1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <linux/unistd.h> 26 #include <linux/filter.h> 27 #include <linux/bpf_perf_event.h> 28 #include <linux/bpf.h> 29 #include <linux/if_ether.h> 30 #include <linux/btf.h> 31 32 #include <bpf/btf.h> 33 #include <bpf/bpf.h> 34 #include <bpf/libbpf.h> 35 36 #include "autoconf_helper.h" 37 #include "unpriv_helpers.h" 38 #include "cap_helpers.h" 39 #include "bpf_rand.h" 40 #include "bpf_util.h" 41 #include "test_btf.h" 42 #include "../../../include/linux/filter.h" 43 #include "testing_helpers.h" 44 45 #define MAX_INSNS BPF_MAXINSNS 46 #define MAX_EXPECTED_INSNS 32 47 #define MAX_UNEXPECTED_INSNS 32 48 #define MAX_TEST_INSNS 1000000 49 #define MAX_FIXUPS 8 50 #define MAX_NR_MAPS 23 51 #define MAX_TEST_RUNS 8 52 #define POINTER_VALUE 0xcafe4all 53 #define TEST_DATA_LEN 64 54 #define MAX_FUNC_INFOS 8 55 #define MAX_BTF_STRINGS 256 56 #define MAX_BTF_TYPES 256 57 58 #define INSN_OFF_MASK ((__s16)0xFFFF) 59 #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) 60 #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) 61 62 #define DEFAULT_LIBBPF_LOG_LEVEL 4 63 64 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 65 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 66 #define F_NEEDS_JIT_ENABLED (1 << 2) 67 68 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 69 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 70 1ULL << CAP_PERFMON | \ 71 1ULL << CAP_BPF) 72 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 73 static bool unpriv_disabled = false; 74 static bool jit_disabled; 75 static int skips; 76 static bool verbose = false; 77 static int verif_log_level = 0; 78 79 struct kfunc_btf_id_pair { 80 const char *kfunc; 81 int insn_idx; 82 }; 83 84 struct bpf_test { 85 const char *descr; 86 struct bpf_insn insns[MAX_INSNS]; 87 struct bpf_insn *fill_insns; 88 /* If specified, test engine looks for this sequence of 89 * instructions in the BPF program after loading. Allows to 90 * test rewrites applied by verifier. Use values 91 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` 92 * fields if content does not matter. The test case fails if 93 * specified instructions are not found. 94 * 95 * The sequence could be split into sub-sequences by adding 96 * SKIP_INSNS instruction at the end of each sub-sequence. In 97 * such case sub-sequences are searched for one after another. 98 */ 99 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; 100 /* If specified, test engine applies same pattern matching 101 * logic as for `expected_insns`. If the specified pattern is 102 * matched test case is marked as failed. 103 */ 104 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; 105 int fixup_map_hash_8b[MAX_FIXUPS]; 106 int fixup_map_hash_48b[MAX_FIXUPS]; 107 int fixup_map_hash_16b[MAX_FIXUPS]; 108 int fixup_map_array_48b[MAX_FIXUPS]; 109 int fixup_map_sockmap[MAX_FIXUPS]; 110 int fixup_map_sockhash[MAX_FIXUPS]; 111 int fixup_map_xskmap[MAX_FIXUPS]; 112 int fixup_map_stacktrace[MAX_FIXUPS]; 113 int fixup_prog1[MAX_FIXUPS]; 114 int fixup_prog2[MAX_FIXUPS]; 115 int fixup_map_in_map[MAX_FIXUPS]; 116 int fixup_cgroup_storage[MAX_FIXUPS]; 117 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 118 int fixup_map_spin_lock[MAX_FIXUPS]; 119 int fixup_map_array_ro[MAX_FIXUPS]; 120 int fixup_map_array_wo[MAX_FIXUPS]; 121 int fixup_map_array_small[MAX_FIXUPS]; 122 int fixup_sk_storage_map[MAX_FIXUPS]; 123 int fixup_map_event_output[MAX_FIXUPS]; 124 int fixup_map_reuseport_array[MAX_FIXUPS]; 125 int fixup_map_ringbuf[MAX_FIXUPS]; 126 int fixup_map_timer[MAX_FIXUPS]; 127 int fixup_map_kptr[MAX_FIXUPS]; 128 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; 129 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 130 * Can be a tab-separated sequence of expected strings. An empty string 131 * means no log verification. 132 */ 133 const char *errstr; 134 const char *errstr_unpriv; 135 uint32_t insn_processed; 136 int prog_len; 137 enum { 138 UNDEF, 139 ACCEPT, 140 REJECT, 141 VERBOSE_ACCEPT, 142 } result, result_unpriv; 143 enum bpf_prog_type prog_type; 144 uint8_t flags; 145 void (*fill_helper)(struct bpf_test *self); 146 int runs; 147 #define bpf_testdata_struct_t \ 148 struct { \ 149 uint32_t retval, retval_unpriv; \ 150 union { \ 151 __u8 data[TEST_DATA_LEN]; \ 152 __u64 data64[TEST_DATA_LEN / 8]; \ 153 }; \ 154 } 155 union { 156 bpf_testdata_struct_t; 157 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 158 }; 159 enum bpf_attach_type expected_attach_type; 160 const char *kfunc; 161 struct bpf_func_info func_info[MAX_FUNC_INFOS]; 162 int func_info_cnt; 163 char btf_strings[MAX_BTF_STRINGS]; 164 /* A set of BTF types to load when specified, 165 * use macro definitions from test_btf.h, 166 * must end with BTF_END_RAW 167 */ 168 __u32 btf_types[MAX_BTF_TYPES]; 169 }; 170 171 /* Note we want this to be 64 bit aligned so that the end of our array is 172 * actually the end of the structure. 173 */ 174 #define MAX_ENTRIES 11 175 176 struct test_val { 177 unsigned int index; 178 int foo[MAX_ENTRIES]; 179 }; 180 181 struct other_val { 182 long long foo; 183 long long bar; 184 }; 185 186 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 187 { 188 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 189 #define PUSH_CNT 51 190 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 191 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 192 struct bpf_insn *insn = self->fill_insns; 193 int i = 0, j, k = 0; 194 195 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 196 loop: 197 for (j = 0; j < PUSH_CNT; j++) { 198 insn[i++] = BPF_LD_ABS(BPF_B, 0); 199 /* jump to error label */ 200 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 201 i++; 202 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 203 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 204 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 205 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 206 BPF_FUNC_skb_vlan_push); 207 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 208 i++; 209 } 210 211 for (j = 0; j < PUSH_CNT; j++) { 212 insn[i++] = BPF_LD_ABS(BPF_B, 0); 213 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 214 i++; 215 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 216 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 217 BPF_FUNC_skb_vlan_pop); 218 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 219 i++; 220 } 221 if (++k < 5) 222 goto loop; 223 224 for (; i < len - 3; i++) 225 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 226 insn[len - 3] = BPF_JMP_A(1); 227 /* error label */ 228 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 229 insn[len - 1] = BPF_EXIT_INSN(); 230 self->prog_len = len; 231 } 232 233 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 234 { 235 struct bpf_insn *insn = self->fill_insns; 236 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 237 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 238 * to extend the error value of the inlined ld_abs sequence which then 239 * contains 7 insns. so, set the dividend to 7 so the testcase could 240 * work on all arches. 