1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sunddi.h>
30 #include <sys/esunddi.h>
31 #include <sys/sunndi.h>
32 #include <sys/ddi.h>
33 #include <sys/modctl.h>
34 #include <sys/sysmacros.h>
35 #include <sys/note.h>
36
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/i2c/clients/i2c_client.h>
40 #include <sys/cherrystone.h>
41 #include <sys/machsystm.h>
42 #include <sys/promif.h>
43 #include <vm/page.h>
44 #include <sys/memnode.h>
45 #include <vm/vm_dep.h>
46
47 /* Cherrystone Keyswitch Information */
48 #define CHERRY_KEY_POLL_PORT 3
49 #define CHERRY_KEY_POLL_BIT 2
50 #define CHERRY_KEY_POLL_INTVL 10
51
52 #define SHARED_PCF8584_PATH "/pci@9,700000/ebus@1/i2c@1,2e/nvram@4,a4"
53 static dev_info_t *shared_pcf8584_dip;
54 static kmutex_t cherry_pcf8584_mutex;
55
56 static boolean_t key_locked_bit;
57 static clock_t keypoll_timeout_hz;
58
59 /*
60 * Table that maps memory slices to a specific memnode.
61 */
62 int slice_to_memnode[CHERRYSTONE_MAX_SLICE];
63
64 /*
65 * For software memory interleaving support.
66 */
67 static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
68
69 static uint64_t
70 slice_table[CHERRYSTONE_SBD_SLOTS][CHERRYSTONE_CPUS_PER_BOARD]
71 [CHERRYSTONE_BANKS_PER_MC][2];
72
73 #define SLICE_PA 0
74 #define SLICE_SPAN 1
75
76 /* Function prototypes */
77 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
78
79 int (*cherry_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
80 extern void (*abort_seq_handler)();
81
82 static int cherry_dev_search(dev_info_t *, void *);
83 static void keyswitch_poll(void *);
84 static void cherry_abort_seq_handler(char *msg);
85
86 /* Function definitions from this point forward. */
87
88 int
set_platform_tsb_spares()89 set_platform_tsb_spares()
90 {
91 return (0);
92 }
93
94 void
startup_platform(void)95 startup_platform(void)
96 {
97 /*
98 * Disable an active h/w watchdog timer
99 * upon exit to OBP.
100 */
101 extern int disable_watchdog_on_exit;
102 disable_watchdog_on_exit = 1;
103
104 mutex_init(&cherry_pcf8584_mutex, NULL, NULL, NULL);
105 }
106
107 #pragma weak mmu_init_large_pages
108
109 void
set_platform_defaults(void)110 set_platform_defaults(void)
111 {
112 extern void mmu_init_large_pages(size_t);
113
114 if ((mmu_page_sizes == max_mmu_page_sizes) &&
115 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
116 if (&mmu_init_large_pages)
117 mmu_init_large_pages(mmu_ism_pagesize);
118 }
119 }
120
121 void
load_platform_modules(void)122 load_platform_modules(void)
123 {
124 if (modload("drv", "pmc") < 0) {
125 cmn_err(CE_NOTE, "pmc driver failed to load");
126 }
127 }
128
129 void
load_platform_drivers(void)130 load_platform_drivers(void)
131 {
132 char **drv;
133 dev_info_t *i2cnexus_dip;
134 dev_info_t *keysw_dip = NULL;
135
136 static char *boot_time_drivers[] = {
137 "todds1287",
138 "mc-us3",
139 "ssc050",
140 NULL
141 };
142
143 for (drv = boot_time_drivers; *drv; drv++) {
144 if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
145 cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
146 *drv);
147 }
148
149 /*
150 * mc-us3 and ssc050 must stay loaded for plat_get_mem_unum()
151 * and keyswitch_poll()
152 */
153 (void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
154 (void) ddi_hold_driver(ddi_name_to_major("ssc050"));
155
156 /* Gain access into the ssc050_get_port function */
157 cherry_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
158 uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
159 if (cherry_ssc050_get_port_bit == NULL) {
160 cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
161 return;
162 }
163
164 e_ddi_walk_driver("i2c-ssc050", cherry_dev_search, (void *)&keysw_dip);
165 ASSERT(keysw_dip != NULL);
166
167 /*
168 * prevent detach of i2c-ssc050
169 */
170 e_ddi_hold_devi(keysw_dip);
171
172 keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
173 keyswitch_poll(keysw_dip);
174 abort_seq_handler = cherry_abort_seq_handler;
175
176 /*
177 * Figure out which pcf8584_dip is shared with OBP for the nvram
178 * device, so the lock can be acquired.
