1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
33 * All Rights Reserved
34 */
35
36 /*
37 * Portions of this source code were derived from Berkeley 4.3 BSD
38 * under license from the Regents of the University of California.
39 */
40
41
42 /*
43 * Implements a kernel based, client side RPC.
44 */
45
46 #include <sys/param.h>
47 #include <sys/types.h>
48 #include <sys/systm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/stream.h>
51 #include <sys/strsubr.h>
52 #include <sys/ddi.h>
53 #include <sys/tiuser.h>
54 #include <sys/tihdr.h>
55 #include <sys/t_kuser.h>
56 #include <sys/errno.h>
57 #include <sys/kmem.h>
58 #include <sys/debug.h>
59 #include <sys/kstat.h>
60 #include <sys/t_lock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/conf.h>
63 #include <sys/disp.h>
64 #include <sys/taskq.h>
65 #include <sys/list.h>
66 #include <sys/atomic.h>
67 #include <sys/zone.h>
68 #include <netinet/in.h>
69 #include <rpc/types.h>
70 #include <rpc/xdr.h>
71 #include <rpc/auth.h>
72 #include <rpc/clnt.h>
73 #include <rpc/rpc_msg.h>
74
75 #include <sys/sdt.h>
76
77 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
78 caddr_t, xdrproc_t, caddr_t, struct timeval);
79 static void clnt_clts_kabort(CLIENT *);
80 static void clnt_clts_kerror(CLIENT *, struct rpc_err *);
81 static bool_t clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
82 static bool_t clnt_clts_kcontrol(CLIENT *, int, char *);
83 static void clnt_clts_kdestroy(CLIENT *);
84 static int clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
85 struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
86
87 /*
88 * Operations vector for CLTS based RPC
89 */
90 static struct clnt_ops clts_ops = {
91 clnt_clts_kcallit, /* do rpc call */
92 clnt_clts_kabort, /* abort call */
93 clnt_clts_kerror, /* return error status */
94 clnt_clts_kfreeres, /* free results */
95 clnt_clts_kdestroy, /* destroy rpc handle */
96 clnt_clts_kcontrol, /* the ioctl() of rpc */
97 clnt_clts_ksettimers /* set retry timers */
98 };
99
100 /*
101 * Endpoint for CLTS (INET, INET6, loopback, etc.)
102 */
103 typedef struct endpnt_type {
104 struct endpnt_type *e_next; /* pointer to next endpoint type */
105 list_t e_pool; /* list of available endpoints */
106 list_t e_ilist; /* list of idle endpoints */
107 struct endpnt *e_pcurr; /* pointer to current endpoint */
108 char e_protofmly[KNC_STRSIZE]; /* protocol family */
109 dev_t e_rdev; /* device */
110 kmutex_t e_plock; /* pool lock */
111 kmutex_t e_ilock; /* idle list lock */
112 timeout_id_t e_itimer; /* timer to dispatch the taskq */
113 uint_t e_cnt; /* number of endpoints in the pool */
114 zoneid_t e_zoneid; /* zoneid of endpoint type */
115 kcondvar_t e_async_cv; /* cv for asynchronous reap threads */
116 uint_t e_async_count; /* count of asynchronous reap threads */
117 } endpnt_type_t;
118
119 typedef struct endpnt {
120 list_node_t e_node; /* link to the pool */
121 list_node_t e_idle; /* link to the idle list */
122 endpnt_type_t *e_type; /* back pointer to endpoint type */
123 TIUSER *e_tiptr; /* pointer to transport endpoint */
124 queue_t *e_wq; /* write queue */
125 uint_t e_flags; /* endpoint flags */
126 uint_t e_ref; /* ref count on endpoint */
127 kcondvar_t e_cv; /* condition variable */
128 kmutex_t e_lock; /* protects cv and flags */
129 time_t e_itime; /* time when rele'd */
130 } endpnt_t;
131
132 #define ENDPNT_ESTABLISHED 0x1 /* endpoint is established */
133 #define ENDPNT_WAITING 0x2 /* thread waiting for endpoint */
134 #define ENDPNT_BOUND 0x4 /* endpoint is bound */
135 #define ENDPNT_STALE 0x8 /* endpoint is dead */
136 #define ENDPNT_ONIDLE 0x10 /* endpoint is on the idle list */
137
138 static krwlock_t endpnt_type_lock; /* protects endpnt_type_list */
139 static endpnt_type_t *endpnt_type_list = NULL; /* list of CLTS endpoints */
140 static struct kmem_cache *endpnt_cache; /* cache of endpnt_t's */
141 static taskq_t *endpnt_taskq; /* endpnt_t reaper thread */
142 static bool_t taskq_created; /* flag for endpnt_taskq */
143 static kmutex_t endpnt_taskq_lock; /* taskq lock */
144 static zone_key_t endpnt_destructor_key;
145
146 #define DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
147 #define DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
148
149 /*
150 * Endpoint tunables
151 */
152 static int clnt_clts_max_endpoints = -1;
153 static int clnt_clts_hash_size = DEFAULT_HASH_SIZE;
154 static time_t clnt_clts_endpoint_reap_interval = -1;
155 static clock_t clnt_clts_taskq_dispatch_interval;
156
157 /*
158 * Response completion hash queue
159 */
160 static call_table_t *clts_call_ht;
161
162 /*
163 * Routines for the endpoint manager
164 */
165 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
166 static void endpnt_type_free(struct endpnt_type *);
167 static int check_endpnt(struct endpnt *, struct endpnt **);
168 static struct endpnt *endpnt_get(struct knetconfig *, int);
169 static void endpnt_rele(struct endpnt *);
170 static void endpnt_reap_settimer(endpnt_type_t *);
171 static void endpnt_reap(endpnt_type_t *);
172 static void endpnt_reap_dispatch(void *);
173 static void endpnt_reclaim(zoneid_t);
174
175
176 /*
177 * Request dipatching function.
178 */
179 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
180 calllist_t *, uint_t, cred_t *);
181
182 /*
183 * The size of the preserialized RPC header information.
184 */
185 #define CKU_HDRSIZE 20
186 /*
187 * The initial allocation size. It is small to reduce space requirements.
188 */
189 #define CKU_INITSIZE 2048
190 /*
191 * The size of additional allocations, if required. It is larger to
192 * reduce the number of actual allocations.
193 */
194 #define CKU_ALLOCSIZE 8192
195
196 /*
197 * Private data per rpc handle. This structure is allocated by
198 * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
199 */
200 struct cku_private {
201 CLIENT cku_client; /* client handle */
202 int cku_retrys; /* request retrys */
203 calllist_t cku_call;
204 struct endpnt *cku_endpnt; /* open end point */
205 struct knetconfig cku_config;
206 struct netbuf cku_addr; /* remote address */
207 struct rpc_err cku_err; /* error status */
208 XDR cku_outxdr; /* xdr stream for output */
209 XDR cku_inxdr; /* xdr stream for input */
210 char cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
211 struct cred *cku_cred; /* credentials */
212 struct rpc_timers *cku_timers; /* for estimating RTT */
213 struct rpc_timers *cku_timeall; /* for estimating RTT */
214 void (*cku_feedback)(int, int, caddr_t);
215 /* ptr to feedback rtn */
216 caddr_t cku_feedarg; /* argument for feedback func */
217 uint32_t cku_xid; /* current XID */
218 bool_t cku_bcast; /* RPC broadcast hint */
219 int cku_useresvport; /* Use reserved port */
220 struct rpc_clts_client *cku_stats; /* counters for the zone */
221 };
222
223 static const struct rpc_clts_client {
224 kstat_named_t rccalls;
225 kstat_named_t rcbadcalls;
226 kstat_named_t rcretrans;
227 kstat_named_t rcbadxids;
228 kstat_named_t rctimeouts;
229 kstat_named_t rcnewcreds;
230 kstat_named_t rcbadverfs;
231 kstat_named_t rctimers;
232 kstat_named_t rcnomem;
233 kstat_named_t rccantsend;
234 } clts_rcstat_tmpl = {
235 { "calls", KSTAT_DATA_UINT64 },
236 { "badcalls", KSTAT_DATA_UINT64 },
237 { "retrans", KSTAT_DATA_UINT64 },
238 { "badxids", KSTAT_DATA_UINT64 },
239 { "timeouts", KSTAT_DATA_UINT64 },
240 { "newcreds", KSTAT_DATA_UINT64 },
241 { "badverfs", KSTAT_DATA_UINT64 },
242 { "timers", KSTAT_DATA_UINT64 },
243 { "nomem", KSTAT_DATA_UINT64 },
244 { "cantsend", KSTAT_DATA_UINT64 },
245 };
246
247 static uint_t clts_rcstat_ndata =
248 sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
249
250 #define RCSTAT_INCR(s, x) \
251 atomic_inc_64(&(s)->x.value.ui64)
252
253 #define ptoh(p) (&((p)->cku_client))
254 #define htop(h) ((struct cku_private *)((h)->cl_private))
255
256 /*
257 * Times to retry
258 */
259 #define SNDTRIES 4
260 #define REFRESHES 2 /* authentication refreshes */
261
262 /*
263 * The following is used to determine the global default behavior for
264 * CLTS when binding to a local port.
265 *
266 * If the value is set to 1 the default will be to select a reserved
267 * (aka privileged) port, if the value is zero the default will be to
268 * use non-reserved ports. Users of kRPC may override this by using
269 * CLNT_CONTROL() and CLSET_BINDRESVPORT.
