1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2022 by Pawel Jakub Dawidek
27 * Copyright (c) 2019, 2023, Klara Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/ddt.h>
35 #include <sys/ddt_impl.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dsl_scan.h>
42 #include <sys/abd.h>
43 #include <sys/zfeature.h>
44
45 /*
46 * # DDT: Deduplication tables
47 *
48 * The dedup subsystem provides block-level deduplication. When enabled, blocks
49 * to be written will have the dedup (D) bit set, which causes them to be
50 * tracked in a "dedup table", or DDT. If a block has been seen before (exists
51 * in the DDT), instead of being written, it will instead be made to reference
52 * the existing on-disk data, and a refcount bumped in the DDT instead.
53 *
54 * ## Dedup tables and entries
55 *
56 * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
57 * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
58 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
59 * time and refcount. Together these are enough to track references to a
60 * specific block, to build a valid block pointer to reference that block (for
61 * freeing, scrubbing, etc), and to fill a new block pointer with the missing
62 * pieces to make it seem like it was written.
63 *
64 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
65 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
66 * object data formats, each with their own implementations) and "classes"
67 * (ddt_class_t, instance of a storage type object, for entries with a specific
68 * characteristic). An entry (key) will only ever exist on one of these objects
69 * at any given time, but may be moved from one to another if their type or
70 * class changes.
71 *
72 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
73 * is to be written, before DVAs have been allocated, ddt_lookup() is called to
74 * see if the block has been seen before. If its not found, the write proceeds
75 * as normal, and after it succeeds, a new entry is created. If it is found, we
76 * fill the BP with the DVAs from the entry, increment the refcount and cause
77 * the write IO to return immediately.
78 *
79 * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup
80 * block for the same content/checksum. The slot is selected based on the
81 * zp_copies parameter the block is written with, that is, the number of DVAs
82 * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for
83 * now-removed "dedupditto" feature. These are no longer written, and will be
84 * freed if encountered on old pools.
85 *
86 * If the "fast_dedup" feature is enabled, new dedup tables will be created
87 * with the "flat phys" option. In this mode, there is only one ddt_phys_t
88 * slot. If a write is issued for an entry that exists, but has fewer DVAs,
89 * then only as many new DVAs are allocated and written to make up the
90 * shortfall. The existing entry is then extended (ddt_phys_extend()) with the
91 * new DVAs.
92 *
93 * ## Lifetime of an entry
94 *
95 * A DDT can be enormous, and typically is not held in memory all at once.
96 * Instead, the changes to an entry are tracked in memory, and written down to
97 * disk at the end of each txg.
98 *
99 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
100 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is
101 * required for IO, ddt_lookup() is called. If an entry already exists on
102 * ddt_tree, it is returned. Otherwise, a new one is created, and the
103 * type/class objects for the DDT are searched for that key. If its found, its
104 * value is copied into the live entry. If not, an empty entry is created.
105 *
106 * The live entry will be modified during the txg, usually by modifying the
107 * refcount, but sometimes by adding or updating DVAs. At the end of the txg
108 * (during spa_sync()), type and class are recalculated for entry (see
109 * ddt_sync_entry()), and the entry is written to the appropriate storage
110 * object and (if necessary), removed from an old one. ddt_tree is cleared and
111 * the next txg can start.
112 *
113 * ## Dedup quota
114 *
115 * A maximum size for all DDTs on the pool can be set with the
116 * dedup_table_quota property. This is determined in ddt_over_quota() and
117 * enforced during ddt_lookup(). If the pool is at or over its quota limit,
118 * ddt_lookup() will only return entries for existing blocks, as updates are
119 * still possible. New entries will not be created; instead, ddt_lookup() will
120 * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove
121 * the D bit on the block and reissue the IO as a regular write. The block will
122 * not be deduplicated.
123 *
124 * Note that this is based on the on-disk size of the dedup store. Reclaiming
125 * this space after deleting entries relies on the ZAP "shrinking" behaviour,
126 * without which, no space would be recovered and the DDT would continue to be
127 * considered "over quota". See zap_shrink_enabled.
128 *
129 * ## Dedup table pruning
130 *
131 * As a complement to the dedup quota feature, ddtprune allows removal of older
132 * non-duplicate entries to make room for newer duplicate entries. The amount
133 * to prune can be based on a target percentage of the unique entries or based
134 * on the age (i.e., prune unique entry older than N days).
135 *
136 * ## Dedup log
137 *
138 * Historically, all entries modified on a txg were written back to dedup
139 * storage objects at the end of every txg. This could cause significant
140 * overheads, as each entry only takes up a tiny portion of a ZAP leaf node,
141 * and so required reading the whole node, updating the entry, and writing it
142 * back. On busy pools, this could add serious IO and memory overheads.
143 *
144 * To address this, the dedup log was added. If the "fast_dedup" feature is
145 * enabled, at the end of each txg, modified entries will be copied to an
146 * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the
147 * same block is requested again, the in-memory object will be checked first,
148 * and if its there, the entry inflated back onto the live tree without going
149 * to storage. The on-disk log is only read at pool import time, to reload the
150 * in-memory log.
151 *
152 * Each txg, some amount of the in-memory log will be flushed out to a DDT
153 * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to
154 * keep up with the rate of change on dedup entries, but not so much that it
155 * would impact overall throughput, and not using too much memory. See the
156 * zfs_dedup_log_* tunables in zfs(4) for more details.
157 *
158 * ## Repair IO
159 *
160 * If a read on a dedup block fails, but there are other copies of the block in
161 * the other ddt_phys_t slots, reads will be issued for those instead
162 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
163 * the caller, and a copy is stashed on the entry's dde_repair_abd.
164 *
165 * During the end-of-txg sync, any entries with a dde_repair_abd get a
166 * "rewrite" write issued for the original block pointer, with the data read
167 * from the alternate block. If the block is actually damaged, this will invoke
168 * the pool's "self-healing" mechanism, and repair the block.
169 *
170 * If the "fast_dedup" feature is enabled, the "flat phys" option will be in
171 * use, so there is only ever one ddt_phys_t slot. The repair process will
172 * still happen in this case, though it is unlikely to succeed as there will
173 * usually be no other equivalent blocks to fall back on (though there might
174 * be, if this was an early version of a dedup'd block that has since been
175 * extended).
176 *
177 * Note that this repair mechanism is in addition to and separate from the
178 * regular OpenZFS scrub and self-healing mechanisms.
179 *
180 * ## Scanning (scrub/resilver)
181 *
182 * If dedup is active, the scrub machinery will walk the dedup table first, and
183 * scrub all blocks with refcnt > 1 first. After that it will move on to the
184 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
185 * In this way, heavily deduplicated blocks are only scrubbed once. See the
186 * commentary on dsl_scan_ddt() for more details.
187 *
188 * Walking the DDT is done via ddt_walk(). The current position is stored in a
189 * ddt_bookmark_t, which represents a stable position in the storage object.
190 * This bookmark is stored by the scan machinery, and must reference the same
191 * position on the object even if the object changes, the pool is exported, or
192 * OpenZFS is upgraded.
193 *
194 * If the "fast_dedup" feature is enabled and the table has a log, the scan
195 * cannot begin until entries on the log are flushed, as the on-disk log has no
196 * concept of a "stable position". Instead, the log flushing process will enter
197 * a more aggressive mode, to flush out as much as is necesary as soon as
198 * possible, in order to begin the scan as soon as possible.
199 *
200 * ## Interaction with block cloning
201 *
202 * If block cloning and dedup are both enabled on a pool, BRT will look for the
203 * dedup bit on an incoming block pointer. If set, it will call into the DDT
204 * (ddt_addref()) to add a reference to the block, instead of adding a
205 * reference to the BRT. See brt_pending_apply().
206 */
207
208 /*
209 * These are the only checksums valid for dedup. They must match the list
210 * from dedup_table in zfs_prop.c
211 */
212 #define DDT_CHECKSUM_VALID(c) \
213 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
214 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
215 c == ZIO_CHECKSUM_BLAKE3)
216
217 static kmem_cache_t *ddt_cache;
218
219 static kmem_cache_t *ddt_entry_flat_cache;
220 static kmem_cache_t *ddt_entry_trad_cache;
221
222 #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE)
223 #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE)
224
225 #define DDT_ENTRY_SIZE(ddt) \
226 _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE)
227
228 /*
229 * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
230 */
231 int zfs_dedup_prefetch = 0;
232
233 /*
234 * If the dedup class cannot satisfy a DDT allocation, treat as over quota
235 * for this many TXGs.
236 */
237 uint_t dedup_class_wait_txgs = 5;
238
239 /*
240 * How many DDT prune entries to add to the DDT sync AVL tree.
241 * Note these addtional entries have a memory footprint of a
242 * ddt_entry_t (216 bytes).
243 */
244 static uint32_t zfs_ddt_prunes_per_txg = 50000;
245
246 /*
247 * For testing, synthesize aged DDT entries
248 * (in global scope for ztest)
249 */
250 boolean_t ddt_prune_artificial_age = B_FALSE;
251 boolean_t ddt_dump_prune_histogram = B_FALSE;
252
253 /*
254 * Minimum time to flush per txg.
255 */
256 uint_t zfs_dedup_log_flush_min_time_ms = 1000;
257
258 /*
259 * Minimum entries to flush per txg.
260 */
261 uint_t zfs_dedup_log_flush_entries_min = 200;
262
263 /*
264 * Target number of TXGs until the whole dedup log has been flushed.
265 * The log size will float around this value times the ingest rate.
266 */
267 uint_t zfs_dedup_log_flush_txgs = 100;
268
269 /*
270 * Maximum entries to flush per txg. Used for testing the dedup log.
271 */
272 uint_t zfs_dedup_log_flush_entries_max = UINT_MAX;
273
274 /*
275 * Soft cap for the size of the current dedup log. If the log is larger
276 * than this size, we slightly increase the aggressiveness of the flushing to
277 * try to bring it back down to the soft cap.
278 */
279 uint_t zfs_dedup_log_cap = UINT_MAX;
280
281 /*
282 * If this is set to B_TRUE, the cap above acts more like a hard cap:
283 * flushing is significantly more aggressive, increasing the minimum amount we
284 * flush per txg, as well as the maximum.
285 */
286 boolean_t zfs_dedup_log_hard_cap = B_FALSE;
287
288 /*
289 * Number of txgs to average flow rates across.
290 */
291 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10;
292
293 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
294 &ddt_zap_ops,
295 };
296
297 static const char *const ddt_class_name[DDT_CLASSES] = {
298 "ditto",
299 "duplicate",
300 "unique",
301 };
302
303 /*
304 * DDT feature flags automatically enabled for each on-disk version. Note that
305 * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled.
