1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
6 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
7 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35
36 #include <dev/sound/pcm/sound.h>
37 #include <dev/sound/pcm/vchan.h>
38
39 #include "feeder_if.h"
40
41 int report_soft_formats = 1;
42 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW,
43 &report_soft_formats, 0, "report software-emulated formats");
44
45 int report_soft_matrix = 1;
46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW,
47 &report_soft_matrix, 0, "report software-emulated channel matrixing");
48
49 int chn_latency = CHN_LATENCY_DEFAULT;
50
51 static int
sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)52 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)
53 {
54 int err, val;
55
56 val = chn_latency;
57 err = sysctl_handle_int(oidp, &val, 0, req);
58 if (err != 0 || req->newptr == NULL)
59 return err;
60 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX)
61 err = EINVAL;
62 else
63 chn_latency = val;
64
65 return err;
66 }
67 SYSCTL_PROC(_hw_snd, OID_AUTO, latency,
68 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
69 sysctl_hw_snd_latency, "I",
70 "buffering latency (0=low ... 10=high)");
71
72 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
73
74 static int
sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)75 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)
76 {
77 int err, val;
78
79 val = chn_latency_profile;
80 err = sysctl_handle_int(oidp, &val, 0, req);
81 if (err != 0 || req->newptr == NULL)
82 return err;
83 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX)
84 err = EINVAL;
85 else
86 chn_latency_profile = val;
87
88 return err;
89 }
90 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile,
91 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
92 sysctl_hw_snd_latency_profile, "I",
93 "buffering latency profile (0=aggressive 1=safe)");
94
95 static int chn_timeout = CHN_TIMEOUT;
96
97 static int
sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)98 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)
99 {
100 int err, val;
101
102 val = chn_timeout;
103 err = sysctl_handle_int(oidp, &val, 0, req);
104 if (err != 0 || req->newptr == NULL)
105 return err;
106 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX)
107 err = EINVAL;
108 else
109 chn_timeout = val;
110
111 return err;
112 }
113 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout,
114 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
115 sysctl_hw_snd_timeout, "I",
116 "interrupt timeout (1 - 10) seconds");
117
118 static int chn_vpc_autoreset = 1;
119 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN,
120 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db");
121
122 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM;
123
124 static void
chn_vpc_proc(int reset,int db)125 chn_vpc_proc(int reset, int db)
126 {
127 struct snddev_info *d;
128 struct pcm_channel *c;
129 int i;
130
131 for (i = 0; pcm_devclass != NULL &&
132 i < devclass_get_maxunit(pcm_devclass); i++) {
133 d = devclass_get_softc(pcm_devclass, i);
134 if (!PCM_REGISTERED(d))
135 continue;
136 PCM_LOCK(d);
137 PCM_WAIT(d);
138 PCM_ACQUIRE(d);
139 CHN_FOREACH(c, d, channels.pcm) {
140 CHN_LOCK(c);
141 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db);
142 if (reset != 0)
143 chn_vpc_reset(c, SND_VOL_C_PCM, 1);
144 CHN_UNLOCK(c);
145 }
146 PCM_RELEASE(d);
147 PCM_UNLOCK(d);
148 }
149 }
150
151 static int
sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)152 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)
153 {
154 int err, val;
155
156 val = chn_vol_0db_pcm;
157 err = sysctl_handle_int(oidp, &val, 0, req);
158 if (err != 0 || req->newptr == NULL)
159 return (err);
160 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX)
161 return (EINVAL);
162
163 chn_vol_0db_pcm = val;
164 chn_vpc_proc(0, val);
165
166 return (0);
167 }
168 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db,
169 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
170 sysctl_hw_snd_vpc_0db, "I",
171 "0db relative level");
172
173 static int
sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)174 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)
175 {
176 int err, val;
177
178 val = 0;
179 err = sysctl_handle_int(oidp, &val, 0, req);
180 if (err != 0 || req->newptr == NULL || val == 0)
181 return (err);
182
183 chn_vol_0db_pcm = SND_VOL_0DB_PCM;
184 chn_vpc_proc(1, SND_VOL_0DB_PCM);
185
186 return (0);
187 }
188 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset,
189 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
190 sysctl_hw_snd_vpc_reset, "I",
191 "reset volume on all channels");
192
193 static int chn_usefrags = 0;
194 static int chn_syncdelay = -1;
195
196 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN,
197 &chn_usefrags, 0, "prefer setfragments() over setblocksize()");
198 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN,
199 &chn_syncdelay, 0,
200 "append (0-1000) millisecond trailing buffer delay on each sync");
201
202 /**
203 * @brief Channel sync group lock
204 *
205 * Clients should acquire this lock @b without holding any channel locks
206 * before touching syncgroups or the main syncgroup list.
207 */
208 struct mtx snd_pcm_syncgroups_mtx;
209 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF);
210 /**
211 * @brief syncgroups' master list
212 *
213 * Each time a channel syncgroup is created, it's added to this list. This
214 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held.
215 *
216 * See SNDCTL_DSP_SYNCGROUP for more information.
217 */
218 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups);
219
220 static void
chn_lockinit(struct pcm_channel * c,int dir)221 chn_lockinit(struct pcm_channel *c, int dir)
222 {
223 switch (dir) {
224 case PCMDIR_PLAY:
225 c->lock = snd_mtxcreate(c->name, "pcm play channel");
226 cv_init(&c->intr_cv, "pcmwr");
227 break;
228 case PCMDIR_PLAY_VIRTUAL:
229 c->lock = snd_mtxcreate(c->name, "pcm virtual play channel");
230 cv_init(&c->intr_cv, "pcmwrv");
231 break;
232 case PCMDIR_REC:
233 c->lock = snd_mtxcreate(c->name, "pcm record channel");
234 cv_init(&c->intr_cv, "pcmrd");
235 break;
236 case PCMDIR_REC_VIRTUAL:
237 c->lock = snd_mtxcreate(c->name, "pcm virtual record channel");
238 cv_init(&c->intr_cv, "pcmrdv");
239 break;
240 default:
241 panic("%s(): Invalid direction=%d", __func__, dir);
242 break;
243 }
244
245 cv_init(&c->cv, "pcmchn");
246 }
247
248 static void
chn_lockdestroy(struct pcm_channel * c)249 chn_lockdestroy(struct pcm_channel *c)
250 {
251 CHN_LOCKASSERT(c);
252
253 CHN_BROADCAST(&c->cv);
254 CHN_BROADCAST(&c->intr_cv);
255
256 cv_destroy(&c->cv);
257 cv_destroy(&c->intr_cv);
258
259 snd_mtxfree(c->lock);
260 }
261
262 /**
263 * @brief Determine channel is ready for I/O
264 *
265 * @retval 1 = ready for I/O
266 * @retval 0 = not ready for I/O
267 */
268 static int
chn_polltrigger(struct pcm_channel * c)269 chn_polltrigger(struct pcm_channel *c)
270 {
271 struct snd_dbuf *bs = c->bufsoft;
272 u_int delta;
273
274 CHN_LOCKASSERT(c);
275
276 if (c->flags & CHN_F_MMAP) {
277 if (sndbuf_getprevtotal(bs) < c->lw)
278 delta = c->lw;
279 else
280 delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs);
281 } else {
282 if (c->direction == PCMDIR_PLAY)
283 delta = sndbuf_getfree(bs);
284 else
285 delta = sndbuf_getready(bs);
286 }
287
288 return ((delta < c->lw) ? 0 : 1);
289 }
290
291 static void
chn_pollreset(struct pcm_channel * c)292 chn_pollreset(struct pcm_channel *c)
293 {
294
295 CHN_LOCKASSERT(c);
296 sndbuf_updateprevtotal(c->bufsoft);
297 }
298
299 static void
chn_wakeup(struct pcm_channel * c)300 chn_wakeup(struct pcm_channel *c)
301 {
302 struct snd_dbuf *bs;
303 struct pcm_channel *ch;
304
305 CHN_LOCKASSERT(c);
306
307 bs = c->bufsoft;
308
309 if (CHN_EMPTY(c, children.busy)) {
310 if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c))
311 selwakeuppri(sndbuf_getsel(bs), PRIBIO);
312 CHN_BROADCAST(&c->intr_cv);
313 } else {
314 CHN_FOREACH(ch, c, children.busy) {
315 CHN_LOCK(ch);
316 chn_wakeup(ch);
317 CHN_UNLOCK(ch);
318 }
319 }
320 }
321
322 static int
chn_sleep(struct pcm_channel * c,int timeout)323 chn_sleep(struct pcm_channel *c, int timeout)
324 {
325 int ret;
326
327 CHN_LOCKASSERT(c);
328
329 if (c->flags & CHN_F_DEAD)
330 return (EINVAL);
331
332 c->sleeping++;
333 ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout);
334 c->sleeping--;
335
336 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret);
337 }
338
339 /*
340 * chn_dmaupdate() tracks the status of a dma transfer,
341 * updating pointers.
342 */
343
344 static unsigned int
chn_dmaupdate(struct pcm_channel * c)345 chn_dmaupdate(struct pcm_channel *c)
346 {
347 struct snd_dbuf *b = c->bufhard;
348 unsigned int delta, old, hwptr, amt;
349
350 KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0"));
351 CHN_LOCKASSERT(c);
352
353 old = sndbuf_gethwptr(b);
354 hwptr = chn_getptr(c);
355 delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b);
356 sndbuf_sethwptr(b, hwptr);
357
358 if (c->direction == PCMDIR_PLAY) {
359 amt = min(delta, sndbuf_getready(b));
360 amt -= amt % sndbuf_getalign(b);
361 if (amt > 0)
362 sndbuf_dispose(b, NULL, amt);
363 } else {
364 amt = min(delta, sndbuf_getfree(b));
365 amt -= amt % sndbuf_getalign(b);
366 if (amt > 0)
367 sndbuf_acquire(b, NULL, amt);
368 }
369 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) {
370 device_printf(c->dev, "WARNING: %s DMA completion "
371 "too fast/slow ! hwptr=%u, old=%u "
372 "delta=%u amt=%u ready=%u free=%u\n",
373 CHN_DIRSTR(c), hwptr, old, delta, amt,
374 sndbuf_getready(b), sndbuf_getfree(b));
375 }
376
377 return delta;
378 }
379
380 static void
chn_wrfeed(struct pcm_channel * c)381 chn_wrfeed(struct pcm_channel *c)
382 {
383 struct snd_dbuf *b = c->bufhard;
384 struct snd_dbuf *bs = c->bufsoft;
385 unsigned int amt, want, wasfree;
386
387 CHN_LOCKASSERT(c);
388
389 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING))
390 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs));
391
392 wasfree = sndbuf_getfree(b);
393 want = min(sndbuf_getsize(b),
394 imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) -
395 sndbuf_getready(b)));
396 amt = min(wasfree, want);
397 if (amt > 0)
398 sndbuf_feed(bs, b, c, c->feeder, amt);
399
400 /*
401 * Possible xruns. There should be no empty space left in buffer.
