xref: /titanic_52/usr/src/uts/common/os/clock_highres.c (revision 6a72db4a7fa12c3e0d1c1cf91a07390739fa0fbf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2015, Joyent Inc. All rights reserved.
29  */
30 
31 #include <sys/timer.h>
32 #include <sys/systm.h>
33 #include <sys/param.h>
34 #include <sys/kmem.h>
35 #include <sys/debug.h>
36 #include <sys/cyclic.h>
37 #include <sys/cmn_err.h>
38 #include <sys/pset.h>
39 #include <sys/atomic.h>
40 #include <sys/policy.h>
41 
42 static clock_backend_t clock_highres;
43 
44 /*ARGSUSED*/
45 static int
46 clock_highres_settime(timespec_t *ts)
47 {
48 	return (EINVAL);
49 }
50 
51 static int
52 clock_highres_gettime(timespec_t *ts)
53 {
54 	hrt2ts(gethrtime(), (timestruc_t *)ts);
55 
56 	return (0);
57 }
58 
59 static int
60 clock_highres_getres(timespec_t *ts)
61 {
62 	hrt2ts(cyclic_getres(), (timestruc_t *)ts);
63 
64 	return (0);
65 }
66 
67 /*ARGSUSED*/
68 static int
69 clock_highres_timer_create(itimer_t *it, void (*fire)(itimer_t *))
70 {
71 	/*
72 	 * CLOCK_HIGHRES timers of sufficiently high resolution can deny
73 	 * service; only allow privileged users to create such timers.
74 	 * Sites that do not wish to have this restriction should
75 	 * give users the "proc_clock_highres" privilege.
76 	 */
77 	if (secpolicy_clock_highres(CRED()) != 0) {
78 		it->it_arg = NULL;
79 		return (EPERM);
80 	}
81 
82 	it->it_arg = kmem_zalloc(sizeof (cyclic_id_t), KM_SLEEP);
83 	it->it_fire = fire;
84 
85 	return (0);
86 }
87 
88 static void
89 clock_highres_fire(void *arg)
90 {
91 	itimer_t *it = (itimer_t *)arg;
92 	hrtime_t *addr = &it->it_hrtime;
93 	hrtime_t old = *addr, new = gethrtime();
94 
95 	do {
96 		old = *addr;
97 	} while (atomic_cas_64((uint64_t *)addr, old, new) != old);
98 
99 	it->it_fire(it);
100 }
101 
102 static int
103 clock_highres_timer_settime(itimer_t *it, int flags,
104 	const struct itimerspec *when)
105 {
106 	cyclic_id_t cyc, *cycp = it->it_arg;
107 	proc_t *p = curproc;
108 	kthread_t *t = curthread;
109 	cyc_time_t cyctime;
110 	cyc_handler_t hdlr;
111 	cpu_t *cpu;
112 	cpupart_t *cpupart;
113 	int pset;
114 
115 	cyctime.cyt_when = ts2hrt(&when->it_value);
116 	cyctime.cyt_interval = ts2hrt(&when->it_interval);
117 
118 	if (cyctime.cyt_when != 0 && cyctime.cyt_interval == 0 &&
119 	    it->it_itime.it_interval.tv_sec == 0 &&
120 	    it->it_itime.it_interval.tv_nsec == 0 &&
121 	    (cyc = *cycp) != CYCLIC_NONE) {
122 		/*
123 		 * If our existing timer is a one-shot and our new timer is a
124 		 * one-shot, we'll save ourselves a world of grief and just
125 		 * reprogram the cyclic.