306 */
307 static const uint64_t ddt_version_flags[] = {
308 [DDT_VERSION_LEGACY] = 0,
309 [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG,
310 };
311
312 /* per-DDT kstats */
313 typedef struct {
314 /* total lookups and whether they returned new or existing entries */
315 kstat_named_t dds_lookup;
316 kstat_named_t dds_lookup_new;
317 kstat_named_t dds_lookup_existing;
318
319 /* entries found on live tree, and if we had to wait for load */
320 kstat_named_t dds_lookup_live_hit;
321 kstat_named_t dds_lookup_live_wait;
322 kstat_named_t dds_lookup_live_miss;
323
324 /* entries found on log trees */
325 kstat_named_t dds_lookup_log_hit;
326 kstat_named_t dds_lookup_log_active_hit;
327 kstat_named_t dds_lookup_log_flushing_hit;
328 kstat_named_t dds_lookup_log_miss;
329
330 /* entries found on store objects */
331 kstat_named_t dds_lookup_stored_hit;
332 kstat_named_t dds_lookup_stored_miss;
333
334 /* number of entries on log trees */
335 kstat_named_t dds_log_active_entries;
336 kstat_named_t dds_log_flushing_entries;
337
338 /* avg updated/flushed entries per txg */
339 kstat_named_t dds_log_ingest_rate;
340 kstat_named_t dds_log_flush_rate;
341 kstat_named_t dds_log_flush_time_rate;
342 } ddt_kstats_t;
343
344 static const ddt_kstats_t ddt_kstats_template = {
345 { "lookup", KSTAT_DATA_UINT64 },
346 { "lookup_new", KSTAT_DATA_UINT64 },
347 { "lookup_existing", KSTAT_DATA_UINT64 },
348 { "lookup_live_hit", KSTAT_DATA_UINT64 },
349 { "lookup_live_wait", KSTAT_DATA_UINT64 },
350 { "lookup_live_miss", KSTAT_DATA_UINT64 },
351 { "lookup_log_hit", KSTAT_DATA_UINT64 },
352 { "lookup_log_active_hit", KSTAT_DATA_UINT64 },
353 { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 },
354 { "lookup_log_miss", KSTAT_DATA_UINT64 },
355 { "lookup_stored_hit", KSTAT_DATA_UINT64 },
356 { "lookup_stored_miss", KSTAT_DATA_UINT64 },
357 { "log_active_entries", KSTAT_DATA_UINT64 },
358 { "log_flushing_entries", KSTAT_DATA_UINT64 },
359 { "log_ingest_rate", KSTAT_DATA_UINT32 },
360 { "log_flush_rate", KSTAT_DATA_UINT32 },
361 { "log_flush_time_rate", KSTAT_DATA_UINT32 },
362 };
363
364 #ifdef _KERNEL
365 #define _DDT_KSTAT_STAT(ddt, stat) \
366 &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64
367 #define DDT_KSTAT_BUMP(ddt, stat) \
368 do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0)
369 #define DDT_KSTAT_ADD(ddt, stat, val) \
370 do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
371 #define DDT_KSTAT_SUB(ddt, stat, val) \
372 do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
373 #define DDT_KSTAT_SET(ddt, stat, val) \
374 do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
375 #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0)
376 #else
377 #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0)
378 #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0)
379 #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0)
380 #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0)
381 #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0)
382 #endif /* _KERNEL */
383
384
385 static void
ddt_object_create(ddt_t * ddt,ddt_type_t type,ddt_class_t class,dmu_tx_t * tx)386 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
387 dmu_tx_t *tx)
388 {
389 spa_t *spa = ddt->ddt_spa;
390 objset_t *os = ddt->ddt_os;
391 uint64_t *objectp = &ddt->ddt_object[type][class];
392 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
393 ZCHECKSUM_FLAG_DEDUP;
394 char name[DDT_NAMELEN];
395
396 ASSERT3U(ddt->ddt_dir_object, >, 0);
397
398 ddt_object_name(ddt, type, class, name);
399
400 ASSERT3U(*objectp, ==, 0);
401 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
402 ASSERT3U(*objectp, !=, 0);
403
404 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
405
406 VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1,
407 objectp, tx));
408
409 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
410 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
411 &ddt->ddt_histogram[type][class], tx));
412 }
413
414 static void
ddt_object_destroy(ddt_t * ddt,ddt_type_t type,ddt_class_t class,dmu_tx_t * tx)415 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
416 dmu_tx_t *tx)
417 {
418 spa_t *spa = ddt->ddt_spa;
419 objset_t *os = ddt->ddt_os;
420 uint64_t *objectp = &ddt->ddt_object[type][class];
421 uint64_t count;
422 char name[DDT_NAMELEN];
423
424 ASSERT3U(ddt->ddt_dir_object, >, 0);
425
426 ddt_object_name(ddt, type, class, name);
427
428 ASSERT3U(*objectp, !=, 0);
429 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
430 VERIFY0(ddt_object_count(ddt, type, class, &count));
431 VERIFY0(count);
432 VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx));
433 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
434 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
435 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
436
437 *objectp = 0;
438 }
439
440 static int
ddt_object_load(ddt_t * ddt,ddt_type_t type,ddt_class_t class)441 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
442 {
443 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
444 dmu_object_info_t doi;
445 uint64_t count;
446 char name[DDT_NAMELEN];
447 int error;
448
449 if (ddt->ddt_dir_object == 0) {
450 /*
451 * If we're configured but the containing dir doesn't exist
452 * yet, then this object can't possibly exist either.
453 */
454 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
455 return (SET_ERROR(ENOENT));
456 }
457
458 ddt_object_name(ddt, type, class, name);
459
460 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name,
461 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
462 if (error != 0)
463 return (error);
464
465 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
466 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
467 &ddt->ddt_histogram[type][class]);
468 if (error != 0)
469 return (error);
470
471 /*
472 * Seed the cached statistics.
473 */
474 error = ddt_object_info(ddt, type, class, &doi);
475 if (error)
476 return (error);
477
478 error = ddt_object_count(ddt, type, class, &count);
479 if (error)
480 return (error);
481
482 ddo->ddo_count = count;
483 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
484 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
485
486 return (0);
487 }
488
489 static void
ddt_object_sync(ddt_t * ddt,ddt_type_t type,ddt_class_t class,dmu_tx_t * tx)490 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
491 dmu_tx_t *tx)
492 {
493 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
494 dmu_object_info_t doi;
495 uint64_t count;
496 char name[DDT_NAMELEN];
497
498 ddt_object_name(ddt, type, class, name);
499
500 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
501 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
502 &ddt->ddt_histogram[type][class], tx));
503
504 /*
505 * Cache DDT statistics; this is the only time they'll change.
506 */
507 VERIFY0(ddt_object_info(ddt, type, class, &doi));
508 VERIFY0(ddt_object_count(ddt, type, class, &count));
509
510 ddo->ddo_count = count;
511 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
512 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
513 }
514
515 static boolean_t
ddt_object_exists(ddt_t * ddt,ddt_type_t type,ddt_class_t class)516 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
517 {
518 return (!!ddt->ddt_object[type][class]);
519 }
520
521 static int
ddt_object_lookup(ddt_t * ddt,ddt_type_t type,ddt_class_t class,ddt_entry_t * dde)522 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
523 ddt_entry_t *dde)
524 {
525 if (!ddt_object_exists(ddt, type, class))
526 return (SET_ERROR(ENOENT));
527
528 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
529 ddt->ddt_object[type][class], &dde->dde_key,
530 dde->dde_phys, DDT_PHYS_SIZE(ddt)));
531 }
532
533 static int
ddt_object_contains(ddt_t * ddt,ddt_type_t type,ddt_class_t class,const ddt_key_t * ddk)534 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
535 const ddt_key_t *ddk)
536 {
537 if (!ddt_object_exists(ddt, type, class))
538 return (SET_ERROR(ENOENT));
539
540 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
541 ddt->ddt_object[type][class], ddk));
542 }
543
544 static void
ddt_object_prefetch(ddt_t * ddt,ddt_type_t type,ddt_class_t class,const ddt_key_t * ddk)545 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
546 const ddt_key_t *ddk)
547 {
548 if (!ddt_object_exists(ddt, type, class))
549 return;
550
551 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
552 ddt->ddt_object[type][class], ddk);
553 }
554
555 static void
ddt_object_prefetch_all(ddt_t * ddt,ddt_type_t type,ddt_class_t class)556 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
557 {
558 if (!ddt_object_exists(ddt, type, class))
559 return;
560
561 ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os,
562 ddt->ddt_object[type][class]);
563 }
564
565 static int
ddt_object_update(ddt_t * ddt,ddt_type_t type,ddt_class_t class,const ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)566 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
567 const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
568 {
569 ASSERT(ddt_object_exists(ddt, type, class));
570
571 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
572 ddt->ddt_object[type][class], &ddlwe->ddlwe_key,
573 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx));
574 }
575
576 static int
ddt_object_remove(ddt_t * ddt,ddt_type_t type,ddt_class_t class,const ddt_key_t * ddk,dmu_tx_t * tx)577 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
578 const ddt_key_t *ddk, dmu_tx_t *tx)
579 {
580 ASSERT(ddt_object_exists(ddt, type, class));
581
582 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
583 ddt->ddt_object[type][class], ddk, tx));
584 }
585
586 int
ddt_object_walk(ddt_t * ddt,ddt_type_t type,ddt_class_t class,uint64_t * walk,ddt_lightweight_entry_t * ddlwe)587 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
588 uint64_t *walk, ddt_lightweight_entry_t *ddlwe)
589 {
590 ASSERT(ddt_object_exists(ddt, type, class));
591
592 int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
593 ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key,
594 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
595 if (error == 0) {
596 ddlwe->ddlwe_type = type;
597 ddlwe->ddlwe_class = class;
598 return (0);
599 }
600 return (error);
601 }
602
603 int
ddt_object_count(ddt_t * ddt,ddt_type_t type,ddt_class_t class,uint64_t * count)604 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
605 uint64_t *count)
606 {
607 ASSERT(ddt_object_exists(ddt, type, class));
608
609 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
610 ddt->ddt_object[type][class], count));
611 }
612
613 int
ddt_object_info(ddt_t * ddt,ddt_type_t type,ddt_class_t class,dmu_object_info_t * doi)614 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
615 dmu_object_info_t *doi)
616 {
617 if (!ddt_object_exists(ddt, type, class))
618 return (SET_ERROR(ENOENT));
619
620 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
621 doi));
622 }
623
624 void
ddt_object_name(ddt_t * ddt,ddt_type_t type,ddt_class_t class,char * name)625 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
626 char *name)
627 {
628 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
629 zio_checksum_table[ddt->ddt_checksum].ci_name,
630 ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
631 }
632
633 void
ddt_bp_fill(const ddt_univ_phys_t * ddp,ddt_phys_variant_t v,blkptr_t * bp,uint64_t txg)634 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
635 blkptr_t *bp, uint64_t txg)
636 {
637 ASSERT3U(txg, !=, 0);
638 ASSERT3U(v, <, DDT_PHYS_NONE);
639 uint64_t phys_birth;
640 const dva_t *dvap;
641
642 if (v == DDT_PHYS_FLAT) {
643 phys_birth = ddp->ddp_flat.ddp_phys_birth;
644 dvap = ddp->ddp_flat.ddp_dva;
645 } else {
646 phys_birth = ddp->ddp_trad[v].ddp_phys_birth;
647 dvap = ddp->ddp_trad[v].ddp_dva;
648 }
649
650 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
651 bp->blk_dva[d] = dvap[d];
652 BP_SET_BIRTH(bp, txg, phys_birth);
653 }
654
655 /*
656 * The bp created via this function may be used for repairs and scrub, but it
657 * will be missing the salt / IV required to do a full decrypting read.
658 */
659 void
ddt_bp_create(enum zio_checksum checksum,const ddt_key_t * ddk,const ddt_univ_phys_t * ddp,ddt_phys_variant_t v,blkptr_t * bp)660 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
661 const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp)
662 {
663 BP_ZERO(bp);
664
665 if (ddp != NULL)
666 ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v));
667
668 bp->blk_cksum = ddk->ddk_cksum;
669
670 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
671 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
672 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
673 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
674 BP_SET_FILL(bp, 1);
675 BP_SET_CHECKSUM(bp, checksum);
676 BP_SET_TYPE(bp, DMU_OT_DEDUP);
677 BP_SET_LEVEL(bp, 0);
678 BP_SET_DEDUP(bp, 1);
679 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
680 }
681
682 void
ddt_key_fill(ddt_key_t * ddk,const blkptr_t * bp)683 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
684 {
685 ddk->ddk_cksum = bp->blk_cksum;
686 ddk->ddk_prop = 0;
687
688 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
689
690 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
691 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
692 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
693 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
694 }
695
696 void
ddt_phys_extend(ddt_univ_phys_t * ddp,ddt_phys_variant_t v,const blkptr_t * bp)697 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp)
698 {
699 ASSERT3U(v, <, DDT_PHYS_NONE);
700 int bp_ndvas = BP_GET_NDVAS(bp);
701 int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ?
702 SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP;
703 dva_t *dvas = (v == DDT_PHYS_FLAT) ?
