xref: /freebsd/sys/kern/uipc_usrreq.c (revision 72ddb6de1028426305df3ab6c81ff3834d5a69e5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022-2025 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include "opt_ddb.h"
60 
61 #include <sys/param.h>
62 #include <sys/capsicum.h>
63 #include <sys/domain.h>
64 #include <sys/eventhandler.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/poll.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/queue.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/stat.h>
86 #include <sys/sx.h>
87 #include <sys/sysctl.h>
88 #include <sys/systm.h>
89 #include <sys/taskqueue.h>
90 #include <sys/un.h>
91 #include <sys/unpcb.h>
92 #include <sys/vnode.h>
93 
94 #include <net/vnet.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/uma.h>
103 
104 MALLOC_DECLARE(M_FILECAPS);
105 
106 static struct domain localdomain;
107 
108 static uma_zone_t	unp_zone;
109 static unp_gen_t	unp_gencnt;	/* (l) */
110 static u_int		unp_count;	/* (l) Count of local sockets. */
111 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
112 static int		unp_rights;	/* (g) File descriptors in flight. */
113 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
114 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
115 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
116 static struct mtx_pool	*unp_vp_mtxpool;
117 
118 struct unp_defer {
119 	SLIST_ENTRY(unp_defer) ud_link;
120 	struct file *ud_fp;
121 };
122 static SLIST_HEAD(, unp_defer) unp_defers;
123 static int unp_defers_count;
124 
125 static const struct sockaddr	sun_noname = {
126 	.sa_len = sizeof(sun_noname),
127 	.sa_family = AF_LOCAL,
128 };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * SOCK_STREAM and SOCK_SEQPACKET unix(4) sockets fully bypass the send buffer,
147  * however the notion of send buffer still makes sense with them.  Its size is
148  * the amount of space that a send(2) syscall may copyin(9) before checking
149  * with the receive buffer of a peer.  Although not linked anywhere yet,
150  * pointed to by a stack variable, effectively it is a buffer that needs to be
151  * sized.
152  *
153  * SOCK_DGRAM sockets really use the sendspace as the maximum datagram size,
154  * and don't really want to reserve the sendspace.  Their recvspace should be
155  * large enough for at least one max-size datagram plus address.
156  */
157 static u_long	unpst_sendspace = 64*1024;
158 static u_long	unpst_recvspace = 64*1024;
159 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
160 static u_long	unpdg_recvspace = 16*1024;
161 static u_long	unpsp_sendspace = 64*1024;
162 static u_long	unpsp_recvspace = 64*1024;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pr_attach() and freed in pr_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *, bool);
296 static void	unp_connect2(struct socket *, struct socket *, bool);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf *, struct mchain *,
305 		    struct thread *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static void	unp_addsockcred(struct thread *, struct mchain *, int);
310 static void	unp_process_defers(void * __unused, int);
311 
312 static void	uipc_wrknl_lock(void *);
313 static void	uipc_wrknl_unlock(void *);
314 static void	uipc_wrknl_assert_lock(void *, int);
315 
316 static void
unp_pcb_hold(struct unpcb * unp)317 unp_pcb_hold(struct unpcb *unp)
318 {
319 	u_int old __unused;
320 
321 	old = refcount_acquire(&unp->unp_refcount);
322 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
323 }
324 
325 static __result_use_check bool
unp_pcb_rele(struct unpcb * unp)326 unp_pcb_rele(struct unpcb *unp)
327 {
328 	bool ret;
329 
330 	UNP_PCB_LOCK_ASSERT(unp);
331 
332 	if ((ret = refcount_release(&unp->unp_refcount))) {
333 		UNP_PCB_UNLOCK(unp);
334 		UNP_PCB_LOCK_DESTROY(unp);
335 		uma_zfree(unp_zone, unp);
336 	}
337 	return (ret);
338 }
339 
340 static void
unp_pcb_rele_notlast(struct unpcb * unp)341 unp_pcb_rele_notlast(struct unpcb *unp)
342 {
343 	bool ret __unused;
344 
345 	ret = refcount_release(&unp->unp_refcount);
346 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
347 }
348 
349 static void
unp_pcb_lock_pair(struct unpcb * unp,struct unpcb * unp2)350 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
351 {
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 
355 	if (unp == unp2) {
356 		UNP_PCB_LOCK(unp);
357 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
358 		UNP_PCB_LOCK(unp);
359 		UNP_PCB_LOCK(unp2);
360 	} else {
361 		UNP_PCB_LOCK(unp2);
362 		UNP_PCB_LOCK(unp);
363 	}
364 }
365 
366 static void
unp_pcb_unlock_pair(struct unpcb * unp,struct unpcb * unp2)367 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
368 {
369 	UNP_PCB_UNLOCK(unp);
370 	if (unp != unp2)
371 		UNP_PCB_UNLOCK(unp2);
372 }
373 
374 /*
375  * Try to lock the connected peer of an already locked socket.  In some cases
376  * this requires that we unlock the current socket.  The pairbusy counter is
377  * used to block concurrent connection attempts while the lock is dropped.  The
378  * caller must be careful to revalidate PCB state.
379  */
380 static struct unpcb *
unp_pcb_lock_peer(struct unpcb * unp)381 unp_pcb_lock_peer(struct unpcb *unp)
382 {
383 	struct unpcb *unp2;
384 
385 	UNP_PCB_LOCK_ASSERT(unp);
386 	unp2 = unp->unp_conn;
387 	if (unp2 == NULL)
388 		return (NULL);
389 	if (__predict_false(unp == unp2))
390 		return (unp);
391 
392 	UNP_PCB_UNLOCK_ASSERT(unp2);
393 
394 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
395 		return (unp2);
396 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
397 		UNP_PCB_LOCK(unp2);
398 		return (unp2);
399 	}
400 	unp->unp_pairbusy++;
401 	unp_pcb_hold(unp2);
402 	UNP_PCB_UNLOCK(unp);
403 
404 	UNP_PCB_LOCK(unp2);
405 	UNP_PCB_LOCK(unp);
406 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
407 	    ("%s: socket %p was reconnected", __func__, unp));
408 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
409 		unp->unp_flags &= ~UNP_WAITING;
410 		wakeup(unp);
411 	}
412 	if (unp_pcb_rele(unp2)) {
413 		/* unp2 is unlocked. */
414 		return (NULL);
415 	}
416 	if (unp->unp_conn == NULL) {
417 		UNP_PCB_UNLOCK(unp2);
418 		return (NULL);
419 	}
420 	return (unp2);
421 }
422 
423 /*
424  * Try to lock peer of our socket for purposes of sending data to it.
425  */
426 static int
uipc_lock_peer(struct socket * so,struct unpcb ** unp2)427 uipc_lock_peer(struct socket *so, struct unpcb **unp2)
428 {
429 	struct unpcb *unp;
430 	int error;
431 
432 	unp = sotounpcb(so);
433 	UNP_PCB_LOCK(unp);
434 	*unp2 = unp_pcb_lock_peer(unp);
435 	if (__predict_false(so->so_error != 0)) {
436 		error = so->so_error;
437 		so->so_error = 0;
438 		UNP_PCB_UNLOCK(unp);
439 		if (*unp2 != NULL)
440 			UNP_PCB_UNLOCK(*unp2);
441 		return (error);
442 	}
443 	if (__predict_false(*unp2 == NULL)) {
444 		/*
445 		 * Different error code for a previously connected socket and
446 		 * a never connected one.  The SS_ISDISCONNECTED is set in the
447 		 * unp_soisdisconnected() and is synchronized by the pcb lock.
448 		 */
449 		error = so->so_state & SS_ISDISCONNECTED ? EPIPE : ENOTCONN;
450 		UNP_PCB_UNLOCK(unp);
451 		return (error);
452 	}
453 	UNP_PCB_UNLOCK(unp);
454 
455 	return (0);
456 }
457 
458 static void
uipc_abort(struct socket * so)459 uipc_abort(struct socket *so)
460 {
461 	struct unpcb *unp, *unp2;
462 
463 	unp = sotounpcb(so);
464 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
465 	UNP_PCB_UNLOCK_ASSERT(unp);
466 
467 	UNP_PCB_LOCK(unp);
468 	unp2 = unp->unp_conn;
469 	if (unp2 != NULL) {
470 		unp_pcb_hold(unp2);
471 		UNP_PCB_UNLOCK(unp);
472 		unp_drop(unp2);
473 	} else
474 		UNP_PCB_UNLOCK(unp);
475 }
476 
477 static int
uipc_attach(struct socket * so,int proto,struct thread * td)478 uipc_attach(struct socket *so, int proto, struct thread *td)
479 {
480 	u_long sendspace, recvspace;
481 	struct unpcb *unp;
482 	int error;
483 	bool locked;
484 
485 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
486 	switch (so->so_type) {
487 	case SOCK_DGRAM:
488 		STAILQ_INIT(&so->so_rcv.uxdg_mb);
489 		STAILQ_INIT(&so->so_snd.uxdg_mb);
490 		TAILQ_INIT(&so->so_rcv.uxdg_conns);
491 		/*
492 		 * Since send buffer is either bypassed or is a part
493 		 * of one-to-many receive buffer, we assign both space
494 		 * limits to unpdg_recvspace.
495 		 */
496 		sendspace = recvspace = unpdg_recvspace;
497 		break;
498 
499 	case SOCK_STREAM:
500 		sendspace = unpst_sendspace;
501 		recvspace = unpst_recvspace;
502 		goto common;
503 
504 	case SOCK_SEQPACKET:
505 		sendspace = unpsp_sendspace;
506 		recvspace = unpsp_recvspace;
507 common:
508 		/*
509 		 * XXXGL: we need to initialize the mutex with MTX_DUPOK.
510 		 * Ideally, protocols that have PR_SOCKBUF should be
511 		 * responsible for mutex initialization officially, and then
512 		 * this uglyness with mtx_destroy(); mtx_init(); would go away.
513 		 */
514 		mtx_destroy(&so->so_rcv_mtx);
515 		mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF | MTX_DUPOK);
516 		knlist_init(&so->so_wrsel.si_note, so, uipc_wrknl_lock,
517 		    uipc_wrknl_unlock, uipc_wrknl_assert_lock);
518 		STAILQ_INIT(&so->so_rcv.uxst_mbq);
519 		break;
520 	default:
521 		panic("uipc_attach");
522 	}
523 	error = soreserve(so, sendspace, recvspace);
524 	if (error)
525 		return (error);
526 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
527 	if (unp == NULL)
528 		return (ENOBUFS);
529 	LIST_INIT(&unp->unp_refs);
530 	UNP_PCB_LOCK_INIT(unp);
531 	unp->unp_socket = so;
532 	so->so_pcb = unp;
533 	refcount_init(&unp->unp_refcount, 1);
534 	unp->unp_mode = ACCESSPERMS;
535 
536 	if ((locked = UNP_LINK_WOWNED()) == false)
537 		UNP_LINK_WLOCK();
538 
539 	unp->unp_gencnt = ++unp_gencnt;
540 	unp->unp_ino = ++unp_ino;
541 	unp_count++;
542 	switch (so->so_type) {
543 	case SOCK_STREAM:
544 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
545 		break;
546 
547 	case SOCK_DGRAM:
548 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
549 		break;
550 
551 	case SOCK_SEQPACKET:
552 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
553 		break;
554 
555 	default:
556 		panic("uipc_attach");
557 	}
558 
559 	if (locked == false)
560 		UNP_LINK_WUNLOCK();
561 
562 	return (0);
563 }
564 
565 static int
uipc_bindat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)566 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
567 {
568 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
569 	struct vattr vattr;
570 	int error, namelen;
571 	struct nameidata nd;
572 	struct unpcb *unp;
573 	struct vnode *vp;
574 	struct mount *mp;
575 	cap_rights_t rights;
576 	char *buf;
577 	mode_t mode;
578 
579 	if (nam->sa_family != AF_UNIX)
580 		return (EAFNOSUPPORT);
581 
582 	unp = sotounpcb(so);
583 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
584 
585 	if (soun->sun_len > sizeof(struct sockaddr_un))
586 		return (EINVAL);
587 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
588 	if (namelen <= 0)
589 		return (EINVAL);
590 
591 	/*
592 	 * We don't allow simultaneous bind() calls on a single UNIX domain
593 	 * socket, so flag in-progress operations, and return an error if an
594 	 * operation is already in progress.
595 	 *
596 	 * Historically, we have not allowed a socket to be rebound, so this
597 	 * also returns an error.  Not allowing re-binding simplifies the
598 	 * implementation and avoids a great many possible failure modes.
599 	 */
600 	UNP_PCB_LOCK(unp);
601 	if (unp->unp_vnode != NULL) {
602 		UNP_PCB_UNLOCK(unp);
603 		return (EINVAL);
604 	}
605 	if (unp->unp_flags & UNP_BINDING) {
606 		UNP_PCB_UNLOCK(unp);
607 		return (EALREADY);
608 	}
609 	unp->unp_flags |= UNP_BINDING;
610 	mode = unp->unp_mode & ~td->td_proc->p_pd->pd_cmask;
611 	UNP_PCB_UNLOCK(unp);
612 
613 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
614 	bcopy(soun->sun_path, buf, namelen);
615 	buf[namelen] = 0;
616 
617 restart:
618 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
619 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
620 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
621 	error = namei(&nd);
622 	if (error)
623 		goto error;
624 	vp = nd.ni_vp;
625 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
626 		NDFREE_PNBUF(&nd);
627 		if (nd.ni_dvp == vp)
628 			vrele(nd.ni_dvp);
629 		else
630 			vput(nd.ni_dvp);
631 		if (vp != NULL) {
632 			vrele(vp);
633 			error = EADDRINUSE;
634 			goto error;
635 		}
636 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
637 		if (error)
638 			goto error;
639 		goto restart;
640 	}
641 	VATTR_NULL(&vattr);
642 	vattr.va_type = VSOCK;
643 	vattr.va_mode = mode;
644 #ifdef MAC
645 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
646 	    &vattr);
647 #endif
648 	if (error == 0) {
649 		/*
650 		 * The prior lookup may have left LK_SHARED in cn_lkflags,
651 		 * and VOP_CREATE technically only requires the new vnode to
652 		 * be locked shared. Most filesystems will return the new vnode
653 		 * locked exclusive regardless, but we should explicitly
654 		 * specify that here since we require it and assert to that
655 		 * effect below.
656 		 */
657 		nd.ni_cnd.cn_lkflags = (nd.ni_cnd.cn_lkflags & ~LK_SHARED) |
658 		    LK_EXCLUSIVE;
659 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
660 	}
661 	NDFREE_PNBUF(&nd);
662 	if (error) {
663 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
664 		vn_finished_write(mp);
665 		if (error == ERELOOKUP)
666 			goto restart;
667 		goto error;
668 	}
669 	vp = nd.ni_vp;
670 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
671 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
672 
673 	UNP_PCB_LOCK(unp);
674 	VOP_UNP_BIND(vp, unp);
675 	unp->unp_vnode = vp;
676 	unp->unp_addr = soun;
677 	unp->unp_flags &= ~UNP_BINDING;
678 	UNP_PCB_UNLOCK(unp);
679 	vref(vp);
680 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
681 	vn_finished_write(mp);
682 	free(buf, M_TEMP);
683 	return (0);
684 
685 error:
686 	UNP_PCB_LOCK(unp);
687 	unp->unp_flags &= ~UNP_BINDING;
688 	UNP_PCB_UNLOCK(unp);
689 	free(buf, M_TEMP);
690 	return (error);
691 }
692 
693 static int
uipc_bind(struct socket * so,struct sockaddr * nam,struct thread * td)694 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
695 {
696 
697 	return (uipc_bindat(AT_FDCWD, so, nam, td));
698 }
699 
700 static int
uipc_connect(struct socket * so,struct sockaddr * nam,struct thread * td)701 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
702 {
703 	int error;
704 
705 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
706 	error = unp_connect(so, nam, td);
707 	return (error);
708 }
709 
710 static int
uipc_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td)711 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
712     struct thread *td)
713 {
714 	int error;
715 
716 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
717 	error = unp_connectat(fd, so, nam, td, false);
718 	return (error);
719 }
720 
721 static void
uipc_close(struct socket * so)722 uipc_close(struct socket *so)
723 {
724 	struct unpcb *unp, *unp2;
725 	struct vnode *vp = NULL;
726 	struct mtx *vplock;
727 
728 	unp = sotounpcb(so);
729 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
730 
731 	vplock = NULL;
732 	if ((vp = unp->unp_vnode) != NULL) {
733 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
734 		mtx_lock(vplock);
735 	}
736 	UNP_PCB_LOCK(unp);
737 	if (vp && unp->unp_vnode == NULL) {
738 		mtx_unlock(vplock);
739 		vp = NULL;
740 	}
741 	if (vp != NULL) {
742 		VOP_UNP_DETACH(vp);
743 		unp->unp_vnode = NULL;
744 	}
745 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
746 		unp_disconnect(unp, unp2);
747 	else
748 		UNP_PCB_UNLOCK(unp);
749 	if (vp) {
750 		mtx_unlock(vplock);
751 		vrele(vp);
752 	}
753 }
754 
755 static int
uipc_chmod(struct socket * so,mode_t mode,struct ucred * cred __unused,struct thread * td __unused)756 uipc_chmod(struct socket *so, mode_t mode, struct ucred *cred __unused,
757     struct thread *td __unused)
758 {
759 	struct unpcb *unp;
760 	int error;
761 
762 	if ((mode & ~ACCESSPERMS) != 0)
763 		return (EINVAL);
764 
765 	error = 0;
766 	unp = sotounpcb(so);
767 	UNP_PCB_LOCK(unp);
768 	if (unp->unp_vnode != NULL || (unp->unp_flags & UNP_BINDING) != 0)
769 		error = EINVAL;
770 	else
771 		unp->unp_mode = mode;
772 	UNP_PCB_UNLOCK(unp);
773 	return (error);
774 }
775 
776 static int
uipc_connect2(struct socket * so1,struct socket * so2)777 uipc_connect2(struct socket *so1, struct socket *so2)
778 {
779 	struct unpcb *unp, *unp2;
780 
781 	if (so1->so_type != so2->so_type)
782 		return (EPROTOTYPE);
783 
784 	unp = so1->so_pcb;
785 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
786 	unp2 = so2->so_pcb;
787 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
788 	unp_pcb_lock_pair(unp, unp2);
789 	unp_connect2(so1, so2, false);
790 	unp_pcb_unlock_pair(unp, unp2);
791 
792 	return (0);
793 }
794 
795 static void
uipc_detach(struct socket * so)796 uipc_detach(struct socket *so)
797 {
798 	struct unpcb *unp, *unp2;
799 	struct mtx *vplock;
800 	struct vnode *vp;
801 	int local_unp_rights;
802 
803 	unp = sotounpcb(so);
804 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
805 
806 	vp = NULL;
807 	vplock = NULL;
808 
809 	if (!SOLISTENING(so))
810 		unp_dispose(so);
811 
812 	UNP_LINK_WLOCK();
813 	LIST_REMOVE(unp, unp_link);
814 	if (unp->unp_gcflag & UNPGC_DEAD)
815 		LIST_REMOVE(unp, unp_dead);
816 	unp->unp_gencnt = ++unp_gencnt;
817 	--unp_count;
818 	UNP_LINK_WUNLOCK();
819 
820 	UNP_PCB_UNLOCK_ASSERT(unp);
821  restart:
822 	if ((vp = unp->unp_vnode) != NULL) {
823 		vplock = mtx_pool_find(unp_vp_mtxpool, vp);
824 		mtx_lock(vplock);
825 	}
826 	UNP_PCB_LOCK(unp);
827 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
828 		if (vplock)
829 			mtx_unlock(vplock);
830 		UNP_PCB_UNLOCK(unp);
831 		goto restart;
832 	}
833 	if ((vp = unp->unp_vnode) != NULL) {
834 		VOP_UNP_DETACH(vp);
835 		unp->unp_vnode = NULL;
836 	}
837 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
838 		unp_disconnect(unp, unp2);
839 	else
840 		UNP_PCB_UNLOCK(unp);
841 
842 	UNP_REF_LIST_LOCK();
843 	while (!LIST_EMPTY(&unp->unp_refs)) {
844 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
845 
846 		unp_pcb_hold(ref);
847 		UNP_REF_LIST_UNLOCK();
848 
849 		MPASS(ref != unp);
850 		UNP_PCB_UNLOCK_ASSERT(ref);
851 		unp_drop(ref);
852 		UNP_REF_LIST_LOCK();
853 	}
854 	UNP_REF_LIST_UNLOCK();
855 
856 	UNP_PCB_LOCK(unp);
857 	local_unp_rights = unp_rights;
858 	unp->unp_socket->so_pcb = NULL;
859 	unp->unp_socket = NULL;
860 	free(unp->unp_addr, M_SONAME);
861 	unp->unp_addr = NULL;
862 	if (!unp_pcb_rele(unp))
863 		UNP_PCB_UNLOCK(unp);
864 	if (vp) {
865 		mtx_unlock(vplock);
866 		vrele(vp);
867 	}
868 	if (local_unp_rights)
869 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
870 
871 	switch (so->so_type) {
872 	case SOCK_STREAM:
873 	case SOCK_SEQPACKET:
874 		MPASS(SOLISTENING(so) || (STAILQ_EMPTY(&so->so_rcv.uxst_mbq) &&
875 		    so->so_rcv.uxst_peer == NULL));
876 		break;
877 	case SOCK_DGRAM:
878 		/*
879 		 * Everything should have been unlinked/freed by unp_dispose()
880 		 * and/or unp_disconnect().