241 */ 242 unsigned int len = (1 << 15) / 7; 243 int i = 0; 244 245 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 246 insn[i++] = BPF_LD_ABS(BPF_B, 0); 247 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 248 i++; 249 while (i < len - 1) 250 insn[i++] = BPF_LD_ABS(BPF_B, 1); 251 insn[i] = BPF_EXIT_INSN(); 252 self->prog_len = i + 1; 253 } 254 255 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 256 { 257 struct bpf_insn *insn = self->fill_insns; 258 uint64_t res = 0; 259 int i = 0; 260 261 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 262 while (i < self->retval) { 263 uint64_t val = bpf_semi_rand_get(); 264 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 265 266 res ^= val; 267 insn[i++] = tmp[0]; 268 insn[i++] = tmp[1]; 269 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 270 } 271 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 272 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 273 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 274 insn[i] = BPF_EXIT_INSN(); 275 self->prog_len = i + 1; 276 res ^= (res >> 32); 277 self->retval = (uint32_t)res; 278 } 279 280 #define MAX_JMP_SEQ 8192 281 282 /* test the sequence of 8k jumps */ 283 static void bpf_fill_scale1(struct bpf_test *self) 284 { 285 struct bpf_insn *insn = self->fill_insns; 286 int i = 0, k = 0; 287 288 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 289 /* test to check that the long sequence of jumps is acceptable */ 290 while (k++ < MAX_JMP_SEQ) { 291 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 292 BPF_FUNC_get_prandom_u32); 293 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 294 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 295 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 296 -8 * (k % 64 + 1)); 297 } 298 /* is_state_visited() doesn't allocate state for pruning for every jump. 299 * Hence multiply jmps by 4 to accommodate that heuristic 300 */ 301 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 302 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 303 insn[i] = BPF_EXIT_INSN(); 304 self->prog_len = i + 1; 305 self->retval = 42; 306 } 307 308 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 309 static void bpf_fill_scale2(struct bpf_test *self) 310 { 311 struct bpf_insn *insn = self->fill_insns; 312 int i = 0, k = 0; 313 314 #define FUNC_NEST 7 315 for (k = 0; k < FUNC_NEST; k++) { 316 insn[i++] = BPF_CALL_REL(1); 317 insn[i++] = BPF_EXIT_INSN(); 318 } 319 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 320 /* test to check that the long sequence of jumps is acceptable */ 321 k = 0; 322 while (k++ < MAX_JMP_SEQ) { 323 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 324 BPF_FUNC_get_prandom_u32); 325 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 326 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 327 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 328 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 329 } 330 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 331 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 332 insn[i] = BPF_EXIT_INSN(); 333 self->prog_len = i + 1; 334 self->retval = 42; 335 } 336 337 static void bpf_fill_scale(struct bpf_test *self) 338 { 339 switch (self->retval) { 340 case 1: 341 return bpf_fill_scale1(self); 342 case 2: 343 return bpf_fill_scale2(self); 344 default: 345 self->prog_len = 0; 346 break; 347 } 348 } 349 350 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 351 { 352 unsigned int len = 259, hlen = 128; 353 int i; 354 355 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 356 for (i = 1; i <= hlen; i++) { 357 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 358 insn[i + hlen] = BPF_JMP_A(hlen - i); 359 } 360 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 361 insn[len - 1] = BPF_EXIT_INSN(); 362 363 return len; 364 } 365 366 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 367 { 368 unsigned int len = 4100, jmp_off = 2048; 369 int i, j; 370 371 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 372 for (i = 1; i <= jmp_off; i++) { 373 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 374 } 375 insn[i++] = BPF_JMP_A(jmp_off); 376 for (; i <= jmp_off * 2 + 1; i+=16) { 377 for (j = 0; j < 16; j++) { 378 insn[i + j] = BPF_JMP_A(16 - j - 1); 379 } 380 } 381 382 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 383 insn[len - 1] = BPF_EXIT_INSN(); 384 385 return len; 386 } 387 388 static void bpf_fill_torturous_jumps(struct bpf_test *self) 389 { 390 struct bpf_insn *insn = self->fill_insns; 391 int i = 0; 392 393 switch (self->retval) { 394 case 1: 395 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 396 return; 397 case 2: 398 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 399 return; 400 case 3: 401 /* main */ 402 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 403 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 404 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 405 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 406 insn[i++] = BPF_EXIT_INSN(); 407 408 /* subprog 1 */ 409 i += bpf_fill_torturous_jumps_insn_1(insn + i); 410 411 /* subprog 2 */ 412 i += bpf_fill_torturous_jumps_insn_2(insn + i); 413 414 self->prog_len = i; 415 return; 416 default: 417 self->prog_len = 0; 418 break; 419 } 420 } 421 422 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) 423 { 424 struct bpf_insn *insn = self->fill_insns; 425 /* This test was added to catch a specific use after free 426 * error, which happened upon BPF program reallocation. 427 * Reallocation is handled by core.c:bpf_prog_realloc, which 428 * reuses old memory if page boundary is not crossed. The 429 * value of `len` is chosen to cross this boundary on bpf_loop 430 * patching. 