xref: /freebsd/sys/powerpc/powerpc/fpu.c (revision 077e30e61d7e1c90af7df31989bb976a3ace0c69)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1996 Wolfgang Solfrank.
5  * Copyright (C) 1996 TooLs GmbH.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by TooLs GmbH.
19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  *	$NetBSD: fpu.c,v 1.5 2001/07/22 11:29:46 wiz Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/systm.h>
39 #include <sys/limits.h>
40 
41 #include <machine/fpu.h>
42 #include <machine/pcb.h>
43 #include <machine/psl.h>
44 #include <machine/altivec.h>
45 
46 static void
save_fpu_int(struct thread * td)47 save_fpu_int(struct thread *td)
48 {
49 	register_t msr;
50 	struct	pcb *pcb;
51 
52 	pcb = td->td_pcb;
53 
54 	/*
55 	 * Temporarily re-enable floating-point during the save
56 	 */
57 	msr = mfmsr();
58 	if (pcb->pcb_flags & PCB_VSX)
59 		mtmsr(msr | PSL_FP | PSL_VSX);
60 	else
61 		mtmsr(msr | PSL_FP);
62 
63 	/*
64 	 * Save the floating-point registers and FPSCR to the PCB
65 	 */
66 	if (pcb->pcb_flags & PCB_VSX) {
67 #if _BYTE_ORDER == _BIG_ENDIAN
68 	#define SFP(n)   __asm("stxvw4x " #n ", 0,%0" \
69 			:: "b"(&pcb->pcb_fpu.fpr[n]));
70 #else
71 	/*
72 	 * stxvw2x will swap words within the FP double word on LE systems,
73 	 * leading to corruption if VSX is used to store state and FP is
74 	 * subsequently used to restore state.
75 	 * Use stxvd2x instead.
76 	 */
77 	#define SFP(n)   __asm("stxvd2x " #n ", 0,%0" \
78 			:: "b"(&pcb->pcb_fpu.fpr[n]));
79 #endif
80 		SFP(0);		SFP(1);		SFP(2);		SFP(3);
81 		SFP(4);		SFP(5);		SFP(6);		SFP(7);
82 		SFP(8);		SFP(9);		SFP(10);	SFP(11);
83 		SFP(12);	SFP(13);	SFP(14);	SFP(15);
84 		SFP(16);	SFP(17);	SFP(18);	SFP(19);
85 		SFP(20);	SFP(21);	SFP(22);	SFP(23);
86 		SFP(24);	SFP(25);	SFP(26);	SFP(27);
87 		SFP(28);	SFP(29);	SFP(30);	SFP(31);
88 	#undef SFP
89 	} else {
90 	#define SFP(n)   __asm("stfd " #n ", 0(%0)" \
91 			:: "b"(&pcb->pcb_fpu.fpr[n].fpr));
92 		SFP(0);		SFP(1);		SFP(2);		SFP(3);
93 		SFP(4);		SFP(5);		SFP(6);		SFP(7);
94 		SFP(8);		SFP(9);		SFP(10);	SFP(11);
95 		SFP(12);	SFP(13);	SFP(14);	SFP(15);
96 		SFP(16);	SFP(17);	SFP(18);	SFP(19);
97 		SFP(20);	SFP(21);	SFP(22);	SFP(23);
98 		SFP(24);	SFP(25);	SFP(26);	SFP(27);
99 		SFP(28);	SFP(29);	SFP(30);	SFP(31);
100 	#undef SFP
101 	}
102 	__asm __volatile ("mffs 0; stfd 0,0(%0)" :: "b"(&pcb->pcb_fpu.fpscr));
103 
104 	/*
105 	 * Disable floating-point again
106 	 */
107 	isync();
108 	mtmsr(msr);
109 }
110 
111 void
enable_fpu(struct thread * td)112 enable_fpu(struct thread *td)
113 {
114 	register_t msr;
115 	struct	pcb *pcb;
116 	struct	trapframe *tf;
117 
118 	pcb = td->td_pcb;
119 	tf = trapframe(td);
120 
121 	/*
122 	 * Save the thread's FPU CPU number, and set the CPU's current
123 	 * FPU thread
124 	 */
125 	td->td_pcb->pcb_fpcpu = PCPU_GET(cpuid);
126 	PCPU_SET(fputhread, td);
127 
128 	/*
129 	 * Enable the FPU for when the thread returns from the exception.
130 	 * If this is the first time the FPU has been used by the thread,
131 	 * initialise the FPU registers and FPSCR to 0, and set the flag
132 	 * to indicate that the FPU is in use.
133 	 */
134 	pcb->pcb_flags |= PCB_FPU;
135 	if (pcb->pcb_flags & PCB_VSX)
136 		tf->srr1 |= PSL_FP | PSL_VSX;
137 	else
138 		tf->srr1 |= PSL_FP;
139 	if (!(pcb->pcb_flags & PCB_FPREGS)) {
140 		memset(&pcb->pcb_fpu, 0, sizeof pcb->pcb_fpu);
141 		pcb->pcb_flags |= PCB_FPREGS;
142 	}
143 
144 	/*
145 	 * Temporarily enable floating-point so the registers
146 	 * can be restored.
