1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright 2020 Joyent, Inc.
29 * Copyright (c) 2014 Nexenta Systems, Inc. All rights reserved.
30 * Copyright 2022 Oxide Computer Company
31 */
32
33 #include <mdb/mdb_modapi.h>
34 #include <mdb/mdb_target.h>
35 #include <mdb/mdb_argvec.h>
36 #include <mdb/mdb_string.h>
37 #include <mdb/mdb_stdlib.h>
38 #include <mdb/mdb_err.h>
39 #include <mdb/mdb_debug.h>
40 #include <mdb/mdb_fmt.h>
41 #include <mdb/mdb_ctf.h>
42 #include <mdb/mdb_ctf_impl.h>
43 #include <mdb/mdb.h>
44 #include <mdb/mdb_tab.h>
45
46 #include <sys/isa_defs.h>
47 #include <sys/param.h>
48 #include <sys/sysmacros.h>
49 #include <netinet/in.h>
50 #include <strings.h>
51 #include <libctf.h>
52 #include <ctype.h>
53
54 typedef struct holeinfo {
55 ulong_t hi_offset; /* expected offset */
56 uchar_t hi_isunion; /* represents a union */
57 } holeinfo_t;
58
59 typedef struct printarg {
60 mdb_tgt_t *pa_tgt; /* current target */
61 mdb_tgt_t *pa_realtgt; /* real target (for -i) */
62 mdb_tgt_t *pa_immtgt; /* immediate target (for -i) */
63 mdb_tgt_as_t pa_as; /* address space to use for i/o */
64 mdb_tgt_addr_t pa_addr; /* base address for i/o */
65 ulong_t pa_armemlim; /* limit on array elements to print */
66 ulong_t pa_arstrlim; /* limit on array chars to print */
67 const char *pa_delim; /* element delimiter string */
68 const char *pa_prefix; /* element prefix string */
69 const char *pa_suffix; /* element suffix string */
70 holeinfo_t *pa_holes; /* hole detection information */
71 int pa_nholes; /* size of holes array */
72 int pa_flags; /* formatting flags (see below) */
73 int pa_depth; /* previous depth */
74 int pa_nest; /* array nesting depth */
75 int pa_tab; /* tabstop width */
76 uint_t pa_maxdepth; /* Limit max depth */
77 uint_t pa_nooutdepth; /* don't print output past this depth */
78 } printarg_t;
79
80 #define PA_SHOWTYPE 0x001 /* print type name */
81 #define PA_SHOWBASETYPE 0x002 /* print base type name */
82 #define PA_SHOWNAME 0x004 /* print member name */
83 #define PA_SHOWADDR 0x008 /* print address */
84 #define PA_SHOWVAL 0x010 /* print value */
85 #define PA_SHOWHOLES 0x020 /* print holes in structs */
86 #define PA_INTHEX 0x040 /* print integer values in hex */
87 #define PA_INTDEC 0x080 /* print integer values in decimal */
88 #define PA_NOSYMBOLIC 0x100 /* don't print ptrs as func+offset */
89
90 #define IS_CHAR(e) \
91 (((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
92 (CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)
93
94 #define COMPOSITE_MASK ((1 << CTF_K_STRUCT) | \
95 (1 << CTF_K_UNION) | (1 << CTF_K_ARRAY))
96 #define IS_COMPOSITE(k) (((1 << k) & COMPOSITE_MASK) != 0)
97
98 #define SOU_MASK ((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION))
99 #define IS_SOU(k) (((1 << k) & SOU_MASK) != 0)
100
101 #define MEMBER_DELIM_ERR -1
102 #define MEMBER_DELIM_DONE 0
103 #define MEMBER_DELIM_PTR 1
104 #define MEMBER_DELIM_DOT 2
105 #define MEMBER_DELIM_LBR 3
106
107 typedef int printarg_f(const char *, const char *,
108 mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *);
109
110 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int,
111 void *);
112 static void print_close_sou(printarg_t *, int);
113
114 /*
115 * Given an address, look up the symbol ID of the specified symbol in its
116 * containing module. We only support lookups for exact matches.
117 */
118 static const char *
addr_to_sym(mdb_tgt_t * t,uintptr_t addr,char * name,size_t namelen,GElf_Sym * symp,mdb_syminfo_t * sip)119 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen,
120 GElf_Sym *symp, mdb_syminfo_t *sip)
121 {
122 const mdb_map_t *mp;
123 const char *p;
124
125 if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
126 namelen, NULL, NULL) == -1)
127 return (NULL); /* address does not exactly match a symbol */
128
129 if ((p = strrsplit(name, '`')) != NULL) {
130 if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1)
131 return (NULL);
132 return (p);
133 }
134
135 if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL)
136 return (NULL); /* address does not fall within a mapping */
137
138 if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1)
139 return (NULL);
140
141 return (name);
142 }
143
144 /*
145 * This lets dcmds be a little fancy with their processing of type arguments
146 * while still treating them more or less as a single argument.
147 * For example, if a command is invokes like this:
148 *
149 * ::<dcmd> proc_t ...
150 *
151 * this function will just copy "proc_t" into the provided buffer. If the
152 * command is instead invoked like this:
153 *
154 * ::<dcmd> struct proc ...
155 *
156 * this function will place the string "struct proc" into the provided buffer
157 * and increment the caller's argv and argc. This allows the caller to still
158 * treat the type argument logically as it would an other atomic argument.
159 */
160 int
args_to_typename(int * argcp,const mdb_arg_t ** argvp,char * buf,size_t len)161 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len)
162 {
163 int argc = *argcp;
164 const mdb_arg_t *argv = *argvp;
165
166 if (argc < 1 || argv->a_type != MDB_TYPE_STRING)
167 return (DCMD_USAGE);
168
169 if (strcmp(argv->a_un.a_str, "struct") == 0 ||
170 strcmp(argv->a_un.a_str, "enum") == 0 ||
171 strcmp(argv->a_un.a_str, "union") == 0) {
172 if (argc <= 1) {
173 mdb_warn("%s is not a valid type\n", argv->a_un.a_str);
174 return (DCMD_ABORT);
175 }
176
177 if (argv[1].a_type != MDB_TYPE_STRING)
178 return (DCMD_USAGE);
179
180 (void) mdb_snprintf(buf, len, "%s %s",
181 argv[0].a_un.a_str, argv[1].a_un.a_str);
182
183 *argcp = argc - 1;
184 *argvp = argv + 1;
185 } else {
186 (void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str);
187 }
188
189 return (0);
190 }
191
192 /*ARGSUSED*/
193 int
cmd_sizeof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)194 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
195 {
196 mdb_ctf_id_t id;
197 char tn[MDB_SYM_NAMLEN];
198 int ret;
199
200 if (flags & DCMD_ADDRSPEC)
201 return (DCMD_USAGE);
202
203 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
204 return (ret);
205
206 if (argc != 1)
207 return (DCMD_USAGE);
208
209 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
210 mdb_warn("failed to look up type %s", tn);
211 return (DCMD_ERR);
212 }
213
214 if (flags & DCMD_PIPE_OUT)
215 mdb_printf("%#lr\n", mdb_ctf_type_size(id));
216 else
217 mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id));
218
219 return (DCMD_OK);
220 }
221
222 int
cmd_sizeof_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)223 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
224 const mdb_arg_t *argv)
225 {
226 char tn[MDB_SYM_NAMLEN];
227 int ret;
228
229 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
230 return (0);
231
232 if (argc == 0 && (flags & DCMD_TAB_SPACE))
233 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT));
234
235 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
236 return (ret);
237
238 if (argc == 1)
239 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT));
240
241 return (0);
242 }
243
244 /*ARGSUSED*/
245 int
cmd_offsetof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)246 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
247 {
248 const char *member;
249 mdb_ctf_id_t id;
250 ulong_t off;
251 char tn[MDB_SYM_NAMLEN];
252 ssize_t sz;
253 int ret;
254
255 if (flags & DCMD_ADDRSPEC)
256 return (DCMD_USAGE);
257
258 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
259 return (ret);
260
261 if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING)
262 return (DCMD_USAGE);
263
264 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
265 mdb_warn("failed to look up type %s", tn);
266 return (DCMD_ERR);
267 }
268
269 member = argv[1].a_un.a_str;
270
271 if (mdb_ctf_member_info(id, member, &off, &id) != 0) {
272 mdb_warn("failed to find member %s of type %s", member, tn);
273 return (DCMD_ERR);
274 }
275
276 if (flags & DCMD_PIPE_OUT) {
277 if (off % NBBY != 0) {
278 mdb_warn("member %s of type %s is not byte-aligned\n",
279 member, tn);
280 return (DCMD_ERR);
281 }
282 mdb_printf("%#lr", off / NBBY);
283 return (DCMD_OK);
284 }
285
286 mdb_printf("offsetof (%s, %s) = %#lr",
287 tn, member, off / NBBY);
288 if (off % NBBY != 0)
289 mdb_printf(".%lr", off % NBBY);
290
291 if ((sz = mdb_ctf_type_size(id)) > 0)
292 mdb_printf(", sizeof (...->%s) = %#lr", member, sz);
293
294 mdb_printf("\n");
295
296 return (DCMD_OK);
297 }
298
299 /*ARGSUSED*/
300 static int
enum_prefix_scan_cb(const char * name,int value,void * arg)301 enum_prefix_scan_cb(const char *name, int value, void *arg)
302 {
303 char *str = arg;
304
305 /*
306 * This function is called with every name in the enum. We make
307 * "arg" be the common prefix, if any.