431 */ 432 const int len = getpagesize() - 25; 433 int callback_load_idx; 434 int callback_idx; 435 int i = 0; 436 437 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); 438 callback_load_idx = i; 439 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 440 BPF_REG_2, BPF_PSEUDO_FUNC, 0, 441 777 /* filled below */); 442 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); 443 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); 444 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); 445 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); 446 447 while (i < len - 3) 448 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 449 insn[i++] = BPF_EXIT_INSN(); 450 451 callback_idx = i; 452 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 453 insn[i++] = BPF_EXIT_INSN(); 454 455 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; 456 self->func_info[1].insn_off = callback_idx; 457 self->prog_len = i; 458 assert(i == len); 459 } 460 461 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 462 #define BPF_SK_LOOKUP(func) \ 463 /* struct bpf_sock_tuple tuple = {} */ \ 464 BPF_MOV64_IMM(BPF_REG_2, 0), \ 465 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 466 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 467 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 468 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 469 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 470 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 471 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 472 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 473 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 474 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 475 BPF_MOV64_IMM(BPF_REG_4, 0), \ 476 BPF_MOV64_IMM(BPF_REG_5, 0), \ 477 BPF_EMIT_CALL(BPF_FUNC_ ## func) 478 479 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 480 * value into 0 and does necessary preparation for direct packet access 481 * through r2. The allowed access range is 8 bytes. 482 */ 483 #define BPF_DIRECT_PKT_R2 \ 484 BPF_MOV64_IMM(BPF_REG_0, 0), \ 485 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 486 offsetof(struct __sk_buff, data)), \ 487 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 488 offsetof(struct __sk_buff, data_end)), \ 489 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 490 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 491 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 492 BPF_EXIT_INSN() 493 494 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 495 * positive u32, and zero-extend it into 64-bit. 496 */ 497 #define BPF_RAND_UEXT_R7 \ 498 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 499 BPF_FUNC_get_prandom_u32), \ 500 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 501 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 502 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 503 504 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 505 * negative u32, and sign-extend it into 64-bit. 506 */ 507 #define BPF_RAND_SEXT_R7 \ 508 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 509 BPF_FUNC_get_prandom_u32), \ 510 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 511 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 512 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 513 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 514 515 static struct bpf_test tests[] = { 516 #define FILL_ARRAY 517 #include <verifier/tests.h> 518 #undef FILL_ARRAY 519 }; 520 521 static int probe_filter_length(const struct bpf_insn *fp) 522 { 523 int len; 524 525 for (len = MAX_INSNS - 1; len > 0; --len) 526 if (fp[len].code != 0 || fp[len].imm != 0) 527 break; 528 return len + 1; 529 } 530 531 static bool skip_unsupported_map(enum bpf_map_type map_type) 532 { 533 if (!libbpf_probe_bpf_map_type(map_type, NULL)) { 534 printf("SKIP (unsupported map type %d)\n", map_type); 535 skips++; 536 return true; 537 } 538 return false; 539 } 540 541 static int __create_map(uint32_t type, uint32_t size_key, 542 uint32_t size_value, uint32_t max_elem, 543 uint32_t extra_flags) 544 { 545 LIBBPF_OPTS(bpf_map_create_opts, opts); 546 int fd; 547 548 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 549 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 550 if (fd < 0) { 551 if (skip_unsupported_map(type)) 552 return -1; 553 printf("Failed to create hash map '%s'!\n", strerror(errno)); 554 } 555 556 return fd; 557 } 558 559 static int create_map(uint32_t type, uint32_t size_key, 560 uint32_t size_value, uint32_t max_elem) 561 { 562 return __create_map(type, size_key, size_value, max_elem, 0); 563 } 564 565 static void update_map(int fd, int index) 566 { 567 struct test_val value = { 568 .index = (6 + 1) * sizeof(int), 569 .foo[6] = 0xabcdef12, 570 }; 571 572 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 573 } 574 575 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 576 { 577 struct bpf_insn prog[] = { 578 BPF_MOV64_IMM(BPF_REG_0, ret), 579 BPF_EXIT_INSN(), 580 }; 581 582 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 583 } 584 585 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 586 int idx, int ret) 587 { 588 struct bpf_insn prog[] = { 589 BPF_MOV64_IMM(BPF_REG_3, idx), 590 BPF_LD_MAP_FD(BPF_REG_2, mfd), 591 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 592 BPF_FUNC_tail_call), 593 BPF_MOV64_IMM(BPF_REG_0, ret), 594 BPF_EXIT_INSN(), 595 }; 596 597 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 598 } 599 600 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 601 int p1key, int p2key, int p3key) 602 { 603 int mfd, p1fd, p2fd, p3fd; 604 605 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 606 sizeof(int), max_elem, NULL); 607 if (mfd < 0) { 608 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 609 return -1; 610 printf("Failed to create prog array '%s'!\n", strerror(errno)); 611 return -1; 612 } 613 614 p1fd = create_prog_dummy_simple(prog_type, 42); 615 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 616 p3fd = create_prog_dummy_simple(prog_type, 24); 617 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 618 goto err; 619 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 620 goto err; 621 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 622 goto err; 623 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 624 err: 625 close(mfd); 626 mfd = -1; 627 } 628 close(p3fd); 629 close(p2fd); 630 close(p1fd); 631 return mfd; 632 } 633 634 static int create_map_in_map(void) 635 { 636 LIBBPF_OPTS(bpf_map_create_opts, opts); 637 int inner_map_fd, outer_map_fd; 638 639 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 640 sizeof(int), 1, NULL); 641 if (inner_map_fd < 0) { 642 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 643 return -1; 644 printf("Failed to create array '%s'!