
214 *
215 * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216 * unpcb. This includes the unp_conn field, which either links two connected
217 * PCBs together (for connected socket types) or points at the destination
218 * socket (for connectionless socket types). The operations of creating or
219 * destroying a connection therefore involve locking multiple PCBs. To avoid
220 * lock order reversals, in some cases this involves dropping a PCB lock and
221 * using a reference counter to maintain liveness.
222 *
223 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224 * allocated in pr_attach() and freed in pr_detach(). The validity of that
225 * pointer is an invariant, so no lock is required to dereference the so_pcb
226 * pointer if a valid socket reference is held by the caller. In practice,
227 * this is always true during operations performed on a socket. Each unpcb
228 * has a back-pointer to its socket, unp_socket, which will be stable under
229 * the same circumstances.
230 *
231 * This pointer may only be safely dereferenced as long as a valid reference
232 * to the unpcb is held. Typically, this reference will be from the socket,
233 * or from another unpcb when the referring unpcb's lock is held (in order
234 * that the reference not be invalidated during use). For example, to follow
235 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236 * that detach is not run clearing unp_socket.
237 *
238 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239 * protocols, bind() is a non-atomic operation, and connect() requires
240 * potential sleeping in the protocol, due to potentially waiting on local or
241 * distributed file systems. We try to separate "lookup" operations, which
242 * may sleep, and the IPC operations themselves, which typically can occur
243 * with relative atomicity as locks can be held over the entire operation.
244 *
245 * Another tricky issue is simultaneous multi-threaded or multi-process
246 * access to a single UNIX domain socket. These are handled by the flags
247 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248 * binding, both of which involve dropping UNIX domain socket locks in order
249 * to perform namei() and other file system operations.
250 */
251 static struct rwlock unp_link_rwlock;
252 static struct mtx unp_defers_lock;
253
254 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \
255 "unp_link_rwlock")
256
257 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \
258 RA_LOCKED)
259 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
260 RA_UNLOCKED)
261
262 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock)
263 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock)
264 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock)
265 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock)
266 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
267 RA_WLOCKED)
268 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock)
269
270 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \
271 "unp_defer", NULL, MTX_DEF)
272 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock)
273 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock)
274
275 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK();
277
278 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \
279 "unp", "unp", \
280 MTX_DUPOK|MTX_DEF)
281 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx)
282 #define UNP_PCB_LOCKPTR(unp) (&(unp)->unp_mtx)
283 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx)
284 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx)
285 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx)
286 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx)
287 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289
290 static int uipc_connect2(struct socket *, struct socket *);
291 static int uipc_ctloutput(struct socket *, struct sockopt *);
292 static int unp_connect(struct socket *, struct sockaddr *,
293 struct thread *);
294 static int unp_connectat(int, struct socket *, struct sockaddr *,
295 struct thread *, bool);
296 static void unp_connect2(struct socket *, struct socket *, bool);
297 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void unp_dispose(struct socket *so);
299 static void unp_drop(struct unpcb *);
300 static void unp_gc(__unused void *, int);
301 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void unp_discard(struct file *);
303 static void unp_freerights(struct filedescent **, int);
304 static int unp_internalize(struct mbuf *, struct mchain *,
305 struct thread *);
306 static void unp_internalize_fp(struct file *);
307 static int unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int unp_externalize_fp(struct file *);
309 static void unp_addsockcred(struct thread *, struct mchain *, int);
310 static void unp_process_defers(void * __unused, int);
311
312 static void uipc_wrknl_lock(void *);
313 static void uipc_wrknl_unlock(void *);
314 static void uipc_wrknl_assert_lock(void *, int);
315
316 static void
unp_pcb_hold(struct unpcb * unp)317 unp_pcb_hold(struct unpcb *unp)
318 {
319 u_int old __unused;
320
321 old = refcount_acquire(&unp->unp_refcount);
322 KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
323 }
324
325 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)326 unp_pcb_rele(struct unpcb *unp)
327 {
328 bool ret;
329
330 UNP_PCB_LOCK_ASSERT(unp);
331
332 if ((ret = refcount_release(&unp->unp_refcount))) {
333 UNP_PCB_UNLOCK(unp);
334 UNP_PCB_LOCK_DESTROY(unp);
335 uma_zfree(unp_zone, unp);
336 }
337 return (ret);
338 }
339
340 static void
unp_pcb_rele_notlast(struct unpcb * unp)341 unp_pcb_rele_notlast(struct unpcb *unp)
342 {
343 bool ret __unused;
344
345 ret = refcount_release(&unp->unp_refcount);
346 KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
347 }
348
349 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
351 {
352 UNP_PCB_UNLOCK_ASSERT(unp);
353 UNP_PCB_UNLOCK_ASSERT(unp2);
354
355 if (unp == unp2) {
356 UNP_PCB_LOCK(unp);
357 } else if ((uintptr_t)unp2 > (uintptr_t)unp) {
358 UNP_PCB_LOCK(unp);
359 UNP_PCB_LOCK(unp2);
360 } else {
361 UNP_PCB_LOCK(unp2);
362 UNP_PCB_LOCK(unp);
363 }
364 }
365
366 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
368 {
369 UNP_PCB_UNLOCK(unp);
370 if (unp != unp2)
371 UNP_PCB_UNLOCK(unp2);
372 }
373
374 /*
375 * Try to lock the connected peer of an already locked socket. In some cases
376 * this requires that we unlock the current socket. The pairbusy counter is
377 * used to block concurrent connection attempts while the lock is dropped. The
378 * caller must be careful to revalidate PCB state.
379 */
380 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)381 unp_pcb_lock_peer(struct unpcb *unp)
382 {
383 struct unpcb *unp2;
384
385 UNP_PCB_LOCK_ASSERT(unp);
386 unp2 = unp->unp_conn;
387 if (unp2 == NULL)
388 return (NULL);
389 if (__predict_false(unp == unp2))
390 return (unp);
391
392 UNP_PCB_UNLOCK_ASSERT(unp2);
393
394 if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
395 return (unp2);
396 if ((uintptr_t)unp2 > (uintptr_t)unp) {
397 UNP_PCB_LOCK(unp2);
398 return (unp2);
399 }
400 unp->unp_pairbusy++;
401 unp_pcb_hold(unp2);
402 UNP_PCB_UNLOCK(unp);
403
404 UNP_PCB_LOCK(unp2);
405 UNP_PCB_LOCK(unp);
406 KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
407 ("%s: socket %p was reconnected", __func__, unp));
408 if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
409 unp->unp_flags &= ~UNP_WAITING;
410 wakeup(unp);
411 }
412 if (unp_pcb_rele(unp2)) {
413 /* unp2 is unlocked. */
414 return (NULL);
415 }
416 if (unp->unp_conn == NULL) {
417 UNP_PCB_UNLOCK(unp2);
418 return (NULL);
419 }
420 return (unp2);
421 }
422
423 /*
424 * Try to lock peer of our socket for purposes of sending data to it.
425 */
426 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)427 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
428 {
429 struct unpcb *unp;
430 int error;
431
432 unp = sotounpcb(so);
433 UNP_PCB_LOCK(unp);
434 *unp2 = unp_pcb_lock_peer(unp);
435 if (__predict_false(so->so_error != 0)) {
436 error = so->so_error;
437 so->so_error = 0;
438 UNP_PCB_UNLOCK(unp);
439 if (*unp2 != NULL)
440 UNP_PCB_UNLOCK(*unp2);
441 return (error);
442 }
443 if (__predict_false(*unp2 == NULL)) {
444 /*
445 * Different error code for a previously connected socket and
446 * a never connected one. The SS_ISDISCONNECTED is set in the
447 * unp_soisdisconnected() and is synchronized by the pcb lock.
448 */
449 error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
450 UNP_PCB_UNLOCK(unp);
451 return (error);
452 }
453 UNP_PCB_UNLOCK(unp);
454
455 return (0);
456 }
457
458 static void
uipc_abort(struct socket * so)459 uipc_abort(struct socket *so)
460 {
461 struct unpcb *unp, *unp2;
462
463 unp = sotounpcb(so);
464 KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
465 UNP_PCB_UNLOCK_ASSERT(unp);
466
467 UNP_PCB_LOCK(unp);
468 unp2 = unp->unp_conn;
469 if (unp2 != NULL) {
470 unp_pcb_hold(unp2);
471 UNP_PCB_UNLOCK(unp);
472 unp_drop(unp2);
473 } else
474 UNP_PCB_UNLOCK(unp);
475 }
476
477 static int
uipc_attach(struct socket * so,int proto,struct thread * td)478 uipc_attach(struct socket *so, int proto, struct thread *td)
479 {
480 u_long sendspace, recvspace;
481 struct unpcb *unp;
482 int error, rcvmtxopts;
483 bool locked;
484
485 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
486 switch (so->so_type) {
487 case SOCK_DGRAM:
488 STAILQ_INIT(&so->so_rcv.uxdg_mb);
489 STAILQ_INIT(&so->so_snd.uxdg_mb);
490 TAILQ_INIT(&so->so_rcv.uxdg_conns);
491 /*
492 * Since send buffer is either bypassed or is a part
493 * of one-to-many receive buffer, we assign both space
494 * limits to unpdg_recvspace.
495 */
496 sendspace = recvspace = unpdg_recvspace;
497 rcvmtxopts = 0;
498 break;
499
500 case SOCK_STREAM:
501 sendspace = unpst_sendspace;
502 recvspace = unpst_recvspace;
503 goto common;
504
505 case SOCK_SEQPACKET:
506 sendspace = unpsp_sendspace;
507 recvspace = unpsp_recvspace;
508 common:
509 rcvmtxopts = MTX_DUPOK;
510 knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
511 uipc_wrknl_unlock, uipc_wrknl_assert_lock);
512 STAILQ_INIT(&so->so_rcv.uxst_mbq);
513 break;
514 default:
515 panic("uipc_attach");
516 }
517 mtx_init(&so->so_rcv_mtx, "unix so_rcv", NULL, MTX_DEF | rcvmtxopts);
518 mtx_init(&so->so_snd_mtx, "unix so_snd", NULL, MTX_DEF);
519 error = soreserve(so, sendspace, recvspace);
520 if (error)
521 return (error);
522 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
523 if (unp == NULL)
524 return (ENOBUFS);
525 LIST_INIT(&unp->unp_refs);
526 UNP_PCB_LOCK_INIT(unp);
527 unp->unp_socket = so;
528 so->so_pcb = unp;
529 refcount_init(&unp->unp_refcount, 1);
530 unp->unp_mode = ACCESSPERMS;
531
532 if ((locked = UNP_LINK_WOWNED()) == false)
533 UNP_LINK_WLOCK();
534
535 unp->unp_gencnt = ++unp_gencnt;
536 unp->unp_ino = ++unp_ino;
537 unp_count++;
538 switch (so->so_type) {
539 case SOCK_STREAM:
540 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
541 break;
542
543 case SOCK_DGRAM:
544 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
545 break;
546
547 case SOCK_SEQPACKET:
548 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
549 break;
550
551 default:
552 panic("uipc_attach");
553 }
554
555 if (locked == false)
556 UNP_LINK_WUNLOCK();
557
558 return (0);
559 }
560
561 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)562 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
563 {
564 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
565 struct vattr vattr;
566 int error, namelen;
567 struct nameidata nd;
568 struct unpcb *unp;
569 struct vnode *vp;
570 struct mount *mp;
571 cap_rights_t rights;
572 char *buf;
573 mode_t mode;
574
575 if (nam->sa_family != AF_UNIX)
576 return (EAFNOSUPPORT);
577
578 unp = sotounpcb(so);
579 KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
580
581 if (soun->sun_len > sizeof(struct sockaddr_un))
582 return (EINVAL);
583 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
584 if (namelen <= 0)
585 return (EINVAL);
586
587 /*
588 * We don't allow simultaneous bind() calls on a single UNIX domain
589 * socket, so flag in-progress operations, and return an error if an
590 * operation is already in progress.
591 *
592 * Historically, we have not allowed a socket to be rebound, so this
593 * also returns an error. Not allowing re-binding simplifies the
594 * implementation and avoids a great many possible failure modes.
595 */
596 UNP_PCB_LOCK(unp);
597 if (unp->unp_vnode != NULL) {
598 UNP_PCB_UNLOCK(unp);
599 return (EINVAL);
600 }
601 if (unp->unp_flags & UNP_BINDING) {
602 UNP_PCB_UNLOCK(unp);
603 return (EALREADY);
604 }
605 unp->unp_flags |= UNP_BINDING;
606 mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
607 UNP_PCB_UNLOCK(unp);
608
609 buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
610 bcopy(soun->sun_path, buf, namelen);
611 buf[namelen] = 0;
612
613 restart:
614 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
615 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
616 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
617 error = namei(&nd);
618 if (error)
619 goto error;
620 vp = nd.ni_vp;
621 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
622 NDFREE_PNBUF(&nd);
623 if (nd.ni_dvp == vp)
624 vrele(nd.ni_dvp);
625 else
626 vput(nd.ni_dvp);
627 if (vp != NULL) {
628 vrele(vp);
629 error = EADDRINUSE;
630 goto error;
631 }
632 error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
633 if (error)
634 goto error;
635 goto restart;
636 }
637 VATTR_NULL(&vattr);
638 vattr.va_type = VSOCK;
639 vattr.va_mode = mode;
640 #ifdef MAC
641 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
642 &vattr);
643 #endif
644 if (error == 0) {
645 /*
646 * The prior lookup may have left LK_SHARED in cn_lkflags,
647 * and VOP_CREATE technically only requires the new vnode to
648 * be locked shared. Most filesystems will return the new vnode
649 * locked exclusive regardless, but we should explicitly
650 * specify that here since we require it and assert to that
651 * effect below.
652 */
653 nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
654 LK_EXCLUSIVE;
655 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
656 }
657 NDFREE_PNBUF(&nd);
658 if (error) {
659 VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
660 vn_finished_write(mp);
661 if (error == ERELOOKUP)
662 goto restart;
663 goto error;
664 }
665 vp = nd.ni_vp;
666 ASSERT_VOP_ELOCKED(vp, "uipc_bind");
667 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
668
669 UNP_PCB_LOCK(unp);
670 VOP_UNP_BIND(vp, unp);
671 unp->unp_vnode = vp;
672 unp->unp_addr = soun;
673 unp->unp_flags &= ~UNP_BINDING;
674 UNP_PCB_UNLOCK(unp);
675 vref(vp);
676 VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
677 vn_finished_write(mp);
678 free(buf, M_TEMP);
679 return (0);
680
681 error:
682 UNP_PCB_LOCK(unp);
683 unp->unp_flags &= ~UNP_BINDING;
684 UNP_PCB_UNLOCK(unp);
685 free(buf, M_TEMP);
686 return (error);
687 }
688
689 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)690 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
691 {
692
693 return (uipc_bindat(AT_FDCWD, so, nam, td));
694 }
695
696 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)697 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
698 {
699 int error;
700
701 KASSERT(td == curthread, ("uipc_connect: td != curthread"));
702 error = unp_connect(so, nam, td);
703 return (error);
704 }
705
706 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)707 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
708 struct thread *td)
709 {
710 int error;
711
712 KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
713 error = unp_connectat(fd, so, nam, td, false);
714 return (error);
715 }
716
717 static void
uipc_close(struct socket * so)718 uipc_close(struct socket *so)
719 {
720 struct unpcb *unp, *unp2;
721 struct vnode *vp = NULL;
722 struct mtx *vplock;
723
724 unp = sotounpcb(so);
725 KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
726
727 vplock = NULL;
728 if ((vp = unp->unp_vnode) != NULL) {
729 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
730 mtx_lock(vplock);
731 }
732 UNP_PCB_LOCK(unp);
733 if (vp && unp->unp_vnode == NULL) {
734 mtx_unlock(vplock);
735 vp = NULL;
736 }
737 if (vp != NULL) {
738 VOP_UNP_DETACH(vp);
739 unp->unp_vnode = NULL;
740 }
741 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
742 unp_disconnect(unp, unp2);
743 else
744 UNP_PCB_UNLOCK(unp);
745 if (vp) {
746 mtx_unlock(vplock);
747 vrele(vp);
748 }
749 }
750
751 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)752 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
753 struct thread *td __unused)
754 {
755 struct unpcb *unp;
756 int error;
757
758 if ((mode & ~ACCESSPERMS) != 0)
759 return (EINVAL);
760
761 error = 0;
762 unp = sotounpcb(so);
763 UNP_PCB_LOCK(unp);
764 if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
765 error = EINVAL;
766 else
767 unp->unp_mode = mode;
768 UNP_PCB_UNLOCK(unp);
769 return (error);
770 }
771
772 static int
uipc_connect2(struct socket * so1,struct socket * so2)773 uipc_connect2(struct socket *so1, struct socket *so2)
774 {
775 struct unpcb *unp, *unp2;
776
777 if (so1->so_type != so2->so_type)
778 return (EPROTOTYPE);
779
780 unp = so1->so_pcb;
781 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
782 unp2 = so2->so_pcb;
783 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
784 unp_pcb_lock_pair(unp, unp2);
785 unp_connect2(so1, so2, false);
786 unp_pcb_unlock_pair(unp, unp2);
787
788 return (0);
789 }
790
791 static void
maybe_schedule_gc(void)792 maybe_schedule_gc(void)
793 {
794 if (atomic_load_int(&unp_rights) != 0)
795 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
796 }
797
798 static void
uipc_detach(struct socket * so)799 uipc_detach(struct socket *so)
800 {
801 struct unpcb *unp, *unp2;
802 struct mtx *vplock;
803 struct vnode *vp;
804
805 unp = sotounpcb(so);
806 KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
807
808 vp = NULL;
809 vplock = NULL;
810
811 if (!SOLISTENING(so))
812 unp_dispose(so);
813
814 UNP_LINK_WLOCK();
815 LIST_REMOVE(unp, unp_link);
816 if (unp->unp_gcflag & UNPGC_DEAD)
817 LIST_REMOVE(unp, unp_dead);
818 unp->unp_gencnt = ++unp_gencnt;
819 --unp_count;
820 UNP_LINK_WUNLOCK();
821
822 UNP_PCB_UNLOCK_ASSERT(unp);
823 restart:
824 if ((vp = unp->unp_vnode) != NULL) {
825 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
826 mtx_lock(vplock);
827 }
828 UNP_PCB_LOCK(unp);
829 if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
830 if (vplock)
831 mtx_unlock(vplock);
832 UNP_PCB_UNLOCK(unp);
833 goto restart;
834 }
835 if ((vp = unp->unp_vnode) != NULL) {
836 VOP_UNP_DETACH(vp);
837 unp->unp_vnode = NULL;
838 }
839 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
840 unp_disconnect(unp, unp2);
841 else
842 UNP_PCB_UNLOCK(unp);
843
844 UNP_REF_LIST_LOCK();
845 while (!LIST_EMPTY(&unp->unp_refs)) {
846 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
847
848 unp_pcb_hold(ref);
849 UNP_REF_LIST_UNLOCK();
850
851 MPASS(ref != unp);
852 UNP_PCB_UNLOCK_ASSERT(ref);
853 unp_drop(ref);
854 UNP_REF_LIST_LOCK();
855 }
856 UNP_REF_LIST_UNLOCK();
857
858 UNP_PCB_LOCK(unp);
859 unp->unp_socket->so_pcb = NULL;
860 unp->unp_socket = NULL;
861 free(unp->unp_addr, M_SONAME);
862 unp->unp_addr = NULL;
863 if (!unp_pcb_rele(unp))
864 UNP_PCB_UNLOCK(unp);
865 if (vp) {
866 mtx_unlock(vplock);
867 vrele(vp);
868 }
869 maybe_schedule_gc();
870
871 switch (so->so_type) {
872 case SOCK_STREAM:
873 case SOCK_SEQPACKET:
874 MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
875 so->so_rcv.uxst_peer == NULL));
876 break;
877 case SOCK_DGRAM:
878 /*
879 * Everything should have been unlinked/freed by unp_dispose()
880 * and/or unp_disconnect().