308 */
309 if (str[0] == 0) {
310 if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN)
311 return (1);
312 return (0);
313 }
314
315 while (*name == *str) {
316 if (*str == 0) {
317 if (str != arg) {
318 str--; /* don't smother a name completely */
319 }
320 break;
321 }
322 name++;
323 str++;
324 }
325 *str = 0;
326
327 return (str == arg); /* only continue if prefix is non-empty */
328 }
329
330 struct enum_p2_info {
331 intmax_t e_value; /* value we're processing */
332 char *e_buf; /* buffer for holding names */
333 size_t e_size; /* size of buffer */
334 size_t e_prefix; /* length of initial prefix */
335 uint_t e_allprefix; /* apply prefix to first guy, too */
336 uint_t e_bits; /* bits seen */
337 uint8_t e_found; /* have we seen anything? */
338 uint8_t e_first; /* does buf contain the first one? */
339 uint8_t e_zero; /* have we seen a zero value? */
340 };
341
342 static int
enum_p2_cb(const char * name,int bit_arg,void * arg)343 enum_p2_cb(const char *name, int bit_arg, void *arg)
344 {
345 struct enum_p2_info *eiip = arg;
346 uintmax_t bit = bit_arg;
347
348 if (bit != 0 && !ISP2(bit))
349 return (1); /* non-power-of-2; abort processing */
350
351 if ((bit == 0 && eiip->e_zero) ||
352 (bit != 0 && (eiip->e_bits & bit) != 0)) {
353 return (0); /* already seen this value */
354 }
355
356 if (bit == 0)
357 eiip->e_zero = 1;
358 else
359 eiip->e_bits |= bit;
360
361 if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) {
362 char *buf = eiip->e_buf;
363 size_t prefix = eiip->e_prefix;
364
365 if (eiip->e_found) {
366 (void) strlcat(buf, "|", eiip->e_size);
367
368 if (eiip->e_first && !eiip->e_allprefix && prefix > 0) {
369 char c1 = buf[prefix];
370 char c2 = buf[prefix + 1];
371 buf[prefix] = '{';
372 buf[prefix + 1] = 0;
373 mdb_printf("%s", buf);
374 buf[prefix] = c1;
375 buf[prefix + 1] = c2;
376 mdb_printf("%s", buf + prefix);
377 } else {
378 mdb_printf("%s", buf);
379 }
380
381 }
382 /* skip the common prefix as necessary */
383 if ((eiip->e_found || eiip->e_allprefix) &&
384 strlen(name) > prefix)
385 name += prefix;
386
387 (void) strlcpy(eiip->e_buf, name, eiip->e_size);
388 eiip->e_first = !eiip->e_found;
389 eiip->e_found = 1;
390 }
391 return (0);
392 }
393
394 static int
enum_is_p2(mdb_ctf_id_t id)395 enum_is_p2(mdb_ctf_id_t id)
396 {
397 struct enum_p2_info eii;
398 bzero(&eii, sizeof (eii));
399
400 return (mdb_ctf_type_kind(id) == CTF_K_ENUM &&
401 mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 &&
402 eii.e_bits != 0);
403 }
404
405 static int
enum_value_print_p2(mdb_ctf_id_t id,intmax_t value,uint_t allprefix)406 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix)
407 {
408 struct enum_p2_info eii;
409 char prefix[MDB_SYM_NAMLEN + 2];
410 intmax_t missed;
411
412 bzero(&eii, sizeof (eii));
413
414 eii.e_value = value;
415 eii.e_buf = prefix;
416 eii.e_size = sizeof (prefix);
417 eii.e_allprefix = allprefix;
418
419 prefix[0] = 0;
420 if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
421 eii.e_prefix = strlen(prefix);
422
423 if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0)
424 return (-1);
425
426 missed = (value & ~(intmax_t)eii.e_bits);
427
428 if (eii.e_found) {
429 /* push out any final value, with a | if we missed anything */
430 if (!eii.e_first)
431 (void) strlcat(prefix, "}", sizeof (prefix));
432 if (missed != 0)
433 (void) strlcat(prefix, "|", sizeof (prefix));
434
435 mdb_printf("%s", prefix);
436 }
437
438 if (!eii.e_found || missed) {
439 mdb_printf("%#llx", missed);
440 }
441
442 return (0);
443 }
444
445 struct enum_cbinfo {
446 uint_t e_flags;
447 const char *e_string; /* NULL for value searches */
448 size_t e_prefix;
449 intmax_t e_value;
450 uint_t e_found;
451 mdb_ctf_id_t e_id;
452 };
453 #define E_PRETTY 0x01
454 #define E_HEX 0x02
455 #define E_SEARCH_STRING 0x04
456 #define E_SEARCH_VALUE 0x08
457 #define E_ELIDE_PREFIX 0x10
458
459 static void
enum_print(struct enum_cbinfo * info,const char * name,int value)460 enum_print(struct enum_cbinfo *info, const char *name, int value)
461 {
462 uint_t flags = info->e_flags;
463 uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX);
464
465 if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix)
466 name += info->e_prefix;
467
468 if (flags & E_PRETTY) {
469 uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11);
470
471 mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value);
472 (void) mdb_inc_indent(indent);
473 if (name != NULL) {
474 mdb_iob_puts(mdb.m_out, name);
475 } else {
476 (void) enum_value_print_p2(info->e_id, value,
477 elide_prefix);
478 }
479 (void) mdb_dec_indent(indent);
480 mdb_printf("\n");
481 } else {
482 mdb_printf("%#r\n", value);
483 }
484 }
485
486 static int
enum_cb(const char * name,int value,void * arg)487 enum_cb(const char *name, int value, void *arg)
488 {
489 struct enum_cbinfo *info = arg;
490 uint_t flags = info->e_flags;
491
492 if (flags & E_SEARCH_STRING) {
493 if (strcmp(name, info->e_string) != 0)
494 return (0);
495
496 } else if (flags & E_SEARCH_VALUE) {
497 if (value != info->e_value)
498 return (0);
499 }
500
501 enum_print(info, name, value);
502
503 info->e_found = 1;
504 return (0);
505 }
506
507 void
enum_help(void)508 enum_help(void)
509 {
510 mdb_printf("%s",
511 "Without an address and name, print all values for the enumeration \"enum\".\n"
512 "With an address, look up a particular value in \"enum\". With a name, look\n"
513 "up a particular name in \"enum\".\n");
514
515 (void) mdb_dec_indent(2);
516 mdb_printf("\n%<b>OPTIONS%</b>\n");
517 (void) mdb_inc_indent(2);
518
519 mdb_printf("%s",
520 " -e remove common prefixes from enum names\n"
521 " -x report enum values in hexadecimal\n");
522 }
523
524 /*ARGSUSED*/
525 int
cmd_enum(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)526 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
527 {
528 struct enum_cbinfo info;
529
530 char type[MDB_SYM_NAMLEN + sizeof ("enum ")];
531 char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")];
532 char prefix[MDB_SYM_NAMLEN];
533 mdb_ctf_id_t id;
534 mdb_ctf_id_t idr;
535
536 int i;
537 intmax_t search = 0;
538 uint_t isp2;
539
540 info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY;
541 info.e_string = NULL;
542 info.e_value = 0;
543 info.e_found = 0;
544
545 i = mdb_getopts(argc, argv,
546 'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags,
547 'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags,
548 NULL);
549
550 argc -= i;
551 argv += i;
552
553 if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0)
554 return (i);
555
556 if (strchr(type, ' ') == NULL) {
557 /*
558 * Check as an enumeration tag first, and fall back
559 * to checking for a typedef. Yes, this means that
560 * anonymous enumerations whose typedefs conflict with
561 * an enum tag can't be accessed. Don't do that.
562 */
563 (void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type);
564
565 if (mdb_ctf_lookup_by_name(tn2, &id) == 0) {
566 (void) strcpy(type, tn2);
567 } else if (mdb_ctf_lookup_by_name(type, &id) != 0) {
568 mdb_warn("types '%s', '%s'", tn2, type);
569 return (DCMD_ERR);
570 }
571 } else {
572 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
573 mdb_warn("'%s'", type);
574 return (DCMD_ERR);
575 }
576 }
577
578 /* resolve it, and make sure we're looking at an enumeration */
579 if (mdb_ctf_type_resolve(id, &idr) == -1) {
580 mdb_warn("unable to resolve '%s'", type);
581 return (DCMD_ERR);
582 }
583 if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) {
584 mdb_warn("'%s': not an enumeration\n", type);
585 return (DCMD_ERR);
586 }
587
588 info.e_id = idr;
589
590 if (argc > 2)
591 return (DCMD_USAGE);
592
593 if (argc == 2) {
594 if (flags & DCMD_ADDRSPEC) {
595 mdb_warn("may only specify one of: name, address\n");
596 return (DCMD_USAGE);
597 }
598
599 if (argv[1].a_type == MDB_TYPE_STRING) {
600 info.e_flags |= E_SEARCH_STRING;
601 info.e_string = argv[1].a_un.a_str;
602 } else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) {
603 info.e_flags |= E_SEARCH_VALUE;
604 search = argv[1].a_un.a_val;
605 } else {
606 return (DCMD_USAGE);
607 }
608 }
609
610 if (flags & DCMD_ADDRSPEC) {
611 info.e_flags |= E_SEARCH_VALUE;
612 search = mdb_get_dot();
613 }
614
615 if (info.e_flags & E_SEARCH_VALUE) {
616 if ((int)search != search) {
617 mdb_warn("value '%lld' out of enumeration range\n",
618 search);
619 }
620 info.e_value = search;
621 }
622
623 isp2 = enum_is_p2(idr);
624 if (isp2)
625 info.e_flags |= E_HEX;
626
627 if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) {
628 if (info.e_flags & E_HEX)
629 mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME");
630 else
631 mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME");
632 }
633
634 /* if the enum is a power-of-two one, process it that way */
635 if ((info.e_flags & E_SEARCH_VALUE) && isp2) {
636 enum_print(&info, NULL, info.e_value);
637 return (DCMD_OK);
638 }
639
640 prefix[0] = 0;
641 if ((info.e_flags & E_ELIDE_PREFIX) &&
642 mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
643 info.e_prefix = strlen(prefix);
644
645 if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) {
646 mdb_warn("cannot walk '%s' as enum", type);
647 return (DCMD_ERR);
648 }
649
650 if (info.e_found == 0 &&
651 (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) {
652 if (info.e_flags & E_SEARCH_STRING)
653 mdb_warn("name \"%s\" not in '%s'\n", info.e_string,
654 type);
655 else
656 mdb_warn("value %#lld not in '%s'\n", info.e_value,
657 type);
658
659 return (DCMD_ERR);
660 }
661
662 return (DCMD_OK);
663 }
664
665 static int
setup_vcb(const char * name,uintptr_t addr)666 setup_vcb(const char *name, uintptr_t addr)
667 {
668 const char *p;
669 mdb_var_t *v;
670
671 if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) {
672 if ((p = strbadid(name)) != NULL) {
673 mdb_warn("'%c' may not be used in a variable "
674 "name\n", *p);
675 return (DCMD_ABORT);
676 }
677
678 if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL)
679 return (DCMD_ERR);
680 } else {
681 if (v->v_flags & MDB_NV_RDONLY) {
682 mdb_warn("variable %s is read-only\n", name);
683 return (DCMD_ABORT);
684 }
685 }
686
687 /*
688 * If there already exists a vcb for this variable, we may be
689 * calling the dcmd in a loop. We only create a vcb for this
690 * variable on the first invocation.
691 */
692 if (mdb_vcb_find(v, mdb.m_frame) == NULL)
693 mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame);
694
695 return (0);
696 }
697
698 /*ARGSUSED*/
699 int
cmd_list(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)700 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
701 {
702 int offset;
703 uintptr_t a, tmp;
704 int ret;
705
706 if (!(flags & DCMD_ADDRSPEC) || argc == 0)
707 return (DCMD_USAGE);
708
709 if (argv->a_type != MDB_TYPE_STRING) {
710 /*
711 * We are being given a raw offset in lieu of a type and
712 * member; confirm the number of arguments and argument
713 * type.
714 */
715 if (argc != 1 || argv->a_type != MDB_TYPE_IMMEDIATE)
716 return (DCMD_USAGE);
717
718 offset = argv->a_un.a_val;
719
720 argv++;
721 argc--;
722
723 if (offset % sizeof (uintptr_t)) {
724 mdb_warn("offset must fall on a word boundary\n");
725 return (DCMD_ABORT);
726 }
727 } else {
728 const char *member;
729 char buf[MDB_SYM_NAMLEN];
730 int ret;
731
732 ret = args_to_typename(&argc, &argv, buf, sizeof (buf));
733 if (ret != 0)
734 return (ret);
735
736 argv++;
737 argc--;
738
739 /*
740 * If we make it here, we were provided a type name. We should
741 * only continue if we still have arguments left (e.g. member
742 * name and potentially a variable name).
743 */
744 if (argc == 0)
745 return (DCMD_USAGE);
746
747 member = argv->a_un.a_str;
748 offset = mdb_ctf_offsetof_by_name(buf, member);
749 if (offset == -1)
750 return (DCMD_ABORT);
751
752 argv++;
753 argc--;
754
755 if (offset % (sizeof (uintptr_t)) != 0) {
756 mdb_warn("%s is not a word-aligned member\n", member);
757 return (DCMD_ABORT);
758 }
759 }
760
761 /*
762 * If we have any unchewed arguments, a variable name must be present.
763 */
764 if (argc == 1) {
765 if (argv->a_type != MDB_TYPE_STRING)
766 return (DCMD_USAGE);
767
768 if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0)
769 return (ret);
770
771 } else if (argc != 0) {
772 return (DCMD_USAGE);
773 }
774
775 a = addr;
776
777 do {
778 mdb_printf("%lr\n", a);
779
780 if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) {
781 mdb_warn("failed to read next pointer from object %p",
782 a);
783 return (DCMD_ERR);
784 }
785
786 a = tmp;
787 } while (a != addr && a != 0);
788
789 return (DCMD_OK);
790 }
791
792 int
cmd_array(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)793 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
794 {
795 mdb_ctf_id_t id;
796 ssize_t elemsize = 0;
797 char tn[MDB_SYM_NAMLEN];
798 int ret, nelem = -1;
799
800 mdb_tgt_t *t = mdb.m_target;
801 GElf_Sym sym;
802 mdb_ctf_arinfo_t ar;
803 mdb_syminfo_t s_info;
804
805 if (!(flags & DCMD_ADDRSPEC))
806 return (DCMD_USAGE);
807
808 if (argc >= 2) {
809 ret = args_to_typename(&argc, &argv, tn, sizeof (tn));
810 if (ret != 0)
811 return (ret);
812
813 if (argc == 1) /* unquoted compound type without count */
814 return (DCMD_USAGE);
815
816 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
817 mdb_warn("failed to look up type %s", tn);
818 return (DCMD_ABORT);
819 }
820
821 if (argv[1].a_type == MDB_TYPE_IMMEDIATE)
822 nelem = argv[1].a_un.a_val;
823 else
824 nelem = mdb_strtoull(argv[1].a_un.a_str);
825
826 elemsize = mdb_ctf_type_size(id);
827 } else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info)
828 != NULL && mdb_ctf_lookup_by_symbol(&sym, &s_info, &id)
829 == 0 && mdb_ctf_type_kind(id) == CTF_K_ARRAY &&
830 mdb_ctf_array_info(id, &ar) != -1) {
831 elemsize = mdb_ctf_type_size(id) / ar.mta_nelems;
832 nelem = ar.mta_nelems;
833 } else {
834 mdb_warn("no symbol information for %a", addr);
835 return (DCMD_ERR);
836 }
837
838 if (argc == 3 || argc == 1) {
839 if (argv[argc - 1].a_type != MDB_TYPE_STRING)
840 return (DCMD_USAGE);
841
842 if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0)
843 return (ret);
844
845 } else if (argc > 3) {
846 return (DCMD_USAGE);
847 }
848
849 for (; nelem > 0; nelem--) {
850 mdb_printf("%lr\n", addr);
851 addr = addr + elemsize;
852 }
853
854 return (DCMD_OK);
855 }
856
857 /*
858 * This is a shared implementation to determine if we should treat a type as a
859 * bitfield. The parameters are the CTF encoding and the bit offset of the
860 * integer. This also exists in mdb_print.c. We consider something a bitfield
861 * if:
862 *
863 * o The type is more than 8 bytes. This is a bit of a historical choice from
864 * mdb and is a stranger one. The normal integer handling code generally
865 * doesn't handle integers more than 64-bits in size. Of course neither does
866 * the bitfield code...