\n", strerror(errno)); 645 return inner_map_fd; 646 } 647 648 opts.inner_map_fd = inner_map_fd; 649 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 650 sizeof(int), sizeof(int), 1, &opts); 651 if (outer_map_fd < 0) { 652 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 653 return -1; 654 printf("Failed to create array of maps '%s'!\n", 655 strerror(errno)); 656 } 657 658 close(inner_map_fd); 659 660 return outer_map_fd; 661 } 662 663 static int create_cgroup_storage(bool percpu) 664 { 665 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 666 BPF_MAP_TYPE_CGROUP_STORAGE; 667 int fd; 668 669 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 670 TEST_DATA_LEN, 0, NULL); 671 if (fd < 0) { 672 if (skip_unsupported_map(type)) 673 return -1; 674 printf("Failed to create cgroup storage '%s'!\n", 675 strerror(errno)); 676 } 677 678 return fd; 679 } 680 681 /* struct bpf_spin_lock { 682 * int val; 683 * }; 684 * struct val { 685 * int cnt; 686 * struct bpf_spin_lock l; 687 * }; 688 * struct bpf_timer { 689 * __u64 :64; 690 * __u64 :64; 691 * } __attribute__((aligned(8))); 692 * struct timer { 693 * struct bpf_timer t; 694 * }; 695 * struct btf_ptr { 696 * struct prog_test_ref_kfunc __kptr_untrusted *ptr; 697 * struct prog_test_ref_kfunc __kptr *ptr; 698 * struct prog_test_member __kptr *ptr; 699 * } 700 */ 701 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" 702 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted" 703 "\0prog_test_member"; 704 static __u32 btf_raw_types[] = { 705 /* int */ 706 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 707 /* struct bpf_spin_lock */ /* [2] */ 708 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 709 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 710 /* struct val */ /* [3] */ 711 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 712 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 713 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 714 /* struct bpf_timer */ /* [4] */ 715 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 716 /* struct timer */ /* [5] */ 717 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 718 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 719 /* struct prog_test_ref_kfunc */ /* [6] */ 720 BTF_STRUCT_ENC(51, 0, 0), 721 BTF_STRUCT_ENC(95, 0, 0), /* [7] */ 722 /* type tag "kptr_untrusted" */ 723 BTF_TYPE_TAG_ENC(80, 6), /* [8] */ 724 /* type tag "kptr" */ 725 BTF_TYPE_TAG_ENC(75, 6), /* [9] */ 726 BTF_TYPE_TAG_ENC(75, 7), /* [10] */ 727 BTF_PTR_ENC(8), /* [11] */ 728 BTF_PTR_ENC(9), /* [12] */ 729 BTF_PTR_ENC(10), /* [13] */ 730 /* struct btf_ptr */ /* [14] */ 731 BTF_STRUCT_ENC(43, 3, 24), 732 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */ 733 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */ 734 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */ 735 }; 736 737 static char bpf_vlog[UINT_MAX >> 8]; 738 739 static int load_btf_spec(__u32 *types, int types_len, 740 const char *strings, int strings_len) 741 { 742 struct btf_header hdr = { 743 .magic = BTF_MAGIC, 744 .version = BTF_VERSION, 745 .hdr_len = sizeof(struct btf_header), 746 .type_len = types_len, 747 .str_off = types_len, 748 .str_len = strings_len, 749 }; 750 void *ptr, *raw_btf; 751 int btf_fd; 752 LIBBPF_OPTS(bpf_btf_load_opts, opts, 753 .log_buf = bpf_vlog, 754 .log_size = sizeof(bpf_vlog), 755 .log_level = (verbose 756 ? verif_log_level 757 : DEFAULT_LIBBPF_LOG_LEVEL), 758 ); 759 760 raw_btf = malloc(sizeof(hdr) + types_len + strings_len); 761 762 ptr = raw_btf; 763 memcpy(ptr, &hdr, sizeof(hdr)); 764 ptr += sizeof(hdr); 765 memcpy(ptr, types, hdr.type_len); 766 ptr += hdr.type_len; 767 memcpy(ptr, strings, hdr.str_len); 768 ptr += hdr.str_len; 769 770 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); 771 if (btf_fd < 0) 772 printf("Failed to load BTF spec: '%s'\n", strerror(errno)); 773 774 free(raw_btf); 775 776 return btf_fd < 0 ? -1 : btf_fd; 777 } 778 779 static int load_btf(void) 780 { 781 return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), 782 btf_str_sec, sizeof(btf_str_sec)); 783 } 784 785 static int load_btf_for_test(struct bpf_test *test) 786 { 787 int types_num = 0; 788 789 while (types_num < MAX_BTF_TYPES && 790 test->btf_types[types_num] != BTF_END_RAW) 791 ++types_num; 792 793 int types_len = types_num * sizeof(test->btf_types[0]); 794 795 return load_btf_spec(test->btf_types, types_len, 796 test->btf_strings, sizeof(test->btf_strings)); 797 } 798 799 static int create_map_spin_lock(void) 800 { 801 LIBBPF_OPTS(bpf_map_create_opts, opts, 802 .btf_key_type_id = 1, 803 .btf_value_type_id = 3, 804 ); 805 int fd, btf_fd; 806 807 btf_fd = load_btf(); 808 if (btf_fd < 0) 809 return -1; 810 opts.btf_fd = btf_fd; 811 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 812 if (fd < 0) 813 printf("Failed to create map with spin_lock\n"); 814 return fd; 815 } 816 817 static int create_sk_storage_map(void) 818 { 819 LIBBPF_OPTS(bpf_map_create_opts, opts, 820 .map_flags = BPF_F_NO_PREALLOC, 821 .btf_key_type_id = 1, 822 .btf_value_type_id = 3, 823 ); 824 int fd, btf_fd; 825 826 btf_fd = load_btf(); 827 if (btf_fd < 0) 828 return -1; 829 opts.btf_fd = btf_fd; 830 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 831 close(opts.btf_fd); 832 if (fd < 0) 833 printf("Failed to create sk_storage_map\n"); 834 return fd; 835 } 836 837 static int create_map_timer(void) 838 { 839 LIBBPF_OPTS(bpf_map_create_opts, opts, 840 .btf_key_type_id = 1, 841 .btf_value_type_id = 5, 842 ); 843 int fd, btf_fd; 844 845 btf_fd = load_btf(); 846 if (btf_fd < 0) 847 return -1; 848 849 opts.btf_fd = btf_fd; 850 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 851 if (fd < 0) 852 printf("Failed to create map with timer\n"); 853 return fd; 854 } 855 856 static int create_map_kptr(void) 857 { 858 LIBBPF_OPTS(bpf_map_create_opts, opts, 859 .btf_key_type_id = 1, 860 .btf_value_type_id = 14, 861 ); 862 int fd, btf_fd; 863 864 btf_fd = load_btf(); 865 if (btf_fd < 0) 866 return -1; 867 868 opts.btf_fd = btf_fd; 869 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); 870 if (fd < 0) 871 printf("Failed to create map with btf_id pointer\n"); 872 return fd; 873 } 874 875 static void set_root(bool set) 876 { 877 __u64 caps; 878 879 if (set) { 880 if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 881 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 882 } else { 883 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 884 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 885 } 886 } 887 888 static __u64 ptr_to_u64(const void *ptr) 889 { 890 return (uintptr_t) ptr; 891 } 892 893 static struct btf *btf__load_testmod_btf(struct btf *vmlinux) 894 { 895 struct bpf_btf_info info; 896 __u32 len = sizeof(info); 897 struct