402 */
403 if (sndbuf_getready(b) < want)
404 c->xruns++;
405
406 if (sndbuf_getfree(b) < wasfree)
407 chn_wakeup(c);
408 }
409
410 static void
chn_wrintr(struct pcm_channel * c)411 chn_wrintr(struct pcm_channel *c)
412 {
413
414 CHN_LOCKASSERT(c);
415 /* update pointers in primary buffer */
416 chn_dmaupdate(c);
417 /* ...and feed from secondary to primary */
418 chn_wrfeed(c);
419 /* tell the driver we've updated the primary buffer */
420 chn_trigger(c, PCMTRIG_EMLDMAWR);
421 }
422
423 /*
424 * user write routine - uiomove data into secondary buffer, trigger if necessary
425 * if blocking, sleep, rinse and repeat.
426 *
427 * called externally, so must handle locking
428 */
429
430 int
chn_write(struct pcm_channel * c,struct uio * buf)431 chn_write(struct pcm_channel *c, struct uio *buf)
432 {
433 struct snd_dbuf *bs = c->bufsoft;
434 void *off;
435 int ret, timeout, sz, t, p;
436
437 CHN_LOCKASSERT(c);
438
439 ret = 0;
440 timeout = chn_timeout * hz;
441
442 while (ret == 0 && buf->uio_resid > 0) {
443 sz = min(buf->uio_resid, sndbuf_getfree(bs));
444 if (sz > 0) {
445 /*
446 * The following assumes that the free space in
447 * the buffer can never be less around the
448 * unlock-uiomove-lock sequence.
449 */
450 while (ret == 0 && sz > 0) {
451 p = sndbuf_getfreeptr(bs);
452 t = min(sz, sndbuf_getsize(bs) - p);
453 off = sndbuf_getbufofs(bs, p);
454 CHN_UNLOCK(c);
455 ret = uiomove(off, t, buf);
456 CHN_LOCK(c);
457 sz -= t;
458 sndbuf_acquire(bs, NULL, t);
459 }
460 ret = 0;
461 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
462 ret = chn_start(c, 0);
463 if (ret != 0)
464 c->flags |= CHN_F_DEAD;
465 }
466 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) {
467 /**
468 * @todo Evaluate whether EAGAIN is truly desirable.
469 * 4Front drivers behave like this, but I'm
470 * not sure if it at all violates the "write
471 * should be allowed to block" model.
472 *
473 * The idea is that, while set with CHN_F_NOTRIGGER,
474 * a channel isn't playing, *but* without this we
475 * end up with "interrupt timeout / channel dead".
476 */
477 ret = EAGAIN;
478 } else {
479 ret = chn_sleep(c, timeout);
480 if (ret == EAGAIN) {
481 ret = EINVAL;
482 c->flags |= CHN_F_DEAD;
483 device_printf(c->dev, "%s(): %s: "
484 "play interrupt timeout, channel dead\n",
485 __func__, c->name);
486 } else if (ret == ERESTART || ret == EINTR)
487 c->flags |= CHN_F_ABORTING;
488 }
489 }
490
491 return (ret);
492 }
493
494 /*
495 * Feed new data from the read buffer. Can be called in the bottom half.
496 */
497 static void
chn_rdfeed(struct pcm_channel * c)498 chn_rdfeed(struct pcm_channel *c)
499 {
500 struct snd_dbuf *b = c->bufhard;
501 struct snd_dbuf *bs = c->bufsoft;
502 unsigned int amt;
503
504 CHN_LOCKASSERT(c);
505
506 if (c->flags & CHN_F_MMAP)
507 sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
508
509 amt = sndbuf_getfree(bs);
510 if (amt > 0)
511 sndbuf_feed(b, bs, c, c->feeder, amt);
512
513 amt = sndbuf_getready(b);
514 if (amt > 0) {
515 c->xruns++;
516 sndbuf_dispose(b, NULL, amt);
517 }
518
519 if (sndbuf_getready(bs) > 0)
520 chn_wakeup(c);
521 }
522
523 /* read interrupt routine. Must be called with interrupts blocked. */
524 static void
chn_rdintr(struct pcm_channel * c)525 chn_rdintr(struct pcm_channel *c)
526 {
527
528 CHN_LOCKASSERT(c);
529 /* tell the driver to update the primary buffer if non-dma */
530 chn_trigger(c, PCMTRIG_EMLDMARD);
531 /* update pointers in primary buffer */
532 chn_dmaupdate(c);
533 /* ...and feed from primary to secondary */
534 chn_rdfeed(c);
535 }
536
537 /*
538 * user read routine - trigger if necessary, uiomove data from secondary buffer
539 * if blocking, sleep, rinse and repeat.
540 *
541 * called externally, so must handle locking
542 */
543
544 int
chn_read(struct pcm_channel * c,struct uio * buf)545 chn_read(struct pcm_channel *c, struct uio *buf)
546 {
547 struct snd_dbuf *bs = c->bufsoft;
548 void *off;
549 int ret, timeout, sz, t, p;
550
551 CHN_LOCKASSERT(c);
552
553 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
554 ret = chn_start(c, 0);
555 if (ret != 0) {
556 c->flags |= CHN_F_DEAD;
557 return (ret);
558 }
559 }
560
561 ret = 0;
562 timeout = chn_timeout * hz;
563
564 while (ret == 0 && buf->uio_resid > 0) {
565 sz = min(buf->uio_resid, sndbuf_getready(bs));
566 if (sz > 0) {
567 /*
568 * The following assumes that the free space in
569 * the buffer can never be less around the
570 * unlock-uiomove-lock sequence.
571 */
572 while (ret == 0 && sz > 0) {
573 p = sndbuf_getreadyptr(bs);
574 t = min(sz, sndbuf_getsize(bs) - p);
575 off = sndbuf_getbufofs(bs, p);
576 CHN_UNLOCK(c);
577 ret = uiomove(off, t, buf);
578 CHN_LOCK(c);
579 sz -= t;
580 sndbuf_dispose(bs, NULL, t);
581 }
582 ret = 0;
583 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER))
584 ret = EAGAIN;
585 else {
586 ret = chn_sleep(c, timeout);
587 if (ret == EAGAIN) {
588 ret = EINVAL;
589 c->flags |= CHN_F_DEAD;
590 device_printf(c->dev, "%s(): %s: "
591 "record interrupt timeout, channel dead\n",
592 __func__, c->name);
593 } else if (ret == ERESTART || ret == EINTR)
594 c->flags |= CHN_F_ABORTING;
595 }
596 }
597
598 return (ret);
599 }
600
601 void
chn_intr_locked(struct pcm_channel * c)602 chn_intr_locked(struct pcm_channel *c)
603 {
604
605 CHN_LOCKASSERT(c);
606
607 c->interrupts++;
608
609 if (c->direction == PCMDIR_PLAY)
610 chn_wrintr(c);
611 else
612 chn_rdintr(c);
613 }
614
615 void
chn_intr(struct pcm_channel * c)616 chn_intr(struct pcm_channel *c)
617 {
618
619 if (CHN_LOCKOWNED(c)) {
620 chn_intr_locked(c);
621 return;
622 }
623
624 CHN_LOCK(c);
625 chn_intr_locked(c);
626 CHN_UNLOCK(c);
627 }
628
629 u_int32_t
chn_start(struct pcm_channel * c,int force)630 chn_start(struct pcm_channel *c, int force)
631 {
632 u_int32_t i, j;
633 struct snd_dbuf *b = c->bufhard;
634 struct snd_dbuf *bs = c->bufsoft;
635 int err;
636
637 CHN_LOCKASSERT(c);
638 /* if we're running, or if we're prevented from triggering, bail */
639 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force))
640 return (EINVAL);
641
642 err = 0;
643
644 if (force) {
645 i = 1;
646 j = 0;
647 } else {
648 if (c->direction == PCMDIR_REC) {
649 i = sndbuf_getfree(bs);
650 j = (i > 0) ? 1 : sndbuf_getready(b);
651 } else {
652 if (sndbuf_getfree(bs) == 0) {
653 i = 1;
654 j = 0;
655 } else {
656 struct snd_dbuf *pb;
657
658 pb = CHN_BUF_PARENT(c, b);
659 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb);
660 j = sndbuf_getalign(pb);
661 }
662 }
663 if (snd_verbose > 3 && CHN_EMPTY(c, children))
664 device_printf(c->dev, "%s(): %s (%s) threshold "
665 "i=%d j=%d\n", __func__, CHN_DIRSTR(c),
666 (c->flags & CHN_F_VIRTUAL) ? "virtual" :
667 "hardware", i, j);
668 }
669
670 if (i >= j) {
671 c->flags |= CHN_F_TRIGGERED;
672 sndbuf_setrun(b, 1);
673 if (c->flags & CHN_F_CLOSING)
674 c->feedcount = 2;
675 else {
676 c->feedcount = 0;
677 c->interrupts = 0;
678 c->xruns = 0;
679 }
680 if (c->parentchannel == NULL) {
681 if (c->direction == PCMDIR_PLAY)
682 sndbuf_fillsilence_rl(b,
683 sndbuf_xbytes(sndbuf_getsize(bs), bs, b));
684 if (snd_verbose > 3)
685 device_printf(c->dev,
686 "%s(): %s starting! (%s/%s) "
687 "(ready=%d force=%d i=%d j=%d "
688 "intrtimeout=%u latency=%dms)\n",
689 __func__,
690 (c->flags & CHN_F_HAS_VCHAN) ?
691 "VCHAN PARENT" : "HW", CHN_DIRSTR(c),
692 (c->flags & CHN_F_CLOSING) ? "closing" :
693 "running",
694 sndbuf_getready(b),
695 force, i, j, c->timeout,
696 (sndbuf_getsize(b) * 1000) /
697 (sndbuf_getalign(b) * sndbuf_getspd(b)));
698 }
699 err = chn_trigger(c, PCMTRIG_START);
700 }
701
702 return (err);
703 }
704
705 void
chn_resetbuf(struct pcm_channel * c)706 chn_resetbuf(struct pcm_channel *c)
707 {
708 struct snd_dbuf *b = c->bufhard;
709 struct snd_dbuf *bs = c->bufsoft;
710
711 c->blocks = 0;
712 sndbuf_reset(b);
713 sndbuf_reset(bs);
714 }
715
716 /*
717 * chn_sync waits until the space in the given channel goes above
718 * a threshold. The threshold is checked against fl or rl respectively.
719 * Assume that the condition can become true, do not check here...