867 * o The bit count is not a multiple of 8.
868 * o The size in bytes is not a power of 2.
869 * o The offset is not a multiple of 8.
870 */
871 boolean_t
is_bitfield(const ctf_encoding_t * ep,ulong_t off)872 is_bitfield(const ctf_encoding_t *ep, ulong_t off)
873 {
874 size_t bsize = ep->cte_bits / NBBY;
875 return (bsize > 8 || (ep->cte_bits % NBBY) != 0 ||
876 (bsize & (bsize - 1)) != 0 || (off % NBBY) != 0);
877 }
878
879 /*
880 * Print an integer bitfield in hexadecimal by reading the enclosing byte(s)
881 * and then shifting and masking the data in the lower bits of a uint64_t.
882 */
883 static int
print_bitfield(ulong_t off,printarg_t * pap,ctf_encoding_t * ep)884 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep)
885 {
886 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
887 uint64_t mask = (1ULL << ep->cte_bits) - 1;
888 uint64_t value = 0;
889 uint8_t *buf = (uint8_t *)&value;
890 uint8_t shift;
891 const char *format;
892
893 /*
894 * Our bitfield may straddle a byte boundary. We explicitly take the
895 * offset of the bitfield within its byte into account when determining
896 * the overall amount of data to copy and mask off from the underlying
897 * data.
898 */
899 uint_t nbits = ep->cte_bits + (off % NBBY);
900 size_t size = P2ROUNDUP(nbits, NBBY) / NBBY;
901
902 if (!(pap->pa_flags & PA_SHOWVAL))
903 return (0);
904
905 if (ep->cte_bits > sizeof (value) * NBBY - 1) {
906 mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits);
907 return (0);
908 }
909
910 if (size > sizeof (value)) {
911 mdb_printf("??? (total bitfield too large after alignment");
912 return (0);
913 }
914
915 /*
916 * On big-endian machines, we need to adjust the buf pointer to refer
917 * to the lowest 'size' bytes in 'value', and we need shift based on
918 * the offset from the end of the data, not the offset of the start.
919 */
920 #ifdef _BIG_ENDIAN
921 buf += sizeof (value) - size;
922 off += ep->cte_bits;
923 #endif
924
925 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) {
926 mdb_warn("failed to read %lu bytes at %llx",
927 (ulong_t)size, addr);
928 return (1);
929 }
930
931 shift = off % NBBY;
932
933 /*
934 * Offsets are counted from opposite ends on little- and
935 * big-endian machines.
936 */
937 #ifdef _BIG_ENDIAN
938 shift = NBBY - shift;
939 #endif
940
941 /*
942 * If the bits we want do not begin on a byte boundary, shift the data
943 * right so that the value is in the lowest 'cte_bits' of 'value'.
944 */
945 if (off % NBBY != 0)
946 value >>= shift;
947 value &= mask;
948
949 /*
950 * We default to printing signed bitfields as decimals,
951 * and unsigned bitfields in hexadecimal. If they specify
952 * hexadecimal, we treat the field as unsigned.
953 */
954 if ((pap->pa_flags & PA_INTHEX) ||
955 !(ep->cte_format & CTF_INT_SIGNED)) {
956 format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx";
957 } else {
958 int sshift = sizeof (value) * NBBY - ep->cte_bits;
959
960 /* sign-extend value, and print as a signed decimal */
961 value = ((int64_t)value << sshift) >> sshift;
962 format = "%#lld";
963 }
964 mdb_printf(format, value);
965
966 return (0);
967 }
968
969 /*
970 * We want to print an escaped char as e.g. '\0'. We don't use mdb_fmt_print()
971 * as it won't get auto-wrap right here (although even now, we don't include any
972 * trailing comma).
973 */
974 static int
print_char_val(mdb_tgt_addr_t addr,printarg_t * pap)975 print_char_val(mdb_tgt_addr_t addr, printarg_t *pap)
976 {
977 char cval;
978 char *s;
979
980 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &cval, 1, addr) != 1)
981 return (1);
982
983 if (mdb.m_flags & MDB_FL_ADB)
984 s = strchr2adb(&cval, 1);
985 else
986 s = strchr2esc(&cval, 1);
987
988 mdb_printf("'%s'", s);
989 strfree(s);
990 return (0);
991 }
992
993 /*
994 * Print out a character or integer value. We use some simple heuristics,
995 * described below, to determine the appropriate radix to use for output.
996 */
997 static int
print_int_val(const char * type,ctf_encoding_t * ep,ulong_t off,printarg_t * pap)998 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off,
999 printarg_t *pap)
1000 {
1001 static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" };
1002 static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" };
1003 static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" };
1004
1005 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1006 const char *const *fsp;
1007 size_t size;
1008
1009 union {
1010 uint64_t i8;
1011 uint32_t i4;
1012 uint16_t i2;
1013 uint8_t i1;
1014 time_t t;
1015 ipaddr_t I;
1016 } u;
1017
1018 if (!(pap->pa_flags & PA_SHOWVAL))
1019 return (0);
1020
1021 if (ep->cte_format & CTF_INT_VARARGS) {
1022 mdb_printf("...\n");
1023 return (0);
1024 }
1025
1026 size = ep->cte_bits / NBBY;
1027 if (is_bitfield(ep, off)) {
1028 return (print_bitfield(off, pap, ep));
1029 }
1030
1031 if (IS_CHAR(*ep))
1032 return (print_char_val(addr, pap));
1033
1034 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) {
1035 mdb_warn("failed to read %lu bytes at %llx",
1036 (ulong_t)size, addr);
1037 return (1);
1038 }
1039
1040 /*
1041 * We pretty-print some integer based types. time_t values are
1042 * printed as a calendar date and time, and IPv4 addresses as human
1043 * readable dotted quads.
1044 */
1045 if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) {
1046 if (strcmp(type, "time_t") == 0 && u.t != 0) {
1047 mdb_printf("%Y", u.t);
1048 return (0);
1049 }
1050 if (strcmp(type, "ipaddr_t") == 0 ||
1051 strcmp(type, "in_addr_t") == 0) {
1052 mdb_printf("%I", u.I);
1053 return (0);
1054 }
1055 }
1056
1057 /*
1058 * The default format is hexadecimal.
1059 */
1060 if (!(pap->pa_flags & PA_INTDEC))
1061 fsp = xformat;
1062 else if (ep->cte_format & CTF_INT_SIGNED)
1063 fsp = sformat;
1064 else
1065 fsp = uformat;
1066
1067 switch (size) {
1068 case sizeof (uint8_t):
1069 mdb_printf(fsp[0], u.i1);
1070 break;
1071 case sizeof (uint16_t):
1072 mdb_printf(fsp[1], u.i2);
1073 break;
1074 case sizeof (uint32_t):
1075 mdb_printf(fsp[2], u.i4);
1076 break;
1077 case sizeof (uint64_t):
1078 mdb_printf(fsp[3], u.i8);
1079 break;
1080 }
1081 return (0);
1082 }
1083
1084 /*ARGSUSED*/
1085 static int
print_int(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1086 print_int(const char *type, const char *name, mdb_ctf_id_t id,
1087 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1088 {
1089 ctf_encoding_t e;
1090
1091 if (!(pap->pa_flags & PA_SHOWVAL))
1092 return (0);
1093
1094 if (mdb_ctf_type_encoding(base, &e) != 0) {
1095 mdb_printf("??? (%s)", mdb_strerror(errno));
1096 return (0);
1097 }
1098
1099 return (print_int_val(type, &e, off, pap));
1100 }
1101
1102 /*
1103 * Print out a floating point value. We only provide support for floats in
1104 * the ANSI-C float, double, and long double formats.
1105 */
1106 /*ARGSUSED*/
1107 static int
print_float(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1108 print_float(const char *type, const char *name, mdb_ctf_id_t id,
1109 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1110 {
1111 #ifndef _KMDB
1112 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1113 ctf_encoding_t e;
1114
1115 union {
1116 float f;
1117 double d;
1118 long double ld;
1119 } u;
1120
1121 if (!(pap->pa_flags & PA_SHOWVAL))
1122 return (0);
1123
1124 if (mdb_ctf_type_encoding(base, &e) == 0) {
1125 if (e.cte_format == CTF_FP_SINGLE &&
1126 e.cte_bits == sizeof (float) * NBBY) {
1127 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f,
1128 sizeof (u.f), addr) != sizeof (u.f)) {
1129 mdb_warn("failed to read float at %llx", addr);
1130 return (1);
1131 }
1132 mdb_printf("%s", doubletos(u.f, 7, 'e'));
1133
1134 } else if (e.cte_format == CTF_FP_DOUBLE &&
1135 e.cte_bits == sizeof (double) * NBBY) {
1136 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d,
1137 sizeof (u.d), addr) != sizeof (u.d)) {
1138 mdb_warn("failed to read float at %llx", addr);
1139 return (1);
1140 }
1141 mdb_printf("%s", doubletos(u.d, 7, 'e'));
1142
1143 } else if (e.cte_format == CTF_FP_LDOUBLE &&
1144 e.cte_bits == sizeof (long double) * NBBY) {
1145 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld,
1146 sizeof (u.ld), addr) != sizeof (u.ld)) {
1147 mdb_warn("failed to read float at %llx", addr);
1148 return (1);
1149 }
1150 mdb_printf("%s", longdoubletos(&u.ld, 16, 'e'));
1151
1152 } else {
1153 mdb_printf("??? (unsupported FP format %u / %u bits\n",
1154 e.cte_format, e.cte_bits);
1155 }
1156 } else
1157 mdb_printf("??? (%s)", mdb_strerror(errno));
1158 #else
1159 mdb_printf("<FLOAT>");
1160 #endif
1161 return (0);
1162 }
1163
1164
1165 /*
1166 * Print out a pointer value as a symbol name + offset or a hexadecimal value.
1167 * If the pointer itself is a char *, we attempt to read a bit of the data
1168 * referenced by the pointer and display it if it is a printable ASCII string.
1169 */
1170 /*ARGSUSED*/
1171 static int
print_ptr(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1172 print_ptr(const char *type, const char *name, mdb_ctf_id_t id,
1173 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1174 {
1175 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1176 ctf_encoding_t e;
1177 uintptr_t value;
1178 char buf[256];
1179 ssize_t len;
1180
1181 if (!(pap->pa_flags & PA_SHOWVAL))
1182 return (0);
1183
1184 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1185 &value, sizeof (value), addr) != sizeof (value)) {
1186 mdb_warn("failed to read %s pointer at %llx", name, addr);
1187 return (1);
1188 }
1189
1190 if (pap->pa_flags & PA_NOSYMBOLIC) {
1191 mdb_printf("%#lx", value);
1192 return (0);
1193 }
1194
1195 mdb_printf("%a", value);
1196
1197 if (value == 0 || strcmp(type, "caddr_t") == 0)
1198 return (0);
1199
1200 if (mdb_ctf_type_kind(base) == CTF_K_POINTER &&
1201 mdb_ctf_type_reference(base, &base) != -1 &&
1202 mdb_ctf_type_resolve(base, &base) != -1 &&
1203 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) {
1204 if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as,
1205 buf, sizeof (buf), value)) >= 0 && strisprint(buf)) {
1206 if (len == sizeof (buf))
1207 (void) strabbr(buf, sizeof (buf));
1208 mdb_printf(" \"%s\"", buf);
1209 }
1210 }
1211
1212 return (0);
1213 }
1214
1215
1216 /*
1217 * Print out a fixed-size array. We special-case arrays of characters
1218 * and attempt to print them out as ASCII strings if possible. For other
1219 * arrays, we iterate over a maximum of pa_armemlim members and call
1220 * mdb_ctf_type_visit() again on each element to print its value.
1221 */
1222 /*ARGSUSED*/
1223 static int
print_array(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1224 print_array(const char *type, const char *name, mdb_ctf_id_t id,
1225 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1226 {
1227 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1228 printarg_t pa = *pap;
1229 ssize_t eltsize;
1230 mdb_ctf_arinfo_t r;
1231 ctf_encoding_t e;
1232 uint_t i, kind, limit;
1233 int d, sou;
1234 char buf[8];
1235 char *str;
1236
1237 if (!(pap->pa_flags & PA_SHOWVAL))
1238 return (0);
1239
1240 if (pap->pa_depth == pap->pa_maxdepth) {
1241 mdb_printf("[ ... ]");
1242 return (0);
1243 }
1244
1245 /*
1246 * Determine the base type and size of the array's content. If this
1247 * fails, we cannot print anything and just give up.
1248 */
1249 if (mdb_ctf_array_info(base, &r) == -1 ||
1250 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
1251 (eltsize = mdb_ctf_type_size(base)) == -1) {
1252 mdb_printf("[ ??? ] (%s)", mdb_strerror(errno));
1253 return (0);
1254 }
1255
1256 /*
1257 * Read a few bytes and determine if the content appears to be
1258 * printable ASCII characters. If so, read the entire array and
1259 * attempt to display it as a string if it is printable.