btf *btf = NULL; 898 char name[64]; 899 __u32 id = 0; 900 int err, fd; 901 902 /* Iterate all loaded BTF objects and find bpf_testmod, 903 * we need SYS_ADMIN cap for that. 904 */ 905 set_root(true); 906 907 while (true) { 908 err = bpf_btf_get_next_id(id, &id); 909 if (err) { 910 if (errno == ENOENT) 911 break; 912 perror("bpf_btf_get_next_id failed"); 913 break; 914 } 915 916 fd = bpf_btf_get_fd_by_id(id); 917 if (fd < 0) { 918 if (errno == ENOENT) 919 continue; 920 perror("bpf_btf_get_fd_by_id failed"); 921 break; 922 } 923 924 memset(&info, 0, sizeof(info)); 925 info.name_len = sizeof(name); 926 info.name = ptr_to_u64(name); 927 len = sizeof(info); 928 929 err = bpf_obj_get_info_by_fd(fd, &info, &len); 930 if (err) { 931 close(fd); 932 perror("bpf_obj_get_info_by_fd failed"); 933 break; 934 } 935 936 if (strcmp("bpf_testmod", name)) { 937 close(fd); 938 continue; 939 } 940 941 btf = btf__load_from_kernel_by_id_split(id, vmlinux); 942 if (!btf) { 943 close(fd); 944 break; 945 } 946 947 /* We need the fd to stay open so it can be used in fd_array. 948 * The final cleanup call to btf__free will free btf object 949 * and close the file descriptor. 950 */ 951 btf__set_fd(btf, fd); 952 break; 953 } 954 955 set_root(false); 956 return btf; 957 } 958 959 static struct btf *testmod_btf; 960 static struct btf *vmlinux_btf; 961 962 static void kfuncs_cleanup(void) 963 { 964 btf__free(testmod_btf); 965 btf__free(vmlinux_btf); 966 } 967 968 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array, 969 struct kfunc_btf_id_pair *fixup_kfunc_btf_id) 970 { 971 /* Patch in kfunc BTF IDs */ 972 while (fixup_kfunc_btf_id->kfunc) { 973 int btf_id = 0; 974 975 /* try to find kfunc in kernel BTF */ 976 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf(); 977 if (vmlinux_btf) { 978 btf_id = btf__find_by_name_kind(vmlinux_btf, 979 fixup_kfunc_btf_id->kfunc, 980 BTF_KIND_FUNC); 981 btf_id = btf_id < 0 ? 0 : btf_id; 982 } 983 984 /* kfunc not found in kernel BTF, try bpf_testmod BTF */ 985 if (!btf_id) { 986 testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf); 987 if (testmod_btf) { 988 btf_id = btf__find_by_name_kind(testmod_btf, 989 fixup_kfunc_btf_id->kfunc, 990 BTF_KIND_FUNC); 991 btf_id = btf_id < 0 ? 0 : btf_id; 992 if (btf_id) { 993 /* We put bpf_testmod module fd into fd_array 994 * and its index 1 into instruction 'off'. 995 */ 996 *fd_array = btf__fd(testmod_btf); 997 prog[fixup_kfunc_btf_id->insn_idx].off = 1; 998 } 999 } 1000 } 1001 1002 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; 1003 fixup_kfunc_btf_id++; 1004 } 1005 } 1006 1007 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 1008 struct bpf_insn *prog, int *map_fds, int *fd_array) 1009 { 1010 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 1011 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 1012 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 1013 int *fixup_map_array_48b = test->fixup_map_array_48b; 1014 int *fixup_map_sockmap = test->fixup_map_sockmap; 1015 int *fixup_map_sockhash = test->fixup_map_sockhash; 1016 int *fixup_map_xskmap = test->fixup_map_xskmap; 1017 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 1018 int *fixup_prog1 = test->fixup_prog1; 1019 int *fixup_prog2 = test->fixup_prog2; 1020 int *fixup_map_in_map = test->fixup_map_in_map; 1021 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 1022 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 1023 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 1024 int *fixup_map_array_ro = test->fixup_map_array_ro; 1025 int *fixup_map_array_wo = test->fixup_map_array_wo; 1026 int *fixup_map_array_small = test->fixup_map_array_small; 1027 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 1028 int *fixup_map_event_output = test->fixup_map_event_output; 1029 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 1030 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 1031 int *fixup_map_timer = test->fixup_map_timer; 1032 int *fixup_map_kptr = test->fixup_map_kptr; 1033 1034 if (test->fill_helper) { 1035 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 1036 test->fill_helper(test); 1037 } 1038 1039 /* Allocating HTs with 1 elem is fine here, since we only test 1040 * for verifier and not do a runtime lookup, so the only thing 1041 * that really matters is value size in this case. 1042 */ 1043 if (*fixup_map_hash_8b) { 1044 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1045 sizeof(long long), 1); 1046 do { 1047 prog[*fixup_map_hash_8b].imm = map_fds[0]; 1048 fixup_map_hash_8b++; 1049 } while (*fixup_map_hash_8b); 1050 } 1051 1052 if (*fixup_map_hash_48b) { 1053 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1054 sizeof(struct test_val), 1); 1055 do { 1056 prog[*fixup_map_hash_48b].imm = map_fds[1]; 1057 fixup_map_hash_48b++; 1058 } while (*fixup_map_hash_48b); 1059 } 1060 1061 if (*fixup_map_hash_16b) { 1062 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1063 sizeof(struct other_val), 1); 1064 do { 1065 prog[*fixup_map_hash_16b].imm = map_fds[2]; 1066 fixup_map_hash_16b++; 1067 } while (*fixup_map_hash_16b); 1068 } 1069 1070 if (*fixup_map_array_48b) { 1071 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1072 sizeof(struct test_val), 1); 1073 update_map(map_fds[3], 0); 1074 do { 1075 prog[*fixup_map_array_48b].imm = map_fds[3]; 1076 fixup_map_array_48b++; 1077 } while (*fixup_map_array_48b); 1078 } 1079 1080 if (*fixup_prog1) { 1081 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 1082 do { 1083 prog[*fixup_prog1].imm = map_fds[4]; 1084 fixup_prog1++; 1085 } while (*fixup_prog1); 1086 } 1087 1088 if (*fixup_prog2) { 1089 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 1090 do { 1091 prog[*fixup_prog2].imm = map_fds[5]; 1092 fixup_prog2++; 1093 } while (*fixup_prog2); 1094 } 1095 1096 if (*fixup_map_in_map) { 1097 map_fds[6] = create_map_in_map(); 1098 do { 1099 prog[*fixup_map_in_map].imm = map_fds[6]; 1100 fixup_map_in_map++; 1101 } while (*fixup_map_in_map); 1102 } 1103 1104 if (*fixup_cgroup_storage) { 1105 map_fds[7] = create_cgroup_storage(false); 1106 do { 1107 prog[*fixup_cgroup_storage].imm = map_fds[7]; 1108 fixup_cgroup_storage++; 1109 } while (*fixup_cgroup_storage); 1110 } 1111 1112 if (*fixup_percpu_cgroup_storage) { 1113 map_fds[8] = create_cgroup_storage(true); 1114 do { 1115 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 1116 fixup_percpu_cgroup_storage++; 1117 } while (*fixup_percpu_cgroup_storage); 1118 } 1119 if (*fixup_map_sockmap) { 1120 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 1121 sizeof(int), 1); 1122 do { 1123 prog[*fixup_map_sockmap].imm = map_fds[9]; 1124 fixup_map_sockmap++; 1125 } while (*fixup_map_sockmap); 1126 } 1127 if (*fixup_map_sockhash) { 1128 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 1129 sizeof(int), 1); 1130 do { 1131 prog[*fixup_map_sockhash].imm = map_fds[10]; 1132 fixup_map_sockhash++; 1133 } while (*fixup_map_sockhash); 1134 } 1135 if (*fixup_map_xskmap) { 1136 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 1137 sizeof(int), 1); 1138 do { 1139 prog[*fixup_map_xskmap].imm = map_fds[11]; 1140 fixup_map_xskmap++; 1141 } while (*fixup_map_xskmap); 1142 } 1143 if (*fixup_map_stacktrace) { 1144 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 1145 sizeof(u64), 1); 1146 do { 1147 prog[*fixup_map_stacktrace].imm = map_fds[12]; 1148 fixup_map_stacktrace++; 1149 } while (*fixup_map_stacktrace); 1150 } 1151 if (*fixup_map_spin_lock) { 1152 map_fds[13] = create_map_spin_lock(); 1153 do { 1154 prog[*fixup_map_spin_lock].imm = map_fds[13]; 1155 fixup_map_spin_lock++; 1156 } while (*fixup_map_spin_lock); 1157 } 1158 if (*fixup_map_array_ro) { 1159 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1160 sizeof(struct test_val), 1, 1161 BPF_F_RDONLY_PROG); 1162 update_map(map_fds[14], 0); 1163 do { 1164 prog[*fixup_map_array_ro].imm = map_fds[14]; 1165 fixup_map_array_ro++; 1166 } while (*fixup_map_array_ro); 1167 } 1168 if (*fixup_map_array_wo) { 1169 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1170 sizeof(struct test_val), 1, 1171 BPF_F_WRONLY_PROG); 1172 update_map(map_fds[15], 0); 1173 do { 1174 prog[*fixup_map_array_wo].imm = map_fds[15]; 1175 fixup_map_array_wo++; 1176 } while (*fixup_map_array_wo); 1177 } 1178 if (*fixup_map_array_small) { 1179 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1180 1, 1, 0); 1181 update_map(map_fds[16], 0); 1182 do { 1183 prog[*fixup_map_array_small].imm = map_fds[16]; 1184 fixup_map_array_small++; 1185 } while (*fixup_map_array_small); 1186 } 1187 if (*fixup_sk_storage_map) { 1188 map_fds[17] = create_sk_storage_map(); 1189 do { 1190 prog[*fixup_sk_storage_map].imm = map_fds[17]; 1191 fixup_sk_storage_map++; 1192 } while (*fixup_sk_storage_map); 1193 } 1194 if (*fixup_map_event_output) { 1195 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 1196 sizeof(int), sizeof(int), 1, 0); 1197 do { 1198 prog[*fixup_map_event_output].imm = map_fds[18]; 1199 fixup_map_event_output++; 1200 } while (*fixup_map_event_output); 1201 } 1202 if (*fixup_map_reuseport_array) { 1203 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 1204 sizeof(u32), sizeof(u64), 1, 0); 1205 do { 1206 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 1207 fixup_map_reuseport_array++; 1208 } while (*fixup_map_reuseport_array); 1209 } 1210 if (*fixup_map_ringbuf) { 1211 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 1212 0, getpagesize()); 1213 do { 1214 prog[*fixup_map_ringbuf].imm = map_fds[20]; 1215 fixup_map_ringbuf++; 1216 } while (*fixup_map_ringbuf); 1217 } 1218 if (*fixup_map_timer) { 1219 map_fds[21] = create_map_timer(); 1220 do { 1221 prog[*fixup_map_timer].imm = map_fds[21]; 1222 fixup_map_timer++; 1223 } while (*fixup_map_timer); 1224 } 1225 if (*fixup_map_kptr) { 1226 map_fds[22] = create_map_kptr(); 1227 do { 1228 prog[*fixup_map_kptr].imm = map_fds[22]; 1229 fixup_map_kptr++; 1230 } while (*fixup_map_kptr); 1231 } 1232 1233 fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id); 1234 } 1235 1236 static int set_admin(bool admin) 1237 { 1238 int err; 1239 1240 if (admin) { 1241 err = cap_enable_effective(ADMIN_CAPS, NULL); 1242 if (err) 1243 perror("cap_enable_effective(ADMIN_CAPS)"); 1244 } else { 1245 err = cap_disable_effective(ADMIN_CAPS, NULL); 1246 if (err) 1247 perror("cap_disable_effective(ADMIN_CAPS)"); 1248 } 1249 1250 return err; 1251 } 1252 1253 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 1254 void *data, size_t size_data) 1255 { 1256 __u8 tmp[TEST_DATA_LEN << 2]; 1257 __u32 size_tmp = sizeof(tmp); 1258 int err, saved_errno; 1259 LIBBPF_OPTS(bpf_test_run_opts, topts, 1260 .data_in = data, 1261 .data_size_in = size_data, 1262 .data_out = tmp, 1263 .data_size_out = size_tmp, 1264 .repeat = 1, 1265 ); 1266 1267 if (unpriv) 1268 set_admin(true); 1269 err = bpf_prog_test_run_opts(fd_prog, &topts); 1270 saved_errno = errno; 1271 1272 if (unpriv) 1273 set_admin(false); 1274 1275 if (err) { 1276 switch (saved_errno) { 1277 case ENOTSUPP: 1278 printf("Did not run the program (not supported) "); 1279 return 0; 1280 case EPERM: 1281 if (unpriv) { 1282 printf("Did not run the program (no permission) "); 1283 return 0; 1284 } 1285 /* fallthrough; */ 1286 default: 1287 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1288 strerror(saved_errno)); 1289 return err; 1290 } 1291 } 1292 1293 if (topts.retval != expected_val && expected_val != POINTER_VALUE) { 1294 printf("FAIL retval %d != %d ", topts.retval, expected_val); 1295 return 1; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1302 * 1303 * If exp is an empty string, returns true. 1304 */ 1305 static bool cmp_str_seq(const char *log, const char *exp) 1306 { 1307 char needle[200]; 1308 const char *p, *q; 1309 int len; 1310 1311 do { 1312 if (!strlen(exp)) 1313 break; 1314 p = strchr(exp, '\t'); 1315 if (!p) 1316 p = exp + strlen(exp); 1317 1318 len = p - exp; 1319 if (len >= sizeof(needle) || !len) { 1320 printf("FAIL\nTestcase bug\n"); 1321 return false; 1322 } 1323 strncpy(needle, exp, len); 1324 needle[len] = 0; 1325 q = strstr(log, needle); 1326 if (!q) { 1327 printf("FAIL\nUnexpected verifier log!\n" 1328 "EXP: %s\nRES:\n", needle); 1329 return false; 1330 } 1331 log = q + len; 1332 exp = p + 1; 1333 } while (*p); 1334 return true; 1335 } 1336 1337 static bool is_null_insn(struct bpf_insn *insn) 1338 { 1339 struct bpf_insn null_insn = {}; 1340 1341 return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; 1342 } 1343 1344 static bool is_skip_insn(struct bpf_insn *insn) 1345 { 1346 struct bpf_insn skip_insn = SKIP_INSNS(); 1347 1348 return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; 1349 } 1350 1351 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) 1352 { 1353 int i; 1354 1355 for (i = 0; i < max_len; ++i) { 1356 if (is_null_insn(&seq[i])) 1357 return i; 1358 } 1359 return max_len; 1360 } 1361 1362 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) 1363 { 1364 struct bpf_insn orig_masked; 1365 1366 memcpy(&orig_masked, orig, sizeof(orig_masked)); 1367 if (masked->imm == INSN_IMM_MASK) 1368 orig_masked.imm = INSN_IMM_MASK; 1369 if (masked->off == INSN_OFF_MASK) 1370 orig_masked.off = INSN_OFF_MASK; 1371 1372 return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; 1373 } 1374 1375 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, 1376 int seq_len, int subseq_len) 1377 { 1378 int i, j; 1379 1380 if (subseq_len > seq_len) 1381 return -1; 1382 1383 for (i = 0; i < seq_len - subseq_len + 1; ++i) { 1384 bool found = true; 1385 1386 for (j = 0; j < subseq_len; ++j) { 1387 if (!compare_masked_insn(&seq[i + j], &subseq[j])) { 1388 found = false; 1389 break; 1390 } 1391 } 1392 if (found) 1393 return i; 1394 } 1395 1396 return -1; 1397 } 1398 1399 static int find_skip_insn_marker(struct bpf_insn *seq, int len) 1400 { 1401 int i; 1402 1403 for (i = 0; i < len; ++i) 1404 if (is_skip_insn(&seq[i])) 1405 return i; 1406 1407 return -1; 1408 } 1409 1410 /* Return true if all sub-sequences in `subseqs` could be found in 1411 * `seq` one after another. Sub-sequences are separated by a single 1412 * nil instruction. 