270 */
271 static int clnt_clts_do_bindresvport = 1;
272
273 #define BINDRESVPORT_RETRIES 5
274
275 void
clnt_clts_stats_init(zoneid_t zoneid,struct rpc_clts_client ** statsp)276 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
277 {
278 kstat_t *ksp;
279 kstat_named_t *knp;
280
281 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
282 (const kstat_named_t *)&clts_rcstat_tmpl,
283 sizeof (clts_rcstat_tmpl));
284 /*
285 * Backwards compatibility for old kstat clients
286 */
287 ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
288 KSTAT_TYPE_NAMED, clts_rcstat_ndata,
289 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
290 if (ksp) {
291 ksp->ks_data = knp;
292 kstat_install(ksp);
293 }
294 *statsp = (struct rpc_clts_client *)knp;
295 }
296
297 void
clnt_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_client ** statsp)298 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
299 {
300 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
301 kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
302 kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
303 }
304
305 /*
306 * Create an rpc handle for a clts rpc connection.
307 * Allocates space for the handle structure and the private data.
308 */
309 /* ARGSUSED */
310 int
clnt_clts_kcreate(struct knetconfig * config,struct netbuf * addr,rpcprog_t pgm,rpcvers_t vers,int retrys,struct cred * cred,CLIENT ** cl)311 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
312 rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
313 CLIENT **cl)
314 {
315 CLIENT *h;
316 struct cku_private *p;
317 struct rpc_msg call_msg;
318 int error;
319 int plen;
320
321 if (cl == NULL)
322 return (EINVAL);
323
324 *cl = NULL;
325 error = 0;
326
327 p = kmem_zalloc(sizeof (*p), KM_SLEEP);
328
329 h = ptoh(p);
330
331 /* handle */
332 h->cl_ops = &clts_ops;
333 h->cl_private = (caddr_t)p;
334 h->cl_auth = authkern_create();
335
336 /* call message, just used to pre-serialize below */
337 call_msg.rm_xid = 0;
338 call_msg.rm_direction = CALL;
339 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
340 call_msg.rm_call.cb_prog = pgm;
341 call_msg.rm_call.cb_vers = vers;
342
343 /* private */
344 clnt_clts_kinit(h, addr, retrys, cred);
345
346 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
347
348 /* pre-serialize call message header */
349 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
350 XDR_DESTROY(&p->cku_outxdr);
351 error = EINVAL; /* XXX */
352 goto bad;
353 }
354 XDR_DESTROY(&p->cku_outxdr);
355
356 p->cku_config.knc_rdev = config->knc_rdev;
357 p->cku_config.knc_semantics = config->knc_semantics;
358 plen = strlen(config->knc_protofmly) + 1;
359 p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
360 bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
361 p->cku_useresvport = -1; /* value is has not been set */
362
363 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
364 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
365
366 *cl = h;
367 return (0);
368
369 bad:
370 auth_destroy(h->cl_auth);
371 kmem_free(p->cku_addr.buf, addr->maxlen);
372 kmem_free(p, sizeof (struct cku_private));
373
374 return (error);
375 }
376
377 void
clnt_clts_kinit(CLIENT * h,struct netbuf * addr,int retrys,cred_t * cred)378 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
379 {
380 /* LINTED pointer alignment */
381 struct cku_private *p = htop(h);
382 struct rpcstat *rsp;
383
384 rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
385 ASSERT(rsp != NULL);
386
387 p->cku_retrys = retrys;
388
389 if (p->cku_addr.maxlen < addr->len) {
390 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
391 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
392
393 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
394 p->cku_addr.maxlen = addr->maxlen;
395 }
396
397 p->cku_addr.len = addr->len;
398 bcopy(addr->buf, p->cku_addr.buf, addr->len);
399
400 p->cku_cred = cred;
401 p->cku_xid = 0;
402 p->cku_timers = NULL;
403 p->cku_timeall = NULL;
404 p->cku_feedback = NULL;
405 p->cku_bcast = FALSE;
406 p->cku_call.call_xid = 0;
407 p->cku_call.call_hash = 0;
408 p->cku_call.call_notified = FALSE;
409 p->cku_call.call_next = NULL;
410 p->cku_call.call_prev = NULL;
411 p->cku_call.call_reply = NULL;
412 p->cku_call.call_wq = NULL;
413 p->cku_stats = rsp->rpc_clts_client;
414 }
415
416 /*
417 * set the timers. Return current retransmission timeout.
418 */
419 static int
clnt_clts_ksettimers(CLIENT * h,struct rpc_timers * t,struct rpc_timers * all,int minimum,void (* feedback)(int,int,caddr_t),caddr_t arg,uint32_t xid)420 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
421 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
422 uint32_t xid)
423 {
424 /* LINTED pointer alignment */
425 struct cku_private *p = htop(h);
426 int value;
427
428 p->cku_feedback = feedback;
429 p->cku_feedarg = arg;
430 p->cku_timers = t;
431 p->cku_timeall = all;
432 if (xid)
433 p->cku_xid = xid;
434 value = all->rt_rtxcur;
435 value += t->rt_rtxcur;
436 if (value < minimum)
437 return (minimum);
438 RCSTAT_INCR(p->cku_stats, rctimers);
439 return (value);
440 }
441
442 /*
443 * Time out back off function. tim is in HZ
444 */
445 #define MAXTIMO (20 * hz)
446 #define backoff(tim) (((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
447 #define dobackoff(tim) ((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
448
449 #define RETRY_POLL_TIMO 30
450
451 /*
452 * Call remote procedure.
453 * Most of the work of rpc is done here. We serialize what is left
454 * of the header (some was pre-serialized in the handle), serialize
455 * the arguments, and send it off. We wait for a reply or a time out.
456 * Timeout causes an immediate return, other packet problems may cause
457 * a retry on the receive. When a good packet is received we deserialize
458 * it, and check verification. A bad reply code will cause one retry
459 * with full (longhand) credentials.
460 */
461 enum clnt_stat
clnt_clts_kcallit_addr(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait,struct netbuf * sin)462 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
463 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
464 struct timeval wait, struct netbuf *sin)
465 {
466 /* LINTED pointer alignment */
467 struct cku_private *p = htop(h);
468 XDR *xdrs;
469 int stries = p->cku_retrys;
470 int refreshes = REFRESHES; /* number of times to refresh cred */
471 int round_trip; /* time the RPC */
472 int error;
473 mblk_t *mp;
474 mblk_t *mpdup;
475 mblk_t *resp = NULL;
476 mblk_t *tmp;
477 calllist_t *call = &p->cku_call;
478 clock_t ori_timout, timout;
479 bool_t interrupted;
480 enum clnt_stat status;
481 struct rpc_msg reply_msg;
482 enum clnt_stat re_status;
483 endpnt_t *endpt;
484
485 RCSTAT_INCR(p->cku_stats, rccalls);
486
487 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
488 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
489
490 timout = TIMEVAL_TO_TICK(&wait);
491 ori_timout = timout;
492
493 if (p->cku_xid == 0) {
494 p->cku_xid = alloc_xid();
495 if (p->cku_endpnt != NULL)
496 endpnt_rele(p->cku_endpnt);
497 p->cku_endpnt = NULL;
498 }
499 call->call_zoneid = rpc_zoneid();
500
501 mpdup = NULL;
502 call_again:
503
504 if (mpdup == NULL) {
505
506 while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
507 if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
508 p->cku_err.re_status = RPC_SYSTEMERROR;
509 p->cku_err.re_errno = ENOSR;
510 goto done;
511 }
512 }
513
514 xdrs = &p->cku_outxdr;
515 xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
516
517 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
518 /*
519 * Copy in the preserialized RPC header
520 * information.
521 */
522 bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
523
524 /*
525 * transaction id is the 1st thing in the output
526 * buffer.
527 */
528 /* LINTED pointer alignment */
529 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
530
531 /* Skip the preserialized stuff. */
532 XDR_SETPOS(xdrs, CKU_HDRSIZE);
533
534 /* Serialize dynamic stuff into the output buffer. */
535 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
536 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
537 (!(*xdr_args)(xdrs, argsp))) {
538 XDR_DESTROY(xdrs);
539 freemsg(mp);
540 p->cku_err.re_status = RPC_CANTENCODEARGS;
541 p->cku_err.re_errno = EIO;
542 goto done;
543 }
544 } else {
545 uint32_t *uproc = (uint32_t *)
546 &p->cku_rpchdr[CKU_HDRSIZE];
547 IXDR_PUT_U_INT32(uproc, procnum);
548
549 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
550 XDR_SETPOS(xdrs, 0);
551
552 /* Serialize the procedure number and the arguments. */
553 if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
554 CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
555 XDR_DESTROY(xdrs);
556 freemsg(mp);
557 p->cku_err.re_status = RPC_CANTENCODEARGS;
558 p->cku_err.re_errno = EIO;
559 goto done;
560 }
561 }
562
563 XDR_DESTROY(xdrs);
564 } else
565 mp = mpdup;
566
567 mpdup = dupmsg(mp);
568 if (mpdup == NULL) {
569 freemsg(mp);
570 p->cku_err.re_status = RPC_SYSTEMERROR;
571 p->cku_err.re_errno = ENOSR;
572 goto done;
573 }
574
575 /*
576 * Grab an endpnt only if the endpoint is NULL. We could be retrying
577 * the request and in this case we want to go through the same
578 * source port, so that the duplicate request cache may detect a
579 * retry.