126 		 */
127 		it->it_itime = *when;
128 
129 		if (!(flags & TIMER_ABSTIME))
130 			cyctime.cyt_when += gethrtime();
131 
132 		hrt2ts(cyctime.cyt_when, &it->it_itime.it_value);
133 		(void) cyclic_reprogram(cyc, cyctime.cyt_when);
134 		return (0);
135 	}
136 
137 	mutex_enter(&cpu_lock);
138 	if ((cyc = *cycp) != CYCLIC_NONE) {
139 		cyclic_remove(cyc);
140 		*cycp = CYCLIC_NONE;
141 	}
142 
143 	if (cyctime.cyt_when == 0) {
144 		mutex_exit(&cpu_lock);
145 		return (0);
146 	}
147 
148 	if (!(flags & TIMER_ABSTIME))
149 		cyctime.cyt_when += gethrtime();
150 
151 	/*
152 	 * Now we will check for overflow (that is, we will check to see
153 	 * that the start time plus the interval time doesn't exceed
154 	 * INT64_MAX).  The astute code reviewer will observe that this
155 	 * one-time check doesn't guarantee that a future expiration
156 	 * will not wrap.  We wish to prove, then, that if a future
157 	 * expiration does wrap, the earliest the problem can be encountered
158 	 * is (INT64_MAX / 2) nanoseconds (191 years) after boot.  Formally:
159 	 *
160 	 *  Given:	s + i < m	s > 0	i > 0
161 	 *		s + ni > m	n > 1
162 	 *
163 	 *    (where "s" is the start time, "i" is the interval, "n" is the
164 	 *    number of times the cyclic has fired and "m" is INT64_MAX)
165 	 *
166 	 *  Prove:
167 	 *		(a)  s + (n - 1)i > (m / 2)
168 	 *		(b)  s + (n - 1)i < m
169 	 *
170 	 * That is, prove that we must have fired at least once 191 years
171 	 * after boot.  The proof is very straightforward; since the left
172 	 * side of (a) is minimized when i is small, it is sufficient to show
173 	 * that the statement is true for i's smallest possible value
174 	 * (((m - s) / n) + epsilon).  The same goes for (b); showing that the
175 	 * statement is true for i's largest possible value (m - s + epsilon)
176 	 * is sufficient to prove the statement.
177 	 *
178 	 * The actual arithmetic manipulation is left up to reader.
179 	 */
180 	if (cyctime.cyt_when > INT64_MAX - cyctime.cyt_interval) {
181 		mutex_exit(&cpu_lock);
182 		return (EOVERFLOW);
183 	}
184 
185 	if (cyctime.cyt_interval == 0) {
186 		/*
187 		 * If this is a one-shot, then we set the interval to be
188 		 * inifinite.  If this timer is never touched, this cyclic will
189 		 * simply consume space in the cyclic subsystem.  As soon as
190 		 * timer_settime() or timer_delete() is called, the cyclic is
191 		 * removed (so it's not possible to run the machine out
192 		 * of resources by creating one-shots).
193 		 */
194 		cyctime.cyt_interval = CY_INFINITY;
195 	}
196 
197 	it->it_itime = *when;
198 
199 	hrt2ts(cyctime.cyt_when, &it->it_itime.it_value);
200 
201 	hdlr.cyh_func = (cyc_func_t)clock_highres_fire;
202 	hdlr.cyh_arg = it;
203 	hdlr.cyh_level = CY_LOW_LEVEL;
204 
205 	if (cyctime.cyt_when != 0)
206 		*cycp = cyc = cyclic_add(&hdlr, &cyctime);
207 
208 	/*
209 	 * Now that we have the cyclic created, we need to bind it to our
210 	 * bound CPU and processor set (if any).
211 	 */
212 	mutex_enter(&p->p_lock);
213 	cpu = t->t_bound_cpu;
214 	cpupart = t->t_cpupart;
215 	pset = t->t_bind_pset;
216 
217 	mutex_exit(&p->p_lock);
218 
219 	cyclic_bind(cyc, cpu, pset == PS_NONE ? NULL : cpupart);
220 
221 	mutex_exit(&cpu_lock);
222 
223 	return (0);
224 }
225 
226 static int
227 clock_highres_timer_gettime(itimer_t *it, struct itimerspec *when)
228 {
229 	/*
230 	 * CLOCK_HIGHRES doesn't update it_itime.
231 	 */
232 	hrtime_t start = ts2hrt(&it->it_itime.it_value);
233 	hrtime_t interval = ts2hrt(&it->it_itime.it_interval);
234 	hrtime_t diff, now = gethrtime();
235 	hrtime_t *addr = &it->it_hrtime;
236 	hrtime_t last;
237 
238 	/*
239 	 * We're using atomic_cas_64() here only to assure that we slurp the
240 	 * entire timestamp atomically.