881 */
882 MPASS(so->so_rcv.uxdg_peeked == NULL);
883 MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
884 MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
885 MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
886 }
887
888 mtx_destroy(&so->so_snd_mtx);
889 mtx_destroy(&so->so_rcv_mtx);
890 }
891
892 static int
uipc_disconnect(struct socket * so)893 uipc_disconnect(struct socket *so)
894 {
895 struct unpcb *unp, *unp2;
896
897 unp = sotounpcb(so);
898 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
899
900 UNP_PCB_LOCK(unp);
901 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
902 unp_disconnect(unp, unp2);
903 else
904 UNP_PCB_UNLOCK(unp);
905 return (0);
906 }
907
908 static void
uipc_fdclose(struct socket * so __unused)909 uipc_fdclose(struct socket *so __unused)
910 {
911 /*
912 * Ensure that userspace can't create orphaned file descriptors without
913 * triggering garbage collection. Triggering GC from uipc_detach() is
914 * not sufficient, since that's only closed once a socket reference
915 * count drops to zero.
916 */
917 maybe_schedule_gc();
918 }
919
920 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)921 uipc_listen(struct socket *so, int backlog, struct thread *td)
922 {
923 struct unpcb *unp;
924 int error;
925
926 MPASS(so->so_type != SOCK_DGRAM);
927
928 /*
929 * Synchronize with concurrent connection attempts.
930 */
931 error = 0;
932 unp = sotounpcb(so);
933 UNP_PCB_LOCK(unp);
934 if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
935 error = EINVAL;
936 else if (unp->unp_vnode == NULL)
937 error = EDESTADDRREQ;
938 if (error != 0) {
939 UNP_PCB_UNLOCK(unp);
940 return (error);
941 }
942
943 SOCK_LOCK(so);
944 error = solisten_proto_check(so);
945 if (error == 0) {
946 cru2xt(td, &unp->unp_peercred);
947 if (!SOLISTENING(so)) {
948 (void)chgsbsize(so->so_cred->cr_uidinfo,
949 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
950 (void)chgsbsize(so->so_cred->cr_uidinfo,
951 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
952 }
953 solisten_proto(so, backlog);
954 }
955 SOCK_UNLOCK(so);
956 UNP_PCB_UNLOCK(unp);
957 return (error);
958 }
959
960 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)961 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
962 {
963 struct unpcb *unp, *unp2;
964 const struct sockaddr *sa;
965
966 unp = sotounpcb(so);
967 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
968
969 UNP_PCB_LOCK(unp);
970 unp2 = unp_pcb_lock_peer(unp);
971 if (unp2 != NULL) {
972 if (unp2->unp_addr != NULL)
973 sa = (struct sockaddr *)unp2->unp_addr;
974 else
975 sa = &sun_noname;
976 bcopy(sa, ret, sa->sa_len);
977 unp_pcb_unlock_pair(unp, unp2);
978 } else {
979 UNP_PCB_UNLOCK(unp);
980 sa = &sun_noname;
981 bcopy(sa, ret, sa->sa_len);
982 }
983 return (0);
984 }
985
986 /*
987 * pr_sosend() called with mbuf instead of uio is a kernel thread. NFS,
988 * netgraph(4) and other subsystems can call into socket code. The
989 * function will condition the mbuf so that it can be safely put onto socket
990 * buffer and calculate its char count and mbuf count.
991 *
992 * Note: we don't support receiving control data from a kernel thread. Our
993 * pr_sosend methods have MPASS() to check that. This may change.
994 */
995 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)996 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
997 {
998
999 M_ASSERTPKTHDR(m);
1000
1001 m_clrprotoflags(m);
1002 m_tag_delete_chain(m, NULL);
1003 m->m_pkthdr.rcvif = NULL;
1004 m->m_pkthdr.flowid = 0;
1005 m->m_pkthdr.csum_flags = 0;
1006 m->m_pkthdr.fibnum = 0;
1007 m->m_pkthdr.rsstype = 0;
1008
1009 mc_init_m(mc, m);
1010 MPASS(m->m_pkthdr.len == mc->mc_len);
1011 }
1012
1013 #ifdef SOCKBUF_DEBUG
1014 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1015 uipc_stream_sbcheck(struct sockbuf *sb)
1016 {
1017 struct mbuf *d;
1018 u_int dacc, dccc, dctl, dmbcnt;
1019 bool notready = false;
1020
1021 dacc = dccc = dctl = dmbcnt = 0;
1022 STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1023 if (d == sb->uxst_fnrdy) {
1024 MPASS(d->m_flags & M_NOTREADY);
1025 notready = true;
1026 }
1027 if (d->m_type == MT_CONTROL)
1028 dctl += d->m_len;
1029 else if (d->m_type == MT_DATA) {
1030 dccc += d->m_len;
1031 if (!notready)
1032 dacc += d->m_len;
1033 } else
1034 MPASS(0);
1035 dmbcnt += MSIZE;
1036 if (d->m_flags & M_EXT)
1037 dmbcnt += d->m_ext.ext_size;
1038 if (d->m_stailq.stqe_next == NULL)
1039 MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1040 }
1041 MPASS(sb->uxst_fnrdy == NULL || notready);
1042 MPASS(dacc == sb->sb_acc);
1043 MPASS(dccc == sb->sb_ccc);
1044 MPASS(dctl == sb->sb_ctl);
1045 MPASS(dmbcnt == sb->sb_mbcnt);
1046 (void)STAILQ_EMPTY(&sb->uxst_mbq);
1047 }
1048 #define UIPC_STREAM_SBCHECK(sb) uipc_stream_sbcheck(sb)
1049 #else
1050 #define UIPC_STREAM_SBCHECK(sb) do {} while (0)
1051 #endif
1052
1053 /*
1054 * uipc_stream_sbspace() returns how much a writer can send, limited by char
1055 * count or mbuf memory use, whatever ends first.
1056 *
1057 * An obvious and legitimate reason for a socket having more data than allowed,
1058 * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1059 * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1060 * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1061 * up with 'mc_mlen > mbspace'. A typical scenario would be a full buffer with
1062 * writer trying to push in a large write, and a slow reader, that reads just
1063 * a few bytes at a time. In that case writer will keep creating new mbufs
1064 * with mc_split(). These mbufs will carry little chars, but will all point at
1065 * the same cluster, thus each adding cluster size to sb_mbcnt. This means we
1066 * will count same cluster many times potentially underutilizing socket buffer.
1067 * We aren't optimizing towards ineffective readers. Classic socket buffer had
1068 * the same "feature".
1069 */
1070 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1071 uipc_stream_sbspace(struct sockbuf *sb)
1072 {
1073 u_int space, mbspace;
1074
1075 if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1076 space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1077 else
1078 return (0);
1079 if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1080 mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1081 else
1082 return (0);
1083
1084 return (min(space, mbspace));
1085 }
1086
1087 /*
1088 * UNIX version of generic sbwait() for writes. We wait on peer's receive
1089 * buffer, using our timeout.
1090 */
1091 static int
uipc_stream_sbwait(struct socket * so,sbintime_t timeo)1092 uipc_stream_sbwait(struct socket *so, sbintime_t timeo)
1093 {
1094 struct sockbuf *sb = &so->so_rcv;
1095
1096 SOCK_RECVBUF_LOCK_ASSERT(so);
1097 sb->sb_flags |= SB_WAIT;
1098 return (msleep_sbt(&sb->sb_acc, SOCK_RECVBUF_MTX(so), PSOCK | PCATCH,
1099 "sbwait", timeo, 0, 0));
1100 }
1101
1102 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1103 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1104 struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1105 struct thread *td)
1106 {
1107 struct unpcb *unp2;
1108 struct socket *so2;
1109 struct sockbuf *sb;
1110 struct uio *uio;
1111 struct mchain mc, cmc;
1112 size_t resid, sent;
1113 bool nonblock, eor, aio;
1114 int error;
1115
1116 MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1117 MPASS(m == NULL || c == NULL);
1118
1119 if (__predict_false(flags & MSG_OOB))
1120 return (EOPNOTSUPP);
1121
1122 nonblock = (so->so_state & SS_NBIO) ||
1123 (flags & (MSG_DONTWAIT | MSG_NBIO));
1124 eor = flags & MSG_EOR;
1125
1126 mc = MCHAIN_INITIALIZER(&mc);
1127 cmc = MCHAIN_INITIALIZER(&cmc);
1128 sent = 0;
1129 aio = false;
1130
1131 if (m == NULL) {
1132 if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1133 goto out;
1134 /*
1135 * This function may read more data from the uio than it would
1136 * then place on socket. That would leave uio inconsistent
1137 * upon return. Normally uio is allocated on the stack of the
1138 * syscall thread and we don't care about leaving it consistent.
1139 * However, aio(9) will allocate a uio as part of job and will
1140 * use it to track progress. We detect aio(9) checking the
1141 * SB_AIO_RUNNING flag. It is safe to check it without lock
1142 * cause it is set and cleared in the same taskqueue thread.
1143 *
1144 * This check can also produce a false positive: there is
1145 * aio(9) job and also there is a syscall we are serving now.
1146 * No sane software does that, it would leave to a mess in
1147 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1148 * But syzkaller can create this mess. For such false positive
1149 * our goal is just don't panic or leak memory.
1150 */
1151 if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1152 uio = cloneuio(uio0);
1153 aio = true;
1154 } else {
1155 uio = uio0;
1156 resid = uio->uio_resid;
1157 }
1158 /*
1159 * Optimization for a case when our send fits into the receive
1160 * buffer - do the copyin before taking any locks, sized to our
1161 * send buffer. Later copyins will also take into account
1162 * space in the peer's receive buffer.
1163 */
1164 error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1165 eor ? M_EOR : 0);
1166 if (__predict_false(error))
1167 goto out2;
1168 } else
1169 uipc_reset_kernel_mbuf(m, &mc);
1170
1171 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1172 if (error)
1173 goto out2;
1174
1175 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1176 goto out3;
1177
1178 if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1179 /*
1180 * Credentials are passed only once on SOCK_STREAM and
1181 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1182 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1183 */
1184 unp_addsockcred(td, &cmc, unp2->unp_flags);
1185 unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1186 }
1187
1188 /*
1189 * Cycle through the data to send and available space in the peer's
1190 * receive buffer. Put a reference on the peer socket, so that it
1191 * doesn't get freed while we sbwait(). If peer goes away, we will
1192 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1193 * socket destruction.
1194 */
1195 so2 = unp2->unp_socket;
1196 soref(so2);
1197 UNP_PCB_UNLOCK(unp2);
1198 sb = &so2->so_rcv;
1199 while (mc.mc_len + cmc.mc_len > 0) {
1200 struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1201 u_int space;
1202
1203 SOCK_RECVBUF_LOCK(so2);
1204 restart:
1205 UIPC_STREAM_SBCHECK(sb);
1206 if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1207 SOCK_RECVBUF_UNLOCK(so2);
1208 error = EMSGSIZE;
1209 goto out4;
1210 }
1211 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1212 SOCK_RECVBUF_UNLOCK(so2);
1213 error = EPIPE;
1214 goto out4;
1215 }
1216 /*
1217 * Wait on the peer socket receive buffer until we have enough
1218 * space to put at least control. The data is a stream and can
1219 * be put partially, but control is really a datagram.
1220 */
1221 space = uipc_stream_sbspace(sb);
1222 if (space < sb->sb_lowat || space < cmc.mc_len) {
1223 if (nonblock) {
1224 if (aio)
1225 sb->uxst_flags |= UXST_PEER_AIO;
1226 SOCK_RECVBUF_UNLOCK(so2);
1227 if (aio) {
1228 SOCK_SENDBUF_LOCK(so);
1229 so->so_snd.sb_ccc =
1230 so->so_snd.sb_hiwat - space;
1231 SOCK_SENDBUF_UNLOCK(so);
1232 }
1233 error = EWOULDBLOCK;
1234 goto out4;
1235 }
1236 if ((error = uipc_stream_sbwait(so2,
1237 so->so_snd.sb_timeo)) != 0) {
1238 SOCK_RECVBUF_UNLOCK(so2);
1239 goto out4;
1240 } else
1241 goto restart;
1242 }
1243 MPASS(space >= cmc.mc_len);
1244 space -= cmc.mc_len;
1245 if (space == 0) {
1246 /* There is space only to send control. */
1247 MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1248 mcnext = mc;
1249 mc = MCHAIN_INITIALIZER(&mc);
1250 } else if (space < mc.mc_len) {
1251 /* Not enough space. */
1252 if (__predict_false(mc_split(&mc, &mcnext, space,
1253 M_NOWAIT) == ENOMEM)) {
1254 /*
1255 * If allocation failed use M_WAITOK and merge
1256 * the chain back. Next time mc_split() will
1257 * easily split at the same place. Only if we
1258 * race with setsockopt(SO_RCVBUF) shrinking
1259 * sb_hiwat can this happen more than once.
1260 */
1261 SOCK_RECVBUF_UNLOCK(so2);
1262 (void)mc_split(&mc, &mcnext, space, M_WAITOK);
1263 mc_concat(&mc, &mcnext);
1264 SOCK_RECVBUF_LOCK(so2);
1265 goto restart;
1266 }
1267 MPASS(mc.mc_len == space);
1268 }
1269 if (!STAILQ_EMPTY(&cmc.mc_q)) {
1270 STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1271 sb->sb_ctl += cmc.mc_len;
1272 sb->sb_mbcnt += cmc.mc_mlen;
1273 cmc.mc_len = 0;
1274 }
1275 sent += mc.mc_len;
1276 if (sb->uxst_fnrdy == NULL)
1277 sb->sb_acc += mc.mc_len;
1278 sb->sb_ccc += mc.mc_len;
1279 sb->sb_mbcnt += mc.mc_mlen;
1280 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1281 UIPC_STREAM_SBCHECK(sb);
1282 space = uipc_stream_sbspace(sb);
1283 sorwakeup_locked(so2);
1284 if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1285 /*
1286 * Such assignment is unsafe in general, but it is
1287 * safe with !STAILQ_EMPTY(&mcnext.mc_q). In C++ we
1288 * could reload = for STAILQs :)
1289 */
1290 mc = mcnext;
1291 } else if (uio != NULL && uio->uio_resid > 0) {
1292 /*
1293 * Copyin sum of peer's receive buffer space and our
1294 * sb_hiwat, which is our virtual send buffer size.
1295 * See comment above unpst_sendspace declaration.
1296 * We are reading sb_hiwat locklessly, cause a) we
1297 * don't care about an application that does send(2)
1298 * and setsockopt(2) racing internally, and for an
1299 * application that does this in sequence we will see
1300 * the correct value cause sbsetopt() uses buffer lock
1301 * and we also have already acquired it at least once.
1302 */
1303 error = mc_uiotomc(&mc, uio, space +
1304 atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1305 eor ? M_EOR : 0);
1306 if (__predict_false(error))
1307 goto out4;
1308 } else
1309 mc = MCHAIN_INITIALIZER(&mc);
1310 }
1311
1312 MPASS(STAILQ_EMPTY(&mc.mc_q));
1313
1314 td->td_ru.ru_msgsnd++;
1315 out4:
1316 sorele(so2);
1317 out3:
1318 SOCK_IO_SEND_UNLOCK(so);
1319 out2:
1320 if (aio) {
1321 freeuio(uio);
1322 uioadvance(uio0, sent);
1323 } else if (uio != NULL)
1324 uio->uio_resid = resid - sent;
1325 if (!mc_empty(&cmc))
1326 unp_scan(mc_first(&cmc), unp_freerights);
1327 out:
1328 mc_freem(&mc);
1329 mc_freem(&cmc);
1330
1331 return (error);
1332 }
1333
1334 /*
1335 * Wakeup a writer, used by recv(2) and shutdown(2).
1336 *
1337 * @param so Points to a connected stream socket with receive buffer locked
1338 *
1339 * In a blocking mode peer is sleeping on our receive buffer, and we need just
1340 * wakeup(9) on it. But to wake up various event engines, we need to reach
1341 * over to peer's selinfo. This can be safely done as the socket buffer
1342 * receive lock is protecting us from the peer going away.