179 */
180
181 i2cnexus_dip = e_ddi_hold_devi_by_path(SHARED_PCF8584_PATH, 0);
182
183 ASSERT(i2cnexus_dip != NULL);
184 shared_pcf8584_dip = ddi_get_parent(i2cnexus_dip);
185
186 ndi_hold_devi(shared_pcf8584_dip);
187 ndi_rele_devi(i2cnexus_dip);
188 }
189
190 static int
cherry_dev_search(dev_info_t * dip,void * arg)191 cherry_dev_search(dev_info_t *dip, void *arg)
192 {
193 int *dev_regs; /* Info about where the device is. */
194 uint_t len;
195 int err;
196
197 if (strcmp(ddi_binding_name(dip), "i2c-ssc050") != 0)
198 return (DDI_WALK_CONTINUE);
199
200 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
201 DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
202 if (err != DDI_PROP_SUCCESS) {
203 return (DDI_WALK_CONTINUE);
204 }
205 /*
206 * regs[0] contains the bus number and regs[1]
207 * contains the device address of the i2c device.
208 * 0x82 is the device address of the i2c device
209 * from which the key switch position is read.
210 */
211 if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
212 *((dev_info_t **)arg) = dip;
213 ddi_prop_free(dev_regs);
214 return (DDI_WALK_TERMINATE);
215 }
216 ddi_prop_free(dev_regs);
217 return (DDI_WALK_CONTINUE);
218 }
219
220 static void
keyswitch_poll(void * arg)221 keyswitch_poll(void *arg)
222 {
223 dev_info_t *dip = arg;
224 uchar_t port_byte;
225 int port = CHERRY_KEY_POLL_PORT;
226 int bit = CHERRY_KEY_POLL_BIT;
227 int err;
228
229 err = cherry_ssc050_get_port_bit(dip, port, bit,
230 &port_byte, I2C_NOSLEEP);
231 if (err != 0) {
232 cmn_err(CE_WARN, "keyswitch polling disabled: "
233 "errno=%d while reading ssc050", err);
234 return;
235 }
236
237 key_locked_bit = (boolean_t)((port_byte & 0x1));
238 (void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
239 }
240
241 static void
cherry_abort_seq_handler(char * msg)242 cherry_abort_seq_handler(char *msg)
243 {
244 if (key_locked_bit == 0)
245 cmn_err(CE_CONT, "KEY in LOCKED position, "
246 "ignoring debug enter sequence");
247 else {
248 debug_enter(msg);
249 }
250 }
251
252
253 /*ARGSUSED*/
254 int
plat_cpu_poweron(struct cpu * cp)255 plat_cpu_poweron(struct cpu *cp)
256 {
257 return (ENOTSUP); /* not supported on this platform */
258 }
259
260 /*ARGSUSED*/
261 int
plat_cpu_poweroff(struct cpu * cp)262 plat_cpu_poweroff(struct cpu *cp)
263 {
264 return (ENOTSUP); /* not supported on this platform */
265 }
266
267 /*
268 * Given a pfn, return the board and beginning/end of the page's
269 * memory controller's address range.