881 		 */
882 		MPASS(so->so_rcv.uxdg_peeked == NULL);
883 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
884 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
885 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
886 	}
887 }
888 
889 static int
uipc_disconnect(struct socket * so)890 uipc_disconnect(struct socket *so)
891 {
892 	struct unpcb *unp, *unp2;
893 
894 	unp = sotounpcb(so);
895 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
896 
897 	UNP_PCB_LOCK(unp);
898 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
899 		unp_disconnect(unp, unp2);
900 	else
901 		UNP_PCB_UNLOCK(unp);
902 	return (0);
903 }
904 
905 static int
uipc_listen(struct socket * so,int backlog,struct thread * td)906 uipc_listen(struct socket *so, int backlog, struct thread *td)
907 {
908 	struct unpcb *unp;
909 	int error;
910 
911 	MPASS(so->so_type != SOCK_DGRAM);
912 
913 	/*
914 	 * Synchronize with concurrent connection attempts.
915 	 */
916 	error = 0;
917 	unp = sotounpcb(so);
918 	UNP_PCB_LOCK(unp);
919 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
920 		error = EINVAL;
921 	else if (unp->unp_vnode == NULL)
922 		error = EDESTADDRREQ;
923 	if (error != 0) {
924 		UNP_PCB_UNLOCK(unp);
925 		return (error);
926 	}
927 
928 	SOCK_LOCK(so);
929 	error = solisten_proto_check(so);
930 	if (error == 0) {
931 		cru2xt(td, &unp->unp_peercred);
932 		if (!SOLISTENING(so)) {
933 			(void)chgsbsize(so->so_cred->cr_uidinfo,
934 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
935 			(void)chgsbsize(so->so_cred->cr_uidinfo,
936 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
937 		}
938 		solisten_proto(so, backlog);
939 	}
940 	SOCK_UNLOCK(so);
941 	UNP_PCB_UNLOCK(unp);
942 	return (error);
943 }
944 
945 static int
uipc_peeraddr(struct socket * so,struct sockaddr * ret)946 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
947 {
948 	struct unpcb *unp, *unp2;
949 	const struct sockaddr *sa;
950 
951 	unp = sotounpcb(so);
952 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
953 
954 	UNP_PCB_LOCK(unp);
955 	unp2 = unp_pcb_lock_peer(unp);
956 	if (unp2 != NULL) {
957 		if (unp2->unp_addr != NULL)
958 			sa = (struct sockaddr *)unp2->unp_addr;
959 		else
960 			sa = &sun_noname;
961 		bcopy(sa, ret, sa->sa_len);
962 		unp_pcb_unlock_pair(unp, unp2);
963 	} else {
964 		UNP_PCB_UNLOCK(unp);
965 		sa = &sun_noname;
966 		bcopy(sa, ret, sa->sa_len);
967 	}
968 	return (0);
969 }
970 
971 /*
972  * pr_sosend() called with mbuf instead of uio is a kernel thread.  NFS,
973  * netgraph(4) and other subsystems can call into socket code.  The
974  * function will condition the mbuf so that it can be safely put onto socket
975  * buffer and calculate its char count and mbuf count.
976  *
977  * Note: we don't support receiving control data from a kernel thread.  Our
978  * pr_sosend methods have MPASS() to check that.  This may change.
979  */
980 static void
uipc_reset_kernel_mbuf(struct mbuf * m,struct mchain * mc)981 uipc_reset_kernel_mbuf(struct mbuf *m, struct mchain *mc)
982 {
983 
984 	M_ASSERTPKTHDR(m);
985 
986 	m_clrprotoflags(m);
987 	m_tag_delete_chain(m, NULL);
988 	m->m_pkthdr.rcvif = NULL;
989 	m->m_pkthdr.flowid = 0;
990 	m->m_pkthdr.csum_flags = 0;
991 	m->m_pkthdr.fibnum = 0;
992 	m->m_pkthdr.rsstype = 0;
993 
994 	mc_init_m(mc, m);
995 	MPASS(m->m_pkthdr.len == mc->mc_len);
996 }
997 
998 #ifdef SOCKBUF_DEBUG
999 static inline void
uipc_stream_sbcheck(struct sockbuf * sb)1000 uipc_stream_sbcheck(struct sockbuf *sb)
1001 {
1002 	struct mbuf *d;
1003 	u_int dacc, dccc, dctl, dmbcnt;
1004 	bool notready = false;
1005 
1006 	dacc = dccc = dctl = dmbcnt = 0;
1007 	STAILQ_FOREACH(d, &sb->uxst_mbq, m_stailq) {
1008 		if (d == sb->uxst_fnrdy) {
1009 			MPASS(d->m_flags & M_NOTREADY);
1010 			notready = true;
1011 		}
1012 		if (d->m_type == MT_CONTROL)
1013 			dctl += d->m_len;
1014 		else if (d->m_type == MT_DATA) {
1015 			dccc +=  d->m_len;
1016 			if (!notready)
1017 				dacc += d->m_len;
1018 		} else
1019 			MPASS(0);
1020 		dmbcnt += MSIZE;
1021 		if (d->m_flags & M_EXT)
1022 			dmbcnt += d->m_ext.ext_size;
1023 		if (d->m_stailq.stqe_next == NULL)
1024 			MPASS(sb->uxst_mbq.stqh_last == &d->m_stailq.stqe_next);
1025 	}
1026 	MPASS(sb->uxst_fnrdy == NULL || notready);
1027 	MPASS(dacc == sb->sb_acc);
1028 	MPASS(dccc == sb->sb_ccc);
1029 	MPASS(dctl == sb->sb_ctl);
1030 	MPASS(dmbcnt == sb->sb_mbcnt);
1031 	(void)STAILQ_EMPTY(&sb->uxst_mbq);
1032 }
1033 #define	UIPC_STREAM_SBCHECK(sb)	uipc_stream_sbcheck(sb)
1034 #else
1035 #define	UIPC_STREAM_SBCHECK(sb)	do {} while (0)
1036 #endif
1037 
1038 /*
1039  * uipc_stream_sbspace() returns how much a writer can send, limited by char
1040  * count or mbuf memory use, whatever ends first.
1041  *
1042  * An obvious and legitimate reason for a socket having more data than allowed,
1043  * is lowering the limit with setsockopt(SO_RCVBUF) on already full buffer.
1044  * Also, sb_mbcnt may overcommit sb_mbmax in case if previous write observed
1045  * 'space < mbspace', but mchain allocated to hold 'space' bytes of data ended
1046  * up with 'mc_mlen > mbspace'.  A typical scenario would be a full buffer with
1047  * writer trying to push in a large write, and a slow reader, that reads just
1048  * a few bytes at a time.  In that case writer will keep creating new mbufs
1049  * with mc_split().  These mbufs will carry little chars, but will all point at
1050  * the same cluster, thus each adding cluster size to sb_mbcnt.  This means we
1051  * will count same cluster many times potentially underutilizing socket buffer.
1052  * We aren't optimizing towards ineffective readers.  Classic socket buffer had
1053  * the same "feature".
1054  */
1055 static inline u_int
uipc_stream_sbspace(struct sockbuf * sb)1056 uipc_stream_sbspace(struct sockbuf *sb)
1057 {
1058 	u_int space, mbspace;
1059 
1060 	if (__predict_true(sb->sb_hiwat >= sb->sb_ccc + sb->sb_ctl))
1061 		space = sb->sb_hiwat - sb->sb_ccc - sb->sb_ctl;
1062 	else
1063 		return (0);
1064 	if (__predict_true(sb->sb_mbmax >= sb->sb_mbcnt))
1065 		mbspace = sb->sb_mbmax - sb->sb_mbcnt;
1066 	else
1067 		return (0);
1068 
1069 	return (min(space, mbspace));
1070 }
1071 
1072 static int
uipc_sosend_stream_or_seqpacket(struct socket * so,struct sockaddr * addr,struct uio * uio0,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1073 uipc_sosend_stream_or_seqpacket(struct socket *so, struct sockaddr *addr,
1074     struct uio *uio0, struct mbuf *m, struct mbuf *c, int flags,
1075     struct thread *td)
1076 {
1077 	struct unpcb *unp2;
1078 	struct socket *so2;
1079 	struct sockbuf *sb;
1080 	struct uio *uio;
1081 	struct mchain mc, cmc;
1082 	size_t resid, sent;
1083 	bool nonblock, eor, aio;
1084 	int error;
1085 
1086 	MPASS((uio0 != NULL && m == NULL) || (m != NULL && uio0 == NULL));
1087 	MPASS(m == NULL || c == NULL);
1088 
1089 	if (__predict_false(flags & MSG_OOB))
1090 		return (EOPNOTSUPP);
1091 
1092 	nonblock = (so->so_state & SS_NBIO) ||
1093 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1094 	eor = flags & MSG_EOR;
1095 
1096 	mc = MCHAIN_INITIALIZER(&mc);
1097 	cmc = MCHAIN_INITIALIZER(&cmc);
1098 	sent = 0;
1099 	aio = false;
1100 
1101 	if (m == NULL) {
1102 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1103 			goto out;
1104 		/*
1105 		 * This function may read more data from the uio than it would
1106 		 * then place on socket.  That would leave uio inconsistent
1107 		 * upon return.  Normally uio is allocated on the stack of the
1108 		 * syscall thread and we don't care about leaving it consistent.
1109 		 * However, aio(9) will allocate a uio as part of job and will
1110 		 * use it to track progress.  We detect aio(9) checking the
1111 		 * SB_AIO_RUNNING flag.  It is safe to check it without lock
1112 		 * cause it is set and cleared in the same taskqueue thread.
1113 		 *
1114 		 * This check can also produce a false positive: there is
1115 		 * aio(9) job and also there is a syscall we are serving now.
1116 		 * No sane software does that, it would leave to a mess in
1117 		 * the socket buffer, as aio(9) doesn't grab the I/O sx(9).
1118 		 * But syzkaller can create this mess.  For such false positive
1119 		 * our goal is just don't panic or leak memory.
1120 		 */
1121 		if (__predict_false(so->so_snd.sb_flags & SB_AIO_RUNNING)) {
1122 			uio = cloneuio(uio0);
1123 			aio = true;
1124 		} else {
1125 			uio = uio0;
1126 			resid = uio->uio_resid;
1127 		}
1128 		/*
1129 		 * Optimization for a case when our send fits into the receive
1130 		 * buffer - do the copyin before taking any locks, sized to our
1131 		 * send buffer.  Later copyins will also take into account
1132 		 * space in the peer's receive buffer.
1133 		 */
1134 		error = mc_uiotomc(&mc, uio, so->so_snd.sb_hiwat, 0, M_WAITOK,
1135 		    eor ? M_EOR : 0);
1136 		if (__predict_false(error))
1137 			goto out2;
1138 	} else
1139 		uipc_reset_kernel_mbuf(m, &mc);
1140 
1141 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1142 	if (error)
1143 		goto out2;
1144 
1145 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
1146 		goto out3;
1147 
1148 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1149 		/*
1150 		 * Credentials are passed only once on SOCK_STREAM and
1151 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1152 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1153 		 */
1154 		unp_addsockcred(td, &cmc, unp2->unp_flags);
1155 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1156 	}
1157 
1158 	/*
1159 	 * Cycle through the data to send and available space in the peer's
1160 	 * receive buffer.  Put a reference on the peer socket, so that it
1161 	 * doesn't get freed while we sbwait().  If peer goes away, we will
1162 	 * observe the SBS_CANTRCVMORE and our sorele() will finalize peer's
1163 	 * socket destruction.
1164 	 */
1165 	so2 = unp2->unp_socket;
1166 	soref(so2);
1167 	UNP_PCB_UNLOCK(unp2);
1168 	sb = &so2->so_rcv;
1169 	while (mc.mc_len + cmc.mc_len > 0) {
1170 		struct mchain mcnext = MCHAIN_INITIALIZER(&mcnext);
1171 		u_int space;
1172 
1173 		SOCK_RECVBUF_LOCK(so2);
1174 restart:
1175 		UIPC_STREAM_SBCHECK(sb);
1176 		if (__predict_false(cmc.mc_len > sb->sb_hiwat)) {
1177 			SOCK_RECVBUF_UNLOCK(so2);
1178 			error = EMSGSIZE;
1179 			goto out4;
1180 		}
1181 		if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1182 			SOCK_RECVBUF_UNLOCK(so2);
1183 			error = EPIPE;
1184 			goto out4;
1185 		}
1186 		/*
1187 		 * Wait on the peer socket receive buffer until we have enough
1188 		 * space to put at least control.  The data is a stream and can
1189 		 * be put partially, but control is really a datagram.
1190 		 */
1191 		space = uipc_stream_sbspace(sb);
1192 		if (space < sb->sb_lowat || space < cmc.mc_len) {
1193 			if (nonblock) {
1194 				if (aio)
1195 					sb->uxst_flags |= UXST_PEER_AIO;
1196 				SOCK_RECVBUF_UNLOCK(so2);
1197 				if (aio) {
1198 					SOCK_SENDBUF_LOCK(so);
1199 					so->so_snd.sb_ccc =
1200 					    so->so_snd.sb_hiwat - space;
1201 					SOCK_SENDBUF_UNLOCK(so);
1202 				}
1203 				error = EWOULDBLOCK;
1204 				goto out4;
1205 			}
1206 			if ((error = sbwait(so2, SO_RCV)) != 0) {
1207 				SOCK_RECVBUF_UNLOCK(so2);
1208 				goto out4;
1209 			} else
1210 				goto restart;
1211 		}
1212 		MPASS(space >= cmc.mc_len);
1213 		space -= cmc.mc_len;
1214 		if (space == 0) {
1215 			/* There is space only to send control. */
1216 			MPASS(!STAILQ_EMPTY(&cmc.mc_q));
1217 			mcnext = mc;
1218 			mc = MCHAIN_INITIALIZER(&mc);
1219 		} else if (space < mc.mc_len) {
1220 			/* Not enough space. */
1221 			if (__predict_false(mc_split(&mc, &mcnext, space,
1222 			    M_NOWAIT) == ENOMEM)) {
1223 				/*
1224 				 * If allocation failed use M_WAITOK and merge
1225 				 * the chain back.  Next time mc_split() will
1226 				 * easily split at the same place.  Only if we
1227 				 * race with setsockopt(SO_RCVBUF) shrinking
1228 				 * sb_hiwat can this happen more than once.
1229 				 */
1230 				SOCK_RECVBUF_UNLOCK(so2);
1231 				(void)mc_split(&mc, &mcnext, space, M_WAITOK);
1232 				mc_concat(&mc, &mcnext);
1233 				SOCK_RECVBUF_LOCK(so2);
1234 				goto restart;
1235 			}
1236 			MPASS(mc.mc_len == space);
1237 		}
1238 		if (!STAILQ_EMPTY(&cmc.mc_q)) {
1239 			STAILQ_CONCAT(&sb->uxst_mbq, &cmc.mc_q);
1240 			sb->sb_ctl += cmc.mc_len;
1241 			sb->sb_mbcnt += cmc.mc_mlen;
1242 			cmc.mc_len = 0;
1243 		}
1244 		sent += mc.mc_len;
1245 		if (sb->uxst_fnrdy == NULL)
1246 			sb->sb_acc += mc.mc_len;
1247 		sb->sb_ccc += mc.mc_len;
1248 		sb->sb_mbcnt += mc.mc_mlen;
1249 		STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
1250 		UIPC_STREAM_SBCHECK(sb);
1251 		space = uipc_stream_sbspace(sb);
1252 		sorwakeup_locked(so2);
1253 		if (!STAILQ_EMPTY(&mcnext.mc_q)) {
1254 			/*
1255 			 * Such assignment is unsafe in general, but it is
1256 			 * safe with !STAILQ_EMPTY(&mcnext.mc_q).  In C++ we
1257 			 * could reload = for STAILQs :)
1258 			 */
1259 			mc = mcnext;
1260 		} else if (uio != NULL && uio->uio_resid > 0) {
1261 			/*
1262 			 * Copyin sum of peer's receive buffer space and our
1263 			 * sb_hiwat, which is our virtual send buffer size.
1264 			 * See comment above unpst_sendspace declaration.
1265 			 * We are reading sb_hiwat locklessly, cause a) we
1266 			 * don't care about an application that does send(2)
1267 			 * and setsockopt(2) racing internally, and for an
1268 			 * application that does this in sequence we will see
1269 			 * the correct value cause sbsetopt() uses buffer lock
1270 			 * and we also have already acquired it at least once.
1271 			 */
1272 			error = mc_uiotomc(&mc, uio, space +
1273 			    atomic_load_int(&so->so_snd.sb_hiwat), 0, M_WAITOK,
1274 			    eor ? M_EOR : 0);
1275 			if (__predict_false(error))
1276 				goto out4;
1277 		} else
1278 			mc = MCHAIN_INITIALIZER(&mc);
1279 	}
1280 
1281 	MPASS(STAILQ_EMPTY(&mc.mc_q));
1282 
1283 	td->td_ru.ru_msgsnd++;
1284 out4:
1285 	sorele(so2);
1286 out3:
1287 	SOCK_IO_SEND_UNLOCK(so);
1288 out2:
1289 	if (aio) {
1290 		freeuio(uio);
1291 		uioadvance(uio0, sent);
1292 	} else if (uio != NULL)
1293 		uio->uio_resid = resid - sent;
1294 	if (!mc_empty(&cmc))
1295 		unp_scan(mc_first(&cmc), unp_freerights);
1296 out:
1297 	mc_freem(&mc);
1298 	mc_freem(&cmc);
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * Wakeup a writer, used by recv(2) and shutdown(2).
1305  *
1306  * @param so	Points to a connected stream socket with receive buffer locked
1307  *
1308  * In a blocking mode peer is sleeping on our receive buffer, and we need just
1309  * wakeup(9) on it.  But to wake up various event engines, we need to reach
1310  * over to peer's selinfo.  This can be safely done as the socket buffer
1311  * receive lock is protecting us from the peer going away.
1312  */
1313 static void
uipc_wakeup_writer(struct socket * so)1314 uipc_wakeup_writer(struct socket *so)
1315 {
1316 	struct sockbuf *sb = &so->so_rcv;
1317 	struct selinfo *sel;
1318 
1319 	SOCK_RECVBUF_LOCK_ASSERT(so);
1320 	MPASS(sb->uxst_peer != NULL);
1321 
1322 	sel = &sb->uxst_peer->so_wrsel;
1323 
1324 	if (sb->uxst_flags & UXST_PEER_SEL) {
1325 		selwakeuppri(sel, PSOCK);
1326 		/*
1327 		 * XXXGL: sowakeup() does SEL_WAITING() without locks.