704 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
705
706 int s = 0, d = 0;
707 while (s < bp_ndvas && d < ddp_max_dvas) {
708 if (DVA_IS_VALID(&dvas[d])) {
709 d++;
710 continue;
711 }
712 dvas[d] = bp->blk_dva[s];
713 s++; d++;
714 }
715
716 /*
717 * If the caller offered us more DVAs than we can fit, something has
718 * gone wrong in their accounting. zio_ddt_write() should never ask for
719 * more than we need.
720 */
721 ASSERT3U(s, ==, bp_ndvas);
722
723 if (BP_IS_ENCRYPTED(bp))
724 dvas[2] = bp->blk_dva[2];
725
726 if (ddt_phys_birth(ddp, v) == 0) {
727 if (v == DDT_PHYS_FLAT)
728 ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp);
729 else
730 ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp);
731 }
732 }
733
734 void
ddt_phys_unextend(ddt_univ_phys_t * cur,ddt_univ_phys_t * orig,ddt_phys_variant_t v)735 ddt_phys_unextend(ddt_univ_phys_t *cur, ddt_univ_phys_t *orig,
736 ddt_phys_variant_t v)
737 {
738 ASSERT3U(v, <, DDT_PHYS_NONE);
739 dva_t *cur_dvas = (v == DDT_PHYS_FLAT) ?
740 cur->ddp_flat.ddp_dva : cur->ddp_trad[v].ddp_dva;
741 dva_t *orig_dvas = (v == DDT_PHYS_FLAT) ?
742 orig->ddp_flat.ddp_dva : orig->ddp_trad[v].ddp_dva;
743
744 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
745 cur_dvas[d] = orig_dvas[d];
746
747 if (ddt_phys_birth(orig, v) == 0) {
748 if (v == DDT_PHYS_FLAT)
749 cur->ddp_flat.ddp_phys_birth = 0;
750 else
751 cur->ddp_trad[v].ddp_phys_birth = 0;
752 }
753 }
754
755 void
ddt_phys_copy(ddt_univ_phys_t * dst,const ddt_univ_phys_t * src,ddt_phys_variant_t v)756 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src,
757 ddt_phys_variant_t v)
758 {
759 ASSERT3U(v, <, DDT_PHYS_NONE);
760
761 if (v == DDT_PHYS_FLAT)
762 dst->ddp_flat = src->ddp_flat;
763 else
764 dst->ddp_trad[v] = src->ddp_trad[v];
765 }
766
767 void
ddt_phys_clear(ddt_univ_phys_t * ddp,ddt_phys_variant_t v)768 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
769 {
770 ASSERT3U(v, <, DDT_PHYS_NONE);
771
772 if (v == DDT_PHYS_FLAT)
773 memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE);
774 else
775 memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX);
776 }
777
778 static uint64_t
ddt_class_start(void)779 ddt_class_start(void)
780 {
781 uint64_t start = gethrestime_sec();
782
783 if (ddt_prune_artificial_age) {
784 /*
785 * debug aide -- simulate a wider distribution
786 * so we don't have to wait for an aged DDT
787 * to test prune.
788 */
789 int range = 1 << 21;
790 int percent = random_in_range(100);
791 if (percent < 50) {
792 range = range >> 4;
793 } else if (percent > 75) {
794 range /= 2;
795 }
796 start -= random_in_range(range);
797 }
798
799 return (start);
800 }
801
802 void
ddt_phys_addref(ddt_univ_phys_t * ddp,ddt_phys_variant_t v)803 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
804 {
805 ASSERT3U(v, <, DDT_PHYS_NONE);
806
807 if (v == DDT_PHYS_FLAT)
808 ddp->ddp_flat.ddp_refcnt++;
809 else
810 ddp->ddp_trad[v].ddp_refcnt++;
811 }
812
813 uint64_t
ddt_phys_decref(ddt_univ_phys_t * ddp,ddt_phys_variant_t v)814 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
815 {
816 ASSERT3U(v, <, DDT_PHYS_NONE);
817
818 uint64_t *refcntp;
819
820 if (v == DDT_PHYS_FLAT)
821 refcntp = &ddp->ddp_flat.ddp_refcnt;
822 else
823 refcntp = &ddp->ddp_trad[v].ddp_refcnt;
824
825 ASSERT3U(*refcntp, >, 0);
826 (*refcntp)--;
827 return (*refcntp);
828 }
829
830 static void
ddt_phys_free(ddt_t * ddt,ddt_key_t * ddk,ddt_univ_phys_t * ddp,ddt_phys_variant_t v,uint64_t txg)831 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp,
832 ddt_phys_variant_t v, uint64_t txg)
833 {
834 blkptr_t blk;
835
836 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
837
838 /*
839 * We clear the dedup bit so that zio_free() will actually free the
840 * space, rather than just decrementing the refcount in the DDT.
841 */
842 BP_SET_DEDUP(&blk, 0);
843
844 ddt_phys_clear(ddp, v);
845 zio_free(ddt->ddt_spa, txg, &blk);
846 }
847
848 uint64_t
ddt_phys_birth(const ddt_univ_phys_t * ddp,ddt_phys_variant_t v)849 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
850 {
851 ASSERT3U(v, <, DDT_PHYS_NONE);
852
853 if (v == DDT_PHYS_FLAT)
854 return (ddp->ddp_flat.ddp_phys_birth);
855 else
856 return (ddp->ddp_trad[v].ddp_phys_birth);
857 }
858
859 int
ddt_phys_is_gang(const ddt_univ_phys_t * ddp,ddt_phys_variant_t v)860 ddt_phys_is_gang(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
861 {
862 ASSERT3U(v, <, DDT_PHYS_NONE);
863
864 const dva_t *dvas = (v == DDT_PHYS_FLAT) ?
865 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
866
867 return (DVA_GET_GANG(&dvas[0]));
868 }
869
870 int
ddt_phys_dva_count(const ddt_univ_phys_t * ddp,ddt_phys_variant_t v,boolean_t encrypted)871 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
872 boolean_t encrypted)
873 {
874 ASSERT3U(v, <, DDT_PHYS_NONE);
875
876 const dva_t *dvas = (v == DDT_PHYS_FLAT) ?
877 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
878
879 return (DVA_IS_VALID(&dvas[0]) +
880 DVA_IS_VALID(&dvas[1]) +
881 DVA_IS_VALID(&dvas[2]) * !encrypted);
882 }
883
884 ddt_phys_variant_t
ddt_phys_select(const ddt_t * ddt,const ddt_entry_t * dde,const blkptr_t * bp)885 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp)
886 {
887 if (dde == NULL)
888 return (DDT_PHYS_NONE);
889
890 const ddt_univ_phys_t *ddp = dde->dde_phys;
891
892 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
893 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) &&
894 BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) {
895 return (DDT_PHYS_FLAT);
896 }
897 } else /* traditional phys */ {
898 for (int p = 0; p < DDT_PHYS_MAX; p++) {
899 if (DVA_EQUAL(BP_IDENTITY(bp),
900 &ddp->ddp_trad[p].ddp_dva[0]) &&
901 BP_GET_BIRTH(bp) ==
902 ddp->ddp_trad[p].ddp_phys_birth) {
903 return (p);
904 }
905 }
906 }
907 return (DDT_PHYS_NONE);
908 }
909
910 uint64_t
ddt_phys_refcnt(const ddt_univ_phys_t * ddp,ddt_phys_variant_t v)911 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
912 {
913 ASSERT3U(v, <, DDT_PHYS_NONE);
914
915 if (v == DDT_PHYS_FLAT)
916 return (ddp->ddp_flat.ddp_refcnt);
917 else
918 return (ddp->ddp_trad[v].ddp_refcnt);
919 }
920
921 uint64_t
ddt_phys_total_refcnt(const ddt_t * ddt,const ddt_univ_phys_t * ddp)922 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp)
923 {
924 uint64_t refcnt = 0;
925
926 if (ddt->ddt_flags & DDT_FLAG_FLAT)
927 refcnt = ddp->ddp_flat.ddp_refcnt;
928 else
929 for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++)
930 refcnt += ddp->ddp_trad[v].ddp_refcnt;
931
932 return (refcnt);
933 }
934
935 ddt_t *
ddt_select(spa_t * spa,const blkptr_t * bp)936 ddt_select(spa_t *spa, const blkptr_t *bp)
937 {
938 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
939 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
940 }
941
942 void
ddt_enter(ddt_t * ddt)943 ddt_enter(ddt_t *ddt)
944 {
945 mutex_enter(&ddt->ddt_lock);
946 }
947
948 void
ddt_exit(ddt_t * ddt)949 ddt_exit(ddt_t *ddt)
950 {
951 mutex_exit(&ddt->ddt_lock);
952 }
953
954 void
ddt_init(void)955 ddt_init(void)
956 {
957 ddt_cache = kmem_cache_create("ddt_cache",
958 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
959 ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache",
960 DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
961 ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache",
962 DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
963
964 ddt_log_init();
965 }
966
967 void
ddt_fini(void)968 ddt_fini(void)
969 {
970 ddt_log_fini();
971
972 kmem_cache_destroy(ddt_entry_trad_cache);
973 kmem_cache_destroy(ddt_entry_flat_cache);
974 kmem_cache_destroy(ddt_cache);
975 }
976
977 static ddt_entry_t *
ddt_alloc(const ddt_t * ddt,const ddt_key_t * ddk)978 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk)
979 {
980 ddt_entry_t *dde;
981
982 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
983 dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP);
984 memset(dde, 0, DDT_ENTRY_FLAT_SIZE);
985 } else {
986 dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP);
987 memset(dde, 0, DDT_ENTRY_TRAD_SIZE);
988 }
989
990 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
991
992 dde->dde_key = *ddk;
993
994 return (dde);
995 }
996
997 void
ddt_alloc_entry_io(ddt_entry_t * dde)998 ddt_alloc_entry_io(ddt_entry_t *dde)
999 {
1000 if (dde->dde_io != NULL)
1001 return;
1002
1003 dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP);
1004 }
1005
1006 static void
ddt_free(const ddt_t * ddt,ddt_entry_t * dde)1007 ddt_free(const ddt_t *ddt, ddt_entry_t *dde)
1008 {
1009 if (dde->dde_io != NULL) {
1010 for (int p = 0; p < DDT_NPHYS(ddt); p++)
1011 ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL);
1012
1013 if (dde->dde_io->dde_repair_abd != NULL)
1014 abd_free(dde->dde_io->dde_repair_abd);
1015
1016 kmem_free(dde->dde_io, sizeof (ddt_entry_io_t));
1017 }
1018
1019 cv_destroy(&dde->dde_cv);
1020 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
1021 ddt_entry_flat_cache : ddt_entry_trad_cache, dde);
1022 }
1023
1024 void
ddt_remove(ddt_t * ddt,ddt_entry_t * dde)1025 ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
1026 {
1027 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
1028
1029 /* Entry is still in the log, so charge the entry back to it */
1030 if (dde->dde_flags & DDE_FLAG_LOGGED) {
1031 ddt_lightweight_entry_t ddlwe;
1032 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
1033 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
1034 }
1035
1036 avl_remove(&ddt->ddt_tree, dde);
1037 ddt_free(ddt, dde);
1038 }
1039
1040 /*
1041 * We're considered over quota when we hit 85% full, or for larger drives,
1042 * when there is less than 8GB free.
1043 */
1044 static boolean_t
ddt_special_over_quota(metaslab_class_t * mc)1045 ddt_special_over_quota(metaslab_class_t *mc)
1046 {
1047 uint64_t allocated = metaslab_class_get_alloc(mc);
1048 uint64_t capacity = metaslab_class_get_space(mc);
1049 uint64_t limit = MAX(capacity * 85 / 100,
1050 (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0);
1051 return (allocated >= limit);
1052 }
1053
1054 /*
1055 * Check if the DDT is over its quota. This can be due to a few conditions:
1056 * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize
1057 * exceeds this limit
1058 *
1059 * 2. 'dedup_table_quota' property is set to automatic and
1060 * a. the dedup or special allocation class could not satisfy a DDT
1061 * allocation in a recent transaction
1062 * b. the dedup or special allocation class has exceeded its 85% limit
1063 */
1064 static boolean_t
ddt_over_quota(spa_t * spa)1065 ddt_over_quota(spa_t *spa)
1066 {
1067 if (spa->spa_dedup_table_quota == 0)
1068 return (B_FALSE);
1069
1070 if (spa->spa_dedup_table_quota != UINT64_MAX)
1071 return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota);
1072
1073 /*
1074 * Over quota if have to allocate outside of the dedup/special class.