1413 */ 1414 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, 1415 int seq_len, int max_subseqs_len) 1416 { 1417 int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); 1418 1419 while (subseqs_len > 0) { 1420 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); 1421 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; 1422 int subseq_idx = find_insn_subseq(seq, subseqs, 1423 seq_len, cur_subseq_len); 1424 1425 if (subseq_idx < 0) 1426 return false; 1427 seq += subseq_idx + cur_subseq_len; 1428 seq_len -= subseq_idx + cur_subseq_len; 1429 subseqs += cur_subseq_len + 1; 1430 subseqs_len -= cur_subseq_len + 1; 1431 } 1432 1433 return true; 1434 } 1435 1436 static void print_insn(struct bpf_insn *buf, int cnt) 1437 { 1438 int i; 1439 1440 printf(" addr op d s off imm\n"); 1441 for (i = 0; i < cnt; ++i) { 1442 struct bpf_insn *insn = &buf[i]; 1443 1444 if (is_null_insn(insn)) 1445 break; 1446 1447 if (is_skip_insn(insn)) 1448 printf(" ...\n"); 1449 else 1450 printf(" %04x: %02x %1x %x %04hx %08x\n", 1451 i, insn->code, insn->dst_reg, 1452 insn->src_reg, insn->off, insn->imm); 1453 } 1454 } 1455 1456 static bool check_xlated_program(struct bpf_test *test, int fd_prog) 1457 { 1458 struct bpf_insn *buf; 1459 unsigned int cnt; 1460 bool result = true; 1461 bool check_expected = !is_null_insn(test->expected_insns); 1462 bool check_unexpected = !is_null_insn(test->unexpected_insns); 1463 1464 if (!check_expected && !check_unexpected) 1465 goto out; 1466 1467 if (get_xlated_program(fd_prog, &buf, &cnt)) { 1468 printf("FAIL: can't get xlated program\n"); 1469 result = false; 1470 goto out; 1471 } 1472 1473 if (check_expected && 1474 !find_all_insn_subseqs(buf, test->expected_insns, 1475 cnt, MAX_EXPECTED_INSNS)) { 1476 printf("FAIL: can't find expected subsequence of instructions\n"); 1477 result = false; 1478 if (verbose) { 1479 printf("Program:\n"); 1480 print_insn(buf, cnt); 1481 printf("Expected subsequence:\n"); 1482 print_insn(test->expected_insns, MAX_EXPECTED_INSNS); 1483 } 1484 } 1485 1486 if (check_unexpected && 1487 find_all_insn_subseqs(buf, test->unexpected_insns, 1488 cnt, MAX_UNEXPECTED_INSNS)) { 1489 printf("FAIL: found unexpected subsequence of instructions\n"); 1490 result = false; 1491 if (verbose) { 1492 printf("Program:\n"); 1493 print_insn(buf, cnt); 1494 printf("Un-expected subsequence:\n"); 1495 print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); 1496 } 1497 } 1498 1499 free(buf); 1500 out: 1501 return result; 1502 } 1503 1504 static void do_test_single(struct bpf_test *test, bool unpriv, 1505 int *passes, int *errors) 1506 { 1507 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; 1508 int prog_len, prog_type = test->prog_type; 1509 struct bpf_insn *prog = test->insns; 1510 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1511 int run_errs, run_successes; 1512 int map_fds[MAX_NR_MAPS]; 1513 const char *expected_err; 1514 int fd_array[2] = { -1, -1 }; 1515 int saved_errno; 1516 int fixup_skips; 1517 __u32 pflags; 1518 int i, err; 1519 1520 if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) { 1521 printf("SKIP (requires BPF JIT)\n"); 1522 skips++; 1523 sched_yield(); 1524 return; 1525 } 1526 1527 fd_prog = -1; 1528 for (i = 0; i < MAX_NR_MAPS; i++) 1529 map_fds[i] = -1; 1530 btf_fd = -1; 1531 1532 if (!prog_type) 1533 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1534 fixup_skips = skips; 1535 do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]); 1536 if (test->fill_insns) { 1537 prog = test->fill_insns; 1538 prog_len = test->prog_len; 1539 } else { 1540 prog_len = probe_filter_length(prog); 1541 } 1542 /* If there were some map skips during fixup due to missing bpf 1543 * features, skip this test. 1544 */ 1545 if (fixup_skips != skips) 1546 return; 1547 1548 pflags = testing_prog_flags(); 1549 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1550 pflags |= BPF_F_STRICT_ALIGNMENT; 1551 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1552 pflags |= BPF_F_ANY_ALIGNMENT; 1553 if (test->flags & ~3) 1554 pflags |= test->flags; 1555 1556 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1557 test->result_unpriv : test->result; 1558 expected_err = unpriv && test->errstr_unpriv ? 1559 test->errstr_unpriv : test->errstr; 1560 1561 opts.expected_attach_type = test->expected_attach_type; 1562 if (verbose) 1563 opts.log_level = verif_log_level | 4; /* force stats */ 1564 else if (expected_ret == VERBOSE_ACCEPT) 1565 opts.log_level = 2; 1566 else 1567 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; 1568 opts.prog_flags = pflags; 1569 if (fd_array[1] != -1) 1570 opts.fd_array = &fd_array[0]; 1571 1572 if ((prog_type == BPF_PROG_TYPE_TRACING || 1573 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { 1574 int attach_btf_id; 1575 1576 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1577 opts.expected_attach_type); 1578 if (attach_btf_id < 0) { 1579 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1580 test->kfunc); 1581 (*errors)++; 1582 return; 1583 } 1584 1585 opts.attach_btf_id = attach_btf_id; 1586 } 1587 1588 if (test->btf_types[0] != 0) { 1589 btf_fd = load_btf_for_test(test); 1590 if (btf_fd < 0) 1591 goto fail_log; 1592 opts.prog_btf_fd = btf_fd; 1593 } 1594 1595 if (test->func_info_cnt != 0) { 1596 opts.func_info = test->func_info; 1597 opts.func_info_cnt = test->func_info_cnt; 1598 opts.func_info_rec_size = sizeof(test->func_info[0]); 1599 } 1600 1601 opts.log_buf = bpf_vlog; 1602 opts.log_size = sizeof(bpf_vlog); 1603 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1604 saved_errno = errno; 1605 1606 /* BPF_PROG_TYPE_TRACING requires more setup and 1607 * bpf_probe_prog_type won't give correct answer 1608 */ 1609 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1610 !libbpf_probe_bpf_prog_type(prog_type, NULL)) { 1611 printf("SKIP (unsupported program type %d)\n", prog_type); 1612 skips++; 1613 goto close_fds; 1614 } 1615 1616 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1617 printf("SKIP (program uses an unsupported feature)\n"); 1618 skips++; 1619 goto close_fds; 1620 } 1621 1622 alignment_prevented_execution = 0; 1623 1624 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1625 if (fd_prog < 0) { 1626 printf("FAIL\nFailed to load prog '%s'!