xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1  //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  //  This file implements extra semantic analysis beyond what is enforced
10  //  by the C type system.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "clang/AST/APValue.h"
15  #include "clang/AST/ASTContext.h"
16  #include "clang/AST/Attr.h"
17  #include "clang/AST/AttrIterator.h"
18  #include "clang/AST/CharUnits.h"
19  #include "clang/AST/Decl.h"
20  #include "clang/AST/DeclBase.h"
21  #include "clang/AST/DeclCXX.h"
22  #include "clang/AST/DeclObjC.h"
23  #include "clang/AST/DeclarationName.h"
24  #include "clang/AST/EvaluatedExprVisitor.h"
25  #include "clang/AST/Expr.h"
26  #include "clang/AST/ExprCXX.h"
27  #include "clang/AST/ExprObjC.h"
28  #include "clang/AST/ExprOpenMP.h"
29  #include "clang/AST/FormatString.h"
30  #include "clang/AST/IgnoreExpr.h"
31  #include "clang/AST/NSAPI.h"
32  #include "clang/AST/NonTrivialTypeVisitor.h"
33  #include "clang/AST/OperationKinds.h"
34  #include "clang/AST/RecordLayout.h"
35  #include "clang/AST/Stmt.h"
36  #include "clang/AST/TemplateBase.h"
37  #include "clang/AST/Type.h"
38  #include "clang/AST/TypeLoc.h"
39  #include "clang/AST/UnresolvedSet.h"
40  #include "clang/Basic/AddressSpaces.h"
41  #include "clang/Basic/CharInfo.h"
42  #include "clang/Basic/Diagnostic.h"
43  #include "clang/Basic/IdentifierTable.h"
44  #include "clang/Basic/LLVM.h"
45  #include "clang/Basic/LangOptions.h"
46  #include "clang/Basic/OpenCLOptions.h"
47  #include "clang/Basic/OperatorKinds.h"
48  #include "clang/Basic/PartialDiagnostic.h"
49  #include "clang/Basic/SourceLocation.h"
50  #include "clang/Basic/SourceManager.h"
51  #include "clang/Basic/Specifiers.h"
52  #include "clang/Basic/SyncScope.h"
53  #include "clang/Basic/TargetBuiltins.h"
54  #include "clang/Basic/TargetCXXABI.h"
55  #include "clang/Basic/TargetInfo.h"
56  #include "clang/Basic/TypeTraits.h"
57  #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
58  #include "clang/Sema/Initialization.h"
59  #include "clang/Sema/Lookup.h"
60  #include "clang/Sema/Ownership.h"
61  #include "clang/Sema/Scope.h"
62  #include "clang/Sema/ScopeInfo.h"
63  #include "clang/Sema/Sema.h"
64  #include "clang/Sema/SemaAMDGPU.h"
65  #include "clang/Sema/SemaARM.h"
66  #include "clang/Sema/SemaBPF.h"
67  #include "clang/Sema/SemaHLSL.h"
68  #include "clang/Sema/SemaHexagon.h"
69  #include "clang/Sema/SemaInternal.h"
70  #include "clang/Sema/SemaLoongArch.h"
71  #include "clang/Sema/SemaMIPS.h"
72  #include "clang/Sema/SemaNVPTX.h"
73  #include "clang/Sema/SemaObjC.h"
74  #include "clang/Sema/SemaOpenCL.h"
75  #include "clang/Sema/SemaPPC.h"
76  #include "clang/Sema/SemaRISCV.h"
77  #include "clang/Sema/SemaSystemZ.h"
78  #include "clang/Sema/SemaWasm.h"
79  #include "clang/Sema/SemaX86.h"
80  #include "llvm/ADT/APFloat.h"
81  #include "llvm/ADT/APInt.h"
82  #include "llvm/ADT/APSInt.h"
83  #include "llvm/ADT/ArrayRef.h"
84  #include "llvm/ADT/DenseMap.h"
85  #include "llvm/ADT/FoldingSet.h"
86  #include "llvm/ADT/STLExtras.h"
87  #include "llvm/ADT/SmallBitVector.h"
88  #include "llvm/ADT/SmallPtrSet.h"
89  #include "llvm/ADT/SmallString.h"
90  #include "llvm/ADT/SmallVector.h"
91  #include "llvm/ADT/StringExtras.h"
92  #include "llvm/ADT/StringRef.h"
93  #include "llvm/ADT/StringSet.h"
94  #include "llvm/ADT/StringSwitch.h"
95  #include "llvm/Support/AtomicOrdering.h"
96  #include "llvm/Support/Casting.h"
97  #include "llvm/Support/Compiler.h"
98  #include "llvm/Support/ConvertUTF.h"
99  #include "llvm/Support/ErrorHandling.h"
100  #include "llvm/Support/Format.h"
101  #include "llvm/Support/Locale.h"
102  #include "llvm/Support/MathExtras.h"
103  #include "llvm/Support/SaveAndRestore.h"
104  #include "llvm/Support/raw_ostream.h"
105  #include "llvm/TargetParser/RISCVTargetParser.h"
106  #include "llvm/TargetParser/Triple.h"
107  #include <algorithm>
108  #include <bitset>
109  #include <cassert>
110  #include <cctype>
111  #include <cstddef>
112  #include <cstdint>
113  #include <functional>
114  #include <limits>
115  #include <optional>
116  #include <string>
117  #include <tuple>
118  #include <utility>
119  
120  using namespace clang;
121  using namespace sema;
122  
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const123  SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
124                                                      unsigned ByteNo) const {
125    return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
126                                 Context.getTargetInfo());
127  }
128  
combineFAPK(Sema::FormatArgumentPassingKind A,Sema::FormatArgumentPassingKind B)129  static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
130                                              Sema::FormatArgumentPassingKind B) {
131    return (A << 8) | B;
132  }
133  
checkArgCountAtLeast(CallExpr * Call,unsigned MinArgCount)134  bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) {
135    unsigned ArgCount = Call->getNumArgs();
136    if (ArgCount >= MinArgCount)
137      return false;
138  
139    return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
140           << 0 /*function call*/ << MinArgCount << ArgCount
141           << /*is non object*/ 0 << Call->getSourceRange();
142  }
143  
checkArgCountAtMost(CallExpr * Call,unsigned MaxArgCount)144  bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) {
145    unsigned ArgCount = Call->getNumArgs();
146    if (ArgCount <= MaxArgCount)
147      return false;
148    return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most)
149           << 0 /*function call*/ << MaxArgCount << ArgCount
150           << /*is non object*/ 0 << Call->getSourceRange();
151  }
152  
checkArgCountRange(CallExpr * Call,unsigned MinArgCount,unsigned MaxArgCount)153  bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
154                                unsigned MaxArgCount) {
155    return checkArgCountAtLeast(Call, MinArgCount) ||
156           checkArgCountAtMost(Call, MaxArgCount);
157  }
158  
checkArgCount(CallExpr * Call,unsigned DesiredArgCount)159  bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) {
160    unsigned ArgCount = Call->getNumArgs();
161    if (ArgCount == DesiredArgCount)
162      return false;
163  
164    if (checkArgCountAtLeast(Call, DesiredArgCount))
165      return true;
166    assert(ArgCount > DesiredArgCount && "should have diagnosed this");
167  
168    // Highlight all the excess arguments.
169    SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
170                      Call->getArg(ArgCount - 1)->getEndLoc());
171  
172    return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
173           << 0 /*function call*/ << DesiredArgCount << ArgCount
174           << /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
175  }
176  
checkBuiltinVerboseTrap(CallExpr * Call,Sema & S)177  static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) {
178    bool HasError = false;
179  
180    for (unsigned I = 0; I < Call->getNumArgs(); ++I) {
181      Expr *Arg = Call->getArg(I);
182  
183      if (Arg->isValueDependent())
184        continue;
185  
186      std::optional<std::string> ArgString = Arg->tryEvaluateString(S.Context);
187      int DiagMsgKind = -1;
188      // Arguments must be pointers to constant strings and cannot use '$'.
189      if (!ArgString.has_value())
190        DiagMsgKind = 0;
191      else if (ArgString->find('$') != std::string::npos)
192        DiagMsgKind = 1;
193  
194      if (DiagMsgKind >= 0) {
195        S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg)
196            << DiagMsgKind << Arg->getSourceRange();
197        HasError = true;
198      }
199    }
200  
201    return !HasError;
202  }
203  
convertArgumentToType(Sema & S,Expr * & Value,QualType Ty)204  static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
205    if (Value->isTypeDependent())
206      return false;
207  
208    InitializedEntity Entity =
209        InitializedEntity::InitializeParameter(S.Context, Ty, false);
210    ExprResult Result =
211        S.PerformCopyInitialization(Entity, SourceLocation(), Value);
212    if (Result.isInvalid())
213      return true;
214    Value = Result.get();
215    return false;
216  }
217  
218  /// Check that the first argument to __builtin_annotation is an integer
219  /// and the second argument is a non-wide string literal.