720 */
721 int
chn_sync(struct pcm_channel * c,int threshold)722 chn_sync(struct pcm_channel *c, int threshold)
723 {
724 struct snd_dbuf *b, *bs;
725 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz;
726 u_int32_t cflag;
727
728 CHN_LOCKASSERT(c);
729
730 if (c->direction != PCMDIR_PLAY)
731 return (EINVAL);
732
733 bs = c->bufsoft;
734
735 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) ||
736 (threshold < 1 && sndbuf_getready(bs) < 1))
737 return (0);
738
739 /* if we haven't yet started and nothing is buffered, else start*/
740 if (CHN_STOPPED(c)) {
741 if (threshold > 0 || sndbuf_getready(bs) > 0) {
742 ret = chn_start(c, 1);
743 if (ret != 0)
744 return (ret);
745 } else
746 return (0);
747 }
748
749 b = CHN_BUF_PARENT(c, c->bufhard);
750
751 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs);
752
753 syncdelay = chn_syncdelay;
754
755 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0))
756 minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs);
757
758 /*
759 * Append (0-1000) millisecond trailing buffer (if needed)
760 * for slower / high latency hardwares (notably USB audio)
761 * to avoid audible truncation.
762 */
763 if (syncdelay > 0)
764 minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) *
765 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000;
766
767 minflush -= minflush % sndbuf_getalign(bs);
768
769 if (minflush > 0) {
770 threshold = min(minflush, sndbuf_getfree(bs));
771 sndbuf_clear(bs, threshold);
772 sndbuf_acquire(bs, NULL, threshold);
773 minflush -= threshold;
774 }
775
776 resid = sndbuf_getready(bs);
777 residp = resid;
778 blksz = sndbuf_getblksz(b);
779 if (blksz < 1) {
780 device_printf(c->dev,
781 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n",
782 __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b),
783 sndbuf_getblksz(b), sndbuf_getblkcnt(b));
784 if (sndbuf_getblkcnt(b) > 0)
785 blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b);
786 if (blksz < 1)
787 blksz = 1;
788 }
789 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz;
790 hcount = count;
791 ret = 0;
792
793 if (snd_verbose > 3)
794 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d "
795 "minflush=%d resid=%d\n", __func__, c->timeout, count,
796 minflush, resid);
797
798 cflag = c->flags & CHN_F_CLOSING;
799 c->flags |= CHN_F_CLOSING;
800 while (count > 0 && (resid > 0 || minflush > 0)) {
801 ret = chn_sleep(c, c->timeout);
802 if (ret == ERESTART || ret == EINTR) {
803 c->flags |= CHN_F_ABORTING;
804 break;
805 } else if (ret == 0 || ret == EAGAIN) {
806 resid = sndbuf_getready(bs);
807 if (resid == residp) {
808 --count;
809 if (snd_verbose > 3)
810 device_printf(c->dev,
811 "%s(): [stalled] timeout=%d "
812 "count=%d hcount=%d "
813 "resid=%d minflush=%d\n",
814 __func__, c->timeout, count,
815 hcount, resid, minflush);
816 } else if (resid < residp && count < hcount) {
817 ++count;
818 if (snd_verbose > 3)
819 device_printf(c->dev,
820 "%s((): [resume] timeout=%d "
821 "count=%d hcount=%d "
822 "resid=%d minflush=%d\n",
823 __func__, c->timeout, count,
824 hcount, resid, minflush);
825 }
826 if (minflush > 0 && sndbuf_getfree(bs) > 0) {
827 threshold = min(minflush,
828 sndbuf_getfree(bs));
829 sndbuf_clear(bs, threshold);
830 sndbuf_acquire(bs, NULL, threshold);
831 resid = sndbuf_getready(bs);
832 minflush -= threshold;
833 }
834 residp = resid;
835 } else
836 break;
837 }
838 c->flags &= ~CHN_F_CLOSING;
839 c->flags |= cflag;
840
841 if (snd_verbose > 3)
842 device_printf(c->dev,
843 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d "
844 "minflush=%d ret=%d\n",
845 __func__, c->timeout, count, hcount, resid, residp,
846 minflush, ret);
847
848 return (0);
849 }
850
851 /* called externally, handle locking */
852 int
chn_poll(struct pcm_channel * c,int ev,struct thread * td)853 chn_poll(struct pcm_channel *c, int ev, struct thread *td)
854 {
855 struct snd_dbuf *bs = c->bufsoft;
856 int ret;
857
858 CHN_LOCKASSERT(c);
859
860 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) {
861 ret = chn_start(c, 1);
862 if (ret != 0)
863 return (0);
864 }
865
866 ret = 0;
867 if (chn_polltrigger(c)) {
868 chn_pollreset(c);
869 ret = ev;
870 } else
871 selrecord(td, sndbuf_getsel(bs));
872
873 return (ret);
874 }
875
876 /*
877 * chn_abort terminates a running dma transfer. it may sleep up to 200ms.
878 * it returns the number of bytes that have not been transferred.
879 *
880 * called from: dsp_close, dsp_ioctl, with channel locked
881 */
882 int
chn_abort(struct pcm_channel * c)883 chn_abort(struct pcm_channel *c)
884 {
885 int missing = 0;
886 struct snd_dbuf *b = c->bufhard;
887 struct snd_dbuf *bs = c->bufsoft;
888
889 CHN_LOCKASSERT(c);
890 if (CHN_STOPPED(c))
891 return 0;
892 c->flags |= CHN_F_ABORTING;
893
894 c->flags &= ~CHN_F_TRIGGERED;
895 /* kill the channel */
896 chn_trigger(c, PCMTRIG_ABORT);
897 sndbuf_setrun(b, 0);
898 if (!(c->flags & CHN_F_VIRTUAL))
899 chn_dmaupdate(c);
900 missing = sndbuf_getready(bs);
901
902 c->flags &= ~CHN_F_ABORTING;
903 return missing;
904 }
905
906 /*
907 * this routine tries to flush the dma transfer. It is called
908 * on a close of a playback channel.
909 * first, if there is data in the buffer, but the dma has not yet
910 * begun, we need to start it.
911 * next, we wait for the play buffer to drain
912 * finally, we stop the dma.
913 *
914 * called from: dsp_close, not valid for record channels.
915 */
916
917 int
chn_flush(struct pcm_channel * c)918 chn_flush(struct pcm_channel *c)
919 {
920 struct snd_dbuf *b = c->bufhard;
921
922 CHN_LOCKASSERT(c);
923 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel"));
924 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags));
925
926 c->flags |= CHN_F_CLOSING;
927 chn_sync(c, 0);
928 c->flags &= ~CHN_F_TRIGGERED;
929 /* kill the channel */
930 chn_trigger(c, PCMTRIG_ABORT);
931 sndbuf_setrun(b, 0);
932
933 c->flags &= ~CHN_F_CLOSING;
934 return 0;
935 }
936
937 int
snd_fmtvalid(uint32_t fmt,uint32_t * fmtlist)938 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist)
939 {
940 int i;
941
942 for (i = 0; fmtlist[i] != 0; i++) {
943 if (fmt == fmtlist[i] ||
944 ((fmt & AFMT_PASSTHROUGH) &&
945 (AFMT_ENCODING(fmt) & fmtlist[i])))
946 return (1);
947 }
948
949 return (0);
950 }
951
952 static const struct {
953 char *name, *alias1, *alias2;
954 uint32_t afmt;
955 } afmt_tab[] = {
956 { "alaw", NULL, NULL, AFMT_A_LAW },
957 { "mulaw", NULL, NULL, AFMT_MU_LAW },
958 { "u8", "8", NULL, AFMT_U8 },
959 { "s8", NULL, NULL, AFMT_S8 },
960 #if BYTE_ORDER == LITTLE_ENDIAN
961 { "s16le", "s16", "16", AFMT_S16_LE },
962 { "s16be", NULL, NULL, AFMT_S16_BE },
963 #else
964 { "s16le", NULL, NULL, AFMT_S16_LE },
965 { "s16be", "s16", "16", AFMT_S16_BE },
966 #endif
967 { "u16le", NULL, NULL, AFMT_U16_LE },
968 { "u16be", NULL, NULL, AFMT_U16_BE },
969 { "s24le", NULL, NULL, AFMT_S24_LE },
970 { "s24be", NULL, NULL, AFMT_S24_BE },
971 { "u24le", NULL, NULL, AFMT_U24_LE },
972 { "u24be", NULL, NULL, AFMT_U24_BE },
973 #if BYTE_ORDER == LITTLE_ENDIAN
974 { "s32le", "s32", "32", AFMT_S32_LE },
975 { "s32be", NULL, NULL, AFMT_S32_BE },
976 #else
977 { "s32le", NULL, NULL, AFMT_S32_LE },
978 { "s32be", "s32", "32", AFMT_S32_BE },
979 #endif
980 { "u32le", NULL, NULL, AFMT_U32_LE },
981 { "u32be", NULL, NULL, AFMT_U32_BE },
982 { "ac3", NULL, NULL, AFMT_AC3 },
983 { NULL, NULL, NULL, 0 }
984 };
985
986 uint32_t
snd_str2afmt(const char * req)987 snd_str2afmt(const char *req)
988 {
989 int ext;
990 int ch;
991 int i;
992 char b1[8];
993 char b2[8];
994
995 memset(b1, 0, sizeof(b1));
996 memset(b2, 0, sizeof(b2));
997
998 i = sscanf(req, "%5[^:]:%6s", b1, b2);
999
1000 if (i == 1) {
1001 if (strlen(req) != strlen(b1))
1002 return (0);
1003 strlcpy(b2, "2.0", sizeof(b2));
1004 } else if (i == 2) {
1005 if (strlen(req) != (strlen(b1) + 1 + strlen(b2)))
1006 return (0);
1007 } else
1008 return (0);
1009
1010 i = sscanf(b2, "%d.%d", &ch, &ext);
1011
1012 if (i == 0) {
1013 if (strcasecmp(b2, "mono") == 0) {
1014 ch = 1;
1015 ext = 0;
1016 } else if (strcasecmp(b2, "stereo") == 0) {
1017 ch = 2;
1018 ext = 0;
1019 } else if (strcasecmp(b2, "quad") == 0) {
1020 ch = 4;
1021 ext = 0;
1022 } else
1023 return (0);
1024 } else if (i == 1) {
1025 if (ch < 1 || ch > AFMT_CHANNEL_MAX)
1026 return (0);
1027 ext = 0;
1028 } else if (i == 2) {
1029 if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX)
1030 return (0);
1031 if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX)
1032 return (0);
1033 } else
1034 return (0);
1035
1036 for (i = 0; afmt_tab[i].name != NULL; i++) {
1037 if (strcasecmp(afmt_tab[i].name, b1) != 0) {
1038 if (afmt_tab[i].alias1 == NULL)
1039 continue;
1040 if (strcasecmp(afmt_tab[i].alias1, b1) != 0) {
1041 if (afmt_tab[i].alias2 == NULL)
1042 continue;
1043 if (strcasecmp(afmt_tab[i].alias2, b1) != 0)
1044 continue;
1045 }
1046 }
1047 /* found a match */
1048 return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext));
1049 }
1050 /* not a valid format */
1051 return (0);
1052 }
1053
1054 uint32_t
snd_afmt2str(uint32_t afmt,char * buf,size_t len)1055 snd_afmt2str(uint32_t afmt, char *buf, size_t len)
1056 {
1057 uint32_t enc;
1058 uint32_t ext;
1059 uint32_t ch;
1060 int i;
1061
1062 if (buf == NULL || len < AFMTSTR_LEN)
1063 return (0);
1064
1065 memset(buf, 0, len);
1066
1067 enc = AFMT_ENCODING(afmt);
1068 ch = AFMT_CHANNEL(afmt);
1069 ext = AFMT_EXTCHANNEL(afmt);
1070 /* check there is at least one channel */
1071 if (ch <= ext)
1072 return (0);
1073 for (i = 0; afmt_tab[i].name != NULL; i++) {
1074 if (enc != afmt_tab[i].afmt)
1075 continue;
1076 /* found a match */
1077 snprintf(buf, len, "%s:%d.%d",
1078 afmt_tab[i].name, ch - ext, ext);
1079 return (SND_FORMAT(enc, ch, ext));
1080 }
1081 return (0);
1082 }
1083
1084 int
chn_reset(struct pcm_channel * c,uint32_t fmt,uint32_t spd)1085 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd)
1086 {
1087 int r;
1088
1089 CHN_LOCKASSERT(c);
1090 c->feedcount = 0;
1091 c->flags &= CHN_F_RESET;
1092 c->interrupts = 0;
1093 c->timeout = 1;
1094 c->xruns = 0;
1095
1096 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ?