\n", 1627 strerror(saved_errno)); 1628 goto fail_log; 1629 } 1630 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1631 if (fd_prog >= 0 && 1632 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1633 alignment_prevented_execution = 1; 1634 #endif 1635 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1636 goto fail_log; 1637 } 1638 } else { 1639 if (fd_prog >= 0) { 1640 printf("FAIL\nUnexpected success to load!\n"); 1641 goto fail_log; 1642 } 1643 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1644 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1645 expected_err, bpf_vlog); 1646 goto fail_log; 1647 } 1648 } 1649 1650 if (!unpriv && test->insn_processed) { 1651 uint32_t insn_processed; 1652 char *proc; 1653 1654 proc = strstr(bpf_vlog, "processed "); 1655 insn_processed = atoi(proc + 10); 1656 if (test->insn_processed != insn_processed) { 1657 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1658 insn_processed, test->insn_processed); 1659 goto fail_log; 1660 } 1661 } 1662 1663 if (verbose) 1664 printf(", verifier log:\n%s", bpf_vlog); 1665 1666 if (!check_xlated_program(test, fd_prog)) 1667 goto fail_log; 1668 1669 run_errs = 0; 1670 run_successes = 0; 1671 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1672 uint32_t expected_val; 1673 int i; 1674 1675 if (!test->runs) 1676 test->runs = 1; 1677 1678 for (i = 0; i < test->runs; i++) { 1679 if (unpriv && test->retvals[i].retval_unpriv) 1680 expected_val = test->retvals[i].retval_unpriv; 1681 else 1682 expected_val = test->retvals[i].retval; 1683 1684 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1685 test->retvals[i].data, 1686 sizeof(test->retvals[i].data)); 1687 if (err) { 1688 printf("(run %d/%d) ", i + 1, test->runs); 1689 run_errs++; 1690 } else { 1691 run_successes++; 1692 } 1693 } 1694 } 1695 1696 if (!run_errs) { 1697 (*passes)++; 1698 if (run_successes > 1) 1699 printf("%d cases ", run_successes); 1700 printf("OK"); 1701 if (alignment_prevented_execution) 1702 printf(" (NOTE: not executed due to unknown alignment)"); 1703 printf("\n"); 1704 } else { 1705 printf("\n"); 1706 goto fail_log; 1707 } 1708 close_fds: 1709 if (test->fill_insns) 1710 free(test->fill_insns); 1711 close(fd_prog); 1712 close(btf_fd); 1713 for (i = 0; i < MAX_NR_MAPS; i++) 1714 close(map_fds[i]); 1715 sched_yield(); 1716 return; 1717 fail_log: 1718 (*errors)++; 1719 printf("%s", bpf_vlog); 1720 goto close_fds; 1721 } 1722 1723 static bool is_admin(void) 1724 { 1725 __u64 caps; 1726 1727 /* The test checks for finer cap as CAP_NET_ADMIN, 1728 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. 1729 * Thus, disable CAP_SYS_ADMIN at the beginning. 1730 */ 1731 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { 1732 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 1733 return false; 1734 } 1735 1736 return (caps & ADMIN_CAPS) == ADMIN_CAPS; 1737 } 1738 1739 static bool test_as_unpriv(struct bpf_test *test) 1740 { 1741 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1742 /* Some architectures have strict alignment requirements. In 1743 * that case, the BPF verifier detects if a program has 1744 * unaligned accesses and rejects them. A user can pass 1745 * BPF_F_ANY_ALIGNMENT to a program to override this 1746 * check. That, however, will only work when a privileged user 1747 * loads a program. An unprivileged user loading a program 1748 * with this flag will be rejected prior entering the 1749 * verifier. 1750 */ 1751 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1752 return false; 1753 #endif 1754 return !test->prog_type || 1755 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1756 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1757 } 1758 1759 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1760 { 1761 int i, passes = 0, errors = 0; 1762 1763 /* ensure previous instance of the module is unloaded */ 1764 unload_bpf_testmod(verbose); 1765 1766 if (load_bpf_testmod(verbose)) 1767 return EXIT_FAILURE; 1768 1769 for (i = from; i < to; i++) { 1770 struct bpf_test *test = &tests[i]; 1771 1772 /* Program types that are not supported by non-root we 1773 * skip right away. 1774 */ 1775 if (test_as_unpriv(test) && unpriv_disabled) { 1776 printf("#%d/u %s SKIP\n", i, test->descr); 1777 skips++; 1778 } else if (test_as_unpriv(test)) { 1779 if (!unpriv) 1780 set_admin(false); 1781 printf("#%d/u %s ", i, test->descr); 1782 do_test_single(test, true, &passes, &errors); 1783 if (!unpriv) 1784 set_admin(true); 1785 } 1786 1787 if (unpriv) { 1788 printf("#%d/p %s SKIP\n", i, test->descr); 1789 skips++; 1790 } else { 1791 printf("#%d/p %s ", i, test->descr); 1792 do_test_single(test, false, &passes, &errors); 1793 } 1794 } 1795 1796 unload_bpf_testmod(verbose); 1797 kfuncs_cleanup(); 1798 1799 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1800 skips, errors); 1801 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1802 } 1803 1804 int main(int argc, char **argv) 1805 { 1806 unsigned int from = 0, to = ARRAY_SIZE(tests); 1807 bool unpriv = !is_admin(); 1808 int arg = 1; 1809 1810 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1811 arg++; 1812 verbose = true; 1813 verif_log_level = 1; 1814 argc--; 1815 } 1816 if (argc > 1 && strcmp(argv[1], "-vv") == 0) { 1817 arg++; 1818 verbose = true; 1819 verif_log_level = 2; 1820 argc--; 1821 } 1822 1823 if (argc == 3) { 1824 unsigned int l = atoi(argv[arg]); 1825 unsigned int u = atoi(argv[arg + 1]); 1826 1827 if (l < to && u < to) { 1828 from = l; 1829 to = u + 1; 1830 } 1831 } else if (argc == 2) { 1832 unsigned int t = atoi(argv[arg]); 1833 1834 if (t < to) { 1835 from = t; 1836 to = t + 1; 1837 } 1838 } 1839 1840 unpriv_disabled = get_unpriv_disabled(); 1841 if (unpriv && unpriv_disabled) { 1842 printf("Cannot run as unprivileged user with sysctl %s.\n", 1843 UNPRIV_SYSCTL); 1844 return EXIT_FAILURE; 1845 } 1846 1847 jit_disabled = !is_jit_enabled(); 1848 1849 /* Use libbpf 1.0 API mode */ 1850 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1851 1852 bpf_semi_rand_init(); 1853 return do_test(unpriv, from, to); 1854 } 1855