1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57
58 union tod_clock tod_clock_base __section(".data");
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68
69 unsigned char ptff_function_mask[16];
70
71 static unsigned long lpar_offset;
72 static unsigned long initial_leap_seconds;
73 static unsigned long tod_steering_end;
74 static long tod_steering_delta;
75
76 /*
77 * Get time offsets with PTFF
78 */
time_early_init(void)79 void __init time_early_init(void)
80 {
81 struct ptff_qto qto;
82 struct ptff_qui qui;
83 int cs;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = tod_clock_base.tod;
87 for (cs = 0; cs < CS_BASES; cs++)
88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89
90 if (!test_facility(28))
91 return;
92
93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94
95 /* get LPAR offset */
96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97 lpar_offset = qto.tod_epoch_difference;
98
99 /* get initial leap seconds */
100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101 initial_leap_seconds = (unsigned long)
102 ((long) qui.old_leap * 4096000000L);
103 }
104
sched_clock_noinstr(void)105 unsigned long long noinstr sched_clock_noinstr(void)
106 {
107 return tod_to_ns(__get_tod_clock_monotonic());
108 }
109
110 /*
111 * Scheduler clock - returns current time in nanosec units.
112 */
sched_clock(void)113 unsigned long long notrace sched_clock(void)
114 {
115 return tod_to_ns(get_tod_clock_monotonic());
116 }
117 NOKPROBE_SYMBOL(sched_clock);
118
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)119 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
120 {
121 unsigned long rem, sec, nsec;
122
123 sec = clk->us;
124 rem = do_div(sec, 1000000);
125 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
126 xt->tv_sec = sec;
127 xt->tv_nsec = nsec;
128 }
129
clock_comparator_work(void)130 void clock_comparator_work(void)
131 {
132 struct clock_event_device *cd;
133
134 get_lowcore()->clock_comparator = clock_comparator_max;
135 cd = this_cpu_ptr(&comparators);
136 cd->event_handler(cd);
137 }
138
s390_next_event(unsigned long delta,struct clock_event_device * evt)139 static int s390_next_event(unsigned long delta,
140 struct clock_event_device *evt)
141 {
142 get_lowcore()->clock_comparator = get_tod_clock() + delta;
143 set_clock_comparator(get_lowcore()->clock_comparator);
144 return 0;
145 }
146
147 /*
148 * Set up lowcore and control register of the current cpu to
149 * enable TOD clock and clock comparator interrupts.
150 */
init_cpu_timer(void)151 void init_cpu_timer(void)
152 {
153 struct clock_event_device *cd;
154 int cpu;
155
156 get_lowcore()->clock_comparator = clock_comparator_max;
157 set_clock_comparator(get_lowcore()->clock_comparator);
158
159 cpu = smp_processor_id();
160 cd = &per_cpu(comparators, cpu);
161 cd->name = "comparator";
162 cd->features = CLOCK_EVT_FEAT_ONESHOT;
163 cd->mult = 16777;
164 cd->shift = 12;
165 cd->min_delta_ns = 1;
166 cd->min_delta_ticks = 1;
167 cd->max_delta_ns = LONG_MAX;
168 cd->max_delta_ticks = ULONG_MAX;
169 cd->rating = 400;
170 cd->cpumask = cpumask_of(cpu);
171 cd->set_next_event = s390_next_event;
172
173 clockevents_register_device(cd);
174
175 /* Enable clock comparator timer interrupt. */
176 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
177
178 /* Always allow the timing alert external interrupt. */
179 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
180 }
181
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)182 static void clock_comparator_interrupt(struct ext_code ext_code,
183 unsigned int param32,
184 unsigned long param64)
185 {
186 inc_irq_stat(IRQEXT_CLK);
187 if (get_lowcore()->clock_comparator == clock_comparator_max)
188 set_clock_comparator(get_lowcore()->clock_comparator);
189 }
190
191 static void stp_timing_alert(struct stp_irq_parm *);
192
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)193 static void timing_alert_interrupt(struct ext_code ext_code,
194 unsigned int param32, unsigned long param64)
195 {
196 inc_irq_stat(IRQEXT_TLA);
197 if (param32 & 0x00038000)
198 stp_timing_alert((struct stp_irq_parm *) ¶m32);
199 }
200
201 static void stp_reset(void);
202
read_persistent_clock64(struct timespec64 * ts)203 void read_persistent_clock64(struct timespec64 *ts)
204 {
205 union tod_clock clk;
206 u64 delta;
207
208 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209 store_tod_clock_ext(&clk);
210 clk.eitod -= delta;
211 ext_to_timespec64(&clk, ts);
212 }
213
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)214 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215 struct timespec64 *boot_offset)
216 {
217 struct timespec64 boot_time;
218 union tod_clock clk;
219 u64 delta;
220
221 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222 clk = tod_clock_base;
223 clk.eitod -= delta;
224 ext_to_timespec64(&clk, &boot_time);
225
226 read_persistent_clock64(wall_time);
227 *boot_offset = timespec64_sub(*wall_time, boot_time);
228 }
229
read_tod_clock(struct clocksource * cs)230 static u64 read_tod_clock(struct clocksource *cs)
231 {
232 unsigned long now, adj;
233
234 preempt_disable(); /* protect from changes to steering parameters */
235 now = get_tod_clock();
236 adj = tod_steering_end - now;
237 if (unlikely((s64) adj > 0))
238 /*
239 * manually steer by 1 cycle every 2^16 cycles. This
240 * corresponds to shifting the tod delta by 15. 1s is
241 * therefore steered in ~9h. The adjust will decrease
242 * over time, until it finally reaches 0.