1328 		 */
1329 		if (!SEL_WAITING(sel))
1330 			sb->uxst_flags &= ~UXST_PEER_SEL;
1331 	}
1332 	if (sb->sb_flags & SB_WAIT) {
1333 		sb->sb_flags &= ~SB_WAIT;
1334 		wakeup(&sb->sb_acc);
1335 	}
1336 	KNOTE_LOCKED(&sel->si_note, 0);
1337 	SOCK_RECVBUF_UNLOCK(so);
1338 }
1339 
1340 static void
uipc_cantrcvmore(struct socket * so)1341 uipc_cantrcvmore(struct socket *so)
1342 {
1343 
1344 	SOCK_RECVBUF_LOCK(so);
1345 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
1346 	selwakeuppri(&so->so_rdsel, PSOCK);
1347 	KNOTE_LOCKED(&so->so_rdsel.si_note, 0);
1348 	if (so->so_rcv.uxst_peer != NULL)
1349 		uipc_wakeup_writer(so);
1350 	else
1351 		SOCK_RECVBUF_UNLOCK(so);
1352 }
1353 
1354 static int
uipc_soreceive_stream_or_seqpacket(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)1355 uipc_soreceive_stream_or_seqpacket(struct socket *so, struct sockaddr **psa,
1356     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1357 {
1358 	struct sockbuf *sb = &so->so_rcv;
1359 	struct mbuf *control, *m, *first, *last, *next;
1360 	u_int ctl, space, datalen, mbcnt, lastlen;
1361 	int error, flags;
1362 	bool nonblock, waitall, peek;
1363 
1364 	MPASS(mp0 == NULL);
1365 
1366 	if (psa != NULL)
1367 		*psa = NULL;
1368 	if (controlp != NULL)
1369 		*controlp = NULL;
1370 
1371 	flags = flagsp != NULL ? *flagsp : 0;
1372 	nonblock = (so->so_state & SS_NBIO) ||
1373 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1374 	peek = flags & MSG_PEEK;
1375 	waitall = (flags & MSG_WAITALL) && !peek;
1376 
1377 	/*
1378 	 * This check may fail only on a socket that never went through
1379 	 * connect(2).  We can check this locklessly, cause: a) for a new born
1380 	 * socket we don't care about applications that may race internally
1381 	 * between connect(2) and recv(2), and b) for a dying socket if we
1382 	 * miss update by unp_sosidisconnected(), we would still get the check
1383 	 * correct.  For dying socket we would observe SBS_CANTRCVMORE later.
1384 	 */
1385 	if (__predict_false((atomic_load_short(&so->so_state) &
1386 	    (SS_ISCONNECTED|SS_ISDISCONNECTED)) == 0))
1387 		return (ENOTCONN);
1388 
1389 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1390 	if (__predict_false(error))
1391 		return (error);
1392 
1393 restart:
1394 	SOCK_RECVBUF_LOCK(so);
1395 	UIPC_STREAM_SBCHECK(sb);
1396 	while (sb->sb_acc < sb->sb_lowat &&
1397 	    (sb->sb_ctl == 0 || controlp == NULL)) {
1398 		if (so->so_error) {
1399 			error = so->so_error;
1400 			if (!peek)
1401 				so->so_error = 0;
1402 			SOCK_RECVBUF_UNLOCK(so);
1403 			SOCK_IO_RECV_UNLOCK(so);
1404 			return (error);
1405 		}
1406 		if (sb->sb_state & SBS_CANTRCVMORE) {
1407 			SOCK_RECVBUF_UNLOCK(so);
1408 			SOCK_IO_RECV_UNLOCK(so);
1409 			return (0);
1410 		}
1411 		if (nonblock) {
1412 			SOCK_RECVBUF_UNLOCK(so);
1413 			SOCK_IO_RECV_UNLOCK(so);
1414 			return (EWOULDBLOCK);
1415 		}
1416 		error = sbwait(so, SO_RCV);
1417 		if (error) {
1418 			SOCK_RECVBUF_UNLOCK(so);
1419 			SOCK_IO_RECV_UNLOCK(so);
1420 			return (error);
1421 		}
1422 	}
1423 
1424 	MPASS(STAILQ_FIRST(&sb->uxst_mbq));
1425 	MPASS(sb->sb_acc > 0 || sb->sb_ctl > 0);
1426 
1427 	mbcnt = 0;
1428 	ctl = 0;
1429 	first = STAILQ_FIRST(&sb->uxst_mbq);
1430 	if (first->m_type == MT_CONTROL) {
1431 		control = first;
1432 		STAILQ_FOREACH_FROM(first, &sb->uxst_mbq, m_stailq) {
1433 			if (first->m_type != MT_CONTROL)
1434 				break;
1435 			ctl += first->m_len;
1436 			mbcnt += MSIZE;
1437 			if (first->m_flags & M_EXT)
1438 				mbcnt += first->m_ext.ext_size;
1439 		}
1440 	} else
1441 		control = NULL;
1442 
1443 	/*
1444 	 * Find split point for the next copyout.  On exit from the loop:
1445 	 * last == NULL - socket to be flushed
1446 	 * last != NULL
1447 	 *   lastlen > last->m_len - uio to be filled, last to be adjusted
1448 	 *   lastlen == 0          - MT_CONTROL, M_EOR or M_NOTREADY encountered
1449 	 */
1450 	space = uio->uio_resid;
1451 	datalen = 0;
1452 	for (m = first, last = sb->uxst_fnrdy, lastlen = 0;
1453 	     m != sb->uxst_fnrdy;
1454 	     m = STAILQ_NEXT(m, m_stailq)) {
1455 		if (m->m_type != MT_DATA) {
1456 			last = m;
1457 			lastlen = 0;
1458 			break;
1459 		}
1460 		if (space >= m->m_len) {
1461 			space -= m->m_len;
1462 			datalen += m->m_len;
1463 			mbcnt += MSIZE;
1464 			if (m->m_flags & M_EXT)
1465 				mbcnt += m->m_ext.ext_size;
1466 			if (m->m_flags & M_EOR) {
1467 				last = STAILQ_NEXT(m, m_stailq);
1468 				lastlen = 0;
1469 				flags |= MSG_EOR;
1470 				break;
1471 			}
1472 		} else {
1473 			datalen += space;
1474 			last = m;
1475 			lastlen = space;
1476 			break;
1477 		}
1478 	}
1479 
1480 	UIPC_STREAM_SBCHECK(sb);
1481 	if (!peek) {
1482 		if (last == NULL)
1483 			STAILQ_INIT(&sb->uxst_mbq);
1484 		else {
1485 			STAILQ_FIRST(&sb->uxst_mbq) = last;
1486 			MPASS(last->m_len > lastlen);
1487 			last->m_len -= lastlen;
1488 			last->m_data += lastlen;
1489 		}
1490 		MPASS(sb->sb_acc >= datalen);
1491 		sb->sb_acc -= datalen;
1492 		sb->sb_ccc -= datalen;
1493 		MPASS(sb->sb_ctl >= ctl);
1494 		sb->sb_ctl -= ctl;
1495 		MPASS(sb->sb_mbcnt >= mbcnt);
1496 		sb->sb_mbcnt -= mbcnt;
1497 		UIPC_STREAM_SBCHECK(sb);
1498 		if (__predict_true(sb->uxst_peer != NULL)) {
1499 			struct unpcb *unp2;
1500 			bool aio;
1501 
1502 			if ((aio = sb->uxst_flags & UXST_PEER_AIO))
1503 				sb->uxst_flags &= ~UXST_PEER_AIO;
1504 
1505 			uipc_wakeup_writer(so);
1506 			/*
1507 			 * XXXGL: need to go through uipc_lock_peer() after
1508 			 * the receive buffer lock dropped, it was protecting
1509 			 * us from unp_soisdisconnected().  The aio workarounds
1510 			 * should be refactored to the aio(4) side.
1511 			 */
1512 			if (aio && uipc_lock_peer(so, &unp2) == 0) {
1513 				struct socket *so2 = unp2->unp_socket;
1514 
1515 				SOCK_SENDBUF_LOCK(so2);
1516 				so2->so_snd.sb_ccc -= datalen;
1517 				sowakeup_aio(so2, SO_SND);
1518 				SOCK_SENDBUF_UNLOCK(so2);
1519 				UNP_PCB_UNLOCK(unp2);
1520 			}
1521 		} else
1522 			SOCK_RECVBUF_UNLOCK(so);
1523 	} else
1524 		SOCK_RECVBUF_UNLOCK(so);
1525 
1526 	while (control != NULL && control->m_type == MT_CONTROL) {
1527 		if (!peek) {
1528 			/*
1529 			 * unp_externalize() failure must abort entire read(2).
1530 			 * Such failure should also free the problematic
1531 			 * control, but link back the remaining data to the head
1532 			 * of the buffer, so that socket is not left in a state
1533 			 * where it can't progress forward with reading.
1534 			 * Probability of such a failure is really low, so it
1535 			 * is fine that we need to perform pretty complex
1536 			 * operation here to reconstruct the buffer.
1537 			 */
1538 			error = unp_externalize(control, controlp, flags);
1539 			control = m_free(control);
1540 			if (__predict_false(error && control != NULL)) {
1541 				struct mchain cmc;
1542 
1543 				mc_init_m(&cmc, control);
1544 
1545 				SOCK_RECVBUF_LOCK(so);
1546 				MPASS(!(sb->sb_state & SBS_CANTRCVMORE));
1547 
1548 				if (__predict_false(cmc.mc_len + sb->sb_ccc +
1549 				    sb->sb_ctl > sb->sb_hiwat)) {
1550 					/*
1551 					 * Too bad, while unp_externalize() was
1552 					 * failing, the other side had filled
1553 					 * the buffer and we can't prepend data
1554 					 * back. Losing data!
1555 					 */
1556 					SOCK_RECVBUF_UNLOCK(so);
1557 					SOCK_IO_RECV_UNLOCK(so);
1558 					unp_scan(mc_first(&cmc),
1559 					    unp_freerights);
1560 					mc_freem(&cmc);
1561 					return (error);
1562 				}
1563 
1564 				UIPC_STREAM_SBCHECK(sb);
1565 				/* XXXGL: STAILQ_PREPEND */
1566 				STAILQ_CONCAT(&cmc.mc_q, &sb->uxst_mbq);
1567 				STAILQ_SWAP(&cmc.mc_q, &sb->uxst_mbq, mbuf);
1568 
1569 				sb->sb_ctl = sb->sb_acc = sb->sb_ccc =
1570 				    sb->sb_mbcnt = 0;
1571 				STAILQ_FOREACH(m, &sb->uxst_mbq, m_stailq) {
1572 					if (m->m_type == MT_DATA) {
1573 						sb->sb_acc += m->m_len;
1574 						sb->sb_ccc += m->m_len;
1575 					} else {
1576 						sb->sb_ctl += m->m_len;
1577 					}
1578 					sb->sb_mbcnt += MSIZE;
1579 					if (m->m_flags & M_EXT)
1580 						sb->sb_mbcnt +=
1581 						    m->m_ext.ext_size;
1582 				}
1583 				UIPC_STREAM_SBCHECK(sb);
1584 				SOCK_RECVBUF_UNLOCK(so);
1585 				SOCK_IO_RECV_UNLOCK(so);
1586 				return (error);
1587 			}
1588 			if (controlp != NULL) {
1589 				while (*controlp != NULL)
1590 					controlp = &(*controlp)->m_next;
1591 			}
1592 		} else {
1593 			/*
1594 			 * XXXGL
1595 			 *
1596 			 * In MSG_PEEK case control is not externalized.  This
1597 			 * means we are leaking some kernel pointers to the
1598 			 * userland.  They are useless to a law-abiding
1599 			 * application, but may be useful to a malware.  This
1600 			 * is what the historical implementation in the
1601 			 * soreceive_generic() did. To be improved?
1602 			 */
1603 			if (controlp != NULL) {
1604 				*controlp = m_copym(control, 0, control->m_len,
1605 				    M_WAITOK);
1606 				controlp = &(*controlp)->m_next;
1607 			}
1608 			control = STAILQ_NEXT(control, m_stailq);
1609 		}
1610 	}
1611 
1612 	for (m = first; m != last; m = next) {
1613 		next = STAILQ_NEXT(m, m_stailq);
1614 		error = uiomove(mtod(m, char *), m->m_len, uio);
1615 		if (__predict_false(error)) {
1616 			SOCK_IO_RECV_UNLOCK(so);
1617 			if (!peek)
1618 				for (; m != last; m = next) {
1619 					next = STAILQ_NEXT(m, m_stailq);
1620 					m_free(m);
1621 				}
1622 			return (error);
1623 		}
1624 		if (!peek)
1625 			m_free(m);
1626 	}
1627 	if (last != NULL && lastlen > 0) {
1628 		if (!peek) {
1629 			MPASS(!(m->m_flags & M_PKTHDR));
1630 			MPASS(last->m_data - M_START(last) >= lastlen);
1631 			error = uiomove(mtod(last, char *) - lastlen,
1632 			    lastlen, uio);
1633 		} else
1634 			error = uiomove(mtod(last, char *), lastlen, uio);
1635 		if (__predict_false(error)) {
1636 			SOCK_IO_RECV_UNLOCK(so);
1637 			return (error);
1638 		}
1639 	}
1640 	if (waitall && !(flags & MSG_EOR) && uio->uio_resid > 0)
1641 		goto restart;
1642 	SOCK_IO_RECV_UNLOCK(so);
1643 
1644 	if (flagsp != NULL)
1645 		*flagsp |= flags;
1646 
1647 	uio->uio_td->td_ru.ru_msgrcv++;
1648 
1649 	return (0);
1650 }
1651 
1652 static int
uipc_sopoll_stream_or_seqpacket(struct socket * so,int events,struct thread * td)1653 uipc_sopoll_stream_or_seqpacket(struct socket *so, int events,
1654     struct thread *td)
1655 {
1656 	struct unpcb *unp = sotounpcb(so);
1657 	int revents;
1658 
1659 	UNP_PCB_LOCK(unp);
1660 	if (SOLISTENING(so)) {
1661 		/* The above check is safe, since conversion to listening uses
1662 		 * both protocol and socket lock.
1663 		 */
1664 		SOCK_LOCK(so);
1665 		if (!(events & (POLLIN | POLLRDNORM)))
1666 			revents = 0;
1667 		else if (!TAILQ_EMPTY(&so->sol_comp))
1668 			revents = events & (POLLIN | POLLRDNORM);
1669 		else if (so->so_error)
1670 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
1671 		else {
1672 			selrecord(td, &so->so_rdsel);
1673 			revents = 0;
1674 		}
1675 		SOCK_UNLOCK(so);
1676 	} else {
1677 		if (so->so_state & SS_ISDISCONNECTED)
1678 			revents = POLLHUP;
1679 		else
1680 			revents = 0;
1681 		if (events & (POLLIN | POLLRDNORM | POLLRDHUP)) {
1682 			SOCK_RECVBUF_LOCK(so);
1683 			if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat ||
1684 			    so->so_error || so->so_rerror)
1685 				revents |= events & (POLLIN | POLLRDNORM);
1686 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1687 				revents |= events &
1688 				    (POLLIN | POLLRDNORM | POLLRDHUP);
1689 			if (!(revents & (POLLIN | POLLRDNORM | POLLRDHUP))) {
1690 				selrecord(td, &so->so_rdsel);
1691 				so->so_rcv.sb_flags |= SB_SEL;
1692 			}
1693 			SOCK_RECVBUF_UNLOCK(so);
1694 		}
1695 		if (events & (POLLOUT | POLLWRNORM)) {
1696 			struct socket *so2 = so->so_rcv.uxst_peer;
1697 
1698 			if (so2 != NULL) {
1699 				struct sockbuf *sb = &so2->so_rcv;
1700 
1701 				SOCK_RECVBUF_LOCK(so2);
1702 				if (uipc_stream_sbspace(sb) >= sb->sb_lowat)
1703 					revents |= events &
1704 					    (POLLOUT | POLLWRNORM);
1705 				if (sb->sb_state & SBS_CANTRCVMORE)
1706 					revents |= POLLHUP;
1707 				if (!(revents & (POLLOUT | POLLWRNORM))) {
1708 					so2->so_rcv.uxst_flags |= UXST_PEER_SEL;
1709 					selrecord(td, &so->so_wrsel);
1710 				}
1711 				SOCK_RECVBUF_UNLOCK(so2);
1712 			} else
1713 				selrecord(td, &so->so_wrsel);
1714 		}
1715 	}
1716 	UNP_PCB_UNLOCK(unp);
1717 	return (revents);
1718 }
1719 
1720 static void
uipc_wrknl_lock(void * arg)1721 uipc_wrknl_lock(void *arg)
1722 {
1723 	struct socket *so = arg;
1724 	struct unpcb *unp = sotounpcb(so);
1725 
1726 retry:
1727 	if (SOLISTENING(so)) {
1728 		SOLISTEN_LOCK(so);
1729 	} else {
1730 		UNP_PCB_LOCK(unp);
1731 		if (__predict_false(SOLISTENING(so))) {
1732 			UNP_PCB_UNLOCK(unp);
1733 			goto retry;
1734 		}
1735 		if (so->so_rcv.uxst_peer != NULL)
1736 			SOCK_RECVBUF_LOCK(so->so_rcv.uxst_peer);
1737 	}
1738 }
1739 
1740 static void
uipc_wrknl_unlock(void * arg)1741 uipc_wrknl_unlock(void *arg)
1742 {
1743 	struct socket *so = arg;
1744 	struct unpcb *unp = sotounpcb(so);
1745 
1746 	if (SOLISTENING(so))
1747 		SOLISTEN_UNLOCK(so);
1748 	else {
1749 		if (so->so_rcv.uxst_peer != NULL)
1750 			SOCK_RECVBUF_UNLOCK(so->so_rcv.uxst_peer);
1751 		UNP_PCB_UNLOCK(unp);
1752 	}
1753 }
1754 
1755 static void
uipc_wrknl_assert_lock(void * arg,int what)1756 uipc_wrknl_assert_lock(void *arg, int what)
1757 {
1758 	struct socket *so = arg;
1759 
1760 	if (SOLISTENING(so)) {
1761 		if (what == LA_LOCKED)
1762 			SOLISTEN_LOCK_ASSERT(so);
1763 		else
1764 			SOLISTEN_UNLOCK_ASSERT(so);
1765 	} else {
1766 		/*
1767 		 * The pr_soreceive method will put a note without owning the
1768 		 * unp lock, so we can't assert it here.  But we can safely
1769 		 * dereference uxst_peer pointer, since receive buffer lock
1770 		 * is assumed to be held here.
1771 		 */
1772 		if (what == LA_LOCKED && so->so_rcv.uxst_peer != NULL)
1773 			SOCK_RECVBUF_LOCK_ASSERT(so->so_rcv.uxst_peer);
1774 	}
1775 }
1776 
1777 static void
uipc_filt_sowdetach(struct knote * kn)1778 uipc_filt_sowdetach(struct knote *kn)
1779 {
1780 	struct socket *so = kn->kn_fp->f_data;
1781 
1782 	uipc_wrknl_lock(so);
1783 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
1784 	uipc_wrknl_unlock(so);
1785 }
1786 
1787 static int
uipc_filt_sowrite(struct knote * kn,long hint)1788 uipc_filt_sowrite(struct knote *kn, long hint)
1789 {
1790 	struct socket *so = kn->kn_fp->f_data, *so2;
1791 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1792 
1793 	if (SOLISTENING(so))
1794 		return (0);
1795 
1796 	if (unp2 == NULL) {
1797 		if (so->so_state & SS_ISDISCONNECTED) {
1798 			kn->kn_flags |= EV_EOF;
1799 			kn->kn_fflags = so->so_error;
1800 			return (1);
1801 		} else
1802 			return (0);
1803 	}
1804 
1805 	so2 = unp2->unp_socket;
1806 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1807 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1808 
1809 	if (so2->so_rcv.sb_state & SBS_CANTRCVMORE) {
1810 		/*
1811 		 * XXXGL: maybe kn->kn_flags |= EV_EOF ?