147 	 */
148 	msr = mfmsr();
149 	if (pcb->pcb_flags & PCB_VSX)
150 		mtmsr(msr | PSL_FP | PSL_VSX);
151 	else
152 		mtmsr(msr | PSL_FP);
153 
154 	/*
155 	 * Load the floating point registers and FPSCR from the PCB.
156 	 * (A value of 0xff for mtfsf specifies that all 8 4-bit fields
157 	 * of the saved FPSCR are to be loaded from the FPU reg).
158 	 */
159 	__asm __volatile ("lfd 0,0(%0); mtfsf 0xff,0"
160 			  :: "b"(&pcb->pcb_fpu.fpscr));
161 
162 	if (pcb->pcb_flags & PCB_VSX) {
163 #if _BYTE_ORDER == _BIG_ENDIAN
164 	#define LFP(n)   __asm("lxvw4x " #n ", 0,%0" \
165 			:: "b"(&pcb->pcb_fpu.fpr[n]));
166 #else
167 	/*
168 	 * lxvw4x will swap words within the FP double word on LE systems,
169 	 * leading to corruption if FP is used to store state and VSX is
170 	 * subsequently used to restore state.
171 	 * Use lxvd2x instead.
172 	 */
173 	#define LFP(n)   __asm("lxvd2x " #n ", 0,%0" \
174 			:: "b"(&pcb->pcb_fpu.fpr[n]));
175 #endif
176 		LFP(0);		LFP(1);		LFP(2);		LFP(3);
177 		LFP(4);		LFP(5);		LFP(6);		LFP(7);
178 		LFP(8);		LFP(9);		LFP(10);	LFP(11);
179 		LFP(12);	LFP(13);	LFP(14);	LFP(15);
180 		LFP(16);	LFP(17);	LFP(18);	LFP(19);
181 		LFP(20);	LFP(21);	LFP(22);	LFP(23);
182 		LFP(24);	LFP(25);	LFP(26);	LFP(27);
183 		LFP(28);	LFP(29);	LFP(30);	LFP(31);
184 	#undef LFP
185 	} else {
186 	#define LFP(n)   __asm("lfd " #n ", 0(%0)" \
187 			:: "b"(&pcb->pcb_fpu.fpr[n].fpr));
188 		LFP(0);		LFP(1);		LFP(2);		LFP(3);
189 		LFP(4);		LFP(5);		LFP(6);		LFP(7);
190 		LFP(8);		LFP(9);		LFP(10);	LFP(11);
191 		LFP(12);	LFP(13);	LFP(14);	LFP(15);
192 		LFP(16);	LFP(17);	LFP(18);	LFP(19);
193 		LFP(20);	LFP(21);	LFP(22);	LFP(23);
194 		LFP(24);	LFP(25);	LFP(26);	LFP(27);
195 		LFP(28);	LFP(29);	LFP(30);	LFP(31);
196 	#undef LFP
197 	}
198 
199 	isync();
200 	mtmsr(msr);
201 }
202 
203 void
save_fpu(struct thread * td)204 save_fpu(struct thread *td)
205 {
206 	struct	pcb *pcb;
207 
208 	pcb = td->td_pcb;
209 
210 	save_fpu_int(td);
211 
212 	/*
213 	 * Clear the current fp thread and pcb's CPU id
214 	 * XXX should this be left clear to allow lazy save/restore ?
215 	 */
216 	pcb->pcb_fpcpu = INT_MAX;
217 	PCPU_SET(fputhread, NULL);
218 }
219 
220 /*
221  * Save fpu state without dropping ownership.  This will only save state if
222  * the current fpu thread is `td'.