1097 CHN_F_BITPERFECT : 0;
1098
1099 r = CHANNEL_RESET(c->methods, c->devinfo);
1100 if (r == 0 && fmt != 0 && spd != 0) {
1101 r = chn_setparam(c, fmt, spd);
1102 fmt = 0;
1103 spd = 0;
1104 }
1105 if (r == 0 && fmt != 0)
1106 r = chn_setformat(c, fmt);
1107 if (r == 0 && spd != 0)
1108 r = chn_setspeed(c, spd);
1109 if (r == 0)
1110 r = chn_setlatency(c, chn_latency);
1111 if (r == 0) {
1112 chn_resetbuf(c);
1113 r = CHANNEL_RESETDONE(c->methods, c->devinfo);
1114 }
1115 return r;
1116 }
1117
1118 static struct unrhdr *
chn_getunr(struct snddev_info * d,int type)1119 chn_getunr(struct snddev_info *d, int type)
1120 {
1121 switch (type) {
1122 case PCMDIR_PLAY:
1123 return (d->p_unr);
1124 case PCMDIR_PLAY_VIRTUAL:
1125 return (d->vp_unr);
1126 case PCMDIR_REC:
1127 return (d->r_unr);
1128 case PCMDIR_REC_VIRTUAL:
1129 return (d->vr_unr);
1130 default:
1131 __assert_unreachable();
1132 }
1133
1134 }
1135
1136 char *
chn_mkname(char * buf,size_t len,struct pcm_channel * c)1137 chn_mkname(char *buf, size_t len, struct pcm_channel *c)
1138 {
1139 const char *str;
1140
1141 KASSERT(buf != NULL && len != 0,
1142 ("%s(): bogus buf=%p len=%zu", __func__, buf, len));
1143
1144 switch (c->type) {
1145 case PCMDIR_PLAY:
1146 str = "play";
1147 break;
1148 case PCMDIR_PLAY_VIRTUAL:
1149 str = "virtual_play";
1150 break;
1151 case PCMDIR_REC:
1152 str = "record";
1153 break;
1154 case PCMDIR_REC_VIRTUAL:
1155 str = "virtual_record";
1156 break;
1157 default:
1158 __assert_unreachable();
1159 }
1160
1161 snprintf(buf, len, "dsp%d.%s.%d",
1162 device_get_unit(c->dev), str, c->unit);
1163
1164 return (buf);
1165 }
1166
1167 struct pcm_channel *
chn_init(struct snddev_info * d,struct pcm_channel * parent,kobj_class_t cls,int dir,void * devinfo)1168 chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls,
1169 int dir, void *devinfo)
1170 {
1171 struct pcm_channel *c;
1172 struct feeder_class *fc;
1173 struct snd_dbuf *b, *bs;
1174 char buf[CHN_NAMELEN];
1175 int i, direction;
1176
1177 PCM_BUSYASSERT(d);
1178 PCM_LOCKASSERT(d);
1179
1180 switch (dir) {
1181 case PCMDIR_PLAY:
1182 case PCMDIR_PLAY_VIRTUAL:
1183 direction = PCMDIR_PLAY;
1184 break;
1185 case PCMDIR_REC:
1186 case PCMDIR_REC_VIRTUAL:
1187 direction = PCMDIR_REC;
1188 break;
1189 default:
1190 device_printf(d->dev,
1191 "%s(): invalid channel direction: %d\n",
1192 __func__, dir);
1193 return (NULL);
1194 }
1195
1196 PCM_UNLOCK(d);
1197 b = NULL;
1198 bs = NULL;
1199
1200 c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO);
1201 c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO);
1202 chn_lockinit(c, dir);
1203 CHN_INIT(c, children);
1204 CHN_INIT(c, children.busy);
1205 c->direction = direction;
1206 c->type = dir;
1207 c->unit = alloc_unr(chn_getunr(d, c->type));
1208 c->format = SND_FORMAT(AFMT_U8, 1, 0);
1209 c->speed = DSP_DEFAULT_SPEED;
1210 c->pid = -1;
1211 c->latency = -1;
1212 c->timeout = 1;
1213 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1214 c->parentsnddev = d;
1215 c->parentchannel = parent;
1216 c->dev = d->dev;
1217 c->trigger = PCMTRIG_STOP;
1218 strlcpy(c->name, chn_mkname(buf, sizeof(buf), c), sizeof(c->name));
1219
1220 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0);
1221 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1222
1223 for (i = 0; i < SND_CHN_T_MAX; i++)
1224 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER;
1225
1226 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER;
1227 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm;
1228
1229 CHN_LOCK(c);
1230 chn_vpc_reset(c, SND_VOL_C_PCM, 1);
1231 CHN_UNLOCK(c);
1232
1233 fc = feeder_getclass(NULL);
1234 if (fc == NULL) {
1235 device_printf(d->dev, "%s(): failed to get feeder class\n",
1236 __func__);
1237 goto fail;
1238 }
1239 if (feeder_add(c, fc, NULL)) {
1240 device_printf(d->dev, "%s(): failed to add feeder\n", __func__);
1241 goto fail;
1242 }
1243
1244 b = sndbuf_create(c->dev, c->name, "primary", c);
1245 bs = sndbuf_create(c->dev, c->name, "secondary", c);
1246 if (b == NULL || bs == NULL) {
1247 device_printf(d->dev, "%s(): failed to create %s buffer\n",
1248 __func__, b == NULL ? "hardware" : "software");
1249 goto fail;
1250 }
1251 c->bufhard = b;
1252 c->bufsoft = bs;
1253
1254 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction);
1255 if (c->devinfo == NULL) {
1256 device_printf(d->dev, "%s(): CHANNEL_INIT() failed\n", __func__);
1257 goto fail;
1258 }
1259
1260 if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) {
1261 device_printf(d->dev, "%s(): hardware buffer's size is 0\n",
1262 __func__);
1263 goto fail;
1264 }
1265
1266 sndbuf_setfmt(b, c->format);
1267 sndbuf_setspd(b, c->speed);
1268 sndbuf_setfmt(bs, c->format);
1269 sndbuf_setspd(bs, c->speed);
1270 sndbuf_setup(bs, NULL, 0);
1271
1272 /**
1273 * @todo Should this be moved somewhere else? The primary buffer
1274 * is allocated by the driver or via DMA map setup, and tmpbuf
1275 * seems to only come into existence in sndbuf_resize().
1276 */
1277 if (c->direction == PCMDIR_PLAY) {
1278 bs->sl = sndbuf_getmaxsize(bs);
1279 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_WAITOK);
1280 }
1281
1282 PCM_LOCK(d);
1283 CHN_INSERT_SORT_ASCEND(d, c, channels.pcm);
1284
1285 switch (c->type) {
1286 case PCMDIR_PLAY:
1287 d->playcount++;
1288 break;
1289 case PCMDIR_PLAY_VIRTUAL:
1290 d->pvchancount++;
1291 break;
1292 case PCMDIR_REC:
1293 d->reccount++;
1294 break;
1295 case PCMDIR_REC_VIRTUAL:
1296 d->rvchancount++;
1297 break;
1298 default:
1299 __assert_unreachable();
1300 }
1301
1302 return (c);
1303
1304 fail:
1305 free_unr(chn_getunr(d, c->type), c->unit);
1306 feeder_remove(c);
1307 if (c->devinfo && CHANNEL_FREE(c->methods, c->devinfo))
1308 sndbuf_free(b);
1309 if (bs)
1310 sndbuf_destroy(bs);
1311 if (b)
1312 sndbuf_destroy(b);
1313 CHN_LOCK(c);
1314 chn_lockdestroy(c);
1315
1316 kobj_delete(c->methods, M_DEVBUF);
1317 free(c, M_DEVBUF);
1318
1319 PCM_LOCK(d);
1320
1321 return (NULL);
1322 }
1323
1324 void
chn_kill(struct pcm_channel * c)1325 chn_kill(struct pcm_channel *c)
1326 {
1327 struct snddev_info *d = c->parentsnddev;
1328 struct snd_dbuf *b = c->bufhard;
1329 struct snd_dbuf *bs = c->bufsoft;
1330
1331 PCM_BUSYASSERT(c->parentsnddev);
1332
1333 PCM_LOCK(d);
1334 CHN_REMOVE(d, c, channels.pcm);
1335
1336 switch (c->type) {
1337 case PCMDIR_PLAY:
1338 d->playcount--;
1339 break;
1340 case PCMDIR_PLAY_VIRTUAL:
1341 d->pvchancount--;
1342 break;
1343 case PCMDIR_REC:
1344 d->reccount--;
1345 break;
1346 case PCMDIR_REC_VIRTUAL:
1347 d->rvchancount--;
1348 break;
1349 default:
1350 __assert_unreachable();
1351 }
1352 PCM_UNLOCK(d);
1353
1354 if (CHN_STARTED(c)) {
1355 CHN_LOCK(c);
1356 chn_trigger(c, PCMTRIG_ABORT);
1357 CHN_UNLOCK(c);
1358 }
1359 free_unr(chn_getunr(c->parentsnddev, c->type), c->unit);
1360 feeder_remove(c);
1361 if (CHANNEL_FREE(c->methods, c->devinfo))
1362 sndbuf_free(b);
1363 sndbuf_destroy(bs);
1364 sndbuf_destroy(b);
1365 CHN_LOCK(c);
1366 c->flags |= CHN_F_DEAD;
1367 chn_lockdestroy(c);
1368 kobj_delete(c->methods, M_DEVBUF);
1369 free(c, M_DEVBUF);
1370 }
1371
1372 void
chn_shutdown(struct pcm_channel * c)1373 chn_shutdown(struct pcm_channel *c)
1374 {
1375 CHN_LOCKASSERT(c);
1376
1377 chn_wakeup(c);
1378 c->flags |= CHN_F_DEAD;
1379 }
1380
1381 /* release a locked channel and unlock it */
1382 int
chn_release(struct pcm_channel * c)1383 chn_release(struct pcm_channel *c)
1384 {
1385 PCM_BUSYASSERT(c->parentsnddev);
1386 CHN_LOCKASSERT(c);
1387
1388 c->flags &= ~CHN_F_BUSY;
1389 c->pid = -1;
1390 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1391 CHN_UNLOCK(c);
1392
1393 return (0);
1394 }
1395
1396 int
chn_setvolume_multi(struct pcm_channel * c,int vc,int left,int right,int center)1397 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right,
1398 int center)
1399 {
1400 int i, ret;
1401
1402 ret = 0;
1403
1404 for (i = 0; i < SND_CHN_T_MAX; i++) {
1405 if ((1 << i) & SND_CHN_LEFT_MASK)
1406 ret |= chn_setvolume_matrix(c, vc, i, left);
1407 else if ((1 << i) & SND_CHN_RIGHT_MASK)
1408 ret |= chn_setvolume_matrix(c, vc, i, right) << 8;
1409 else
1410 ret |= chn_setvolume_matrix(c, vc, i, center) << 16;
1411 }
1412
1413 return (ret);
1414 }
1415
1416 int
chn_setvolume_matrix(struct pcm_channel * c,int vc,int vt,int val)1417 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val)
1418 {
1419 int i;
1420
1421 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1422 (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1423 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN &&
1424 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB ||
1425 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)),
1426 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d",
1427 __func__, c, vc, vt, val));
1428 CHN_LOCKASSERT(c);
1429
1430 if (val < 0)
1431 val = 0;
1432 if (val > 100)
1433 val = 100;
1434
1435 c->volume[vc][vt] = val;
1436
1437 /*
1438 * Do relative calculation here and store it into class + 1
1439 * to ease the job of feeder_volume.