580 */
581
582 if (p->cku_endpnt == NULL)
583 p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
584
585 if (p->cku_endpnt == NULL) {
586 freemsg(mp);
587 p->cku_err.re_status = RPC_SYSTEMERROR;
588 p->cku_err.re_errno = ENOSR;
589 goto done;
590 }
591
592 round_trip = ddi_get_lbolt();
593
594 error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
595 &p->cku_addr, call, p->cku_xid, p->cku_cred);
596
597 if (error != 0) {
598 freemsg(mp);
599 p->cku_err.re_status = RPC_CANTSEND;
600 p->cku_err.re_errno = error;
601 RCSTAT_INCR(p->cku_stats, rccantsend);
602 goto done1;
603 }
604
605 RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
606 p->cku_xid);
607
608 /*
609 * There are two reasons for which we go back to to tryread.
610 *
611 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
612 * broadcast we should not get any invalid messages with the
613 * RPC_PROCUNAVAIL error back. Some broken RPC implementations
614 * send them and for this we have to ignore them ( as we would
615 * have never received them ) and look for another message
616 * which might contain the valid response because we don't know
617 * how many broken implementations are in the network. So we are
618 * going to loop until
619 * - we received a valid response
620 * - we have processed all invalid responses and
621 * got a time out when we try to receive again a
622 * message.
623 *
624 * b) We will jump back to tryread also in case we failed
625 * within the AUTH_VALIDATE. In this case we should move
626 * on and loop until we received a valid response or we
627 * have processed all responses with broken authentication
628 * and we got a time out when we try to receive a message.
629 */
630 tryread:
631 mutex_enter(&call->call_lock);
632 interrupted = FALSE;
633 if (call->call_notified == FALSE) {
634 klwp_t *lwp = ttolwp(curthread);
635 clock_t cv_wait_ret = 1; /* init to > 0 */
636 clock_t cv_timout = timout;
637
638 if (lwp != NULL)
639 lwp->lwp_nostop++;
640
641 cv_timout += ddi_get_lbolt();
642
643 if (h->cl_nosignal)
644 while ((cv_wait_ret =
645 cv_timedwait(&call->call_cv,
646 &call->call_lock, cv_timout)) > 0 &&
647 call->call_notified == FALSE)
648 ;
649 else
650 while ((cv_wait_ret =
651 cv_timedwait_sig(&call->call_cv,
652 &call->call_lock, cv_timout)) > 0 &&
653 call->call_notified == FALSE)
654 ;
655
656 if (cv_wait_ret == 0)
657 interrupted = TRUE;
658
659 if (lwp != NULL)
660 lwp->lwp_nostop--;
661 }
662 resp = call->call_reply;
663 call->call_reply = NULL;
664 status = call->call_status;
665 /*
666 * We have to reset the call_notified here. In case we have
667 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
668 * error ) we need to set this to false to ensure that
669 * we will wait for the next message. When the next message
670 * is going to arrive the function clnt_clts_dispatch_notify
671 * will set this to true again.
672 */
673 call->call_notified = FALSE;
674 call->call_status = RPC_TIMEDOUT;
675 mutex_exit(&call->call_lock);
676
677 if (status == RPC_TIMEDOUT) {
678 if (interrupted) {
679 /*
680 * We got interrupted, bail out
681 */
682 p->cku_err.re_status = RPC_INTR;
683 p->cku_err.re_errno = EINTR;
684 goto done1;
685 } else {
686 RPCLOG(8, "clnt_clts_kcallit_addr: "
687 "request w/xid 0x%x timedout "
688 "waiting for reply\n", p->cku_xid);
689 #if 0 /* XXX not yet */
690 /*
691 * Timeout may be due to a dead gateway. Send
692 * an ioctl downstream advising deletion of
693 * route when we reach the half-way point to
694 * timing out.
695 */
696 if (stries == p->cku_retrys/2) {
697 t_kadvise(p->cku_endpnt->e_tiptr,
698 (uchar_t *)p->cku_addr.buf,
699 p->cku_addr.len);
700 }
701 #endif /* not yet */
702 p->cku_err.re_status = RPC_TIMEDOUT;
703 p->cku_err.re_errno = ETIMEDOUT;
704 RCSTAT_INCR(p->cku_stats, rctimeouts);
705 goto done1;
706 }
707 }
708
709 ASSERT(resp != NULL);
710
711 /*
712 * Prepare the message for further processing. We need to remove
713 * the datagram header and copy the source address if necessary. No
714 * need to verify the header since rpcmod took care of that.
715 */
716 /*
717 * Copy the source address if the caller has supplied a netbuf.
718 */
719 if (sin != NULL) {
720 union T_primitives *pptr;
721
722 pptr = (union T_primitives *)resp->b_rptr;
723 bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
724 pptr->unitdata_ind.SRC_length);
725 sin->len = pptr->unitdata_ind.SRC_length;
726 }
727
728 /*
729 * Pop off the datagram header.
730 * It was retained in rpcmodrput().
731 */
732 tmp = resp;
733 resp = resp->b_cont;
734 tmp->b_cont = NULL;
735 freeb(tmp);
736
737 round_trip = ddi_get_lbolt() - round_trip;
738 /*
739 * Van Jacobson timer algorithm here, only if NOT a retransmission.
740 */
741 if (p->cku_timers != NULL && stries == p->cku_retrys) {
742 int rt;
743
744 rt = round_trip;
745 rt -= (p->cku_timers->rt_srtt >> 3);
746 p->cku_timers->rt_srtt += rt;
747 if (rt < 0)
748 rt = - rt;
749 rt -= (p->cku_timers->rt_deviate >> 2);
750 p->cku_timers->rt_deviate += rt;
751 p->cku_timers->rt_rtxcur =
752 (clock_t)((p->cku_timers->rt_srtt >> 2) +
753 p->cku_timers->rt_deviate) >> 1;
754
755 rt = round_trip;
756 rt -= (p->cku_timeall->rt_srtt >> 3);
757 p->cku_timeall->rt_srtt += rt;
758 if (rt < 0)
759 rt = - rt;
760 rt -= (p->cku_timeall->rt_deviate >> 2);
761 p->cku_timeall->rt_deviate += rt;
762 p->cku_timeall->rt_rtxcur =
763 (clock_t)((p->cku_timeall->rt_srtt >> 2) +
764 p->cku_timeall->rt_deviate) >> 1;
765 if (p->cku_feedback != NULL) {
766 (*p->cku_feedback)(FEEDBACK_OK, procnum,
767 p->cku_feedarg);
768 }
769 }
770
771 /*
772 * Process reply
773 */
774 xdrs = &(p->cku_inxdr);
775 xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
776
777 reply_msg.rm_direction = REPLY;
778 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
779 reply_msg.acpted_rply.ar_stat = SUCCESS;
780 reply_msg.acpted_rply.ar_verf = _null_auth;
781 /*
782 * xdr_results will be done in AUTH_UNWRAP.
783 */
784 reply_msg.acpted_rply.ar_results.where = NULL;
785 reply_msg.acpted_rply.ar_results.proc = xdr_void;
786
787 /*
788 * Decode and validate the response.
789 */
790 if (!xdr_replymsg(xdrs, &reply_msg)) {
791 p->cku_err.re_status = RPC_CANTDECODERES;
792 p->cku_err.re_errno = EIO;
793 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
794 XDR_DESTROY(xdrs);
795 goto done1;
796 }
797
798 _seterr_reply(&reply_msg, &(p->cku_err));
799
800 re_status = p->cku_err.re_status;
801 if (re_status == RPC_SUCCESS) {
802 /*
803 * Reply is good, check auth.
804 */
805 if (!AUTH_VALIDATE(h->cl_auth,
806 &reply_msg.acpted_rply.ar_verf)) {
807 p->cku_err.re_status = RPC_AUTHERROR;
808 p->cku_err.re_why = AUTH_INVALIDRESP;
809 RCSTAT_INCR(p->cku_stats, rcbadverfs);
810 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
811 XDR_DESTROY(xdrs);
812 goto tryread;
813 }
814 if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
815 p->cku_err.re_status = RPC_CANTDECODERES;
816 p->cku_err.re_errno = EIO;
817 }
818 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
819 XDR_DESTROY(xdrs);
820 goto done1;
821 }
822 /* set errno in case we can't recover */
823 if (re_status != RPC_VERSMISMATCH &&
824 re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
825 p->cku_err.re_errno = EIO;
826 /*
827 * Determine whether or not we're doing an RPC
828 * broadcast. Some server implementations don't
829 * follow RFC 1050, section 7.4.2 in that they
830 * don't remain silent when they see a proc
831 * they don't support. Therefore we keep trying
832 * to receive on RPC_PROCUNAVAIL, hoping to get
833 * a valid response from a compliant server.
834 */
835 if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
836 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
837 XDR_DESTROY(xdrs);
838 goto tryread;
839 }
840 if (re_status == RPC_AUTHERROR) {
841
842 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
843 XDR_DESTROY(xdrs);
844 call_table_remove(call);
845 if (call->call_reply != NULL) {
846 freemsg(call->call_reply);
847 call->call_reply = NULL;
848 }
849
850 /*
851 * Maybe our credential need to be refreshed
852 */
853 if (refreshes > 0 &&
854 AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
855 /*
856 * The credential is refreshed. Try the request again.
857 * Even if stries == 0, we still retry as long as
858 * refreshes > 0. This prevents a soft authentication
859 * error turning into a hard one at an upper level.