1812 		 */
1813 		return (1);
1814 	} else if (kn->kn_sfflags & NOTE_LOWAT)
1815 		return (kn->kn_data >= kn->kn_sdata);
1816 	else
1817 		return (kn->kn_data >= so2->so_rcv.sb_lowat);
1818 }
1819 
1820 static int
uipc_filt_soempty(struct knote * kn,long hint)1821 uipc_filt_soempty(struct knote *kn, long hint)
1822 {
1823 	struct socket *so = kn->kn_fp->f_data, *so2;
1824 	struct unpcb *unp = sotounpcb(so), *unp2 = unp->unp_conn;
1825 
1826 	if (SOLISTENING(so) || unp2 == NULL)
1827 		return (1);
1828 
1829 	so2 = unp2->unp_socket;
1830 	SOCK_RECVBUF_LOCK_ASSERT(so2);
1831 	kn->kn_data = uipc_stream_sbspace(&so2->so_rcv);
1832 
1833 	return (kn->kn_data == 0 ? 1 : 0);
1834 }
1835 
1836 static const struct filterops uipc_write_filtops = {
1837 	.f_isfd = 1,
1838 	.f_detach = uipc_filt_sowdetach,
1839 	.f_event = uipc_filt_sowrite,
1840 };
1841 static const struct filterops uipc_empty_filtops = {
1842 	.f_isfd = 1,
1843 	.f_detach = uipc_filt_sowdetach,
1844 	.f_event = uipc_filt_soempty,
1845 };
1846 
1847 static int
uipc_kqfilter_stream_or_seqpacket(struct socket * so,struct knote * kn)1848 uipc_kqfilter_stream_or_seqpacket(struct socket *so, struct knote *kn)
1849 {
1850 	struct unpcb *unp = sotounpcb(so);
1851 	struct knlist *knl;
1852 
1853 	switch (kn->kn_filter) {
1854 	case EVFILT_READ:
1855 		return (sokqfilter_generic(so, kn));
1856 	case EVFILT_WRITE:
1857 		kn->kn_fop = &uipc_write_filtops;
1858 		break;
1859 	case EVFILT_EMPTY:
1860 		kn->kn_fop = &uipc_empty_filtops;
1861 		break;
1862 	default:
1863 		return (EINVAL);
1864 	}
1865 
1866 	knl = &so->so_wrsel.si_note;
1867 	UNP_PCB_LOCK(unp);
1868 	if (SOLISTENING(so)) {
1869 		SOLISTEN_LOCK(so);
1870 		knlist_add(knl, kn, 1);
1871 		SOLISTEN_UNLOCK(so);
1872 	} else {
1873 		struct socket *so2 = so->so_rcv.uxst_peer;
1874 
1875 		if (so2 != NULL)
1876 			SOCK_RECVBUF_LOCK(so2);
1877 		knlist_add(knl, kn, 1);
1878 		if (so2 != NULL)
1879 			SOCK_RECVBUF_UNLOCK(so2);
1880 	}
1881 	UNP_PCB_UNLOCK(unp);
1882 	return (0);
1883 }
1884 
1885 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1886 static inline bool
uipc_dgram_sbspace(struct sockbuf * sb,u_int cc,u_int mbcnt)1887 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1888 {
1889 	u_int bleft, mleft;
1890 
1891 	/*
1892 	 * Negative space may happen if send(2) is followed by
1893 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1894 	 */
1895 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1896 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1897 		return (false);
1898 
1899 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1900 		return (false);
1901 
1902 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1903 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1904 
1905 	return (bleft >= cc && mleft >= mbcnt);
1906 }
1907 
1908 /*
1909  * PF_UNIX/SOCK_DGRAM send
1910  *
1911  * Allocate a record consisting of 3 mbufs in the sequence of
1912  * from -> control -> data and append it to the socket buffer.
1913  *
1914  * The first mbuf carries sender's name and is a pkthdr that stores
1915  * overall length of datagram, its memory consumption and control length.
1916  */
1917 #define	ctllen	PH_loc.thirtytwo[1]
1918 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1919     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1920 static int
uipc_sosend_dgram(struct socket * so,struct sockaddr * addr,struct uio * uio,struct mbuf * m,struct mbuf * c,int flags,struct thread * td)1921 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1922     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1923 {
1924 	struct unpcb *unp, *unp2;
1925 	const struct sockaddr *from;
1926 	struct socket *so2;
1927 	struct sockbuf *sb;
1928 	struct mchain cmc = MCHAIN_INITIALIZER(&cmc);
1929 	struct mbuf *f;
1930 	u_int cc, ctl, mbcnt;
1931 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1932 	int error;
1933 
1934 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1935 
1936 	error = 0;
1937 	f = NULL;
1938 
1939 	if (__predict_false(flags & MSG_OOB)) {
1940 		error = EOPNOTSUPP;
1941 		goto out;
1942 	}
1943 	if (m == NULL) {
1944 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1945 			error = EMSGSIZE;
1946 			goto out;
1947 		}
1948 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1949 		if (__predict_false(m == NULL)) {
1950 			error = EFAULT;
1951 			goto out;
1952 		}
1953 		f = m_gethdr(M_WAITOK, MT_SONAME);
1954 		cc = m->m_pkthdr.len;
1955 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1956 		if (c != NULL && (error = unp_internalize(c, &cmc, td)))
1957 			goto out;
1958 	} else {
1959 		struct mchain mc;
1960 
1961 		uipc_reset_kernel_mbuf(m, &mc);
1962 		cc = mc.mc_len;
1963 		mbcnt = mc.mc_mlen;
1964 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1965 			error = EMSGSIZE;
1966 			goto out;
1967 		}
1968 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1969 			error = ENOBUFS;
1970 			goto out;
1971 		}
1972 	}
1973 
1974 	unp = sotounpcb(so);
1975 	MPASS(unp);
1976 
1977 	/*
1978 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1979 	 * and avoid this lock, which is not only extraneous, but also being
1980 	 * released, thus still leaving possibility for a race.  We can easily
1981 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1982 	 * is more difficult to invent something to handle so_error.
1983 	 */
1984 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1985 	if (error)
1986 		goto out2;
1987 	SOCK_SENDBUF_LOCK(so);
1988 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1989 		SOCK_SENDBUF_UNLOCK(so);
1990 		error = EPIPE;
1991 		goto out3;
1992 	}
1993 	if (so->so_error != 0) {
1994 		error = so->so_error;
1995 		so->so_error = 0;
1996 		SOCK_SENDBUF_UNLOCK(so);
1997 		goto out3;
1998 	}
1999 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
2000 		SOCK_SENDBUF_UNLOCK(so);
2001 		error = EDESTADDRREQ;
2002 		goto out3;
2003 	}
2004 	SOCK_SENDBUF_UNLOCK(so);
2005 
2006 	if (addr != NULL) {
2007 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
2008 			goto out3;
2009 		UNP_PCB_LOCK_ASSERT(unp);
2010 		unp2 = unp->unp_conn;
2011 		UNP_PCB_LOCK_ASSERT(unp2);
2012 	} else {
2013 		UNP_PCB_LOCK(unp);
2014 		unp2 = unp_pcb_lock_peer(unp);
2015 		if (unp2 == NULL) {
2016 			UNP_PCB_UNLOCK(unp);
2017 			error = ENOTCONN;
2018 			goto out3;
2019 		}
2020 	}
2021 
2022 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
2023 		unp_addsockcred(td, &cmc, unp2->unp_flags);
2024 	if (unp->unp_addr != NULL)
2025 		from = (struct sockaddr *)unp->unp_addr;
2026 	else
2027 		from = &sun_noname;
2028 	f->m_len = from->sa_len;
2029 	MPASS(from->sa_len <= MLEN);
2030 	bcopy(from, mtod(f, void *), from->sa_len);
2031 
2032 	/*
2033 	 * Concatenate mbufs: from -> control -> data.
2034 	 * Save overall cc and mbcnt in "from" mbuf.
2035 	 */
2036 	if (!STAILQ_EMPTY(&cmc.mc_q)) {
2037 		f->m_next = mc_first(&cmc);
2038 		mc_last(&cmc)->m_next = m;
2039 		/* XXXGL: This is dirty as well as rollback after ENOBUFS. */
2040 		STAILQ_INIT(&cmc.mc_q);
2041 	} else
2042 		f->m_next = m;
2043 	m = NULL;
2044 	ctl = f->m_len + cmc.mc_len;
2045 	mbcnt += cmc.mc_mlen;
2046 #ifdef INVARIANTS
2047 	dcc = dctl = dmbcnt = 0;
2048 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
2049 		if (mb->m_type == MT_DATA)
2050 			dcc += mb->m_len;
2051 		else
2052 			dctl += mb->m_len;
2053 		dmbcnt += MSIZE;
2054 		if (mb->m_flags & M_EXT)
2055 			dmbcnt += mb->m_ext.ext_size;
2056 	}
2057 	MPASS(dcc == cc);
2058 	MPASS(dctl == ctl);
2059 	MPASS(dmbcnt == mbcnt);
2060 #endif
2061 	f->m_pkthdr.len = cc + ctl;
2062 	f->m_pkthdr.memlen = mbcnt;
2063 	f->m_pkthdr.ctllen = ctl;
2064 
2065 	/*
2066 	 * Destination socket buffer selection.
2067 	 *
2068 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
2069 	 * destination address is supplied, create a temporary connection for
2070 	 * the run time of the function (see call to unp_connectat() above and
2071 	 * to unp_disconnect() below).  We distinguish them by condition of
2072 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
2073 	 * that condition, since, again, through the run time of this code we
2074 	 * are always connected.  For such "unconnected" sends, the destination
2075 	 * buffer would be the receive buffer of destination socket so2.
2076 	 *
2077 	 * For connected sends, data lands on the send buffer of the sender's
2078 	 * socket "so".  Then, if we just added the very first datagram
2079 	 * on this send buffer, we need to add the send buffer on to the
2080 	 * receiving socket's buffer list.  We put ourselves on top of the
2081 	 * list.  Such logic gives infrequent senders priority over frequent
2082 	 * senders.
2083 	 *
2084 	 * Note on byte count management. As long as event methods kevent(2),
2085 	 * select(2) are not protocol specific (yet), we need to maintain
2086 	 * meaningful values on the receive buffer.  So, the receive buffer
2087 	 * would accumulate counters from all connected buffers potentially
2088 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
2089 	 */
2090 	so2 = unp2->unp_socket;
2091 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
2092 	SOCK_RECVBUF_LOCK(so2);
2093 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
2094 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
2095 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
2096 			    uxdg_clist);
2097 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
2098 		sb->uxdg_cc += cc + ctl;
2099 		sb->uxdg_ctl += ctl;
2100 		sb->uxdg_mbcnt += mbcnt;
2101 		so2->so_rcv.sb_acc += cc + ctl;
2102 		so2->so_rcv.sb_ccc += cc + ctl;
2103 		so2->so_rcv.sb_ctl += ctl;
2104 		so2->so_rcv.sb_mbcnt += mbcnt;
2105 		sorwakeup_locked(so2);
2106 		f = NULL;
2107 	} else {
2108 		soroverflow_locked(so2);
2109 		error = ENOBUFS;
2110 		if (f->m_next->m_type == MT_CONTROL) {
2111 			STAILQ_FIRST(&cmc.mc_q) = f->m_next;
2112 			f->m_next = NULL;
2113 		}
2114 	}
2115 
2116 	if (addr != NULL)
2117 		unp_disconnect(unp, unp2);
2118 	else
2119 		unp_pcb_unlock_pair(unp, unp2);
2120 
2121 	td->td_ru.ru_msgsnd++;
2122 
2123 out3:
2124 	SOCK_IO_SEND_UNLOCK(so);
2125 out2:
2126 	if (!mc_empty(&cmc))
2127 		unp_scan(mc_first(&cmc), unp_freerights);
2128 out:
2129 	if (f)
2130 		m_freem(f);
2131 	mc_freem(&cmc);
2132 	if (m)
2133 		m_freem(m);
2134 
2135 	return (error);
2136 }
2137 
2138 /*
2139  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
2140  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
2141  * and needs to be linked onto uxdg_peeked of receive socket buffer.
2142  */
2143 static int
uipc_peek_dgram(struct socket * so,struct mbuf * m,struct sockaddr ** psa,struct uio * uio,struct mbuf ** controlp,int * flagsp)2144 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
2145     struct uio *uio, struct mbuf **controlp, int *flagsp)
2146 {
2147 	ssize_t len = 0;
2148 	int error;
2149 
2150 	so->so_rcv.uxdg_peeked = m;
2151 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
2152 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
2153 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
2154 	SOCK_RECVBUF_UNLOCK(so);
2155 
2156 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2157 	if (psa != NULL)
2158 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2159 
2160 	m = m->m_next;
2161 	KASSERT(m, ("%s: no data or control after soname", __func__));
2162 
2163 	/*
2164 	 * With MSG_PEEK the control isn't executed, just copied.
2165 	 */
2166 	while (m != NULL && m->m_type == MT_CONTROL) {
2167 		if (controlp != NULL) {
2168 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
2169 			controlp = &(*controlp)->m_next;
2170 		}
2171 		m = m->m_next;
2172 	}
2173 	KASSERT(m == NULL || m->m_type == MT_DATA,
2174 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2175 	while (m != NULL && uio->uio_resid > 0) {
2176 		len = uio->uio_resid;
2177 		if (len > m->m_len)
2178 			len = m->m_len;
2179 		error = uiomove(mtod(m, char *), (int)len, uio);
2180 		if (error) {
2181 			SOCK_IO_RECV_UNLOCK(so);
2182 			return (error);
2183 		}
2184 		if (len == m->m_len)
2185 			m = m->m_next;
2186 	}
2187 	SOCK_IO_RECV_UNLOCK(so);
2188 
2189 	if (flagsp != NULL) {
2190 		if (m != NULL) {
2191 			if (*flagsp & MSG_TRUNC) {
2192 				/* Report real length of the packet */
2193 				uio->uio_resid -= m_length(m, NULL) - len;
2194 			}
2195 			*flagsp |= MSG_TRUNC;
2196 		} else
2197 			*flagsp &= ~MSG_TRUNC;
2198 	}
2199 
2200 	return (0);
2201 }
2202 
2203 /*
2204  * PF_UNIX/SOCK_DGRAM receive
2205  */
2206 static int
uipc_soreceive_dgram(struct socket * so,struct sockaddr ** psa,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp)2207 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2208     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2209 {
2210 	struct sockbuf *sb = NULL;
2211 	struct mbuf *m;
2212 	int flags, error;
2213 	ssize_t len = 0;
2214 	bool nonblock;
2215 
2216 	MPASS(mp0 == NULL);
2217 
2218 	if (psa != NULL)
2219 		*psa = NULL;
2220 	if (controlp != NULL)
2221 		*controlp = NULL;
2222 
2223 	flags = flagsp != NULL ? *flagsp : 0;
2224 	nonblock = (so->so_state & SS_NBIO) ||
2225 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
2226 
2227 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2228 	if (__predict_false(error))
2229 		return (error);
2230 
2231 	/*
2232 	 * Loop blocking while waiting for a datagram.  Prioritize connected
2233 	 * peers over unconnected sends.  Set sb to selected socket buffer
2234 	 * containing an mbuf on exit from the wait loop.  A datagram that
2235 	 * had already been peeked at has top priority.
2236 	 */
2237 	SOCK_RECVBUF_LOCK(so);
2238 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
2239 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
2240 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
2241 		if (so->so_error) {
2242 			error = so->so_error;
2243 			if (!(flags & MSG_PEEK))
2244 				so->so_error = 0;
2245 			SOCK_RECVBUF_UNLOCK(so);
2246 			SOCK_IO_RECV_UNLOCK(so);
2247 			return (error);
2248 		}
2249 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2250 		    uio->uio_resid == 0) {
2251 			SOCK_RECVBUF_UNLOCK(so);
2252 			SOCK_IO_RECV_UNLOCK(so);
2253 			return (0);
2254 		}
2255 		if (nonblock) {
2256 			SOCK_RECVBUF_UNLOCK(so);
2257 			SOCK_IO_RECV_UNLOCK(so);
2258 			return (EWOULDBLOCK);
2259 		}
2260 		error = sbwait(so, SO_RCV);
2261 		if (error) {
2262 			SOCK_RECVBUF_UNLOCK(so);
2263 			SOCK_IO_RECV_UNLOCK(so);
2264 			return (error);
2265 		}
2266 	}
2267 
2268 	if (sb == NULL)
2269 		sb = &so->so_rcv;
2270 	else if (m == NULL)
2271 		m = STAILQ_FIRST(&sb->uxdg_mb);
2272 	else
2273 		MPASS(m == so->so_rcv.uxdg_peeked);
2274 
2275 	MPASS(sb->uxdg_cc > 0);
2276 	M_ASSERTPKTHDR(m);
2277 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
2278 
2279 	if (uio->uio_td)
2280 		uio->uio_td->td_ru.ru_msgrcv++;
2281 
2282 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
2283 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
2284 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
2285 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
2286 	} else
2287 		so->so_rcv.uxdg_peeked = NULL;
2288 
2289 	sb->uxdg_cc -= m->m_pkthdr.len;
2290 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
2291 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
2292 
2293 	if (__predict_false(flags & MSG_PEEK))
2294 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
2295 
2296 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
2297 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
2298 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
2299 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
2300 	SOCK_RECVBUF_UNLOCK(so);
2301 
2302 	if (psa != NULL)
2303 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
2304 	m = m_free(m);
2305 	KASSERT(m, ("%s: no data or control after soname", __func__));
2306 
2307 	/*
2308 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2309 	 * queue.
2310 	 *
2311 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2312 	 * in the first mbuf chain on the socket buffer.  We call into the
2313 	 * unp_externalize() to perform externalization (or freeing if
2314 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
2315 	 * without MT_DATA mbufs.
2316 	 */
2317 	while (m != NULL && m->m_type == MT_CONTROL) {
2318 		error = unp_externalize(m, controlp, flags);
2319 		m = m_free(m);
2320 		if (error != 0) {
2321 			SOCK_IO_RECV_UNLOCK(so);
2322 			unp_scan(m, unp_freerights);
2323 			m_freem(m);
2324 			return (error);
2325 		}
2326 		if (controlp != NULL) {
2327 			while (*controlp != NULL)
2328 				controlp = &(*controlp)->m_next;
2329 		}
2330 	}
2331 	KASSERT(m == NULL || m->m_type == MT_DATA,
2332 	    ("%s: not MT_DATA mbuf %p", __func__, m));
2333 	while (m != NULL && uio->uio_resid > 0) {
2334 		len = uio->uio_resid;
2335 		if (len > m->m_len)
2336 			len = m->m_len;
2337 		error = uiomove(mtod(m, char *), (int)len, uio);
2338 		if (error) {
2339 			SOCK_IO_RECV_UNLOCK(so);
2340 			m_freem(m);
2341 			return (error);
2342 		}
2343 		if (len == m->m_len)
2344 			m = m_free(m);
2345 		else {
2346 			m->m_data += len;
2347 			m->m_len -= len;
2348 		}
2349 	}
2350 	SOCK_IO_RECV_UNLOCK(so);
2351 
2352 	if (m != NULL) {
2353 		if (flagsp != NULL) {
2354 			if (flags & MSG_TRUNC) {
2355 				/* Report real length of the packet */
2356 				uio->uio_resid -= m_length(m, NULL);
2357 			}
2358 			*flagsp |= MSG_TRUNC;
2359 		}
2360 		m_freem(m);
2361 	} else if (flagsp != NULL)
2362 		*flagsp &= ~MSG_TRUNC;
2363 
2364 	return (0);
2365 }
2366 
2367 static int
uipc_sendfile_wait(struct socket * so,off_t need,int * space)2368 uipc_sendfile_wait(struct socket *so, off_t need, int *space)
2369 {
2370 	struct unpcb *unp2;
2371 	struct socket *so2;
2372 	struct sockbuf *sb;
2373 	bool nonblock, sockref;
2374 	int error;
2375 
2376 	MPASS(so->so_type == SOCK_STREAM);
2377 	MPASS(need > 0);
2378 	MPASS(space != NULL);
2379 
2380 	nonblock = so->so_state & SS_NBIO;
2381 	sockref = false;
2382 
2383 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0))
2384 		return (ENOTCONN);
2385 
2386 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2387 		return (error);
2388 
2389 	so2 = unp2->unp_socket;
2390 	sb = &so2->so_rcv;
2391 	SOCK_RECVBUF_LOCK(so2);
2392 	UNP_PCB_UNLOCK(unp2);
2393 	while ((*space = uipc_stream_sbspace(sb)) < need &&
2394 	    (*space < so->so_snd.sb_hiwat / 2)) {
2395 		UIPC_STREAM_SBCHECK(sb);
2396 		if (nonblock) {
2397 			SOCK_RECVBUF_UNLOCK(so2);
2398 			return (EAGAIN);
2399 		}
2400 		if (!sockref)
2401 			soref(so2);
2402 		error = sbwait(so2, SO_RCV);
2403 		if (error == 0 &&
2404 		    __predict_false(sb->sb_state & SBS_CANTRCVMORE))
2405 			error = EPIPE;
2406 		if (error) {
2407 			SOCK_RECVBUF_UNLOCK(so2);
2408 			sorele(so2);
2409 			return (error);
2410 		}
2411 	}
2412 	UIPC_STREAM_SBCHECK(sb);
2413 	SOCK_RECVBUF_UNLOCK(so2);
2414 	if (sockref)
2415 		sorele(so2);
2416 
2417 	return (0);
2418 }
2419 
2420 /*
2421  * Although this is a pr_send method, for unix(4) it is called only via
2422  * sendfile(2) path.  This means we can be sure that mbufs are clear of
2423  * any extra flags and don't require any conditioning.