BuiltinAnnotation(Sema & S,CallExpr * TheCall)220  static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) {
221    if (S.checkArgCount(TheCall, 2))
222      return true;
223  
224    // First argument should be an integer.
225    Expr *ValArg = TheCall->getArg(0);
226    QualType Ty = ValArg->getType();
227    if (!Ty->isIntegerType()) {
228      S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
229          << ValArg->getSourceRange();
230      return true;
231    }
232  
233    // Second argument should be a constant string.
234    Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
235    StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
236    if (!Literal || !Literal->isOrdinary()) {
237      S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
238          << StrArg->getSourceRange();
239      return true;
240    }
241  
242    TheCall->setType(Ty);
243    return false;
244  }
245  
BuiltinMSVCAnnotation(Sema & S,CallExpr * TheCall)246  static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
247    // We need at least one argument.
248    if (TheCall->getNumArgs() < 1) {
249      S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
250          << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
251          << TheCall->getCallee()->getSourceRange();
252      return true;
253    }
254  
255    // All arguments should be wide string literals.
256    for (Expr *Arg : TheCall->arguments()) {
257      auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
258      if (!Literal || !Literal->isWide()) {
259        S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
260            << Arg->getSourceRange();
261        return true;
262      }
263    }
264  
265    return false;
266  }
267  
268  /// Check that the argument to __builtin_addressof is a glvalue, and set the
269  /// result type to the corresponding pointer type.
BuiltinAddressof(Sema & S,CallExpr * TheCall)270  static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) {
271    if (S.checkArgCount(TheCall, 1))
272      return true;
273  
274    ExprResult Arg(TheCall->getArg(0));
275    QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
276    if (ResultType.isNull())
277      return true;
278  
279    TheCall->setArg(0, Arg.get());
280    TheCall->setType(ResultType);
281    return false;
282  }
283  
284  /// Check that the argument to __builtin_function_start is a function.
BuiltinFunctionStart(Sema & S,CallExpr * TheCall)285  static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
286    if (S.checkArgCount(TheCall, 1))
287      return true;
288  
289    ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
290    if (Arg.isInvalid())
291      return true;
292  
293    TheCall->setArg(0, Arg.get());
294    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
295        Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
296  
297    if (!FD) {
298      S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
299          << TheCall->getSourceRange();
300      return true;
301    }
302  
303    return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
304                                                TheCall->getBeginLoc());
305  }
306  
307  /// Check the number of arguments and set the result type to
308  /// the argument type.
BuiltinPreserveAI(Sema & S,CallExpr * TheCall)309  static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
310    if (S.checkArgCount(TheCall, 1))
311      return true;
312  
313    TheCall->setType(TheCall->getArg(0)->getType());
314    return false;
315  }
316  
317  /// Check that the value argument for __builtin_is_aligned(value, alignment) and
318  /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
319  /// type (but not a function pointer) and that the alignment is a power-of-two.
BuiltinAlignment(Sema & S,CallExpr * TheCall,unsigned ID)320  static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
321    if (S.checkArgCount(TheCall, 2))
322      return true;
323  
324    clang::Expr *Source = TheCall->getArg(0);
325    bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
326  
327    auto IsValidIntegerType = [](QualType Ty) {
328      return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
329    };
330    QualType SrcTy = Source->getType();
331    // We should also be able to use it with arrays (but not functions!).
332    if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
333      SrcTy = S.Context.getDecayedType(SrcTy);
334    }
335    if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
336        SrcTy->isFunctionPointerType()) {
337      // FIXME: this is not quite the right error message since we don't allow
338      // floating point types, or member pointers.
339      S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
340          << SrcTy;
341      return true;
342    }
343  
344    clang::Expr *AlignOp = TheCall->getArg(1);
345    if (!IsValidIntegerType(AlignOp->getType())) {
346      S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
347          << AlignOp->getType();
348      return true;
349    }
350    Expr::EvalResult AlignResult;
351    unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
352    // We can't check validity of alignment if it is value dependent.
353    if (!AlignOp->isValueDependent() &&
354        AlignOp->EvaluateAsInt(AlignResult, S.Context,
355                               Expr::SE_AllowSideEffects)) {
356      llvm::APSInt AlignValue = AlignResult.Val.getInt();
357      llvm::APSInt MaxValue(
358          llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
359      if (AlignValue < 1) {
360        S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
361        return true;
362      }
363      if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
364        S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
365            << toString(MaxValue, 10);
366        return true;
367      }
368      if (!AlignValue.isPowerOf2()) {
369        S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
370        return true;
371      }
372      if (AlignValue == 1) {
373        S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
374            << IsBooleanAlignBuiltin;
375      }
376    }
377  
378    ExprResult SrcArg = S.PerformCopyInitialization(
379        InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
380        SourceLocation(), Source);
381    if (SrcArg.isInvalid())
382      return true;
383    TheCall->setArg(0, SrcArg.get());
384    ExprResult AlignArg =
385        S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
386                                        S.Context, AlignOp->getType(), false),
387                                    SourceLocation(), AlignOp);
388    if (AlignArg.isInvalid())
389      return true;
390    TheCall->setArg(1, AlignArg.get());
391    // For align_up/align_down, the return type is the same as the (potentially
392    // decayed) argument type including qualifiers. For is_aligned(), the result
393    // is always bool.
394    TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
395    return false;
396  }
397  
BuiltinOverflow(Sema & S,CallExpr * TheCall,unsigned BuiltinID)398  static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) {
399    if (S.checkArgCount(TheCall, 3))
400      return true;
401  
402    std::pair<unsigned, const char *> Builtins[] = {
403      { Builtin::BI__builtin_add_overflow, "ckd_add" },
404      { Builtin::BI__builtin_sub_overflow, "ckd_sub" },
405      { Builtin::BI__builtin_mul_overflow, "ckd_mul" },
406    };
407  
408    bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
409      const char *> &P) {
410      return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
411           Lexer::getImmediateMacroName(TheCall->getExprLoc(),
412           S.getSourceManager(), S.getLangOpts()) == P.second;
413    });
414  
415    auto ValidCkdIntType = [](QualType QT) {
416      // A valid checked integer type is an integer type other than a plain char,
417      // bool, a bit-precise type, or an enumeration type.
418      if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
419        return (BT->getKind() >= BuiltinType::Short &&
420             BT->getKind() <= BuiltinType::Int128) || (
421             BT->getKind() >= BuiltinType::UShort &&
422             BT->getKind() <= BuiltinType::UInt128) ||
423             BT->getKind() == BuiltinType::UChar ||
424             BT->getKind() == BuiltinType::SChar;
425      return false;
426    };
427  
428    // First two arguments should be integers.
429    for (unsigned I = 0; I < 2; ++I) {
430      ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
431      if (Arg.isInvalid()) return true;
432      TheCall->setArg(I, Arg.get());
433  
434      QualType Ty = Arg.get()->getType();
435      bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
436      if (!IsValid) {
437        S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
438            << CkdOperation << Ty << Arg.get()->getSourceRange();
439        return true;
440      }
441    }
442  
443    // Third argument should be a pointer to a non-const integer.
444    // IRGen correctly handles volatile, restrict, and address spaces, and
445    // the other qualifiers aren't possible.
446    {
447      ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
448      if (Arg.isInvalid()) return true;
449      TheCall->setArg(2, Arg.get());
450  
451      QualType Ty = Arg.get()->getType();
452      const auto *PtrTy = Ty->getAs<PointerType>();
453      if (!PtrTy ||
454          !PtrTy->getPointeeType()->isIntegerType() ||
455          (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
456          PtrTy->getPointeeType().isConstQualified()) {
457        S.Diag(Arg.get()->getBeginLoc(),
458               diag::err_overflow_builtin_must_be_ptr_int)
459          << CkdOperation << Ty << Arg.get()->getSourceRange();
460        return true;
461      }
462    }
463  
464    // Disallow signed bit-precise integer args larger than 128 bits to mul
465    // function until we improve backend support.
466    if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
467      for (unsigned I = 0; I < 3; ++I) {
468        const auto Arg = TheCall->getArg(I);
469        // Third argument will be a pointer.