1440 */
1441 if (vc == SND_VOL_C_MASTER) {
1442 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1443 vc += SND_VOL_C_STEP)
1444 c->volume[SND_VOL_C_VAL(vc)][vt] =
1445 SND_VOL_CALC_VAL(c->volume, vc, vt);
1446 } else if (vc & 1) {
1447 if (vt == SND_CHN_T_VOL_0DB)
1448 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1449 i += SND_CHN_T_STEP) {
1450 c->volume[SND_VOL_C_VAL(vc)][i] =
1451 SND_VOL_CALC_VAL(c->volume, vc, i);
1452 }
1453 else
1454 c->volume[SND_VOL_C_VAL(vc)][vt] =
1455 SND_VOL_CALC_VAL(c->volume, vc, vt);
1456 }
1457
1458 return (val);
1459 }
1460
1461 int
chn_getvolume_matrix(struct pcm_channel * c,int vc,int vt)1462 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt)
1463 {
1464 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1465 (vt == SND_CHN_T_VOL_0DB ||
1466 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1467 ("%s(): invalid volume matrix c=%p vc=%d vt=%d",
1468 __func__, c, vc, vt));
1469 CHN_LOCKASSERT(c);
1470
1471 return (c->volume[vc][vt]);
1472 }
1473
1474 int
chn_setmute_multi(struct pcm_channel * c,int vc,int mute)1475 chn_setmute_multi(struct pcm_channel *c, int vc, int mute)
1476 {
1477 int i, ret;
1478
1479 ret = 0;
1480
1481 for (i = 0; i < SND_CHN_T_MAX; i++) {
1482 if ((1 << i) & SND_CHN_LEFT_MASK)
1483 ret |= chn_setmute_matrix(c, vc, i, mute);
1484 else if ((1 << i) & SND_CHN_RIGHT_MASK)
1485 ret |= chn_setmute_matrix(c, vc, i, mute) << 8;
1486 else
1487 ret |= chn_setmute_matrix(c, vc, i, mute) << 16;
1488 }
1489 return (ret);
1490 }
1491
1492 int
chn_setmute_matrix(struct pcm_channel * c,int vc,int vt,int mute)1493 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute)
1494 {
1495 int i;
1496
1497 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1498 (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1499 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1500 ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d",
1501 __func__, c, vc, vt, mute));
1502
1503 CHN_LOCKASSERT(c);
1504
1505 mute = (mute != 0);
1506
1507 c->muted[vc][vt] = mute;
1508
1509 /*
1510 * Do relative calculation here and store it into class + 1
1511 * to ease the job of feeder_volume.
1512 */
1513 if (vc == SND_VOL_C_MASTER) {
1514 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1515 vc += SND_VOL_C_STEP)
1516 c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1517 } else if (vc & 1) {
1518 if (vt == SND_CHN_T_VOL_0DB) {
1519 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1520 i += SND_CHN_T_STEP) {
1521 c->muted[SND_VOL_C_VAL(vc)][i] = mute;
1522 }
1523 } else {
1524 c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1525 }
1526 }
1527 return (mute);
1528 }
1529
1530 int
chn_getmute_matrix(struct pcm_channel * c,int vc,int vt)1531 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt)
1532 {
1533 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1534 (vt == SND_CHN_T_VOL_0DB ||
1535 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1536 ("%s(): invalid mute matrix c=%p vc=%d vt=%d",
1537 __func__, c, vc, vt));
1538 CHN_LOCKASSERT(c);
1539
1540 return (c->muted[vc][vt]);
1541 }
1542
1543 struct pcmchan_matrix *
chn_getmatrix(struct pcm_channel * c)1544 chn_getmatrix(struct pcm_channel *c)
1545 {
1546
1547 KASSERT(c != NULL, ("%s(): NULL channel", __func__));
1548 CHN_LOCKASSERT(c);
1549
1550 if (!(c->format & AFMT_CONVERTIBLE))
1551 return (NULL);
1552
1553 return (&c->matrix);
1554 }
1555
1556 int
chn_setmatrix(struct pcm_channel * c,struct pcmchan_matrix * m)1557 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m)
1558 {
1559
1560 KASSERT(c != NULL && m != NULL,
1561 ("%s(): NULL channel or matrix", __func__));
1562 CHN_LOCKASSERT(c);
1563
1564 if (!(c->format & AFMT_CONVERTIBLE))
1565 return (EINVAL);
1566
1567 c->matrix = *m;
1568 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1569
1570 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext)));
1571 }
1572
1573 /*
1574 * XXX chn_oss_* exists for the sake of compatibility.
1575 */
1576 int
chn_oss_getorder(struct pcm_channel * c,unsigned long long * map)1577 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map)
1578 {
1579
1580 KASSERT(c != NULL && map != NULL,
1581 ("%s(): NULL channel or map", __func__));
1582 CHN_LOCKASSERT(c);
1583
1584 if (!(c->format & AFMT_CONVERTIBLE))
1585 return (EINVAL);
1586
1587 return (feeder_matrix_oss_get_channel_order(&c->matrix, map));
1588 }
1589
1590 int
chn_oss_setorder(struct pcm_channel * c,unsigned long long * map)1591 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map)
1592 {
1593 struct pcmchan_matrix m;
1594 int ret;
1595
1596 KASSERT(c != NULL && map != NULL,
1597 ("%s(): NULL channel or map", __func__));
1598 CHN_LOCKASSERT(c);
1599
1600 if (!(c->format & AFMT_CONVERTIBLE))
1601 return (EINVAL);
1602
1603 m = c->matrix;
1604 ret = feeder_matrix_oss_set_channel_order(&m, map);
1605 if (ret != 0)
1606 return (ret);
1607
1608 return (chn_setmatrix(c, &m));
1609 }
1610
1611 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR)
1612 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR)
1613 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF)
1614 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR)
1615
1616 int
chn_oss_getmask(struct pcm_channel * c,uint32_t * retmask)1617 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask)
1618 {
1619 struct pcmchan_matrix *m;
1620 struct pcmchan_caps *caps;
1621 uint32_t i, format;
1622
1623 KASSERT(c != NULL && retmask != NULL,
1624 ("%s(): NULL channel or retmask", __func__));
1625 CHN_LOCKASSERT(c);
1626
1627 caps = chn_getcaps(c);
1628 if (caps == NULL || caps->fmtlist == NULL)
1629 return (ENODEV);
1630
1631 for (i = 0; caps->fmtlist[i] != 0; i++) {
1632 format = caps->fmtlist[i];
1633 if (!(format & AFMT_CONVERTIBLE)) {
1634 *retmask |= DSP_BIND_SPDIF;
1635 continue;
1636 }
1637 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format);
1638 if (m == NULL)
1639 continue;
1640 if (m->mask & SND_CHN_OSS_FRONT)
1641 *retmask |= DSP_BIND_FRONT;
1642 if (m->mask & SND_CHN_OSS_SURR)
1643 *retmask |= DSP_BIND_SURR;
1644 if (m->mask & SND_CHN_OSS_CENTER_LFE)
1645 *retmask |= DSP_BIND_CENTER_LFE;
1646 if (m->mask & SND_CHN_OSS_REAR)
1647 *retmask |= DSP_BIND_REAR;
1648 }
1649
1650 /* report software-supported binding mask */
1651 if (!CHN_BITPERFECT(c) && report_soft_matrix)
1652 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR |
1653 DSP_BIND_CENTER_LFE | DSP_BIND_REAR;
1654
1655 return (0);
1656 }
1657
1658 void
chn_vpc_reset(struct pcm_channel * c,int vc,int force)1659 chn_vpc_reset(struct pcm_channel *c, int vc, int force)
1660 {
1661 int i;
1662
1663 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END,
1664 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc));
1665 CHN_LOCKASSERT(c);
1666
1667 if (force == 0 && chn_vpc_autoreset == 0)
1668 return;
1669
1670 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP)
1671 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]);
1672 }
1673
1674 static u_int32_t
round_pow2(u_int32_t v)1675 round_pow2(u_int32_t v)
1676 {
1677 u_int32_t ret;
1678
1679 if (v < 2)
1680 v = 2;
1681 ret = 0;
1682 while (v >> ret)
1683 ret++;
1684 ret = 1 << (ret - 1);
1685 while (ret < v)
1686 ret <<= 1;
1687 return ret;
1688 }
1689
1690 static u_int32_t
round_blksz(u_int32_t v,int round)1691 round_blksz(u_int32_t v, int round)
1692 {
1693 u_int32_t ret, tmp;
1694
1695 if (round < 1)
1696 round = 1;
1697
1698 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1);
1699
1700 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2))
1701 ret >>= 1;
1702
1703 tmp = ret - (ret % round);
1704 while (tmp < 16 || tmp < round) {
1705 ret <<= 1;
1706 tmp = ret - (ret % round);
1707 }
1708
1709 return ret;
1710 }
1711
1712 /*
1713 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea
1714 * is to keep 2nd buffer short so that it doesn't cause long queue during
1715 * buffer transfer.