1260 */
1261 if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT ||
1262 r.mta_nelems <= pap->pa_arstrlim) &&
1263 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) &&
1264 mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf,
1265 MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) {
1266
1267 str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC);
1268 str[r.mta_nelems] = '\0';
1269
1270 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str,
1271 r.mta_nelems, addr) != r.mta_nelems) {
1272 mdb_warn("failed to read char array at %llx", addr);
1273 return (1);
1274 }
1275
1276 if (strisprint(str)) {
1277 mdb_printf("[ \"%s\" ]", str);
1278 return (0);
1279 }
1280 }
1281
1282 if (pap->pa_armemlim != MDB_ARR_NOLIMIT)
1283 limit = MIN(r.mta_nelems, pap->pa_armemlim);
1284 else
1285 limit = r.mta_nelems;
1286
1287 if (limit == 0) {
1288 mdb_printf("[ ... ]");
1289 return (0);
1290 }
1291
1292 kind = mdb_ctf_type_kind(base);
1293 sou = IS_COMPOSITE(kind);
1294
1295 pa.pa_addr = addr; /* set base address to start of array */
1296 pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1;
1297 pa.pa_nest += pa.pa_depth + 1; /* nesting level is current depth + 1 */
1298 pa.pa_depth = 0; /* reset depth to 0 for new scope */
1299 pa.pa_prefix = NULL;
1300
1301 if (sou) {
1302 pa.pa_delim = "\n";
1303 mdb_printf("[\n");
1304 } else {
1305 pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR);
1306 pa.pa_delim = ", ";
1307 mdb_printf("[ ");
1308 }
1309
1310 for (i = 0; i < limit; i++, pa.pa_addr += eltsize) {
1311 if (i == limit - 1 && !sou) {
1312 if (limit < r.mta_nelems)
1313 pa.pa_delim = ", ... ]";
1314 else
1315 pa.pa_delim = " ]";
1316 }
1317
1318 if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) {
1319 mdb_warn("failed to print array data");
1320 return (1);
1321 }
1322 }
1323
1324 if (sou) {
1325 for (d = pa.pa_depth - 1; d >= 0; d--)
1326 print_close_sou(&pa, d);
1327
1328 if (limit < r.mta_nelems) {
1329 mdb_printf("%*s... ]",
1330 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1331 } else {
1332 mdb_printf("%*s]",
1333 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1334 }
1335 }
1336
1337 /* copy the hole array info, since it may have been grown */
1338 pap->pa_holes = pa.pa_holes;
1339 pap->pa_nholes = pa.pa_nholes;
1340
1341 return (0);
1342 }
1343
1344 /*
1345 * Print out a struct or union header. We need only print the open brace
1346 * because mdb_ctf_type_visit() itself will automatically recurse through
1347 * all members of the given struct or union.
1348 */
1349 /*ARGSUSED*/
1350 static int
print_sou(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1351 print_sou(const char *type, const char *name, mdb_ctf_id_t id,
1352 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1353 {
1354 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1355
1356 /*
1357 * We have pretty-printing for some structures where displaying
1358 * structure contents has no value.
1359 */
1360 if (pap->pa_flags & PA_SHOWVAL) {
1361 if (strcmp(type, "in6_addr_t") == 0 ||
1362 strcmp(type, "struct in6_addr") == 0) {
1363 in6_addr_t in6addr;
1364
1365 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr,
1366 sizeof (in6addr), addr) != sizeof (in6addr)) {
1367 mdb_warn("failed to read %s pointer at %llx",
1368 name, addr);
1369 return (1);
1370 }
1371 mdb_printf("%N", &in6addr);
1372 /*
1373 * Don't print anything further down in the
1374 * structure.
1375 */
1376 pap->pa_nooutdepth = pap->pa_depth;
1377 return (0);
1378 }
1379 if (strcmp(type, "struct in_addr") == 0) {
1380 in_addr_t inaddr;
1381
1382 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr,
1383 sizeof (inaddr), addr) != sizeof (inaddr)) {
1384 mdb_warn("failed to read %s pointer at %llx",
1385 name, addr);
1386 return (1);
1387 }
1388 mdb_printf("%I", inaddr);
1389 pap->pa_nooutdepth = pap->pa_depth;
1390 return (0);
1391 }
1392 }
1393
1394 if (pap->pa_depth == pap->pa_maxdepth)
1395 mdb_printf("{ ... }");
1396 else
1397 mdb_printf("{");
1398 pap->pa_delim = "\n";
1399 return (0);
1400 }
1401
1402 /*
1403 * Print an enum value. We attempt to convert the value to the corresponding
1404 * enum name and print that if possible.
1405 */
1406 /*ARGSUSED*/
1407 static int
print_enum(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1408 print_enum(const char *type, const char *name, mdb_ctf_id_t id,
1409 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1410 {
1411 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1412 const char *ename;
1413 int value;
1414 int isp2 = enum_is_p2(base);
1415 int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0);
1416
1417 if (!(flags & PA_SHOWVAL))
1418 return (0);
1419
1420 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1421 &value, sizeof (value), addr) != sizeof (value)) {
1422 mdb_warn("failed to read %s integer at %llx", name, addr);
1423 return (1);
1424 }
1425
1426 if (flags & PA_INTHEX)
1427 mdb_printf("%#x", value);
1428 else
1429 mdb_printf("%#d", value);
1430
1431 (void) mdb_inc_indent(8);
1432 mdb_printf(" (");
1433
1434 if (!isp2 || enum_value_print_p2(base, value, 0) != 0) {
1435 ename = mdb_ctf_enum_name(base, value);
1436 if (ename == NULL) {
1437 ename = "???";
1438 }
1439 mdb_printf("%s", ename);
1440 }
1441 mdb_printf(")");
1442 (void) mdb_dec_indent(8);
1443
1444 return (0);
1445 }
1446
1447 /*
1448 * This will only get called if the structure isn't found in any available CTF
1449 * data.
1450 */
1451 /*ARGSUSED*/
1452 static int
print_tag(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1453 print_tag(const char *type, const char *name, mdb_ctf_id_t id,
1454 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1455 {
1456 char basename[MDB_SYM_NAMLEN];
1457
1458 if (pap->pa_flags & PA_SHOWVAL)
1459 mdb_printf("; ");
1460
1461 if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL)
1462 mdb_printf("<forward declaration of %s>", basename);
1463 else
1464 mdb_printf("<forward declaration of unknown type>");
1465
1466 return (0);
1467 }
1468
1469 static void
print_hole(printarg_t * pap,int depth,ulong_t off,ulong_t endoff)1470 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff)
1471 {
1472 ulong_t bits = endoff - off;
1473 ulong_t size = bits / NBBY;
1474 ctf_encoding_t e;
1475
1476 static const char *const name = "<<HOLE>>";
1477 char type[MDB_SYM_NAMLEN];
1478
1479 int bitfield =
1480 (off % NBBY != 0 ||
1481 bits % NBBY != 0 ||
1482 size > 8 ||
1483 (size & (size - 1)) != 0);
1484
1485 ASSERT(off < endoff);
1486
1487 if (bits > NBBY * sizeof (uint64_t)) {
1488 ulong_t end;
1489
1490 /*
1491 * The hole is larger than the largest integer type. To
1492 * handle this, we split up the hole at 8-byte-aligned
1493 * boundaries, recursing to print each subsection. For
1494 * normal C structures, we'll loop at most twice.
1495 */
1496 for (; off < endoff; off = end) {
1497 end = P2END(off, NBBY * sizeof (uint64_t));
1498 if (end > endoff)
1499 end = endoff;
1500
1501 ASSERT((end - off) <= NBBY * sizeof (uint64_t));
1502 print_hole(pap, depth, off, end);
1503 }
1504 ASSERT(end == endoff);
1505
1506 return;
1507 }
1508
1509 if (bitfield)
1510 (void) mdb_snprintf(type, sizeof (type), "unsigned");
1511 else
1512 (void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits);
1513
1514 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1515 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1516
1517 if (pap->pa_flags & PA_SHOWADDR) {
1518 if (off % NBBY == 0)
1519 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1520 else
1521 mdb_printf("%llx.%lx ",
1522 pap->pa_addr + off / NBBY, off % NBBY);
1523 }
1524
1525 if (pap->pa_flags & PA_SHOWTYPE)
1526 mdb_printf("%s ", type);
1527
1528 if (pap->pa_flags & PA_SHOWNAME)
1529 mdb_printf("%s", name);
1530
1531 if (bitfield && (pap->pa_flags & PA_SHOWTYPE))
1532 mdb_printf(" :%d", bits);
1533
1534 mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : "");
1535
1536 /*
1537 * We fake up a ctf_encoding_t, and use print_int_val() to print
1538 * the value. Holes are always processed as unsigned integers.
1539 */
1540 bzero(&e, sizeof (e));
1541 e.cte_format = 0;
1542 e.cte_offset = 0;
1543 e.cte_bits = bits;
1544
1545 if (print_int_val(type, &e, off, pap) != 0)
1546 mdb_iob_discard(mdb.m_out);
1547 else
1548 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1549 }
1550
1551 /*
1552 * The print_close_sou() function is called for each structure or union
1553 * which has been completed. For structures, we detect and print any holes
1554 * before printing the closing brace.
1555 */
1556 static void
print_close_sou(printarg_t * pap,int newdepth)1557 print_close_sou(printarg_t *pap, int newdepth)
1558 {
1559 int d = newdepth + pap->pa_nest;
1560
1561 if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) {
1562 ulong_t end = pap->pa_holes[d + 1].hi_offset;
1563 ulong_t expected = pap->pa_holes[d].hi_offset;
1564
1565 if (end < expected)
1566 print_hole(pap, newdepth + 1, end, expected);
1567 }
1568 /* if the struct is an array element, print a comma after the } */
1569 mdb_printf("%*s}%s\n", d * pap->pa_tab, "",
1570 (newdepth == 0 && pap->pa_nest > 0)? "," : "");
1571 }
1572
1573 static printarg_f *const printfuncs[] = {
1574 print_int, /* CTF_K_INTEGER */
1575 print_float, /* CTF_K_FLOAT */
1576 print_ptr, /* CTF_K_POINTER */
1577 print_array, /* CTF_K_ARRAY */
1578 print_ptr, /* CTF_K_FUNCTION */
1579 print_sou, /* CTF_K_STRUCT */
1580 print_sou, /* CTF_K_UNION */
1581 print_enum, /* CTF_K_ENUM */
1582 print_tag /* CTF_K_FORWARD */
1583 };
1584
1585 /*
1586 * The elt_print function is used as the mdb_ctf_type_visit callback. For
1587 * each element, we print an appropriate name prefix and then call the
1588 * print subroutine for this type class in the array above.
1589 */
1590 static int
elt_print(const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,int depth,void * data)1591 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base,
1592 ulong_t off, int depth, void *data)
1593 {
1594 char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")];
1595 int kind, rc, d;
1596 printarg_t *pap = data;
1597
1598 for (d = pap->pa_depth - 1; d >= depth; d--) {
1599 if (d < pap->pa_nooutdepth)
1600 print_close_sou(pap, d);
1601 }
1602
1603 /*
1604 * Reset pa_nooutdepth if we've come back out of the structure we
1605 * didn't want to print.
1606 */
1607 if (depth <= pap->pa_nooutdepth)
1608 pap->pa_nooutdepth = (uint_t)-1;
1609
1610 if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth)
1611 return (0);
1612
1613 if (!mdb_ctf_type_valid(base) ||
1614 (kind = mdb_ctf_type_kind(base)) == -1)
1615 return (-1); /* errno is set for us */
1616
1617 if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL)
1618 (void) strcpy(type, "(?)");
1619
1620 if (pap->pa_flags & PA_SHOWBASETYPE) {
1621 /*
1622 * If basetype is different and informative, concatenate
1623 * <<basetype>> (or <<baset...>> if it doesn't fit)
1624 *
1625 * We just use the end of the buffer to store the type name, and
1626 * only connect it up if that's necessary.