2424  */
2425 static int
uipc_sendfile(struct socket * so,int flags,struct mbuf * m,struct sockaddr * from,struct mbuf * control,struct thread * td)2426 uipc_sendfile(struct socket *so, int flags, struct mbuf *m,
2427     struct sockaddr *from, struct mbuf *control, struct thread *td)
2428 {
2429 	struct mchain mc;
2430 	struct unpcb *unp2;
2431 	struct socket *so2;
2432 	struct sockbuf *sb;
2433 	bool notready, wakeup;
2434 	int error;
2435 
2436 	MPASS(so->so_type == SOCK_STREAM);
2437 	MPASS(from == NULL && control == NULL);
2438 	KASSERT(!(m->m_flags & M_EXTPG),
2439 	    ("unix(4): TLS sendfile(2) not supported"));
2440 
2441 	notready = flags & PRUS_NOTREADY;
2442 
2443 	if (__predict_false((so->so_state & SS_ISCONNECTED) == 0)) {
2444 		error = ENOTCONN;
2445 		goto out;
2446 	}
2447 
2448 	if (__predict_false((error = uipc_lock_peer(so, &unp2)) != 0))
2449 		goto out;
2450 
2451 	mc_init_m(&mc, m);
2452 
2453 	so2 = unp2->unp_socket;
2454 	sb = &so2->so_rcv;
2455 	SOCK_RECVBUF_LOCK(so2);
2456 	UNP_PCB_UNLOCK(unp2);
2457 	UIPC_STREAM_SBCHECK(sb);
2458 	sb->sb_ccc += mc.mc_len;
2459 	sb->sb_mbcnt += mc.mc_mlen;
2460 	if (sb->uxst_fnrdy == NULL) {
2461 		if (notready) {
2462 			wakeup = false;
2463 			STAILQ_FOREACH(m, &mc.mc_q, m_stailq) {
2464 				if (m->m_flags & M_NOTREADY) {
2465 					sb->uxst_fnrdy = m;
2466 					break;
2467 				} else {
2468 					sb->sb_acc += m->m_len;
2469 					wakeup = true;
2470 				}
2471 			}
2472 		} else {
2473 			wakeup = true;
2474 			sb->sb_acc += mc.mc_len;
2475 		}
2476 	} else {
2477 		wakeup = false;
2478 	}
2479 	STAILQ_CONCAT(&sb->uxst_mbq, &mc.mc_q);
2480 	UIPC_STREAM_SBCHECK(sb);
2481 	if (wakeup)
2482 		sorwakeup_locked(so2);
2483 	else
2484 		SOCK_RECVBUF_UNLOCK(so2);
2485 
2486 	return (0);
2487 out:
2488 	/*
2489 	 * In case of not ready data, uipc_ready() is responsible
2490 	 * for freeing memory.
2491 	 */
2492 	if (m != NULL && !notready)
2493 		m_freem(m);
2494 
2495 	return (error);
2496 }
2497 
2498 static int
uipc_sbready(struct sockbuf * sb,struct mbuf * m,int count)2499 uipc_sbready(struct sockbuf *sb, struct mbuf *m, int count)
2500 {
2501 	bool blocker;
2502 
2503 	/* assert locked */
2504 
2505 	blocker = (sb->uxst_fnrdy == m);
2506 	STAILQ_FOREACH_FROM(m, &sb->uxst_mbq, m_stailq) {
2507 		if (count > 0) {
2508 			MPASS(m->m_flags & M_NOTREADY);
2509 			m->m_flags &= ~M_NOTREADY;
2510 			if (blocker)
2511 				sb->sb_acc += m->m_len;
2512 			count--;
2513 		} else if (m->m_flags & M_NOTREADY)
2514 			break;
2515 		else if (blocker)
2516 			sb->sb_acc += m->m_len;
2517 	}
2518 	if (blocker) {
2519 		sb->uxst_fnrdy = m;
2520 		return (0);
2521 	} else
2522 		return (EINPROGRESS);
2523 }
2524 
2525 static bool
uipc_ready_scan(struct socket * so,struct mbuf * m,int count,int * errorp)2526 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
2527 {
2528 	struct mbuf *mb;
2529 	struct sockbuf *sb;
2530 
2531 	SOCK_LOCK(so);
2532 	if (SOLISTENING(so)) {
2533 		SOCK_UNLOCK(so);
2534 		return (false);
2535 	}
2536 	mb = NULL;
2537 	sb = &so->so_rcv;
2538 	SOCK_RECVBUF_LOCK(so);
2539 	if (sb->uxst_fnrdy != NULL) {
2540 		STAILQ_FOREACH(mb, &sb->uxst_mbq, m_stailq) {
2541 			if (mb == m) {
2542 				*errorp = uipc_sbready(sb, m, count);
2543 				break;
2544 			}
2545 		}
2546 	}
2547 	SOCK_RECVBUF_UNLOCK(so);
2548 	SOCK_UNLOCK(so);
2549 	return (mb != NULL);
2550 }
2551 
2552 static int
uipc_ready(struct socket * so,struct mbuf * m,int count)2553 uipc_ready(struct socket *so, struct mbuf *m, int count)
2554 {
2555 	struct unpcb *unp, *unp2;
2556 	int error;
2557 
2558 	MPASS(so->so_type == SOCK_STREAM);
2559 
2560 	if (__predict_true(uipc_lock_peer(so, &unp2) == 0)) {
2561 		struct socket *so2;
2562 		struct sockbuf *sb;
2563 
2564 		so2 = unp2->unp_socket;
2565 		sb = &so2->so_rcv;
2566 		SOCK_RECVBUF_LOCK(so2);
2567 		UNP_PCB_UNLOCK(unp2);
2568 		UIPC_STREAM_SBCHECK(sb);
2569 		error = uipc_sbready(sb, m, count);
2570 		UIPC_STREAM_SBCHECK(sb);
2571 		if (error == 0)
2572 			sorwakeup_locked(so2);
2573 		else
2574 			SOCK_RECVBUF_UNLOCK(so2);
2575 	} else {
2576 		/*
2577 		 * The receiving socket has been disconnected, but may still
2578 		 * be valid.  In this case, the not-ready mbufs are still
2579 		 * present in its socket buffer, so perform an exhaustive
2580 		 * search before giving up and freeing the mbufs.
2581 		 */
2582 		UNP_LINK_RLOCK();
2583 		LIST_FOREACH(unp, &unp_shead, unp_link) {
2584 			if (uipc_ready_scan(unp->unp_socket, m, count, &error))
2585 				break;
2586 		}
2587 		UNP_LINK_RUNLOCK();
2588 
2589 		if (unp == NULL) {
2590 			for (int i = 0; i < count; i++)
2591 				m = m_free(m);
2592 			return (ECONNRESET);
2593 		}
2594 	}
2595 	return (error);
2596 }
2597 
2598 static int
uipc_sense(struct socket * so,struct stat * sb)2599 uipc_sense(struct socket *so, struct stat *sb)
2600 {
2601 	struct unpcb *unp;
2602 
2603 	unp = sotounpcb(so);
2604 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
2605 
2606 	sb->st_blksize = so->so_snd.sb_hiwat;
2607 	sb->st_dev = NODEV;
2608 	sb->st_ino = unp->unp_ino;
2609 	return (0);
2610 }
2611 
2612 static int
uipc_shutdown(struct socket * so,enum shutdown_how how)2613 uipc_shutdown(struct socket *so, enum shutdown_how how)
2614 {
2615 	struct unpcb *unp = sotounpcb(so);
2616 	int error;
2617 
2618 	SOCK_LOCK(so);
2619 	if (SOLISTENING(so)) {
2620 		if (how != SHUT_WR) {
2621 			so->so_error = ECONNABORTED;
2622 			solisten_wakeup(so);    /* unlocks so */
2623 		} else
2624 			SOCK_UNLOCK(so);
2625 		return (ENOTCONN);
2626 	} else if ((so->so_state &
2627 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2628 		/*
2629 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
2630 		 * invoked on a datagram sockets, however historically we would
2631 		 * actually tear socket down.  This is known to be leveraged by
2632 		 * some applications to unblock process waiting in recv(2) by
2633 		 * other process that it shares that socket with.  Try to meet
2634 		 * both backward-compatibility and POSIX requirements by forcing
2635 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
2636 		 *
2637 		 * XXXGL: it remains unknown what applications expect this
2638 		 * behavior and is this isolated to unix/dgram or inet/dgram or
2639 		 * both.  See: D10351, D3039.
2640 		 */
2641 		error = ENOTCONN;
2642 		if (so->so_type != SOCK_DGRAM) {
2643 			SOCK_UNLOCK(so);
2644 			return (error);
2645 		}
2646 	} else
2647 		error = 0;
2648 	SOCK_UNLOCK(so);
2649 
2650 	switch (how) {
2651 	case SHUT_RD:
2652 		if (so->so_type == SOCK_DGRAM)
2653 			socantrcvmore(so);
2654 		else
2655 			uipc_cantrcvmore(so);
2656 		unp_dispose(so);
2657 		break;
2658 	case SHUT_RDWR:
2659 		if (so->so_type == SOCK_DGRAM)
2660 			socantrcvmore(so);
2661 		else
2662 			uipc_cantrcvmore(so);
2663 		unp_dispose(so);
2664 		/* FALLTHROUGH */
2665 	case SHUT_WR:
2666 		if (so->so_type == SOCK_DGRAM) {
2667 			socantsendmore(so);
2668 		} else {
2669 			UNP_PCB_LOCK(unp);
2670 			if (unp->unp_conn != NULL)
2671 				uipc_cantrcvmore(unp->unp_conn->unp_socket);
2672 			UNP_PCB_UNLOCK(unp);
2673 		}
2674 	}
2675 	wakeup(&so->so_timeo);
2676 
2677 	return (error);
2678 }
2679 
2680 static int
uipc_sockaddr(struct socket * so,struct sockaddr * ret)2681 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
2682 {
2683 	struct unpcb *unp;
2684 	const struct sockaddr *sa;
2685 
2686 	unp = sotounpcb(so);
2687 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
2688 
2689 	UNP_PCB_LOCK(unp);
2690 	if (unp->unp_addr != NULL)
2691 		sa = (struct sockaddr *) unp->unp_addr;
2692 	else
2693 		sa = &sun_noname;
2694 	bcopy(sa, ret, sa->sa_len);
2695 	UNP_PCB_UNLOCK(unp);
2696 	return (0);
2697 }
2698 
2699 static int
uipc_ctloutput(struct socket * so,struct sockopt * sopt)2700 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
2701 {
2702 	struct unpcb *unp;
2703 	struct xucred xu;
2704 	int error, optval;
2705 
2706 	if (sopt->sopt_level != SOL_LOCAL)
2707 		return (EINVAL);
2708 
2709 	unp = sotounpcb(so);
2710 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
2711 	error = 0;
2712 	switch (sopt->sopt_dir) {
2713 	case SOPT_GET:
2714 		switch (sopt->sopt_name) {
2715 		case LOCAL_PEERCRED:
2716 			UNP_PCB_LOCK(unp);
2717 			if (unp->unp_flags & UNP_HAVEPC)
2718 				xu = unp->unp_peercred;
2719 			else {
2720 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2721 					error = ENOTCONN;
2722 				else
2723 					error = EINVAL;
2724 			}
2725 			UNP_PCB_UNLOCK(unp);
2726 			if (error == 0)
2727 				error = sooptcopyout(sopt, &xu, sizeof(xu));
2728 			break;
2729 
2730 		case LOCAL_CREDS:
2731 			/* Unlocked read. */
2732 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
2733 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2734 			break;
2735 
2736 		case LOCAL_CREDS_PERSISTENT:
2737 			/* Unlocked read. */
2738 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
2739 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2740 			break;
2741 
2742 		default:
2743 			error = EOPNOTSUPP;
2744 			break;
2745 		}
2746 		break;
2747 
2748 	case SOPT_SET:
2749 		switch (sopt->sopt_name) {
2750 		case LOCAL_CREDS:
2751 		case LOCAL_CREDS_PERSISTENT:
2752 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2753 					    sizeof(optval));
2754 			if (error)
2755 				break;
2756 
2757 #define	OPTSET(bit, exclusive) do {					\
2758 	UNP_PCB_LOCK(unp);						\
2759 	if (optval) {							\
2760 		if ((unp->unp_flags & (exclusive)) != 0) {		\
2761 			UNP_PCB_UNLOCK(unp);				\
2762 			error = EINVAL;					\
2763 			break;						\
2764 		}							\
2765 		unp->unp_flags |= (bit);				\
2766 	} else								\
2767 		unp->unp_flags &= ~(bit);				\
2768 	UNP_PCB_UNLOCK(unp);						\
2769 } while (0)
2770 
2771 			switch (sopt->sopt_name) {
2772 			case LOCAL_CREDS:
2773 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
2774 				break;
2775 
2776 			case LOCAL_CREDS_PERSISTENT:
2777 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
2778 				break;
2779 
2780 			default:
2781 				break;
2782 			}
2783 			break;
2784 #undef	OPTSET
2785 		default:
2786 			error = ENOPROTOOPT;
2787 			break;
2788 		}
2789 		break;
2790 
2791 	default:
2792 		error = EOPNOTSUPP;
2793 		break;
2794 	}
2795 	return (error);
2796 }
2797 
2798 static int
unp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)2799 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
2800 {
2801 
2802 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
2803 }
2804 
2805 static int
unp_connectat(int fd,struct socket * so,struct sockaddr * nam,struct thread * td,bool return_locked)2806 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
2807     struct thread *td, bool return_locked)
2808 {
2809 	struct mtx *vplock;
2810 	struct sockaddr_un *soun;
2811 	struct vnode *vp;
2812 	struct socket *so2;
2813 	struct unpcb *unp, *unp2, *unp3;
2814 	struct nameidata nd;
2815 	char buf[SOCK_MAXADDRLEN];
2816 	struct sockaddr *sa;
2817 	cap_rights_t rights;
2818 	int error, len;
2819 	bool connreq;
2820 
2821 	CURVNET_ASSERT_SET();
2822 
2823 	if (nam->sa_family != AF_UNIX)
2824 		return (EAFNOSUPPORT);
2825 	if (nam->sa_len > sizeof(struct sockaddr_un))
2826 		return (EINVAL);
2827 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
2828 	if (len <= 0)
2829 		return (EINVAL);
2830 	soun = (struct sockaddr_un *)nam;
2831 	bcopy(soun->sun_path, buf, len);
2832 	buf[len] = 0;
2833 
2834 	error = 0;
2835 	unp = sotounpcb(so);
2836 	UNP_PCB_LOCK(unp);
2837 	for (;;) {
2838 		/*
2839 		 * Wait for connection state to stabilize.  If a connection
2840 		 * already exists, give up.  For datagram sockets, which permit
2841 		 * multiple consecutive connect(2) calls, upper layers are
2842 		 * responsible for disconnecting in advance of a subsequent
2843 		 * connect(2), but this is not synchronized with PCB connection
2844 		 * state.
2845 		 *
2846 		 * Also make sure that no threads are currently attempting to
2847 		 * lock the peer socket, to ensure that unp_conn cannot
2848 		 * transition between two valid sockets while locks are dropped.
2849 		 */
2850 		if (SOLISTENING(so))
2851 			error = EOPNOTSUPP;
2852 		else if (unp->unp_conn != NULL)
2853 			error = EISCONN;
2854 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
2855 			error = EALREADY;
2856 		}
2857 		if (error != 0) {
2858 			UNP_PCB_UNLOCK(unp);
2859 			return (error);
2860 		}
2861 		if (unp->unp_pairbusy > 0) {
2862 			unp->unp_flags |= UNP_WAITING;
2863 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
2864 			continue;
2865 		}
2866 		break;
2867 	}
2868 	unp->unp_flags |= UNP_CONNECTING;
2869 	UNP_PCB_UNLOCK(unp);
2870 
2871 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
2872 	if (connreq)
2873 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
2874 	else
2875 		sa = NULL;
2876 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
2877 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
2878 	error = namei(&nd);
2879 	if (error)
2880 		vp = NULL;
2881 	else
2882 		vp = nd.ni_vp;
2883 	ASSERT_VOP_LOCKED(vp, "unp_connect");
2884 	if (error)
2885 		goto bad;
2886 	NDFREE_PNBUF(&nd);
2887 
2888 	if (vp->v_type != VSOCK) {
2889 		error = ENOTSOCK;
2890 		goto bad;
2891 	}
2892 #ifdef MAC
2893 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
2894 	if (error)
2895 		goto bad;
2896 #endif
2897 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
2898 	if (error)
2899 		goto bad;
2900 
2901 	unp = sotounpcb(so);
2902 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
2903 
2904 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
2905 	mtx_lock(vplock);
2906 	VOP_UNP_CONNECT(vp, &unp2);
2907 	if (unp2 == NULL) {
2908 		error = ECONNREFUSED;
2909 		goto bad2;
2910 	}
2911 	so2 = unp2->unp_socket;
2912 	if (so->so_type != so2->so_type) {
2913 		error = EPROTOTYPE;
2914 		goto bad2;
2915 	}
2916 	if (connreq) {
2917 		if (SOLISTENING(so2))
2918 			so2 = solisten_clone(so2);
2919 		else
2920 			so2 = NULL;
2921 		if (so2 == NULL) {
2922 			error = ECONNREFUSED;
2923 			goto bad2;
2924 		}
2925 		if ((error = uipc_attach(so2, 0, NULL)) != 0) {
2926 			sodealloc(so2);
2927 			goto bad2;
2928 		}
2929 		unp3 = sotounpcb(so2);
2930 		unp_pcb_lock_pair(unp2, unp3);
2931 		if (unp2->unp_addr != NULL) {
2932 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
2933 			unp3->unp_addr = (struct sockaddr_un *) sa;
2934 			sa = NULL;
2935 		}
2936 
2937 		unp_copy_peercred(td, unp3, unp, unp2);
2938 
2939 		UNP_PCB_UNLOCK(unp2);
2940 		unp2 = unp3;
2941 
2942 		/*
2943 		 * It is safe to block on the PCB lock here since unp2 is
2944 		 * nascent and cannot be connected to any other sockets.