1075 */
1076 if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg +
1077 dedup_class_wait_txgs) {
1078 /* Waiting for some deferred frees to be processed */
1079 return (B_TRUE);
1080 }
1081
1082 /*
1083 * For automatic quota, table size is limited by dedup or special class
1084 */
1085 if (spa_has_dedup(spa))
1086 return (ddt_special_over_quota(spa_dedup_class(spa)));
1087 else if (spa_special_has_ddt(spa))
1088 return (ddt_special_over_quota(spa_special_class(spa)));
1089
1090 return (B_FALSE);
1091 }
1092
1093 void
ddt_prefetch_all(spa_t * spa)1094 ddt_prefetch_all(spa_t *spa)
1095 {
1096 /*
1097 * Load all DDT entries for each type/class combination. This is
1098 * indended to perform a prefetch on all such blocks. For the same
1099 * reason that ddt_prefetch isn't locked, this is also not locked.
1100 */
1101 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1102 ddt_t *ddt = spa->spa_ddt[c];
1103 if (!ddt)
1104 continue;
1105
1106 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1107 for (ddt_class_t class = 0; class < DDT_CLASSES;
1108 class++) {
1109 ddt_object_prefetch_all(ddt, type, class);
1110 }
1111 }
1112 }
1113 }
1114
1115 static int ddt_configure(ddt_t *ddt, boolean_t new);
1116
1117 /*
1118 * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them
1119 * to the ones in the entry. If they're different, then the passed-in BP is
1120 * from a previous generation of this entry (ie was previously pruned) and we
1121 * have to act like the entry doesn't exist at all.
1122 *
1123 * This should only happen during a lookup to free the block (zio_ddt_free()).
1124 *
1125 * XXX this is similar in spirit to ddt_phys_select(), maybe can combine
1126 * -- robn, 2024-02-09
1127 */
1128 static boolean_t
ddt_entry_lookup_is_valid(ddt_t * ddt,const blkptr_t * bp,ddt_entry_t * dde)1129 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde)
1130 {
1131 /* If the BP has no DVAs, then this entry is good */
1132 uint_t ndvas = BP_GET_NDVAS(bp);
1133 if (ndvas == 0)
1134 return (B_TRUE);
1135
1136 /*
1137 * Only checking the phys for the copies. For flat, there's only one;
1138 * for trad it'll be the one that has the matching set of DVAs.
1139 */
1140 const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ?
1141 dde->dde_phys->ddp_flat.ddp_dva :
1142 dde->dde_phys->ddp_trad[ndvas].ddp_dva;
1143
1144 /*
1145 * Compare entry DVAs with the BP. They should all be there, but
1146 * there's not really anything we can do if its only partial anyway,
1147 * that's an error somewhere else, maybe long ago.
1148 */
1149 uint_t d;
1150 for (d = 0; d < ndvas; d++)
1151 if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d]))
1152 return (B_FALSE);
1153 ASSERT3U(d, ==, ndvas);
1154
1155 return (B_TRUE);
1156 }
1157
1158 ddt_entry_t *
ddt_lookup(ddt_t * ddt,const blkptr_t * bp,boolean_t verify)1159 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t verify)
1160 {
1161 spa_t *spa = ddt->ddt_spa;
1162 ddt_key_t search;
1163 ddt_entry_t *dde;
1164 ddt_type_t type;
1165 ddt_class_t class;
1166 avl_index_t where;
1167 int error;
1168
1169 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
1170
1171 if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) {
1172 /*
1173 * This is the first use of this DDT since the pool was
1174 * created; finish getting it ready for use.
1175 */
1176 VERIFY0(ddt_configure(ddt, B_TRUE));
1177 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
1178 }
1179
1180 DDT_KSTAT_BUMP(ddt, dds_lookup);
1181
1182 ddt_key_fill(&search, bp);
1183
1184 /* Find an existing live entry */
1185 dde = avl_find(&ddt->ddt_tree, &search, &where);
1186 if (dde != NULL) {
1187 /* If we went over quota, act like we didn't find it */
1188 if (dde->dde_flags & DDE_FLAG_OVERQUOTA)
1189 return (NULL);
1190
1191 /* If it's already loaded, we can just return it. */
1192 DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit);
1193 if (dde->dde_flags & DDE_FLAG_LOADED) {
1194 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde))
1195 return (dde);
1196 return (NULL);
1197 }
1198
1199 /* Someone else is loading it, wait for it. */
1200 dde->dde_waiters++;
1201 DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait);
1202 while (!(dde->dde_flags & DDE_FLAG_LOADED))
1203 cv_wait(&dde->dde_cv, &ddt->ddt_lock);
1204 dde->dde_waiters--;
1205
1206 /* Loaded but over quota, forget we were ever here */
1207 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) {
1208 if (dde->dde_waiters == 0) {
1209 avl_remove(&ddt->ddt_tree, dde);
1210 ddt_free(ddt, dde);
1211 }
1212 return (NULL);
1213 }
1214
1215 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1216
1217 /* Make sure the loaded entry matches the BP */
1218 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde))
1219 return (dde);
1220 return (NULL);
1221 } else
1222 DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss);
1223
1224 /* Time to make a new entry. */
1225 dde = ddt_alloc(ddt, &search);
1226
1227 /* Record the time this class was created (used by ddt prune) */
1228 if (ddt->ddt_flags & DDT_FLAG_FLAT)
1229 dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start();
1230
1231 avl_insert(&ddt->ddt_tree, dde, where);
1232
1233 /* If its in the log tree, we can "load" it from there */
1234 if (ddt->ddt_flags & DDT_FLAG_LOG) {
1235 ddt_lightweight_entry_t ddlwe;
1236
1237 if (ddt_log_find_key(ddt, &search, &ddlwe)) {
1238 /*
1239 * See if we have the key first, and if so, set up
1240 * the entry.
1241 */
1242 dde->dde_type = ddlwe.ddlwe_type;
1243 dde->dde_class = ddlwe.ddlwe_class;
1244 memcpy(dde->dde_phys, &ddlwe.ddlwe_phys,
1245 DDT_PHYS_SIZE(ddt));
1246 /* Whatever we found isn't valid for this BP, eject */
1247 if (verify &&
1248 !ddt_entry_lookup_is_valid(ddt, bp, dde)) {
1249 avl_remove(&ddt->ddt_tree, dde);
1250 ddt_free(ddt, dde);
1251 return (NULL);
1252 }
1253
1254 /* Remove it and count it */
1255 if (ddt_log_remove_key(ddt,
1256 ddt->ddt_log_active, &search)) {
1257 DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit);
1258 } else {
1259 VERIFY(ddt_log_remove_key(ddt,
1260 ddt->ddt_log_flushing, &search));
1261 DDT_KSTAT_BUMP(ddt,
1262 dds_lookup_log_flushing_hit);
1263 }
1264
1265 dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED;
1266
1267 DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit);
1268 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1269
1270 return (dde);
1271 }
1272
1273 DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss);
1274 }
1275
1276 /*
1277 * ddt_tree is now stable, so unlock and let everyone else keep moving.
1278 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
1279 * and go to sleep waiting for it above.
1280 */
1281 ddt_exit(ddt);
1282
1283 /* Search all store objects for the entry. */
1284 error = ENOENT;
1285 for (type = 0; type < DDT_TYPES; type++) {
1286 for (class = 0; class < DDT_CLASSES; class++) {
1287 error = ddt_object_lookup(ddt, type, class, dde);
1288 if (error != ENOENT) {
1289 ASSERT0(error);
1290 break;
1291 }
1292 }
1293 if (error != ENOENT)
1294 break;
1295 }
1296
1297 ddt_enter(ddt);
1298
1299 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
1300
1301 dde->dde_type = type; /* will be DDT_TYPES if no entry found */
1302 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */
1303
1304 boolean_t valid = B_TRUE;
1305
1306 if (dde->dde_type == DDT_TYPES &&
1307 dde->dde_class == DDT_CLASSES &&
1308 ddt_over_quota(spa)) {
1309 /* Over quota. If no one is waiting, clean up right now. */
1310 if (dde->dde_waiters == 0) {
1311 avl_remove(&ddt->ddt_tree, dde);
1312 ddt_free(ddt, dde);
1313 return (NULL);
1314 }
1315
1316 /* Flag cleanup required */
1317 dde->dde_flags |= DDE_FLAG_OVERQUOTA;
1318 } else if (error == 0) {
1319 /*
1320 * If what we loaded is no good for this BP and there's no one
1321 * waiting for it, we can just remove it and get out. If its no
1322 * good but there are waiters, we have to leave it, because we
1323 * don't know what they want. If its not needed we'll end up
1324 * taking an entry log/sync, but it can only happen if more
1325 * than one previous version of this block is being deleted at
1326 * the same time. This is extremely unlikely to happen and not
1327 * worth the effort to deal with without taking an entry
1328 * update.
1329 */
1330 valid = !verify || ddt_entry_lookup_is_valid(ddt, bp, dde);
1331 if (!valid && dde->dde_waiters == 0) {
1332 avl_remove(&ddt->ddt_tree, dde);
1333 ddt_free(ddt, dde);
1334 return (NULL);
1335 }
1336
1337 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit);
1338 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1339
1340 /*
1341 * The histograms only track inactive (stored or logged) blocks.
1342 * We've just put an entry onto the live list, so we need to
1343 * remove its counts. When its synced back, it'll be re-added
1344 * to the right one.
1345 *
1346 * We only do this when we successfully found it in the store.
1347 * error == ENOENT means this is a new entry, and so its already
1348 * not counted.
1349 */
1350 ddt_histogram_t *ddh =
1351 &ddt->ddt_histogram[dde->dde_type][dde->dde_class];
1352
1353 ddt_lightweight_entry_t ddlwe;
1354 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
1355 ddt_histogram_sub_entry(ddt, ddh, &ddlwe);
1356 } else {
1357 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss);
1358 DDT_KSTAT_BUMP(ddt, dds_lookup_new);
1359 }
1360
1361 /* Entry loaded, everyone can proceed now */
1362 dde->dde_flags |= DDE_FLAG_LOADED;
1363 cv_broadcast(&dde->dde_cv);
1364
1365 if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid)
1366 return (NULL);
1367
1368 return (dde);
1369 }
1370
1371 void
ddt_prefetch(spa_t * spa,const blkptr_t * bp)1372 ddt_prefetch(spa_t *spa, const blkptr_t *bp)
1373 {
1374 ddt_t *ddt;
1375 ddt_key_t ddk;
1376
1377 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
1378 return;
1379
1380 /*
1381 * We only remove the DDT once all tables are empty and only
1382 * prefetch dedup blocks when there are entries in the DDT.
1383 * Thus no locking is required as the DDT can't disappear on us.
1384 */
1385 ddt = ddt_select(spa, bp);
1386 ddt_key_fill(&ddk, bp);
1387
1388 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1389 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1390 ddt_object_prefetch(ddt, type, class, &ddk);
1391 }
1392 }
1393 }
1394
1395 /*
1396 * ddt_key_t comparison. Any struct wanting to make use of this function must
1397 * have the key as the first element. Casts it to N uint64_ts, and checks until
1398 * we find there's a difference. This is intended to match how ddt_zap.c drives
1399 * the ZAPs (first uint64_t as the key prehash), which will minimise the number
1400 * of ZAP blocks touched when flushing logged entries from an AVL walk. This is
1401 * not an invariant for this function though, should you wish to change it.