1627 */
1628
1629 char *type_end = type + strlen(type);
1630 char *basetype;
1631 size_t sz;
1632
1633 (void) strlcat(type, " <<", sizeof (type));
1634
1635 basetype = type + strlen(type);
1636 sz = sizeof (type) - (basetype - type);
1637
1638 *type_end = '\0'; /* restore the end of type for strcmp() */
1639
1640 if (mdb_ctf_type_name(base, basetype, sz) != NULL &&
1641 strcmp(basetype, type) != 0 &&
1642 strcmp(basetype, "struct ") != 0 &&
1643 strcmp(basetype, "enum ") != 0 &&
1644 strcmp(basetype, "union ") != 0) {
1645 type_end[0] = ' '; /* reconnect */
1646 if (strlcat(type, ">>", sizeof (type)) >= sizeof (type))
1647 (void) strlcpy(
1648 type + sizeof (type) - 6, "...>>", 6);
1649 }
1650 }
1651
1652 if (pap->pa_flags & PA_SHOWHOLES) {
1653 ctf_encoding_t e;
1654 ssize_t nsize;
1655 ulong_t newoff;
1656 holeinfo_t *hole;
1657 int extra = IS_COMPOSITE(kind)? 1 : 0;
1658
1659 /*
1660 * grow the hole array, if necessary
1661 */
1662 if (pap->pa_nest + depth + extra >= pap->pa_nholes) {
1663 int new = MAX(MAX(8, pap->pa_nholes * 2),
1664 pap->pa_nest + depth + extra + 1);
1665
1666 holeinfo_t *nhi = mdb_zalloc(
1667 sizeof (*nhi) * new, UM_NOSLEEP | UM_GC);
1668
1669 bcopy(pap->pa_holes, nhi,
1670 pap->pa_nholes * sizeof (*nhi));
1671
1672 pap->pa_holes = nhi;
1673 pap->pa_nholes = new;
1674 }
1675
1676 hole = &pap->pa_holes[depth + pap->pa_nest];
1677
1678 if (depth != 0 && off > hole->hi_offset)
1679 print_hole(pap, depth, hole->hi_offset, off);
1680
1681 /* compute the next expected offset */
1682 if (kind == CTF_K_INTEGER &&
1683 mdb_ctf_type_encoding(base, &e) == 0)
1684 newoff = off + e.cte_bits;
1685 else if ((nsize = mdb_ctf_type_size(base)) >= 0)
1686 newoff = off + nsize * NBBY;
1687 else {
1688 /* something bad happened, disable hole checking */
1689 newoff = -1UL; /* ULONG_MAX */
1690 }
1691
1692 hole->hi_offset = newoff;
1693
1694 if (IS_COMPOSITE(kind)) {
1695 hole->hi_isunion = (kind == CTF_K_UNION);
1696 hole++;
1697 hole->hi_offset = off;
1698 }
1699 }
1700
1701 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1702 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1703
1704 if (pap->pa_flags & PA_SHOWADDR) {
1705 if (off % NBBY == 0)
1706 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1707 else
1708 mdb_printf("%llx.%lx ",
1709 pap->pa_addr + off / NBBY, off % NBBY);
1710 }
1711
1712 if ((pap->pa_flags & PA_SHOWTYPE)) {
1713 mdb_printf("%s", type);
1714 /*
1715 * We want to avoid printing a trailing space when
1716 * dealing with pointers in a structure, so we end
1717 * up with:
1718 *
1719 * label_t *t_onfault = 0
1720 *
1721 * If depth is zero, always print the trailing space unless
1722 * we also have a prefix.
1723 */
1724 if (type[strlen(type) - 1] != '*' ||
1725 (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) ||
1726 pap->pa_prefix == NULL)))
1727 mdb_printf(" ");
1728 }
1729
1730 if (pap->pa_flags & PA_SHOWNAME) {
1731 if (pap->pa_prefix != NULL && depth <= 1)
1732 mdb_printf("%s%s", pap->pa_prefix,
1733 (depth == 0) ? "" : pap->pa_suffix);
1734 mdb_printf("%s", name);
1735 }
1736
1737 if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) {
1738 ctf_encoding_t e;
1739
1740 if (mdb_ctf_type_encoding(base, &e) == 0) {
1741 ulong_t bits = e.cte_bits;
1742 ulong_t size = bits / NBBY;
1743
1744 if (bits % NBBY != 0 ||
1745 off % NBBY != 0 ||
1746 size > 8 ||
1747 size != mdb_ctf_type_size(base))
1748 mdb_printf(" :%d", bits);
1749 }
1750 }
1751
1752 if (depth != 0 ||
1753 ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL))
1754 mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : "");
1755
1756 if (depth == 0 && pap->pa_prefix != NULL)
1757 name = pap->pa_prefix;
1758
1759 pap->pa_depth = depth;
1760 if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) {
1761 mdb_warn("unknown ctf for %s type %s kind %d\n",
1762 name, type, kind);
1763 return (-1);
1764 }
1765 rc = printfuncs[kind - 1](type, name, id, base, off, pap);
1766
1767 if (rc != 0)
1768 mdb_iob_discard(mdb.m_out);
1769 else
1770 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1771
1772 return (rc);
1773 }
1774
1775 /*
1776 * Special semantics for pipelines.
1777 */
1778 static int
pipe_print(mdb_ctf_id_t id,ulong_t off,void * data)1779 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1780 {
1781 printarg_t *pap = data;
1782 size_t size;
1783 static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1784 uintptr_t value;
1785 uintptr_t addr = pap->pa_addr + off / NBBY;
1786 mdb_ctf_id_t base;
1787 int enum_value;
1788 ctf_encoding_t e;
1789
1790 union {
1791 uint64_t i8;
1792 uint32_t i4;
1793 uint16_t i2;
1794 uint8_t i1;
1795 } u;
1796
1797 if (mdb_ctf_type_resolve(id, &base) == -1) {
1798 mdb_warn("could not resolve type");
1799 return (-1);
1800 }
1801
1802 /*
1803 * If the user gives -a, then always print out the address of the
1804 * member.
1805 */
1806 if ((pap->pa_flags & PA_SHOWADDR)) {
1807 mdb_printf("%#lr\n", addr);
1808 return (0);
1809 }
1810
1811 again:
1812 switch (mdb_ctf_type_kind(base)) {
1813 case CTF_K_POINTER:
1814 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1815 &value, sizeof (value), addr) != sizeof (value)) {
1816 mdb_warn("failed to read pointer at %p", addr);
1817 return (-1);
1818 }
1819 mdb_printf("%#lr\n", value);
1820 break;
1821
1822 case CTF_K_ENUM:
1823 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &enum_value,
1824 sizeof (enum_value), addr) != sizeof (enum_value)) {
1825 mdb_warn("failed to read enum at %llx", addr);
1826 return (-1);
1827 }
1828 mdb_printf("%#r\n", enum_value);
1829 break;
1830
1831 case CTF_K_INTEGER:
1832 if (mdb_ctf_type_encoding(base, &e) != 0) {
1833 mdb_warn("could not get type encoding\n");
1834 return (-1);
1835 }
1836
1837 /*
1838 * For immediate values, we just print out the value.
1839 */
1840 size = e.cte_bits / NBBY;
1841 if (is_bitfield(&e, off)) {
1842 return (print_bitfield(off, pap, &e));
1843 }
1844
1845 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1846 addr) != (size_t)size) {
1847 mdb_warn("failed to read %lu bytes at %p",
1848 (ulong_t)size, pap->pa_addr);
1849 return (-1);
1850 }
1851
1852 switch (size) {
1853 case sizeof (uint8_t):
1854 mdb_printf(fsp[0], u.i1);
1855 break;
1856 case sizeof (uint16_t):
1857 mdb_printf(fsp[1], u.i2);
1858 break;
1859 case sizeof (uint32_t):
1860 mdb_printf(fsp[2], u.i4);
1861 break;
1862 case sizeof (uint64_t):
1863 mdb_printf(fsp[3], u.i8);
1864 break;
1865 }
1866 mdb_printf("\n");
1867 break;
1868
1869 case CTF_K_FUNCTION:
1870 case CTF_K_FLOAT:
1871 case CTF_K_ARRAY:
1872 case CTF_K_UNKNOWN:
1873 case CTF_K_STRUCT:
1874 case CTF_K_UNION:
1875 case CTF_K_FORWARD:
1876 /*
1877 * For these types, always print the address of the member
1878 */
1879 mdb_printf("%#lr\n", addr);
1880 break;
1881
1882 default:
1883 mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1884 break;
1885 }
1886
1887 return (0);
1888 }
1889
1890 static int
parse_delimiter(char ** strp)1891 parse_delimiter(char **strp)
1892 {
1893 switch (**strp) {
1894 case '\0':
1895 return (MEMBER_DELIM_DONE);
1896
1897 case '.':
1898 *strp = *strp + 1;
1899 return (MEMBER_DELIM_DOT);
1900
1901 case '[':
1902 *strp = *strp + 1;
1903 return (MEMBER_DELIM_LBR);
1904
1905 case '-':
1906 *strp = *strp + 1;
1907 if (**strp == '>') {
1908 *strp = *strp + 1;
1909 return (MEMBER_DELIM_PTR);
1910 }
1911 *strp = *strp - 1;
1912 /*FALLTHROUGH*/
1913 default:
1914 return (MEMBER_DELIM_ERR);
1915 }
1916 }
1917
1918 static int
deref(printarg_t * pap,size_t size)1919 deref(printarg_t *pap, size_t size)
1920 {
1921 uint32_t a32;
1922 mdb_tgt_as_t as = pap->pa_as;
1923 mdb_tgt_addr_t *ap = &pap->pa_addr;
1924
1925 if (size == sizeof (mdb_tgt_addr_t)) {
1926 if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) {
1927 mdb_warn("could not dereference pointer %llx\n", *ap);
1928 return (-1);
1929 }
1930 } else {
1931 if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) {
1932 mdb_warn("could not dereference pointer %x\n", *ap);
1933 return (-1);
1934 }
1935
1936 *ap = (mdb_tgt_addr_t)a32;
1937 }
1938
1939 /*
1940 * We've dereferenced at least once, we must be on the real
1941 * target. If we were in the immediate target, reset to the real
1942 * target; it's reset as needed when we return to the print
1943 * routines.
1944 */
1945 if (pap->pa_tgt == pap->pa_immtgt)
1946 pap->pa_tgt = pap->pa_realtgt;
1947
1948 return (0);
1949 }
1950
1951 static int
parse_member(printarg_t * pap,const char * str,mdb_ctf_id_t id,mdb_ctf_id_t * idp,ulong_t * offp,int * last_deref)1952 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1953 mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1954 {
1955 int delim;
1956 char member[64];
1957 char buf[128];
1958 uint_t index;
1959 char *start = (char *)str;
1960 char *end;
1961 ulong_t off = 0;
1962 mdb_ctf_arinfo_t ar;
1963 mdb_ctf_id_t rid;
1964 int kind;
1965 ssize_t size;
1966 int non_array = FALSE;
1967
1968 /*
1969 * id always has the unresolved type for printing error messages
1970 * that include the type; rid always has the resolved type for
1971 * use in mdb_ctf_* calls. It is possible for this command to fail,
1972 * however, if the resolved type is in the parent and it is currently
1973 * unavailable. Note that we also can't print out the name of the
1974 * type, since that would also rely on looking up the resolved name.
1975 */
1976 if (mdb_ctf_type_resolve(id, &rid) != 0) {
1977 mdb_warn("failed to resolve type");
1978 return (-1);
1979 }
1980
1981 delim = parse_delimiter(&start);
1982 /*
1983 * If the user fails to specify an initial delimiter, guess -> for
1984 * pointer types and . for non-pointer types.
1985 */
1986 if (delim == MEMBER_DELIM_ERR)
1987 delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1988 MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;
1989
1990 *last_deref = FALSE;
1991
1992 while (delim != MEMBER_DELIM_DONE) {
1993 switch (delim) {
1994 case MEMBER_DELIM_PTR:
1995 kind = mdb_ctf_type_kind(rid);
1996 if (kind != CTF_K_POINTER) {
1997 mdb_warn("%s is not a pointer type\n",
1998 mdb_ctf_type_name(id, buf, sizeof (buf)));
1999 return (-1);
2000 }
2001
2002 size = mdb_ctf_type_size(id);
2003 if (deref(pap, size) != 0)
2004 return (-1);
2005
2006 (void) mdb_ctf_type_reference(rid, &id);
2007 (void) mdb_ctf_type_resolve(id, &rid);
2008
2009 off = 0;
2010 break;
2011
2012 case MEMBER_DELIM_DOT:
2013 kind = mdb_ctf_type_kind(rid);
2014 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
2015 mdb_warn("%s is not a struct or union type\n",
2016 mdb_ctf_type_name(id, buf, sizeof (buf)));
2017 return (-1);
2018 }
2019 break;
2020
2021 case MEMBER_DELIM_LBR:
2022 end = strchr(start, ']');
2023 if (end == NULL) {
2024 mdb_warn("no trailing ']'\n");
2025 return (-1);
2026 }
2027
2028 (void) mdb_snprintf(member, end - start + 1, "%s",
2029 start);
2030
2031 index = mdb_strtoull(member);
2032
2033 switch (mdb_ctf_type_kind(rid)) {
2034 case CTF_K_POINTER:
2035 size = mdb_ctf_type_size(rid);
2036
2037 if (deref(pap, size) != 0)
2038 return (-1);
2039
2040 (void) mdb_ctf_type_reference(rid, &id);
2041 (void) mdb_ctf_type_resolve(id, &rid);
2042
2043 size = mdb_ctf_type_size(id);
2044 if (size <= 0) {
2045 mdb_warn("cannot dereference void "
2046 "type\n");
2047 return (-1);
2048 }
2049
2050 pap->pa_addr += index * size;
2051 off = 0;
2052
2053 if (index == 0 && non_array)
2054 *last_deref = TRUE;
2055 break;
2056
2057 case CTF_K_ARRAY:
2058 (void) mdb_ctf_array_info(rid, &ar);
2059
2060 if (index >= ar.mta_nelems) {
2061 mdb_warn("index %r is outside of "
2062 "array bounds [0 .. %r]\n",
2063 index, ar.mta_nelems - 1);
2064 }
2065
2066 id = ar.mta_contents;
2067 (void) mdb_ctf_type_resolve(id, &rid);
2068
2069 size = mdb_ctf_type_size(id);
2070 if (size <= 0) {
2071 mdb_warn("cannot dereference void "
2072 "type\n");
2073 return (-1);
2074 }
2075
2076 pap->pa_addr += index * size;
2077 off = 0;
2078 break;
2079
2080 default:
2081 mdb_warn("cannot index into non-array, "
2082 "non-pointer type\n");
2083 return (-1);
2084 }
2085
2086 start = end + 1;
2087 delim = parse_delimiter(&start);
2088 continue;
2089
2090 case MEMBER_DELIM_ERR:
2091 default:
2092 mdb_warn("'%c' is not a valid delimiter\n", *start);
2093 return (-1);
2094 }
2095
2096 *last_deref = FALSE;
2097 non_array = TRUE;
2098
2099 /*
2100 * Find the end of the member name; assume that a member
2101 * name is at least one character long.