243 */
244 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245 preempt_enable();
246 return now;
247 }
248
249 static struct clocksource clocksource_tod = {
250 .name = "tod",
251 .rating = 400,
252 .read = read_tod_clock,
253 .mask = CLOCKSOURCE_MASK(64),
254 .mult = 4096000,
255 .shift = 24,
256 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
257 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258 };
259
clocksource_default_clock(void)260 struct clocksource * __init clocksource_default_clock(void)
261 {
262 return &clocksource_tod;
263 }
264
265 /*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
time_init(void)269 void __init time_init(void)
270 {
271 /* Reset time synchronization interfaces. */
272 stp_reset();
273
274 /* request the clock comparator external interrupt */
275 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276 panic("Couldn't request external interrupt 0x1004");
277
278 /* request the timing alert external interrupt */
279 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280 panic("Couldn't request external interrupt 0x1406");
281
282 if (__clocksource_register(&clocksource_tod) != 0)
283 panic("Could not register TOD clock source");
284
285 /* Enable TOD clock interrupts on the boot cpu. */
286 init_cpu_timer();
287
288 /* Enable cpu timer interrupts on the boot cpu. */
289 vtime_init();
290 }
291
292 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293 static DEFINE_MUTEX(stp_mutex);
294 static unsigned long clock_sync_flags;
295
296 #define CLOCK_SYNC_HAS_STP 0
297 #define CLOCK_SYNC_STP 1
298 #define CLOCK_SYNC_STPINFO_VALID 2
299
300 /*
301 * The get_clock function for the physical clock. It will get the current
302 * TOD clock, subtract the LPAR offset and write the result to *clock.
303 * The function returns 0 if the clock is in sync with the external time
304 * source. If the clock mode is local it will return -EOPNOTSUPP and
305 * -EAGAIN if the clock is not in sync with the external reference.
306 */
get_phys_clock(unsigned long * clock)307 int get_phys_clock(unsigned long *clock)
308 {
309 atomic_t *sw_ptr;
310 unsigned int sw0, sw1;
311
312 sw_ptr = &get_cpu_var(clock_sync_word);
313 sw0 = atomic_read(sw_ptr);
314 *clock = get_tod_clock() - lpar_offset;
315 sw1 = atomic_read(sw_ptr);
316 put_cpu_var(clock_sync_word);
317 if (sw0 == sw1 && (sw0 & 0x80000000U))
318 /* Success: time is in sync. */
319 return 0;
320 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321 return -EOPNOTSUPP;
322 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323 return -EACCES;
324 return -EAGAIN;
325 }
326 EXPORT_SYMBOL(get_phys_clock);
327
328 /*
329 * Make get_phys_clock() return -EAGAIN.
330 */
disable_sync_clock(void * dummy)331 static void disable_sync_clock(void *dummy)
332 {
333 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334 /*
335 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336 * fail until the sync bit is turned back on. In addition
337 * increase the "sequence" counter to avoid the race of an
338 * stp event and the complete recovery against get_phys_clock.
339 */
340 atomic_andnot(0x80000000, sw_ptr);
341 atomic_inc(sw_ptr);
342 }
343
344 /*
345 * Make get_phys_clock() return 0 again.