1343 */
1344 static void
uipc_wakeup_writer(struct socket * so)1345 uipc_wakeup_writer(struct socket *so)
1346 {
1347 struct sockbuf *sb = &so->so_rcv;
1348 struct selinfo *sel;
1349
1350 SOCK_RECVBUF_LOCK_ASSERT(so);
1351 MPASS(sb->uxst_peer != NULL);
1352
1353 sel = &sb->uxst_peer->so_wrsel;
1354
1355 if (sb->uxst_flags & UXST_PEER_SEL) {
1356 selwakeuppri(sel, PSOCK);
1357 /*
1358 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1359 */
1360 if (!SEL_WAITING(sel))
1361 sb->uxst_flags &= ~UXST_PEER_SEL;
1362 }
1363 if (sb->sb_flags & SB_WAIT) {
1364 sb->sb_flags &= ~SB_WAIT;
1365 wakeup(&sb->sb_acc);
1366 }
1367 KNOTE_LOCKED(&sel->si_note, 0);
1368 SOCK_RECVBUF_UNLOCK(so);
1369 }
1370
1371 static void
uipc_cantrcvmore(struct socket * so)1372 uipc_cantrcvmore(struct socket *so)
1373 {
1374
1375 SOCK_RECVBUF_LOCK(so);
1376 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1377 selwakeuppri(&so->so_rdsel, PSOCK);
1378 KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1379 if (so->so_rcv.uxst_peer != NULL)
1380 uipc_wakeup_writer(so);
1381 else
1382 SOCK_RECVBUF_UNLOCK(so);
1383 }
1384
1385 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1386 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1387 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1388 {
1389 struct sockbuf *sb = &so->so_rcv;
1390 struct mbuf *control, *m, *first, *part, *next;
1391 u_int ctl, space, datalen, mbcnt, partlen;
1392 int error, flags;
1393 bool nonblock, waitall, peek;
1394
1395 MPASS(mp0 == NULL);
1396
1397 if (psa != NULL)
1398 *psa = NULL;
1399 if (controlp != NULL)
1400 *controlp = NULL;
1401
1402 flags = flagsp != NULL ? *flagsp : 0;
1403 nonblock = (so->so_state & SS_NBIO) ||
1404 (flags & (MSG_DONTWAIT | MSG_NBIO));
1405 peek = flags & MSG_PEEK;
1406 waitall = (flags & MSG_WAITALL) && !peek;
1407
1408 /*
1409 * This check may fail only on a socket that never went through
1410 * connect(2). We can check this locklessly, cause: a) for a new born
1411 * socket we don't care about applications that may race internally
1412 * between connect(2) and recv(2), and b) for a dying socket if we
1413 * miss update by unp_sosidisconnected(), we would still get the check
1414 * correct. For dying socket we would observe SBS_CANTRCVMORE later.
1415 */
1416 if (__predict_false((atomic_load_short(&so->so_state) &
1417 (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1418 return (ENOTCONN);
1419
1420 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1421 if (__predict_false(error))
1422 return (error);
1423
1424 restart:
1425 SOCK_RECVBUF_LOCK(so);
1426 UIPC_STREAM_SBCHECK(sb);
1427 while (sb->sb_acc < sb->sb_lowat &&
1428 (sb->sb_ctl == 0 || controlp == NULL)) {
1429 if (so->so_error) {
1430 error = so->so_error;
1431 if (!peek)
1432 so->so_error = 0;
1433 SOCK_RECVBUF_UNLOCK(so);
1434 SOCK_IO_RECV_UNLOCK(so);
1435 return (error);
1436 }
1437 if (sb->sb_state & SBS_CANTRCVMORE) {
1438 SOCK_RECVBUF_UNLOCK(so);
1439 SOCK_IO_RECV_UNLOCK(so);
1440 return (0);
1441 }
1442 if (nonblock) {
1443 SOCK_RECVBUF_UNLOCK(so);
1444 SOCK_IO_RECV_UNLOCK(so);
1445 return (EWOULDBLOCK);
1446 }
1447 error = sbwait(so, SO_RCV);
1448 if (error) {
1449 SOCK_RECVBUF_UNLOCK(so);
1450 SOCK_IO_RECV_UNLOCK(so);
1451 return (error);
1452 }
1453 }
1454
1455 MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1456 MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1457
1458 mbcnt = 0;
1459 ctl = 0;
1460 first = STAILQ_FIRST(&sb->uxst_mbq);
1461 if (first->m_type == MT_CONTROL) {
1462 control = first;
1463 STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1464 if (first->m_type != MT_CONTROL)
1465 break;
1466 ctl += first->m_len;
1467 mbcnt += MSIZE;
1468 if (first->m_flags & M_EXT)
1469 mbcnt += first->m_ext.ext_size;
1470 }
1471 } else
1472 control = NULL;
1473
1474 /*
1475 * Find split point for the next copyout. On exit from the loop,
1476 * 'next' points to the new head of the buffer STAILQ and 'datalen'
1477 * contains the amount of data we will copy out at the end. The
1478 * copyout is protected by the I/O lock only, as writers can only
1479 * append to the buffer. We need to record the socket buffer state
1480 * and do all length adjustments before dropping the socket buffer lock.
1481 */
1482 for (space = uio->uio_resid, m = next = first, part = NULL, datalen = 0;
1483 space > 0 && m != sb->uxst_fnrdy && m->m_type == MT_DATA;
1484 m = STAILQ_NEXT(m, m_stailq)) {
1485 if (space >= m->m_len) {
1486 space -= m->m_len;
1487 datalen += m->m_len;
1488 mbcnt += MSIZE;
1489 if (m->m_flags & M_EXT)
1490 mbcnt += m->m_ext.ext_size;
1491 if (m->m_flags & M_EOR) {
1492 flags |= MSG_EOR;
1493 next = STAILQ_NEXT(m, m_stailq);
1494 break;
1495 }
1496 } else {
1497 datalen += space;
1498 partlen = space;
1499 if (!peek) {
1500 m->m_len -= partlen;
1501 m->m_data += partlen;
1502 }
1503 next = part = m;
1504 break;
1505 }
1506 next = STAILQ_NEXT(m, m_stailq);
1507 }
1508
1509 if (!peek) {
1510 if (next == NULL)
1511 STAILQ_INIT(&sb->uxst_mbq);
1512 else
1513 STAILQ_FIRST(&sb->uxst_mbq) = next;
1514 MPASS(sb->sb_acc >= datalen);
1515 sb->sb_acc -= datalen;
1516 sb->sb_ccc -= datalen;
1517 MPASS(sb->sb_ctl >= ctl);
1518 sb->sb_ctl -= ctl;
1519 MPASS(sb->sb_mbcnt >= mbcnt);
1520 sb->sb_mbcnt -= mbcnt;
1521 UIPC_STREAM_SBCHECK(sb);
1522 if (__predict_true(sb->uxst_peer != NULL)) {
1523 struct unpcb *unp2;
1524 bool aio;
1525
1526 if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1527 sb->uxst_flags &= ~UXST_PEER_AIO;
1528
1529 uipc_wakeup_writer(so);
1530 /*
1531 * XXXGL: need to go through uipc_lock_peer() after
1532 * the receive buffer lock dropped, it was protecting
1533 * us from unp_soisdisconnected(). The aio workarounds
1534 * should be refactored to the aio(4) side.
1535 */
1536 if (aio && uipc_lock_peer(so, &unp2) == 0) {
1537 struct socket *so2 = unp2->unp_socket;
1538
1539 SOCK_SENDBUF_LOCK(so2);
1540 so2->so_snd.sb_ccc -= datalen;
1541 sowakeup_aio(so2, SO_SND);
1542 SOCK_SENDBUF_UNLOCK(so2);
1543 UNP_PCB_UNLOCK(unp2);
1544 }
1545 } else
1546 SOCK_RECVBUF_UNLOCK(so);
1547 } else
1548 SOCK_RECVBUF_UNLOCK(so);
1549
1550 while (control != NULL && control->m_type == MT_CONTROL) {
1551 if (!peek) {
1552 /*
1553 * unp_externalize() failure must abort entire read(2).
1554 * Such failure should also free the problematic
1555 * control, but link back the remaining data to the head
1556 * of the buffer, so that socket is not left in a state
1557 * where it can't progress forward with reading.
1558 * Probability of such a failure is really low, so it
1559 * is fine that we need to perform pretty complex
1560 * operation here to reconstruct the buffer.
1561 */
1562 error = unp_externalize(control, controlp, flags);
1563 control = m_free(control);
1564 if (__predict_false(error && control != NULL)) {
1565 struct mchain cmc;
1566
1567 mc_init_m(&cmc, control);
1568
1569 SOCK_RECVBUF_LOCK(so);
1570 if (__predict_false(
1571 (sb->sb_state & SBS_CANTRCVMORE) ||
1572 cmc.mc_len + sb->sb_ccc + sb->sb_ctl >
1573 sb->sb_hiwat)) {
1574 /*
1575 * While the lock was dropped and we
1576 * were failing in unp_externalize(),
1577 * the peer could has a) disconnected,
1578 * b) filled the buffer so that we
1579 * can't prepend data back.
1580 * These are two edge conditions that
1581 * we just can't handle, so lose the
1582 * data and return the error.
1583 */
1584 SOCK_RECVBUF_UNLOCK(so);
1585 SOCK_IO_RECV_UNLOCK(so);
1586 unp_scan(mc_first(&cmc),
1587 unp_freerights);
1588 mc_freem(&cmc);
1589 return (error);
1590 }
1591
1592 UIPC_STREAM_SBCHECK(sb);
1593 /* XXXGL: STAILQ_PREPEND */
1594 STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1595 STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1596
1597 sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1598 sb->sb_mbcnt = 0;
1599 STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1600 if (m->m_type == MT_DATA) {
1601 sb->sb_acc += m->m_len;
1602 sb->sb_ccc += m->m_len;
1603 } else {
1604 sb->sb_ctl += m->m_len;
1605 }
1606 sb->sb_mbcnt += MSIZE;
1607 if (m->m_flags & M_EXT)
1608 sb->sb_mbcnt +=
1609 m->m_ext.ext_size;
1610 }
1611 UIPC_STREAM_SBCHECK(sb);
1612 SOCK_RECVBUF_UNLOCK(so);
1613 SOCK_IO_RECV_UNLOCK(so);
1614 return (error);
1615 }
1616 if (controlp != NULL) {
1617 while (*controlp != NULL)
1618 controlp = &(*controlp)->m_next;
1619 }
1620 } else {
1621 /*
1622 * XXXGL
1623 *
1624 * In MSG_PEEK case control is not externalized. This
1625 * means we are leaking some kernel pointers to the
1626 * userland. They are useless to a law-abiding
1627 * application, but may be useful to a malware. This
1628 * is what the historical implementation in the
1629 * soreceive_generic() did. To be improved?
1630 */
1631 if (controlp != NULL) {
1632 *controlp = m_copym(control, 0, control->m_len,
1633 M_WAITOK);
1634 controlp = &(*controlp)->m_next;
1635 }
1636 control = STAILQ_NEXT(control, m_stailq);
1637 }
1638 }
1639
1640 for (m = first; datalen > 0; m = next) {
1641 void *data;
1642 u_int len;
1643
1644 next = STAILQ_NEXT(m, m_stailq);
1645 if (m == part) {
1646 data = peek ?
1647 mtod(m, char *) : mtod(m, char *) - partlen;
1648 len = partlen;
1649 } else {
1650 data = mtod(m, char *);
1651 len = m->m_len;
1652 }
1653 error = uiomove(data, len, uio);
1654 if (__predict_false(error)) {
1655 if (!peek)
1656 for (; m != part && datalen > 0; m = next) {
1657 next = STAILQ_NEXT(m, m_stailq);
1658 MPASS(datalen >= m->m_len);
1659 datalen -= m->m_len;
1660 m_free(m);
1661 }
1662 SOCK_IO_RECV_UNLOCK(so);
1663 return (error);
1664 }
1665 datalen -= len;
1666 if (!peek && m != part)
1667 m_free(m);
1668 }
1669 if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1670 goto restart;
1671 SOCK_IO_RECV_UNLOCK(so);
1672
1673 if (flagsp != NULL)
1674 *flagsp |= flags;
1675
1676 uio->uio_td->td_ru.ru_msgrcv++;
1677
1678 return (0);
1679 }
1680
1681 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1682 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1683 struct thread *td)
1684 {
1685 struct unpcb *unp = sotounpcb(so);
1686 int revents;
1687
1688 UNP_PCB_LOCK(unp);
1689 if (SOLISTENING(so)) {
1690 /* The above check is safe, since conversion to listening uses
1691 * both protocol and socket lock.
1692 */
1693 SOCK_LOCK(so);
1694 if (!(events & (POLLIN | POLLRDNORM)))
1695 revents = 0;
1696 else if (!TAILQ_EMPTY(&so->sol_comp))
1697 revents = events & (POLLIN | POLLRDNORM);
1698 else if (so->so_error)
1699 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1700 else {
1701 selrecord(td, &so->so_rdsel);
1702 revents = 0;
1703 }
1704 SOCK_UNLOCK(so);
1705 } else {
1706 if (so->so_state & SS_ISDISCONNECTED)
1707 revents = POLLHUP;
1708 else
1709 revents = 0;
1710 if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1711 SOCK_RECVBUF_LOCK(so);
1712 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1713 so->so_error || so->so_rerror)
1714 revents |= events & (POLLIN | POLLRDNORM);
1715 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1716 revents |= events &
1717 (POLLIN | POLLRDNORM | POLLRDHUP);
1718 if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1719 selrecord(td, &so->so_rdsel);
1720 so->so_rcv.sb_flags |= SB_SEL;
1721 }
1722 SOCK_RECVBUF_UNLOCK(so);
1723 }
1724 if (events & (POLLOUT | POLLWRNORM)) {
1725 struct socket *so2 = so->so_rcv.uxst_peer;
1726
1727 if (so2 != NULL) {
1728 struct sockbuf *sb = &so2->so_rcv;
1729
1730 SOCK_RECVBUF_LOCK(so2);
1731 if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1732 revents |= events &
1733 (POLLOUT | POLLWRNORM);
1734 if (sb->sb_state & SBS_CANTRCVMORE)
1735 revents |= POLLHUP;
1736 if (!(revents & (POLLOUT | POLLWRNORM))) {
1737 so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1738 selrecord(td, &so->so_wrsel);
1739 }
1740 SOCK_RECVBUF_UNLOCK(so2);
1741 } else
1742 selrecord(td, &so->so_wrsel);
1743 }
1744 }
1745 UNP_PCB_UNLOCK(unp);
1746 return (revents);
1747 }
1748
1749 static void
uipc_wrknl_lock(void * arg)1750 uipc_wrknl_lock(void *arg)
1751 {
1752 struct socket *so = arg;
1753 struct unpcb *unp = sotounpcb(so);
1754
1755 retry:
1756 if (SOLISTENING(so)) {
1757 SOLISTEN_LOCK(so);
1758 } else {
1759 UNP_PCB_LOCK(unp);
1760 if (__predict_false(SOLISTENING(so))) {
1761 UNP_PCB_UNLOCK(unp);
1762 goto retry;
1763 }
1764 if (so->so_rcv.uxst_peer != NULL)
1765 SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1766 }
1767 }
1768
1769 static void
uipc_wrknl_unlock(void * arg)1770 uipc_wrknl_unlock(void *arg)
1771 {
1772 struct socket *so = arg;
1773 struct unpcb *unp = sotounpcb(so);
1774
1775 if (SOLISTENING(so))
1776 SOLISTEN_UNLOCK(so);
1777 else {
1778 if (so->so_rcv.uxst_peer != NULL)
1779 SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1780 UNP_PCB_UNLOCK(unp);
1781 }
1782 }
1783
1784 static void
uipc_wrknl_assert_lock(void * arg,int what)1785 uipc_wrknl_assert_lock(void *arg, int what)
1786 {
1787 struct socket *so = arg;
1788
1789 if (SOLISTENING(so)) {
1790 if (what == LA_LOCKED)
1791 SOLISTEN_LOCK_ASSERT(so);
1792 else
1793 SOLISTEN_UNLOCK_ASSERT(so);
1794 } else {
1795 /*
1796 * The pr_soreceive method will put a note without owning the
1797 * unp lock, so we can't assert it here. But we can safely
1798 * dereference uxst_peer pointer, since receive buffer lock
1799 * is assumed to be held here.