2102 */
2103 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2104 continue;
2105
2106 (void) mdb_snprintf(member, end - start + 1, "%s", start);
2107
2108 if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
2109 mdb_warn("failed to find member %s of %s", member,
2110 mdb_ctf_type_name(id, buf, sizeof (buf)));
2111 return (-1);
2112 }
2113 (void) mdb_ctf_type_resolve(id, &rid);
2114
2115 pap->pa_addr += off / NBBY;
2116
2117 start = end;
2118 delim = parse_delimiter(&start);
2119 }
2120
2121 *idp = id;
2122 *offp = off;
2123
2124 return (0);
2125 }
2126
2127 static int
cmd_print_tab_common(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2128 cmd_print_tab_common(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2129 const mdb_arg_t *argv)
2130 {
2131 char tn[MDB_SYM_NAMLEN];
2132 char member[64];
2133 int delim, kind;
2134 int ret = 0;
2135 mdb_ctf_id_t id, rid;
2136 mdb_ctf_arinfo_t ar;
2137 char *start, *end;
2138 ulong_t dul;
2139
2140 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
2141 return (0);
2142
2143 if (argc == 0 && (flags & DCMD_TAB_SPACE))
2144 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT |
2145 MDB_TABC_NOARRAY));
2146
2147 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
2148 return (ret);
2149
2150 if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1))
2151 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT |
2152 MDB_TABC_NOARRAY));
2153
2154 if (argc == 1 && (flags & DCMD_TAB_SPACE))
2155 return (mdb_tab_complete_member(mcp, tn, NULL));
2156
2157 /*
2158 * This is the reason that tab completion was created. We're going to go
2159 * along and walk the delimiters until we find something a member that
2160 * we don't recognize, at which point we'll try and tab complete it.
2161 * Note that ::print takes multiple args, so this is going to operate on
2162 * whatever the last arg that we have is.
2163 */
2164 if (mdb_ctf_lookup_by_name(tn, &id) != 0)
2165 return (1);
2166
2167 (void) mdb_ctf_type_resolve(id, &rid);
2168 start = (char *)argv[argc-1].a_un.a_str;
2169 delim = parse_delimiter(&start);
2170
2171 /*
2172 * If we hit the case where we actually have no delimiters, than we need
2173 * to make sure that we properly set up the fields the loops would.
2174 */
2175 if (delim == MEMBER_DELIM_DONE)
2176 (void) mdb_snprintf(member, sizeof (member), "%s", start);
2177
2178 while (delim != MEMBER_DELIM_DONE) {
2179 switch (delim) {
2180 case MEMBER_DELIM_PTR:
2181 kind = mdb_ctf_type_kind(rid);
2182 if (kind != CTF_K_POINTER)
2183 return (1);
2184
2185 (void) mdb_ctf_type_reference(rid, &id);
2186 (void) mdb_ctf_type_resolve(id, &rid);
2187 break;
2188 case MEMBER_DELIM_DOT:
2189 kind = mdb_ctf_type_kind(rid);
2190 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2191 return (1);
2192 break;
2193 case MEMBER_DELIM_LBR:
2194 end = strchr(start, ']');
2195 /*
2196 * We're not going to try and tab complete the indexes
2197 * here. So for now, punt on it. Also, we're not going
2198 * to try and validate you're within the bounds, just
2199 * that you get the type you asked for.
2200 */
2201 if (end == NULL)
2202 return (1);
2203
2204 switch (mdb_ctf_type_kind(rid)) {
2205 case CTF_K_POINTER:
2206 (void) mdb_ctf_type_reference(rid, &id);
2207 (void) mdb_ctf_type_resolve(id, &rid);
2208 break;
2209 case CTF_K_ARRAY:
2210 (void) mdb_ctf_array_info(rid, &ar);
2211 id = ar.mta_contents;
2212 (void) mdb_ctf_type_resolve(id, &rid);
2213 break;
2214 default:
2215 return (1);
2216 }
2217
2218 start = end + 1;
2219 delim = parse_delimiter(&start);
2220 break;
2221 case MEMBER_DELIM_ERR:
2222 default:
2223 break;
2224 }
2225
2226 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2227 continue;
2228
2229 (void) mdb_snprintf(member, end - start + 1, start);
2230
2231 /*
2232 * We are going to try to resolve this name as a member. There
2233 * are a few two different questions that we need to answer. The
2234 * first is do we recognize this member. The second is are we at
2235 * the end of the string. If we encounter a member that we don't
2236 * recognize before the end, then we have to error out and can't
2237 * complete it. But if there are no more delimiters then we can
2238 * try and complete it.
2239 */
2240 ret = mdb_ctf_member_info(rid, member, &dul, &id);
2241 start = end;
2242 delim = parse_delimiter(&start);
2243 if (ret != 0 && errno == EMDB_CTFNOMEMB) {
2244 if (delim != MEMBER_DELIM_DONE)
2245 return (1);
2246 continue;
2247 } else if (ret != 0)
2248 return (1);
2249
2250 if (delim == MEMBER_DELIM_DONE)
2251 return (mdb_tab_complete_member_by_id(mcp, rid,
2252 member));
2253
2254 (void) mdb_ctf_type_resolve(id, &rid);
2255 }
2256
2257 /*
2258 * If we've reached here, then we need to try and tab complete the last
2259 * field, which is currently member, based on the ctf type id that we
2260 * already have in rid.
2261 */
2262 return (mdb_tab_complete_member_by_id(mcp, rid, member));
2263 }
2264
2265 int
cmd_print_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2266 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2267 const mdb_arg_t *argv)
2268 {
2269 int i, dummy;
2270
2271 /*
2272 * This getopts is only here to make the tab completion work better when
2273 * including options in the ::print arguments. None of the values should
2274 * be used. This should only be updated with additional arguments, if
2275 * they are added to cmd_print.
2276 */
2277 i = mdb_getopts(argc, argv,
2278 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy,
2279 'C', MDB_OPT_SETBITS, TRUE, &dummy,
2280 'c', MDB_OPT_UINTPTR, &dummy,
2281 'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy,
2282 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy,
2283 'i', MDB_OPT_SETBITS, TRUE, &dummy,
2284 'L', MDB_OPT_SETBITS, TRUE, &dummy,
2285 'l', MDB_OPT_UINTPTR, &dummy,
2286 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy,
2287 'p', MDB_OPT_SETBITS, TRUE, &dummy,
2288 's', MDB_OPT_UINTPTR, &dummy,
2289 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy,
2290 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy,
2291 'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy,
2292 NULL);
2293
2294 argc -= i;
2295 argv += i;
2296
2297 return (cmd_print_tab_common(mcp, flags, argc, argv));
2298 }
2299
2300 /*
2301 * Recursively descend a print a given data structure. We create a struct of
2302 * the relevant print arguments and then call mdb_ctf_type_visit() to do the
2303 * traversal, using elt_print() as the callback for each element.
2304 */
2305 /*ARGSUSED*/
2306 int
cmd_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2307 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2308 {
2309 uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT;
2310 uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE;
2311 uintptr_t opt_s = (uintptr_t)-1ul;
2312 int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0;
2313 mdb_ctf_id_t id;
2314 int err = DCMD_OK;
2315
2316 mdb_tgt_t *t = mdb.m_target;
2317 printarg_t pa;
2318 int d, i;
2319
2320 char s_name[MDB_SYM_NAMLEN];
2321 mdb_syminfo_t s_info;
2322 GElf_Sym sym;
2323
2324 /*
2325 * If a new option is added, make sure the getopts above in
2326 * cmd_print_tab is also updated.
2327 */
2328 i = mdb_getopts(argc, argv,
2329 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags,
2330 'C', MDB_OPT_SETBITS, TRUE, &opt_C,
2331 'c', MDB_OPT_UINTPTR, &opt_c,
2332 'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags,
2333 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags,
2334 'i', MDB_OPT_SETBITS, TRUE, &opt_i,
2335 'L', MDB_OPT_SETBITS, TRUE, &opt_L,
2336 'l', MDB_OPT_UINTPTR, &opt_l,
2337 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags,
2338 'p', MDB_OPT_SETBITS, TRUE, &opt_p,
2339 's', MDB_OPT_UINTPTR, &opt_s,
2340 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags,
2341 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags,
2342 'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags,
2343 NULL);
2344
2345 if (uflags & PA_INTHEX)
2346 uflags &= ~PA_INTDEC; /* -x and -d are mutually exclusive */
2347
2348 uflags |= PA_SHOWNAME;
2349
2350 if (opt_p && opt_i) {
2351 mdb_warn("-p and -i options are incompatible\n");
2352 return (DCMD_ERR);
2353 }
2354
2355 argc -= i;
2356 argv += i;
2357
2358 if (argc != 0 && argv->a_type == MDB_TYPE_STRING) {
2359 const char *t_name = s_name;
2360 int ret;
2361
2362 if (strchr("+-", argv->a_un.a_str[0]) != NULL)
2363 return (DCMD_USAGE);
2364
2365 if ((ret = args_to_typename(&argc, &argv, s_name,
2366 sizeof (s_name))) != 0)
2367 return (ret);
2368
2369 if (mdb_ctf_lookup_by_name(t_name, &id) != 0) {
2370 if (!(flags & DCMD_ADDRSPEC) || opt_i ||
2371 addr_to_sym(t, addr, s_name, sizeof (s_name),
2372 &sym, &s_info) == NULL ||
2373 mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2374
2375 mdb_warn("failed to look up type %s", t_name);
2376 return (DCMD_ABORT);
2377 }
2378 } else {
2379 argc--;
2380 argv++;
2381 }
2382
2383 } else if (!(flags & DCMD_ADDRSPEC) || opt_i) {
2384 return (DCMD_USAGE);
2385
2386 } else if (addr_to_sym(t, addr, s_name, sizeof (s_name),
2387 &sym, &s_info) == NULL) {
2388 mdb_warn("no symbol information for %a", addr);
2389 return (DCMD_ERR);
2390
2391 } else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2392 mdb_warn("no type data available for %a [%u]", addr,
2393 s_info.sym_id);
2394 return (DCMD_ERR);
2395 }
2396
2397 pa.pa_tgt = mdb.m_target;
2398 pa.pa_realtgt = pa.pa_tgt;
2399 pa.pa_immtgt = NULL;
2400 pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT;
2401 pa.pa_armemlim = mdb.m_armemlim;
2402 pa.pa_arstrlim = mdb.m_arstrlim;
2403 pa.pa_delim = "\n";
2404 pa.pa_flags = uflags;
2405 pa.pa_nest = 0;
2406 pa.pa_tab = 4;
2407 pa.pa_prefix = NULL;
2408 pa.pa_suffix = NULL;
2409 pa.pa_holes = NULL;
2410 pa.pa_nholes = 0;
2411 pa.pa_depth = 0;
2412 pa.pa_maxdepth = opt_s;
2413 pa.pa_nooutdepth = (uint_t)-1;
2414
2415 if ((flags & DCMD_ADDRSPEC) && !opt_i)
2416 pa.pa_addr = opt_p ? mdb_get_dot() : addr;
2417 else
2418 pa.pa_addr = 0;
2419
2420 if (opt_i) {
2421 const char *vargv[2];
2422 uintmax_t dot = mdb_get_dot();
2423 size_t outsize = mdb_ctf_type_size(id);
2424 vargv[0] = (const char *)˙
2425 vargv[1] = (const char *)&outsize;
2426 pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create,
2427 0, 2, vargv);
2428 pa.pa_tgt = pa.pa_immtgt;
2429 }
2430
2431 if (opt_c != MDB_ARR_NOLIMIT)
2432 pa.pa_arstrlim = opt_c;
2433 if (opt_C)
2434 pa.pa_arstrlim = MDB_ARR_NOLIMIT;
2435 if (opt_l != MDB_ARR_NOLIMIT)
2436 pa.pa_armemlim = opt_l;
2437 if (opt_L)
2438 pa.pa_armemlim = MDB_ARR_NOLIMIT;
2439
2440 if (argc > 0) {
2441 for (i = 0; i < argc; i++) {
2442 mdb_ctf_id_t mid;
2443 int last_deref;
2444 ulong_t off;
2445 int kind;
2446 char buf[MDB_SYM_NAMLEN];
2447
2448 mdb_tgt_t *oldtgt = pa.pa_tgt;
2449 mdb_tgt_as_t oldas = pa.pa_as;
2450 mdb_tgt_addr_t oldaddr = pa.pa_addr;
2451
2452 if (argv->a_type == MDB_TYPE_STRING) {
2453 const char *member = argv[i].a_un.a_str;
2454 mdb_ctf_id_t rid;
2455
2456 if (parse_member(&pa, member, id, &mid,
2457 &off, &last_deref) != 0) {
2458 err = DCMD_ABORT;
2459 goto out;
2460 }
2461
2462 /*
2463 * If the member string ends with a "[0]"
2464 * (last_deref * is true) and the type is a
2465 * structure or union, * print "->" rather
2466 * than "[0]." in elt_print.