1716 *
1717 * Latency reference table for 48khz stereo 16bit: (PLAY)
1718 *
1719 * +---------+------------+-----------+------------+
1720 * | Latency | Blockcount | Blocksize | Buffersize |
1721 * +---------+------------+-----------+------------+
1722 * | 0 | 2 | 64 | 128 |
1723 * +---------+------------+-----------+------------+
1724 * | 1 | 4 | 128 | 512 |
1725 * +---------+------------+-----------+------------+
1726 * | 2 | 8 | 512 | 4096 |
1727 * +---------+------------+-----------+------------+
1728 * | 3 | 16 | 512 | 8192 |
1729 * +---------+------------+-----------+------------+
1730 * | 4 | 32 | 512 | 16384 |
1731 * +---------+------------+-----------+------------+
1732 * | 5 | 32 | 1024 | 32768 |
1733 * +---------+------------+-----------+------------+
1734 * | 6 | 16 | 2048 | 32768 |
1735 * +---------+------------+-----------+------------+
1736 * | 7 | 8 | 4096 | 32768 |
1737 * +---------+------------+-----------+------------+
1738 * | 8 | 4 | 8192 | 32768 |
1739 * +---------+------------+-----------+------------+
1740 * | 9 | 2 | 16384 | 32768 |
1741 * +---------+------------+-----------+------------+
1742 * | 10 | 2 | 32768 | 65536 |
1743 * +---------+------------+-----------+------------+
1744 *
1745 * Recording need a different reference table. All we care is
1746 * gobbling up everything within reasonable buffering threshold.
1747 *
1748 * Latency reference table for 48khz stereo 16bit: (REC)
1749 *
1750 * +---------+------------+-----------+------------+
1751 * | Latency | Blockcount | Blocksize | Buffersize |
1752 * +---------+------------+-----------+------------+
1753 * | 0 | 512 | 32 | 16384 |
1754 * +---------+------------+-----------+------------+
1755 * | 1 | 256 | 64 | 16384 |
1756 * +---------+------------+-----------+------------+
1757 * | 2 | 128 | 128 | 16384 |
1758 * +---------+------------+-----------+------------+
1759 * | 3 | 64 | 256 | 16384 |
1760 * +---------+------------+-----------+------------+
1761 * | 4 | 32 | 512 | 16384 |
1762 * +---------+------------+-----------+------------+
1763 * | 5 | 32 | 1024 | 32768 |
1764 * +---------+------------+-----------+------------+
1765 * | 6 | 16 | 2048 | 32768 |
1766 * +---------+------------+-----------+------------+
1767 * | 7 | 8 | 4096 | 32768 |
1768 * +---------+------------+-----------+------------+
1769 * | 8 | 4 | 8192 | 32768 |
1770 * +---------+------------+-----------+------------+
1771 * | 9 | 2 | 16384 | 32768 |
1772 * +---------+------------+-----------+------------+
1773 * | 10 | 2 | 32768 | 65536 |
1774 * +---------+------------+-----------+------------+
1775 *
1776 * Calculations for other data rate are entirely based on these reference
1777 * tables. For normal operation, Latency 5 seems give the best, well
1778 * balanced performance for typical workload. Anything below 5 will
1779 * eat up CPU to keep up with increasing context switches because of
1780 * shorter buffer space and usually require the application to handle it
1781 * aggressively through possibly real time programming technique.
1782 *
1783 */
1784 #define CHN_LATENCY_PBLKCNT_REF \
1785 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \
1786 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}}
1787 #define CHN_LATENCY_PBUFSZ_REF \
1788 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \
1789 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}}
1790
1791 #define CHN_LATENCY_RBLKCNT_REF \
1792 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \
1793 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}}
1794 #define CHN_LATENCY_RBUFSZ_REF \
1795 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \
1796 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}}
1797
1798 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */
1799
1800 static int
chn_calclatency(int dir,int latency,int bps,u_int32_t datarate,u_int32_t max,int * rblksz,int * rblkcnt)1801 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate,
1802 u_int32_t max, int *rblksz, int *rblkcnt)
1803 {
1804 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1805 CHN_LATENCY_PBLKCNT_REF;
1806 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1807 CHN_LATENCY_PBUFSZ_REF;
1808 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1809 CHN_LATENCY_RBLKCNT_REF;
1810 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1811 CHN_LATENCY_RBUFSZ_REF;
1812 u_int32_t bufsz;
1813 int lprofile, blksz, blkcnt;
1814
1815 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX ||
1816 bps < 1 || datarate < 1 ||
1817 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) {
1818 if (rblksz != NULL)
1819 *rblksz = CHN_2NDBUFMAXSIZE >> 1;
1820 if (rblkcnt != NULL)
1821 *rblkcnt = 2;
1822 printf("%s(): FAILED dir=%d latency=%d bps=%d "
1823 "datarate=%u max=%u\n",
1824 __func__, dir, latency, bps, datarate, max);
1825 return CHN_2NDBUFMAXSIZE;
1826 }
1827
1828 lprofile = chn_latency_profile;
1829
1830 if (dir == PCMDIR_PLAY) {
1831 blkcnt = pblkcnts[lprofile][latency];
1832 bufsz = pbufszs[lprofile][latency];
1833 } else {
1834 blkcnt = rblkcnts[lprofile][latency];
1835 bufsz = rbufszs[lprofile][latency];
1836 }
1837
1838 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF,
1839 datarate));
1840 if (bufsz > max)
1841 bufsz = max;
1842 blksz = round_blksz(bufsz >> blkcnt, bps);
1843
1844 if (rblksz != NULL)
1845 *rblksz = blksz;
1846 if (rblkcnt != NULL)
1847 *rblkcnt = 1 << blkcnt;
1848
1849 return blksz << blkcnt;
1850 }
1851
1852 static int
chn_resizebuf(struct pcm_channel * c,int latency,int blkcnt,int blksz)1853 chn_resizebuf(struct pcm_channel *c, int latency,
1854 int blkcnt, int blksz)
1855 {
1856 struct snd_dbuf *b, *bs, *pb;
1857 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt;
1858 int ret;
1859
1860 CHN_LOCKASSERT(c);
1861
1862 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) ||
1863 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC))
1864 return EINVAL;
1865
1866 if (latency == -1) {
1867 c->latency = -1;
1868 latency = chn_latency;
1869 } else if (latency == -2) {
1870 latency = c->latency;
1871 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1872 latency = chn_latency;
1873 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1874 return EINVAL;
1875 else {
1876 c->latency = latency;
1877 }
1878
1879 bs = c->bufsoft;
1880 b = c->bufhard;
1881
1882 if (!(blksz == 0 || blkcnt == -1) &&
1883 (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 ||
1884 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE))
1885 return EINVAL;
1886
1887 chn_calclatency(c->direction, latency, sndbuf_getalign(bs),
1888 sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE,
1889 &sblksz, &sblkcnt);
1890
1891 if (blksz == 0 || blkcnt == -1) {
1892 if (blkcnt == -1)
1893 c->flags &= ~CHN_F_HAS_SIZE;
1894 if (c->flags & CHN_F_HAS_SIZE) {
1895 blksz = sndbuf_getblksz(bs);
1896 blkcnt = sndbuf_getblkcnt(bs);
1897 }
1898 } else
1899 c->flags |= CHN_F_HAS_SIZE;
1900
1901 if (c->flags & CHN_F_HAS_SIZE) {
1902 /*
1903 * The application has requested their own blksz/blkcnt.
1904 * Just obey with it, and let them toast alone. We can
1905 * clamp it to the nearest latency profile, but that would
1906 * defeat the purpose of having custom control. The least
1907 * we can do is round it to the nearest ^2 and align it.
1908 */
1909 sblksz = round_blksz(blksz, sndbuf_getalign(bs));
1910 sblkcnt = round_pow2(blkcnt);
1911 }
1912
1913 if (c->parentchannel != NULL) {
1914 pb = c->parentchannel->bufsoft;
1915 CHN_UNLOCK(c);
1916 CHN_LOCK(c->parentchannel);
1917 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE);
1918 CHN_UNLOCK(c->parentchannel);
1919 CHN_LOCK(c);
1920 if (c->direction == PCMDIR_PLAY) {
1921 limit = (pb != NULL) ?
1922 sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0;
1923 } else {
1924 limit = (pb != NULL) ?
1925 sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0;
1926 }
1927 } else {
1928 hblkcnt = 2;
1929 if (c->flags & CHN_F_HAS_SIZE) {
1930 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b),
1931 sndbuf_getalign(b));
1932 hblkcnt = round_pow2(sndbuf_getblkcnt(bs));
1933 } else
1934 chn_calclatency(c->direction, latency,
1935 sndbuf_getalign(b),
1936 sndbuf_getalign(b) * sndbuf_getspd(b),
1937 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt);
1938
1939 if ((hblksz << 1) > sndbuf_getmaxsize(b))
1940 hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1,
1941 sndbuf_getalign(b));
1942
1943 while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) {
1944 if (hblkcnt < 4)
1945 hblksz >>= 1;
1946 else
1947 hblkcnt >>= 1;
1948 }
1949
1950 hblksz -= hblksz % sndbuf_getalign(b);
1951
1952 CHN_UNLOCK(c);
1953 if (chn_usefrags == 0 ||
1954 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo,
1955 hblksz, hblkcnt) != 0)
1956 sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods,
1957 c->devinfo, hblksz));
1958 CHN_LOCK(c);
1959
1960 if (!CHN_EMPTY(c, children)) {
1961 nsblksz = round_blksz(
1962 sndbuf_xbytes(sndbuf_getblksz(b), b, bs),
1963 sndbuf_getalign(bs));
1964 nsblkcnt = sndbuf_getblkcnt(b);
1965 if (c->direction == PCMDIR_PLAY) {
1966 do {
1967 nsblkcnt--;
1968 } while (nsblkcnt >= 2 &&
1969 nsblksz * nsblkcnt >= sblksz * sblkcnt);
1970 nsblkcnt++;
1971 }
1972 sblksz = nsblksz;
1973 sblkcnt = nsblkcnt;
1974 limit = 0;
1975 } else
1976 limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2;
1977 }
1978
1979 if (limit > CHN_2NDBUFMAXSIZE)
1980 limit = CHN_2NDBUFMAXSIZE;
1981
1982 while ((sblksz * sblkcnt) < limit)
1983 sblkcnt <<= 1;
1984
1985 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) {
1986 if (sblkcnt < 4)
1987 sblksz >>= 1;
1988 else
1989 sblkcnt >>= 1;
1990 }
1991
1992 sblksz -= sblksz % sndbuf_getalign(bs);
1993
1994 if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz ||
1995 sndbuf_getsize(bs) != (sblkcnt * sblksz)) {
1996 ret = sndbuf_remalloc(bs, sblkcnt, sblksz);
1997 if (ret != 0) {
1998 device_printf(c->dev, "%s(): Failed: %d %d\n",
1999 __func__, sblkcnt, sblksz);
2000 return ret;
2001 }
2002 }
2003
2004 /*
2005 * Interrupt timeout
2006 */
2007 c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) /
2008 ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs));
2009 if (c->parentchannel != NULL)
2010 c->timeout = min(c->timeout, c->parentchannel->timeout);
2011 if (c->timeout < 1)
2012 c->timeout = 1;
2013
2014 /*
2015 * OSSv4 docs: "By default OSS will set the low water level equal
2016 * to the fragment size which is optimal in most cases."