860 */
861 refreshes--;
862 RCSTAT_INCR(p->cku_stats, rcbadcalls);
863 RCSTAT_INCR(p->cku_stats, rcnewcreds);
864
865 freemsg(mpdup);
866 mpdup = NULL;
867 freemsg(resp);
868 resp = NULL;
869 goto call_again;
870 }
871 /*
872 * We have used the client handle to do an AUTH_REFRESH
873 * and the RPC status may be set to RPC_SUCCESS;
874 * Let's make sure to set it to RPC_AUTHERROR.
875 */
876 p->cku_err.re_status = RPC_CANTDECODERES;
877
878 /*
879 * Map recoverable and unrecoverable
880 * authentication errors to appropriate errno
881 */
882 switch (p->cku_err.re_why) {
883 case AUTH_TOOWEAK:
884 /*
885 * Could be an nfsportmon failure, set
886 * useresvport and try again.
887 */
888 if (p->cku_useresvport != 1) {
889 p->cku_useresvport = 1;
890
891 freemsg(mpdup);
892 mpdup = NULL;
893 freemsg(resp);
894 resp = NULL;
895
896 endpt = p->cku_endpnt;
897 if (endpt->e_tiptr != NULL) {
898 mutex_enter(&endpt->e_lock);
899 endpt->e_flags &= ~ENDPNT_BOUND;
900 (void) t_kclose(endpt->e_tiptr, 1);
901 endpt->e_tiptr = NULL;
902 mutex_exit(&endpt->e_lock);
903
904 }
905
906 p->cku_xid = alloc_xid();
907 endpnt_rele(p->cku_endpnt);
908 p->cku_endpnt = NULL;
909 goto call_again;
910 }
911 /* FALLTHRU */
912 case AUTH_BADCRED:
913 case AUTH_BADVERF:
914 case AUTH_INVALIDRESP:
915 case AUTH_FAILED:
916 case RPCSEC_GSS_NOCRED:
917 case RPCSEC_GSS_FAILED:
918 p->cku_err.re_errno = EACCES;
919 break;
920 case AUTH_REJECTEDCRED:
921 case AUTH_REJECTEDVERF:
922 default:
923 p->cku_err.re_errno = EIO;
924 break;
925 }
926 RPCLOG(1, "clnt_clts_kcallit : authentication failed "
927 "with RPC_AUTHERROR of type %d\n",
928 p->cku_err.re_why);
929 goto done;
930 }
931
932 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
933 XDR_DESTROY(xdrs);
934
935 done1:
936 call_table_remove(call);
937 if (call->call_reply != NULL) {
938 freemsg(call->call_reply);
939 call->call_reply = NULL;
940 }
941 RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
942 p->cku_xid);
943
944 done:
945 if (resp != NULL) {
946 freemsg(resp);
947 resp = NULL;
948 }
949
950 if ((p->cku_err.re_status != RPC_SUCCESS) &&
951 (p->cku_err.re_status != RPC_INTR) &&
952 (p->cku_err.re_status != RPC_UDERROR) &&
953 !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
954 if (p->cku_feedback != NULL && stries == p->cku_retrys) {
955 (*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
956 p->cku_feedarg);
957 }
958
959 timout = backoff(timout);
960 if (p->cku_timeall != (struct rpc_timers *)0)
961 p->cku_timeall->rt_rtxcur = timout;
962
963 if (p->cku_err.re_status == RPC_SYSTEMERROR ||
964 p->cku_err.re_status == RPC_CANTSEND) {
965 /*
966 * Errors due to lack of resources, wait a bit
967 * and try again.
968 */
969 (void) delay(hz/10);
970 }
971 if (stries-- > 0) {
972 RCSTAT_INCR(p->cku_stats, rcretrans);
973 goto call_again;
974 }
975 }
976
977 if (mpdup != NULL)
978 freemsg(mpdup);
979
980 if (p->cku_err.re_status != RPC_SUCCESS) {
981 RCSTAT_INCR(p->cku_stats, rcbadcalls);
982 }
983
984 /*
985 * Allow the endpoint to be held by the client handle in case this
986 * RPC was not successful. A retry may occur at a higher level and
987 * in this case we may want to send the request over the same
988 * source port.
989 * Endpoint is also released for one-way RPC: no reply, nor retransmit
990 * is expected.
991 */
992 if ((p->cku_err.re_status == RPC_SUCCESS ||
993 (p->cku_err.re_status == RPC_TIMEDOUT && ori_timout == 0)) &&
994 p->cku_endpnt != NULL) {
995 endpnt_rele(p->cku_endpnt);
996 p->cku_endpnt = NULL;
997 } else {
998 DTRACE_PROBE2(clnt_clts_kcallit_done, int, p->cku_err.re_status,
999 struct endpnt *, p->cku_endpnt);
1000 }
1001
1002 return (p->cku_err.re_status);
1003 }
1004
1005 static enum clnt_stat
clnt_clts_kcallit(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait)1006 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1007 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1008 struct timeval wait)
1009 {
1010 return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1011 xdr_results, resultsp, wait, NULL));
1012 }
1013
1014 /*
1015 * Return error info on this handle.
1016 */
1017 static void
clnt_clts_kerror(CLIENT * h,struct rpc_err * err)1018 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1019 {
1020 /* LINTED pointer alignment */
1021 struct cku_private *p = htop(h);
1022
1023 *err = p->cku_err;
1024 }
1025
1026 /*ARGSUSED*/
1027 static bool_t
clnt_clts_kfreeres(CLIENT * h,xdrproc_t xdr_res,caddr_t res_ptr)1028 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1029 {
1030 xdr_free(xdr_res, res_ptr);
1031
1032 return (TRUE);
1033 }
1034
1035 /*ARGSUSED*/
1036 static void
clnt_clts_kabort(CLIENT * h)1037 clnt_clts_kabort(CLIENT *h)
1038 {
1039 }
1040
1041 static bool_t
clnt_clts_kcontrol(CLIENT * h,int cmd,char * arg)1042 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1043 {
1044 /* LINTED pointer alignment */
1045 struct cku_private *p = htop(h);
1046
1047 switch (cmd) {
1048 case CLSET_XID:
1049 p->cku_xid = *((uint32_t *)arg);
1050 return (TRUE);
1051
1052 case CLGET_XID:
1053 *((uint32_t *)arg) = p->cku_xid;
1054 return (TRUE);
1055
1056 case CLSET_BCAST:
1057 p->cku_bcast = *((uint32_t *)arg);
1058 return (TRUE);
1059
1060 case CLGET_BCAST:
1061 *((uint32_t *)arg) = p->cku_bcast;
1062 return (TRUE);
1063 case CLSET_BINDRESVPORT:
1064 if (arg == NULL)
1065 return (FALSE);
1066
1067 if (*(int *)arg != 1 && *(int *)arg != 0)
1068 return (FALSE);
1069
1070 p->cku_useresvport = *(int *)arg;
1071
1072 return (TRUE);
1073
1074 case CLGET_BINDRESVPORT:
1075 if (arg == NULL)
1076 return (FALSE);
1077
1078 *(int *)arg = p->cku_useresvport;
1079
1080 return (TRUE);
1081
1082 default:
1083 return (FALSE);
1084 }
1085 }
1086
1087 /*
1088 * Destroy rpc handle.
1089 * Frees the space used for output buffer, private data, and handle
1090 * structure, and the file pointer/TLI data on last reference.
1091 */
1092 static void
clnt_clts_kdestroy(CLIENT * h)1093 clnt_clts_kdestroy(CLIENT *h)
1094 {
1095 /* LINTED pointer alignment */
1096 struct cku_private *p = htop(h);
1097 calllist_t *call = &p->cku_call;
1098
1099 int plen;
1100
1101 RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1102 RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1103
1104 if (p->cku_endpnt != NULL)
1105 endpnt_rele(p->cku_endpnt);
1106
1107 cv_destroy(&call->call_cv);
1108 mutex_destroy(&call->call_lock);
1109
1110 plen = strlen(p->cku_config.knc_protofmly) + 1;
1111 kmem_free(p->cku_config.knc_protofmly, plen);
1112 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1113 kmem_free(p, sizeof (*p));
1114 }
1115
1116 /*
1117 * The connectionless (CLTS) kRPC endpoint management subsystem.
1118 *
1119 * Because endpoints are potentially shared among threads making RPC calls,
1120 * they are managed in a pool according to type (endpnt_type_t). Each
1121 * endpnt_type_t points to a list of usable endpoints through the e_pool
1122 * field, which is of type list_t. list_t is a doubly-linked list.
1123 * The number of endpoints in the pool is stored in the e_cnt field of
1124 * endpnt_type_t and the endpoints are reference counted using the e_ref field
1125 * in the endpnt_t structure.
1126 *
1127 * As an optimization, endpoints that have no references are also linked
1128 * to an idle list via e_ilist which is also of type list_t. When a thread
1129 * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1130 * consulted and if such an endpoint exists, it is removed from the idle list
1131 * and returned to the caller.
1132 *
1133 * If the idle list is empty, then a check is made to see if more endpoints
1134 * can be created. If so, we proceed and create a new endpoint which is added
1135 * to the pool and returned to the caller. If we have reached the limit and
1136 * cannot make a new endpoint then one is returned to the caller via round-
1137 * robin policy.
1138 *
1139 * When an endpoint is placed on the idle list by a thread calling
1140 * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1141 * be dispatched if one hasn't already been. When the timer fires, the
1142 * taskq traverses the idle list and checks to see which endpoints are
1143 * eligible to be closed. It determines this by checking if the timestamp
1144 * when the endpoint was released has exceeded the the threshold for how long
1145 * it should stay alive.