2467 */
2468 (void) mdb_ctf_type_resolve(mid, &rid);
2469 kind = mdb_ctf_type_kind(rid);
2470 if (last_deref && IS_SOU(kind)) {
2471 char *end;
2472 (void) mdb_snprintf(buf, sizeof (buf),
2473 "%s", member);
2474 end = strrchr(buf, '[');
2475 *end = '\0';
2476 pa.pa_suffix = "->";
2477 member = &buf[0];
2478 } else if (IS_SOU(kind)) {
2479 pa.pa_suffix = ".";
2480 } else {
2481 pa.pa_suffix = "";
2482 }
2483
2484 pa.pa_prefix = member;
2485 } else {
2486 ulong_t moff;
2487
2488 moff = (ulong_t)argv[i].a_un.a_val;
2489
2490 if (mdb_ctf_offset_to_name(id, moff * NBBY,
2491 buf, sizeof (buf), 0, &mid, &off) == -1) {
2492 mdb_warn("invalid offset %lx\n", moff);
2493 err = DCMD_ABORT;
2494 goto out;
2495 }
2496
2497 pa.pa_prefix = buf;
2498 pa.pa_addr += moff - off / NBBY;
2499 pa.pa_suffix = strlen(buf) == 0 ? "" : ".";
2500 }
2501
2502 off %= NBBY;
2503 if (flags & DCMD_PIPE_OUT) {
2504 if (pipe_print(mid, off, &pa) != 0) {
2505 mdb_warn("failed to print type");
2506 err = DCMD_ERR;
2507 goto out;
2508 }
2509 } else if (off != 0) {
2510 mdb_ctf_id_t base;
2511 (void) mdb_ctf_type_resolve(mid, &base);
2512
2513 if (elt_print("", mid, base, off, 0,
2514 &pa) != 0) {
2515 mdb_warn("failed to print type");
2516 err = DCMD_ERR;
2517 goto out;
2518 }
2519 } else {
2520 if (mdb_ctf_type_visit(mid, elt_print,
2521 &pa) == -1) {
2522 mdb_warn("failed to print type");
2523 err = DCMD_ERR;
2524 goto out;
2525 }
2526
2527 for (d = pa.pa_depth - 1; d >= 0; d--)
2528 print_close_sou(&pa, d);
2529 }
2530
2531 pa.pa_depth = 0;
2532 pa.pa_tgt = oldtgt;
2533 pa.pa_as = oldas;
2534 pa.pa_addr = oldaddr;
2535 pa.pa_delim = "\n";
2536 }
2537
2538 } else if (flags & DCMD_PIPE_OUT) {
2539 if (pipe_print(id, 0, &pa) != 0) {
2540 mdb_warn("failed to print type");
2541 err = DCMD_ERR;
2542 goto out;
2543 }
2544 } else {
2545 if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) {
2546 mdb_warn("failed to print type");
2547 err = DCMD_ERR;
2548 goto out;
2549 }
2550
2551 for (d = pa.pa_depth - 1; d >= 0; d--)
2552 print_close_sou(&pa, d);
2553 }
2554
2555 mdb_set_dot(addr + mdb_ctf_type_size(id));
2556 err = DCMD_OK;
2557 out:
2558 if (pa.pa_immtgt)
2559 mdb_tgt_destroy(pa.pa_immtgt);
2560 return (err);
2561 }
2562
2563 void
print_help(void)2564 print_help(void)
2565 {
2566 mdb_printf(
2567 "-a show address of object\n"
2568 "-C unlimit the length of character arrays\n"
2569 "-c limit limit the length of character arrays\n"
2570 "-d output values in decimal\n"
2571 "-h print holes in structures\n"
2572 "-i interpret address as data of the given type\n"
2573 "-L unlimit the length of standard arrays\n"
2574 "-l limit limit the length of standard arrays\n"
2575 "-n don't print pointers as symbol offsets\n"
2576 "-p interpret address as a physical memory address\n"
2577 "-s depth limit the recursion depth\n"
2578 "-T show type and <<base type>> of object\n"
2579 "-t show type of object\n"
2580 "-x output values in hexadecimal\n"
2581 "\n"
2582 "type may be omitted if the C type of addr can be inferred.\n"
2583 "\n"
2584 "Members may be specified with standard C syntax using the\n"
2585 "array indexing operator \"[index]\", structure member\n"
2586 "operator \".\", or structure pointer operator \"->\".\n"
2587 "\n"
2588 "Offsets must use the $[ expression ] syntax\n");
2589 }
2590
2591 static int
printf_signed(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt,boolean_t sign)2592 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2593 boolean_t sign)
2594 {
2595 size_t size;
2596 mdb_ctf_id_t base;
2597 ctf_encoding_t e;
2598
2599 union {
2600 uint64_t ui8;
2601 uint32_t ui4;
2602 uint16_t ui2;
2603 uint8_t ui1;
2604 int64_t i8;
2605 int32_t i4;
2606 int16_t i2;
2607 int8_t i1;
2608 } u;
2609
2610 if (mdb_ctf_type_resolve(id, &base) == -1) {
2611 mdb_warn("could not resolve type");
2612 return (DCMD_ABORT);
2613 }
2614
2615 switch (mdb_ctf_type_kind(base)) {
2616 case CTF_K_ENUM:
2617 e.cte_format = CTF_INT_SIGNED;
2618 e.cte_offset = 0;
2619 e.cte_bits = mdb_ctf_type_size(id) * NBBY;
2620 break;
2621 case CTF_K_INTEGER:
2622 if (mdb_ctf_type_encoding(base, &e) != 0) {
2623 mdb_warn("could not get type encoding");
2624 return (DCMD_ABORT);
2625 }
2626 break;
2627 default:
2628 mdb_warn("expected integer type\n");
2629 return (DCMD_ABORT);
2630 }
2631
2632 if (sign)
2633 sign = e.cte_format & CTF_INT_SIGNED;
2634
2635 size = e.cte_bits / NBBY;
2636
2637 /*
2638 * Check to see if our life has been complicated by the presence of
2639 * a bitfield. If it has, we will print it using logic that is only
2640 * slightly different than that found in print_bitfield(), above. (In
2641 * particular, see the comments there for an explanation of the
2642 * endianness differences in this code.)
2643 */
2644 if (is_bitfield(&e, off)) {
2645 uint64_t mask = (1ULL << e.cte_bits) - 1;
2646 uint64_t value = 0;
2647 uint8_t *buf = (uint8_t *)&value;
2648 uint8_t shift;
2649 uint_t nbits;
2650
2651 /*
2652 * Our bitfield may straddle a byte boundary. We explicitly take
2653 * the offset of the bitfield within its byte into account when
2654 * determining the overall amount of data to copy and mask off
2655 * from the underlying data.
2656 */
2657 nbits = e.cte_bits + (off % NBBY);
2658 size = P2ROUNDUP(nbits, NBBY) / NBBY;
2659
2660 if (e.cte_bits > sizeof (value) * NBBY - 1) {
2661 mdb_printf("invalid bitfield size %u", e.cte_bits);
2662 return (DCMD_ABORT);
2663 }
2664
2665 /*
2666 * Our bitfield may straddle a byte boundary, if so, the
2667 * calculation of size may not correctly capture that. However,
2668 * off is relative to the entire bitfield, so we first have to
2669 * make that relative to the byte.
2670 */
2671 if ((off % NBBY) + e.cte_bits > NBBY * size) {
2672 size++;
2673 }
2674
2675 if (size > sizeof (value)) {
2676 mdb_warn("??? (total bitfield too large after "
2677 "alignment\n");
2678 return (DCMD_ABORT);
2679 }
2680
2681 #ifdef _BIG_ENDIAN
2682 buf += sizeof (value) - size;
2683 off += e.cte_bits;
2684 #endif
2685
2686 if (mdb_vread(buf, size, addr) == -1) {
2687 mdb_warn("failed to read %lu bytes at %p", size, addr);
2688 return (DCMD_ERR);
2689 }
2690
2691 shift = off % NBBY;
2692 #ifdef _BIG_ENDIAN
2693 shift = NBBY - shift;
2694 #endif
2695
2696 /*
2697 * If we have a bit offset within the byte, shift it down.
2698 */
2699 if (off % NBBY != 0)
2700 value >>= shift;
2701 value &= mask;
2702
2703 if (sign) {
2704 int sshift = sizeof (value) * NBBY - e.cte_bits;
2705 value = ((int64_t)value << sshift) >> sshift;
2706 }
2707
2708 mdb_printf(fmt, value);
2709 return (0);
2710 }
2711
2712 if (mdb_vread(&u.i8, size, addr) == -1) {
2713 mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2714 return (DCMD_ERR);
2715 }
2716
2717 switch (size) {
2718 case sizeof (uint8_t):
2719 mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2720 break;
2721 case sizeof (uint16_t):
2722 mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2723 break;
2724 case sizeof (uint32_t):
2725 mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2726 break;
2727 case sizeof (uint64_t):
2728 mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2729 break;
2730 }
2731
2732 return (0);
2733 }
2734
2735 static int
printf_int(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2736 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2737 {
2738 return (printf_signed(id, addr, off, fmt, B_TRUE));
2739 }
2740
2741 static int
printf_uint(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2742 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2743 {
2744 return (printf_signed(id, addr, off, fmt, B_FALSE));
2745 }
2746
2747 /*ARGSUSED*/
2748 static int
printf_uint32(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2749 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2750 {
2751 mdb_ctf_id_t base;
2752 ctf_encoding_t e;
2753 uint32_t value;
2754
2755 if (mdb_ctf_type_resolve(id, &base) == -1) {
2756 mdb_warn("could not resolve type\n");
2757 return (DCMD_ABORT);
2758 }
2759
2760 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2761 mdb_ctf_type_encoding(base, &e) != 0 ||
2762 e.cte_bits / NBBY != sizeof (value)) {
2763 mdb_warn("expected 32-bit integer type\n");
2764 return (DCMD_ABORT);
2765 }
2766
2767 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2768 mdb_warn("failed to read 32-bit value at %p", addr);
2769 return (DCMD_ERR);
2770 }
2771
2772 mdb_printf(fmt, value);
2773
2774 return (0);
2775 }
2776
2777 /*ARGSUSED*/
2778 static int
printf_ptr(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2779 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2780 {
2781 uintptr_t value;
2782 mdb_ctf_id_t base;
2783
2784 if (mdb_ctf_type_resolve(id, &base) == -1) {
2785 mdb_warn("could not resolve type\n");
2786 return (DCMD_ABORT);
2787 }
2788
2789 if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2790 mdb_warn("expected pointer type\n");
2791 return (DCMD_ABORT);
2792 }
2793
2794 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2795 mdb_warn("failed to read pointer at %llx", addr);
2796 return (DCMD_ERR);
2797 }
2798
2799 mdb_printf(fmt, value);
2800
2801 return (0);
2802 }
2803
2804 /*ARGSUSED*/
2805 static int
printf_string(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2806 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2807 {
2808 mdb_ctf_id_t base;
2809 mdb_ctf_arinfo_t r;
2810 char buf[1024];
2811 ssize_t size;
2812
2813 if (mdb_ctf_type_resolve(id, &base) == -1) {
2814 mdb_warn("could not resolve type");
2815 return (DCMD_ABORT);
2816 }
2817
2818 if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2819 uintptr_t value;
2820
2821 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2822 mdb_warn("failed to read pointer at %llx", addr);
2823 return (DCMD_ERR);
2824 }
2825
2826 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2827 mdb_warn("failed to read string at %llx", value);
2828 return (DCMD_ERR);
2829 }
2830
2831 mdb_printf(fmt, buf);
2832 return (0);
2833 }
2834
2835 if (mdb_ctf_type_kind(base) == CTF_K_ENUM) {
2836 const char *strval;
2837 int value;
2838
2839 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2840 mdb_warn("failed to read pointer at %llx", addr);
2841 return (DCMD_ERR);
2842 }
2843
2844 if ((strval = mdb_ctf_enum_name(id, value))) {
2845 mdb_printf(fmt, strval);
2846 } else {
2847 (void) mdb_snprintf(buf, sizeof (buf), "<%d>", value);
2848 mdb_printf(fmt, buf);
2849 }
2850
2851 return (0);
2852 }
2853
2854 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2855 mdb_warn("exepected pointer or array type\n");
2856 return (DCMD_ABORT);
2857 }
2858
2859 if (mdb_ctf_array_info(base, &r) == -1 ||
2860 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2861 (size = mdb_ctf_type_size(base)) == -1) {
2862 mdb_warn("can't determine array type");
2863 return (DCMD_ABORT);
2864 }
2865
2866 if (size != 1) {
2867 mdb_warn("string format specifier requires "
2868 "an array of characters\n");
2869 return (DCMD_ABORT);
2870 }
2871
2872 bzero(buf, sizeof (buf));
2873
2874 if (mdb_vread(buf, MIN(r.mta_nelems, sizeof (buf) - 1), addr) == -1) {
2875 mdb_warn("failed to read array at %p", addr);
2876 return (DCMD_ERR);
2877 }
2878
2879 mdb_printf(fmt, buf);
2880
2881 return (0);
2882 }
2883
2884 /*ARGSUSED*/
2885 static int
printf_ipv6(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2886 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2887 {
2888 mdb_ctf_id_t base;
2889 mdb_ctf_id_t ipv6_type, ipv6_base;
2890 in6_addr_t ipv6;
2891
2892 if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2893 mdb_warn("could not resolve in6_addr_t type\n");
2894 return (DCMD_ABORT);
2895 }
2896
2897 if (mdb_ctf_type_resolve(id, &base) == -1) {
2898 mdb_warn("could not resolve type\n");
2899 return (DCMD_ABORT);
2900 }
2901
2902 if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2903 mdb_warn("could not resolve in6_addr_t type\n");
2904 return (DCMD_ABORT);
2905 }
2906
2907 if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2908 mdb_warn("requires argument of type in6_addr_t\n");
2909 return (DCMD_ABORT);
2910 }
2911
2912 if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2913 mdb_warn("couldn't read in6_addr_t at %p", addr);
2914 return (DCMD_ERR);
2915 }
2916
2917 mdb_printf(fmt, &ipv6);
2918
2919 return (0);
2920 }
2921
2922 /*
2923 * To validate the format string specified to ::printf, we run the format
2924 * string through a very simple state machine that restricts us to a subset
2925 * of mdb_printf() functionality.