470        auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
471        if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
472            S.getASTContext().getIntWidth(Ty) > 128)
473          return S.Diag(Arg->getBeginLoc(),
474                        diag::err_overflow_builtin_bit_int_max_size)
475                 << 128;
476      }
477    }
478  
479    return false;
480  }
481  
482  namespace {
483  struct BuiltinDumpStructGenerator {
484    Sema &S;
485    CallExpr *TheCall;
486    SourceLocation Loc = TheCall->getBeginLoc();
487    SmallVector<Expr *, 32> Actions;
488    DiagnosticErrorTrap ErrorTracker;
489    PrintingPolicy Policy;
490  
BuiltinDumpStructGenerator__anon28c3fbb10411::BuiltinDumpStructGenerator491    BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
492        : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
493          Policy(S.Context.getPrintingPolicy()) {
494      Policy.AnonymousTagLocations = false;
495    }
496  
makeOpaqueValueExpr__anon28c3fbb10411::BuiltinDumpStructGenerator497    Expr *makeOpaqueValueExpr(Expr *Inner) {
498      auto *OVE = new (S.Context)
499          OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
500                          Inner->getObjectKind(), Inner);
501      Actions.push_back(OVE);
502      return OVE;
503    }
504  
getStringLiteral__anon28c3fbb10411::BuiltinDumpStructGenerator505    Expr *getStringLiteral(llvm::StringRef Str) {
506      Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
507      // Wrap the literal in parentheses to attach a source location.
508      return new (S.Context) ParenExpr(Loc, Loc, Lit);
509    }
510  
callPrintFunction__anon28c3fbb10411::BuiltinDumpStructGenerator511    bool callPrintFunction(llvm::StringRef Format,
512                           llvm::ArrayRef<Expr *> Exprs = {}) {
513      SmallVector<Expr *, 8> Args;
514      assert(TheCall->getNumArgs() >= 2);
515      Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
516      Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
517      Args.push_back(getStringLiteral(Format));
518      Args.insert(Args.end(), Exprs.begin(), Exprs.end());
519  
520      // Register a note to explain why we're performing the call.
521      Sema::CodeSynthesisContext Ctx;
522      Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
523      Ctx.PointOfInstantiation = Loc;
524      Ctx.CallArgs = Args.data();
525      Ctx.NumCallArgs = Args.size();
526      S.pushCodeSynthesisContext(Ctx);
527  
528      ExprResult RealCall =
529          S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
530                          TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
531  
532      S.popCodeSynthesisContext();
533      if (!RealCall.isInvalid())
534        Actions.push_back(RealCall.get());
535      // Bail out if we've hit any errors, even if we managed to build the
536      // call. We don't want to produce more than one error.
537      return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
538    }
539  
getIndentString__anon28c3fbb10411::BuiltinDumpStructGenerator540    Expr *getIndentString(unsigned Depth) {
541      if (!Depth)
542        return nullptr;
543  
544      llvm::SmallString<32> Indent;
545      Indent.resize(Depth * Policy.Indentation, ' ');
546      return getStringLiteral(Indent);
547    }
548  
getTypeString__anon28c3fbb10411::BuiltinDumpStructGenerator549    Expr *getTypeString(QualType T) {
550      return getStringLiteral(T.getAsString(Policy));
551    }
552  
appendFormatSpecifier__anon28c3fbb10411::BuiltinDumpStructGenerator553    bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
554      llvm::raw_svector_ostream OS(Str);
555  
556      // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
557      // than trying to print a single character.
558      if (auto *BT = T->getAs<BuiltinType>()) {
559        switch (BT->getKind()) {
560        case BuiltinType::Bool:
561          OS << "%d";
562          return true;
563        case BuiltinType::Char_U:
564        case BuiltinType::UChar:
565          OS << "%hhu";
566          return true;
567        case BuiltinType::Char_S:
568        case BuiltinType::SChar:
569          OS << "%hhd";
570          return true;
571        default:
572          break;
573        }
574      }
575  
576      analyze_printf::PrintfSpecifier Specifier;
577      if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
578        // We were able to guess how to format this.
579        if (Specifier.getConversionSpecifier().getKind() ==
580            analyze_printf::PrintfConversionSpecifier::sArg) {
581          // Wrap double-quotes around a '%s' specifier and limit its maximum
582          // length. Ideally we'd also somehow escape special characters in the
583          // contents but printf doesn't support that.
584          // FIXME: '%s' formatting is not safe in general.
585          OS << '"';
586          Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
587          Specifier.toString(OS);
588          OS << '"';
589          // FIXME: It would be nice to include a '...' if the string doesn't fit
590          // in the length limit.
591        } else {
592          Specifier.toString(OS);
593        }
594        return true;
595      }
596  
597      if (T->isPointerType()) {
598        // Format all pointers with '%p'.
599        OS << "%p";
600        return true;
601      }
602  
603      return false;
604    }
605  
dumpUnnamedRecord__anon28c3fbb10411::BuiltinDumpStructGenerator606    bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
607      Expr *IndentLit = getIndentString(Depth);
608      Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
609      if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
610                    : callPrintFunction("%s", {TypeLit}))
611        return true;
612  
613      return dumpRecordValue(RD, E, IndentLit, Depth);
614    }
615  
616    // Dump a record value. E should be a pointer or lvalue referring to an RD.
dumpRecordValue__anon28c3fbb10411::BuiltinDumpStructGenerator617    bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
618                         unsigned Depth) {
619      // FIXME: Decide what to do if RD is a union. At least we should probably
620      // turn off printing `const char*` members with `%s`, because that is very
621      // likely to crash if that's not the active member. Whatever we decide, we
622      // should document it.
623  
624      // Build an OpaqueValueExpr so we can refer to E more than once without
625      // triggering re-evaluation.
626      Expr *RecordArg = makeOpaqueValueExpr(E);
627      bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
628  
629      if (callPrintFunction(" {\n"))
630        return true;
631  
632      // Dump each base class, regardless of whether they're aggregates.
633      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
634        for (const auto &Base : CXXRD->bases()) {
635          QualType BaseType =
636              RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
637                             : S.Context.getLValueReferenceType(Base.getType());
638          ExprResult BasePtr = S.BuildCStyleCastExpr(
639              Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
640              RecordArg);
641          if (BasePtr.isInvalid() ||
642              dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
643                                Depth + 1))
644            return true;
645        }
646      }
647  
648      Expr *FieldIndentArg = getIndentString(Depth + 1);
649  
650      // Dump each field.
651      for (auto *D : RD->decls()) {
652        auto *IFD = dyn_cast<IndirectFieldDecl>(D);
653        auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
654        if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion())
655          continue;
656  
657        llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
658        llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
659                                             getTypeString(FD->getType()),
660                                             getStringLiteral(FD->getName())};
661  
662        if (FD->isBitField()) {
663          Format += ": %zu ";
664          QualType SizeT = S.Context.getSizeType();
665          llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
666                               FD->getBitWidthValue(S.Context));
667          Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
668        }
669  
670        Format += "=";
671  
672        ExprResult Field =
673            IFD ? S.BuildAnonymousStructUnionMemberReference(
674                      CXXScopeSpec(), Loc, IFD,
675                      DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
676                : S.BuildFieldReferenceExpr(
677                      RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
678                      DeclAccessPair::make(FD, AS_public),
679                      DeclarationNameInfo(FD->getDeclName(), Loc));
680        if (Field.isInvalid())
681          return true;
682  
683        auto *InnerRD = FD->getType()->getAsRecordDecl();
684        auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
685        if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
686          // Recursively print the values of members of aggregate record type.
687          if (callPrintFunction(Format, Args) ||
688              dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
689            return true;
690        } else {
691          Format += " ";
692          if (appendFormatSpecifier(FD->getType(), Format)) {
693            // We know how to print this field.
694            Args.push_back(Field.get());
695          } else {
696            // We don't know how to print this field. Print out its address
697            // with a format specifier that a smart tool will be able to
698            // recognize and treat specially.