1402 */
1403 int
ddt_key_compare(const void * x1,const void * x2)1404 ddt_key_compare(const void *x1, const void *x2)
1405 {
1406 const uint64_t *k1 = (const uint64_t *)x1;
1407 const uint64_t *k2 = (const uint64_t *)x2;
1408
1409 int cmp;
1410 for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++)
1411 if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0))
1412 return (cmp);
1413
1414 return (0);
1415 }
1416
1417 /* Create the containing dir for this DDT and bump the feature count */
1418 static void
ddt_create_dir(ddt_t * ddt,dmu_tx_t * tx)1419 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx)
1420 {
1421 ASSERT3U(ddt->ddt_dir_object, ==, 0);
1422 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1423
1424 char name[DDT_NAMELEN];
1425 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1426 zio_checksum_table[ddt->ddt_checksum].ci_name);
1427
1428 ddt->ddt_dir_object = zap_create_link(ddt->ddt_os,
1429 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx);
1430
1431 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION,
1432 sizeof (uint64_t), 1, &ddt->ddt_version, tx));
1433 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS,
1434 sizeof (uint64_t), 1, &ddt->ddt_flags, tx));
1435
1436 spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1437 }
1438
1439 /* Destroy the containing dir and deactivate the feature */
1440 static void
ddt_destroy_dir(ddt_t * ddt,dmu_tx_t * tx)1441 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx)
1442 {
1443 ASSERT3U(ddt->ddt_dir_object, !=, 0);
1444 ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT);
1445 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1446
1447 char name[DDT_NAMELEN];
1448 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1449 zio_checksum_table[ddt->ddt_checksum].ci_name);
1450
1451 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1452 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1453 ASSERT(!ddt_object_exists(ddt, type, class));
1454 }
1455 }
1456
1457 ddt_log_destroy(ddt, tx);
1458
1459 uint64_t count;
1460 ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count));
1461 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object,
1462 DDT_DIR_VERSION));
1463 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS));
1464 ASSERT3U(count, ==, 2);
1465
1466 VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
1467 VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx));
1468
1469 ddt->ddt_dir_object = 0;
1470
1471 spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1472 }
1473
1474 /*
1475 * Determine, flags and on-disk layout from what's already stored. If there's
1476 * nothing stored, then if new is false, returns ENOENT, and if true, selects
1477 * based on pool config.
1478 */
1479 static int
ddt_configure(ddt_t * ddt,boolean_t new)1480 ddt_configure(ddt_t *ddt, boolean_t new)
1481 {
1482 spa_t *spa = ddt->ddt_spa;
1483 char name[DDT_NAMELEN];
1484 int error;
1485
1486 ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE);
1487
1488 boolean_t fdt_enabled =
1489 spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP);
1490 boolean_t fdt_active =
1491 spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP);
1492
1493 /*
1494 * First, look for the global DDT stats object. If its not there, then
1495 * there's never been a DDT written before ever, and we know we're
1496 * starting from scratch.
1497 */
1498 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1499 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1500 &spa->spa_ddt_stat_object);
1501 if (error != 0) {
1502 if (error != ENOENT)
1503 return (error);
1504 goto not_found;
1505 }
1506
1507 if (fdt_active) {
1508 /*
1509 * Now look for a DDT directory. If it exists, then it has
1510 * everything we need.
1511 */
1512 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1513 zio_checksum_table[ddt->ddt_checksum].ci_name);
1514
1515 error = zap_lookup(spa->spa_meta_objset,
1516 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1517 &ddt->ddt_dir_object);
1518 if (error == 0) {
1519 ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os);
1520
1521 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1522 DDT_DIR_VERSION, sizeof (uint64_t), 1,
1523 &ddt->ddt_version);
1524 if (error != 0)
1525 return (error);
1526
1527 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1528 DDT_DIR_FLAGS, sizeof (uint64_t), 1,
1529 &ddt->ddt_flags);
1530 if (error != 0)
1531 return (error);
1532
1533 if (ddt->ddt_version != DDT_VERSION_FDT) {
1534 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1535 "unknown version %llu", spa_name(spa),
1536 name, (u_longlong_t)ddt->ddt_version);
1537 return (SET_ERROR(EINVAL));
1538 }
1539
1540 if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) {
1541 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1542 "version=%llu unknown flags %llx",
1543 spa_name(spa), name,
1544 (u_longlong_t)ddt->ddt_flags,
1545 (u_longlong_t)ddt->ddt_version);
1546 return (SET_ERROR(EINVAL));
1547 }
1548
1549 return (0);
1550 }
1551 if (error != ENOENT)
1552 return (error);
1553 }
1554
1555 /* Any object in the root indicates a traditional setup. */
1556 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1557 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1558 ddt_object_name(ddt, type, class, name);
1559 uint64_t obj;
1560 error = zap_lookup(spa->spa_meta_objset,
1561 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t),
1562 1, &obj);
1563 if (error == ENOENT)
1564 continue;
1565 if (error != 0)
1566 return (error);
1567
1568 ddt->ddt_version = DDT_VERSION_LEGACY;
1569 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1570 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1571
1572 return (0);
1573 }
1574 }
1575
1576 not_found:
1577 if (!new)
1578 return (SET_ERROR(ENOENT));
1579
1580 /* Nothing on disk, so set up for the best version we can */
1581 if (fdt_enabled) {
1582 ddt->ddt_version = DDT_VERSION_FDT;
1583 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1584 ddt->ddt_dir_object = 0; /* create on first use */
1585 } else {
1586 ddt->ddt_version = DDT_VERSION_LEGACY;
1587 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1588 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1589 }
1590
1591 return (0);
1592 }
1593
1594 static void
ddt_table_alloc_kstats(ddt_t * ddt)1595 ddt_table_alloc_kstats(ddt_t *ddt)
1596 {
1597 char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa));
1598 char *name = kmem_asprintf("ddt_stats_%s",
1599 zio_checksum_table[ddt->ddt_checksum].ci_name);
1600
1601 ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED,
1602 sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1603 if (ddt->ddt_ksp != NULL) {
1604 ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP);
1605 memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t));
1606 ddt->ddt_ksp->ks_data = dds;
1607 kstat_install(ddt->ddt_ksp);
1608 }
1609
1610 kmem_strfree(name);
1611 kmem_strfree(mod);
1612 }
1613
1614 static ddt_t *
ddt_table_alloc(spa_t * spa,enum zio_checksum c)1615 ddt_table_alloc(spa_t *spa, enum zio_checksum c)
1616 {
1617 ddt_t *ddt;
1618
1619 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
1620 memset(ddt, 0, sizeof (ddt_t));
1621 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
1622 avl_create(&ddt->ddt_tree, ddt_key_compare,
1623 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1624 avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
1625 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1626
1627 ddt->ddt_checksum = c;
1628 ddt->ddt_spa = spa;
1629 ddt->ddt_os = spa->spa_meta_objset;
1630 ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1631 ddt->ddt_log_flush_pressure = 10;
1632
1633 ddt_log_alloc(ddt);
1634 ddt_table_alloc_kstats(ddt);
1635
1636 return (ddt);
1637 }
1638
1639 static void
ddt_table_free(ddt_t * ddt)1640 ddt_table_free(ddt_t *ddt)
1641 {
1642 if (ddt->ddt_ksp != NULL) {
1643 kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t));
1644 ddt->ddt_ksp->ks_data = NULL;
1645 kstat_delete(ddt->ddt_ksp);
1646 }
1647
1648 ddt_log_free(ddt);
1649 ASSERT0(avl_numnodes(&ddt->ddt_tree));
1650 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
1651 avl_destroy(&ddt->ddt_tree);
1652 avl_destroy(&ddt->ddt_repair_tree);
1653 mutex_destroy(&ddt->ddt_lock);
1654 kmem_cache_free(ddt_cache, ddt);
1655 }
1656
1657 void
ddt_create(spa_t * spa)1658 ddt_create(spa_t *spa)
1659 {
1660 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
1661
1662 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1663 if (DDT_CHECKSUM_VALID(c))
1664 spa->spa_ddt[c] = ddt_table_alloc(spa, c);
1665 }
1666 }
1667
1668 int
ddt_load(spa_t * spa)1669 ddt_load(spa_t *spa)
1670 {
1671 int error;
1672
1673 ddt_create(spa);
1674
1675 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1676 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1677 &spa->spa_ddt_stat_object);
1678 if (error)
1679 return (error == ENOENT ? 0 : error);
1680
1681 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1682 if (!DDT_CHECKSUM_VALID(c))
1683 continue;
1684
1685 ddt_t *ddt = spa->spa_ddt[c];
1686 error = ddt_configure(ddt, B_FALSE);
1687 if (error == ENOENT)
1688 continue;
1689 if (error != 0)
1690 return (error);
1691
1692 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1693 for (ddt_class_t class = 0; class < DDT_CLASSES;
1694 class++) {
1695 error = ddt_object_load(ddt, type, class);
1696 if (error != 0 && error != ENOENT)
1697 return (error);
1698 }
1699 }
1700
1701 error = ddt_log_load(ddt);
1702 if (error != 0 && error != ENOENT)
1703 return (error);
1704
1705 DDT_KSTAT_SET(ddt, dds_log_active_entries,
1706 avl_numnodes(&ddt->ddt_log_active->ddl_tree));
1707 DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
1708 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
1709
1710 /*
1711 * Seed the cached histograms.
1712 */
1713 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1714 sizeof (ddt->ddt_histogram));
1715 }
1716
1717 spa->spa_dedup_dspace = ~0ULL;
1718 spa->spa_dedup_dsize = ~0ULL;
1719
1720 return (0);
1721 }
1722
1723 void
ddt_unload(spa_t * spa)1724 ddt_unload(spa_t *spa)
1725 {
1726 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1727 if (spa->spa_ddt[c]) {
1728 ddt_table_free(spa->spa_ddt[c]);
1729 spa->spa_ddt[c] = NULL;
1730 }
1731 }
1732 }
1733
1734 boolean_t
ddt_class_contains(spa_t * spa,ddt_class_t max_class,const blkptr_t * bp)1735 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
1736 {
1737 ddt_t *ddt;
1738 ddt_key_t ddk;
1739
1740 if (!BP_GET_DEDUP(bp))
1741 return (B_FALSE);
1742
1743 if (max_class == DDT_CLASS_UNIQUE)
1744 return (B_TRUE);
1745
1746 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
1747
1748 ddt_key_fill(&ddk, bp);
1749
1750 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1751 for (ddt_class_t class = 0; class <= max_class; class++) {
1752 if (ddt_object_contains(ddt, type, class, &ddk) == 0)
1753 return (B_TRUE);
1754 }
1755 }
1756
1757 return (B_FALSE);
1758 }
1759
1760 ddt_entry_t *
ddt_repair_start(ddt_t * ddt,const blkptr_t * bp)1761 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
1762 {
1763 ddt_key_t ddk;
1764 ddt_entry_t *dde;
1765
1766 ddt_key_fill(&ddk, bp);
1767
1768 dde = ddt_alloc(ddt, &ddk);
1769 ddt_alloc_entry_io(dde);
1770
1771 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1772 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1773 /*
1774 * We can only do repair if there are multiple copies
1775 * of the block. For anything in the UNIQUE class,
1776 * there's definitely only one copy, so don't even try.