2017 */
2018 c->lw = sndbuf_getblksz(bs);
2019 chn_resetbuf(c);
2020
2021 if (snd_verbose > 3)
2022 device_printf(c->dev, "%s(): %s (%s) timeout=%u "
2023 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n",
2024 __func__, CHN_DIRSTR(c),
2025 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
2026 c->timeout,
2027 sndbuf_getsize(b), sndbuf_getblksz(b),
2028 sndbuf_getblkcnt(b),
2029 sndbuf_getsize(bs), sndbuf_getblksz(bs),
2030 sndbuf_getblkcnt(bs), limit);
2031
2032 return 0;
2033 }
2034
2035 int
chn_setlatency(struct pcm_channel * c,int latency)2036 chn_setlatency(struct pcm_channel *c, int latency)
2037 {
2038 CHN_LOCKASSERT(c);
2039 /* Destroy blksz/blkcnt, enforce latency profile. */
2040 return chn_resizebuf(c, latency, -1, 0);
2041 }
2042
2043 int
chn_setblocksize(struct pcm_channel * c,int blkcnt,int blksz)2044 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz)
2045 {
2046 CHN_LOCKASSERT(c);
2047 /* Destroy latency profile, enforce blksz/blkcnt */
2048 return chn_resizebuf(c, -1, blkcnt, blksz);
2049 }
2050
2051 int
chn_setparam(struct pcm_channel * c,uint32_t format,uint32_t speed)2052 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed)
2053 {
2054 struct pcmchan_caps *caps;
2055 uint32_t hwspeed, delta;
2056 int ret;
2057
2058 CHN_LOCKASSERT(c);
2059
2060 if (speed < 1 || format == 0 || CHN_STARTED(c))
2061 return (EINVAL);
2062
2063 c->format = format;
2064 c->speed = speed;
2065
2066 caps = chn_getcaps(c);
2067
2068 hwspeed = speed;
2069 RANGE(hwspeed, caps->minspeed, caps->maxspeed);
2070
2071 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo,
2072 hwspeed));
2073 hwspeed = sndbuf_getspd(c->bufhard);
2074
2075 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed);
2076
2077 if (delta <= feeder_rate_round)
2078 c->speed = hwspeed;
2079
2080 ret = feeder_chain(c);
2081
2082 if (ret == 0)
2083 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo,
2084 sndbuf_getfmt(c->bufhard));
2085
2086 if (ret == 0)
2087 ret = chn_resizebuf(c, -2, 0, 0);
2088
2089 return (ret);
2090 }
2091
2092 int
chn_setspeed(struct pcm_channel * c,uint32_t speed)2093 chn_setspeed(struct pcm_channel *c, uint32_t speed)
2094 {
2095 uint32_t oldformat, oldspeed, format;
2096 int ret;
2097
2098 oldformat = c->format;
2099 oldspeed = c->speed;
2100 format = oldformat;
2101
2102 ret = chn_setparam(c, format, speed);
2103 if (ret != 0) {
2104 if (snd_verbose > 3)
2105 device_printf(c->dev,
2106 "%s(): Setting speed %d failed, "
2107 "falling back to %d\n",
2108 __func__, speed, oldspeed);
2109 chn_setparam(c, c->format, oldspeed);
2110 }
2111
2112 return (ret);
2113 }
2114
2115 int
chn_setformat(struct pcm_channel * c,uint32_t format)2116 chn_setformat(struct pcm_channel *c, uint32_t format)
2117 {
2118 uint32_t oldformat, oldspeed, speed;
2119 int ret;
2120
2121 /* XXX force stereo */
2122 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) {
2123 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL,
2124 AFMT_PASSTHROUGH_EXTCHANNEL);
2125 }
2126
2127 oldformat = c->format;
2128 oldspeed = c->speed;
2129 speed = oldspeed;
2130
2131 ret = chn_setparam(c, format, speed);
2132 if (ret != 0) {
2133 if (snd_verbose > 3)
2134 device_printf(c->dev,
2135 "%s(): Format change 0x%08x failed, "
2136 "falling back to 0x%08x\n",
2137 __func__, format, oldformat);
2138 chn_setparam(c, oldformat, oldspeed);
2139 }
2140
2141 return (ret);
2142 }
2143
2144 void
chn_syncstate(struct pcm_channel * c)2145 chn_syncstate(struct pcm_channel *c)
2146 {
2147 struct snddev_info *d;
2148 struct snd_mixer *m;
2149
2150 d = (c != NULL) ? c->parentsnddev : NULL;
2151 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 :
2152 NULL;
2153
2154 if (d == NULL || m == NULL)
2155 return;
2156
2157 CHN_LOCKASSERT(c);
2158
2159 if (c->feederflags & (1 << FEEDER_VOLUME)) {
2160 uint32_t parent;
2161 int vol, pvol, left, right, center;
2162
2163 if (c->direction == PCMDIR_PLAY &&
2164 (d->flags & SD_F_SOFTPCMVOL)) {
2165 /* CHN_UNLOCK(c); */
2166 vol = mix_get(m, SOUND_MIXER_PCM);
2167 parent = mix_getparent(m, SOUND_MIXER_PCM);
2168 if (parent != SOUND_MIXER_NONE)
2169 pvol = mix_get(m, parent);
2170 else
2171 pvol = 100 | (100 << 8);
2172 /* CHN_LOCK(c); */
2173 } else {
2174 vol = 100 | (100 << 8);
2175 pvol = vol;
2176 }
2177
2178 if (vol == -1) {
2179 device_printf(c->dev,
2180 "Soft PCM Volume: Failed to read pcm "
2181 "default value\n");
2182 vol = 100 | (100 << 8);
2183 }
2184
2185 if (pvol == -1) {
2186 device_printf(c->dev,
2187 "Soft PCM Volume: Failed to read parent "
2188 "default value\n");
2189 pvol = 100 | (100 << 8);
2190 }
2191
2192 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100;
2193 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100;
2194 center = (left + right) >> 1;
2195
2196 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center);
2197 }
2198
2199 if (c->feederflags & (1 << FEEDER_EQ)) {
2200 struct pcm_feeder *f;
2201 int treble, bass, state;
2202
2203 /* CHN_UNLOCK(c); */
2204 treble = mix_get(m, SOUND_MIXER_TREBLE);
2205 bass = mix_get(m, SOUND_MIXER_BASS);
2206 /* CHN_LOCK(c); */
2207
2208 if (treble == -1)
2209 treble = 50;
2210 else
2211 treble = ((treble & 0x7f) +
2212 ((treble >> 8) & 0x7f)) >> 1;
2213
2214 if (bass == -1)
2215 bass = 50;
2216 else
2217 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1;
2218
2219 f = feeder_find(c, FEEDER_EQ);
2220 if (f != NULL) {
2221 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0)
2222 device_printf(c->dev,
2223 "EQ: Failed to set treble -- %d\n",
2224 treble);
2225 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0)
2226 device_printf(c->dev,
2227 "EQ: Failed to set bass -- %d\n",
2228 bass);
2229 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0)
2230 device_printf(c->dev,
2231 "EQ: Failed to set preamp -- %d\n",
2232 d->eqpreamp);
2233 if (d->flags & SD_F_EQ_BYPASSED)
2234 state = FEEDEQ_BYPASS;
2235 else if (d->flags & SD_F_EQ_ENABLED)
2236 state = FEEDEQ_ENABLE;
2237 else
2238 state = FEEDEQ_DISABLE;
2239 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0)
2240 device_printf(c->dev,
2241 "EQ: Failed to set state -- %d\n", state);
2242 }
2243 }
2244 }
2245
2246 int
chn_trigger(struct pcm_channel * c,int go)2247 chn_trigger(struct pcm_channel *c, int go)
2248 {
2249 struct snddev_info *d = c->parentsnddev;
2250 int ret;
2251
2252 CHN_LOCKASSERT(c);
2253 if (!PCMTRIG_COMMON(go))
2254 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go));
2255
2256 if (go == c->trigger)
2257 return (0);
2258
2259 if (snd_verbose > 3) {
2260 device_printf(c->dev, "%s() %s: calling go=0x%08x , "
2261 "prev=0x%08x\n", __func__, c->name, go, c->trigger);
2262 }
2263
2264 c->trigger = go;
2265 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go);
2266 if (ret != 0)
2267 return (ret);
2268
2269 CHN_UNLOCK(c);
2270 PCM_LOCK(d);
2271 CHN_LOCK(c);
2272
2273 /*
2274 * Do nothing if another thread set a different trigger while we had
2275 * dropped the mutex.
2276 */
2277 if (go != c->trigger) {
2278 PCM_UNLOCK(d);
2279 return (0);
2280 }
2281
2282 /*
2283 * Use the SAFE variants to prevent inserting/removing an already
2284 * existing/missing element.
2285 */
2286 switch (go) {
2287 case PCMTRIG_START:
2288 CHN_INSERT_HEAD_SAFE(d, c, channels.pcm.busy);
2289 PCM_UNLOCK(d);
2290 chn_syncstate(c);
2291 break;
2292 case PCMTRIG_STOP:
2293 case PCMTRIG_ABORT:
2294 CHN_REMOVE_SAFE(d, c, channels.pcm.busy);
2295 PCM_UNLOCK(d);
2296 break;
2297 default:
2298 PCM_UNLOCK(d);
2299 break;
2300 }
2301
2302 return (0);
2303 }
2304
2305 /**
2306 * @brief Queries sound driver for sample-aligned hardware buffer pointer index
2307 *
2308 * This function obtains the hardware pointer location, then aligns it to
2309 * the current bytes-per-sample value before returning. (E.g., a channel
2310 * running in 16 bit stereo mode would require 4 bytes per sample, so a
2311 * hwptr value ranging from 32-35 would be returned as 32.)