699            Format += "*%p";
700            ExprResult FieldAddr =
701                S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
702            if (FieldAddr.isInvalid())
703              return true;
704            Args.push_back(FieldAddr.get());
705          }
706          Format += "\n";
707          if (callPrintFunction(Format, Args))
708            return true;
709        }
710      }
711  
712      return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
713                          : callPrintFunction("}\n");
714    }
715  
buildWrapper__anon28c3fbb10411::BuiltinDumpStructGenerator716    Expr *buildWrapper() {
717      auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
718                                               PseudoObjectExpr::NoResult);
719      TheCall->setType(Wrapper->getType());
720      TheCall->setValueKind(Wrapper->getValueKind());
721      return Wrapper;
722    }
723  };
724  } // namespace
725  
BuiltinDumpStruct(Sema & S,CallExpr * TheCall)726  static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
727    if (S.checkArgCountAtLeast(TheCall, 2))
728      return ExprError();
729  
730    ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
731    if (PtrArgResult.isInvalid())
732      return ExprError();
733    TheCall->setArg(0, PtrArgResult.get());
734  
735    // First argument should be a pointer to a struct.
736    QualType PtrArgType = PtrArgResult.get()->getType();
737    if (!PtrArgType->isPointerType() ||
738        !PtrArgType->getPointeeType()->isRecordType()) {
739      S.Diag(PtrArgResult.get()->getBeginLoc(),
740             diag::err_expected_struct_pointer_argument)
741          << 1 << TheCall->getDirectCallee() << PtrArgType;
742      return ExprError();
743    }
744    QualType Pointee = PtrArgType->getPointeeType();
745    const RecordDecl *RD = Pointee->getAsRecordDecl();
746    // Try to instantiate the class template as appropriate; otherwise, access to
747    // its data() may lead to a crash.
748    if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
749                              diag::err_incomplete_type))
750      return ExprError();
751    // Second argument is a callable, but we can't fully validate it until we try
752    // calling it.
753    QualType FnArgType = TheCall->getArg(1)->getType();
754    if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
755        !FnArgType->isBlockPointerType() &&
756        !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
757      auto *BT = FnArgType->getAs<BuiltinType>();
758      switch (BT ? BT->getKind() : BuiltinType::Void) {
759      case BuiltinType::Dependent:
760      case BuiltinType::Overload:
761      case BuiltinType::BoundMember:
762      case BuiltinType::PseudoObject:
763      case BuiltinType::UnknownAny:
764      case BuiltinType::BuiltinFn:
765        // This might be a callable.
766        break;
767  
768      default:
769        S.Diag(TheCall->getArg(1)->getBeginLoc(),
770               diag::err_expected_callable_argument)
771            << 2 << TheCall->getDirectCallee() << FnArgType;
772        return ExprError();
773      }
774    }
775  
776    BuiltinDumpStructGenerator Generator(S, TheCall);
777  
778    // Wrap parentheses around the given pointer. This is not necessary for
779    // correct code generation, but it means that when we pretty-print the call
780    // arguments in our diagnostics we will produce '(&s)->n' instead of the
781    // incorrect '&s->n'.
782    Expr *PtrArg = PtrArgResult.get();
783    PtrArg = new (S.Context)
784        ParenExpr(PtrArg->getBeginLoc(),
785                  S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
786    if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
787      return ExprError();
788  
789    return Generator.buildWrapper();
790  }
791  
BuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)792  static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
793    if (S.checkArgCount(BuiltinCall, 2))
794      return true;
795  
796    SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
797    Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
798    Expr *Call = BuiltinCall->getArg(0);
799    Expr *Chain = BuiltinCall->getArg(1);
800  
801    if (Call->getStmtClass() != Stmt::CallExprClass) {
802      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
803          << Call->getSourceRange();
804      return true;
805    }
806  
807    auto CE = cast<CallExpr>(Call);
808    if (CE->getCallee()->getType()->isBlockPointerType()) {
809      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
810          << Call->getSourceRange();
811      return true;
812    }
813  
814    const Decl *TargetDecl = CE->getCalleeDecl();
815    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
816      if (FD->getBuiltinID()) {
817        S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
818            << Call->getSourceRange();
819        return true;
820      }
821  
822    if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
823      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
824          << Call->getSourceRange();
825      return true;
826    }
827  
828    ExprResult ChainResult = S.UsualUnaryConversions(Chain);
829    if (ChainResult.isInvalid())
830      return true;
831    if (!ChainResult.get()->getType()->isPointerType()) {
832      S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
833          << Chain->getSourceRange();
834      return true;
835    }
836  
837    QualType ReturnTy = CE->getCallReturnType(S.Context);
838    QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
839    QualType BuiltinTy = S.Context.getFunctionType(
840        ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
841    QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
842  
843    Builtin =
844        S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
845  
846    BuiltinCall->setType(CE->getType());
847    BuiltinCall->setValueKind(CE->getValueKind());
848    BuiltinCall->setObjectKind(CE->getObjectKind());
849    BuiltinCall->setCallee(Builtin);
850    BuiltinCall->setArg(1, ChainResult.get());
851  
852    return false;
853  }
854  
855  namespace {
856  
857  class ScanfDiagnosticFormatHandler
858      : public analyze_format_string::FormatStringHandler {
859    // Accepts the argument index (relative to the first destination index) of the
860    // argument whose size we want.
861    using ComputeSizeFunction =
862        llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
863  
864    // Accepts the argument index (relative to the first destination index), the
865    // destination size, and the source size).
866    using DiagnoseFunction =
867        llvm::function_ref<void(unsigned, unsigned, unsigned)>;
868  
869    ComputeSizeFunction ComputeSizeArgument;
870    DiagnoseFunction Diagnose;
871  
872  public:
ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,DiagnoseFunction Diagnose)873    ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
874                                 DiagnoseFunction Diagnose)
875        : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
876  
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * StartSpecifier,unsigned specifierLen)877    bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
878                              const char *StartSpecifier,
879                              unsigned specifierLen) override {
880      if (!FS.consumesDataArgument())
881        return true;
882  
883      unsigned NulByte = 0;
884      switch ((FS.getConversionSpecifier().getKind())) {
885      default:
886        return true;
887      case analyze_format_string::ConversionSpecifier::sArg:
888      case analyze_format_string::ConversionSpecifier::ScanListArg:
889        NulByte = 1;
890        break;
891      case analyze_format_string::ConversionSpecifier::cArg:
892        break;
893      }
894  
895      analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
896      if (FW.getHowSpecified() !=
897          analyze_format_string::OptionalAmount::HowSpecified::Constant)
898        return true;
899  
900      unsigned SourceSize = FW.getConstantAmount() + NulByte;
901  
902      std::optional<llvm::APSInt> DestSizeAPS =
903          ComputeSizeArgument(FS.getArgIndex());
904      if (!DestSizeAPS)
905        return true;
906  
907      unsigned DestSize = DestSizeAPS->getZExtValue();
908  
909      if (DestSize < SourceSize)
910        Diagnose(FS.getArgIndex(), DestSize, SourceSize);
911  
912      return true;
913    }
914  };
915  
916  class EstimateSizeFormatHandler
917      : public analyze_format_string::FormatStringHandler {
918    size_t Size;
919    /// Whether the format string contains Linux kernel's format specifier
920    /// extension.
921    bool IsKernelCompatible = true;
922  
923  public:
EstimateSizeFormatHandler(StringRef Format)924    EstimateSizeFormatHandler(StringRef Format)
925        : Size(std::min(Format.find(0), Format.size()) +
926               1 /* null byte always written by sprintf */) {}
927  
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char *,unsigned SpecifierLen,const TargetInfo &)928    bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
929                               const char *, unsigned SpecifierLen,
930                               const TargetInfo &) override {
931  
932      const size_t FieldWidth = computeFieldWidth(FS);
933      const size_t Precision = computePrecision(FS);
934  
935      // The actual format.
936      switch (FS.getConversionSpecifier().getKind()) {
937      // Just a char.
938      case analyze_format_string::ConversionSpecifier::cArg:
939      case analyze_format_string::ConversionSpecifier::CArg:
940        Size += std::max(FieldWidth, (size_t)1);
941        break;
942      // Just an integer.
943      case analyze_format_string::ConversionSpecifier::dArg:
944      case analyze_format_string::ConversionSpecifier::DArg:
945      case analyze_format_string::ConversionSpecifier::iArg:
946      case analyze_format_string::ConversionSpecifier::oArg:
947      case analyze_format_string::ConversionSpecifier::OArg:
948      case analyze_format_string::ConversionSpecifier::uArg:
949      case analyze_format_string::ConversionSpecifier::UArg:
950      case analyze_format_string::ConversionSpecifier::xArg:
951      case analyze_format_string::ConversionSpecifier::XArg:
952        Size += std::max(FieldWidth, Precision);
953        break;
954  
955      // %g style conversion switches between %f or %e style dynamically.
956      // %g removes trailing zeros, and does not print decimal point if there are
957      // no digits that follow it. Thus %g can print a single digit.