1777 */
1778 if (class != DDT_CLASS_UNIQUE &&
1779 ddt_object_lookup(ddt, type, class, dde) == 0)
1780 return (dde);
1781 }
1782 }
1783
1784 memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt));
1785
1786 return (dde);
1787 }
1788
1789 void
ddt_repair_done(ddt_t * ddt,ddt_entry_t * dde)1790 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
1791 {
1792 avl_index_t where;
1793
1794 ddt_enter(ddt);
1795
1796 if (dde->dde_io->dde_repair_abd != NULL &&
1797 spa_writeable(ddt->ddt_spa) &&
1798 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
1799 avl_insert(&ddt->ddt_repair_tree, dde, where);
1800 else
1801 ddt_free(ddt, dde);
1802
1803 ddt_exit(ddt);
1804 }
1805
1806 static void
ddt_repair_entry_done(zio_t * zio)1807 ddt_repair_entry_done(zio_t *zio)
1808 {
1809 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1810 ddt_entry_t *rdde = zio->io_private;
1811
1812 ddt_free(ddt, rdde);
1813 }
1814
1815 static void
ddt_repair_entry(ddt_t * ddt,ddt_entry_t * dde,ddt_entry_t * rdde,zio_t * rio)1816 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
1817 {
1818 ddt_key_t *ddk = &dde->dde_key;
1819 ddt_key_t *rddk = &rdde->dde_key;
1820 zio_t *zio;
1821 blkptr_t blk;
1822
1823 zio = zio_null(rio, rio->io_spa, NULL,
1824 ddt_repair_entry_done, rdde, rio->io_flags);
1825
1826 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1827 ddt_univ_phys_t *ddp = dde->dde_phys;
1828 ddt_univ_phys_t *rddp = rdde->dde_phys;
1829 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1830 uint64_t phys_birth = ddt_phys_birth(ddp, v);
1831 const dva_t *dvas, *rdvas;
1832
1833 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
1834 dvas = ddp->ddp_flat.ddp_dva;
1835 rdvas = rddp->ddp_flat.ddp_dva;
1836 } else {
1837 dvas = ddp->ddp_trad[p].ddp_dva;
1838 rdvas = rddp->ddp_trad[p].ddp_dva;
1839 }
1840
1841 if (phys_birth == 0 ||
1842 phys_birth != ddt_phys_birth(rddp, v) ||
1843 memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP))
1844 continue;
1845
1846 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1847 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
1848 rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk),
1849 NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
1850 ZIO_DDT_CHILD_FLAGS(zio), NULL));
1851 }
1852
1853 zio_nowait(zio);
1854 }
1855
1856 static void
ddt_repair_table(ddt_t * ddt,zio_t * rio)1857 ddt_repair_table(ddt_t *ddt, zio_t *rio)
1858 {
1859 spa_t *spa = ddt->ddt_spa;
1860 ddt_entry_t *dde, *rdde_next, *rdde;
1861 avl_tree_t *t = &ddt->ddt_repair_tree;
1862 blkptr_t blk;
1863
1864 if (spa_sync_pass(spa) > 1)
1865 return;
1866
1867 ddt_enter(ddt);
1868 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
1869 rdde_next = AVL_NEXT(t, rdde);
1870 avl_remove(&ddt->ddt_repair_tree, rdde);
1871 ddt_exit(ddt);
1872 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL,
1873 DDT_PHYS_NONE, &blk);
1874 dde = ddt_repair_start(ddt, &blk);
1875 ddt_repair_entry(ddt, dde, rdde, rio);
1876 ddt_repair_done(ddt, dde);
1877 ddt_enter(ddt);
1878 }
1879 ddt_exit(ddt);
1880 }
1881
1882 static void
ddt_sync_update_stats(ddt_t * ddt,dmu_tx_t * tx)1883 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx)
1884 {
1885 /*
1886 * Count all the entries stored for each type/class, and updates the
1887 * stats within (ddt_object_sync()). If there's no entries for the
1888 * type/class, the whole object is removed. If all objects for the DDT
1889 * are removed, its containing dir is removed, effectively resetting
1890 * the entire DDT to an empty slate.
1891 */
1892 uint64_t count = 0;
1893 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1894 uint64_t add, tcount = 0;
1895 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1896 if (ddt_object_exists(ddt, type, class)) {
1897 ddt_object_sync(ddt, type, class, tx);
1898 VERIFY0(ddt_object_count(ddt, type, class,
1899 &add));
1900 tcount += add;
1901 }
1902 }
1903 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1904 if (tcount == 0 && ddt_object_exists(ddt, type, class))
1905 ddt_object_destroy(ddt, type, class, tx);
1906 }
1907 count += tcount;
1908 }
1909
1910 if (ddt->ddt_flags & DDT_FLAG_LOG) {
1911 /* Include logged entries in the total count */
1912 count += avl_numnodes(&ddt->ddt_log_active->ddl_tree);
1913 count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
1914 }
1915
1916 if (count == 0) {
1917 /*
1918 * No entries left on the DDT, so reset the version for next
1919 * time. This allows us to handle the feature being changed
1920 * since the DDT was originally created. New entries should get
1921 * whatever the feature currently demands.
1922 */
1923 if (ddt->ddt_version == DDT_VERSION_FDT)
1924 ddt_destroy_dir(ddt, tx);
1925
1926 ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1927 ddt->ddt_flags = 0;
1928 }
1929
1930 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1931 sizeof (ddt->ddt_histogram));
1932 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
1933 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
1934 }
1935
1936 static void
ddt_sync_scan_entry(ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)1937 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
1938 {
1939 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
1940
1941 /*
1942 * Compute the target class, so we can decide whether or not to inform
1943 * the scrub traversal (below). Note that we don't store this in the
1944 * entry, as it might change multiple times before finally being
1945 * committed (if we're logging). Instead, we recompute it in
1946 * ddt_sync_entry().
1947 */
1948 uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys);
1949 ddt_class_t nclass =
1950 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
1951
1952 /*
1953 * If the class changes, the order that we scan this bp changes. If it
1954 * decreases, we could miss it, so scan it right now. (This covers both
1955 * class changing while we are doing ddt_walk(), and when we are
1956 * traversing.)
1957 *
1958 * We also do this when the refcnt goes to zero, because that change is
1959 * only in the log so far; the blocks on disk won't be freed until
1960 * the log is flushed, and the refcnt might increase before that. If it
1961 * does, then we could miss it in the same way.
1962 */
1963 if (refcnt == 0 || nclass < ddlwe->ddlwe_class)
1964 dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt,
1965 ddlwe, tx);
1966 }
1967
1968 static void
ddt_sync_flush_entry(ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,ddt_type_t otype,ddt_class_t oclass,dmu_tx_t * tx)1969 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe,
1970 ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx)
1971 {
1972 ddt_key_t *ddk = &ddlwe->ddlwe_key;
1973 ddt_type_t ntype = DDT_TYPE_DEFAULT;
1974 uint64_t refcnt = 0;
1975
1976 /*
1977 * Compute the total refcnt. Along the way, issue frees for any DVAs
1978 * we no longer want.
1979 */
1980 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1981 ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1982 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1983 uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v);
1984
1985 if (ddt_phys_birth(ddp, v) == 0) {
1986 ASSERT0(phys_refcnt);
1987 continue;
1988 }
1989 if (DDT_PHYS_IS_DITTO(ddt, p)) {
1990 /*
1991 * We don't want to keep any obsolete slots (eg ditto),
1992 * regardless of their refcount, but we don't want to
1993 * leak them either. So, free them.
1994 */
1995 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
1996 continue;
1997 }
1998 if (phys_refcnt == 0)
1999 /* No remaining references, free it! */
2000 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
2001 refcnt += phys_refcnt;
2002 }
2003
2004 /* Select the best class for the entry. */
2005 ddt_class_t nclass =
2006 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
2007
2008 /*
2009 * If an existing entry changed type or class, or its refcount reached
2010 * zero, delete it from the DDT object
2011 */
2012 if (otype != DDT_TYPES &&
2013 (otype != ntype || oclass != nclass || refcnt == 0)) {
2014 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
2015 ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT);
2016 }
2017
2018 /*
2019 * Add or update the entry
2020 */
2021 if (refcnt != 0) {
2022 ddt_histogram_t *ddh =
2023 &ddt->ddt_histogram[ntype][nclass];
2024
2025 ddt_histogram_add_entry(ddt, ddh, ddlwe);
2026
2027 if (!ddt_object_exists(ddt, ntype, nclass))
2028 ddt_object_create(ddt, ntype, nclass, tx);
2029 VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx));
2030 }
2031 }
2032
2033 /* Calculate an exponential weighted moving average, lower limited to zero */
2034 static inline int32_t
_ewma(int32_t val,int32_t prev,uint32_t weight)2035 _ewma(int32_t val, int32_t prev, uint32_t weight)
2036 {
2037 ASSERT3U(val, >=, 0);
2038 ASSERT3U(prev, >=, 0);
2039 const int32_t new =
2040 MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1));
2041 ASSERT3U(new, >=, 0);
2042 return (new);
2043 }
2044
2045 static inline void
ddt_flush_force_update_txg(ddt_t * ddt,uint64_t txg)2046 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg)
2047 {
2048 /*
2049 * If we're not forcing flush, and not being asked to start, then
2050 * there's nothing more to do.
2051 */
2052 if (txg == 0) {
2053 /* Update requested, are we currently forcing flush? */
2054 if (ddt->ddt_flush_force_txg == 0)
2055 return;
2056 txg = ddt->ddt_flush_force_txg;
2057 }
2058
2059 /*
2060 * If either of the logs have entries unflushed entries before
2061 * the wanted txg, set the force txg, otherwise clear it.
2062 */
2063
2064 if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) &&
2065 ddt->ddt_log_active->ddl_first_txg <= txg) ||
2066 (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2067 ddt->ddt_log_flushing->ddl_first_txg <= txg)) {
2068 ddt->ddt_flush_force_txg = txg;
2069 return;
2070 }
2071
2072 /*
2073 * Nothing to flush behind the given txg, so we can clear force flush
2074 * state.
2075 */
2076 ddt->ddt_flush_force_txg = 0;
2077 }
2078
2079 static void
ddt_sync_flush_log(ddt_t * ddt,dmu_tx_t * tx)2080 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx)
2081 {
2082 spa_t *spa = ddt->ddt_spa;
2083 ASSERT(avl_is_empty(&ddt->ddt_tree));
2084
2085 /*
2086 * Don't do any flushing when the pool is ready to shut down, or in
2087 * passes beyond the first.
2088 */
2089 if (spa_sync_pass(spa) > 1 || tx->tx_txg > spa_final_dirty_txg(spa))
2090 return;
2091
2092 hrtime_t flush_start = gethrtime();
2093 uint32_t count = 0;
2094
2095 /*
2096 * How many entries we need to flush. We need to at
2097 * least match the ingest rate, and also consider the
2098 * current backlog of entries.
2099 */
2100 uint64_t backlog = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) +
2101 avl_numnodes(&ddt->ddt_log_active->ddl_tree);
2102
2103 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree))
2104 goto housekeeping;
2105
2106 uint64_t txgs = MAX(1, zfs_dedup_log_flush_txgs);
2107 uint64_t cap = MAX(1, zfs_dedup_log_cap);
2108 uint64_t flush_min = MAX(backlog / txgs,
2109 zfs_dedup_log_flush_entries_min);
2110
2111 /*
2112 * The theory for this block is that if we increase the pressure while
2113 * we're growing above the cap, and remove it when we're significantly
2114 * below the cap, we'll stay near cap while not bouncing around too
2115 * much.
2116 *
2117 * The factor of 10 is to smooth the pressure effect by expressing it
2118 * in tenths. The addition of the cap to the backlog in the second
2119 * block is to round up, instead of down. We never let the pressure go
2120 * below 1 (10 tenths).
2121 */
2122 if (cap != UINT_MAX && backlog > cap &&
2123 backlog > ddt->ddt_log_flush_prev_backlog) {
2124 ddt->ddt_log_flush_pressure += 10 * backlog / cap;
2125 } else if (cap != UINT_MAX && backlog < cap) {
2126 ddt->ddt_log_flush_pressure -=
2127 11 - (((10 * backlog) + cap - 1) / cap);
2128 ddt->ddt_log_flush_pressure =
2129 MAX(ddt->ddt_log_flush_pressure, 10);
2130 }
2131
2132 if (zfs_dedup_log_hard_cap && cap != UINT_MAX)
2133 flush_min = MAX(flush_min, MIN(backlog - cap,
2134 (flush_min * ddt->ddt_log_flush_pressure) / 10));
2135
2136 uint64_t flush_max;
2137
2138 /*
2139 * If we've been asked to flush everything in a hurry,
2140 * try to dump as much as possible on this txg. In
2141 * this case we're only limited by time, not amount.