346 * Needs to be called from a context disabled for preemption.
347 */
enable_sync_clock(void)348 static void enable_sync_clock(void)
349 {
350 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351 atomic_or(0x80000000, sw_ptr);
352 }
353
354 /*
355 * Function to check if the clock is in sync.
356 */
check_sync_clock(void)357 static inline int check_sync_clock(void)
358 {
359 atomic_t *sw_ptr;
360 int rc;
361
362 sw_ptr = &get_cpu_var(clock_sync_word);
363 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364 put_cpu_var(clock_sync_word);
365 return rc;
366 }
367
368 /*
369 * Apply clock delta to the global data structures.
370 * This is called once on the CPU that performed the clock sync.
371 */
clock_sync_global(long delta)372 static void clock_sync_global(long delta)
373 {
374 unsigned long now, adj;
375 struct ptff_qto qto;
376 int cs;
377
378 /* Fixup the monotonic sched clock. */
379 tod_clock_base.eitod += delta;
380 /* Adjust TOD steering parameters. */
381 now = get_tod_clock();
382 adj = tod_steering_end - now;
383 if (unlikely((s64) adj >= 0))
384 /* Calculate how much of the old adjustment is left. */
385 tod_steering_delta = (tod_steering_delta < 0) ?
386 -(adj >> 15) : (adj >> 15);
387 tod_steering_delta += delta;
388 if ((abs(tod_steering_delta) >> 48) != 0)
389 panic("TOD clock sync offset %li is too large to drift\n",
390 tod_steering_delta);
391 tod_steering_end = now + (abs(tod_steering_delta) << 15);
392 for (cs = 0; cs < CS_BASES; cs++) {
393 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395 }
396
397 /* Update LPAR offset. */
398 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399 lpar_offset = qto.tod_epoch_difference;
400 /* Call the TOD clock change notifier. */
401 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402 }
403
404 /*
405 * Apply clock delta to the per-CPU data structures of this CPU.
406 * This is called for each online CPU after the call to clock_sync_global.
407 */
clock_sync_local(long delta)408 static void clock_sync_local(long delta)
409 {
410 /* Add the delta to the clock comparator. */
411 if (get_lowcore()->clock_comparator != clock_comparator_max) {
412 get_lowcore()->clock_comparator += delta;
413 set_clock_comparator(get_lowcore()->clock_comparator);
414 }
415 /* Adjust the last_update_clock time-stamp. */
416 get_lowcore()->last_update_clock += delta;
417 }
418
419 /* Single threaded workqueue used for stp sync events */
420 static struct workqueue_struct *time_sync_wq;
421
time_init_wq(void)422 static void __init time_init_wq(void)
423 {
424 if (time_sync_wq)
425 return;
426 time_sync_wq = create_singlethread_workqueue("timesync");
427 }
428
429 struct clock_sync_data {
430 atomic_t cpus;
431 int in_sync;
432 long clock_delta;
433 };
434
435 /*
436 * Server Time Protocol (STP) code.
437 */
438 static bool stp_online;
439 static struct stp_sstpi stp_info;
440 static void *stp_page;
441
442 static void stp_work_fn(struct work_struct *work);
443 static DECLARE_WORK(stp_work, stp_work_fn);
444 static struct timer_list stp_timer;
445
early_parse_stp(char * p)446 static int __init early_parse_stp(char *p)
447 {
448 return kstrtobool(p, &stp_online);
449 }
450 early_param("stp", early_parse_stp);
451
452 /*
453 * Reset STP attachment.
454 */
stp_reset(void)455 static void __init stp_reset(void)
456 {
457 int rc;
458
459 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461 if (rc == 0)
462 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463 else if (stp_online) {
464 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465 free_page((unsigned long) stp_page);
466 stp_page = NULL;
467 stp_online = false;
468 }
469 }
470
stp_timeout(struct timer_list * unused)471 static void stp_timeout(struct timer_list *unused)
472 {
473 queue_work(time_sync_wq, &stp_work);
474 }
475
stp_init(void)476 static int __init stp_init(void)
477 {
478 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
479 return 0;
480 timer_setup(&stp_timer, stp_timeout, 0);
481 time_init_wq();
482 if (!stp_online)
483 return 0;
484 queue_work(time_sync_wq, &stp_work);
485 return 0;
486 }
487
488 arch_initcall(stp_init);
489
490 /*
491 * STP timing alert. There are three causes:
492 * 1) timing status change
493 * 2) link availability change
494 * 3) time control parameter change
495 * In all three cases we are only interested in the clock source state.