1146 *
1147 * endpnt_t structures remain persistent until the memory reclaim callback,
1148 * endpnt_reclaim(), is invoked.
1149 *
1150 * Here is an example of how the data structures would be laid out by the
1151 * subsystem:
1152 *
1153 * endpnt_type_t
1154 *
1155 * loopback inet
1156 * _______________ ______________
1157 * | e_next |----------------------->| e_next |---->>
1158 * | e_pool |<---+ | e_pool |<----+
1159 * | e_ilist |<---+--+ | e_ilist |<----+--+
1160 * +->| e_pcurr |----+--+--+ +->| e_pcurr |-----+--+--+
1161 * | | ... | | | | | | ... | | | |
1162 * | | e_itimer (90) | | | | | | e_itimer (0) | | | |
1163 * | | e_cnt (1) | | | | | | e_cnt (3) | | | |
1164 * | +---------------+ | | | | +--------------+ | | |
1165 * | | | | | | | |
1166 * | endpnt_t | | | | | | |
1167 * | ____________ | | | | ____________ | | |
1168 * | | e_node |<------+ | | | | e_node |<------+ | |
1169 * | | e_idle |<---------+ | | | e_idle | | | |
1170 * +--| e_type |<------------+ +--| e_type | | | |
1171 * | e_tiptr | | | e_tiptr | | | |
1172 * | ... | | | ... | | | |
1173 * | e_lock | | | e_lock | | | |
1174 * | ... | | | ... | | | |
1175 * | e_ref (0) | | | e_ref (2) | | | |
1176 * | e_itime | | | e_itime | | | |
1177 * +------------+ | +------------+ | | |
1178 * | | | |
1179 * | | | |
1180 * | ____________ | | |
1181 * | | e_node |<------+ | |
1182 * | | e_idle |<------+--+ |
1183 * +--| e_type | | |
1184 * | | e_tiptr | | |
1185 * | | ... | | |
1186 * | | e_lock | | |
1187 * | | ... | | |
1188 * | | e_ref (0) | | |
1189 * | | e_itime | | |
1190 * | +------------+ | |
1191 * | | |
1192 * | | |
1193 * | ____________ | |
1194 * | | e_node |<------+ |
1195 * | | e_idle | |
1196 * +--| e_type |<------------+
1197 * | e_tiptr |
1198 * | ... |
1199 * | e_lock |
1200 * | ... |
1201 * | e_ref (1) |
1202 * | e_itime |
1203 * +------------+
1204 *
1205 * Endpoint locking strategy:
1206 *
1207 * The following functions manipulate lists which hold the endpoint and the
1208 * endpoints themselves:
1209 *
1210 * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1211 *
1212 * Lock description follows:
1213 *
1214 * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1215 * endpnt_type_list.
1216 *
1217 * e_plock: Lock defined in the endpnt_type_t. It is intended to
1218 * protect accesses to the pool of endopints (e_pool) for a given
1219 * endpnt_type_t.
1220 *
1221 * e_ilock: Lock defined in endpnt_type_t. It is intended to protect accesses
1222 * to the idle list (e_ilist) of available endpoints for a given
1223 * endpnt_type_t. It also protects access to the e_itimer, e_async_cv,
1224 * and e_async_count fields in endpnt_type_t.
1225 *
1226 * e_lock: Lock defined in the endpnt structure. It is intended to protect
1227 * flags, cv, and ref count.
1228 *
1229 * The order goes as follows so as not to induce deadlock.
1230 *
1231 * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1232 *
1233 * Interaction with Zones and shutting down:
1234 *
1235 * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1236 * tuple, which means that a zone may not reuse another zone's idle endpoints
1237 * without first doing a t_kclose().
1238 *
1239 * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1240 * and e_async_count are used to keep track of the threads in endpnt_taskq
1241 * trying to reap endpnt_ts in the endpnt_type_t.
1242 */
1243
1244 /*
1245 * Allocate and initialize an endpnt_type_t
1246 */
1247 static struct endpnt_type *
endpnt_type_create(struct knetconfig * config)1248 endpnt_type_create(struct knetconfig *config)
1249 {
1250 struct endpnt_type *etype;
1251
1252 /*
1253 * Allocate a new endpoint type to hang a list of
1254 * endpoints off of it.
1255 */
1256 etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1257 etype->e_next = NULL;
1258 etype->e_pcurr = NULL;
1259 etype->e_itimer = 0;
1260 etype->e_cnt = 0;
1261
1262 (void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1263 mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1264 mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1265 etype->e_rdev = config->knc_rdev;
1266 etype->e_zoneid = rpc_zoneid();
1267 etype->e_async_count = 0;
1268 cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1269
1270 list_create(&etype->e_pool, sizeof (endpnt_t),
1271 offsetof(endpnt_t, e_node));
1272 list_create(&etype->e_ilist, sizeof (endpnt_t),
1273 offsetof(endpnt_t, e_idle));
1274
1275 /*
1276 * Check to see if we need to create a taskq for endpoint
1277 * reaping
1278 */
1279 mutex_enter(&endpnt_taskq_lock);
1280 if (taskq_created == FALSE) {
1281 taskq_created = TRUE;
1282 mutex_exit(&endpnt_taskq_lock);
1283 ASSERT(endpnt_taskq == NULL);
1284 endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1285 minclsyspri, 200, INT_MAX, 0);
1286 } else
1287 mutex_exit(&endpnt_taskq_lock);
1288
1289 return (etype);
1290 }
1291
1292 /*
1293 * Free an endpnt_type_t
1294 */
1295 static void
endpnt_type_free(struct endpnt_type * etype)1296 endpnt_type_free(struct endpnt_type *etype)
1297 {
1298 mutex_destroy(&etype->e_plock);
1299 mutex_destroy(&etype->e_ilock);
1300 list_destroy(&etype->e_pool);
1301 list_destroy(&etype->e_ilist);
1302 kmem_free(etype, sizeof (endpnt_type_t));
1303 }
1304
1305 /*
1306 * Check the endpoint to ensure that it is suitable for use.
1307 *
1308 * Possible return values:
1309 *
1310 * return (1) - Endpoint is established, but needs to be re-opened.
1311 * return (0) && *newp == NULL - Endpoint is established, but unusable.
1312 * return (0) && *newp != NULL - Endpoint is established and usable.
1313 */
1314 static int
check_endpnt(struct endpnt * endp,struct endpnt ** newp)1315 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1316 {
1317 *newp = endp;
1318
1319 mutex_enter(&endp->e_lock);
1320 ASSERT(endp->e_ref >= 1);
1321
1322 /*
1323 * The first condition we check for is if the endpoint has been
1324 * allocated, but is unusable either because it has been closed or
1325 * has been marked stale. Only *one* thread will be allowed to
1326 * execute the then clause. This is enforced because the first thread
1327 * to check this condition will clear the flags, so that subsequent
1328 * thread(s) checking this endpoint will move on.
1329 */
1330 if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1331 (!(endp->e_flags & ENDPNT_BOUND) ||
1332 (endp->e_flags & ENDPNT_STALE))) {
1333 /*
1334 * Clear the flags here since they will be
1335 * set again by this thread. They need to be
1336 * individually cleared because we want to maintain
1337 * the state for ENDPNT_ONIDLE.
1338 */
1339 endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1340 ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1341 mutex_exit(&endp->e_lock);
1342 return (1);
1343 }
1344
1345 /*
1346 * The second condition is meant for any thread that is waiting for
1347 * an endpoint to become established. It will cv_wait() until
1348 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1349 * ENDPNT_STALE.
1350 */
1351 while (!(endp->e_flags & ENDPNT_BOUND) &&
1352 !(endp->e_flags & ENDPNT_STALE)) {
1353 endp->e_flags |= ENDPNT_WAITING;
1354 cv_wait(&endp->e_cv, &endp->e_lock);
1355 }
1356
1357 ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1358
1359 /*
1360 * The last case we check for is if the endpoint has been marked stale.
1361 * If this is the case then set *newp to NULL and return, so that the
1362 * caller is notified of the error and can take appropriate action.
1363 */
1364 if (endp->e_flags & ENDPNT_STALE) {
1365 endp->e_ref--;
1366 *newp = NULL;
1367 }
1368 mutex_exit(&endp->e_lock);
1369 return (0);
1370 }
1371
1372 #ifdef DEBUG
1373 /*
1374 * Provide a fault injection setting to test error conditions.
1375 */
1376 static int endpnt_get_return_null = 0;
1377 #endif
1378
1379 /*
1380 * Returns a handle (struct endpnt *) to an open and bound endpoint
1381 * specified by the knetconfig passed in. Returns NULL if no valid endpoint
1382 * can be obtained.
1383 */
1384 static struct endpnt *
endpnt_get(struct knetconfig * config,int useresvport)1385 endpnt_get(struct knetconfig *config, int useresvport)
1386 {
1387 struct endpnt_type *n_etype = NULL;
1388 struct endpnt_type *np = NULL;
1389 struct endpnt *new = NULL;
1390 struct endpnt *endp = NULL;
1391 struct endpnt *next = NULL;
1392 TIUSER *tiptr = NULL;
1393 int rtries = BINDRESVPORT_RETRIES;
1394 int i = 0;
1395 int error;
1396 int retval;
1397 zoneid_t zoneid = rpc_zoneid();
1398 cred_t *cr;
1399
1400 RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1401 RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1402
1403 #ifdef DEBUG
1404 /*
1405 * Inject fault if desired. Pretend we have a stale endpoint
1406 * and return NULL.