2312 *
2313 * @param c PCM channel context
2314 * @returns sample-aligned hardware buffer pointer index
2315 */
2316 int
chn_getptr(struct pcm_channel * c)2317 chn_getptr(struct pcm_channel *c)
2318 {
2319 int hwptr;
2320
2321 CHN_LOCKASSERT(c);
2322 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0;
2323 return (hwptr - (hwptr % sndbuf_getalign(c->bufhard)));
2324 }
2325
2326 struct pcmchan_caps *
chn_getcaps(struct pcm_channel * c)2327 chn_getcaps(struct pcm_channel *c)
2328 {
2329 CHN_LOCKASSERT(c);
2330 return CHANNEL_GETCAPS(c->methods, c->devinfo);
2331 }
2332
2333 u_int32_t
chn_getformats(struct pcm_channel * c)2334 chn_getformats(struct pcm_channel *c)
2335 {
2336 u_int32_t *fmtlist, fmts;
2337 int i;
2338
2339 fmtlist = chn_getcaps(c)->fmtlist;
2340 fmts = 0;
2341 for (i = 0; fmtlist[i]; i++)
2342 fmts |= fmtlist[i];
2343
2344 /* report software-supported formats */
2345 if (!CHN_BITPERFECT(c) && report_soft_formats)
2346 fmts |= AFMT_CONVERTIBLE;
2347
2348 return (AFMT_ENCODING(fmts));
2349 }
2350
2351 int
chn_notify(struct pcm_channel * c,u_int32_t flags)2352 chn_notify(struct pcm_channel *c, u_int32_t flags)
2353 {
2354 struct pcm_channel *ch;
2355 struct pcmchan_caps *caps;
2356 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate;
2357 uint32_t vpflags;
2358 int dirty, err, run, nrun;
2359
2360 CHN_LOCKASSERT(c);
2361
2362 if (CHN_EMPTY(c, children))
2363 return (ENODEV);
2364
2365 err = 0;
2366
2367 /*
2368 * If the hwchan is running, we can't change its rate, format or
2369 * blocksize
2370 */
2371 run = (CHN_STARTED(c)) ? 1 : 0;
2372 if (run)
2373 flags &= CHN_N_VOLUME | CHN_N_TRIGGER;
2374
2375 if (flags & CHN_N_RATE) {
2376 /*
2377 * XXX I'll make good use of this someday.
2378 * However this is currently being superseded by
2379 * the availability of CHN_F_VCHAN_DYNAMIC.
2380 */
2381 }
2382
2383 if (flags & CHN_N_FORMAT) {
2384 /*
2385 * XXX I'll make good use of this someday.
2386 * However this is currently being superseded by
2387 * the availability of CHN_F_VCHAN_DYNAMIC.
2388 */
2389 }
2390
2391 if (flags & CHN_N_VOLUME) {
2392 /*
2393 * XXX I'll make good use of this someday, though
2394 * soft volume control is currently pretty much
2395 * integrated.
2396 */
2397 }
2398
2399 if (flags & CHN_N_BLOCKSIZE) {
2400 /*
2401 * Set to default latency profile
2402 */
2403 chn_setlatency(c, chn_latency);
2404 }
2405
2406 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) {
2407 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1;
2408 if (nrun && !run)
2409 err = chn_start(c, 1);
2410 if (!nrun && run)
2411 chn_abort(c);
2412 flags &= ~CHN_N_TRIGGER;
2413 }
2414
2415 if (flags & CHN_N_TRIGGER) {
2416 if (c->direction == PCMDIR_PLAY) {
2417 vchanformat = &c->parentsnddev->pvchanformat;
2418 vchanrate = &c->parentsnddev->pvchanrate;
2419 } else {
2420 vchanformat = &c->parentsnddev->rvchanformat;
2421 vchanrate = &c->parentsnddev->rvchanrate;
2422 }
2423
2424 /* Dynamic Virtual Channel */
2425 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) {
2426 bestformat = *vchanformat;
2427 bestspeed = *vchanrate;
2428 } else {
2429 bestformat = 0;
2430 bestspeed = 0;
2431 }
2432
2433 besthwformat = 0;
2434 nrun = 0;
2435 caps = chn_getcaps(c);
2436 dirty = 0;
2437 vpflags = 0;
2438
2439 CHN_FOREACH(ch, c, children.busy) {
2440 CHN_LOCK(ch);
2441 if ((ch->format & AFMT_PASSTHROUGH) &&
2442 snd_fmtvalid(ch->format, caps->fmtlist)) {
2443 bestformat = ch->format;
2444 bestspeed = ch->speed;
2445 CHN_UNLOCK(ch);
2446 vpflags = CHN_F_PASSTHROUGH;
2447 nrun++;
2448 break;
2449 }
2450 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) {
2451 if (c->flags & CHN_F_VCHAN_ADAPTIVE) {
2452 bestspeed = ch->speed;
2453 RANGE(bestspeed, caps->minspeed,
2454 caps->maxspeed);
2455 besthwformat = snd_fmtbest(ch->format,
2456 caps->fmtlist);
2457 if (besthwformat != 0)
2458 bestformat = besthwformat;
2459 }
2460 CHN_UNLOCK(ch);
2461 vpflags = CHN_F_EXCLUSIVE;
2462 nrun++;
2463 continue;
2464 }
2465 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) ||
2466 vpflags != 0) {
2467 CHN_UNLOCK(ch);
2468 nrun++;
2469 continue;
2470 }
2471 if (ch->speed > bestspeed) {
2472 bestspeed = ch->speed;
2473 RANGE(bestspeed, caps->minspeed,
2474 caps->maxspeed);
2475 }
2476 besthwformat = snd_fmtbest(ch->format, caps->fmtlist);
2477 if (!(besthwformat & AFMT_VCHAN)) {
2478 CHN_UNLOCK(ch);
2479 nrun++;
2480 continue;
2481 }
2482 if (AFMT_CHANNEL(besthwformat) >
2483 AFMT_CHANNEL(bestformat))
2484 bestformat = besthwformat;
2485 else if (AFMT_CHANNEL(besthwformat) ==
2486 AFMT_CHANNEL(bestformat) &&
2487 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat))
2488 bestformat = besthwformat;
2489 CHN_UNLOCK(ch);
2490 nrun++;
2491 }
2492
2493 if (bestformat == 0)
2494 bestformat = c->format;
2495 if (bestspeed == 0)
2496 bestspeed = c->speed;
2497
2498 if (bestformat != c->format || bestspeed != c->speed)
2499 dirty = 1;
2500
2501 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2502 c->flags |= vpflags;
2503
2504 if (nrun && !run) {
2505 if (dirty) {
2506 bestspeed = CHANNEL_SETSPEED(c->methods,
2507 c->devinfo, bestspeed);
2508 err = chn_reset(c, bestformat, bestspeed);
2509 }
2510 if (err == 0 && dirty) {
2511 CHN_FOREACH(ch, c, children.busy) {
2512 CHN_LOCK(ch);
2513 if (VCHAN_SYNC_REQUIRED(ch))
2514 vchan_sync(ch);
2515 CHN_UNLOCK(ch);
2516 }
2517 }
2518 if (err == 0) {
2519 if (dirty)
2520 c->flags |= CHN_F_DIRTY;
2521 err = chn_start(c, 1);
2522 }
2523 }
2524
2525 if (nrun && run && dirty) {
2526 chn_abort(c);
2527 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo,
2528 bestspeed);
2529 err = chn_reset(c, bestformat, bestspeed);
2530 if (err == 0) {
2531 CHN_FOREACH(ch, c, children.busy) {
2532 CHN_LOCK(ch);
2533 if (VCHAN_SYNC_REQUIRED(ch))
2534 vchan_sync(ch);
2535 CHN_UNLOCK(ch);
2536 }
2537 }
2538 if (err == 0) {
2539 c->flags |= CHN_F_DIRTY;
2540 err = chn_start(c, 1);
2541 }
2542 }
2543
2544 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) &&
2545 (bestformat & AFMT_VCHAN)) {
2546 *vchanformat = bestformat;
2547 *vchanrate = bestspeed;
2548 }
2549
2550 if (!nrun && run) {
2551 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2552 bestformat = *vchanformat;
2553 bestspeed = *vchanrate;
2554 chn_abort(c);
2555 if (c->format != bestformat || c->speed != bestspeed)
2556 chn_reset(c, bestformat, bestspeed);
2557 }
2558 }
2559
2560 return (err);
2561 }
2562
2563 /**
2564 * @brief Fetch array of supported discrete sample rates
2565 *
2566 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for
2567 * detailed information.
2568 *
2569 * @note If the operation isn't supported, this function will just return 0
2570 * (no rates in the array), and *rates will be set to NULL. Callers
2571 * should examine rates @b only if this function returns non-zero.
2572 *
2573 * @param c pcm channel to examine
2574 * @param rates pointer to array of integers; rate table will be recorded here
2575 *
2576 * @return number of rates in the array pointed to be @c rates
2577 */
2578 int
chn_getrates(struct pcm_channel * c,int ** rates)2579 chn_getrates(struct pcm_channel *c, int **rates)
2580 {
2581 KASSERT(rates != NULL, ("rates is null"));
2582 CHN_LOCKASSERT(c);
2583 return CHANNEL_GETRATES(c->methods, c->devinfo, rates);
2584 }
2585
2586 /**
2587 * @brief Remove channel from a sync group, if there is one.
2588 *
2589 * This function is initially intended for the following conditions:
2590 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl)
2591 * - Closing a device. (A channel can't be destroyed if it's still in use.)
2592 *
2593 * @note Before calling this function, the syncgroup list mutex must be
2594 * held. (Consider pcm_channel::sm protected by the SG list mutex
2595 * whether @c c is locked or not.)
2596 *
2597 * @param c channel device to be started or closed
2598 * @returns If this channel was the only member of a group, the group ID
2599 * is returned to the caller so that the caller can release it
2600 * via free_unr() after giving up the syncgroup lock. Else it
2601 * returns 0.
2602 */
2603 int
chn_syncdestroy(struct pcm_channel * c)2604 chn_syncdestroy(struct pcm_channel *c)
2605 {
2606 struct pcmchan_syncmember *sm;
2607 struct pcmchan_syncgroup *sg;
2608 int sg_id;
2609
2610 sg_id = 0;
2611
2612 PCM_SG_LOCKASSERT(MA_OWNED);
2613
2614 if (c->sm != NULL) {
2615 sm = c->sm;
2616 sg = sm->parent;
2617 c->sm = NULL;
2618
2619 KASSERT(sg != NULL, ("syncmember has null parent"));
2620
2621 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link);
2622 free(sm, M_DEVBUF);
2623
2624 if (SLIST_EMPTY(&sg->members)) {
2625 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link);
2626 sg_id = sg->id;
2627 free(sg, M_DEVBUF);
2628 }
2629 }
2630
2631 return sg_id;
2632 }
2633
2634 #ifdef OSSV4_EXPERIMENT
2635 int
chn_getpeaks(struct pcm_channel * c,int * lpeak,int * rpeak)2636 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak)
2637 {
2638 CHN_LOCKASSERT(c);
2639 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak);
2640 }
2641 #endif
2642