496 * If a STP clock source is now available use it.
497 */
stp_timing_alert(struct stp_irq_parm * intparm)498 static void stp_timing_alert(struct stp_irq_parm *intparm)
499 {
500 if (intparm->tsc || intparm->lac || intparm->tcpc)
501 queue_work(time_sync_wq, &stp_work);
502 }
503
504 /*
505 * STP sync check machine check. This is called when the timing state
506 * changes from the synchronized state to the unsynchronized state.
507 * After a STP sync check the clock is not in sync. The machine check
508 * is broadcasted to all cpus at the same time.
509 */
stp_sync_check(void)510 int stp_sync_check(void)
511 {
512 disable_sync_clock(NULL);
513 return 1;
514 }
515
516 /*
517 * STP island condition machine check. This is called when an attached
518 * server attempts to communicate over an STP link and the servers
519 * have matching CTN ids and have a valid stratum-1 configuration
520 * but the configurations do not match.
521 */
stp_island_check(void)522 int stp_island_check(void)
523 {
524 disable_sync_clock(NULL);
525 return 1;
526 }
527
stp_queue_work(void)528 void stp_queue_work(void)
529 {
530 queue_work(time_sync_wq, &stp_work);
531 }
532
__store_stpinfo(void)533 static int __store_stpinfo(void)
534 {
535 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
536
537 if (rc)
538 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
539 else
540 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
541 return rc;
542 }
543
stpinfo_valid(void)544 static int stpinfo_valid(void)
545 {
546 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 }
548
stp_sync_clock(void * data)549 static int stp_sync_clock(void *data)
550 {
551 struct clock_sync_data *sync = data;
552 long clock_delta, flags;
553 static int first;
554 int rc;
555
556 enable_sync_clock();
557 if (xchg(&first, 1) == 0) {
558 /* Wait until all other cpus entered the sync function. */
559 while (atomic_read(&sync->cpus) != 0)
560 cpu_relax();
561 rc = 0;
562 if (stp_info.todoff || stp_info.tmd != 2) {
563 flags = vdso_update_begin();
564 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
565 &clock_delta);
566 if (rc == 0) {
567 sync->clock_delta = clock_delta;
568 clock_sync_global(clock_delta);
569 rc = __store_stpinfo();
570 if (rc == 0 && stp_info.tmd != 2)
571 rc = -EAGAIN;
572 }
573 vdso_update_end(flags);
574 }
575 sync->in_sync = rc ? -EAGAIN : 1;
576 xchg(&first, 0);
577 } else {
578 /* Slave */
579 atomic_dec(&sync->cpus);
580 /* Wait for in_sync to be set. */
581 while (READ_ONCE(sync->in_sync) == 0)
582 __udelay(1);
583 }
584 if (sync->in_sync != 1)
585 /* Didn't work. Clear per-cpu in sync bit again. */
586 disable_sync_clock(NULL);
587 /* Apply clock delta to per-CPU fields of this CPU. */
588 clock_sync_local(sync->clock_delta);
589
590 return 0;
591 }
592
stp_clear_leap(void)593 static int stp_clear_leap(void)
594 {
595 struct __kernel_timex txc;
596 int ret;
597
598 memset(&txc, 0, sizeof(txc));
599
600 ret = do_adjtimex(&txc);
601 if (ret < 0)
602 return ret;
603
604 txc.modes = ADJ_STATUS;
605 txc.status &= ~(STA_INS|STA_DEL);
606 return do_adjtimex(&txc);
607 }
608
stp_check_leap(void)609 static void stp_check_leap(void)
610 {
611 struct stp_stzi stzi;
612 struct stp_lsoib *lsoib = &stzi.lsoib;
613 struct __kernel_timex txc;
614 int64_t timediff;
615 int leapdiff, ret;
616
617 if (!stp_info.lu || !check_sync_clock()) {
618 /*
619 * Either a scheduled leap second was removed by the operator,
620 * or STP is out of sync. In both cases, clear the leap second
621 * kernel flags.