2142 *
2143 * Otherwise, if we are over the cap, try to get back down to it.
2144 *
2145 * Finally if there is no cap (or no pressure), just set the max a
2146 * little higher than the min to help smooth out variations in flush
2147 * times.
2148 */
2149 if (ddt->ddt_flush_force_txg > 0)
2150 flush_max = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
2151 else if (cap != UINT32_MAX && !zfs_dedup_log_hard_cap)
2152 flush_max = MAX(flush_min * 5 / 4, MIN(backlog - cap,
2153 (flush_min * ddt->ddt_log_flush_pressure) / 10));
2154 else
2155 flush_max = flush_min * 5 / 4;
2156 flush_max = MIN(flush_max, zfs_dedup_log_flush_entries_max);
2157
2158 /*
2159 * When the pool is busy or someone is explicitly waiting for this txg
2160 * to complete, use the zfs_dedup_log_flush_min_time_ms. Otherwise use
2161 * half of the time in the txg timeout.
2162 */
2163 uint64_t target_time;
2164
2165 if (txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) ||
2166 vdev_queue_pool_busy(spa)) {
2167 target_time = MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms),
2168 SEC2NSEC(zfs_txg_timeout) / 2);
2169 } else {
2170 target_time = SEC2NSEC(zfs_txg_timeout) / 2;
2171 }
2172
2173 ddt_lightweight_entry_t ddlwe;
2174 while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) {
2175 ddt_sync_flush_entry(ddt, &ddlwe,
2176 ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx);
2177
2178 /* End if we've synced as much as we needed to. */
2179 if (++count >= flush_max)
2180 break;
2181
2182 /*
2183 * As long as we've flushed the absolute minimum,
2184 * stop if we're way over our target time.
2185 */
2186 uint64_t diff = gethrtime() - flush_start;
2187 if (count > zfs_dedup_log_flush_entries_min &&
2188 diff >= target_time * 2)
2189 break;
2190
2191 /*
2192 * End if we've passed the minimum flush and we're out of time.
2193 */
2194 if (count > flush_min && diff >= target_time)
2195 break;
2196 }
2197
2198 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) {
2199 /* We emptied it, so truncate on-disk */
2200 DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries);
2201 ddt_log_truncate(ddt, tx);
2202 } else {
2203 /* More to do next time, save checkpoint */
2204 DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count);
2205 ddt_log_checkpoint(ddt, &ddlwe, tx);
2206 }
2207
2208 ddt_sync_update_stats(ddt, tx);
2209
2210 housekeeping:
2211 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2212 !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) {
2213 /*
2214 * No more to flush, and the active list has stuff, so
2215 * try to swap the logs for next time.
2216 */
2217 if (ddt_log_swap(ddt, tx)) {
2218 DDT_KSTAT_ZERO(ddt, dds_log_active_entries);
2219 DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
2220 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
2221 }
2222 }
2223
2224 /* If force flush is no longer necessary, turn it off. */
2225 ddt_flush_force_update_txg(ddt, 0);
2226
2227 ddt->ddt_log_flush_prev_backlog = backlog;
2228
2229 /*
2230 * Update flush rate. This is an exponential weighted moving
2231 * average of the number of entries flushed over recent txgs.
2232 */
2233 ddt->ddt_log_flush_rate = _ewma(count, ddt->ddt_log_flush_rate,
2234 zfs_dedup_log_flush_flow_rate_txgs);
2235 DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate);
2236
2237 /*
2238 * Update flush time rate. This is an exponential weighted moving
2239 * average of the total time taken to flush over recent txgs.
2240 */
2241 ddt->ddt_log_flush_time_rate = _ewma(ddt->ddt_log_flush_time_rate,
2242 (int32_t)NSEC2MSEC(gethrtime() - flush_start),
2243 zfs_dedup_log_flush_flow_rate_txgs);
2244 DDT_KSTAT_SET(ddt, dds_log_flush_time_rate,
2245 ddt->ddt_log_flush_time_rate);
2246 if (avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) > 0 &&
2247 zfs_flags & ZFS_DEBUG_DDT) {
2248 zfs_dbgmsg("%lu entries remain(%lu in active), flushed %u @ "
2249 "txg %llu, in %llu ms, flush rate %d, time rate %d",
2250 (ulong_t)avl_numnodes(&ddt->ddt_log_flushing->ddl_tree),
2251 (ulong_t)avl_numnodes(&ddt->ddt_log_active->ddl_tree),
2252 count, (u_longlong_t)tx->tx_txg,
2253 (u_longlong_t)NSEC2MSEC(gethrtime() - flush_start),
2254 ddt->ddt_log_flush_rate, ddt->ddt_log_flush_time_rate);
2255 }
2256 }
2257
2258 static void
ddt_sync_table_log(ddt_t * ddt,dmu_tx_t * tx)2259 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx)
2260 {
2261 uint64_t count = avl_numnodes(&ddt->ddt_tree);
2262
2263 if (count > 0) {
2264 ddt_log_update_t dlu = {0};
2265 ddt_log_begin(ddt, count, tx, &dlu);
2266
2267 ddt_entry_t *dde;
2268 void *cookie = NULL;
2269 ddt_lightweight_entry_t ddlwe;
2270 while ((dde =
2271 avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
2272 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2273 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2274 ddt_log_entry(ddt, &ddlwe, &dlu);
2275 ddt_sync_scan_entry(ddt, &ddlwe, tx);
2276 ddt_free(ddt, dde);
2277 }
2278
2279 ddt_log_commit(ddt, &dlu);
2280
2281 DDT_KSTAT_SET(ddt, dds_log_active_entries,
2282 avl_numnodes(&ddt->ddt_log_active->ddl_tree));
2283
2284 /*
2285 * Sync the stats for the store objects. Even though we haven't
2286 * modified anything on those objects, they're no longer the
2287 * source of truth for entries that are now in the log, and we
2288 * need the on-disk counts to reflect that, otherwise we'll
2289 * miscount later when importing.
2290 */
2291 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2292 for (ddt_class_t class = 0;
2293 class < DDT_CLASSES; class++) {
2294 if (ddt_object_exists(ddt, type, class))
2295 ddt_object_sync(ddt, type, class, tx);
2296 }
2297 }
2298
2299 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2300 sizeof (ddt->ddt_histogram));
2301 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2302 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2303 }
2304
2305 if (spa_sync_pass(ddt->ddt_spa) == 1) {
2306 /*
2307 * Update ingest rate. This is an exponential weighted moving
2308 * average of the number of entries changed over recent txgs.
2309 * The ramp-up cost shouldn't matter too much because the
2310 * flusher will be trying to take at least the minimum anyway.
2311 */
2312 ddt->ddt_log_ingest_rate = _ewma(
2313 count, ddt->ddt_log_ingest_rate,
2314 zfs_dedup_log_flush_flow_rate_txgs);
2315 DDT_KSTAT_SET(ddt, dds_log_ingest_rate,
2316 ddt->ddt_log_ingest_rate);
2317 }
2318 }
2319
2320 static void
ddt_sync_table_flush(ddt_t * ddt,dmu_tx_t * tx)2321 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx)
2322 {
2323 if (avl_numnodes(&ddt->ddt_tree) == 0)
2324 return;
2325
2326 ddt_entry_t *dde;
2327 void *cookie = NULL;
2328 while ((dde = avl_destroy_nodes(
2329 &ddt->ddt_tree, &cookie)) != NULL) {
2330 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2331
2332 ddt_lightweight_entry_t ddlwe;
2333 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2334 ddt_sync_flush_entry(ddt, &ddlwe,
2335 dde->dde_type, dde->dde_class, tx);
2336 ddt_sync_scan_entry(ddt, &ddlwe, tx);
2337 ddt_free(ddt, dde);
2338 }
2339
2340 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2341 sizeof (ddt->ddt_histogram));
2342 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2343 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2344 ddt_sync_update_stats(ddt, tx);
2345 }
2346
2347 static void
ddt_sync_table(ddt_t * ddt,dmu_tx_t * tx)2348 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx)
2349 {
2350 spa_t *spa = ddt->ddt_spa;
2351
2352 if (ddt->ddt_version == UINT64_MAX)
2353 return;
2354
2355 if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) {
2356 ASSERT0(avl_numnodes(&ddt->ddt_tree));
2357 return;
2358 }
2359
2360 if (spa->spa_ddt_stat_object == 0) {
2361 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
2362 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
2363 DMU_POOL_DDT_STATS, tx);
2364 }
2365
2366 if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0)
2367 ddt_create_dir(ddt, tx);
2368
2369 if (ddt->ddt_flags & DDT_FLAG_LOG)
2370 ddt_sync_table_log(ddt, tx);
2371 else
2372 ddt_sync_table_flush(ddt, tx);
2373 }
2374
2375 void
ddt_sync(spa_t * spa,uint64_t txg)2376 ddt_sync(spa_t *spa, uint64_t txg)
2377 {
2378 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2379 dmu_tx_t *tx;
2380 zio_t *rio;
2381
2382 ASSERT3U(spa_syncing_txg(spa), ==, txg);
2383
2384 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2385
2386 rio = zio_root(spa, NULL, NULL,
2387 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
2388
2389 /*
2390 * This function may cause an immediate scan of ddt blocks (see
2391 * the comment above dsl_scan_ddt() for details). We set the
2392 * scan's root zio here so that we can wait for any scan IOs in
2393 * addition to the regular ddt IOs.
2394 */
2395 ASSERT3P(scn->scn_zio_root, ==, NULL);
2396 scn->scn_zio_root = rio;
2397
2398 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2399 ddt_t *ddt = spa->spa_ddt[c];
2400 if (ddt == NULL)
2401 continue;
2402 ddt_sync_table(ddt, tx);
2403 if (ddt->ddt_flags & DDT_FLAG_LOG)
2404 ddt_sync_flush_log(ddt, tx);
2405 ddt_repair_table(ddt, rio);
2406 }
2407
2408 (void) zio_wait(rio);
2409 scn->scn_zio_root = NULL;
2410
2411 dmu_tx_commit(tx);
2412 }
2413
2414 void
ddt_walk_init(spa_t * spa,uint64_t txg)2415 ddt_walk_init(spa_t *spa, uint64_t txg)
2416 {
2417 if (txg == 0)
2418 txg = spa_syncing_txg(spa);
2419
2420 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2421 ddt_t *ddt = spa->spa_ddt[c];
2422 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2423 continue;
2424
2425 ddt_enter(ddt);
2426 ddt_flush_force_update_txg(ddt, txg);
2427 ddt_exit(ddt);
2428 }
2429 }
2430
2431 boolean_t
ddt_walk_ready(spa_t * spa)2432 ddt_walk_ready(spa_t *spa)
2433 {
2434 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2435 ddt_t *ddt = spa->spa_ddt[c];
2436 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2437 continue;
2438
2439 if (ddt->ddt_flush_force_txg > 0)
2440 return (B_FALSE);
2441 }
2442
2443 return (B_TRUE);
2444 }
2445
2446 static int
ddt_walk_impl(spa_t * spa,ddt_bookmark_t * ddb,ddt_lightweight_entry_t * ddlwe,uint64_t flags,boolean_t wait)2447 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe,
2448 uint64_t flags, boolean_t wait)
2449 {
2450 do {
2451 do {
2452 do {
2453 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
2454 if (ddt == NULL)
2455 continue;
2456
2457 if (flags != 0 &&
2458 (ddt->ddt_flags & flags) != flags)
2459 continue;
2460
2461 if (wait && ddt->ddt_flush_force_txg > 0)
2462 return (EAGAIN);
2463
2464 int error = ENOENT;
2465 if (ddt_object_exists(ddt, ddb->ddb_type,
2466 ddb->ddb_class)) {
2467 error = ddt_object_walk(ddt,
2468 ddb->ddb_type, ddb->ddb_class,
2469 &ddb->ddb_cursor, ddlwe);
2470 }
2471 if (error == 0)
2472 return (0);
2473 if (error != ENOENT)
2474 return (error);
2475 ddb->ddb_cursor = 0;
2476 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
2477 ddb->ddb_checksum = 0;
2478 } while (++ddb->ddb_type < DDT_TYPES);
2479 ddb->ddb_type = 0;
2480 } while (++ddb->ddb_class < DDT_CLASSES);
2481
2482 return (SET_ERROR(ENOENT));
2483 }
2484
2485 int
ddt_walk(spa_t * spa,ddt_bookmark_t * ddb,ddt_lightweight_entry_t * ddlwe)2486 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe)
2487 {
2488 return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE));
2489 }
2490
2491 /*
2492 * This function is used by Block Cloning (brt.c) to increase reference
2493 * counter for the DDT entry if the block is already in DDT.