1407 */
1408 if (endpnt_get_return_null > 0) {
1409 endpnt_get_return_null--;
1410 return (NULL);
1411 }
1412 #endif
1413 rw_enter(&endpnt_type_lock, RW_READER);
1414
1415 top:
1416 for (np = endpnt_type_list; np != NULL; np = np->e_next)
1417 if ((np->e_zoneid == zoneid) &&
1418 (np->e_rdev == config->knc_rdev) &&
1419 (strcmp(np->e_protofmly,
1420 config->knc_protofmly) == 0))
1421 break;
1422
1423 if (np == NULL && n_etype != NULL) {
1424 ASSERT(rw_write_held(&endpnt_type_lock));
1425
1426 /*
1427 * Link the endpoint type onto the list
1428 */
1429 n_etype->e_next = endpnt_type_list;
1430 endpnt_type_list = n_etype;
1431 np = n_etype;
1432 n_etype = NULL;
1433 }
1434
1435 if (np == NULL) {
1436 /*
1437 * The logic here is that we were unable to find an
1438 * endpnt_type_t that matched our criteria, so we allocate a
1439 * new one. Because kmem_alloc() needs to be called with
1440 * KM_SLEEP, we drop our locks so that we don't induce
1441 * deadlock. After allocating and initializing the
1442 * endpnt_type_t, we reaquire the lock and go back to check
1443 * if this entry needs to be added to the list. Since we do
1444 * some operations without any locking other threads may
1445 * have been looking for the same endpnt_type_t and gone
1446 * through this code path. We check for this case and allow
1447 * one thread to link its endpnt_type_t to the list and the
1448 * other threads will simply free theirs.
1449 */
1450 rw_exit(&endpnt_type_lock);
1451 n_etype = endpnt_type_create(config);
1452
1453 /*
1454 * We need to reaquire the lock with RW_WRITER here so that
1455 * we can safely link the new endpoint type onto the list.
1456 */
1457 rw_enter(&endpnt_type_lock, RW_WRITER);
1458 goto top;
1459 }
1460
1461 rw_exit(&endpnt_type_lock);
1462 /*
1463 * If n_etype is not NULL, then another thread was able to
1464 * insert an endpnt_type_t of this type onto the list before
1465 * we did. Go ahead and free ours.
1466 */
1467 if (n_etype != NULL)
1468 endpnt_type_free(n_etype);
1469
1470 mutex_enter(&np->e_ilock);
1471 /*
1472 * The algorithm to hand out endpoints is to first
1473 * give out those that are idle if such endpoints
1474 * exist. Otherwise, create a new one if we haven't
1475 * reached the max threshold. Finally, we give out
1476 * endpoints in a pseudo LRU fashion (round-robin).
1477 *
1478 * Note: The idle list is merely a hint of those endpoints
1479 * that should be idle. There exists a window after the
1480 * endpoint is released and before it is linked back onto the
1481 * idle list where a thread could get a reference to it and
1482 * use it. This is okay, since the reference counts will
1483 * still be consistent.
1484 */
1485 if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1486 timeout_id_t t_id = 0;
1487
1488 mutex_enter(&endp->e_lock);
1489 endp->e_ref++;
1490 endp->e_itime = 0;
1491 endp->e_flags &= ~ENDPNT_ONIDLE;
1492 mutex_exit(&endp->e_lock);
1493
1494 /*
1495 * Pop the endpoint off the idle list and hand it off
1496 */
1497 list_remove(&np->e_ilist, endp);
1498
1499 if (np->e_itimer != 0) {
1500 t_id = np->e_itimer;
1501 np->e_itimer = 0;
1502 }
1503 mutex_exit(&np->e_ilock);
1504 /*
1505 * Reset the idle timer if it has been set
1506 */
1507 if (t_id != (timeout_id_t)0)
1508 (void) untimeout(t_id);
1509
1510 if (check_endpnt(endp, &new) == 0)
1511 return (new);
1512 } else if (np->e_cnt >= clnt_clts_max_endpoints) {
1513 /*
1514 * There are no idle endpoints currently, so
1515 * create a new one if we have not reached the maximum or
1516 * hand one out in round-robin.
1517 */
1518 mutex_exit(&np->e_ilock);
1519 mutex_enter(&np->e_plock);
1520 endp = np->e_pcurr;
1521 mutex_enter(&endp->e_lock);
1522 endp->e_ref++;
1523 mutex_exit(&endp->e_lock);
1524
1525 ASSERT(endp != NULL);
1526 /*
1527 * Advance the pointer to the next eligible endpoint, if
1528 * necessary.
1529 */
1530 if (np->e_cnt > 1) {
1531 next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1532 if (next == NULL)
1533 next = (endpnt_t *)list_head(&np->e_pool);
1534 np->e_pcurr = next;
1535 }
1536
1537 mutex_exit(&np->e_plock);
1538
1539 /*
1540 * We need to check to see if this endpoint is bound or
1541 * not. If it is in progress then just wait until
1542 * the set up is complete
1543 */
1544 if (check_endpnt(endp, &new) == 0)
1545 return (new);
1546 } else {
1547 mutex_exit(&np->e_ilock);
1548 mutex_enter(&np->e_plock);
1549
1550 /*
1551 * Allocate a new endpoint to use. If we can't allocate any
1552 * more memory then use one that is already established if any
1553 * such endpoints exist.
1554 */
1555 new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1556 if (new == NULL) {
1557 RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1558 /*
1559 * Try to recover by using an existing endpoint.
1560 */
1561 if (np->e_cnt <= 0) {
1562 mutex_exit(&np->e_plock);
1563 return (NULL);
1564 }
1565 endp = np->e_pcurr;
1566 if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1567 NULL)
1568 np->e_pcurr = next;
1569 ASSERT(endp != NULL);
1570 mutex_enter(&endp->e_lock);
1571 endp->e_ref++;
1572 mutex_exit(&endp->e_lock);
1573 mutex_exit(&np->e_plock);
1574
1575 if (check_endpnt(endp, &new) == 0)
1576 return (new);
1577 } else {
1578 /*
1579 * Partially init an endpoint structure and put
1580 * it on the list, so that other interested threads
1581 * know that one is being created
1582 */
1583 bzero(new, sizeof (struct endpnt));
1584
1585 cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1586 mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1587 new->e_ref = 1;
1588 new->e_type = np;
1589
1590 /*
1591 * Link the endpoint into the pool.
1592 */
1593 list_insert_head(&np->e_pool, new);
1594 np->e_cnt++;
1595 if (np->e_pcurr == NULL)
1596 np->e_pcurr = new;
1597 mutex_exit(&np->e_plock);
1598 }
1599 }
1600
1601 /*
1602 * The transport should be opened with sufficient privs
1603 */
1604 cr = zone_kcred();
1605 error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1606 cr);
1607 if (error) {
1608 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1609 goto bad;
1610 }
1611
1612 new->e_tiptr = tiptr;
1613 rpc_poptimod(tiptr->fp->f_vnode);
1614
1615 /*
1616 * Allow the kernel to push the module on behalf of the user.
1617 */
1618 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1619 K_TO_K, cr, &retval);
1620 if (error) {
1621 RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1622 goto bad;
1623 }
1624
1625 error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1626 cr, &retval);
1627 if (error) {
1628 RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1629 goto bad;
1630 }
1631
1632 /*
1633 * Connectionless data flow should bypass the stream head.
1634 */
1635 new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1636
1637 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1638 K_TO_K, cr, &retval);
1639 if (error) {
1640 RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1641 goto bad;
1642 }
1643
1644 /*
1645 * Attempt to bind the endpoint. If we fail then propogate
1646 * error back to calling subsystem, so that it can be handled
1647 * appropriately.
1648 * If the caller has not specified reserved port usage then
1649 * take the system default.
1650 */
1651 if (useresvport == -1)
1652 useresvport = clnt_clts_do_bindresvport;
1653
1654 if (useresvport &&
1655 (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1656 strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1657
1658 while ((error =
1659 bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1660 RPCLOG(1,
1661 "endpnt_get: bindresvport error %d\n", error);
1662 if (error != EPROTO) {
1663 if (rtries-- <= 0)
1664 goto bad;
1665
1666 delay(hz << i++);
1667 continue;
1668 }
1669
1670 (void) t_kclose(new->e_tiptr, 1);
1671 /*
1672 * reopen with all privileges
1673 */
1674 error = t_kopen(NULL, config->knc_rdev,
1675 FREAD|FWRITE|FNDELAY,
1676 &new->e_tiptr, cr);
1677 if (error) {
1678 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1679 new->e_tiptr = NULL;
1680 goto bad;
1681 }
1682 }
1683 } else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1684 RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1685 goto bad;
1686 }
1687
1688 /*
1689 * Set the flags and notify and waiters that we have an established
1690 * endpoint.
1691 */
1692 mutex_enter(&new->e_lock);
1693 new->e_flags |= ENDPNT_ESTABLISHED;
1694 new->e_flags |= ENDPNT_BOUND;
1695 if (new->e_flags & ENDPNT_WAITING) {
1696 cv_broadcast(&new->e_cv);
1697 new->e_flags &= ~ENDPNT_WAITING;
1698 }
1699 mutex_exit(&new->e_lock);
1700
1701 return (new);
1702
1703 bad:
1704 ASSERT(new != NULL);
1705 /*
1706 * mark this endpoint as stale and notify any threads waiting
1707 * on this endpoint that it will be going away.