270 */
271 static int
plat_discover_slice(pfn_t pfn,pfn_t * first,pfn_t * last)272 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
273 {
274 int bd, cpu, bank;
275
276 for (bd = 0; bd < CHERRYSTONE_SBD_SLOTS; bd++) {
277 for (cpu = 0; cpu < CHERRYSTONE_CPUS_PER_BOARD; cpu++) {
278 for (bank = 0; bank < CHERRYSTONE_BANKS_PER_MC;
279 bank++) {
280 uint64_t *slice = slice_table[bd][cpu][bank];
281 uint64_t base = btop(slice[SLICE_PA]);
282 uint64_t len = btop(slice[SLICE_SPAN]);
283 if (len && pfn >= base && pfn < (base + len)) {
284 *first = base;
285 *last = base + len - 1;
286 return (bd);
287 }
288 }
289 }
290 }
291 panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
292 /* NOTREACHED */
293 }
294
295 /*ARGSUSED*/
296 void
plat_freelist_process(int mnode)297 plat_freelist_process(int mnode)
298 {}
299
300 /*
301 * Called for each board/cpu/PA range detected in plat_fill_mc().
302 */
303 static void
update_mem_bounds(int boardid,int cpuid,int bankid,uint64_t base,uint64_t size)304 update_mem_bounds(int boardid, int cpuid, int bankid,
305 uint64_t base, uint64_t size)
306 {
307 uint64_t end;
308 int mnode;
309
310 slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
311 slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
312
313 end = base + size - 1;
314
315 /*
316 * First see if this board already has a memnode associated
317 * with it. If not, see if this slice has a memnode. This
318 * covers the cases where a single slice covers multiple
319 * boards (cross-board interleaving) and where a single
320 * board has multiple slices (1+GB DIMMs).
321 */
322 if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
323 if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
324 mnode = mem_node_alloc();
325
326 ASSERT(mnode >= 0);
327 ASSERT(mnode < MAX_MEM_NODES);
328 plat_assign_lgrphand_to_mem_node(boardid, mnode);
329 }
330
331 base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
332
333 while (base < end) {
334 slice_to_memnode[PA_2_SLICE(base)] = mnode;
335 base += (1ul << PA_SLICE_SHIFT);
336 }
337 }
338
339 /*
340 * Dynamically detect memory slices in the system by decoding
341 * the cpu memory decoder registers at boot time.
342 */
343 void
plat_fill_mc(pnode_t nodeid)344 plat_fill_mc(pnode_t nodeid)
345 {
346 uint64_t mc_addr, saf_addr;
347 uint64_t mc_decode[CHERRYSTONE_BANKS_PER_MC];
348 uint64_t base, size;
349 uint64_t saf_mask;
350 uint64_t offset;
351 uint32_t regs[4];
352 int len;
353 int local_mc;
354 int portid;
355 int boardid;
356 int cpuid;
357 int i;
358
359 if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
360 (portid == -1))
361 return;
362
363 /*
364 * Decode the board number from the MC portid. Assumes
365 * portid == safari agentid.
366 */
367 boardid = CHERRYSTONE_GETSLOT(portid);
368 cpuid = CHERRYSTONE_GETSID(portid);
369
370 /*
371 * The "reg" property returns 4 32-bit values. The first two are
372 * combined to form a 64-bit address. The second two are for a
373 * 64-bit size, but we don't actually need to look at that value.
374 */
375 len = prom_getproplen(nodeid, "reg");
376 if (len != (sizeof (uint32_t) * 4)) {
377 prom_printf("Warning: malformed 'reg' property\n");
378 return;
379 }
380 if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
381 return;
382 mc_addr = ((uint64_t)regs[0]) << 32;
383 mc_addr |= (uint64_t)regs[1];
384
385 /*
386 * Figure out whether the memory controller we are examining
387 * belongs to this CPU or a different one.