2945 		 */
2946 		UNP_PCB_LOCK(unp);
2947 #ifdef MAC
2948 		mac_socketpeer_set_from_socket(so, so2);
2949 		mac_socketpeer_set_from_socket(so2, so);
2950 #endif
2951 	} else {
2952 		unp_pcb_lock_pair(unp, unp2);
2953 	}
2954 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
2955 	    sotounpcb(so2) == unp2,
2956 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
2957 	unp_connect2(so, so2, connreq);
2958 	if (connreq)
2959 		(void)solisten_enqueue(so2, SS_ISCONNECTED);
2960 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2961 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2962 	unp->unp_flags &= ~UNP_CONNECTING;
2963 	if (!return_locked)
2964 		unp_pcb_unlock_pair(unp, unp2);
2965 bad2:
2966 	mtx_unlock(vplock);
2967 bad:
2968 	if (vp != NULL) {
2969 		/*
2970 		 * If we are returning locked (called via uipc_sosend_dgram()),
2971 		 * we need to be sure that vput() won't sleep.  This is
2972 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2973 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2974 		 */
2975 		MPASS(!(return_locked && connreq));
2976 		vput(vp);
2977 	}
2978 	free(sa, M_SONAME);
2979 	if (__predict_false(error)) {
2980 		UNP_PCB_LOCK(unp);
2981 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2982 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2983 		unp->unp_flags &= ~UNP_CONNECTING;
2984 		UNP_PCB_UNLOCK(unp);
2985 	}
2986 	return (error);
2987 }
2988 
2989 /*
2990  * Set socket peer credentials at connection time.
2991  *
2992  * The client's PCB credentials are copied from its process structure.  The
2993  * server's PCB credentials are copied from the socket on which it called
2994  * listen(2).  uipc_listen cached that process's credentials at the time.
2995  */
2996 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)2997 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2998     struct unpcb *server_unp, struct unpcb *listen_unp)
2999 {
3000 	cru2xt(td, &client_unp->unp_peercred);
3001 	client_unp->unp_flags |= UNP_HAVEPC;
3002 
3003 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
3004 	    sizeof(server_unp->unp_peercred));
3005 	server_unp->unp_flags |= UNP_HAVEPC;
3006 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
3007 }
3008 
3009 /*
3010  * unix/stream & unix/seqpacket version of soisconnected().
3011  *
3012  * The crucial thing we are doing here is setting up the uxst_peer linkage,
3013  * holding unp and receive buffer locks of the both sockets.  The disconnect
3014  * procedure does the same.  This gives as a safe way to access the peer in the
3015  * send(2) and recv(2) during the socket lifetime.
3016  *
3017  * The less important thing is event notification of the fact that a socket is
3018  * now connected.  It is unusual for a software to put a socket into event
3019  * mechanism before connect(2), but is supposed to be supported.  Note that
3020  * there can not be any sleeping I/O on the socket, yet, only presence in the
3021  * select/poll/kevent.
3022  *
3023  * This function can be called via two call paths:
3024  * 1) socketpair(2) - in this case socket has not been yet reported to userland
3025  *    and just can't have any event notifications mechanisms set up.  The
3026  *    'wakeup' boolean is always false.
3027  * 2) connect(2) of existing socket to a recent clone of a listener:
3028  *   2.1) Socket that connect(2)s will have 'wakeup' true.  An application
3029  *        could have already put it into event mechanism, is it shall be
3030  *        reported as readable and as writable.
3031  *   2.2) Socket that was just cloned with solisten_clone().  Same as 1).
3032  */
3033 static void
unp_soisconnected(struct socket * so,bool wakeup)3034 unp_soisconnected(struct socket *so, bool wakeup)
3035 {
3036 	struct socket *so2 = sotounpcb(so)->unp_conn->unp_socket;
3037 	struct sockbuf *sb;
3038 
3039 	SOCK_LOCK_ASSERT(so);
3040 	UNP_PCB_LOCK_ASSERT(sotounpcb(so));
3041 	UNP_PCB_LOCK_ASSERT(sotounpcb(so2));
3042 	SOCK_RECVBUF_LOCK_ASSERT(so);
3043 	SOCK_RECVBUF_LOCK_ASSERT(so2);
3044 
3045 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3046 	MPASS((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
3047 	    SS_ISDISCONNECTING)) == 0);
3048 	MPASS(so->so_qstate == SQ_NONE);
3049 
3050 	so->so_state &= ~SS_ISDISCONNECTED;
3051 	so->so_state |= SS_ISCONNECTED;
3052 
3053 	sb = &so2->so_rcv;
3054 	sb->uxst_peer = so;
3055 
3056 	if (wakeup) {
3057 		KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
3058 		sb = &so->so_rcv;
3059 		selwakeuppri(sb->sb_sel, PSOCK);
3060 		SOCK_SENDBUF_LOCK_ASSERT(so);
3061 		sb = &so->so_snd;
3062 		selwakeuppri(sb->sb_sel, PSOCK);
3063 		SOCK_SENDBUF_UNLOCK(so);
3064 	}
3065 }
3066 
3067 static void
unp_connect2(struct socket * so,struct socket * so2,bool wakeup)3068 unp_connect2(struct socket *so, struct socket *so2, bool wakeup)
3069 {
3070 	struct unpcb *unp;
3071 	struct unpcb *unp2;
3072 
3073 	MPASS(so2->so_type == so->so_type);
3074 	unp = sotounpcb(so);
3075 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
3076 	unp2 = sotounpcb(so2);
3077 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
3078 
3079 	UNP_PCB_LOCK_ASSERT(unp);
3080 	UNP_PCB_LOCK_ASSERT(unp2);
3081 	KASSERT(unp->unp_conn == NULL,
3082 	    ("%s: socket %p is already connected", __func__, unp));
3083 
3084 	unp->unp_conn = unp2;
3085 	unp_pcb_hold(unp2);
3086 	unp_pcb_hold(unp);
3087 	switch (so->so_type) {
3088 	case SOCK_DGRAM:
3089 		UNP_REF_LIST_LOCK();
3090 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
3091 		UNP_REF_LIST_UNLOCK();
3092 		soisconnected(so);
3093 		break;
3094 
3095 	case SOCK_STREAM:
3096 	case SOCK_SEQPACKET:
3097 		KASSERT(unp2->unp_conn == NULL,
3098 		    ("%s: socket %p is already connected", __func__, unp2));
3099 		unp2->unp_conn = unp;
3100 		SOCK_LOCK(so);
3101 		SOCK_LOCK(so2);
3102 		if (wakeup)	/* Avoid LOR with receive buffer lock. */
3103 			SOCK_SENDBUF_LOCK(so);
3104 		SOCK_RECVBUF_LOCK(so);
3105 		SOCK_RECVBUF_LOCK(so2);
3106 		unp_soisconnected(so, wakeup);	/* Will unlock send buffer. */
3107 		unp_soisconnected(so2, false);
3108 		SOCK_RECVBUF_UNLOCK(so);
3109 		SOCK_RECVBUF_UNLOCK(so2);
3110 		SOCK_UNLOCK(so);
3111 		SOCK_UNLOCK(so2);
3112 		break;
3113 
3114 	default:
3115 		panic("unp_connect2");
3116 	}
3117 }
3118 
3119 static void
unp_soisdisconnected(struct socket * so)3120 unp_soisdisconnected(struct socket *so)
3121 {
3122 	SOCK_LOCK_ASSERT(so);
3123 	SOCK_RECVBUF_LOCK_ASSERT(so);
3124 	MPASS(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET);
3125 	MPASS(!SOLISTENING(so));
3126 	MPASS((so->so_state & (SS_ISCONNECTING | SS_ISDISCONNECTING |
3127 	    SS_ISDISCONNECTED)) == 0);
3128 	MPASS(so->so_state & SS_ISCONNECTED);
3129 
3130 	so->so_state |= SS_ISDISCONNECTED;
3131 	so->so_state &= ~SS_ISCONNECTED;
3132 	so->so_rcv.uxst_peer = NULL;
3133 	socantrcvmore_locked(so);
3134 }
3135 
3136 static void
unp_disconnect(struct unpcb * unp,struct unpcb * unp2)3137 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
3138 {
3139 	struct socket *so, *so2;
3140 	struct mbuf *m = NULL;
3141 #ifdef INVARIANTS
3142 	struct unpcb *unptmp;
3143 #endif
3144 
3145 	UNP_PCB_LOCK_ASSERT(unp);
3146 	UNP_PCB_LOCK_ASSERT(unp2);
3147 	KASSERT(unp->unp_conn == unp2,
3148 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
3149 
3150 	unp->unp_conn = NULL;
3151 	so = unp->unp_socket;
3152 	so2 = unp2->unp_socket;
3153 	switch (unp->unp_socket->so_type) {
3154 	case SOCK_DGRAM:
3155 		/*
3156 		 * Remove our send socket buffer from the peer's receive buffer.
3157 		 * Move the data to the receive buffer only if it is empty.
3158 		 * This is a protection against a scenario where a peer
3159 		 * connects, floods and disconnects, effectively blocking
3160 		 * sendto() from unconnected sockets.
3161 		 */
3162 		SOCK_RECVBUF_LOCK(so2);
3163 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
3164 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
3165 			    uxdg_clist);
3166 			if (__predict_true((so2->so_rcv.sb_state &
3167 			    SBS_CANTRCVMORE) == 0) &&
3168 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
3169 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
3170 				    &so->so_snd.uxdg_mb);
3171 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
3172 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
3173 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
3174 			} else {
3175 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
3176 				STAILQ_INIT(&so->so_snd.uxdg_mb);
3177 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
3178 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
3179 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
3180 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
3181 			}
3182 			/* Note: so may reconnect. */
3183 			so->so_snd.uxdg_cc = 0;
3184 			so->so_snd.uxdg_ctl = 0;
3185 			so->so_snd.uxdg_mbcnt = 0;
3186 		}
3187 		SOCK_RECVBUF_UNLOCK(so2);
3188 		UNP_REF_LIST_LOCK();
3189 #ifdef INVARIANTS
3190 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
3191 			if (unptmp == unp)
3192 				break;
3193 		}
3194 		KASSERT(unptmp != NULL,
3195 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
3196 #endif
3197 		LIST_REMOVE(unp, unp_reflink);
3198 		UNP_REF_LIST_UNLOCK();
3199 		if (so) {
3200 			SOCK_LOCK(so);
3201 			so->so_state &= ~SS_ISCONNECTED;
3202 			SOCK_UNLOCK(so);
3203 		}
3204 		break;
3205 
3206 	case SOCK_STREAM:
3207 	case SOCK_SEQPACKET:
3208 		SOCK_LOCK(so);
3209 		SOCK_LOCK(so2);
3210 		SOCK_RECVBUF_LOCK(so);
3211 		SOCK_RECVBUF_LOCK(so2);
3212 		unp_soisdisconnected(so);
3213 		MPASS(unp2->unp_conn == unp);
3214 		unp2->unp_conn = NULL;
3215 		unp_soisdisconnected(so2);
3216 		SOCK_UNLOCK(so);
3217 		SOCK_UNLOCK(so2);
3218 		break;
3219 	}
3220 
3221 	if (unp == unp2) {
3222 		unp_pcb_rele_notlast(unp);
3223 		if (!unp_pcb_rele(unp))
3224 			UNP_PCB_UNLOCK(unp);
3225 	} else {
3226 		if (!unp_pcb_rele(unp))
3227 			UNP_PCB_UNLOCK(unp);
3228 		if (!unp_pcb_rele(unp2))
3229 			UNP_PCB_UNLOCK(unp2);
3230 	}
3231 
3232 	if (m != NULL) {
3233 		unp_scan(m, unp_freerights);
3234 		m_freemp(m);
3235 	}
3236 }
3237 
3238 /*
3239  * unp_pcblist() walks the global list of struct unpcb's to generate a
3240  * pointer list, bumping the refcount on each unpcb.  It then copies them out
3241  * sequentially, validating the generation number on each to see if it has
3242  * been detached.  All of this is necessary because copyout() may sleep on
3243  * disk I/O.
3244  */
3245 static int
unp_pcblist(SYSCTL_HANDLER_ARGS)3246 unp_pcblist(SYSCTL_HANDLER_ARGS)
3247 {
3248 	struct unpcb *unp, **unp_list;
3249 	unp_gen_t gencnt;
3250 	struct xunpgen *xug;
3251 	struct unp_head *head;
3252 	struct xunpcb *xu;
3253 	u_int i;
3254 	int error, n;
3255 
3256 	switch ((intptr_t)arg1) {
3257 	case SOCK_STREAM:
3258 		head = &unp_shead;
3259 		break;
3260 
3261 	case SOCK_DGRAM:
3262 		head = &unp_dhead;
3263 		break;
3264 
3265 	case SOCK_SEQPACKET:
3266 		head = &unp_sphead;
3267 		break;
3268 
3269 	default:
3270 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
3271 	}
3272 
3273 	/*
3274 	 * The process of preparing the PCB list is too time-consuming and
3275 	 * resource-intensive to repeat twice on every request.
3276 	 */
3277 	if (req->oldptr == NULL) {
3278 		n = unp_count;
3279 		req->oldidx = 2 * (sizeof *xug)
3280 			+ (n + n/8) * sizeof(struct xunpcb);
3281 		return (0);
3282 	}
3283 
3284 	if (req->newptr != NULL)
3285 		return (EPERM);
3286 
3287 	/*
3288 	 * OK, now we're committed to doing something.
3289 	 */
3290 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
3291 	UNP_LINK_RLOCK();
3292 	gencnt = unp_gencnt;
3293 	n = unp_count;
3294 	UNP_LINK_RUNLOCK();
3295 
3296 	xug->xug_len = sizeof *xug;
3297 	xug->xug_count = n;
3298 	xug->xug_gen = gencnt;
3299 	xug->xug_sogen = so_gencnt;
3300 	error = SYSCTL_OUT(req, xug, sizeof *xug);
3301 	if (error) {
3302 		free(xug, M_TEMP);
3303 		return (error);
3304 	}
3305 
3306 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
3307 
3308 	UNP_LINK_RLOCK();
3309 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
3310 	     unp = LIST_NEXT(unp, unp_link)) {
3311 		UNP_PCB_LOCK(unp);
3312 		if (unp->unp_gencnt <= gencnt) {
3313 			if (cr_cansee(req->td->td_ucred,
3314 			    unp->unp_socket->so_cred)) {
3315 				UNP_PCB_UNLOCK(unp);
3316 				continue;
3317 			}
3318 			unp_list[i++] = unp;
3319 			unp_pcb_hold(unp);
3320 		}
3321 		UNP_PCB_UNLOCK(unp);
3322 	}
3323 	UNP_LINK_RUNLOCK();
3324 	n = i;			/* In case we lost some during malloc. */
3325 
3326 	error = 0;
3327 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
3328 	for (i = 0; i < n; i++) {
3329 		unp = unp_list[i];
3330 		UNP_PCB_LOCK(unp);
3331 		if (unp_pcb_rele(unp))
3332 			continue;
3333 
3334 		if (unp->unp_gencnt <= gencnt) {
3335 			xu->xu_len = sizeof *xu;
3336 			xu->xu_unpp = (uintptr_t)unp;
3337 			/*
3338 			 * XXX - need more locking here to protect against
3339 			 * connect/disconnect races for SMP.
3340 			 */
3341 			if (unp->unp_addr != NULL)
3342 				bcopy(unp->unp_addr, &xu->xu_addr,
3343 				      unp->unp_addr->sun_len);
3344 			else
3345 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
3346 			if (unp->unp_conn != NULL &&
3347 			    unp->unp_conn->unp_addr != NULL)
3348 				bcopy(unp->unp_conn->unp_addr,
3349 				      &xu->xu_caddr,
3350 				      unp->unp_conn->unp_addr->sun_len);
3351 			else
3352 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
3353 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
3354 			xu->unp_conn = (uintptr_t)unp->unp_conn;
3355 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
3356 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
3357 			xu->unp_gencnt = unp->unp_gencnt;
3358 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
3359 			UNP_PCB_UNLOCK(unp);
3360 			error = SYSCTL_OUT(req, xu, sizeof *xu);
3361 		} else {
3362 			UNP_PCB_UNLOCK(unp);
3363 		}
3364 	}
3365 	free(xu, M_TEMP);
3366 	if (!error) {
3367 		/*
3368 		 * Give the user an updated idea of our state.  If the
3369 		 * generation differs from what we told her before, she knows
3370 		 * that something happened while we were processing this
3371 		 * request, and it might be necessary to retry.
3372 		 */
3373 		xug->xug_gen = unp_gencnt;
3374 		xug->xug_sogen = so_gencnt;
3375 		xug->xug_count = unp_count;
3376 		error = SYSCTL_OUT(req, xug, sizeof *xug);
3377 	}
3378 	free(unp_list, M_TEMP);
3379 	free(xug, M_TEMP);
3380 	return (error);
3381 }
3382 
3383 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
3384     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3385     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
3386     "List of active local datagram sockets");
3387 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
3388     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3389     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
3390     "List of active local stream sockets");
3391 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
3392     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
3393     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
3394     "List of active local seqpacket sockets");
3395 
3396 static void
unp_drop(struct unpcb * unp)3397 unp_drop(struct unpcb *unp)
3398 {
3399 	struct socket *so;
3400 	struct unpcb *unp2;
3401 
3402 	/*
3403 	 * Regardless of whether the socket's peer dropped the connection
3404 	 * with this socket by aborting or disconnecting, POSIX requires
3405 	 * that ECONNRESET is returned on next connected send(2) in case of
3406 	 * a SOCK_DGRAM socket and EPIPE for SOCK_STREAM.
3407 	 */
3408 	UNP_PCB_LOCK(unp);
3409 	if ((so = unp->unp_socket) != NULL)
3410 		so->so_error =
3411 		    so->so_proto->pr_type == SOCK_DGRAM ? ECONNRESET : EPIPE;
3412 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
3413 		/* Last reference dropped in unp_disconnect(). */
3414 		unp_pcb_rele_notlast(unp);
3415 		unp_disconnect(unp, unp2);
3416 	} else if (!unp_pcb_rele(unp)) {
3417 		UNP_PCB_UNLOCK(unp);
3418 	}
3419 }
3420 
3421 static void
unp_freerights(struct filedescent ** fdep,int fdcount)3422 unp_freerights(struct filedescent **fdep, int fdcount)
3423 {
3424 	struct file *fp;
3425 	int i;
3426 
3427 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
3428 
3429 	for (i = 0; i < fdcount; i++) {
3430 		fp = fdep[i]->fde_file;
3431 		filecaps_free(&fdep[i]->fde_caps);
3432 		unp_discard(fp);
3433 	}
3434 	free(fdep[0], M_FILECAPS);
3435 }
3436 
3437 static bool
restrict_rights(struct file * fp,struct thread * td)3438 restrict_rights(struct file *fp, struct thread *td)
3439 {
3440 	struct prison *prison1, *prison2;
3441 
3442 	prison1 = fp->f_cred->cr_prison;
3443 	prison2 = td->td_ucred->cr_prison;
3444 	return (prison1 != prison2 && prison1->pr_root != prison2->pr_root &&
3445 	    prison2 != &prison0);
3446 }
3447 
3448 static int
unp_externalize(struct mbuf * control,struct mbuf ** controlp,int flags)3449 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
3450 {
3451 	struct thread *td = curthread;		/* XXX */
3452 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
3453 	int *fdp;
3454 	struct filedesc *fdesc = td->td_proc->p_fd;
3455 	struct filedescent **fdep;
3456 	void *data;
3457 	socklen_t clen = control->m_len, datalen;
3458 	int error, fdflags, newfds;
3459 	u_int newlen;
3460 
3461 	UNP_LINK_UNLOCK_ASSERT();
3462 
3463 	fdflags = ((flags & MSG_CMSG_CLOEXEC) ? O_CLOEXEC : 0) |
3464 	    ((flags & MSG_CMSG_CLOFORK) ? O_CLOFORK : 0);
3465 
3466 	error = 0;
3467 	if (controlp != NULL) /* controlp == NULL => free control messages */
3468 		*controlp = NULL;
3469 	while (cm != NULL) {
3470 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
3471 
3472 		data = CMSG_DATA(cm);
3473 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
3474 		if (cm->cmsg_level == SOL_SOCKET
3475 		    && cm->cmsg_type == SCM_RIGHTS) {
3476 			newfds = datalen / sizeof(*fdep);
3477 			if (newfds == 0)
3478 				goto next;
3479 			fdep = data;
3480 
3481 			/* If we're not outputting the descriptors free them. */
3482 			if (error || controlp == NULL) {
3483 				unp_freerights(fdep, newfds);
3484 				goto next;
3485 			}
3486 			FILEDESC_XLOCK(fdesc);
3487 
3488 			/*
3489 			 * Now change each pointer to an fd in the global
3490 			 * table to an integer that is the index to the local
3491 			 * fd table entry that we set up to point to the
3492 			 * global one we are transferring.