1800 */
1801 if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1802 SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1803 }
1804 }
1805
1806 static void
uipc_filt_sowdetach(struct knote * kn)1807 uipc_filt_sowdetach(struct knote *kn)
1808 {
1809 struct socket *so = kn->kn_fp->f_data;
1810
1811 uipc_wrknl_lock(so);
1812 knlist_remove(&so->so_wrsel.si_note, kn, 1);
1813 uipc_wrknl_unlock(so);
1814 }
1815
1816 static int
uipc_filt_sowrite(struct knote * kn,long hint)1817 uipc_filt_sowrite(struct knote *kn, long hint)
1818 {
1819 struct socket *so = kn->kn_fp->f_data, *so2;
1820 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1821
1822 if (SOLISTENING(so))
1823 return (0);
1824
1825 if (unp2 == NULL) {
1826 if (so->so_state & SS_ISDISCONNECTED) {
1827 kn->kn_flags |= EV_EOF;
1828 kn->kn_fflags = so->so_error;
1829 return (1);
1830 } else
1831 return (0);
1832 }
1833
1834 so2 = unp2->unp_socket;
1835 SOCK_RECVBUF_LOCK_ASSERT(so2);
1836 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1837
1838 if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1839 kn->kn_flags |= EV_EOF;
1840 return (1);
1841 } else if (kn->kn_sfflags & NOTE_LOWAT)
1842 return (kn->kn_data >= kn->kn_sdata);
1843 else
1844 return (kn->kn_data >= so2->so_rcv.sb_lowat);
1845 }
1846
1847 static int
uipc_filt_soempty(struct knote * kn,long hint)1848 uipc_filt_soempty(struct knote *kn, long hint)
1849 {
1850 struct socket *so = kn->kn_fp->f_data, *so2;
1851 struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1852
1853 if (SOLISTENING(so) || unp2 == NULL)
1854 return (1);
1855
1856 so2 = unp2->unp_socket;
1857 SOCK_RECVBUF_LOCK_ASSERT(so2);
1858 kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1859
1860 return (kn->kn_data == 0 ? 1 : 0);
1861 }
1862
1863 static const struct filterops uipc_write_filtops = {
1864 .f_isfd = 1,
1865 .f_detach = uipc_filt_sowdetach,
1866 .f_event = uipc_filt_sowrite,
1867 .f_copy = knote_triv_copy,
1868 };
1869 static const struct filterops uipc_empty_filtops = {
1870 .f_isfd = 1,
1871 .f_detach = uipc_filt_sowdetach,
1872 .f_event = uipc_filt_soempty,
1873 .f_copy = knote_triv_copy,
1874 };
1875
1876 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1877 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1878 {
1879 struct unpcb *unp = sotounpcb(so);
1880 struct knlist *knl;
1881
1882 switch (kn->kn_filter) {
1883 case EVFILT_READ:
1884 return (sokqfilter_generic(so, kn));
1885 case EVFILT_WRITE:
1886 kn->kn_fop = &uipc_write_filtops;
1887 break;
1888 case EVFILT_EMPTY:
1889 kn->kn_fop = &uipc_empty_filtops;
1890 break;
1891 default:
1892 return (EINVAL);
1893 }
1894
1895 knl = &so->so_wrsel.si_note;
1896 UNP_PCB_LOCK(unp);
1897 if (SOLISTENING(so)) {
1898 SOLISTEN_LOCK(so);
1899 knlist_add(knl, kn, 1);
1900 SOLISTEN_UNLOCK(so);
1901 } else {
1902 struct socket *so2 = so->so_rcv.uxst_peer;
1903
1904 if (so2 != NULL)
1905 SOCK_RECVBUF_LOCK(so2);
1906 knlist_add(knl, kn, 1);
1907 if (so2 != NULL)
1908 SOCK_RECVBUF_UNLOCK(so2);
1909 }
1910 UNP_PCB_UNLOCK(unp);
1911 return (0);
1912 }
1913
1914 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1915 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1916 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1917 {
1918 u_int bleft, mleft;
1919
1920 /*
1921 * Negative space may happen if send(2) is followed by
1922 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1923 */
1924 if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1925 sb->sb_mbmax < sb->uxdg_mbcnt))
1926 return (false);
1927
1928 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1929 return (false);
1930
1931 bleft = sb->sb_hiwat - sb->uxdg_cc;
1932 mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1933
1934 return (bleft >= cc && mleft >= mbcnt);
1935 }
1936
1937 /*
1938 * PF_UNIX/SOCK_DGRAM send
1939 *
1940 * Allocate a record consisting of 3 mbufs in the sequence of
1941 * from -> control -> data and append it to the socket buffer.
1942 *
1943 * The first mbuf carries sender's name and is a pkthdr that stores
1944 * overall length of datagram, its memory consumption and control length.
1945 */
1946 #define ctllen PH_loc.thirtytwo[1]
1947 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1948 offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1949 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1950 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1951 struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1952 {
1953 struct unpcb *unp, *unp2;
1954 const struct sockaddr *from;
1955 struct socket *so2;
1956 struct sockbuf *sb;
1957 struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1958 struct mbuf *f;
1959 u_int cc, ctl, mbcnt;
1960 u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1961 int error;
1962
1963 MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1964
1965 error = 0;
1966 f = NULL;
1967
1968 if (__predict_false(flags & MSG_OOB)) {
1969 error = EOPNOTSUPP;
1970 goto out;
1971 }
1972 if (m == NULL) {
1973 if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1974 error = EMSGSIZE;
1975 goto out;
1976 }
1977 m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1978 if (__predict_false(m == NULL)) {
1979 error = EFAULT;
1980 goto out;
1981 }
1982 f = m_gethdr(M_WAITOK, MT_SONAME);
1983 cc = m->m_pkthdr.len;
1984 mbcnt = MSIZE + m->m_pkthdr.memlen;
1985 if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1986 goto out;
1987 } else {
1988 struct mchain mc;
1989
1990 uipc_reset_kernel_mbuf(m, &mc);
1991 cc = mc.mc_len;
1992 mbcnt = mc.mc_mlen;
1993 if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1994 error = EMSGSIZE;
1995 goto out;
1996 }
1997 if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1998 error = ENOBUFS;
1999 goto out;
2000 }
2001 }
2002
2003 unp = sotounpcb(so);
2004 MPASS(unp);
2005
2006 /*
2007 * XXXGL: would be cool to fully remove so_snd out of the equation
2008 * and avoid this lock, which is not only extraneous, but also being
2009 * released, thus still leaving possibility for a race. We can easily
2010 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
2011 * is more difficult to invent something to handle so_error.
2012 */
2013 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2014 if (error)
2015 goto out2;
2016 SOCK_SENDBUF_LOCK(so);
2017 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2018 SOCK_SENDBUF_UNLOCK(so);
2019 error = EPIPE;
2020 goto out3;
2021 }
2022 if (so->so_error != 0) {
2023 error = so->so_error;
2024 so->so_error = 0;
2025 SOCK_SENDBUF_UNLOCK(so);
2026 goto out3;
2027 }
2028 if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2029 SOCK_SENDBUF_UNLOCK(so);
2030 error = EDESTADDRREQ;
2031 goto out3;
2032 }
2033 SOCK_SENDBUF_UNLOCK(so);
2034
2035 if (addr != NULL) {
2036 if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2037 goto out3;
2038 UNP_PCB_LOCK_ASSERT(unp);
2039 unp2 = unp->unp_conn;
2040 UNP_PCB_LOCK_ASSERT(unp2);
2041 } else {
2042 UNP_PCB_LOCK(unp);
2043 unp2 = unp_pcb_lock_peer(unp);
2044 if (unp2 == NULL) {
2045 UNP_PCB_UNLOCK(unp);
2046 error = ENOTCONN;
2047 goto out3;
2048 }
2049 }
2050
2051 if (unp2->unp_flags & UNP_WANTCRED_MASK)
2052 unp_addsockcred(td, &cmc, unp2->unp_flags);
2053 if (unp->unp_addr != NULL)
2054 from = (struct sockaddr *)unp->unp_addr;
2055 else
2056 from = &sun_noname;
2057 f->m_len = from->sa_len;
2058 MPASS(from->sa_len <= MLEN);
2059 bcopy(from, mtod(f, void *), from->sa_len);
2060
2061 /*
2062 * Concatenate mbufs: from -> control -> data.
2063 * Save overall cc and mbcnt in "from" mbuf.
2064 */
2065 if (!STAILQ_EMPTY(&cmc.mc_q)) {
2066 f->m_next = mc_first(&cmc);
2067 mc_last(&cmc)->m_next = m;
2068 /* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2069 STAILQ_INIT(&cmc.mc_q);
2070 } else
2071 f->m_next = m;
2072 m = NULL;
2073 ctl = f->m_len + cmc.mc_len;
2074 mbcnt += cmc.mc_mlen;
2075 #ifdef INVARIANTS
2076 dcc = dctl = dmbcnt = 0;
2077 for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2078 if (mb->m_type == MT_DATA)
2079 dcc += mb->m_len;
2080 else
2081 dctl += mb->m_len;
2082 dmbcnt += MSIZE;
2083 if (mb->m_flags & M_EXT)
2084 dmbcnt += mb->m_ext.ext_size;
2085 }
2086 MPASS(dcc == cc);
2087 MPASS(dctl == ctl);
2088 MPASS(dmbcnt == mbcnt);
2089 #endif
2090 f->m_pkthdr.len = cc + ctl;
2091 f->m_pkthdr.memlen = mbcnt;
2092 f->m_pkthdr.ctllen = ctl;
2093
2094 /*
2095 * Destination socket buffer selection.
2096 *
2097 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2098 * destination address is supplied, create a temporary connection for
2099 * the run time of the function (see call to unp_connectat() above and
2100 * to unp_disconnect() below). We distinguish them by condition of
2101 * (addr != NULL). We intentionally avoid adding 'bool connected' for
2102 * that condition, since, again, through the run time of this code we
2103 * are always connected. For such "unconnected" sends, the destination
2104 * buffer would be the receive buffer of destination socket so2.
2105 *
2106 * For connected sends, data lands on the send buffer of the sender's
2107 * socket "so". Then, if we just added the very first datagram
2108 * on this send buffer, we need to add the send buffer on to the
2109 * receiving socket's buffer list. We put ourselves on top of the
2110 * list. Such logic gives infrequent senders priority over frequent
2111 * senders.
2112 *
2113 * Note on byte count management. As long as event methods kevent(2),
2114 * select(2) are not protocol specific (yet), we need to maintain
2115 * meaningful values on the receive buffer. So, the receive buffer
2116 * would accumulate counters from all connected buffers potentially
2117 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2118 */
2119 so2 = unp2->unp_socket;
2120 sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2121 SOCK_RECVBUF_LOCK(so2);
2122 if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2123 if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2124 TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2125 uxdg_clist);
2126 STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2127 sb->uxdg_cc += cc + ctl;
2128 sb->uxdg_ctl += ctl;
2129 sb->uxdg_mbcnt += mbcnt;
2130 so2->so_rcv.sb_acc += cc + ctl;
2131 so2->so_rcv.sb_ccc += cc + ctl;
2132 so2->so_rcv.sb_ctl += ctl;
2133 so2->so_rcv.sb_mbcnt += mbcnt;
2134 sorwakeup_locked(so2);
2135 f = NULL;
2136 } else {
2137 soroverflow_locked(so2);
2138 error = ENOBUFS;
2139 if (f->m_next->m_type == MT_CONTROL) {
2140 STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2141 f->m_next = NULL;
2142 }
2143 }
2144
2145 if (addr != NULL)
2146 unp_disconnect(unp, unp2);
2147 else
2148 unp_pcb_unlock_pair(unp, unp2);
2149
2150 td->td_ru.ru_msgsnd++;
2151
2152 out3:
2153 SOCK_IO_SEND_UNLOCK(so);
2154 out2:
2155 if (!mc_empty(&cmc))
2156 unp_scan(mc_first(&cmc), unp_freerights);
2157 out:
2158 if (f)
2159 m_freem(f);
2160 mc_freem(&cmc);
2161 if (m)
2162 m_freem(m);
2163
2164 return (error);
2165 }
2166
2167 /*
2168 * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2169 * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2170 * and needs to be linked onto uxdg_peeked of receive socket buffer.
2171 */
2172 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2173 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2174 struct uio *uio, struct mbuf **controlp, int *flagsp)
2175 {
2176 ssize_t len = 0;
2177 int error;
2178
2179 so->so_rcv.uxdg_peeked = m;
2180 so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2181 so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2182 so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2183 SOCK_RECVBUF_UNLOCK(so);
2184
2185 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2186 if (psa != NULL)
2187 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2188
2189 m = m->m_next;
2190 KASSERT(m, ("%s: no data or control after soname", __func__));
2191
2192 /*
2193 * With MSG_PEEK the control isn't executed, just copied.
2194 */
2195 while (m != NULL && m->m_type == MT_CONTROL) {
2196 if (controlp != NULL) {
2197 *controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2198 controlp = &(*controlp)->m_next;
2199 }
2200 m = m->m_next;
2201 }
2202 KASSERT(m == NULL || m->m_type == MT_DATA,
2203 ("%s: not MT_DATA mbuf %p", __func__, m));
2204 while (m != NULL && uio->uio_resid > 0) {
2205 len = uio->uio_resid;
2206 if (len > m->m_len)
2207 len = m->m_len;
2208 error = uiomove(mtod(m, char *), (int)len, uio);
2209 if (error) {
2210 SOCK_IO_RECV_UNLOCK(so);
2211 return (error);
2212 }
2213 if (len == m->m_len)
2214 m = m->m_next;
2215 }
2216 SOCK_IO_RECV_UNLOCK(so);
2217
2218 if (flagsp != NULL) {
2219 if (m != NULL) {
2220 if (*flagsp & MSG_TRUNC) {
2221 /* Report real length of the packet */
2222 uio->uio_resid -= m_length(m, NULL) - len;
2223 }
2224 *flagsp |= MSG_TRUNC;
2225 } else
2226 *flagsp &= ~MSG_TRUNC;
2227 }
2228
2229 return (0);
2230 }
2231
2232 /*
2233 * PF_UNIX/SOCK_DGRAM receive
2234 */
2235 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2236 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2237 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2238 {
2239 struct sockbuf *sb = NULL;
2240 struct mbuf *m;
2241 int flags, error;
2242 ssize_t len = 0;
2243 bool nonblock;
2244
2245 MPASS(mp0 == NULL);
2246
2247 if (psa != NULL)
2248 *psa = NULL;
2249 if (controlp != NULL)
2250 *controlp = NULL;
2251
2252 flags = flagsp != NULL ? *flagsp : 0;
2253 nonblock = (so->so_state & SS_NBIO) ||
2254 (flags & (MSG_DONTWAIT | MSG_NBIO));
2255
2256 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2257 if (__predict_false(error))
2258 return (error);
2259
2260 /*
2261 * Loop blocking while waiting for a datagram. Prioritize connected
2262 * peers over unconnected sends. Set sb to selected socket buffer
2263 * containing an mbuf on exit from the wait loop. A datagram that
2264 * had already been peeked at has top priority.
2265 */
2266 SOCK_RECVBUF_LOCK(so);
2267 while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2268 (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2269 (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2270 if (so->so_error) {
2271 error = so->so_error;
2272 if (!(flags & MSG_PEEK))
2273 so->so_error = 0;
2274 SOCK_RECVBUF_UNLOCK(so);
2275 SOCK_IO_RECV_UNLOCK(so);
2276 return (error);
2277 }
2278 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2279 uio->uio_resid == 0) {
2280 SOCK_RECVBUF_UNLOCK(so);
2281 SOCK_IO_RECV_UNLOCK(so);
2282 return (0);
2283 }
2284 if (nonblock) {
2285 SOCK_RECVBUF_UNLOCK(so);
2286 SOCK_IO_RECV_UNLOCK(so);
2287 return (EWOULDBLOCK);
2288 }
2289 error = sbwait(so, SO_RCV);
2290 if (error) {
2291 SOCK_RECVBUF_UNLOCK(so);
2292 SOCK_IO_RECV_UNLOCK(so);
2293 return (error);
2294 }
2295 }
2296
2297 if (sb == NULL)
2298 sb = &so->so_rcv;
2299 else if (m == NULL)
2300 m = STAILQ_FIRST(&sb->uxdg_mb);
2301 else
2302 MPASS(m == so->so_rcv.uxdg_peeked);
2303
2304 MPASS(sb->uxdg_cc > 0);
2305 M_ASSERTPKTHDR(m);
2306 KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2307
2308 if (uio->uio_td)
2309 uio->uio_td->td_ru.ru_msgrcv++;
2310
2311 if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2312 STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2313 if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2314 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2315 } else
2316 so->so_rcv.uxdg_peeked = NULL;
2317
2318 sb->uxdg_cc -= m->m_pkthdr.len;
2319 sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2320 sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2321
2322 if (__predict_false(flags & MSG_PEEK))
2323 return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2324
2325 so->so_rcv.sb_acc -= m->m_pkthdr.len;
2326 so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2327 so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2328 so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2329 SOCK_RECVBUF_UNLOCK(so);
2330
2331 if (psa != NULL)
2332 *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2333 m = m_free(m);
2334 KASSERT(m, ("%s: no data or control after soname", __func__));
2335
2336 /*
2337 * Packet to copyout() is now in 'm' and it is disconnected from the
2338 * queue.
2339 *
2340 * Process one or more MT_CONTROL mbufs present before any data mbufs
2341 * in the first mbuf chain on the socket buffer. We call into the
2342 * unp_externalize() to perform externalization (or freeing if
2343 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2344 * without MT_DATA mbufs.
2345 */
2346 while (m != NULL && m->m_type == MT_CONTROL) {
2347 error = unp_externalize(m, controlp, flags);
2348 m = m_free(m);
2349 if (error != 0) {
2350 SOCK_IO_RECV_UNLOCK(so);
2351 unp_scan(m, unp_freerights);
2352 m_freem(m);
2353 return (error);
2354 }
2355 if (controlp != NULL) {
2356 while (*controlp != NULL)
2357 controlp = &(*controlp)->m_next;
2358 }
2359 }
2360 KASSERT(m == NULL || m->m_type == MT_DATA,
2361 ("%s: not MT_DATA mbuf %p", __func__, m));
2362 while (m != NULL && uio->uio_resid > 0) {
2363 len = uio->uio_resid;
2364 if (len > m->m_len)
2365 len = m->m_len;
2366 error = uiomove(mtod(m, char *), (int)len, uio);
2367 if (error) {
2368 SOCK_IO_RECV_UNLOCK(so);
2369 m_freem(m);
2370 return (error);
2371 }
2372 if (len == m->m_len)
2373 m = m_free(m);
2374 else {
2375 m->m_data += len;
2376 m->m_len -= len;
2377 }
2378 }
2379 SOCK_IO_RECV_UNLOCK(so);
2380
2381 if (m != NULL) {
2382 if (flagsp != NULL) {
2383 if (flags & MSG_TRUNC) {
2384 /* Report real length of the packet */
2385 uio->uio_resid -= m_length(m, NULL);
2386 }
2387 *flagsp |= MSG_TRUNC;
2388 }
2389 m_freem(m);
2390 } else if (flagsp != NULL)
2391 *flagsp &= ~MSG_TRUNC;
2392
2393 return (0);
2394 }
2395
2396 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2397 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2398 {
2399 struct unpcb *unp2;
2400 struct socket *so2;
2401 struct sockbuf *sb;
2402 bool nonblock, sockref;
2403 int error;
2404
2405 MPASS(so->so_type == SOCK_STREAM);
2406 MPASS(need > 0);
2407 MPASS(space != NULL);
2408
2409 nonblock = so->so_state & SS_NBIO;
2410 sockref = false;
2411
2412 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2413 return (ENOTCONN);
2414
2415 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2416 return (error);
2417
2418 so2 = unp2->unp_socket;
2419 sb = &so2->so_rcv;
2420 SOCK_RECVBUF_LOCK(so2);
2421 UNP_PCB_UNLOCK(unp2);
2422 while ((*space = uipc_stream_sbspace(sb)) < need &&
2423 (*space < so->so_snd.sb_hiwat / 2)) {
2424 UIPC_STREAM_SBCHECK(sb);
2425 if (nonblock) {
2426 SOCK_RECVBUF_UNLOCK(so2);
2427 return (EAGAIN);
2428 }
2429 if (!sockref)
2430 soref(so2);
2431 error = uipc_stream_sbwait(so2, so->so_snd.sb_timeo);
2432 if (error == 0 &&
2433 __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2434 error = EPIPE;
2435 if (error) {
2436 SOCK_RECVBUF_UNLOCK(so2);
2437 sorele(so2);
2438 return (error);
2439 }
2440 }
2441 UIPC_STREAM_SBCHECK(sb);
2442 SOCK_RECVBUF_UNLOCK(so2);
2443 if (sockref)
2444 sorele(so2);
2445
2446 return (0);
2447 }
2448
2449 /*
2450 * Although this is a pr_send method, for unix(4) it is called only via
2451 * sendfile(2) path. This means we can be sure that mbufs are clear of
2452 * any extra flags and don't require any conditioning.