388 */
389 saf_addr = lddsafaddr(8);
390 saf_mask = (uint64_t)SAF_MASK;
391 if ((mc_addr & saf_mask) == saf_addr)
392 local_mc = 1;
393 else
394 local_mc = 0;
395
396 for (i = 0; i < CHERRYSTONE_BANKS_PER_MC; i++) {
397 /*
398 * Memory decode masks are at offsets 0x10 - 0x28.
399 */
400 offset = 0x10 + (i << 3);
401
402 /*
403 * If the memory controller is local to this CPU, we use
404 * the special ASI to read the decode registers.
405 * Otherwise, we load the values from a magic address in
406 * I/O space.
407 */
408 if (local_mc)
409 mc_decode[i] = lddmcdecode(offset);
410 else
411 mc_decode[i] = lddphysio(mc_addr | offset);
412
413 /*
414 * If the upper bit is set, we have a valid mask
415 */
416 if ((int64_t)mc_decode[i] < 0) {
417 /*
418 * The memory decode register is a bitmask field,
419 * so we can decode that into both a base and
420 * a span.
421 */
422 base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
423 size = MC_UK2SPAN(mc_decode[i]);
424 update_mem_bounds(boardid, cpuid, i, base, size);
425 }
426 }
427 }
428
429 /*
430 * This routine is run midway through the boot process. By the time we get
431 * here, we know about all the active CPU boards in the system, and we have
432 * extracted information about each board's memory from the memory
433 * controllers. We have also figured out which ranges of memory will be
434 * assigned to which memnodes, so we walk the slice table to build the table
435 * of memnodes.
436 */
437 /* ARGSUSED */
438 void
plat_build_mem_nodes(prom_memlist_t * list,size_t nelems)439 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
440 {
441 int slice;
442 pfn_t basepfn;
443 pgcnt_t npgs;
444
445 mem_node_pfn_shift = PFN_SLICE_SHIFT;
446 mem_node_physalign = (1ull << PA_SLICE_SHIFT);
447 npgs = 1ull << PFN_SLICE_SHIFT;
448
449 for (slice = 0; slice < CHERRYSTONE_MAX_SLICE; slice++) {
450 if (slice_to_memnode[slice] == -1)
451 continue;
452 basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
453 mem_node_add_slice(basepfn, basepfn + npgs - 1);
454 }
455 }
456
457
458
459 /*
460 * Cherrystone support for lgroups.
461 *
462 * On Cherrystone, an lgroup platform handle == slot number.
463 *
464 * Mappings between lgroup handles and memnodes are managed
465 * in addition to mappings between memory slices and memnodes
466 * to support cross-board interleaving as well as multiple
467 * slices per board (e.g. >1GB DIMMs). The initial mapping
468 * of memnodes to lgroup handles is determined at boot time.
469 */
470
471 int
plat_pfn_to_mem_node(pfn_t pfn)472 plat_pfn_to_mem_node(pfn_t pfn)
473 {
474 return (slice_to_memnode[PFN_2_SLICE(pfn)]);
475 }
476
477 /*
478 * Return the platform handle for the lgroup containing the given CPU
479 *
480 * For Cherrystone, lgroup platform handle == slot/board number
481 */
482 lgrp_handle_t
plat_lgrp_cpu_to_hand(processorid_t id)483 plat_lgrp_cpu_to_hand(processorid_t id)
484 {
485 return (CHERRYSTONE_GETSLOT(id));
486 }
487
488 /*
489 * Platform specific lgroup initialization
490 */
491 void
plat_lgrp_init(void)492 plat_lgrp_init(void)
493 {
494 int i;
495
496 /*
497 * Initialize lookup tables to invalid values so we catch
498 * any illegal use of them.
499 */
500 for (i = 0; i < CHERRYSTONE_MAX_SLICE; i++) {
501 slice_to_memnode[i] = -1;
502 }
503 }
504
505 /*
506 * Return latency between "from" and "to" lgroups
507 *
508 * This latency number can only be used for relative comparison
509 * between lgroups on the running system, cannot be used across platforms,
510 * and may not reflect the actual latency. It is platform and implementation
511 * specific, so platform gets to decide its value. It would be nice if the
512 * number was at least proportional to make comparisons more meaningful though.