958      // FIXME: If it is alternative form:
959      // For g and G conversions, trailing zeros are not removed from the result.
960      case analyze_format_string::ConversionSpecifier::gArg:
961      case analyze_format_string::ConversionSpecifier::GArg:
962        Size += 1;
963        break;
964  
965      // Floating point number in the form '[+]ddd.ddd'.
966      case analyze_format_string::ConversionSpecifier::fArg:
967      case analyze_format_string::ConversionSpecifier::FArg:
968        Size += std::max(FieldWidth, 1 /* integer part */ +
969                                         (Precision ? 1 + Precision
970                                                    : 0) /* period + decimal */);
971        break;
972  
973      // Floating point number in the form '[-]d.ddde[+-]dd'.
974      case analyze_format_string::ConversionSpecifier::eArg:
975      case analyze_format_string::ConversionSpecifier::EArg:
976        Size +=
977            std::max(FieldWidth,
978                     1 /* integer part */ +
979                         (Precision ? 1 + Precision : 0) /* period + decimal */ +
980                         1 /* e or E letter */ + 2 /* exponent */);
981        break;
982  
983      // Floating point number in the form '[-]0xh.hhhhp±dd'.
984      case analyze_format_string::ConversionSpecifier::aArg:
985      case analyze_format_string::ConversionSpecifier::AArg:
986        Size +=
987            std::max(FieldWidth,
988                     2 /* 0x */ + 1 /* integer part */ +
989                         (Precision ? 1 + Precision : 0) /* period + decimal */ +
990                         1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
991        break;
992  
993      // Just a string.
994      case analyze_format_string::ConversionSpecifier::sArg:
995      case analyze_format_string::ConversionSpecifier::SArg:
996        Size += FieldWidth;
997        break;
998  
999      // Just a pointer in the form '0xddd'.
1000      case analyze_format_string::ConversionSpecifier::pArg:
1001        // Linux kernel has its own extesion for `%p` specifier.
1002        // Kernel Document:
1003        // https://docs.kernel.org/core-api/printk-formats.html#pointer-types
1004        IsKernelCompatible = false;
1005        Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
1006        break;
1007  
1008      // A plain percent.
1009      case analyze_format_string::ConversionSpecifier::PercentArg:
1010        Size += 1;
1011        break;
1012  
1013      default:
1014        break;
1015      }
1016  
1017      Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
1018  
1019      if (FS.hasAlternativeForm()) {
1020        switch (FS.getConversionSpecifier().getKind()) {
1021        // For o conversion, it increases the precision, if and only if necessary,
1022        // to force the first digit of the result to be a zero
1023        // (if the value and precision are both 0, a single 0 is printed)
1024        case analyze_format_string::ConversionSpecifier::oArg:
1025        // For b conversion, a nonzero result has 0b prefixed to it.
1026        case analyze_format_string::ConversionSpecifier::bArg:
1027        // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
1028        // it.
1029        case analyze_format_string::ConversionSpecifier::xArg:
1030        case analyze_format_string::ConversionSpecifier::XArg:
1031          // Note: even when the prefix is added, if
1032          // (prefix_width <= FieldWidth - formatted_length) holds,
1033          // the prefix does not increase the format
1034          // size. e.g.(("%#3x", 0xf) is "0xf")
1035  
1036          // If the result is zero, o, b, x, X adds nothing.
1037          break;
1038        // For a, A, e, E, f, F, g, and G conversions,
1039        // the result of converting a floating-point number always contains a
1040        // decimal-point
1041        case analyze_format_string::ConversionSpecifier::aArg:
1042        case analyze_format_string::ConversionSpecifier::AArg:
1043        case analyze_format_string::ConversionSpecifier::eArg:
1044        case analyze_format_string::ConversionSpecifier::EArg:
1045        case analyze_format_string::ConversionSpecifier::fArg:
1046        case analyze_format_string::ConversionSpecifier::FArg:
1047        case analyze_format_string::ConversionSpecifier::gArg:
1048        case analyze_format_string::ConversionSpecifier::GArg:
1049          Size += (Precision ? 0 : 1);
1050          break;
1051        // For other conversions, the behavior is undefined.
1052        default:
1053          break;
1054        }
1055      }
1056      assert(SpecifierLen <= Size && "no underflow");
1057      Size -= SpecifierLen;
1058      return true;
1059    }
1060  
getSizeLowerBound() const1061    size_t getSizeLowerBound() const { return Size; }
isKernelCompatible() const1062    bool isKernelCompatible() const { return IsKernelCompatible; }
1063  
1064  private:
computeFieldWidth(const analyze_printf::PrintfSpecifier & FS)1065    static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
1066      const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
1067      size_t FieldWidth = 0;
1068      if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
1069        FieldWidth = FW.getConstantAmount();
1070      return FieldWidth;
1071    }
1072  
computePrecision(const analyze_printf::PrintfSpecifier & FS)1073    static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
1074      const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
1075      size_t Precision = 0;
1076  
1077      // See man 3 printf for default precision value based on the specifier.
1078      switch (FW.getHowSpecified()) {
1079      case analyze_format_string::OptionalAmount::NotSpecified:
1080        switch (FS.getConversionSpecifier().getKind()) {
1081        default:
1082          break;
1083        case analyze_format_string::ConversionSpecifier::dArg: // %d
1084        case analyze_format_string::ConversionSpecifier::DArg: // %D
1085        case analyze_format_string::ConversionSpecifier::iArg: // %i
1086          Precision = 1;
1087          break;
1088        case analyze_format_string::ConversionSpecifier::oArg: // %d
1089        case analyze_format_string::ConversionSpecifier::OArg: // %D
1090        case analyze_format_string::ConversionSpecifier::uArg: // %d
1091        case analyze_format_string::ConversionSpecifier::UArg: // %D
1092        case analyze_format_string::ConversionSpecifier::xArg: // %d
1093        case analyze_format_string::ConversionSpecifier::XArg: // %D
1094          Precision = 1;
1095          break;
1096        case analyze_format_string::ConversionSpecifier::fArg: // %f
1097        case analyze_format_string::ConversionSpecifier::FArg: // %F
1098        case analyze_format_string::ConversionSpecifier::eArg: // %e
1099        case analyze_format_string::ConversionSpecifier::EArg: // %E
1100        case analyze_format_string::ConversionSpecifier::gArg: // %g
1101        case analyze_format_string::ConversionSpecifier::GArg: // %G
1102          Precision = 6;
1103          break;
1104        case analyze_format_string::ConversionSpecifier::pArg: // %d
1105          Precision = 1;
1106          break;
1107        }
1108        break;
1109      case analyze_format_string::OptionalAmount::Constant:
1110        Precision = FW.getConstantAmount();
1111        break;
1112      default:
1113        break;
1114      }
1115      return Precision;
1116    }
1117  };
1118  
1119  } // namespace
1120  
ProcessFormatStringLiteral(const Expr * FormatExpr,StringRef & FormatStrRef,size_t & StrLen,ASTContext & Context)1121  static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
1122                                         StringRef &FormatStrRef, size_t &StrLen,
1123                                         ASTContext &Context) {
1124    if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1125        Format && (Format->isOrdinary() || Format->isUTF8())) {
1126      FormatStrRef = Format->getString();
1127      const ConstantArrayType *T =
1128          Context.getAsConstantArrayType(Format->getType());
1129      assert(T && "String literal not of constant array type!");
1130      size_t TypeSize = T->getZExtSize();
1131      // In case there's a null byte somewhere.
1132      StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1133      return true;
1134    }
1135    return false;
1136  }
1137  
checkFortifiedBuiltinMemoryFunction(FunctionDecl * FD,CallExpr * TheCall)1138  void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
1139                                                 CallExpr *TheCall) {
1140    if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1141        isConstantEvaluatedContext())
1142      return;
1143  
1144    bool UseDABAttr = false;
1145    const FunctionDecl *UseDecl = FD;
1146  
1147    const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1148    if (DABAttr) {
1149      UseDecl = DABAttr->getFunction();
1150      assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1151      UseDABAttr = true;
1152    }
1153  
1154    unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1155  
1156    if (!BuiltinID)
1157      return;
1158  
1159    const TargetInfo &TI = getASTContext().getTargetInfo();
1160    unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1161  
1162    auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
1163      // If we refer to a diagnose_as_builtin attribute, we need to change the
1164      // argument index to refer to the arguments of the called function. Unless
1165      // the index is out of bounds, which presumably means it's a variadic
1166      // function.