2453 */
2454 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2455 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2456 struct sockaddr *from, struct mbuf *control, struct thread *td)
2457 {
2458 struct mchain mc;
2459 struct unpcb *unp2;
2460 struct socket *so2;
2461 struct sockbuf *sb;
2462 bool notready, wakeup;
2463 int error;
2464
2465 MPASS(so->so_type == SOCK_STREAM);
2466 MPASS(from == NULL && control == NULL);
2467 KASSERT(!(m->m_flags & M_EXTPG),
2468 ("unix(4): TLS sendfile(2) not supported"));
2469
2470 notready = flags & PRUS_NOTREADY;
2471
2472 if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2473 error = ENOTCONN;
2474 goto out;
2475 }
2476
2477 if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2478 goto out;
2479
2480 mc_init_m(&mc, m);
2481
2482 so2 = unp2->unp_socket;
2483 sb = &so2->so_rcv;
2484 SOCK_RECVBUF_LOCK(so2);
2485 UNP_PCB_UNLOCK(unp2);
2486 UIPC_STREAM_SBCHECK(sb);
2487 sb->sb_ccc += mc.mc_len;
2488 sb->sb_mbcnt += mc.mc_mlen;
2489 if (sb->uxst_fnrdy == NULL) {
2490 if (notready) {
2491 wakeup = false;
2492 STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2493 if (m->m_flags & M_NOTREADY) {
2494 sb->uxst_fnrdy = m;
2495 break;
2496 } else {
2497 sb->sb_acc += m->m_len;
2498 wakeup = true;
2499 }
2500 }
2501 } else {
2502 wakeup = true;
2503 sb->sb_acc += mc.mc_len;
2504 }
2505 } else {
2506 wakeup = false;
2507 }
2508 STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2509 UIPC_STREAM_SBCHECK(sb);
2510 if (wakeup)
2511 sorwakeup_locked(so2);
2512 else
2513 SOCK_RECVBUF_UNLOCK(so2);
2514
2515 return (0);
2516 out:
2517 /*
2518 * In case of not ready data, uipc_ready() is responsible
2519 * for freeing memory.
2520 */
2521 if (m != NULL && !notready)
2522 m_freem(m);
2523
2524 return (error);
2525 }
2526
2527 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2528 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2529 {
2530 bool blocker;
2531
2532 /* assert locked */
2533
2534 blocker = (sb->uxst_fnrdy == m);
2535 STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2536 if (count > 0) {
2537 MPASS(m->m_flags & M_NOTREADY);
2538 m->m_flags &= ~M_NOTREADY;
2539 if (blocker)
2540 sb->sb_acc += m->m_len;
2541 count--;
2542 } else if (m->m_flags & M_NOTREADY)
2543 break;
2544 else if (blocker)
2545 sb->sb_acc += m->m_len;
2546 }
2547 if (blocker) {
2548 sb->uxst_fnrdy = m;
2549 return (0);
2550 } else
2551 return (EINPROGRESS);
2552 }
2553
2554 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2555 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2556 {
2557 struct mbuf *mb;
2558 struct sockbuf *sb;
2559
2560 SOCK_LOCK(so);
2561 if (SOLISTENING(so)) {
2562 SOCK_UNLOCK(so);
2563 return (false);
2564 }
2565 mb = NULL;
2566 sb = &so->so_rcv;
2567 SOCK_RECVBUF_LOCK(so);
2568 if (sb->uxst_fnrdy != NULL) {
2569 STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2570 if (mb == m) {
2571 *errorp = uipc_sbready(sb, m, count);
2572 break;
2573 }
2574 }
2575 }
2576 SOCK_RECVBUF_UNLOCK(so);
2577 SOCK_UNLOCK(so);
2578 return (mb != NULL);
2579 }
2580
2581 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2582 uipc_ready(struct socket *so, struct mbuf *m, int count)
2583 {
2584 struct unpcb *unp, *unp2;
2585 int error;
2586
2587 MPASS(so->so_type == SOCK_STREAM);
2588
2589 if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2590 struct socket *so2;
2591 struct sockbuf *sb;
2592
2593 so2 = unp2->unp_socket;
2594 sb = &so2->so_rcv;
2595 SOCK_RECVBUF_LOCK(so2);
2596 UNP_PCB_UNLOCK(unp2);
2597 UIPC_STREAM_SBCHECK(sb);
2598 error = uipc_sbready(sb, m, count);
2599 UIPC_STREAM_SBCHECK(sb);
2600 if (error == 0)
2601 sorwakeup_locked(so2);
2602 else
2603 SOCK_RECVBUF_UNLOCK(so2);
2604 } else {
2605 /*
2606 * The receiving socket has been disconnected, but may still
2607 * be valid. In this case, the not-ready mbufs are still
2608 * present in its socket buffer, so perform an exhaustive
2609 * search before giving up and freeing the mbufs.
2610 */
2611 UNP_LINK_RLOCK();
2612 LIST_FOREACH(unp, &unp_shead, unp_link) {
2613 if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2614 break;
2615 }
2616 UNP_LINK_RUNLOCK();
2617
2618 if (unp == NULL) {
2619 for (int i = 0; i < count; i++)
2620 m = m_free(m);
2621 return (ECONNRESET);
2622 }
2623 }
2624 return (error);
2625 }
2626
2627 static int
uipc_sense(struct socket * so,struct stat * sb)2628 uipc_sense(struct socket *so, struct stat *sb)
2629 {
2630 struct unpcb *unp;
2631
2632 unp = sotounpcb(so);
2633 KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2634
2635 sb->st_blksize = so->so_snd.sb_hiwat;
2636 sb->st_dev = NODEV;
2637 sb->st_ino = unp->unp_ino;
2638 return (0);
2639 }
2640
2641 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2642 uipc_shutdown(struct socket *so, enum shutdown_how how)
2643 {
2644 struct unpcb *unp = sotounpcb(so);
2645 int error;
2646
2647 SOCK_LOCK(so);
2648 if (SOLISTENING(so)) {
2649 if (how != SHUT_WR) {
2650 so->so_error = ECONNABORTED;
2651 solisten_wakeup(so); /* unlocks so */
2652 } else
2653 SOCK_UNLOCK(so);
2654 return (ENOTCONN);
2655 } else if ((so->so_state &
2656 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2657 /*
2658 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2659 * invoked on a datagram sockets, however historically we would
2660 * actually tear socket down. This is known to be leveraged by
2661 * some applications to unblock process waiting in recv(2) by
2662 * other process that it shares that socket with. Try to meet
2663 * both backward-compatibility and POSIX requirements by forcing
2664 * ENOTCONN but still flushing buffers and performing wakeup(9).
2665 *
2666 * XXXGL: it remains unknown what applications expect this
2667 * behavior and is this isolated to unix/dgram or inet/dgram or
2668 * both. See: D10351, D3039.
2669 */
2670 error = ENOTCONN;
2671 if (so->so_type != SOCK_DGRAM) {
2672 SOCK_UNLOCK(so);
2673 return (error);
2674 }
2675 } else
2676 error = 0;
2677 SOCK_UNLOCK(so);
2678
2679 switch (how) {
2680 case SHUT_RD:
2681 if (so->so_type == SOCK_DGRAM)
2682 socantrcvmore(so);
2683 else
2684 uipc_cantrcvmore(so);
2685 unp_dispose(so);
2686 break;
2687 case SHUT_RDWR:
2688 if (so->so_type == SOCK_DGRAM)
2689 socantrcvmore(so);
2690 else
2691 uipc_cantrcvmore(so);
2692 unp_dispose(so);
2693 /* FALLTHROUGH */
2694 case SHUT_WR:
2695 if (so->so_type == SOCK_DGRAM) {
2696 socantsendmore(so);
2697 } else {
2698 UNP_PCB_LOCK(unp);
2699 if (unp->unp_conn != NULL)
2700 uipc_cantrcvmore(unp->unp_conn->unp_socket);
2701 UNP_PCB_UNLOCK(unp);
2702 }
2703 }
2704 wakeup(&so->so_timeo);
2705
2706 return (error);
2707 }
2708
2709 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2710 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2711 {
2712 struct unpcb *unp;
2713 const struct sockaddr *sa;
2714
2715 unp = sotounpcb(so);
2716 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2717
2718 UNP_PCB_LOCK(unp);
2719 if (unp->unp_addr != NULL)
2720 sa = (struct sockaddr *) unp->unp_addr;
2721 else
2722 sa = &sun_noname;
2723 bcopy(sa, ret, sa->sa_len);
2724 UNP_PCB_UNLOCK(unp);
2725 return (0);
2726 }
2727
2728 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2729 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2730 {
2731 struct unpcb *unp;
2732 struct xucred xu;
2733 int error, optval;
2734
2735 if (sopt->sopt_level != SOL_LOCAL)
2736 return (EINVAL);
2737
2738 unp = sotounpcb(so);
2739 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2740 error = 0;
2741 switch (sopt->sopt_dir) {
2742 case SOPT_GET:
2743 switch (sopt->sopt_name) {
2744 case LOCAL_PEERCRED:
2745 UNP_PCB_LOCK(unp);
2746 if (unp->unp_flags & UNP_HAVEPC)
2747 xu = unp->unp_peercred;
2748 else {
2749 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2750 error = ENOTCONN;
2751 else
2752 error = EINVAL;
2753 }
2754 UNP_PCB_UNLOCK(unp);
2755 if (error == 0)
2756 error = sooptcopyout(sopt, &xu, sizeof(xu));
2757 break;
2758
2759 case LOCAL_CREDS:
2760 /* Unlocked read. */
2761 optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2762 error = sooptcopyout(sopt, &optval, sizeof(optval));
2763 break;
2764
2765 case LOCAL_CREDS_PERSISTENT:
2766 /* Unlocked read. */
2767 optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2768 error = sooptcopyout(sopt, &optval, sizeof(optval));
2769 break;
2770
2771 default:
2772 error = EOPNOTSUPP;
2773 break;
2774 }
2775 break;
2776
2777 case SOPT_SET:
2778 switch (sopt->sopt_name) {
2779 case LOCAL_CREDS:
2780 case LOCAL_CREDS_PERSISTENT:
2781 error = sooptcopyin(sopt, &optval, sizeof(optval),
2782 sizeof(optval));
2783 if (error)
2784 break;
2785
2786 #define OPTSET(bit, exclusive) do { \
2787 UNP_PCB_LOCK(unp); \
2788 if (optval) { \
2789 if ((unp->unp_flags & (exclusive)) != 0) { \
2790 UNP_PCB_UNLOCK(unp); \
2791 error = EINVAL; \
2792 break; \
2793 } \
2794 unp->unp_flags |= (bit); \
2795 } else \
2796 unp->unp_flags &= ~(bit); \
2797 UNP_PCB_UNLOCK(unp); \
2798 } while (0)
2799
2800 switch (sopt->sopt_name) {
2801 case LOCAL_CREDS:
2802 OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2803 break;
2804
2805 case LOCAL_CREDS_PERSISTENT:
2806 OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2807 break;
2808
2809 default:
2810 break;
2811 }
2812 break;
2813 #undef OPTSET
2814 default:
2815 error = ENOPROTOOPT;
2816 break;
2817 }
2818 break;
2819
2820 default:
2821 error = EOPNOTSUPP;
2822 break;
2823 }
2824 return (error);
2825 }
2826
2827 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2828 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2829 {
2830
2831 return (unp_connectat(AT_FDCWD, so, nam, td, false));
2832 }
2833
2834 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2835 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2836 struct thread *td, bool return_locked)
2837 {
2838 struct mtx *vplock;
2839 struct sockaddr_un *soun;
2840 struct vnode *vp;
2841 struct socket *so2;
2842 struct unpcb *unp, *unp2, *unp3;
2843 struct nameidata nd;
2844 char buf[SOCK_MAXADDRLEN];
2845 struct sockaddr *sa;
2846 cap_rights_t rights;
2847 int error, len;
2848 bool connreq;
2849
2850 CURVNET_ASSERT_SET();
2851
2852 if (nam->sa_family != AF_UNIX)
2853 return (EAFNOSUPPORT);
2854 if (nam->sa_len > sizeof(struct sockaddr_un))
2855 return (EINVAL);
2856 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2857 if (len <= 0)
2858 return (EINVAL);
2859 soun = (struct sockaddr_un *)nam;
2860 bcopy(soun->sun_path, buf, len);
2861 buf[len] = 0;
2862
2863 error = 0;
2864 unp = sotounpcb(so);
2865 UNP_PCB_LOCK(unp);
2866 for (;;) {
2867 /*
2868 * Wait for connection state to stabilize. If a connection
2869 * already exists, give up. For datagram sockets, which permit
2870 * multiple consecutive connect(2) calls, upper layers are
2871 * responsible for disconnecting in advance of a subsequent
2872 * connect(2), but this is not synchronized with PCB connection
2873 * state.
2874 *
2875 * Also make sure that no threads are currently attempting to
2876 * lock the peer socket, to ensure that unp_conn cannot
2877 * transition between two valid sockets while locks are dropped.
2878 */
2879 if (SOLISTENING(so))
2880 error = EOPNOTSUPP;
2881 else if (unp->unp_conn != NULL)
2882 error = EISCONN;
2883 else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2884 error = EALREADY;
2885 }
2886 if (error != 0) {
2887 UNP_PCB_UNLOCK(unp);
2888 return (error);
2889 }
2890 if (unp->unp_pairbusy > 0) {
2891 unp->unp_flags |= UNP_WAITING;
2892 mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2893 continue;
2894 }
2895 break;
2896 }
2897 unp->unp_flags |= UNP_CONNECTING;
2898 UNP_PCB_UNLOCK(unp);
2899
2900 connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2901 if (connreq)
2902 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2903 else
2904 sa = NULL;
2905 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2906 UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2907 error = namei(&nd);
2908 if (error)
2909 vp = NULL;
2910 else
2911 vp = nd.ni_vp;
2912 ASSERT_VOP_LOCKED(vp, "unp_connect");
2913 if (error)
2914 goto bad;
2915 NDFREE_PNBUF(&nd);
2916
2917 if (vp->v_type != VSOCK) {
2918 error = ENOTSOCK;
2919 goto bad;
2920 }
2921 #ifdef MAC
2922 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2923 if (error)
2924 goto bad;
2925 #endif
2926 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2927 if (error)
2928 goto bad;
2929
2930 unp = sotounpcb(so);
2931 KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2932
2933 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2934 mtx_lock(vplock);
2935 VOP_UNP_CONNECT(vp, &unp2);
2936 if (unp2 == NULL) {
2937 error = ECONNREFUSED;
2938 goto bad2;
2939 }
2940 so2 = unp2->unp_socket;
2941 if (so->so_type != so2->so_type) {
2942 error = EPROTOTYPE;
2943 goto bad2;
2944 }
2945 if (connreq) {
2946 if (SOLISTENING(so2))
2947 so2 = solisten_clone(so2);
2948 else
2949 so2 = NULL;
2950 if (so2 == NULL) {
2951 error = ECONNREFUSED;
2952 goto bad2;
2953 }
2954 if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2955 sodealloc(so2);
2956 goto bad2;
2957 }
2958 unp3 = sotounpcb(so2);
2959 unp_pcb_lock_pair(unp2, unp3);
2960 if (unp2->unp_addr != NULL) {
2961 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2962 unp3->unp_addr = (struct sockaddr_un *) sa;
2963 sa = NULL;
2964 }
2965
2966 unp_copy_peercred(td, unp3, unp, unp2);
2967
2968 UNP_PCB_UNLOCK(unp2);
2969 unp2 = unp3;
2970
2971 /*
2972 * It is safe to block on the PCB lock here since unp2 is
2973 * nascent and cannot be connected to any other sockets.
2974 */
2975 UNP_PCB_LOCK(unp);
2976 #ifdef MAC
2977 mac_socketpeer_set_from_socket(so, so2);
2978 mac_socketpeer_set_from_socket(so2, so);
2979 #endif
2980 } else {
2981 unp_pcb_lock_pair(unp, unp2);
2982 }
2983 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2984 sotounpcb(so2) == unp2,
2985 ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2986 unp_connect2(so, so2, connreq);
2987 if (connreq)
2988 (void)solisten_enqueue(so2, SS_ISCONNECTED);
2989 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2990 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2991 unp->unp_flags &= ~UNP_CONNECTING;
2992 if (!return_locked)
2993 unp_pcb_unlock_pair(unp, unp2);
2994 bad2:
2995 mtx_unlock(vplock);
2996 bad:
2997 if (vp != NULL) {
2998 /*
2999 * If we are returning locked (called via uipc_sosend_dgram()),
3000 * we need to be sure that vput() won't sleep. This is
3001 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
3002 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
3003 */
3004 MPASS(!(return_locked && connreq));
3005 vput(vp);
3006 }
3007 free(sa, M_SONAME);
3008 if (__predict_false(error)) {
3009 UNP_PCB_LOCK(unp);
3010 KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
3011 ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
3012 unp->unp_flags &= ~UNP_CONNECTING;
3013 UNP_PCB_UNLOCK(unp);
3014 }
3015 return (error);
3016 }
3017
3018 /*
3019 * Set socket peer credentials at connection time.