513 * NOTE: The numbers below are supposed to be load latencies for uncached
514 * memory divided by 10.
515 */
516 int
plat_lgrp_latency(lgrp_handle_t from,lgrp_handle_t to)517 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
518 {
519 /*
520 * Return min remote latency when there are more than two lgroups
521 * (root and child) and getting latency between two different lgroups
522 * or root is involved
523 */
524 if (lgrp_optimizations() && (from != to ||
525 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
526 return (21);
527 else
528 return (19);
529 }
530
531 /*
532 * No platform drivers on this platform
533 */
534 char *platform_module_list[] = {
535 (char *)0
536 };
537
538 /*ARGSUSED*/
539 void
plat_tod_fault(enum tod_fault_type tod_bad)540 plat_tod_fault(enum tod_fault_type tod_bad)
541 {
542 }
543
544 /*ARGSUSED*/
545 int
plat_get_mem_unum(int synd_code,uint64_t flt_addr,int flt_bus_id,int flt_in_memory,ushort_t flt_status,char * buf,int buflen,int * lenp)546 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
547 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
548 {
549 if (flt_in_memory && (p2get_mem_unum != NULL))
550 return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
551 buf, buflen, lenp));
552 else
553 return (ENOTSUP);
554 }
555
556 /*
557 * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
558 * driver giving each platform the opportunity to add platform
559 * specific label information to the unum for ECC error logging purposes.
560 */
561 void
plat_add_mem_unum_label(char * unum,int mcid,int bank,int dimm)562 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
563 {
564 _NOTE(ARGUNUSED(bank, dimm))
565
566 char board = CHERRYSTONE_GETSLOT_LABEL(mcid);
567 char old_unum[UNUM_NAMLEN];
568
569 (void) strcpy(old_unum, unum);
570 (void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
571 }
572
573 int
plat_get_cpu_unum(int cpuid,char * buf,int buflen,int * lenp)574 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
575 {
576 char board = CHERRYSTONE_GETSLOT_LABEL(cpuid);
577
578 if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
579 return (ENOSPC);
580 } else {
581 *lenp = strlen(buf);
582 return (0);
583 }
584 }
585
586 /*
587 * Cherrystone's BBC pcf8584 controller is used by both OBP and the OS's i2c
588 * drivers. The 'eeprom' command executes OBP code to handle property requests.
589 * If eeprom didn't do this, or if the controllers were partitioned so that all
590 * devices on a given controller were driven by either OBP or the OS, this
591 * wouldn't be necessary.
592 *
593 * Note that getprop doesn't have the same issue as it reads from cached
594 * memory in OBP.
595 */
596
597 /*
598 * Common locking enter code
599 */
600 void
plat_setprop_enter(void)601 plat_setprop_enter(void)
602 {
603 mutex_enter(&cherry_pcf8584_mutex);
604 }
605
606 /*
607 * Common locking exit code
608 */
609 void
plat_setprop_exit(void)610 plat_setprop_exit(void)
611 {
612 mutex_exit(&cherry_pcf8584_mutex);
613 }
614
615 /*
616 * Called by pcf8584 driver
617 */
618 void
plat_shared_i2c_enter(dev_info_t * i2cnexus_dip)619 plat_shared_i2c_enter(dev_info_t *i2cnexus_dip)
620 {
621 if (i2cnexus_dip == shared_pcf8584_dip) {
622 plat_setprop_enter();
623 }
624 }
625
626 /*
627 * Called by pcf8584 driver
628 */
629 void
plat_shared_i2c_exit(dev_info_t * i2cnexus_dip)630 plat_shared_i2c_exit(dev_info_t *i2cnexus_dip)
631 {
632 if (i2cnexus_dip == shared_pcf8584_dip) {
633 plat_setprop_exit();
634 }
635 }
636