1167      if (!UseDABAttr)
1168        return Index;
1169      unsigned DABIndices = DABAttr->argIndices_size();
1170      unsigned NewIndex = Index < DABIndices
1171                              ? DABAttr->argIndices_begin()[Index]
1172                              : Index - DABIndices + FD->getNumParams();
1173      if (NewIndex >= TheCall->getNumArgs())
1174        return std::nullopt;
1175      return NewIndex;
1176    };
1177  
1178    auto ComputeExplicitObjectSizeArgument =
1179        [&](unsigned Index) -> std::optional<llvm::APSInt> {
1180      std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1181      if (!IndexOptional)
1182        return std::nullopt;
1183      unsigned NewIndex = *IndexOptional;
1184      Expr::EvalResult Result;
1185      Expr *SizeArg = TheCall->getArg(NewIndex);
1186      if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1187        return std::nullopt;
1188      llvm::APSInt Integer = Result.Val.getInt();
1189      Integer.setIsUnsigned(true);
1190      return Integer;
1191    };
1192  
1193    auto ComputeSizeArgument =
1194        [&](unsigned Index) -> std::optional<llvm::APSInt> {
1195      // If the parameter has a pass_object_size attribute, then we should use its
1196      // (potentially) more strict checking mode. Otherwise, conservatively assume
1197      // type 0.
1198      int BOSType = 0;
1199      // This check can fail for variadic functions.
1200      if (Index < FD->getNumParams()) {
1201        if (const auto *POS =
1202                FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1203          BOSType = POS->getType();
1204      }
1205  
1206      std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1207      if (!IndexOptional)
1208        return std::nullopt;
1209      unsigned NewIndex = *IndexOptional;
1210  
1211      if (NewIndex >= TheCall->getNumArgs())
1212        return std::nullopt;
1213  
1214      const Expr *ObjArg = TheCall->getArg(NewIndex);
1215      uint64_t Result;
1216      if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1217        return std::nullopt;
1218  
1219      // Get the object size in the target's size_t width.
1220      return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1221    };
1222  
1223    auto ComputeStrLenArgument =
1224        [&](unsigned Index) -> std::optional<llvm::APSInt> {
1225      std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1226      if (!IndexOptional)
1227        return std::nullopt;
1228      unsigned NewIndex = *IndexOptional;
1229  
1230      const Expr *ObjArg = TheCall->getArg(NewIndex);
1231      uint64_t Result;
1232      if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1233        return std::nullopt;
1234      // Add 1 for null byte.
1235      return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1236    };
1237  
1238    std::optional<llvm::APSInt> SourceSize;
1239    std::optional<llvm::APSInt> DestinationSize;
1240    unsigned DiagID = 0;
1241    bool IsChkVariant = false;
1242  
1243    auto GetFunctionName = [&]() {
1244      StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1245      // Skim off the details of whichever builtin was called to produce a better
1246      // diagnostic, as it's unlikely that the user wrote the __builtin
1247      // explicitly.
1248      if (IsChkVariant) {
1249        FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1250        FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1251      } else {
1252        FunctionName.consume_front("__builtin_");
1253      }
1254      return FunctionName;
1255    };
1256  
1257    switch (BuiltinID) {
1258    default:
1259      return;
1260    case Builtin::BI__builtin_strcpy:
1261    case Builtin::BIstrcpy: {
1262      DiagID = diag::warn_fortify_strlen_overflow;
1263      SourceSize = ComputeStrLenArgument(1);
1264      DestinationSize = ComputeSizeArgument(0);
1265      break;
1266    }
1267  
1268    case Builtin::BI__builtin___strcpy_chk: {
1269      DiagID = diag::warn_fortify_strlen_overflow;
1270      SourceSize = ComputeStrLenArgument(1);
1271      DestinationSize = ComputeExplicitObjectSizeArgument(2);
1272      IsChkVariant = true;
1273      break;
1274    }
1275  
1276    case Builtin::BIscanf:
1277    case Builtin::BIfscanf:
1278    case Builtin::BIsscanf: {
1279      unsigned FormatIndex = 1;
1280      unsigned DataIndex = 2;
1281      if (BuiltinID == Builtin::BIscanf) {
1282        FormatIndex = 0;
1283        DataIndex = 1;
1284      }
1285  
1286      const auto *FormatExpr =
1287          TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1288  
1289      StringRef FormatStrRef;
1290      size_t StrLen;
1291      if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
1292        return;
1293  
1294      auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1295                          unsigned SourceSize) {
1296        DiagID = diag::warn_fortify_scanf_overflow;
1297        unsigned Index = ArgIndex + DataIndex;
1298        StringRef FunctionName = GetFunctionName();
1299        DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1300                            PDiag(DiagID) << FunctionName << (Index + 1)
1301                                          << DestSize << SourceSize);
1302      };
1303  
1304      auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1305        return ComputeSizeArgument(Index + DataIndex);
1306      };
1307      ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1308      const char *FormatBytes = FormatStrRef.data();
1309      analyze_format_string::ParseScanfString(H, FormatBytes,
1310                                              FormatBytes + StrLen, getLangOpts(),
1311                                              Context.getTargetInfo());
1312  
1313      // Unlike the other cases, in this one we have already issued the diagnostic
1314      // here, so no need to continue (because unlike the other cases, here the
1315      // diagnostic refers to the argument number).
1316      return;
1317    }
1318  
1319    case Builtin::BIsprintf:
1320    case Builtin::BI__builtin___sprintf_chk: {
1321      size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1322      auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1323  
1324      StringRef FormatStrRef;
1325      size_t StrLen;
1326      if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1327        EstimateSizeFormatHandler H(FormatStrRef);
1328        const char *FormatBytes = FormatStrRef.data();
1329        if (!analyze_format_string::ParsePrintfString(
1330                H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1331                Context.getTargetInfo(), false)) {
1332          DiagID = H.isKernelCompatible()
1333                       ? diag::warn_format_overflow
1334                       : diag::warn_format_overflow_non_kprintf;
1335          SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1336                           .extOrTrunc(SizeTypeWidth);
1337          if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1338            DestinationSize = ComputeExplicitObjectSizeArgument(2);
1339            IsChkVariant = true;
1340          } else {
1341            DestinationSize = ComputeSizeArgument(0);
1342          }
1343          break;
1344        }
1345      }
1346      return;
1347    }
1348    case Builtin::BI__builtin___memcpy_chk:
1349    case Builtin::BI__builtin___memmove_chk:
1350    case Builtin::BI__builtin___memset_chk:
1351    case Builtin::BI__builtin___strlcat_chk:
1352    case Builtin::BI__builtin___strlcpy_chk:
1353    case Builtin::BI__builtin___strncat_chk:
1354    case Builtin::BI__builtin___strncpy_chk:
1355    case Builtin::BI__builtin___stpncpy_chk:
1356    case Builtin::BI__builtin___memccpy_chk:
1357    case Builtin::BI__builtin___mempcpy_chk: {
1358      DiagID = diag::warn_builtin_chk_overflow;
1359      SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1360      DestinationSize =
1361          ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1362      IsChkVariant = true;
1363      break;
1364    }
1365  
1366    case Builtin::BI__builtin___snprintf_chk:
1367    case Builtin::BI__builtin___vsnprintf_chk: {
1368      DiagID = diag::warn_builtin_chk_overflow;
1369      SourceSize = ComputeExplicitObjectSizeArgument(1);
1370      DestinationSize = ComputeExplicitObjectSizeArgument(3);
1371      IsChkVariant = true;
1372      break;
1373    }
1374  
1375    case Builtin::BIstrncat:
1376    case Builtin::BI__builtin_strncat:
1377    case Builtin::BIstrncpy:
1378    case Builtin::BI__builtin_strncpy:
1379    case Builtin::BIstpncpy:
1380    case Builtin::BI__builtin_stpncpy: {
1381      // Whether these functions overflow depends on the runtime strlen of the
1382      // string, not just the buffer size, so emitting the "always overflow"
1383      // diagnostic isn't quite right. We should still diagnose passing a buffer
1384      // size larger than the destination buffer though; this is a runtime abort
1385      // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1386      DiagID = diag::warn_fortify_source_size_mismatch;
1387      SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1388      DestinationSize = ComputeSizeArgument(0);
1389      break;
1390    }
1391  
1392    case Builtin::BImemcpy:
1393    case Builtin::BI__builtin_memcpy:
1394    case Builtin::BImemmove:
1395    case Builtin::BI__builtin_memmove:
1396    case Builtin::BImemset:
1397    case Builtin::BI__builtin_memset:
1398    case Builtin::BImempcpy:
1399    case Builtin::BI__builtin_mempcpy: {
1400      DiagID = diag::warn_fortify_source_overflow;
1401      SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1402      DestinationSize = ComputeSizeArgument(0);
1403      break;
1404    }
1405    case Builtin::BIsnprintf:
1406    case Builtin::BI__builtin_snprintf:
1407    case Builtin::BIvsnprintf:
1408    case Builtin::BI__builtin_vsnprintf: {
1409      DiagID = diag::warn_fortify_source_size_mismatch;
1410      SourceSize = ComputeExplicitObjectSizeArgument(1);
1411      const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
1412      StringRef FormatStrRef;
1413      size_t StrLen;
1414      if (SourceSize &&
1415          ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1416        EstimateSizeFormatHandler H(FormatStrRef);
1417        const char *FormatBytes = FormatStrRef.data();
1418        if (!analyze_format_string::ParsePrintfString(
1419                H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1420                Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
1421          llvm::APSInt FormatSize =
1422              llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1423                  .extOrTrunc(SizeTypeWidth);
1424          if (FormatSize > *SourceSize && *SourceSize != 0) {
1425            unsigned TruncationDiagID =
1426                H.isKernelCompatible() ? diag::warn_format_truncation
1427                                       : diag::warn_format_truncation_non_kprintf;
1428            SmallString<16> SpecifiedSizeStr;
1429            SmallString<16> FormatSizeStr;
1430            SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
1431            FormatSize.toString(FormatSizeStr, /*Radix=*/10);
1432            DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1433                                PDiag(TruncationDiagID)
1434                                    << GetFunctionName() << SpecifiedSizeStr
1435                                    << FormatSizeStr);
1436          }
1437        }
1438      }
1439      DestinationSize = ComputeSizeArgument(0);
1440    }
1441    }
1442  
1443    if (!SourceSize || !DestinationSize ||
1444        llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1445      return;
1446  
1447    StringRef FunctionName = GetFunctionName();
1448  
1449    SmallString<16> DestinationStr;
1450    SmallString<16> SourceStr;
1451    DestinationSize->toString(DestinationStr, /*Radix=*/10);
1452    SourceSize->toString(SourceStr, /*Radix=*/10);
1453    DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1454                        PDiag(DiagID)
1455                            << FunctionName << DestinationStr << SourceStr);
1456  }
1457  
BuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)1458  static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1459                                   Scope::ScopeFlags NeededScopeFlags,
1460                                   unsigned DiagID) {
1461    // Scopes aren't available during instantiation. Fortunately, builtin
1462    // functions cannot be template args so they cannot be formed through template
1463    // instantiation. Therefore checking once during the parse is sufficient.
1464    if (SemaRef.inTemplateInstantiation())
1465      return false;
1466  
1467    Scope *S = SemaRef.getCurScope();
1468    while (S && !S->isSEHExceptScope())
1469      S = S->getParent();
1470    if (!S || !(S->getFlags() & NeededScopeFlags)) {
1471      auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1472      SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1473          << DRE->getDecl()->getIdentifier();
1474      return true;
1475    }
1476  
1477    return false;
1478  }
1479  
1480  namespace {
1481  enum PointerAuthOpKind {
1482    PAO_Strip,
1483    PAO_Sign,
1484    PAO_Auth,
1485    PAO_SignGeneric,
1486    PAO_Discriminator,
1487    PAO_BlendPointer,
1488    PAO_BlendInteger
1489  };
1490  }
1491  
checkPointerAuthEnabled(SourceLocation Loc,SourceRange Range)1492  bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) {
1493    if (getLangOpts().PointerAuthIntrinsics)
1494      return false;
1495  
1496    Diag(Loc, diag::err_ptrauth_disabled) << Range;
1497    return true;
1498  }
1499  
checkPointerAuthEnabled(Sema & S,Expr * E)1500  static bool checkPointerAuthEnabled(Sema &S, Expr *E) {
1501    return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange());
1502  }
1503  
checkPointerAuthKey(Sema & S,Expr * & Arg)1504  static bool checkPointerAuthKey(Sema &S, Expr *&Arg) {
1505    // Convert it to type 'int'.
1506    if (convertArgumentToType(S, Arg, S.Context.IntTy))
1507      return true;
1508  
1509    // Value-dependent expressions are okay; wait for template instantiation.
1510    if (Arg->isValueDependent())
1511      return false;
1512  
1513    unsigned KeyValue;
1514    return S.checkConstantPointerAuthKey(Arg, KeyValue);
1515  }
1516  
checkConstantPointerAuthKey(Expr * Arg,unsigned & Result)1517  bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) {
1518    // Attempt to constant-evaluate the expression.
1519    std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Context);
1520    if (!KeyValue) {
1521      Diag(Arg->getExprLoc(), diag::err_expr_not_ice)
1522          << 0 << Arg->getSourceRange();
1523      return true;
1524    }
1525  
1526    // Ask the target to validate the key parameter.
1527    if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) {
1528      llvm::SmallString<32> Value;
1529      {
1530        llvm::raw_svector_ostream Str(Value);
1531        Str << *KeyValue;
1532      }
1533  
1534      Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key)
1535          << Value << Arg->getSourceRange();
1536      return true;
1537    }
1538  
1539    Result = KeyValue->getZExtValue();
1540    return false;
1541  }
1542  
1543  static std::pair<const ValueDecl *, CharUnits>
findConstantBaseAndOffset(Sema & S,Expr * E)1544  findConstantBaseAndOffset(Sema &S, Expr *E) {
1545    // Must evaluate as a pointer.
1546    Expr::EvalResult Result;
1547    if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue())
1548      return {nullptr, CharUnits()};
1549  
1550    const auto *BaseDecl =
1551        Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
1552    if (!BaseDecl)
1553      return {nullptr, CharUnits()};
1554  
1555    return {BaseDecl, Result.Val.getLValueOffset()};
1556  }
1557  
checkPointerAuthValue(Sema & S,Expr * & Arg,PointerAuthOpKind OpKind,bool RequireConstant=false)1558  static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind,
1559                                    bool RequireConstant = false) {
1560    if (Arg->hasPlaceholderType()) {
1561      ExprResult R = S.CheckPlaceholderExpr(Arg);
1562      if (R.isInvalid())
1563        return true;
1564      Arg = R.get();
1565    }
1566  
1567    auto AllowsPointer = [](PointerAuthOpKind OpKind) {
1568      return OpKind != PAO_BlendInteger;
1569    };
1570    auto AllowsInteger = [](PointerAuthOpKind OpKind) {
1571      return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger ||
1572             OpKind == PAO_SignGeneric;
1573    };
1574  
1575    // Require the value to have the right range of type.
1576    QualType ExpectedTy;
1577    if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) {
1578      ExpectedTy = Arg->getType().getUnqualifiedType();
1579    } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) {
1580      ExpectedTy = S.Context.VoidPtrTy;
1581    } else if (AllowsInteger(OpKind) &&
1582               Arg->getType()->isIntegralOrUnscopedEnumerationType()) {
1583      ExpectedTy = S.Context.getUIntPtrType();
1584  
1585    } else {
1586      // Diagnose the failures.
1587      S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type)
1588          << unsigned(OpKind == PAO_Discriminator  ? 1
1589                      : OpKind == PAO_BlendPointer ? 2
1590                      : OpKind == PAO_BlendInteger ? 3
1591                                                   : 0)
1592          << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0)
1593          << Arg->getType() << Arg->getSourceRange();
1594      return true;
1595    }
1596  
1597    // Convert to that type.  This should just be an lvalue-to-rvalue
1598    // conversion.
1599    if (convertArgumentToType(S, Arg, ExpectedTy))
1600      return true;
1601  
1602    if (!RequireConstant) {
1603      // Warn about null pointers for non-generic sign and auth operations.
1604      if ((OpKind == PAO_Sign || OpKind == PAO_Auth) &&
1605          Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) {
1606        S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign
1607                                      ? diag::warn_ptrauth_sign_null_pointer
1608                                      : diag::warn_ptrauth_auth_null_pointer)
1609            << Arg->getSourceRange();
1610      }
1611  
1612      return false;
1613    }
1614  
1615    // Perform special checking on the arguments to ptrauth_sign_constant.
1616  
1617    // The main argument.
1618    if (OpKind == PAO_Sign) {
1619      // Require the value we're signing to have a special form.
1620      auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg);
1621      bool Invalid;
1622  
1623      // Must be rooted in a declaration reference.
1624      if (!BaseDecl)
1625        Invalid = true;
1626  
1627      // If it's a function declaration, we can't have an offset.