223  */
224 void
save_fpu_nodrop(struct thread * td)225 save_fpu_nodrop(struct thread *td)
226 {
227 
228 	if (td == PCPU_GET(fputhread))
229 		save_fpu_int(td);
230 }
231 
232 /*
233  * Clear Floating-Point Status and Control Register
234  */
235 void
cleanup_fpscr(void)236 cleanup_fpscr(void)
237 {
238 	register_t msr;
239 
240 	msr = mfmsr();
241 	mtmsr(msr | PSL_FP);
242 	mtfsf(0);
243 
244 	isync();
245 	mtmsr(msr);
246 }
247 
248 /*
249  * Get the current fp exception
250  */
251 u_int
get_fpu_exception(struct thread * td)252 get_fpu_exception(struct thread *td)
253 {
254 	register_t msr;
255 	u_int ucode;
256 	register_t reg;
257 
258 	critical_enter();
259 
260 	msr = mfmsr();
261 	mtmsr(msr | PSL_FP);
262 
263 	reg = mffs();
264 
265 	isync();
266 	mtmsr(msr);
267 
268 	critical_exit();
269 
270 	if (reg & FPSCR_ZX)
271 		ucode = FPE_FLTDIV;
272 	else if (reg & FPSCR_OX)
273 		ucode = FPE_FLTOVF;
274 	else if (reg & FPSCR_UX)
275 		ucode = FPE_FLTUND;
276 	else if (reg & FPSCR_XX)
277 		ucode = FPE_FLTRES;
278 	else
279 		ucode = FPE_FLTINV;
280 
281 	return ucode;
282 }
283 
284 void
enable_fpu_kern(void)285 enable_fpu_kern(void)
286 {
287 	register_t msr;
288 
289 	msr = mfmsr() | PSL_FP;
290 
291 	if (cpu_features & PPC_FEATURE_HAS_VSX)
292 		msr |= PSL_VSX;
293 
294 	mtmsr(msr);
295 }
296 
297 void
disable_fpu(struct thread * td)298 disable_fpu(struct thread *td)
299 {
300 	register_t msr;
301 	struct pcb *pcb;
302 	struct trapframe *tf;
303 
304 	pcb = td->td_pcb;
305 	tf = trapframe(td);
306 
307 	/* Disable FPU in kernel (if enabled) */
308 	msr = mfmsr() & ~(PSL_FP | PSL_VSX);
309 	isync();
310 	mtmsr(msr);
311 
312 	/*
313 	 * Disable FPU in userspace. It will be re-enabled when
314 	 * an FP or VSX instruction is executed.
315 	 */
316 	tf->srr1 &= ~(PSL_FP | PSL_VSX);
317 	pcb->pcb_flags &= ~(PCB_FPU | PCB_VSX);
318 }
319 
320 #ifndef __SPE__
321 /*
322  * XXX: Implement fpu_kern_alloc_ctx/fpu_kern_free_ctx once fpu_kern_enter and
323  * fpu_kern_leave can handle !FPU_KERN_NOCTX.
324  */
325 struct fpu_kern_ctx {
326 #define	FPU_KERN_CTX_DUMMY	0x01	/* avoided save for the kern thread */
327 #define	FPU_KERN_CTX_INUSE	0x02
328 	uint32_t	 flags;
329 };
330 
331 void
fpu_kern_enter(struct thread * td,struct fpu_kern_ctx * ctx,u_int flags)332 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
333 {
334 	struct pcb *pcb;
335 
336 	pcb = td->td_pcb;
337 
338 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
339 	    ("ctx is required when !FPU_KERN_NOCTX"));
340 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
341 	    ("using inuse ctx"));
342 	KASSERT((pcb->pcb_flags & PCB_KERN_FPU_NOSAVE) == 0,
343 	    ("recursive fpu_kern_enter while in PCB_KERN_FPU_NOSAVE state"));
344 
345 	if ((flags & FPU_KERN_NOCTX) != 0) {
346 		critical_enter();
347 
348 		if (pcb->pcb_flags & PCB_FPU) {
349 			save_fpu(td);
350 			pcb->pcb_flags |= PCB_FPREGS;
351 		}
352 		enable_fpu_kern();
353 
354 		if (pcb->pcb_flags & PCB_VEC) {
355 			save_vec(td);
356 			pcb->pcb_flags |= PCB_VECREGS;
357 		}
358 		enable_vec_kern();
359 
360 		pcb->pcb_flags |= PCB_KERN_FPU | PCB_KERN_FPU_NOSAVE;
361 		return;
362 	}
363 
364 	KASSERT(0, ("fpu_kern_enter with !FPU_KERN_NOCTX not implemented!"));
365 }
366 
367 int
fpu_kern_leave(struct thread * td,struct fpu_kern_ctx * ctx)368 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
369 {
370 	struct pcb *pcb;
371 
372 	pcb = td->td_pcb;
373 
374 	if ((pcb->pcb_flags & PCB_KERN_FPU_NOSAVE) != 0) {
375 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
376 		KASSERT(PCPU_GET(fpcurthread) == NULL,
377 		    ("non-NULL fpcurthread for PCB_FP_NOSAVE"));
378 		CRITICAL_ASSERT(td);
379 
380 		/* Disable FPU, VMX, and VSX */
381 		disable_fpu(td);
382 		disable_vec(td);
383 
384 		pcb->pcb_flags &= ~PCB_KERN_FPU_NOSAVE;
385 
386 		critical_exit();
387 	} else {
388 		KASSERT(0, ("fpu_kern_leave with !FPU_KERN_NOCTX not implemented!"));
389 	}
390 
391 	pcb->pcb_flags &= ~PCB_KERN_FPU;
392 
393 	return 0;
394 }
395 
396 int
is_fpu_kern_thread(u_int flags __unused)397 is_fpu_kern_thread(u_int flags __unused)
398 {
399 	struct pcb *curpcb;
400 
401 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
402 		return (0);
403 	curpcb = curthread->td_pcb;
404 	return ((curpcb->pcb_flags & PCB_KERN_FPU) != 0);
405 }
406 
407 #endif /* !__SPE__ */
408