3020 *
3021 * The client's PCB credentials are copied from its process structure. The
3022 * server's PCB credentials are copied from the socket on which it called
3023 * listen(2). uipc_listen cached that process's credentials at the time.
3024 */
3025 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)3026 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
3027 struct unpcb *server_unp, struct unpcb *listen_unp)
3028 {
3029 cru2xt(td, &client_unp->unp_peercred);
3030 client_unp->unp_flags |= UNP_HAVEPC;
3031
3032 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3033 sizeof(server_unp->unp_peercred));
3034 server_unp->unp_flags |= UNP_HAVEPC;
3035 client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3036 }
3037
3038 /*
3039 * unix/stream & unix/seqpacket version of soisconnected().
3040 *
3041 * The crucial thing we are doing here is setting up the uxst_peer linkage,
3042 * holding unp and receive buffer locks of the both sockets. The disconnect
3043 * procedure does the same. This gives as a safe way to access the peer in the
3044 * send(2) and recv(2) during the socket lifetime.
3045 *
3046 * The less important thing is event notification of the fact that a socket is
3047 * now connected. It is unusual for a software to put a socket into event
3048 * mechanism before connect(2), but is supposed to be supported. Note that
3049 * there can not be any sleeping I/O on the socket, yet, only presence in the
3050 * select/poll/kevent.
3051 *
3052 * This function can be called via two call paths:
3053 * 1) socketpair(2) - in this case socket has not been yet reported to userland
3054 * and just can't have any event notifications mechanisms set up. The
3055 * 'wakeup' boolean is always false.
3056 * 2) connect(2) of existing socket to a recent clone of a listener:
3057 * 2.1) Socket that connect(2)s will have 'wakeup' true. An application
3058 * could have already put it into event mechanism, is it shall be
3059 * reported as readable and as writable.
3060 * 2.2) Socket that was just cloned with solisten_clone(). Same as 1).
3061 */
3062 static void
unp_soisconnected(struct socket * so,bool wakeup)3063 unp_soisconnected(struct socket *so, bool wakeup)
3064 {
3065 struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3066 struct sockbuf *sb;
3067
3068 SOCK_LOCK_ASSERT(so);
3069 UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3070 UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3071 SOCK_RECVBUF_LOCK_ASSERT(so);
3072 SOCK_RECVBUF_LOCK_ASSERT(so2);
3073
3074 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3075 MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3076 SS_ISDISCONNECTING)) == 0);
3077 MPASS(so->so_qstate == SQ_NONE);
3078
3079 so->so_state &= ~SS_ISDISCONNECTED;
3080 so->so_state |= SS_ISCONNECTED;
3081
3082 sb = &so2->so_rcv;
3083 sb->uxst_peer = so;
3084
3085 if (wakeup) {
3086 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3087 sb = &so->so_rcv;
3088 selwakeuppri(sb->sb_sel, PSOCK);
3089 SOCK_SENDBUF_LOCK_ASSERT(so);
3090 sb = &so->so_snd;
3091 selwakeuppri(sb->sb_sel, PSOCK);
3092 SOCK_SENDBUF_UNLOCK(so);
3093 }
3094 }
3095
3096 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3097 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3098 {
3099 struct unpcb *unp;
3100 struct unpcb *unp2;
3101
3102 MPASS(so2->so_type == so->so_type);
3103 unp = sotounpcb(so);
3104 KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3105 unp2 = sotounpcb(so2);
3106 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3107
3108 UNP_PCB_LOCK_ASSERT(unp);
3109 UNP_PCB_LOCK_ASSERT(unp2);
3110 KASSERT(unp->unp_conn == NULL,
3111 ("%s: socket %p is already connected", __func__, unp));
3112
3113 unp->unp_conn = unp2;
3114 unp_pcb_hold(unp2);
3115 unp_pcb_hold(unp);
3116 switch (so->so_type) {
3117 case SOCK_DGRAM:
3118 UNP_REF_LIST_LOCK();
3119 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3120 UNP_REF_LIST_UNLOCK();
3121 soisconnected(so);
3122 break;
3123
3124 case SOCK_STREAM:
3125 case SOCK_SEQPACKET:
3126 KASSERT(unp2->unp_conn == NULL,
3127 ("%s: socket %p is already connected", __func__, unp2));
3128 unp2->unp_conn = unp;
3129 SOCK_LOCK(so);
3130 SOCK_LOCK(so2);
3131 if (wakeup) /* Avoid LOR with receive buffer lock. */
3132 SOCK_SENDBUF_LOCK(so);
3133 SOCK_RECVBUF_LOCK(so);
3134 SOCK_RECVBUF_LOCK(so2);
3135 unp_soisconnected(so, wakeup); /* Will unlock send buffer. */
3136 unp_soisconnected(so2, false);
3137 SOCK_RECVBUF_UNLOCK(so);
3138 SOCK_RECVBUF_UNLOCK(so2);
3139 SOCK_UNLOCK(so);
3140 SOCK_UNLOCK(so2);
3141 break;
3142
3143 default:
3144 panic("unp_connect2");
3145 }
3146 }
3147
3148 static void
unp_soisdisconnected(struct socket * so)3149 unp_soisdisconnected(struct socket *so)
3150 {
3151 SOCK_LOCK_ASSERT(so);
3152 SOCK_RECVBUF_LOCK_ASSERT(so);
3153 MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3154 MPASS(!SOLISTENING(so));
3155 MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3156 SS_ISDISCONNECTED)) == 0);
3157 MPASS(so->so_state & SS_ISCONNECTED);
3158
3159 so->so_state |= SS_ISDISCONNECTED;
3160 so->so_state &= ~SS_ISCONNECTED;
3161 so->so_rcv.uxst_peer = NULL;
3162 socantrcvmore_locked(so);
3163 }
3164
3165 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3166 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3167 {
3168 struct socket *so, *so2;
3169 struct mbuf *m = NULL;
3170 #ifdef INVARIANTS
3171 struct unpcb *unptmp;
3172 #endif
3173
3174 UNP_PCB_LOCK_ASSERT(unp);
3175 UNP_PCB_LOCK_ASSERT(unp2);
3176 KASSERT(unp->unp_conn == unp2,
3177 ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3178
3179 unp->unp_conn = NULL;
3180 so = unp->unp_socket;
3181 so2 = unp2->unp_socket;
3182 switch (unp->unp_socket->so_type) {
3183 case SOCK_DGRAM:
3184 /*
3185 * Remove our send socket buffer from the peer's receive buffer.
3186 * Move the data to the receive buffer only if it is empty.
3187 * This is a protection against a scenario where a peer
3188 * connects, floods and disconnects, effectively blocking
3189 * sendto() from unconnected sockets.
3190 */
3191 SOCK_RECVBUF_LOCK(so2);
3192 if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3193 TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3194 uxdg_clist);
3195 if (__predict_true((so2->so_rcv.sb_state &
3196 SBS_CANTRCVMORE) == 0) &&
3197 STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3198 STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3199 &so->so_snd.uxdg_mb);
3200 so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3201 so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3202 so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3203 } else {
3204 m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3205 STAILQ_INIT(&so->so_snd.uxdg_mb);
3206 so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3207 so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3208 so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3209 so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3210 }
3211 /* Note: so may reconnect. */
3212 so->so_snd.uxdg_cc = 0;
3213 so->so_snd.uxdg_ctl = 0;
3214 so->so_snd.uxdg_mbcnt = 0;
3215 }
3216 SOCK_RECVBUF_UNLOCK(so2);
3217 UNP_REF_LIST_LOCK();
3218 #ifdef INVARIANTS
3219 LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3220 if (unptmp == unp)
3221 break;
3222 }
3223 KASSERT(unptmp != NULL,
3224 ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3225 #endif
3226 LIST_REMOVE(unp, unp_reflink);
3227 UNP_REF_LIST_UNLOCK();
3228 SOCK_LOCK(so);
3229 so->so_state &= ~SS_ISCONNECTED;
3230 SOCK_UNLOCK(so);
3231 break;
3232
3233 case SOCK_STREAM:
3234 case SOCK_SEQPACKET:
3235 SOCK_LOCK(so);
3236 SOCK_LOCK(so2);
3237 SOCK_RECVBUF_LOCK(so);
3238 SOCK_RECVBUF_LOCK(so2);
3239 unp_soisdisconnected(so);
3240 MPASS(unp2->unp_conn == unp);
3241 unp2->unp_conn = NULL;
3242 unp_soisdisconnected(so2);
3243 SOCK_UNLOCK(so);
3244 SOCK_UNLOCK(so2);
3245 break;
3246 }
3247
3248 if (unp == unp2) {
3249 unp_pcb_rele_notlast(unp);
3250 if (!unp_pcb_rele(unp))
3251 UNP_PCB_UNLOCK(unp);
3252 } else {
3253 if (!unp_pcb_rele(unp))
3254 UNP_PCB_UNLOCK(unp);
3255 if (!unp_pcb_rele(unp2))
3256 UNP_PCB_UNLOCK(unp2);
3257 }
3258
3259 if (m != NULL) {
3260 unp_scan(m, unp_freerights);
3261 m_freemp(m);
3262 }
3263 }
3264
3265 /*
3266 * unp_pcblist() walks the global list of struct unpcb's to generate a
3267 * pointer list, bumping the refcount on each unpcb. It then copies them out
3268 * sequentially, validating the generation number on each to see if it has
3269 * been detached. All of this is necessary because copyout() may sleep on
3270 * disk I/O.
3271 */
3272 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3273 unp_pcblist(SYSCTL_HANDLER_ARGS)
3274 {
3275 struct unpcb *unp, **unp_list;
3276 unp_gen_t gencnt;
3277 struct xunpgen *xug;
3278 struct unp_head *head;
3279 struct xunpcb *xu;
3280 u_int i;
3281 int error, n;
3282
3283 switch ((intptr_t)arg1) {
3284 case SOCK_STREAM:
3285 head = &unp_shead;
3286 break;
3287
3288 case SOCK_DGRAM:
3289 head = &unp_dhead;
3290 break;
3291
3292 case SOCK_SEQPACKET:
3293 head = &unp_sphead;
3294 break;
3295
3296 default:
3297 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3298 }
3299
3300 /*
3301 * The process of preparing the PCB list is too time-consuming and
3302 * resource-intensive to repeat twice on every request.
3303 */
3304 if (req->oldptr == NULL) {
3305 n = unp_count;
3306 req->oldidx = 2 * (sizeof *xug)
3307 + (n + n/8) * sizeof(struct xunpcb);
3308 return (0);
3309 }
3310
3311 if (req->newptr != NULL)
3312 return (EPERM);
3313
3314 /*
3315 * OK, now we're committed to doing something.
3316 */
3317 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3318 UNP_LINK_RLOCK();
3319 gencnt = unp_gencnt;
3320 n = unp_count;
3321 UNP_LINK_RUNLOCK();
3322
3323 xug->xug_len = sizeof *xug;
3324 xug->xug_count = n;
3325 xug->xug_gen = gencnt;
3326 xug->xug_sogen = so_gencnt;
3327 error = SYSCTL_OUT(req, xug, sizeof *xug);
3328 if (error) {
3329 free(xug, M_TEMP);
3330 return (error);
3331 }
3332
3333 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3334
3335 UNP_LINK_RLOCK();
3336 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3337 unp = LIST_NEXT(unp, unp_link)) {
3338 UNP_PCB_LOCK(unp);
3339 if (unp->unp_gencnt <= gencnt) {
3340 if (cr_cansee(req->td->td_ucred,
3341 unp->unp_socket->so_cred)) {
3342 UNP_PCB_UNLOCK(unp);
3343 continue;
3344 }
3345 unp_list[i++] = unp;
3346 unp_pcb_hold(unp);
3347 }
3348 UNP_PCB_UNLOCK(unp);
3349 }
3350 UNP_LINK_RUNLOCK();
3351 n = i; /* In case we lost some during malloc. */
3352
3353 error = 0;
3354 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3355 for (i = 0; i < n; i++) {
3356 unp = unp_list[i];
3357 UNP_PCB_LOCK(unp);
3358 if (unp_pcb_rele(unp))
3359 continue;
3360
3361 if (unp->unp_gencnt <= gencnt) {
3362 xu->xu_len = sizeof *xu;
3363 xu->xu_unpp = (uintptr_t)unp;
3364 /*
3365 * XXX - need more locking here to protect against
3366 * connect/disconnect races for SMP.
3367 */
3368 if (unp->unp_addr != NULL)
3369 bcopy(unp->unp_addr, &xu->xu_addr,
3370 unp->unp_addr->sun_len);
3371 else
3372 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3373 if (unp->unp_conn != NULL &&
3374 unp->unp_conn->unp_addr != NULL)
3375 bcopy(unp->unp_conn->unp_addr,
3376 &xu->xu_caddr,
3377 unp->unp_conn->unp_addr->sun_len);
3378 else
3379 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3380 xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3381 xu->unp_conn = (uintptr_t)unp->unp_conn;
3382 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3383 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3384 xu->unp_gencnt = unp->unp_gencnt;
3385 sotoxsocket(unp->unp_socket, &xu->xu_socket);
3386 UNP_PCB_UNLOCK(unp);
3387 error = SYSCTL_OUT(req, xu, sizeof *xu);
3388 } else {
3389 UNP_PCB_UNLOCK(unp);
3390 }
3391 }
3392 free(xu, M_TEMP);
3393 if (!error) {
3394 /*
3395 * Give the user an updated idea of our state. If the
3396 * generation differs from what we told her before, she knows
3397 * that something happened while we were processing this
3398 * request, and it might be necessary to retry.
3399 */
3400 xug->xug_gen = unp_gencnt;
3401 xug->xug_sogen = so_gencnt;
3402 xug->xug_count = unp_count;
3403 error = SYSCTL_OUT(req, xug, sizeof *xug);
3404 }
3405 free(unp_list, M_TEMP);
3406 free(xug, M_TEMP);
3407 return (error);
3408 }
3409
3410 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3411 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3412 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3413 "List of active local datagram sockets");
3414 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3415 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3416 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3417 "List of active local stream sockets");
3418 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3419 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3420 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3421 "List of active local seqpacket sockets");
3422
3423 static void
unp_drop(struct unpcb * unp)3424 unp_drop(struct unpcb *unp)
3425 {
3426 struct socket *so;
3427 struct unpcb *unp2;
3428
3429 /*
3430 * Regardless of whether the socket's peer dropped the connection
3431 * with this socket by aborting or disconnecting, POSIX requires
3432 * that ECONNRESET is returned on next connected send(2) in case of
3433 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3434 */
3435 UNP_PCB_LOCK(unp);
3436 if ((so = unp->unp_socket) != NULL)
3437 so->so_error =
3438 so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3439 if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3440 /* Last reference dropped in unp_disconnect(). */
3441 unp_pcb_rele_notlast(unp);
3442 unp_disconnect(unp, unp2);
3443 } else if (!unp_pcb_rele(unp)) {
3444 UNP_PCB_UNLOCK(unp);
3445 }
3446 }
3447
3448 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3449 unp_freerights(struct filedescent **fdep, int fdcount)
3450 {
3451 struct file *fp;
3452 int i;
3453
3454 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3455
3456 for (i = 0; i < fdcount; i++) {
3457 fp = fdep[i]->fde_file;
3458 filecaps_free(&fdep[i]->fde_caps);
3459 unp_discard(fp);
3460 }
3461 free(fdep[0], M_FILECAPS);
3462 }
3463
3464 static bool
restrict_rights(struct file * fp,struct thread * td)3465 restrict_rights(struct file *fp, struct thread *td)
3466 {
3467 struct prison *prison1, *prison2;
3468
3469 prison1 = fp->f_cred->cr_prison;
3470 prison2 = td->td_ucred->cr_prison;
3471 return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3472 prison2 != &prison0);
3473 }
3474
3475 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3476 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3477 {
3478 struct thread *td = curthread; /* XXX */
3479 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3480 int *fdp;
3481 struct filedesc *fdesc = td->td_proc->p_fd;
3482 struct filedescent **fdep;
3483 void *data;
3484 socklen_t clen = control->m_len, datalen;
3485 int error, fdflags, newfds;
3486 u_int newlen;
3487
3488 UNP_LINK_UNLOCK_ASSERT();
3489
3490 fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) |
3491 ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0);
3492
3493 error = 0;
3494 if (controlp != NULL) /* controlp == NULL => free control messages */
3495 *controlp = NULL;
3496 while (cm != NULL) {
3497 MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3498
3499 data = CMSG_DATA(cm);
3500 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3501 if (cm->cmsg_level == SOL_SOCKET
3502 && cm->cmsg_type == SCM_RIGHTS) {
3503 newfds = datalen / sizeof(*fdep);
3504 if (newfds == 0)
3505 goto next;
3506 fdep = data;
3507
3508 /* If we're not outputting the descriptors free them. */
3509 if (error || controlp == NULL) {
3510 unp_freerights(fdep, newfds);
3511 goto next;
3512 }
3513 FILEDESC_XLOCK(fdesc);
3514
3515 /*
3516 * Now change each pointer to an fd in the global
3517 * table to an integer that is the index to the local
3518 * fd table entry that we set up to point to the
3519 * global one we are transferring.
3520 */
3521 newlen = newfds * sizeof(int);
3522 *controlp = sbcreatecontrol(NULL, newlen,
3523 SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3524
3525 fdp = (int *)
3526 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3527 if ((error = fdallocn(td, 0, fdp, newfds))) {
3528 FILEDESC_XUNLOCK(fdesc);
3529 unp_freerights(fdep, newfds);
3530 m_freem(*controlp);
3531 *controlp = NULL;
3532 goto next;
3533 }
3534 for (int i = 0; i < newfds; i++, fdp++) {
3535 struct file *fp;
3536
3537 fp = fdep[i]->fde_file;
3538 _finstall(fdesc, fp, *fdp, fdflags |
3539 (restrict_rights(fp, td) ?