1708 */
1709 mutex_enter(&new->e_lock);
1710 if (new->e_ref > 0) {
1711 new->e_flags |= ENDPNT_ESTABLISHED;
1712 new->e_flags |= ENDPNT_STALE;
1713 if (new->e_flags & ENDPNT_WAITING) {
1714 cv_broadcast(&new->e_cv);
1715 new->e_flags &= ~ENDPNT_WAITING;
1716 }
1717 }
1718 new->e_ref--;
1719 new->e_tiptr = NULL;
1720 mutex_exit(&new->e_lock);
1721
1722 /*
1723 * If there was a transport endopoint opened, then close it.
1724 */
1725 if (tiptr != NULL)
1726 (void) t_kclose(tiptr, 1);
1727
1728 return (NULL);
1729 }
1730
1731 /*
1732 * Release a referece to the endpoint
1733 */
1734 static void
endpnt_rele(struct endpnt * sp)1735 endpnt_rele(struct endpnt *sp)
1736 {
1737 mutex_enter(&sp->e_lock);
1738 ASSERT(sp->e_ref > 0);
1739 sp->e_ref--;
1740 /*
1741 * If the ref count is zero, then start the idle timer and link
1742 * the endpoint onto the idle list.
1743 */
1744 if (sp->e_ref == 0) {
1745 sp->e_itime = gethrestime_sec();
1746
1747 /*
1748 * Check to see if the endpoint is already linked to the idle
1749 * list, so that we don't try to reinsert it.
1750 */
1751 if (sp->e_flags & ENDPNT_ONIDLE) {
1752 mutex_exit(&sp->e_lock);
1753 mutex_enter(&sp->e_type->e_ilock);
1754 endpnt_reap_settimer(sp->e_type);
1755 mutex_exit(&sp->e_type->e_ilock);
1756 return;
1757 }
1758
1759 sp->e_flags |= ENDPNT_ONIDLE;
1760 mutex_exit(&sp->e_lock);
1761 mutex_enter(&sp->e_type->e_ilock);
1762 list_insert_tail(&sp->e_type->e_ilist, sp);
1763 endpnt_reap_settimer(sp->e_type);
1764 mutex_exit(&sp->e_type->e_ilock);
1765 } else
1766 mutex_exit(&sp->e_lock);
1767 }
1768
1769 static void
endpnt_reap_settimer(endpnt_type_t * etp)1770 endpnt_reap_settimer(endpnt_type_t *etp)
1771 {
1772 if (etp->e_itimer == (timeout_id_t)0)
1773 etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1774 clnt_clts_taskq_dispatch_interval);
1775 }
1776
1777 static void
endpnt_reap_dispatch(void * a)1778 endpnt_reap_dispatch(void *a)
1779 {
1780 endpnt_type_t *etp = a;
1781
1782 /*
1783 * The idle timer has fired, so dispatch the taskq to close the
1784 * endpoint.
1785 */
1786 if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1787 TQ_NOSLEEP) == NULL)
1788 return;
1789 mutex_enter(&etp->e_ilock);
1790 etp->e_async_count++;
1791 mutex_exit(&etp->e_ilock);
1792 }
1793
1794 /*
1795 * Traverse the idle list and close those endpoints that have reached their
1796 * timeout interval.
1797 */
1798 static void
endpnt_reap(endpnt_type_t * etp)1799 endpnt_reap(endpnt_type_t *etp)
1800 {
1801 struct endpnt *e;
1802 struct endpnt *next_node = NULL;
1803
1804 mutex_enter(&etp->e_ilock);
1805 e = list_head(&etp->e_ilist);
1806 while (e != NULL) {
1807 next_node = list_next(&etp->e_ilist, e);
1808
1809 mutex_enter(&e->e_lock);
1810 if (e->e_ref > 0) {
1811 mutex_exit(&e->e_lock);
1812 e = next_node;
1813 continue;
1814 }
1815
1816 ASSERT(e->e_ref == 0);
1817 if (e->e_itime > 0 &&
1818 (e->e_itime + clnt_clts_endpoint_reap_interval) <
1819 gethrestime_sec()) {
1820 e->e_flags &= ~ENDPNT_BOUND;
1821 (void) t_kclose(e->e_tiptr, 1);
1822 e->e_tiptr = NULL;
1823 e->e_itime = 0;
1824 }
1825 mutex_exit(&e->e_lock);
1826 e = next_node;
1827 }
1828 etp->e_itimer = 0;
1829 if (--etp->e_async_count == 0)
1830 cv_signal(&etp->e_async_cv);
1831 mutex_exit(&etp->e_ilock);
1832 }
1833
1834 static void
endpnt_reclaim(zoneid_t zoneid)1835 endpnt_reclaim(zoneid_t zoneid)
1836 {
1837 struct endpnt_type *np;
1838 struct endpnt *e;
1839 struct endpnt *next_node = NULL;
1840 list_t free_list;
1841 int rcnt = 0;
1842
1843 list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1844
1845 RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1846 rw_enter(&endpnt_type_lock, RW_READER);
1847 for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1848 if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1849 continue;
1850
1851 mutex_enter(&np->e_plock);
1852 RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1853 np->e_protofmly);
1854 RPCLOG(1, "rdev %ld\n", np->e_rdev);
1855 RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1856 np->e_cnt);
1857
1858 if (np->e_cnt == 0) {
1859 mutex_exit(&np->e_plock);
1860 continue;
1861 }
1862
1863 /*
1864 * The nice thing about maintaining an idle list is that if
1865 * there are any endpoints to reclaim, they are going to be
1866 * on this list. Just go through and reap the one's that
1867 * have ref counts of zero.
1868 */
1869 mutex_enter(&np->e_ilock);
1870 e = list_head(&np->e_ilist);
1871 while (e != NULL) {
1872 next_node = list_next(&np->e_ilist, e);
1873 mutex_enter(&e->e_lock);
1874 if (e->e_ref > 0) {
1875 mutex_exit(&e->e_lock);
1876 e = next_node;
1877 continue;
1878 }
1879 ASSERT(e->e_ref == 0);
1880 mutex_exit(&e->e_lock);
1881
1882 list_remove(&np->e_ilist, e);
1883 list_remove(&np->e_pool, e);
1884 list_insert_head(&free_list, e);
1885
1886 rcnt++;
1887 np->e_cnt--;
1888 e = next_node;
1889 }
1890 mutex_exit(&np->e_ilock);
1891 /*
1892 * Reset the current pointer to be safe
1893 */
1894 if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1895 np->e_pcurr = e;
1896 else {
1897 ASSERT(np->e_cnt == 0);
1898 np->e_pcurr = NULL;
1899 }
1900
1901 mutex_exit(&np->e_plock);
1902 }
1903 rw_exit(&endpnt_type_lock);
1904
1905 while ((e = list_head(&free_list)) != NULL) {
1906 list_remove(&free_list, e);
1907 if (e->e_tiptr != NULL)
1908 (void) t_kclose(e->e_tiptr, 1);
1909
1910 cv_destroy(&e->e_cv);
1911 mutex_destroy(&e->e_lock);
1912 kmem_cache_free(endpnt_cache, e);
1913 }
1914 list_destroy(&free_list);
1915 RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1916 }
1917
1918 /*
1919 * Endpoint reclaim zones destructor callback routine.
1920 *
1921 * After reclaiming any cached entries, we basically go through the endpnt_type
1922 * list, canceling outstanding timeouts and free'ing data structures.
1923 */
1924 /* ARGSUSED */
1925 static void
endpnt_destructor(zoneid_t zoneid,void * a)1926 endpnt_destructor(zoneid_t zoneid, void *a)
1927 {
1928 struct endpnt_type **npp;
1929 struct endpnt_type *np;
1930 struct endpnt_type *free_list = NULL;
1931 timeout_id_t t_id = 0;
1932 extern void clcleanup_zone(zoneid_t);
1933 extern void clcleanup4_zone(zoneid_t);
1934
1935 /* Make sure NFS client handles are released. */
1936 clcleanup_zone(zoneid);
1937 clcleanup4_zone(zoneid);
1938
1939 endpnt_reclaim(zoneid);
1940 /*
1941 * We don't need to be holding on to any locks across the call to
1942 * endpnt_reclaim() and the code below; we know that no-one can
1943 * be holding open connections for this zone (all processes and kernel
1944 * threads are gone), so nothing could be adding anything to the list.
1945 */
1946 rw_enter(&endpnt_type_lock, RW_WRITER);
1947 npp = &endpnt_type_list;
1948 while ((np = *npp) != NULL) {
1949 if (np->e_zoneid != zoneid) {
1950 npp = &np->e_next;
1951 continue;
1952 }
1953 mutex_enter(&np->e_plock);
1954 mutex_enter(&np->e_ilock);
1955 if (np->e_itimer != 0) {
1956 t_id = np->e_itimer;
1957 np->e_itimer = 0;
1958 }
1959 ASSERT(np->e_cnt == 0);
1960 ASSERT(list_head(&np->e_pool) == NULL);
1961 ASSERT(list_head(&np->e_ilist) == NULL);
1962
1963 mutex_exit(&np->e_ilock);
1964 mutex_exit(&np->e_plock);
1965
1966 /*
1967 * untimeout() any outstanding timers that have not yet fired.
1968 */
1969 if (t_id != (timeout_id_t)0)
1970 (void) untimeout(t_id);
1971 *npp = np->e_next;
1972 np->e_next = free_list;
1973 free_list = np;
1974 }
1975 rw_exit(&endpnt_type_lock);
1976
1977 while (free_list != NULL) {
1978 np = free_list;
1979 free_list = free_list->e_next;
1980 /*
1981 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
1982 * the endpnt_type_t.