3493 			 */
3494 			newlen = newfds * sizeof(int);
3495 			*controlp = sbcreatecontrol(NULL, newlen,
3496 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
3497 
3498 			fdp = (int *)
3499 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
3500 			if ((error = fdallocn(td, 0, fdp, newfds))) {
3501 				FILEDESC_XUNLOCK(fdesc);
3502 				unp_freerights(fdep, newfds);
3503 				m_freem(*controlp);
3504 				*controlp = NULL;
3505 				goto next;
3506 			}
3507 			for (int i = 0; i < newfds; i++, fdp++) {
3508 				struct file *fp;
3509 
3510 				fp = fdep[i]->fde_file;
3511 				_finstall(fdesc, fp, *fdp, fdflags |
3512 				    (restrict_rights(fp, td) ?
3513 				    O_RESOLVE_BENEATH : 0), &fdep[i]->fde_caps);
3514 				unp_externalize_fp(fp);
3515 			}
3516 
3517 			/*
3518 			 * The new type indicates that the mbuf data refers to
3519 			 * kernel resources that may need to be released before
3520 			 * the mbuf is freed.
3521 			 */
3522 			m_chtype(*controlp, MT_EXTCONTROL);
3523 			FILEDESC_XUNLOCK(fdesc);
3524 			free(fdep[0], M_FILECAPS);
3525 		} else {
3526 			/* We can just copy anything else across. */
3527 			if (error || controlp == NULL)
3528 				goto next;
3529 			*controlp = sbcreatecontrol(NULL, datalen,
3530 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
3531 			bcopy(data,
3532 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
3533 			    datalen);
3534 		}
3535 		controlp = &(*controlp)->m_next;
3536 
3537 next:
3538 		if (CMSG_SPACE(datalen) < clen) {
3539 			clen -= CMSG_SPACE(datalen);
3540 			cm = (struct cmsghdr *)
3541 			    ((caddr_t)cm + CMSG_SPACE(datalen));
3542 		} else {
3543 			clen = 0;
3544 			cm = NULL;
3545 		}
3546 	}
3547 
3548 	return (error);
3549 }
3550 
3551 static void
unp_zone_change(void * tag)3552 unp_zone_change(void *tag)
3553 {
3554 
3555 	uma_zone_set_max(unp_zone, maxsockets);
3556 }
3557 
3558 #ifdef INVARIANTS
3559 static void
unp_zdtor(void * mem,int size __unused,void * arg __unused)3560 unp_zdtor(void *mem, int size __unused, void *arg __unused)
3561 {
3562 	struct unpcb *unp;
3563 
3564 	unp = mem;
3565 
3566 	KASSERT(LIST_EMPTY(&unp->unp_refs),
3567 	    ("%s: unpcb %p has lingering refs", __func__, unp));
3568 	KASSERT(unp->unp_socket == NULL,
3569 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
3570 	KASSERT(unp->unp_vnode == NULL,
3571 	    ("%s: unpcb %p has vnode references", __func__, unp));
3572 	KASSERT(unp->unp_conn == NULL,
3573 	    ("%s: unpcb %p is still connected", __func__, unp));
3574 	KASSERT(unp->unp_addr == NULL,
3575 	    ("%s: unpcb %p has leaked addr", __func__, unp));
3576 }
3577 #endif
3578 
3579 static void
unp_init(void * arg __unused)3580 unp_init(void *arg __unused)
3581 {
3582 	uma_dtor dtor;
3583 
3584 #ifdef INVARIANTS
3585 	dtor = unp_zdtor;
3586 #else
3587 	dtor = NULL;
3588 #endif
3589 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
3590 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
3591 	uma_zone_set_max(unp_zone, maxsockets);
3592 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
3593 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
3594 	    NULL, EVENTHANDLER_PRI_ANY);
3595 	LIST_INIT(&unp_dhead);
3596 	LIST_INIT(&unp_shead);
3597 	LIST_INIT(&unp_sphead);
3598 	SLIST_INIT(&unp_defers);
3599 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
3600 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
3601 	UNP_LINK_LOCK_INIT();
3602 	UNP_DEFERRED_LOCK_INIT();
3603 	unp_vp_mtxpool = mtx_pool_create("unp vp mtxpool", 32, MTX_DEF);
3604 }
3605 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
3606 
3607 static void
unp_internalize_cleanup_rights(struct mbuf * control)3608 unp_internalize_cleanup_rights(struct mbuf *control)
3609 {
3610 	struct cmsghdr *cp;
3611 	struct mbuf *m;
3612 	void *data;
3613 	socklen_t datalen;
3614 
3615 	for (m = control; m != NULL; m = m->m_next) {
3616 		cp = mtod(m, struct cmsghdr *);
3617 		if (cp->cmsg_level != SOL_SOCKET ||
3618 		    cp->cmsg_type != SCM_RIGHTS)
3619 			continue;
3620 		data = CMSG_DATA(cp);
3621 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
3622 		unp_freerights(data, datalen / sizeof(struct filedesc *));
3623 	}
3624 }
3625 
3626 static int
unp_internalize(struct mbuf * control,struct mchain * mc,struct thread * td)3627 unp_internalize(struct mbuf *control, struct mchain *mc, struct thread *td)
3628 {
3629 	struct proc *p;
3630 	struct filedesc *fdesc;
3631 	struct bintime *bt;
3632 	struct cmsghdr *cm;
3633 	struct cmsgcred *cmcred;
3634 	struct mbuf *m;
3635 	struct filedescent *fde, **fdep, *fdev;
3636 	struct file *fp;
3637 	struct timeval *tv;
3638 	struct timespec *ts;
3639 	void *data;
3640 	socklen_t clen, datalen;
3641 	int i, j, error, *fdp, oldfds;
3642 	u_int newlen;
3643 
3644 	MPASS(control->m_next == NULL); /* COMPAT_OLDSOCK may violate */
3645 	UNP_LINK_UNLOCK_ASSERT();
3646 
3647 	p = td->td_proc;
3648 	fdesc = p->p_fd;
3649 	error = 0;
3650 	*mc = MCHAIN_INITIALIZER(mc);
3651 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
3652 	    data = CMSG_DATA(cm);
3653 
3654 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
3655 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
3656 	    (char *)cm + cm->cmsg_len >= (char *)data;
3657 
3658 	    clen -= min(CMSG_SPACE(datalen), clen),
3659 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
3660 	    data = CMSG_DATA(cm)) {
3661 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
3662 		switch (cm->cmsg_type) {
3663 		case SCM_CREDS:
3664 			m = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS,
3665 			    SOL_SOCKET, M_WAITOK);
3666 			cmcred = (struct cmsgcred *)
3667 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3668 			cmcred->cmcred_pid = p->p_pid;
3669 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
3670 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
3671 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
3672 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
3673 			    CMGROUP_MAX);
3674 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
3675 				cmcred->cmcred_groups[i] =
3676 				    td->td_ucred->cr_groups[i];
3677 			break;
3678 
3679 		case SCM_RIGHTS:
3680 			oldfds = datalen / sizeof (int);
3681 			if (oldfds == 0)
3682 				continue;
3683 			/* On some machines sizeof pointer is bigger than
3684 			 * sizeof int, so we need to check if data fits into
3685 			 * single mbuf.  We could allocate several mbufs, and
3686 			 * unp_externalize() should even properly handle that.
3687 			 * But it is not worth to complicate the code for an
3688 			 * insane scenario of passing over 200 file descriptors
3689 			 * at once.
3690 			 */
3691 			newlen = oldfds * sizeof(fdep[0]);
3692 			if (CMSG_SPACE(newlen) > MCLBYTES) {
3693 				error = EMSGSIZE;
3694 				goto out;
3695 			}
3696 			/*
3697 			 * Check that all the FDs passed in refer to legal
3698 			 * files.  If not, reject the entire operation.
3699 			 */
3700 			fdp = data;
3701 			FILEDESC_SLOCK(fdesc);
3702 			for (i = 0; i < oldfds; i++, fdp++) {
3703 				fp = fget_noref(fdesc, *fdp);
3704 				if (fp == NULL) {
3705 					FILEDESC_SUNLOCK(fdesc);
3706 					error = EBADF;
3707 					goto out;
3708 				}
3709 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
3710 					FILEDESC_SUNLOCK(fdesc);
3711 					error = EOPNOTSUPP;
3712 					goto out;
3713 				}
3714 			}
3715 
3716 			/*
3717 			 * Now replace the integer FDs with pointers to the
3718 			 * file structure and capability rights.
3719 			 */
3720 			m = sbcreatecontrol(NULL, newlen, SCM_RIGHTS,
3721 			    SOL_SOCKET, M_WAITOK);
3722 			fdp = data;
3723 			for (i = 0; i < oldfds; i++, fdp++) {
3724 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
3725 					fdp = data;
3726 					for (j = 0; j < i; j++, fdp++) {
3727 						fdrop(fdesc->fd_ofiles[*fdp].
3728 						    fde_file, td);
3729 					}
3730 					FILEDESC_SUNLOCK(fdesc);
3731 					error = EBADF;
3732 					goto out;
3733 				}
3734 			}
3735 			fdp = data;
3736 			fdep = (struct filedescent **)
3737 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3738 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
3739 			    M_WAITOK);
3740 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
3741 				fde = &fdesc->fd_ofiles[*fdp];
3742 				fdep[i] = fdev;
3743 				fdep[i]->fde_file = fde->fde_file;
3744 				filecaps_copy(&fde->fde_caps,
3745 				    &fdep[i]->fde_caps, true);
3746 				unp_internalize_fp(fdep[i]->fde_file);
3747 			}
3748 			FILEDESC_SUNLOCK(fdesc);
3749 			break;
3750 
3751 		case SCM_TIMESTAMP:
3752 			m = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP,
3753 			    SOL_SOCKET, M_WAITOK);
3754 			tv = (struct timeval *)
3755 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3756 			microtime(tv);
3757 			break;
3758 
3759 		case SCM_BINTIME:
3760 			m = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME,
3761 			    SOL_SOCKET, M_WAITOK);
3762 			bt = (struct bintime *)
3763 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3764 			bintime(bt);
3765 			break;
3766 
3767 		case SCM_REALTIME:
3768 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME,
3769 			    SOL_SOCKET, M_WAITOK);
3770 			ts = (struct timespec *)
3771 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3772 			nanotime(ts);
3773 			break;
3774 
3775 		case SCM_MONOTONIC:
3776 			m = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC,
3777 			    SOL_SOCKET, M_WAITOK);
3778 			ts = (struct timespec *)
3779 			    CMSG_DATA(mtod(m, struct cmsghdr *));
3780 			nanouptime(ts);
3781 			break;
3782 
3783 		default:
3784 			error = EINVAL;
3785 			goto out;
3786 		}
3787 
3788 		mc_append(mc, m);
3789 	}
3790 	if (clen > 0)
3791 		error = EINVAL;
3792 
3793 out:
3794 	if (error != 0)
3795 		unp_internalize_cleanup_rights(mc_first(mc));
3796 	m_freem(control);
3797 	return (error);
3798 }
3799 
3800 static void
unp_addsockcred(struct thread * td,struct mchain * mc,int mode)3801 unp_addsockcred(struct thread *td, struct mchain *mc, int mode)
3802 {
3803 	struct mbuf *m, *n, *n_prev;
3804 	const struct cmsghdr *cm;
3805 	int ngroups, i, cmsgtype;
3806 	size_t ctrlsz;
3807 
3808 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
3809 	if (mode & UNP_WANTCRED_ALWAYS) {
3810 		ctrlsz = SOCKCRED2SIZE(ngroups);
3811 		cmsgtype = SCM_CREDS2;
3812 	} else {
3813 		ctrlsz = SOCKCREDSIZE(ngroups);
3814 		cmsgtype = SCM_CREDS;
3815 	}
3816 
3817 	/* XXXGL: uipc_sosend_*() need to be improved so that we can M_WAITOK */
3818 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
3819 	if (m == NULL)
3820 		return;
3821 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
3822 
3823 	if (mode & UNP_WANTCRED_ALWAYS) {
3824 		struct sockcred2 *sc;
3825 
3826 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3827 		sc->sc_version = 0;
3828 		sc->sc_pid = td->td_proc->p_pid;
3829 		sc->sc_uid = td->td_ucred->cr_ruid;
3830 		sc->sc_euid = td->td_ucred->cr_uid;
3831 		sc->sc_gid = td->td_ucred->cr_rgid;
3832 		sc->sc_egid = td->td_ucred->cr_gid;
3833 		sc->sc_ngroups = ngroups;
3834 		for (i = 0; i < sc->sc_ngroups; i++)
3835 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3836 	} else {
3837 		struct sockcred *sc;
3838 
3839 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
3840 		sc->sc_uid = td->td_ucred->cr_ruid;
3841 		sc->sc_euid = td->td_ucred->cr_uid;
3842 		sc->sc_gid = td->td_ucred->cr_rgid;
3843 		sc->sc_egid = td->td_ucred->cr_gid;
3844 		sc->sc_ngroups = ngroups;
3845 		for (i = 0; i < sc->sc_ngroups; i++)
3846 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
3847 	}
3848 
3849 	/*
3850 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
3851 	 * created SCM_CREDS control message (struct sockcred) has another
3852 	 * format.
3853 	 */
3854 	if (!STAILQ_EMPTY(&mc->mc_q) && cmsgtype == SCM_CREDS)
3855 		STAILQ_FOREACH_SAFE(n, &mc->mc_q, m_stailq, n_prev) {
3856 			cm = mtod(n, struct cmsghdr *);
3857     			if (cm->cmsg_level == SOL_SOCKET &&
3858 			    cm->cmsg_type == SCM_CREDS) {
3859 				mc_remove(mc, n);
3860 				m_free(n);
3861 			}
3862 		}
3863 
3864 	/* Prepend it to the head. */
3865 	mc_prepend(mc, m);
3866 }
3867 
3868 static struct unpcb *
fptounp(struct file * fp)3869 fptounp(struct file *fp)
3870 {
3871 	struct socket *so;
3872 
3873 	if (fp->f_type != DTYPE_SOCKET)
3874 		return (NULL);
3875 	if ((so = fp->f_data) == NULL)
3876 		return (NULL);
3877 	if (so->so_proto->pr_domain != &localdomain)
3878 		return (NULL);
3879 	return sotounpcb(so);
3880 }
3881 
3882 static void
unp_discard(struct file * fp)3883 unp_discard(struct file *fp)
3884 {
3885 	struct unp_defer *dr;
3886 
3887 	if (unp_externalize_fp(fp)) {
3888 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
3889 		dr->ud_fp = fp;
3890 		UNP_DEFERRED_LOCK();
3891 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
3892 		UNP_DEFERRED_UNLOCK();
3893 		atomic_add_int(&unp_defers_count, 1);
3894 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
3895 	} else
3896 		closef_nothread(fp);
3897 }
3898 
3899 static void
unp_process_defers(void * arg __unused,int pending)3900 unp_process_defers(void *arg __unused, int pending)
3901 {
3902 	struct unp_defer *dr;
3903 	SLIST_HEAD(, unp_defer) drl;
3904 	int count;
3905 
3906 	SLIST_INIT(&drl);
3907 	for (;;) {
3908 		UNP_DEFERRED_LOCK();
3909 		if (SLIST_FIRST(&unp_defers) == NULL) {
3910 			UNP_DEFERRED_UNLOCK();
3911 			break;
3912 		}
3913 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
3914 		UNP_DEFERRED_UNLOCK();
3915 		count = 0;
3916 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
3917 			SLIST_REMOVE_HEAD(&drl, ud_link);
3918 			closef_nothread(dr->ud_fp);
3919 			free(dr, M_TEMP);
3920 			count++;
3921 		}
3922 		atomic_add_int(&unp_defers_count, -count);
3923 	}
3924 }
3925 
3926 static void
unp_internalize_fp(struct file * fp)3927 unp_internalize_fp(struct file *fp)
3928 {
3929 	struct unpcb *unp;
3930 
3931 	UNP_LINK_WLOCK();
3932 	if ((unp = fptounp(fp)) != NULL) {
3933 		unp->unp_file = fp;
3934 		unp->unp_msgcount++;
3935 	}
3936 	unp_rights++;
3937 	UNP_LINK_WUNLOCK();
3938 }
3939 
3940 static int
unp_externalize_fp(struct file * fp)3941 unp_externalize_fp(struct file *fp)
3942 {
3943 	struct unpcb *unp;
3944 	int ret;
3945 
3946 	UNP_LINK_WLOCK();
3947 	if ((unp = fptounp(fp)) != NULL) {
3948 		unp->unp_msgcount--;
3949 		ret = 1;
3950 	} else
3951 		ret = 0;
3952 	unp_rights--;
3953 	UNP_LINK_WUNLOCK();
3954 	return (ret);
3955 }
3956 
3957 /*
3958  * unp_defer indicates whether additional work has been defered for a future
3959  * pass through unp_gc().  It is thread local and does not require explicit
3960  * synchronization.
3961  */
3962 static int	unp_marked;
3963 
3964 static void
unp_remove_dead_ref(struct filedescent ** fdep,int fdcount)3965 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
3966 {
3967 	struct unpcb *unp;
3968 	struct file *fp;
3969 	int i;
3970 
3971 	/*
3972 	 * This function can only be called from the gc task.
3973 	 */
3974 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3975 	    ("%s: not on gc callout", __func__));
3976 	UNP_LINK_LOCK_ASSERT();
3977 
3978 	for (i = 0; i < fdcount; i++) {
3979 		fp = fdep[i]->fde_file;
3980 		if ((unp = fptounp(fp)) == NULL)
3981 			continue;
3982 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3983 			continue;
3984 		unp->unp_gcrefs--;
3985 	}
3986 }
3987 
3988 static void
unp_restore_undead_ref(struct filedescent ** fdep,int fdcount)3989 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
3990 {
3991 	struct unpcb *unp;
3992 	struct file *fp;
3993 	int i;
3994 
3995 	/*
3996 	 * This function can only be called from the gc task.
3997 	 */
3998 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
3999 	    ("%s: not on gc callout", __func__));
4000 	UNP_LINK_LOCK_ASSERT();
4001 
4002 	for (i = 0; i < fdcount; i++) {
4003 		fp = fdep[i]->fde_file;
4004 		if ((unp = fptounp(fp)) == NULL)
4005 			continue;
4006 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
4007 			continue;
4008 		unp->unp_gcrefs++;
4009 		unp_marked++;
4010 	}
4011 }
4012 
4013 static void
unp_scan_socket(struct socket * so,void (* op)(struct filedescent **,int))4014 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
4015 {
4016 	struct sockbuf *sb;
4017 
4018 	SOCK_LOCK_ASSERT(so);
4019 
4020 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
4021 		return;
4022 
4023 	SOCK_RECVBUF_LOCK(so);
4024 	switch (so->so_type) {
4025 	case SOCK_DGRAM:
4026 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
4027 		unp_scan(so->so_rcv.uxdg_peeked, op);
4028 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
4029 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
4030 		break;
4031 	case SOCK_STREAM:
4032 	case SOCK_SEQPACKET:
4033 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxst_mbq), op);
4034 		break;
4035 	}
4036 	SOCK_RECVBUF_UNLOCK(so);
4037 }
4038 
4039 static void
unp_gc_scan(struct unpcb * unp,void (* op)(struct filedescent **,int))4040 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
4041 {
4042 	struct socket *so, *soa;
4043 
4044 	so = unp->unp_socket;
4045 	SOCK_LOCK(so);
4046 	if (SOLISTENING(so)) {
4047 		/*
4048 		 * Mark all sockets in our accept queue.