241 	 */
242 	last = atomic_cas_64((uint64_t *)addr, 0, 0);
243 
244 	*when = it->it_itime;
245 
246 	if (!timerspecisset(&when->it_value))
247 		return (0);
248 
249 	if (start > now) {
250 		/*
251 		 * We haven't gone off yet...
252 		 */
253 		diff = start - now;
254 	} else {
255 		if (interval == 0) {
256 			/*
257 			 * This is a one-shot which should have already
258 			 * fired; set it_value to 0.
259 			 */
260 			timerspecclear(&when->it_value);
261 			return (0);
262 		}
263 
264 		/*
265 		 * Calculate how far we are into this interval.
266 		 */
267 		diff = (now - start) % interval;
268 
269 		/*
270 		 * Now check to see if we've dealt with the last interval
271 		 * yet.
272 		 */
273 		if (now - diff > last) {
274 			/*
275 			 * The last interval hasn't fired; set it_value to 0.
276 			 */
277 			timerspecclear(&when->it_value);
278 			return (0);
279 		}
280 
281 		/*
282 		 * The last interval _has_ fired; we can return the amount
283 		 * of time left in this interval.
284 		 */
285 		diff = interval - diff;
286 	}
287 
288 	hrt2ts(diff, &when->it_value);
289 
290 	return (0);
291 }
292 
293 static int
294 clock_highres_timer_delete(itimer_t *it)
295 {
296 	cyclic_id_t cyc;
297 
298 	if (it->it_arg == NULL) {
299 		/*
300 		 * This timer was never fully created; we must have failed
301 		 * in the clock_highres_timer_create() routine.
302 		 */
303 		return (0);
304 	}
305 
306 	mutex_enter(&cpu_lock);
307 
308 	if ((cyc = *((cyclic_id_t *)it->it_arg)) != CYCLIC_NONE)
309 		cyclic_remove(cyc);
310 
311 	mutex_exit(&cpu_lock);
312 
313 	kmem_free(it->it_arg, sizeof (cyclic_id_t));
314 
315 	return (0);
316 }
317 
318 static void
319 clock_highres_timer_lwpbind(itimer_t *it)
320 {
321 	proc_t *p = curproc;
322 	kthread_t *t = curthread;
323 	cyclic_id_t cyc = *((cyclic_id_t *)it->it_arg);
324 	cpu_t *cpu;
325 	cpupart_t *cpupart;
326 	int pset;
327 
328 	if (cyc == CYCLIC_NONE)
329 		return;
330 
331 	mutex_enter(&cpu_lock);
332 	mutex_enter(&p->p_lock);
333 
334 	/*
335 	 * Okay, now we can safely look at the bindings.
336 	 */
337 	cpu = t->t_bound_cpu;
338 	cpupart = t->t_cpupart;
339 	pset = t->t_bind_pset;
340 
341 	/*
342 	 * Now we drop p_lock.  We haven't dropped cpu_lock; we're guaranteed
343 	 * that even if the bindings change, the CPU and/or processor set
344 	 * that this timer was bound to remain valid (and the combination
345 	 * remains self-consistent).
346 	 */
347 	mutex_exit(&p->p_lock);
348 
349 	cyclic_bind(cyc, cpu, pset == PS_NONE ? NULL : cpupart);
350 
351 	mutex_exit(&cpu_lock);
352 }
353 
354 void
355 clock_highres_init()
356 {
357 	clock_backend_t *be = &clock_highres;
358 	struct sigevent *ev = &be->clk_default;
359 
360 	ev->sigev_signo = SIGALRM;
361 	ev->sigev_notify = SIGEV_SIGNAL;
362 	ev->sigev_value.sival_ptr = NULL;
363 
364 	be->clk_clock_settime = clock_highres_settime;
365 	be->clk_clock_gettime = clock_highres_gettime;
366 	be->clk_clock_getres = clock_highres_getres;
367 	be->clk_timer_create = clock_highres_timer_create;
368 	be->clk_timer_gettime = clock_highres_timer_gettime;
369 	be->clk_timer_settime = clock_highres_timer_settime;
370 	be->clk_timer_delete = clock_highres_timer_delete;
371 	be->clk_timer_lwpbind = clock_highres_timer_lwpbind;
372 
373 	clock_add_backend(CLOCK_HIGHRES, &clock_highres);
374 }
375