2926 */
2927 enum {
2928 PRINTF_NOFMT = 1, /* no current format specifier */
2929 PRINTF_PERC, /* processed '%' */
2930 PRINTF_FMT, /* processing format specifier */
2931 PRINTF_LEFT, /* processed '-', expecting width */
2932 PRINTF_WIDTH, /* processing width */
2933 PRINTF_QUES /* processed '?', expecting format */
2934 };
2935
2936 int
cmd_printf_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2937 cmd_printf_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2938 const mdb_arg_t *argv)
2939 {
2940 int ii;
2941 char *f;
2942
2943 /*
2944 * If argc doesn't have more than what should be the format string,
2945 * ignore it.
2946 */
2947 if (argc <= 1)
2948 return (0);
2949
2950 /*
2951 * Because we aren't leveraging the lex and yacc engine, we have to
2952 * manually walk the arguments to find both the first and last
2953 * open/close quote of the format string.
2954 */
2955 f = strchr(argv[0].a_un.a_str, '"');
2956 if (f == NULL)
2957 return (0);
2958
2959 f = strchr(f + 1, '"');
2960 if (f != NULL) {
2961 ii = 0;
2962 } else {
2963 for (ii = 1; ii < argc; ii++) {
2964 if (argv[ii].a_type != MDB_TYPE_STRING)
2965 continue;
2966 f = strchr(argv[ii].a_un.a_str, '"');
2967 if (f != NULL)
2968 break;
2969 }
2970 /* Never found */
2971 if (ii == argc)
2972 return (0);
2973 }
2974
2975 ii++;
2976 argc -= ii;
2977 argv += ii;
2978
2979 return (cmd_print_tab_common(mcp, flags, argc, argv));
2980 }
2981
2982 int
cmd_printf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2983 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2984 {
2985 char type[MDB_SYM_NAMLEN];
2986 int i, nfmts = 0, ret;
2987 mdb_ctf_id_t id;
2988 const char *fmt, *member;
2989 char **fmts, *last, *dest, f;
2990 int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
2991 int state = PRINTF_NOFMT;
2992 printarg_t pa;
2993
2994 if (!(flags & DCMD_ADDRSPEC))
2995 return (DCMD_USAGE);
2996
2997 bzero(&pa, sizeof (pa));
2998 pa.pa_as = MDB_TGT_AS_VIRT;
2999 pa.pa_realtgt = pa.pa_tgt = mdb.m_target;
3000
3001 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
3002 mdb_warn("expected a format string\n");
3003 return (DCMD_USAGE);
3004 }
3005
3006 /*
3007 * Our first argument is a format string; rip it apart and run it
3008 * through our state machine to validate that our input is within the
3009 * subset of mdb_printf() format strings that we allow.
3010 */
3011 fmt = argv[0].a_un.a_str;
3012 /*
3013 * 'dest' must be large enough to hold a copy of the format string,
3014 * plus a NUL and up to 2 additional characters for each conversion
3015 * in the format string. This gives us a bloat factor of 5/2 ~= 3.
3016 * e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
3017 */
3018 dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
3019 fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
3020 funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
3021 last = dest;
3022
3023 for (i = 0; fmt[i] != '\0'; i++) {
3024 *dest++ = f = fmt[i];
3025
3026 switch (state) {
3027 case PRINTF_NOFMT:
3028 state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT;
3029 break;
3030
3031 case PRINTF_PERC:
3032 state = f == '-' ? PRINTF_LEFT :
3033 f >= '0' && f <= '9' ? PRINTF_WIDTH :
3034 f == '?' ? PRINTF_QUES :
3035 f == '%' ? PRINTF_NOFMT : PRINTF_FMT;
3036 break;
3037
3038 case PRINTF_LEFT:
3039 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3040 f == '?' ? PRINTF_QUES : PRINTF_FMT;
3041 break;
3042
3043 case PRINTF_WIDTH:
3044 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3045 PRINTF_FMT;
3046 break;
3047
3048 case PRINTF_QUES:
3049 state = PRINTF_FMT;
3050 break;
3051 }
3052
3053 if (state != PRINTF_FMT)
3054 continue;
3055
3056 dest--;
3057
3058 /*
3059 * Now check that we have one of our valid format characters.
3060 */
3061 switch (f) {
3062 case 'a':
3063 case 'A':
3064 case 'p':
3065 funcs[nfmts] = printf_ptr;
3066 break;
3067
3068 case 'd':
3069 case 'q':
3070 case 'R':
3071 funcs[nfmts] = printf_int;
3072 *dest++ = 'l';
3073 *dest++ = 'l';
3074 break;
3075
3076 case 'I':
3077 funcs[nfmts] = printf_uint32;
3078 break;
3079
3080 case 'N':
3081 funcs[nfmts] = printf_ipv6;
3082 break;
3083
3084 case 'H':
3085 case 'o':
3086 case 'r':
3087 case 'u':
3088 case 'x':
3089 case 'X':
3090 funcs[nfmts] = printf_uint;
3091 *dest++ = 'l';
3092 *dest++ = 'l';
3093 break;
3094
3095 case 's':
3096 funcs[nfmts] = printf_string;
3097 break;
3098
3099 case 'Y':
3100 funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
3101 printf_uint32 : printf_uint;
3102 break;
3103
3104 default:
3105 mdb_warn("illegal format string at or near "
3106 "'%c' (position %d)\n", f, i + 1);
3107 return (DCMD_ABORT);
3108 }
3109
3110 *dest++ = f;
3111 *dest++ = '\0';
3112 fmts[nfmts++] = last;
3113 last = dest;
3114 state = PRINTF_NOFMT;
3115 }
3116
3117 argc--;
3118 argv++;
3119
3120 /*
3121 * Now we expect a type name.
3122 */
3123 if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
3124 return (ret);
3125
3126 argv++;
3127 argc--;
3128
3129 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
3130 mdb_warn("failed to look up type %s", type);
3131 return (DCMD_ABORT);
3132 }
3133
3134 if (argc == 0) {
3135 mdb_warn("at least one member must be specified\n");
3136 return (DCMD_USAGE);
3137 }
3138
3139 if (argc != nfmts) {
3140 mdb_warn("%s format specifiers (found %d, expected %d)\n",
3141 argc > nfmts ? "missing" : "extra", nfmts, argc);
3142 return (DCMD_ABORT);
3143 }
3144
3145 for (i = 0; i < argc; i++) {
3146 mdb_ctf_id_t mid;
3147 ulong_t off;
3148 int ignored;
3149
3150 if (argv[i].a_type != MDB_TYPE_STRING) {
3151 mdb_warn("expected only type member arguments\n");
3152 return (DCMD_ABORT);
3153 }
3154
3155 if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
3156 /*
3157 * We allow "." to be specified to denote the current
3158 * value of dot.
3159 */
3160 if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&
3161 funcs[i] != printf_int) {
3162 mdb_warn("expected integer or pointer format "
3163 "specifier for '.'\n");
3164 return (DCMD_ABORT);
3165 }
3166
3167 mdb_printf(fmts[i], mdb_get_dot());
3168 continue;
3169 }
3170
3171 pa.pa_addr = addr;
3172
3173 if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
3174 return (DCMD_ABORT);
3175
3176 if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
3177 mdb_warn("failed to print member '%s'\n", member);
3178 return (ret);
3179 }
3180 }
3181
3182 mdb_printf("%s", last);
3183 mdb_set_dot(addr + mdb_ctf_type_size(id));
3184
3185 return (DCMD_OK);
3186 }
3187
3188 static char _mdb_printf_help[] =
3189 "The format string argument is a printf(3C)-like format string that is a\n"
3190 "subset of the format strings supported by mdb_printf(). The type argument\n"
3191 "is the name of a type to be used to interpret the memory referenced by dot.\n"
3192 "The member should either be a field in the specified structure, or the\n"
3193 "special member '.', denoting the value of dot (and treated as a pointer).\n"
3194 "The number of members must match the number of format specifiers in the\n"
3195 "format string.\n"
3196 "\n"
3197 "The following format specifiers are recognized by ::printf:\n"
3198 "\n"
3199 " %% Prints the '%' symbol.\n"
3200 " %a Prints the member in symbolic form.\n"
3201 " %d Prints the member as a decimal integer. If the member is a signed\n"
3202 " integer type, the output will be signed.\n"
3203 " %H Prints the member as a human-readable size.\n"
3204 " %I Prints the member as an IPv4 address (must be 32-bit integer type).\n"
3205 " %N Prints the member as an IPv6 address (must be of type in6_addr_t).\n"
3206 " %o Prints the member as an unsigned octal integer.\n"
3207 " %p Prints the member as a pointer, in hexadecimal.\n"
3208 " %q Prints the member in signed octal. Honk if you ever use this!\n"
3209 " %r Prints the member as an unsigned value in the current output radix.\n"
3210 " %R Prints the member as a signed value in the current output radix.\n"
3211 " %s Prints the member as a string (requires a pointer or an array of\n"
3212 " characters).\n"
3213 " %u Prints the member as an unsigned decimal integer.\n"
3214 " %x Prints the member in hexadecimal.\n"
3215 " %X Prints the member in hexadecimal, using the characters A-F as the\n"
3216 " digits for the values 10-15.\n"
3217 " %Y Prints the member as a time_t as the string "
3218 "'year month day HH:MM:SS'.\n"
3219 "\n"
3220 "The following field width specifiers are recognized by ::printf:\n"
3221 "\n"
3222 " %n Field width is set to the specified decimal value.\n"
3223 " %? Field width is set to the maximum width of a hexadecimal pointer\n"
3224 " value. This is 8 in an ILP32 environment, and 16 in an LP64\n"
3225 " environment.\n"
3226 "\n"
3227 "The following flag specifers are recognized by ::printf:\n"
3228 "\n"
3229 " %- Left-justify the output within the specified field width. If the\n"
3230 " width of the output is less than the specified field width, the\n"
3231 " output will be padded with blanks on the right-hand side. Without\n"
3232 " %-, values are right-justified by default.\n"
3233 "\n"
3234 " %0 Zero-fill the output field if the output is right-justified and the\n"
3235 " width of the output is less than the specified field width. Without\n"
3236 " %0, right-justified values are prepended with blanks in order to\n"
3237 " fill the field.\n"
3238 "\n"
3239 "Examples: \n"
3240 "\n"
3241 " ::walk proc | "
3242 "::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3243 " ::walk thread | "
3244 "::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3245 " ::walk zone | "
3246 "::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3247 " ::walk ire | "
3248 "::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3249 "\n";
3250
3251 void
printf_help(void)3252 printf_help(void)
3253 {
3254 mdb_printf("%s", _mdb_printf_help);
3255 }
3256