4049 		 */
4050 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
4051 			unp_scan_socket(soa, op);
4052 	} else {
4053 		/*
4054 		 * Mark all sockets we reference with RIGHTS.
4055 		 */
4056 		unp_scan_socket(so, op);
4057 	}
4058 	SOCK_UNLOCK(so);
4059 }
4060 
4061 static int unp_recycled;
4062 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
4063     "Number of unreachable sockets claimed by the garbage collector.");
4064 
4065 static int unp_taskcount;
4066 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
4067     "Number of times the garbage collector has run.");
4068 
4069 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
4070     "Number of active local sockets.");
4071 
4072 static void
unp_gc(__unused void * arg,int pending)4073 unp_gc(__unused void *arg, int pending)
4074 {
4075 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
4076 				    NULL };
4077 	struct unp_head **head;
4078 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
4079 	struct file *f, **unref;
4080 	struct unpcb *unp, *unptmp;
4081 	int i, total, unp_unreachable;
4082 
4083 	LIST_INIT(&unp_deadhead);
4084 	unp_taskcount++;
4085 	UNP_LINK_RLOCK();
4086 	/*
4087 	 * First determine which sockets may be in cycles.
4088 	 */
4089 	unp_unreachable = 0;
4090 
4091 	for (head = heads; *head != NULL; head++)
4092 		LIST_FOREACH(unp, *head, unp_link) {
4093 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
4094 			    ("%s: unp %p has unexpected gc flags 0x%x",
4095 			    __func__, unp, (unsigned int)unp->unp_gcflag));
4096 
4097 			f = unp->unp_file;
4098 
4099 			/*
4100 			 * Check for an unreachable socket potentially in a
4101 			 * cycle.  It must be in a queue as indicated by
4102 			 * msgcount, and this must equal the file reference
4103 			 * count.  Note that when msgcount is 0 the file is
4104 			 * NULL.
4105 			 */
4106 			if (f != NULL && unp->unp_msgcount != 0 &&
4107 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
4108 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
4109 				unp->unp_gcflag |= UNPGC_DEAD;
4110 				unp->unp_gcrefs = unp->unp_msgcount;
4111 				unp_unreachable++;
4112 			}
4113 		}
4114 
4115 	/*
4116 	 * Scan all sockets previously marked as potentially being in a cycle
4117 	 * and remove the references each socket holds on any UNPGC_DEAD
4118 	 * sockets in its queue.  After this step, all remaining references on
4119 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
4120 	 */
4121 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
4122 		unp_gc_scan(unp, unp_remove_dead_ref);
4123 
4124 	/*
4125 	 * If a socket still has a non-negative refcount, it cannot be in a
4126 	 * cycle.  In this case increment refcount of all children iteratively.
4127 	 * Stop the scan once we do a complete loop without discovering
4128 	 * a new reachable socket.
4129 	 */
4130 	do {
4131 		unp_marked = 0;
4132 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
4133 			if (unp->unp_gcrefs > 0) {
4134 				unp->unp_gcflag &= ~UNPGC_DEAD;
4135 				LIST_REMOVE(unp, unp_dead);
4136 				KASSERT(unp_unreachable > 0,
4137 				    ("%s: unp_unreachable underflow.",
4138 				    __func__));
4139 				unp_unreachable--;
4140 				unp_gc_scan(unp, unp_restore_undead_ref);
4141 			}
4142 	} while (unp_marked);
4143 
4144 	UNP_LINK_RUNLOCK();
4145 
4146 	if (unp_unreachable == 0)
4147 		return;
4148 
4149 	/*
4150 	 * Allocate space for a local array of dead unpcbs.
4151 	 * TODO: can this path be simplified by instead using the local
4152 	 * dead list at unp_deadhead, after taking out references
4153 	 * on the file object and/or unpcb and dropping the link lock?
4154 	 */
4155 	unref = malloc(unp_unreachable * sizeof(struct file *),
4156 	    M_TEMP, M_WAITOK);
4157 
4158 	/*
4159 	 * Iterate looking for sockets which have been specifically marked
4160 	 * as unreachable and store them locally.
4161 	 */
4162 	UNP_LINK_RLOCK();
4163 	total = 0;
4164 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
4165 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
4166 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
4167 		unp->unp_gcflag &= ~UNPGC_DEAD;
4168 		f = unp->unp_file;
4169 		if (unp->unp_msgcount == 0 || f == NULL ||
4170 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
4171 		    !fhold(f))
4172 			continue;
4173 		unref[total++] = f;
4174 		KASSERT(total <= unp_unreachable,
4175 		    ("%s: incorrect unreachable count.", __func__));
4176 	}
4177 	UNP_LINK_RUNLOCK();
4178 
4179 	/*
4180 	 * Now flush all sockets, free'ing rights.  This will free the
4181 	 * struct files associated with these sockets but leave each socket
4182 	 * with one remaining ref.
4183 	 */
4184 	for (i = 0; i < total; i++) {
4185 		struct socket *so;
4186 
4187 		so = unref[i]->f_data;
4188 		CURVNET_SET(so->so_vnet);
4189 		socantrcvmore(so);
4190 		unp_dispose(so);
4191 		CURVNET_RESTORE();
4192 	}
4193 
4194 	/*
4195 	 * And finally release the sockets so they can be reclaimed.
4196 	 */
4197 	for (i = 0; i < total; i++)
4198 		fdrop(unref[i], NULL);
4199 	unp_recycled += total;
4200 	free(unref, M_TEMP);
4201 }
4202 
4203 /*
4204  * Synchronize against unp_gc, which can trip over data as we are freeing it.
4205  */
4206 static void
unp_dispose(struct socket * so)4207 unp_dispose(struct socket *so)
4208 {
4209 	struct sockbuf *sb;
4210 	struct unpcb *unp;
4211 	struct mbuf *m;
4212 	int error __diagused;
4213 
4214 	MPASS(!SOLISTENING(so));
4215 
4216 	unp = sotounpcb(so);
4217 	UNP_LINK_WLOCK();
4218 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
4219 	UNP_LINK_WUNLOCK();
4220 
4221 	/*
4222 	 * Grab our special mbufs before calling sbrelease().
4223 	 */
4224 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
4225 	MPASS(!error);
4226 	SOCK_RECVBUF_LOCK(so);
4227 	switch (so->so_type) {
4228 	case SOCK_DGRAM:
4229 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
4230 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
4231 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
4232 			/* Note: socket of sb may reconnect. */
4233 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
4234 		}
4235 		sb = &so->so_rcv;
4236 		if (sb->uxdg_peeked != NULL) {
4237 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
4238 			    m_stailqpkt);
4239 			sb->uxdg_peeked = NULL;
4240 		}
4241 		m = STAILQ_FIRST(&sb->uxdg_mb);
4242 		STAILQ_INIT(&sb->uxdg_mb);
4243 		break;
4244 	case SOCK_STREAM:
4245 	case SOCK_SEQPACKET:
4246 		sb = &so->so_rcv;
4247 		m = STAILQ_FIRST(&sb->uxst_mbq);
4248 		STAILQ_INIT(&sb->uxst_mbq);
4249 		sb->sb_acc = sb->sb_ccc = sb->sb_ctl = sb->sb_mbcnt = 0;
4250 		/*
4251 		 * Trim M_NOTREADY buffers from the free list.  They are
4252 		 * referenced by the I/O thread.
4253 		 */
4254 		if (sb->uxst_fnrdy != NULL) {
4255 			struct mbuf *n, *prev;
4256 
4257 			while (m != NULL && m->m_flags & M_NOTREADY)
4258 				m = m->m_next;
4259 			for (prev = n = m; n != NULL; n = n->m_next) {
4260 				if (n->m_flags & M_NOTREADY)
4261 					prev->m_next = n->m_next;
4262 				else
4263 					prev = n;
4264 			}
4265 			sb->uxst_fnrdy = NULL;
4266 		}
4267 		break;
4268 	}
4269 	/*
4270 	 * Mark sb with SBS_CANTRCVMORE.  This is needed to prevent
4271 	 * uipc_sosend_*() or unp_disconnect() adding more data to the socket.
4272 	 * We came here either through shutdown(2) or from the final sofree().
4273 	 * The sofree() case is simple as it guarantees that no more sends will
4274 	 * happen, however we can race with unp_disconnect() from our peer.
4275 	 * The shutdown(2) case is more exotic.  It would call into
4276 	 * unp_dispose() only if socket is SS_ISCONNECTED.  This is possible if
4277 	 * we did connect(2) on this socket and we also had it bound with
4278 	 * bind(2) and receive connections from other sockets.  Because
4279 	 * uipc_shutdown() violates POSIX (see comment there) this applies to
4280 	 * SOCK_DGRAM as well.  For SOCK_DGRAM this SBS_CANTRCVMORE will have
4281 	 * affect not only on the peer we connect(2)ed to, but also on all of
4282 	 * the peers who had connect(2)ed to us.  Their sends would end up
4283 	 * with ENOBUFS.
4284 	 */
4285 	sb->sb_state |= SBS_CANTRCVMORE;
4286 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
4287 	    RLIM_INFINITY);
4288 	SOCK_RECVBUF_UNLOCK(so);
4289 	SOCK_IO_RECV_UNLOCK(so);
4290 
4291 	if (m != NULL) {
4292 		unp_scan(m, unp_freerights);
4293 		m_freemp(m);
4294 	}
4295 }
4296 
4297 static void
unp_scan(struct mbuf * m0,void (* op)(struct filedescent **,int))4298 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
4299 {
4300 	struct mbuf *m;
4301 	struct cmsghdr *cm;
4302 	void *data;
4303 	socklen_t clen, datalen;
4304 
4305 	while (m0 != NULL) {
4306 		for (m = m0; m; m = m->m_next) {
4307 			if (m->m_type != MT_CONTROL)
4308 				continue;
4309 
4310 			cm = mtod(m, struct cmsghdr *);
4311 			clen = m->m_len;
4312 
4313 			while (cm != NULL) {
4314 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
4315 					break;
4316 
4317 				data = CMSG_DATA(cm);
4318 				datalen = (caddr_t)cm + cm->cmsg_len
4319 				    - (caddr_t)data;
4320 
4321 				if (cm->cmsg_level == SOL_SOCKET &&
4322 				    cm->cmsg_type == SCM_RIGHTS) {
4323 					(*op)(data, datalen /
4324 					    sizeof(struct filedescent *));
4325 				}
4326 
4327 				if (CMSG_SPACE(datalen) < clen) {
4328 					clen -= CMSG_SPACE(datalen);
4329 					cm = (struct cmsghdr *)
4330 					    ((caddr_t)cm + CMSG_SPACE(datalen));
4331 				} else {
4332 					clen = 0;
4333 					cm = NULL;
4334 				}
4335 			}
4336 		}
4337 		m0 = m0->m_nextpkt;
4338 	}
4339 }
4340 
4341 /*
4342  * Definitions of protocols supported in the LOCAL domain.
4343  */
4344 static struct protosw streamproto = {
4345 	.pr_type =		SOCK_STREAM,
4346 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4347 	.pr_ctloutput =		&uipc_ctloutput,
4348 	.pr_abort = 		uipc_abort,
4349 	.pr_accept =		uipc_peeraddr,
4350 	.pr_attach =		uipc_attach,
4351 	.pr_bind =		uipc_bind,
4352 	.pr_bindat =		uipc_bindat,
4353 	.pr_connect =		uipc_connect,
4354 	.pr_connectat =		uipc_connectat,
4355 	.pr_connect2 =		uipc_connect2,
4356 	.pr_detach =		uipc_detach,
4357 	.pr_disconnect =	uipc_disconnect,
4358 	.pr_listen =		uipc_listen,
4359 	.pr_peeraddr =		uipc_peeraddr,
4360 	.pr_send =		uipc_sendfile,
4361 	.pr_sendfile_wait =	uipc_sendfile_wait,
4362 	.pr_ready =		uipc_ready,
4363 	.pr_sense =		uipc_sense,
4364 	.pr_shutdown =		uipc_shutdown,
4365 	.pr_sockaddr =		uipc_sockaddr,
4366 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4367 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4368 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4369 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4370 	.pr_close =		uipc_close,
4371 	.pr_chmod =		uipc_chmod,
4372 };
4373 
4374 static struct protosw dgramproto = {
4375 	.pr_type =		SOCK_DGRAM,
4376 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
4377 	.pr_ctloutput =		&uipc_ctloutput,
4378 	.pr_abort = 		uipc_abort,
4379 	.pr_accept =		uipc_peeraddr,
4380 	.pr_attach =		uipc_attach,
4381 	.pr_bind =		uipc_bind,
4382 	.pr_bindat =		uipc_bindat,
4383 	.pr_connect =		uipc_connect,
4384 	.pr_connectat =		uipc_connectat,
4385 	.pr_connect2 =		uipc_connect2,
4386 	.pr_detach =		uipc_detach,
4387 	.pr_disconnect =	uipc_disconnect,
4388 	.pr_peeraddr =		uipc_peeraddr,
4389 	.pr_sosend =		uipc_sosend_dgram,
4390 	.pr_sense =		uipc_sense,
4391 	.pr_shutdown =		uipc_shutdown,
4392 	.pr_sockaddr =		uipc_sockaddr,
4393 	.pr_soreceive =		uipc_soreceive_dgram,
4394 	.pr_close =		uipc_close,
4395 	.pr_chmod =		uipc_chmod,
4396 };
4397 
4398 static struct protosw seqpacketproto = {
4399 	.pr_type =		SOCK_SEQPACKET,
4400 	.pr_flags =		PR_CONNREQUIRED | PR_CAPATTACH | PR_SOCKBUF,
4401 	.pr_ctloutput =		&uipc_ctloutput,
4402 	.pr_abort =		uipc_abort,
4403 	.pr_accept =		uipc_peeraddr,
4404 	.pr_attach =		uipc_attach,
4405 	.pr_bind =		uipc_bind,
4406 	.pr_bindat =		uipc_bindat,
4407 	.pr_connect =		uipc_connect,
4408 	.pr_connectat =		uipc_connectat,
4409 	.pr_connect2 =		uipc_connect2,
4410 	.pr_detach =		uipc_detach,
4411 	.pr_disconnect =	uipc_disconnect,
4412 	.pr_listen =		uipc_listen,
4413 	.pr_peeraddr =		uipc_peeraddr,
4414 	.pr_sense =		uipc_sense,
4415 	.pr_shutdown =		uipc_shutdown,
4416 	.pr_sockaddr =		uipc_sockaddr,
4417 	.pr_sosend = 		uipc_sosend_stream_or_seqpacket,
4418 	.pr_soreceive =		uipc_soreceive_stream_or_seqpacket,
4419 	.pr_sopoll =		uipc_sopoll_stream_or_seqpacket,
4420 	.pr_kqfilter =		uipc_kqfilter_stream_or_seqpacket,
4421 	.pr_close =		uipc_close,
4422 	.pr_chmod =		uipc_chmod,
4423 };
4424 
4425 static struct domain localdomain = {
4426 	.dom_family =		AF_LOCAL,
4427 	.dom_name =		"local",
4428 	.dom_nprotosw =		3,
4429 	.dom_protosw =		{
4430 		&streamproto,
4431 		&dgramproto,
4432 		&seqpacketproto,
4433 	}
4434 };
4435 DOMAIN_SET(local);
4436 
4437 /*
4438  * A helper function called by VFS before socket-type vnode reclamation.
4439  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
4440  * use count.
4441  */
4442 void
vfs_unp_reclaim(struct vnode * vp)4443 vfs_unp_reclaim(struct vnode *vp)
4444 {
4445 	struct unpcb *unp;
4446 	int active;
4447 	struct mtx *vplock;
4448 
4449 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
4450 	KASSERT(vp->v_type == VSOCK,
4451 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
4452 
4453 	active = 0;
4454 	vplock = mtx_pool_find(unp_vp_mtxpool, vp);
4455 	mtx_lock(vplock);
4456 	VOP_UNP_CONNECT(vp, &unp);
4457 	if (unp == NULL)
4458 		goto done;
4459 	UNP_PCB_LOCK(unp);
4460 	if (unp->unp_vnode == vp) {
4461 		VOP_UNP_DETACH(vp);
4462 		unp->unp_vnode = NULL;
4463 		active = 1;
4464 	}
4465 	UNP_PCB_UNLOCK(unp);
4466  done:
4467 	mtx_unlock(vplock);
4468 	if (active)
4469 		vunref(vp);
4470 }
4471 
4472 #ifdef DDB
4473 static void
db_print_indent(int indent)4474 db_print_indent(int indent)
4475 {
4476 	int i;
4477 
4478 	for (i = 0; i < indent; i++)
4479 		db_printf(" ");
4480 }
4481 
4482 static void
db_print_unpflags(int unp_flags)4483 db_print_unpflags(int unp_flags)
4484 {
4485 	int comma;
4486 
4487 	comma = 0;
4488 	if (unp_flags & UNP_HAVEPC) {
4489 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
4490 		comma = 1;
4491 	}
4492 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
4493 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
4494 		comma = 1;
4495 	}
4496 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
4497 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
4498 		comma = 1;
4499 	}
4500 	if (unp_flags & UNP_CONNECTING) {
4501 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
4502 		comma = 1;
4503 	}
4504 	if (unp_flags & UNP_BINDING) {
4505 		db_printf("%sUNP_BINDING", comma ? ", " : "");
4506 		comma = 1;
4507 	}
4508 }
4509 
4510 static void
db_print_xucred(int indent,struct xucred * xu)4511 db_print_xucred(int indent, struct xucred *xu)
4512 {
4513 	int comma, i;
4514 
4515 	db_print_indent(indent);
4516 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
4517 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
4518 	db_print_indent(indent);
4519 	db_printf("cr_groups: ");
4520 	comma = 0;
4521 	for (i = 0; i < xu->cr_ngroups; i++) {
4522 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
4523 		comma = 1;
4524 	}
4525 	db_printf("\n");
4526 }
4527 
4528 static void
db_print_unprefs(int indent,struct unp_head * uh)4529 db_print_unprefs(int indent, struct unp_head *uh)
4530 {
4531 	struct unpcb *unp;
4532 	int counter;
4533 
4534 	counter = 0;
4535 	LIST_FOREACH(unp, uh, unp_reflink) {
4536 		if (counter % 4 == 0)
4537 			db_print_indent(indent);
4538 		db_printf("%p  ", unp);
4539 		if (counter % 4 == 3)
4540 			db_printf("\n");
4541 		counter++;
4542 	}
4543 	if (counter != 0 && counter % 4 != 0)
4544 		db_printf("\n");
4545 }
4546 
DB_SHOW_COMMAND(unpcb,db_show_unpcb)4547 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
4548 {
4549 	struct unpcb *unp;
4550 
4551         if (!have_addr) {
4552                 db_printf("usage: show unpcb <addr>\n");
4553                 return;
4554         }
4555         unp = (struct unpcb *)addr;
4556 
4557 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
4558 	    unp->unp_vnode);
4559 
4560 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
4561 	    unp->unp_conn);
4562 
4563 	db_printf("unp_refs:\n");
4564 	db_print_unprefs(2, &unp->unp_refs);
4565 
4566 	/* XXXRW: Would be nice to print the full address, if any. */
4567 	db_printf("unp_addr: %p\n", unp->unp_addr);
4568 
4569 	db_printf("unp_gencnt: %llu\n",
4570 	    (unsigned long long)unp->unp_gencnt);
4571 
4572 	db_printf("unp_flags: %x (", unp->unp_flags);
4573 	db_print_unpflags(unp->unp_flags);
4574 	db_printf(")\n");
4575 
4576 	db_printf("unp_peercred:\n");
4577 	db_print_xucred(2, &unp->unp_peercred);
4578 
4579 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
4580 }
4581 #endif
4582