3540 O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3541 unp_externalize_fp(fp);
3542 }
3543
3544 /*
3545 * The new type indicates that the mbuf data refers to
3546 * kernel resources that may need to be released before
3547 * the mbuf is freed.
3548 */
3549 m_chtype(*controlp, MT_EXTCONTROL);
3550 FILEDESC_XUNLOCK(fdesc);
3551 free(fdep[0], M_FILECAPS);
3552 } else {
3553 /* We can just copy anything else across. */
3554 if (error || controlp == NULL)
3555 goto next;
3556 *controlp = sbcreatecontrol(NULL, datalen,
3557 cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3558 bcopy(data,
3559 CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3560 datalen);
3561 }
3562 controlp = &(*controlp)->m_next;
3563
3564 next:
3565 if (CMSG_SPACE(datalen) < clen) {
3566 clen -= CMSG_SPACE(datalen);
3567 cm = (struct cmsghdr *)
3568 ((caddr_t)cm + CMSG_SPACE(datalen));
3569 } else {
3570 clen = 0;
3571 cm = NULL;
3572 }
3573 }
3574
3575 return (error);
3576 }
3577
3578 static void
unp_zone_change(void * tag)3579 unp_zone_change(void *tag)
3580 {
3581
3582 uma_zone_set_max(unp_zone, maxsockets);
3583 }
3584
3585 #ifdef INVARIANTS
3586 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3587 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3588 {
3589 struct unpcb *unp;
3590
3591 unp = mem;
3592
3593 KASSERT(LIST_EMPTY(&unp->unp_refs),
3594 ("%s: unpcb %p has lingering refs", __func__, unp));
3595 KASSERT(unp->unp_socket == NULL,
3596 ("%s: unpcb %p has socket backpointer", __func__, unp));
3597 KASSERT(unp->unp_vnode == NULL,
3598 ("%s: unpcb %p has vnode references", __func__, unp));
3599 KASSERT(unp->unp_conn == NULL,
3600 ("%s: unpcb %p is still connected", __func__, unp));
3601 KASSERT(unp->unp_addr == NULL,
3602 ("%s: unpcb %p has leaked addr", __func__, unp));
3603 }
3604 #endif
3605
3606 static void
unp_init(void * arg __unused)3607 unp_init(void *arg __unused)
3608 {
3609 uma_dtor dtor;
3610
3611 #ifdef INVARIANTS
3612 dtor = unp_zdtor;
3613 #else
3614 dtor = NULL;
3615 #endif
3616 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3617 NULL, NULL, UMA_ALIGN_CACHE, 0);
3618 uma_zone_set_max(unp_zone, maxsockets);
3619 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3620 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3621 NULL, EVENTHANDLER_PRI_ANY);
3622 LIST_INIT(&unp_dhead);
3623 LIST_INIT(&unp_shead);
3624 LIST_INIT(&unp_sphead);
3625 SLIST_INIT(&unp_defers);
3626 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3627 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3628 UNP_LINK_LOCK_INIT();
3629 UNP_DEFERRED_LOCK_INIT();
3630 unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3631 }
3632 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3633
3634 static void
unp_internalize_cleanup_rights(struct mbuf * control)3635 unp_internalize_cleanup_rights(struct mbuf *control)
3636 {
3637 struct cmsghdr *cp;
3638 struct mbuf *m;
3639 void *data;
3640 socklen_t datalen;
3641
3642 for (m = control; m != NULL; m = m->m_next) {
3643 cp = mtod(m, struct cmsghdr *);
3644 if (cp->cmsg_level != SOL_SOCKET ||
3645 cp->cmsg_type != SCM_RIGHTS)
3646 continue;
3647 data = CMSG_DATA(cp);
3648 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3649 unp_freerights(data, datalen / sizeof(struct filedesc *));
3650 }
3651 }
3652
3653 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3654 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3655 {
3656 struct proc *p;
3657 struct filedesc *fdesc;
3658 struct bintime *bt;
3659 struct cmsghdr *cm;
3660 struct cmsgcred *cmcred;
3661 struct mbuf *m;
3662 struct filedescent *fde, **fdep, *fdev;
3663 struct file *fp;
3664 struct timeval *tv;
3665 struct timespec *ts;
3666 void *data;
3667 socklen_t clen, datalen;
3668 int i, j, error, *fdp, oldfds;
3669 u_int newlen;
3670
3671 MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3672 UNP_LINK_UNLOCK_ASSERT();
3673
3674 p = td->td_proc;
3675 fdesc = p->p_fd;
3676 error = 0;
3677 *mc = MCHAIN_INITIALIZER(mc);
3678 for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3679 data = CMSG_DATA(cm);
3680
3681 clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3682 clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3683 (char *)cm + cm->cmsg_len >= (char *)data;
3684
3685 clen -= min(CMSG_SPACE(datalen), clen),
3686 cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3687 data = CMSG_DATA(cm)) {
3688 datalen = (char *)cm + cm->cmsg_len - (char *)data;
3689 switch (cm->cmsg_type) {
3690 case SCM_CREDS:
3691 m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3692 SOL_SOCKET, M_WAITOK);
3693 cmcred = (struct cmsgcred *)
3694 CMSG_DATA(mtod(m, struct cmsghdr *));
3695 cmcred->cmcred_pid = p->p_pid;
3696 cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3697 cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3698 cmcred->cmcred_euid = td->td_ucred->cr_uid;
3699 _Static_assert(CMGROUP_MAX >= 1,
3700 "Room needed for the effective GID.");
3701 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups + 1,
3702 CMGROUP_MAX);
3703 cmcred->cmcred_groups[0] = td->td_ucred->cr_gid;
3704 for (i = 1; i < cmcred->cmcred_ngroups; i++)
3705 cmcred->cmcred_groups[i] =
3706 td->td_ucred->cr_groups[i - 1];
3707 break;
3708
3709 case SCM_RIGHTS:
3710 oldfds = datalen / sizeof (int);
3711 if (oldfds == 0)
3712 continue;
3713 /* On some machines sizeof pointer is bigger than
3714 * sizeof int, so we need to check if data fits into
3715 * single mbuf. We could allocate several mbufs, and
3716 * unp_externalize() should even properly handle that.
3717 * But it is not worth to complicate the code for an
3718 * insane scenario of passing over 200 file descriptors
3719 * at once.
3720 */
3721 newlen = oldfds * sizeof(fdep[0]);
3722 if (CMSG_SPACE(newlen) > MCLBYTES) {
3723 error = EMSGSIZE;
3724 goto out;
3725 }
3726 /*
3727 * Check that all the FDs passed in refer to legal
3728 * files. If not, reject the entire operation.
3729 */
3730 fdp = data;
3731 FILEDESC_SLOCK(fdesc);
3732 for (i = 0; i < oldfds; i++, fdp++) {
3733 fp = fget_noref(fdesc, *fdp);
3734 if (fp == NULL) {
3735 FILEDESC_SUNLOCK(fdesc);
3736 error = EBADF;
3737 goto out;
3738 }
3739 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3740 FILEDESC_SUNLOCK(fdesc);
3741 error = EOPNOTSUPP;
3742 goto out;
3743 }
3744 }
3745
3746 /*
3747 * Now replace the integer FDs with pointers to the
3748 * file structure and capability rights.
3749 */
3750 m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3751 SOL_SOCKET, M_WAITOK);
3752 fdp = data;
3753 for (i = 0; i < oldfds; i++, fdp++) {
3754 if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3755 fdp = data;
3756 for (j = 0; j < i; j++, fdp++) {
3757 fdrop(fdesc->fd_ofiles[*fdp].
3758 fde_file, td);
3759 }
3760 FILEDESC_SUNLOCK(fdesc);
3761 error = EBADF;
3762 goto out;
3763 }
3764 }
3765 fdp = data;
3766 fdep = (struct filedescent **)
3767 CMSG_DATA(mtod(m, struct cmsghdr *));
3768 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3769 M_WAITOK);
3770 for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3771 fde = &fdesc->fd_ofiles[*fdp];
3772 fdep[i] = fdev;
3773 fdep[i]->fde_file = fde->fde_file;
3774 filecaps_copy(&fde->fde_caps,
3775 &fdep[i]->fde_caps, true);
3776 unp_internalize_fp(fdep[i]->fde_file);
3777 }
3778 FILEDESC_SUNLOCK(fdesc);
3779 break;
3780
3781 case SCM_TIMESTAMP:
3782 m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3783 SOL_SOCKET, M_WAITOK);
3784 tv = (struct timeval *)
3785 CMSG_DATA(mtod(m, struct cmsghdr *));
3786 microtime(tv);
3787 break;
3788
3789 case SCM_BINTIME:
3790 m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3791 SOL_SOCKET, M_WAITOK);
3792 bt = (struct bintime *)
3793 CMSG_DATA(mtod(m, struct cmsghdr *));
3794 bintime(bt);
3795 break;
3796
3797 case SCM_REALTIME:
3798 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3799 SOL_SOCKET, M_WAITOK);
3800 ts = (struct timespec *)
3801 CMSG_DATA(mtod(m, struct cmsghdr *));
3802 nanotime(ts);
3803 break;
3804
3805 case SCM_MONOTONIC:
3806 m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3807 SOL_SOCKET, M_WAITOK);
3808 ts = (struct timespec *)
3809 CMSG_DATA(mtod(m, struct cmsghdr *));
3810 nanouptime(ts);
3811 break;
3812
3813 default:
3814 error = EINVAL;
3815 goto out;
3816 }
3817
3818 mc_append(mc, m);
3819 }
3820 if (clen > 0)
3821 error = EINVAL;
3822
3823 out:
3824 if (error != 0)
3825 unp_internalize_cleanup_rights(mc_first(mc));
3826 m_freem(control);
3827 return (error);
3828 }
3829
3830 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3831 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3832 {
3833 struct mbuf *m, *n, *n_prev;
3834 const struct cmsghdr *cm;
3835 int ngroups, i, cmsgtype;
3836 size_t ctrlsz;
3837
3838 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3839 if (mode & UNP_WANTCRED_ALWAYS) {
3840 ctrlsz = SOCKCRED2SIZE(ngroups);
3841 cmsgtype = SCM_CREDS2;
3842 } else {
3843 ctrlsz = SOCKCREDSIZE(ngroups);
3844 cmsgtype = SCM_CREDS;
3845 }
3846
3847 /* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3848 m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3849 if (m == NULL)
3850 return;
3851 MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3852
3853 if (mode & UNP_WANTCRED_ALWAYS) {
3854 struct sockcred2 *sc;
3855
3856 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3857 sc->sc_version = 0;
3858 sc->sc_pid = td->td_proc->p_pid;
3859 sc->sc_uid = td->td_ucred->cr_ruid;
3860 sc->sc_euid = td->td_ucred->cr_uid;
3861 sc->sc_gid = td->td_ucred->cr_rgid;
3862 sc->sc_egid = td->td_ucred->cr_gid;
3863 sc->sc_ngroups = ngroups;
3864 for (i = 0; i < sc->sc_ngroups; i++)
3865 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3866 } else {
3867 struct sockcred *sc;
3868
3869 sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3870 sc->sc_uid = td->td_ucred->cr_ruid;
3871 sc->sc_euid = td->td_ucred->cr_uid;
3872 sc->sc_gid = td->td_ucred->cr_rgid;
3873 sc->sc_egid = td->td_ucred->cr_gid;
3874 sc->sc_ngroups = ngroups;
3875 for (i = 0; i < sc->sc_ngroups; i++)
3876 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3877 }
3878
3879 /*
3880 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3881 * created SCM_CREDS control message (struct sockcred) has another
3882 * format.
3883 */
3884 if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3885 STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3886 cm = mtod(n, struct cmsghdr *);
3887 if (cm->cmsg_level == SOL_SOCKET &&
3888 cm->cmsg_type == SCM_CREDS) {
3889 mc_remove(mc, n);
3890 m_free(n);
3891 }
3892 }
3893
3894 /* Prepend it to the head. */
3895 mc_prepend(mc, m);
3896 }
3897
3898 static struct unpcb *
fptounp(struct file * fp)3899 fptounp(struct file *fp)
3900 {
3901 struct socket *so;
3902
3903 if (fp->f_type != DTYPE_SOCKET)
3904 return (NULL);
3905 if ((so = fp->f_data) == NULL)
3906 return (NULL);
3907 if (so->so_proto->pr_domain != &localdomain)
3908 return (NULL);
3909 return sotounpcb(so);
3910 }
3911
3912 static void
unp_discard(struct file * fp)3913 unp_discard(struct file *fp)
3914 {
3915 struct unp_defer *dr;
3916
3917 if (unp_externalize_fp(fp)) {
3918 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3919 dr->ud_fp = fp;
3920 UNP_DEFERRED_LOCK();
3921 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3922 UNP_DEFERRED_UNLOCK();
3923 atomic_add_int(&unp_defers_count, 1);
3924 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3925 } else
3926 closef_nothread(fp);
3927 }
3928
3929 static void
unp_process_defers(void * arg __unused,int pending)3930 unp_process_defers(void *arg __unused, int pending)
3931 {
3932 struct unp_defer *dr;
3933 SLIST_HEAD(, unp_defer) drl;
3934 int count;
3935
3936 SLIST_INIT(&drl);
3937 for (;;) {
3938 UNP_DEFERRED_LOCK();
3939 if (SLIST_FIRST(&unp_defers) == NULL) {
3940 UNP_DEFERRED_UNLOCK();
3941 break;
3942 }
3943 SLIST_SWAP(&unp_defers, &drl, unp_defer);
3944 UNP_DEFERRED_UNLOCK();
3945 count = 0;
3946 while ((dr = SLIST_FIRST(&drl)) != NULL) {
3947 SLIST_REMOVE_HEAD(&drl, ud_link);
3948 closef_nothread(dr->ud_fp);
3949 free(dr, M_TEMP);
3950 count++;
3951 }
3952 atomic_add_int(&unp_defers_count, -count);
3953 }
3954 }
3955
3956 static void
unp_internalize_fp(struct file * fp)3957 unp_internalize_fp(struct file *fp)
3958 {
3959 struct unpcb *unp;
3960
3961 UNP_LINK_WLOCK();
3962 if ((unp = fptounp(fp)) != NULL) {
3963 unp->unp_file = fp;
3964 unp->unp_msgcount++;
3965 }
3966 unp_rights++;
3967 UNP_LINK_WUNLOCK();
3968 }
3969
3970 static int
unp_externalize_fp(struct file * fp)3971 unp_externalize_fp(struct file *fp)
3972 {
3973 struct unpcb *unp;
3974 int ret;
3975
3976 UNP_LINK_WLOCK();
3977 if ((unp = fptounp(fp)) != NULL) {
3978 unp->unp_msgcount--;
3979 ret = 1;
3980 } else
3981 ret = 0;
3982 unp_rights--;
3983 UNP_LINK_WUNLOCK();
3984 return (ret);
3985 }
3986
3987 /*
3988 * unp_defer indicates whether additional work has been defered for a future
3989 * pass through unp_gc(). It is thread local and does not require explicit
3990 * synchronization.
3991 */
3992 static int unp_marked;
3993
3994 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3995 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3996 {
3997 struct unpcb *unp;
3998 struct file *fp;
3999 int i;
4000
4001 /*
4002 * This function can only be called from the gc task.
4003 */
4004 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4005 ("%s: not on gc callout", __func__));
4006 UNP_LINK_LOCK_ASSERT();
4007
4008 for (i = 0; i < fdcount; i++) {
4009 fp = fdep[i]->fde_file;
4010 if ((unp = fptounp(fp)) == NULL)
4011 continue;
4012 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4013 continue;
4014 unp->unp_gcrefs--;
4015 }
4016 }
4017
4018 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)4019 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
4020 {
4021 struct unpcb *unp;
4022 struct file *fp;
4023 int i;
4024
4025 /*
4026 * This function can only be called from the gc task.
4027 */
4028 KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
4029 ("%s: not on gc callout", __func__));
4030 UNP_LINK_LOCK_ASSERT();
4031
4032 for (i = 0; i < fdcount; i++) {
4033 fp = fdep[i]->fde_file;
4034 if ((unp = fptounp(fp)) == NULL)
4035 continue;
4036 if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4037 continue;
4038 unp->unp_gcrefs++;
4039 unp_marked++;
4040 }
4041 }
4042
4043 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4044 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4045 {
4046 struct sockbuf *sb;
4047
4048 SOCK_LOCK_ASSERT(so);
4049
4050 if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4051 return;
4052
4053 SOCK_RECVBUF_LOCK(so);
4054 switch (so->so_type) {
4055 case SOCK_DGRAM:
4056 unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4057 unp_scan(so->so_rcv.uxdg_peeked, op);
4058 TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4059 unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4060 break;
4061 case SOCK_STREAM:
4062 case SOCK_SEQPACKET:
4063 unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4064 break;
4065 }
4066 SOCK_RECVBUF_UNLOCK(so);
4067 }
4068
4069 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4070 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4071 {
4072 struct socket *so, *soa;
4073
4074 so = unp->unp_socket;
4075 SOCK_LOCK(so);
4076 if (SOLISTENING(so)) {
4077 /*
4078 * Mark all sockets in our accept queue.
4079 */
4080 TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4081 unp_scan_socket(soa, op);
4082 } else {
4083 /*
4084 * Mark all sockets we reference with RIGHTS.
4085 */
4086 unp_scan_socket(so, op);
4087 }
4088 SOCK_UNLOCK(so);
4089 }
4090
4091 static int unp_recycled;
4092 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4093 "Number of unreachable sockets claimed by the garbage collector.");
4094
4095 static int unp_taskcount;
4096 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4097 "Number of times the garbage collector has run.");
4098
4099 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4100 "Number of active local sockets.");
4101
4102 static void
unp_gc(__unused void * arg,int pending)4103 unp_gc(__unused void *arg, int pending)
4104 {
4105 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4106 NULL };
4107 struct unp_head **head;
4108 struct unp_head unp_deadhead; /* List of potentially-dead sockets. */
4109 struct file *f, **unref;
4110 struct unpcb *unp, *unptmp;
4111 int i, total, unp_unreachable;
4112
4113 LIST_INIT(&unp_deadhead);
4114 unp_taskcount++;
4115 UNP_LINK_RLOCK();
4116 /*
4117 * First determine which sockets may be in cycles.