2494 *
2495 * Return false if the block, despite having the D bit set, is not present
2496 * in the DDT. This is possible when the DDT has been pruned by an admin
2497 * or by the DDT quota mechanism.
2498 */
2499 boolean_t
ddt_addref(spa_t * spa,const blkptr_t * bp)2500 ddt_addref(spa_t *spa, const blkptr_t *bp)
2501 {
2502 ddt_t *ddt;
2503 ddt_entry_t *dde;
2504 boolean_t result;
2505
2506 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2507 ddt = ddt_select(spa, bp);
2508 ddt_enter(ddt);
2509
2510 dde = ddt_lookup(ddt, bp, B_TRUE);
2511
2512 /* Can be NULL if the entry for this block was pruned. */
2513 if (dde == NULL) {
2514 ddt_exit(ddt);
2515 spa_config_exit(spa, SCL_ZIO, FTAG);
2516 return (B_FALSE);
2517 }
2518
2519 if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) {
2520 /*
2521 * This entry was either synced to a store object (dde_type is
2522 * real) or was logged. It must be properly on disk at this
2523 * point, so we can just bump its refcount.
2524 */
2525 int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp));
2526 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2527
2528 ddt_phys_addref(dde->dde_phys, v);
2529 result = B_TRUE;
2530 } else {
2531 /*
2532 * If the block has the DEDUP flag set it still might not
2533 * exist in the DEDUP table due to DDT pruning of entries
2534 * where refcnt=1.
2535 */
2536 ddt_remove(ddt, dde);
2537 result = B_FALSE;
2538 }
2539
2540 ddt_exit(ddt);
2541 spa_config_exit(spa, SCL_ZIO, FTAG);
2542
2543 return (result);
2544 }
2545
2546 typedef struct ddt_prune_entry {
2547 ddt_t *dpe_ddt;
2548 ddt_key_t dpe_key;
2549 list_node_t dpe_node;
2550 ddt_univ_phys_t dpe_phys[];
2551 } ddt_prune_entry_t;
2552
2553 typedef struct ddt_prune_info {
2554 spa_t *dpi_spa;
2555 uint64_t dpi_txg_syncs;
2556 uint64_t dpi_pruned;
2557 list_t dpi_candidates;
2558 } ddt_prune_info_t;
2559
2560 /*
2561 * Add prune candidates for ddt_sync during spa_sync
2562 */
2563 static void
prune_candidates_sync(void * arg,dmu_tx_t * tx)2564 prune_candidates_sync(void *arg, dmu_tx_t *tx)
2565 {
2566 (void) tx;
2567 ddt_prune_info_t *dpi = arg;
2568 ddt_prune_entry_t *dpe;
2569
2570 spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER);
2571
2572 /* Process the prune candidates collected so far */
2573 while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) {
2574 blkptr_t blk;
2575 ddt_t *ddt = dpe->dpe_ddt;
2576
2577 ddt_enter(ddt);
2578
2579 /*
2580 * If it's on the live list, then it was loaded for update
2581 * this txg and is no longer stale; skip it.
2582 */
2583 if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) {
2584 ddt_exit(ddt);
2585 kmem_free(dpe, sizeof (*dpe));
2586 continue;
2587 }
2588
2589 ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key,
2590 dpe->dpe_phys, DDT_PHYS_FLAT, &blk);
2591
2592 ddt_entry_t *dde = ddt_lookup(ddt, &blk, B_TRUE);
2593 if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) {
2594 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2595 /*
2596 * Zero the physical, so we don't try to free DVAs
2597 * at flush nor try to reuse this entry.
2598 */
2599 ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT);
2600
2601 dpi->dpi_pruned++;
2602 }
2603
2604 ddt_exit(ddt);
2605 kmem_free(dpe, sizeof (*dpe));
2606 }
2607
2608 spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG);
2609 dpi->dpi_txg_syncs++;
2610 }
2611
2612 /*
2613 * Prune candidates are collected in open context and processed
2614 * in sync context as part of ddt_sync_table().
2615 */
2616 static void
ddt_prune_entry(list_t * list,ddt_t * ddt,const ddt_key_t * ddk,const ddt_univ_phys_t * ddp)2617 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk,
2618 const ddt_univ_phys_t *ddp)
2619 {
2620 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2621
2622 size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE;
2623 ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP);
2624
2625 dpe->dpe_ddt = ddt;
2626 dpe->dpe_key = *ddk;
2627 memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE);
2628 list_insert_head(list, dpe);
2629 }
2630
2631 /*
2632 * Interate over all the entries in the DDT unique class.
2633 * The walk will perform one of the following operations:
2634 * (a) build a histogram than can be used when pruning
2635 * (b) prune entries older than the cutoff
2636 *
2637 * Also called by zdb(8) to dump the age histogram
2638 */
2639 void
ddt_prune_walk(spa_t * spa,uint64_t cutoff,ddt_age_histo_t * histogram)2640 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram)
2641 {
2642 ddt_bookmark_t ddb = {
2643 .ddb_class = DDT_CLASS_UNIQUE,
2644 .ddb_type = 0,
2645 .ddb_checksum = 0,
2646 .ddb_cursor = 0
2647 };
2648 ddt_lightweight_entry_t ddlwe = {0};
2649 int error;
2650 int valid = 0;
2651 int candidates = 0;
2652 uint64_t now = gethrestime_sec();
2653 ddt_prune_info_t dpi;
2654 boolean_t pruning = (cutoff != 0);
2655
2656 if (pruning) {
2657 dpi.dpi_txg_syncs = 0;
2658 dpi.dpi_pruned = 0;
2659 dpi.dpi_spa = spa;
2660 list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t),
2661 offsetof(ddt_prune_entry_t, dpe_node));
2662 }
2663
2664 if (histogram != NULL)
2665 memset(histogram, 0, sizeof (ddt_age_histo_t));
2666
2667 while ((error =
2668 ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) {
2669 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
2670 VERIFY(ddt);
2671
2672 if (spa_shutting_down(spa) || issig())
2673 break;
2674
2675 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2676 ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1);
2677
2678 uint64_t class_start =
2679 ddlwe.ddlwe_phys.ddp_flat.ddp_class_start;
2680
2681 /*
2682 * If this entry is on the log, then the stored entry is stale
2683 * and we should skip it.
2684 */
2685 if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL))
2686 continue;
2687
2688 /* prune older entries */
2689 if (pruning && class_start < cutoff) {
2690 if (candidates++ >= zfs_ddt_prunes_per_txg) {
2691 /* sync prune candidates in batches */
2692 VERIFY0(dsl_sync_task(spa_name(spa),
2693 NULL, prune_candidates_sync,
2694 &dpi, 0, ZFS_SPACE_CHECK_NONE));
2695 candidates = 1;
2696 }
2697 ddt_prune_entry(&dpi.dpi_candidates, ddt,
2698 &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys);
2699 }
2700
2701 /* build a histogram */
2702 if (histogram != NULL) {
2703 uint64_t age = MAX(1, (now - class_start) / 3600);
2704 int bin = MIN(highbit64(age) - 1, HIST_BINS - 1);
2705 histogram->dah_entries++;
2706 histogram->dah_age_histo[bin]++;
2707 }
2708
2709 valid++;
2710 }
2711
2712 if (pruning && valid > 0) {
2713 if (!list_is_empty(&dpi.dpi_candidates)) {
2714 /* sync out final batch of prune candidates */
2715 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2716 prune_candidates_sync, &dpi, 0,
2717 ZFS_SPACE_CHECK_NONE));
2718 }
2719 list_destroy(&dpi.dpi_candidates);
2720
2721 zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs",
2722 (u_longlong_t)dpi.dpi_pruned,
2723 (int)((dpi.dpi_pruned * 100) / valid),
2724 (u_longlong_t)dpi.dpi_txg_syncs);
2725 }
2726 }
2727
2728 static uint64_t
ddt_total_entries(spa_t * spa)2729 ddt_total_entries(spa_t *spa)
2730 {
2731 ddt_object_t ddo;
2732 ddt_get_dedup_object_stats(spa, &ddo);
2733
2734 return (ddo.ddo_count);
2735 }
2736
2737 int
ddt_prune_unique_entries(spa_t * spa,zpool_ddt_prune_unit_t unit,uint64_t amount)2738 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit,
2739 uint64_t amount)
2740 {
2741 uint64_t cutoff;
2742 uint64_t start_time = gethrtime();
2743
2744 if (spa->spa_active_ddt_prune)
2745 return (SET_ERROR(EALREADY));
2746 if (ddt_total_entries(spa) == 0)
2747 return (0);
2748
2749 spa->spa_active_ddt_prune = B_TRUE;
2750
2751 zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount,
2752 unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older");
2753
2754 if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) {
2755 ddt_age_histo_t histogram;
2756 uint64_t oldest = 0;
2757
2758 /* Make a pass over DDT to build a histogram */
2759 ddt_prune_walk(spa, 0, &histogram);
2760
2761 int target = (histogram.dah_entries * amount) / 100;
2762
2763 /*
2764 * Figure out our cutoff date
2765 * (i.e., which bins to prune from)
2766 */
2767 for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) {
2768 if (histogram.dah_age_histo[i] != 0) {
2769 /* less than this bucket remaining */
2770 if (target < histogram.dah_age_histo[i]) {
2771 oldest = MAX(1, (1<<i) * 3600);
2772 target = 0;
2773 } else {
2774 target -= histogram.dah_age_histo[i];
2775 }
2776 }
2777 }
2778 cutoff = gethrestime_sec() - oldest;
2779
2780 if (ddt_dump_prune_histogram)
2781 ddt_dump_age_histogram(&histogram, cutoff);
2782 } else if (unit == ZPOOL_DDT_PRUNE_AGE) {
2783 cutoff = gethrestime_sec() - amount;
2784 } else {
2785 return (EINVAL);
2786 }
2787
2788 if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) {
2789 /* Traverse DDT to prune entries older that our cuttoff */
2790 ddt_prune_walk(spa, cutoff, NULL);
2791 }
2792
2793 zfs_dbgmsg("%s: prune completed in %llu ms",
2794 spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time));
2795
2796 spa->spa_active_ddt_prune = B_FALSE;
2797 return (0);
2798 }
2799
2800 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
2801 "Enable prefetching dedup-ed blks");
2802
2803 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW,
2804 "Min time to spend on incremental dedup log flush each transaction");
2805
2806 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW,
2807 "Min number of log entries to flush each transaction");
2808
2809 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_max, UINT, ZMOD_RW,
2810 "Max number of log entries to flush each transaction");
2811
2812 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_txgs, UINT, ZMOD_RW,
2813 "Number of TXGs to try to rotate the log in");
2814
2815 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_cap, UINT, ZMOD_RW,
2816 "Soft cap for the size of the current dedup log");
2817
2818 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_hard_cap, UINT, ZMOD_RW,
2819 "Whether to use the soft cap as a hard cap");
2820
2821 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW,
2822 "Number of txgs to average flow rates across");
2823