1983 */
1984 mutex_enter(&np->e_ilock);
1985 while (np->e_async_count > 0)
1986 cv_wait(&np->e_async_cv, &np->e_ilock);
1987 cv_destroy(&np->e_async_cv);
1988 mutex_destroy(&np->e_plock);
1989 mutex_destroy(&np->e_ilock);
1990 list_destroy(&np->e_pool);
1991 list_destroy(&np->e_ilist);
1992 kmem_free(np, sizeof (endpnt_type_t));
1993 }
1994 }
1995
1996 /*
1997 * Endpoint reclaim kmem callback routine.
1998 */
1999 /* ARGSUSED */
2000 static void
endpnt_repossess(void * a)2001 endpnt_repossess(void *a)
2002 {
2003 /*
2004 * Reclaim idle endpnt's from all zones.
2005 */
2006 if (endpnt_taskq != NULL)
2007 (void) taskq_dispatch(endpnt_taskq,
2008 (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
2009 TQ_NOSLEEP);
2010 }
2011
2012 /*
2013 * RPC request dispatch routine. Constructs a datagram message and wraps it
2014 * around the RPC request to pass downstream.
2015 */
2016 static int
clnt_clts_dispatch_send(queue_t * q,mblk_t * mp,struct netbuf * addr,calllist_t * cp,uint_t xid,cred_t * cr)2017 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2018 calllist_t *cp, uint_t xid, cred_t *cr)
2019 {
2020 mblk_t *bp;
2021 int msgsz;
2022 struct T_unitdata_req *udreq;
2023
2024 /*
2025 * Set up the call record.
2026 */
2027 cp->call_wq = q;
2028 cp->call_xid = xid;
2029 cp->call_status = RPC_TIMEDOUT;
2030 cp->call_notified = FALSE;
2031 RPCLOG(64,
2032 "clnt_clts_dispatch_send: putting xid 0x%x on "
2033 "dispatch list\n", xid);
2034 cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2035 cp->call_bucket = &clts_call_ht[cp->call_hash];
2036 call_table_enter(cp);
2037
2038 /*
2039 * Construct the datagram
2040 */
2041 msgsz = (int)TUNITDATAREQSZ;
2042 /*
2043 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will
2044 * appear as -1.
2045 */
2046 while (!(bp = allocb_cred(msgsz + addr->len, cr, NOPID))) {
2047 if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2048 return (ENOSR);
2049 }
2050
2051 udreq = (struct T_unitdata_req *)bp->b_wptr;
2052 udreq->PRIM_type = T_UNITDATA_REQ;
2053 udreq->DEST_length = addr->len;
2054
2055 if (addr->len) {
2056 bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2057 udreq->DEST_offset = (t_scalar_t)msgsz;
2058 msgsz += addr->len;
2059 } else
2060 udreq->DEST_offset = 0;
2061 udreq->OPT_length = 0;
2062 udreq->OPT_offset = 0;
2063
2064 bp->b_datap->db_type = M_PROTO;
2065 bp->b_wptr += msgsz;
2066
2067 /*
2068 * Link the datagram header with the actual data
2069 */
2070 linkb(bp, mp);
2071
2072 /*
2073 * Send downstream.
2074 */
2075 if (canput(cp->call_wq)) {
2076 put(cp->call_wq, bp);
2077 return (0);
2078 }
2079
2080 return (EIO);
2081 }
2082
2083 /*
2084 * RPC response delivery routine. Deliver the response to the waiting
2085 * thread by matching the xid.
2086 */
2087 void
clnt_clts_dispatch_notify(mblk_t * mp,int resp_off,zoneid_t zoneid)2088 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2089 {
2090 calllist_t *e = NULL;
2091 call_table_t *chtp;
2092 uint32_t xid;
2093 uint_t hash;
2094 unsigned char *hdr_offset;
2095 mblk_t *resp;
2096
2097 /*
2098 * If the RPC response is not contained in the same mblk as the
2099 * datagram header, then move to the next mblk.
2100 */
2101 hdr_offset = mp->b_rptr;
2102 resp = mp;
2103 if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2104 resp = mp->b_cont;
2105 else
2106 resp->b_rptr += resp_off;
2107
2108 ASSERT(resp != NULL);
2109
2110 if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2111 (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2112 xid = *((uint32_t *)resp->b_rptr);
2113 else {
2114 int i = 0;
2115 unsigned char *p = (unsigned char *)&xid;
2116 unsigned char *rptr;
2117 mblk_t *tmp = resp;
2118
2119 /*
2120 * Copy the xid, byte-by-byte into xid.
2121 */
2122 while (tmp) {
2123 rptr = tmp->b_rptr;
2124 while (rptr < tmp->b_wptr) {
2125 *p++ = *rptr++;
2126 if (++i >= sizeof (xid))
2127 goto done_xid_copy;
2128 }
2129 tmp = tmp->b_cont;
2130 }
2131
2132 /*
2133 * If we got here, we ran out of mblk space before the
2134 * xid could be copied.
2135 */
2136 ASSERT(tmp == NULL && i < sizeof (xid));
2137
2138 RPCLOG0(1,
2139 "clnt_dispatch_notify(clts): message less than "
2140 "size of xid\n");
2141
2142 freemsg(mp);
2143 return;
2144 }
2145
2146 done_xid_copy:
2147
2148 /*
2149 * Reset the read pointer back to the beginning of the protocol
2150 * header if we moved it.
2151 */
2152 if (mp->b_rptr != hdr_offset)
2153 mp->b_rptr = hdr_offset;
2154
2155 hash = call_hash(xid, clnt_clts_hash_size);
2156 chtp = &clts_call_ht[hash];
2157 /* call_table_find returns with the hash bucket locked */
2158 call_table_find(chtp, xid, e);
2159
2160 if (e != NULL) {
2161 mutex_enter(&e->call_lock);
2162
2163 /*
2164 * verify that the reply is coming in on
2165 * the same zone that it was sent from.
2166 */
2167 if (e->call_zoneid != zoneid) {
2168 mutex_exit(&e->call_lock);
2169 mutex_exit(&chtp->ct_lock);
2170 RPCLOG0(8, "clnt_dispatch_notify (clts): incorrect "
2171 "zoneid\n");
2172 freemsg(mp);
2173 return;
2174 }
2175
2176 /*
2177 * found thread waiting for this reply.
2178 */
2179 if (e->call_reply) {
2180 RPCLOG(8,
2181 "clnt_dispatch_notify (clts): discarding old "
2182 "reply for xid 0x%x\n",
2183 xid);
2184 freemsg(e->call_reply);
2185 }
2186 e->call_notified = TRUE;
2187 e->call_reply = mp;
2188 e->call_status = RPC_SUCCESS;
2189 cv_signal(&e->call_cv);
2190 mutex_exit(&e->call_lock);
2191 mutex_exit(&chtp->ct_lock);
2192 } else {
2193 zone_t *zone;
2194 struct rpcstat *rpcstat;
2195
2196 mutex_exit(&chtp->ct_lock);
2197 RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2198 "0x%x\n", xid);
2199 freemsg(mp);
2200 /*
2201 * This is unfortunate, but we need to lookup the zone so we
2202 * can increment its "rcbadxids" counter.
2203 */
2204 zone = zone_find_by_id(zoneid);
2205 if (zone == NULL) {
2206 /*
2207 * The zone went away...
2208 */
2209 return;
2210 }
2211 rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2212 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2213 /*
2214 * Not interested
2215 */
2216 zone_rele(zone);
2217 return;
2218 }
2219 RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2220 zone_rele(zone);
2221 }
2222 }
2223
2224 /*
2225 * Init routine. Called when rpcmod is loaded.
2226 */
2227 void
clnt_clts_init(void)2228 clnt_clts_init(void)
2229 {
2230 endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2231 sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2232 NULL, 0);
2233
2234 rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2235
2236 /*
2237 * Perform simple bounds checking to make sure that the setting is
2238 * reasonable
2239 */
2240 if (clnt_clts_max_endpoints <= 0) {
2241 if (clnt_clts_do_bindresvport)
2242 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2243 else
2244 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2245 }
2246
2247 if (clnt_clts_do_bindresvport &&
2248 clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2249 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2250 else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2251 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2252
2253 if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2254 clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2255
2256 /*
2257 * Defer creating the taskq until rpcmod gets pushed. If we are
2258 * in diskless boot mode, rpcmod will get loaded early even before
2259 * thread_create() is available.
2260 */
2261 endpnt_taskq = NULL;
2262 taskq_created = FALSE;
2263 mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2264
2265 if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2266 clnt_clts_endpoint_reap_interval =
2267 DEFAULT_ENDPOINT_REAP_INTERVAL;
2268
2269 /*
2270 * Dispatch the taskq at an interval which is offset from the
2271 * interval that the endpoints should be reaped.
2272 */
2273 clnt_clts_taskq_dispatch_interval =
2274 (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2275
2276 /*
2277 * Initialize the completion queue
2278 */
2279 clts_call_ht = call_table_init(clnt_clts_hash_size);
2280 /*
2281 * Initialize the zone destructor callback.
2282 */
2283 zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2284 }
2285
2286 void
clnt_clts_fini(void)2287 clnt_clts_fini(void)
2288 {
2289 (void) zone_key_delete(endpnt_destructor_key);
2290 }
2291