4118 */
4119 unp_unreachable = 0;
4120
4121 for (head = heads; *head != NULL; head++)
4122 LIST_FOREACH(unp, *head, unp_link) {
4123 KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4124 ("%s: unp %p has unexpected gc flags 0x%x",
4125 __func__, unp, (unsigned int)unp->unp_gcflag));
4126
4127 f = unp->unp_file;
4128
4129 /*
4130 * Check for an unreachable socket potentially in a
4131 * cycle. It must be in a queue as indicated by
4132 * msgcount, and this must equal the file reference
4133 * count. Note that when msgcount is 0 the file is
4134 * NULL.
4135 */
4136 if (f != NULL && unp->unp_msgcount != 0 &&
4137 refcount_load(&f->f_count) == unp->unp_msgcount) {
4138 LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4139 unp->unp_gcflag |= UNPGC_DEAD;
4140 unp->unp_gcrefs = unp->unp_msgcount;
4141 unp_unreachable++;
4142 }
4143 }
4144
4145 /*
4146 * Scan all sockets previously marked as potentially being in a cycle
4147 * and remove the references each socket holds on any UNPGC_DEAD
4148 * sockets in its queue. After this step, all remaining references on
4149 * sockets marked UNPGC_DEAD should not be part of any cycle.
4150 */
4151 LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4152 unp_gc_scan(unp, unp_remove_dead_ref);
4153
4154 /*
4155 * If a socket still has a non-negative refcount, it cannot be in a
4156 * cycle. In this case increment refcount of all children iteratively.
4157 * Stop the scan once we do a complete loop without discovering
4158 * a new reachable socket.
4159 */
4160 do {
4161 unp_marked = 0;
4162 LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4163 if (unp->unp_gcrefs > 0) {
4164 unp->unp_gcflag &= ~UNPGC_DEAD;
4165 LIST_REMOVE(unp, unp_dead);
4166 KASSERT(unp_unreachable > 0,
4167 ("%s: unp_unreachable underflow.",
4168 __func__));
4169 unp_unreachable--;
4170 unp_gc_scan(unp, unp_restore_undead_ref);
4171 }
4172 } while (unp_marked);
4173
4174 UNP_LINK_RUNLOCK();
4175
4176 if (unp_unreachable == 0)
4177 return;
4178
4179 /*
4180 * Allocate space for a local array of dead unpcbs.
4181 * TODO: can this path be simplified by instead using the local
4182 * dead list at unp_deadhead, after taking out references
4183 * on the file object and/or unpcb and dropping the link lock?
4184 */
4185 unref = malloc(unp_unreachable * sizeof(struct file *),
4186 M_TEMP, M_WAITOK);
4187
4188 /*
4189 * Iterate looking for sockets which have been specifically marked
4190 * as unreachable and store them locally.
4191 */
4192 UNP_LINK_RLOCK();
4193 total = 0;
4194 LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4195 KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4196 ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4197 unp->unp_gcflag &= ~UNPGC_DEAD;
4198 f = unp->unp_file;
4199 if (unp->unp_msgcount == 0 || f == NULL ||
4200 refcount_load(&f->f_count) != unp->unp_msgcount ||
4201 !fhold(f))
4202 continue;
4203 unref[total++] = f;
4204 KASSERT(total <= unp_unreachable,
4205 ("%s: incorrect unreachable count.", __func__));
4206 }
4207 UNP_LINK_RUNLOCK();
4208
4209 /*
4210 * Now flush all sockets, free'ing rights. This will free the
4211 * struct files associated with these sockets but leave each socket
4212 * with one remaining ref.
4213 */
4214 for (i = 0; i < total; i++) {
4215 struct socket *so;
4216
4217 so = unref[i]->f_data;
4218 if (!SOLISTENING(so)) {
4219 CURVNET_SET(so->so_vnet);
4220 socantrcvmore(so);
4221 unp_dispose(so);
4222 CURVNET_RESTORE();
4223 }
4224 }
4225
4226 /*
4227 * And finally release the sockets so they can be reclaimed.
4228 */
4229 for (i = 0; i < total; i++)
4230 fdrop(unref[i], NULL);
4231 unp_recycled += total;
4232 free(unref, M_TEMP);
4233 }
4234
4235 /*
4236 * Synchronize against unp_gc, which can trip over data as we are freeing it.
4237 */
4238 static void
unp_dispose(struct socket * so)4239 unp_dispose(struct socket *so)
4240 {
4241 struct sockbuf *sb;
4242 struct unpcb *unp;
4243 struct mbuf *m;
4244 int error __diagused;
4245
4246 MPASS(!SOLISTENING(so));
4247
4248 unp = sotounpcb(so);
4249 UNP_LINK_WLOCK();
4250 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4251 UNP_LINK_WUNLOCK();
4252
4253 /*
4254 * Grab our special mbufs before calling sbrelease().
4255 */
4256 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4257 MPASS(!error);
4258 SOCK_RECVBUF_LOCK(so);
4259 switch (so->so_type) {
4260 case SOCK_DGRAM:
4261 while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4262 STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4263 TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4264 /* Note: socket of sb may reconnect. */
4265 sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4266 }
4267 sb = &so->so_rcv;
4268 if (sb->uxdg_peeked != NULL) {
4269 STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4270 m_stailqpkt);
4271 sb->uxdg_peeked = NULL;
4272 }
4273 m = STAILQ_FIRST(&sb->uxdg_mb);
4274 STAILQ_INIT(&sb->uxdg_mb);
4275 break;
4276 case SOCK_STREAM:
4277 case SOCK_SEQPACKET:
4278 sb = &so->so_rcv;
4279 m = STAILQ_FIRST(&sb->uxst_mbq);
4280 STAILQ_INIT(&sb->uxst_mbq);
4281 sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4282 /*
4283 * Trim M_NOTREADY buffers from the free list. They are
4284 * referenced by the I/O thread.
4285 */
4286 if (sb->uxst_fnrdy != NULL) {
4287 struct mbuf *n, *prev;
4288
4289 while (m != NULL && m->m_flags & M_NOTREADY)
4290 m = m->m_next;
4291 for (prev = n = m; n != NULL; n = n->m_next) {
4292 if (n->m_flags & M_NOTREADY)
4293 prev->m_next = n->m_next;
4294 else
4295 prev = n;
4296 }
4297 sb->uxst_fnrdy = NULL;
4298 }
4299 break;
4300 }
4301 /*
4302 * Mark sb with SBS_CANTRCVMORE. This is needed to prevent
4303 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4304 * We came here either through shutdown(2) or from the final sofree().
4305 * The sofree() case is simple as it guarantees that no more sends will
4306 * happen, however we can race with unp_disconnect() from our peer.
4307 * The shutdown(2) case is more exotic. It would call into
4308 * unp_dispose() only if socket is SS_ISCONNECTED. This is possible if
4309 * we did connect(2) on this socket and we also had it bound with
4310 * bind(2) and receive connections from other sockets. Because
4311 * uipc_shutdown() violates POSIX (see comment there) this applies to
4312 * SOCK_DGRAM as well. For SOCK_DGRAM this SBS_CANTRCVMORE will have
4313 * affect not only on the peer we connect(2)ed to, but also on all of
4314 * the peers who had connect(2)ed to us. Their sends would end up
4315 * with ENOBUFS.
4316 */
4317 sb->sb_state |= SBS_CANTRCVMORE;
4318 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4319 RLIM_INFINITY);
4320 SOCK_RECVBUF_UNLOCK(so);
4321 SOCK_IO_RECV_UNLOCK(so);
4322
4323 if (m != NULL) {
4324 unp_scan(m, unp_freerights);
4325 m_freemp(m);
4326 }
4327 }
4328
4329 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4330 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4331 {
4332 struct mbuf *m;
4333 struct cmsghdr *cm;
4334 void *data;
4335 socklen_t clen, datalen;
4336
4337 while (m0 != NULL) {
4338 for (m = m0; m; m = m->m_next) {
4339 if (m->m_type != MT_CONTROL)
4340 continue;
4341
4342 cm = mtod(m, struct cmsghdr *);
4343 clen = m->m_len;
4344
4345 while (cm != NULL) {
4346 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4347 break;
4348
4349 data = CMSG_DATA(cm);
4350 datalen = (caddr_t)cm + cm->cmsg_len
4351 - (caddr_t)data;
4352
4353 if (cm->cmsg_level == SOL_SOCKET &&
4354 cm->cmsg_type == SCM_RIGHTS) {
4355 (*op)(data, datalen /
4356 sizeof(struct filedescent *));
4357 }
4358
4359 if (CMSG_SPACE(datalen) < clen) {
4360 clen -= CMSG_SPACE(datalen);
4361 cm = (struct cmsghdr *)
4362 ((caddr_t)cm + CMSG_SPACE(datalen));
4363 } else {
4364 clen = 0;
4365 cm = NULL;
4366 }
4367 }
4368 }
4369 m0 = m0->m_nextpkt;
4370 }
4371 }
4372
4373 /*
4374 * Definitions of protocols supported in the LOCAL domain.
4375 */
4376 static struct protosw streamproto = {
4377 .pr_type = SOCK_STREAM,
4378 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4379 .pr_ctloutput = &uipc_ctloutput,
4380 .pr_abort = uipc_abort,
4381 .pr_accept = uipc_peeraddr,
4382 .pr_attach = uipc_attach,
4383 .pr_bind = uipc_bind,
4384 .pr_bindat = uipc_bindat,
4385 .pr_connect = uipc_connect,
4386 .pr_connectat = uipc_connectat,
4387 .pr_connect2 = uipc_connect2,
4388 .pr_detach = uipc_detach,
4389 .pr_disconnect = uipc_disconnect,
4390 .pr_fdclose = uipc_fdclose,
4391 .pr_listen = uipc_listen,
4392 .pr_peeraddr = uipc_peeraddr,
4393 .pr_send = uipc_sendfile,
4394 .pr_sendfile_wait = uipc_sendfile_wait,
4395 .pr_ready = uipc_ready,
4396 .pr_sense = uipc_sense,
4397 .pr_shutdown = uipc_shutdown,
4398 .pr_sockaddr = uipc_sockaddr,
4399 .pr_sosend = uipc_sosend_stream_or_seqpacket,
4400 .pr_soreceive = uipc_soreceive_stream_or_seqpacket,
4401 .pr_sopoll = uipc_sopoll_stream_or_seqpacket,
4402 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket,
4403 .pr_close = uipc_close,
4404 .pr_chmod = uipc_chmod,
4405 };
4406
4407 static struct protosw dgramproto = {
4408 .pr_type = SOCK_DGRAM,
4409 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4410 .pr_ctloutput = &uipc_ctloutput,
4411 .pr_abort = uipc_abort,
4412 .pr_accept = uipc_peeraddr,
4413 .pr_attach = uipc_attach,
4414 .pr_bind = uipc_bind,
4415 .pr_bindat = uipc_bindat,
4416 .pr_connect = uipc_connect,
4417 .pr_connectat = uipc_connectat,
4418 .pr_connect2 = uipc_connect2,
4419 .pr_detach = uipc_detach,
4420 .pr_disconnect = uipc_disconnect,
4421 .pr_fdclose = uipc_fdclose,
4422 .pr_peeraddr = uipc_peeraddr,
4423 .pr_sosend = uipc_sosend_dgram,
4424 .pr_sense = uipc_sense,
4425 .pr_shutdown = uipc_shutdown,
4426 .pr_sockaddr = uipc_sockaddr,
4427 .pr_soreceive = uipc_soreceive_dgram,
4428 .pr_close = uipc_close,
4429 .pr_chmod = uipc_chmod,
4430 };
4431
4432 static struct protosw seqpacketproto = {
4433 .pr_type = SOCK_SEQPACKET,
4434 .pr_flags = PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4435 .pr_ctloutput = &uipc_ctloutput,
4436 .pr_abort = uipc_abort,
4437 .pr_accept = uipc_peeraddr,
4438 .pr_attach = uipc_attach,
4439 .pr_bind = uipc_bind,
4440 .pr_bindat = uipc_bindat,
4441 .pr_connect = uipc_connect,
4442 .pr_connectat = uipc_connectat,
4443 .pr_connect2 = uipc_connect2,
4444 .pr_detach = uipc_detach,
4445 .pr_disconnect = uipc_disconnect,
4446 .pr_fdclose = uipc_fdclose,
4447 .pr_listen = uipc_listen,
4448 .pr_peeraddr = uipc_peeraddr,
4449 .pr_sense = uipc_sense,
4450 .pr_shutdown = uipc_shutdown,
4451 .pr_sockaddr = uipc_sockaddr,
4452 .pr_sosend = uipc_sosend_stream_or_seqpacket,
4453 .pr_soreceive = uipc_soreceive_stream_or_seqpacket,
4454 .pr_sopoll = uipc_sopoll_stream_or_seqpacket,
4455 .pr_kqfilter = uipc_kqfilter_stream_or_seqpacket,
4456 .pr_close = uipc_close,
4457 .pr_chmod = uipc_chmod,
4458 };
4459
4460 static struct domain localdomain = {
4461 .dom_family = AF_LOCAL,
4462 .dom_name = "local",
4463 .dom_nprotosw = 3,
4464 .dom_protosw = {
4465 &streamproto,
4466 &dgramproto,
4467 &seqpacketproto,
4468 }
4469 };
4470 DOMAIN_SET(local);
4471
4472 /*
4473 * A helper function called by VFS before socket-type vnode reclamation.
4474 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4475 * use count.
4476 */
4477 void
vfs_unp_reclaim(struct vnode * vp)4478 vfs_unp_reclaim(struct vnode *vp)
4479 {
4480 struct unpcb *unp;
4481 int active;
4482 struct mtx *vplock;
4483
4484 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4485 KASSERT(vp->v_type == VSOCK,
4486 ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4487
4488 active = 0;
4489 vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4490 mtx_lock(vplock);
4491 VOP_UNP_CONNECT(vp, &unp);
4492 if (unp == NULL)
4493 goto done;
4494 UNP_PCB_LOCK(unp);
4495 if (unp->unp_vnode == vp) {
4496 VOP_UNP_DETACH(vp);
4497 unp->unp_vnode = NULL;
4498 active = 1;
4499 }
4500 UNP_PCB_UNLOCK(unp);
4501 done:
4502 mtx_unlock(vplock);
4503 if (active)
4504 vunref(vp);
4505 }
4506
4507 #ifdef DDB
4508 static void
db_print_indent(int indent)4509 db_print_indent(int indent)
4510 {
4511 int i;
4512
4513 for (i = 0; i < indent; i++)
4514 db_printf(" ");
4515 }
4516
4517 static void
db_print_unpflags(int unp_flags)4518 db_print_unpflags(int unp_flags)
4519 {
4520 int comma;
4521
4522 comma = 0;
4523 if (unp_flags & UNP_HAVEPC) {
4524 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4525 comma = 1;
4526 }
4527 if (unp_flags & UNP_WANTCRED_ALWAYS) {
4528 db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4529 comma = 1;
4530 }
4531 if (unp_flags & UNP_WANTCRED_ONESHOT) {
4532 db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4533 comma = 1;
4534 }
4535 if (unp_flags & UNP_CONNECTING) {
4536 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4537 comma = 1;
4538 }
4539 if (unp_flags & UNP_BINDING) {
4540 db_printf("%sUNP_BINDING", comma ? ", " : "");
4541 comma = 1;
4542 }
4543 }
4544
4545 static void
db_print_xucred(int indent,struct xucred * xu)4546 db_print_xucred(int indent, struct xucred *xu)
4547 {
4548 int comma, i;
4549
4550 db_print_indent(indent);
4551 db_printf("cr_version: %u cr_uid: %u cr_pid: %d cr_ngroups: %d\n",
4552 xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4553 db_print_indent(indent);
4554 db_printf("cr_groups: ");
4555 comma = 0;
4556 for (i = 0; i < xu->cr_ngroups; i++) {
4557 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4558 comma = 1;
4559 }
4560 db_printf("\n");
4561 }
4562
4563 static void
db_print_unprefs(int indent,struct unp_head * uh)4564 db_print_unprefs(int indent, struct unp_head *uh)
4565 {
4566 struct unpcb *unp;
4567 int counter;
4568
4569 counter = 0;
4570 LIST_FOREACH(unp, uh, unp_reflink) {
4571 if (counter % 4 == 0)
4572 db_print_indent(indent);
4573 db_printf("%p ", unp);
4574 if (counter % 4 == 3)
4575 db_printf("\n");
4576 counter++;
4577 }
4578 if (counter != 0 && counter % 4 != 0)
4579 db_printf("\n");
4580 }
4581
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4582 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4583 {
4584 struct unpcb *unp;
4585
4586 if (!have_addr) {
4587 db_printf("usage: show unpcb <addr>\n");
4588 return;
4589 }
4590 unp = (struct unpcb *)addr;
4591
4592 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket,
4593 unp->unp_vnode);
4594
4595 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4596 unp->unp_conn);
4597
4598 db_printf("unp_refs:\n");
4599 db_print_unprefs(2, &unp->unp_refs);
4600
4601 /* XXXRW: Would be nice to print the full address, if any. */
4602 db_printf("unp_addr: %p\n", unp->unp_addr);
4603
4604 db_printf("unp_gencnt: %llu\n",
4605 (unsigned long long)unp->unp_gencnt);
4606
4607 db_printf("unp_flags: %x (", unp->unp_flags);
4608 db_print_unpflags(unp->unp_flags);
4609 db_printf(")\n");
4610
4611 db_printf("unp_peercred:\n");
4612 db_print_xucred(2, &unp->unp_peercred);
4613
4614 db_printf("unp_refcount: %u\n", unp->unp_refcount);
4615 }
4616 #endif
4617