622 */
623 if (stp_clear_leap() < 0)
624 pr_err("failed to clear leap second flags\n");
625 return;
626 }
627
628 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
629 pr_err("stzi failed\n");
630 return;
631 }
632
633 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
634 leapdiff = lsoib->nlso - lsoib->also;
635
636 if (leapdiff != 1 && leapdiff != -1) {
637 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
638 return;
639 }
640
641 if (timediff < 0) {
642 if (stp_clear_leap() < 0)
643 pr_err("failed to clear leap second flags\n");
644 } else if (timediff < 7200) {
645 memset(&txc, 0, sizeof(txc));
646 ret = do_adjtimex(&txc);
647 if (ret < 0)
648 return;
649
650 txc.modes = ADJ_STATUS;
651 if (leapdiff > 0)
652 txc.status |= STA_INS;
653 else
654 txc.status |= STA_DEL;
655 ret = do_adjtimex(&txc);
656 if (ret < 0)
657 pr_err("failed to set leap second flags\n");
658 /* arm Timer to clear leap second flags */
659 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
660 } else {
661 /* The day the leap second is scheduled for hasn't been reached. Retry
662 * in one hour.
663 */
664 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
665 }
666 }
667
668 /*
669 * STP work. Check for the STP state and take over the clock
670 * synchronization if the STP clock source is usable.
671 */
stp_work_fn(struct work_struct * work)672 static void stp_work_fn(struct work_struct *work)
673 {
674 struct clock_sync_data stp_sync;
675 int rc;
676
677 /* prevent multiple execution. */
678 mutex_lock(&stp_mutex);
679
680 if (!stp_online) {
681 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
682 del_timer_sync(&stp_timer);
683 goto out_unlock;
684 }
685
686 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
687 if (rc)
688 goto out_unlock;
689
690 rc = __store_stpinfo();
691 if (rc || stp_info.c == 0)
692 goto out_unlock;
693
694 /* Skip synchronization if the clock is already in sync. */
695 if (!check_sync_clock()) {
696 memset(&stp_sync, 0, sizeof(stp_sync));
697 cpus_read_lock();
698 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
699 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
700 cpus_read_unlock();
701 }
702
703 if (!check_sync_clock())
704 /*
705 * There is a usable clock but the synchronization failed.
706 * Retry after a second.
707 */
708 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
709 else if (stp_info.lu)
710 stp_check_leap();
711
712 out_unlock:
713 mutex_unlock(&stp_mutex);
714 }
715
716 /*
717 * STP subsys sysfs interface functions
718 */
719 static const struct bus_type stp_subsys = {
720 .name = "stp",
721 .dev_name = "stp",
722 };
723
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t ctn_id_show(struct device *dev,
725 struct device_attribute *attr,
726 char *buf)
727 {
728 ssize_t ret = -ENODATA;
729
730 mutex_lock(&stp_mutex);
731 if (stpinfo_valid())
732 ret = sprintf(buf, "%016lx\n",
733 *(unsigned long *) stp_info.ctnid);
734 mutex_unlock(&stp_mutex);
735 return ret;
736 }
737
738 static DEVICE_ATTR_RO(ctn_id);
739
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)740 static ssize_t ctn_type_show(struct device *dev,
741 struct device_attribute *attr,
742 char *buf)
743 {
744 ssize_t ret = -ENODATA;
745
746 mutex_lock(&stp_mutex);
747 if (stpinfo_valid())
748 ret = sprintf(buf, "%i\n", stp_info.ctn);
749 mutex_unlock(&stp_mutex);
750 return ret;
751 }
752
753 static DEVICE_ATTR_RO(ctn_type);
754
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t dst_offset_show(struct device *dev,
756 struct device_attribute *attr,
757 char *buf)
758 {
759 ssize_t ret = -ENODATA;
760
761 mutex_lock(&stp_mutex);
762 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
763 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
764 mutex_unlock(&stp_mutex);
765 return ret;
766 }
767
768 static DEVICE_ATTR_RO(dst_offset);
769
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)770 static ssize_t leap_seconds_show(struct device *dev,
771 struct device_attribute *attr,
772 char *buf)
773 {
774 ssize_t ret = -ENODATA;
775
776 mutex_lock(&stp_mutex);
777 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
778 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
779 mutex_unlock(&stp_mutex);
780 return ret;
781 }
782
783 static DEVICE_ATTR_RO(leap_seconds);
784
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)785 static ssize_t leap_seconds_scheduled_show(struct device *dev,
786 struct device_attribute *attr,
787 char *buf)
788 {
789 struct stp_stzi stzi;
790 ssize_t ret;
791
792 mutex_lock(&stp_mutex);
793 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
794 mutex_unlock(&stp_mutex);
795 return -ENODATA;
796 }
797
798 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
799 mutex_unlock(&stp_mutex);
800 if (ret < 0)
801 return ret;
802
803 if (!stzi.lsoib.p)
804 return sprintf(buf, "0,0\n");
805
806 return sprintf(buf, "%lu,%d\n",
807 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
808 stzi.lsoib.nlso - stzi.lsoib.also);
809 }
810
811 static DEVICE_ATTR_RO(leap_seconds_scheduled);
812
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)813 static ssize_t stratum_show(struct device *dev,
814 struct device_attribute *attr,
815 char *buf)
816 {
817 ssize_t ret = -ENODATA;
818
819 mutex_lock(&stp_mutex);
820 if (stpinfo_valid())
821 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
822 mutex_unlock(&stp_mutex);
823 return ret;
824 }
825
826 static DEVICE_ATTR_RO(stratum);
827
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)828 static ssize_t time_offset_show(struct device *dev,
829 struct device_attribute *attr,
830 char *buf)
831 {
832 ssize_t ret = -ENODATA;
833
834 mutex_lock(&stp_mutex);
835 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
836 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
837 mutex_unlock(&stp_mutex);
838 return ret;
839 }
840
841 static DEVICE_ATTR_RO(time_offset);
842
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)843 static ssize_t time_zone_offset_show(struct device *dev,
844 struct device_attribute *attr,
845 char *buf)
846 {
847 ssize_t ret = -ENODATA;
848
849 mutex_lock(&stp_mutex);
850 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
851 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
852 mutex_unlock(&stp_mutex);
853 return ret;
854 }
855
856 static DEVICE_ATTR_RO(time_zone_offset);
857
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)858 static ssize_t timing_mode_show(struct device *dev,
859 struct device_attribute *attr,
860 char *buf)
861 {
862 ssize_t ret = -ENODATA;
863
864 mutex_lock(&stp_mutex);
865 if (stpinfo_valid())
866 ret = sprintf(buf, "%i\n", stp_info.tmd);
867 mutex_unlock(&stp_mutex);
868 return ret;
869 }
870
871 static DEVICE_ATTR_RO(timing_mode);
872
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t timing_state_show(struct device *dev,
874 struct device_attribute *attr,
875 char *buf)
876 {
877 ssize_t ret = -ENODATA;
878
879 mutex_lock(&stp_mutex);
880 if (stpinfo_valid())
881 ret = sprintf(buf, "%i\n", stp_info.tst);
882 mutex_unlock(&stp_mutex);
883 return ret;
884 }
885
886 static DEVICE_ATTR_RO(timing_state);
887
online_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t online_show(struct device *dev,
889 struct device_attribute *attr,
890 char *buf)
891 {
892 return sprintf(buf, "%i\n", stp_online);
893 }
894
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)895 static ssize_t online_store(struct device *dev,
896 struct device_attribute *attr,
897 const char *buf, size_t count)
898 {
899 unsigned int value;
900
901 value = simple_strtoul(buf, NULL, 0);
902 if (value != 0 && value != 1)
903 return -EINVAL;
904 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
905 return -EOPNOTSUPP;
906 mutex_lock(&stp_mutex);
907 stp_online = value;
908 if (stp_online)
909 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
910 else
911 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
912 queue_work(time_sync_wq, &stp_work);
913 mutex_unlock(&stp_mutex);
914 return count;
915 }
916
917 /*
918 * Can't use DEVICE_ATTR because the attribute should be named
919 * stp/online but dev_attr_online already exists in this file ..
920 */
921 static DEVICE_ATTR_RW(online);
922
923 static struct attribute *stp_dev_attrs[] = {
924 &dev_attr_ctn_id.attr,
925 &dev_attr_ctn_type.attr,
926 &dev_attr_dst_offset.attr,
927 &dev_attr_leap_seconds.attr,
928 &dev_attr_online.attr,
929 &dev_attr_leap_seconds_scheduled.attr,
930 &dev_attr_stratum.attr,
931 &dev_attr_time_offset.attr,
932 &dev_attr_time_zone_offset.attr,
933 &dev_attr_timing_mode.attr,
934 &dev_attr_timing_state.attr,
935 NULL
936 };
937 ATTRIBUTE_GROUPS(stp_dev);
938
stp_init_sysfs(void)939 static int __init stp_init_sysfs(void)
940 {
941 return subsys_system_register(&stp_subsys, stp_dev_groups);
942 }
943
944 device_initcall(stp_init_sysfs);
945