1628      else if (isa<FunctionDecl>(BaseDecl))
1629        Invalid = !Offset.isZero();
1630  
1631      // Otherwise we're fine.
1632      else
1633        Invalid = false;
1634  
1635      if (Invalid)
1636        S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer);
1637      return Invalid;
1638    }
1639  
1640    // The discriminator argument.
1641    assert(OpKind == PAO_Discriminator);
1642  
1643    // Must be a pointer or integer or blend thereof.
1644    Expr *Pointer = nullptr;
1645    Expr *Integer = nullptr;
1646    if (auto *Call = dyn_cast<CallExpr>(Arg->IgnoreParens())) {
1647      if (Call->getBuiltinCallee() ==
1648          Builtin::BI__builtin_ptrauth_blend_discriminator) {
1649        Pointer = Call->getArg(0);
1650        Integer = Call->getArg(1);
1651      }
1652    }
1653    if (!Pointer && !Integer) {
1654      if (Arg->getType()->isPointerType())
1655        Pointer = Arg;
1656      else
1657        Integer = Arg;
1658    }
1659  
1660    // Check the pointer.
1661    bool Invalid = false;
1662    if (Pointer) {
1663      assert(Pointer->getType()->isPointerType());
1664  
1665      // TODO: if we're initializing a global, check that the address is
1666      // somehow related to what we're initializing.  This probably will
1667      // never really be feasible and we'll have to catch it at link-time.
1668      auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer);
1669      if (!BaseDecl || !isa<VarDecl>(BaseDecl))
1670        Invalid = true;
1671    }
1672  
1673    // Check the integer.
1674    if (Integer) {
1675      assert(Integer->getType()->isIntegerType());
1676      if (!Integer->isEvaluatable(S.Context))
1677        Invalid = true;
1678    }
1679  
1680    if (Invalid)
1681      S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator);
1682    return Invalid;
1683  }
1684  
PointerAuthStrip(Sema & S,CallExpr * Call)1685  static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) {
1686    if (S.checkArgCount(Call, 2))
1687      return ExprError();
1688    if (checkPointerAuthEnabled(S, Call))
1689      return ExprError();
1690    if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) ||
1691        checkPointerAuthKey(S, Call->getArgs()[1]))
1692      return ExprError();
1693  
1694    Call->setType(Call->getArgs()[0]->getType());
1695    return Call;
1696  }
1697  
PointerAuthBlendDiscriminator(Sema & S,CallExpr * Call)1698  static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) {
1699    if (S.checkArgCount(Call, 2))
1700      return ExprError();
1701    if (checkPointerAuthEnabled(S, Call))
1702      return ExprError();
1703    if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) ||
1704        checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger))
1705      return ExprError();
1706  
1707    Call->setType(S.Context.getUIntPtrType());
1708    return Call;
1709  }
1710  
PointerAuthSignGenericData(Sema & S,CallExpr * Call)1711  static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) {
1712    if (S.checkArgCount(Call, 2))
1713      return ExprError();
1714    if (checkPointerAuthEnabled(S, Call))
1715      return ExprError();
1716    if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) ||
1717        checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator))
1718      return ExprError();
1719  
1720    Call->setType(S.Context.getUIntPtrType());
1721    return Call;
1722  }
1723  
PointerAuthSignOrAuth(Sema & S,CallExpr * Call,PointerAuthOpKind OpKind,bool RequireConstant)1724  static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call,
1725                                          PointerAuthOpKind OpKind,
1726                                          bool RequireConstant) {
1727    if (S.checkArgCount(Call, 3))
1728      return ExprError();
1729    if (checkPointerAuthEnabled(S, Call))
1730      return ExprError();
1731    if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) ||
1732        checkPointerAuthKey(S, Call->getArgs()[1]) ||
1733        checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator,
1734                              RequireConstant))
1735      return ExprError();
1736  
1737    Call->setType(Call->getArgs()[0]->getType());
1738    return Call;
1739  }
1740  
PointerAuthAuthAndResign(Sema & S,CallExpr * Call)1741  static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) {
1742    if (S.checkArgCount(Call, 5))
1743      return ExprError();
1744    if (checkPointerAuthEnabled(S, Call))
1745      return ExprError();
1746    if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) ||
1747        checkPointerAuthKey(S, Call->getArgs()[1]) ||
1748        checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) ||
1749        checkPointerAuthKey(S, Call->getArgs()[3]) ||
1750        checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator))
1751      return ExprError();
1752  
1753    Call->setType(Call->getArgs()[0]->getType());
1754    return Call;
1755  }
1756  
PointerAuthStringDiscriminator(Sema & S,CallExpr * Call)1757  static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) {
1758    if (checkPointerAuthEnabled(S, Call))
1759      return ExprError();
1760  
1761    // We've already performed normal call type-checking.
1762    const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts();
1763  
1764    // Operand must be an ordinary or UTF-8 string literal.
1765    const auto *Literal = dyn_cast<StringLiteral>(Arg);
1766    if (!Literal || Literal->getCharByteWidth() != 1) {
1767      S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal)
1768          << (Literal ? 1 : 0) << Arg->getSourceRange();
1769      return ExprError();
1770    }
1771  
1772    return Call;
1773  }
1774  
BuiltinLaunder(Sema & S,CallExpr * TheCall)1775  static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) {
1776    if (S.checkArgCount(TheCall, 1))
1777      return ExprError();
1778  
1779    // Compute __builtin_launder's parameter type from the argument.
1780    // The parameter type is:
1781    //  * The type of the argument if it's not an array or function type,
1782    //  Otherwise,
1783    //  * The decayed argument type.
1784    QualType ParamTy = [&]() {
1785      QualType ArgTy = TheCall->getArg(0)->getType();
1786      if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1787        return S.Context.getPointerType(Ty->getElementType());
1788      if (ArgTy->isFunctionType()) {
1789        return S.Context.getPointerType(ArgTy);
1790      }
1791      return ArgTy;
1792    }();
1793  
1794    TheCall->setType(ParamTy);
1795  
1796    auto DiagSelect = [&]() -> std::optional<unsigned> {
1797      if (!ParamTy->isPointerType())
1798        return 0;
1799      if (ParamTy->isFunctionPointerType())
1800        return 1;
1801      if (ParamTy->isVoidPointerType())
1802        return 2;
1803      return std::optional<unsigned>{};
1804    }();
1805    if (DiagSelect) {
1806      S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1807          << *DiagSelect << TheCall->getSourceRange();
1808      return ExprError();
1809    }
1810  
1811    // We either have an incomplete class type, or we have a class template
1812    // whose instantiation has not been forced. Example:
1813    //
1814    //   template <class T> struct Foo { T value; };
1815    //   Foo<int> *p = nullptr;
1816    //   auto *d = __builtin_launder(p);
1817    if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1818                              diag::err_incomplete_type))
1819      return ExprError();
1820  
1821    assert(ParamTy->getPointeeType()->isObjectType() &&
1822           "Unhandled non-object pointer case");
1823  
1824    InitializedEntity Entity =
1825        InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1826    ExprResult Arg =
1827        S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1828    if (Arg.isInvalid())
1829      return ExprError();
1830    TheCall->setArg(0, Arg.get());
1831  
1832    return TheCall;
1833  }
1834  
1835  // Emit an error and return true if the current object format type is in the
1836  // list of unsupported types.
CheckBuiltinTargetNotInUnsupported(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes)1837  static bool CheckBuiltinTargetNotInUnsupported(
1838      Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1839      ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1840    llvm::Triple::ObjectFormatType CurObjFormat =
1841        S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1842    if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1843      S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1844          << TheCall->getSourceRange();
1845      return true;
1846    }
1847    return false;
1848  }
1849  
1850  // Emit an error and return true if the current architecture is not in the list
1851  // of supported architectures.
1852  static bool
CheckBuiltinTargetInSupported(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ArchType> SupportedArchs)1853  CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1854                                ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1855    llvm::Triple::ArchType CurArch =
1856        S.getASTContext().getTargetInfo().getTriple().getArch();
1857    if (llvm::is_contained(SupportedArchs, CurArch))
1858      return false;
1859    S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1860        << TheCall->getSourceRange();
1861    return true;
1862  }
1863  
1864  static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1865                                   SourceLocation CallSiteLoc);
1866  
CheckTSBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)1867  bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1868                                        CallExpr *TheCall) {
1869    switch (TI.getTriple().getArch()) {
1870    default:
1871      // Some builtins don't require additional checking, so just consider these
1872      // acceptable.
1873      return false;
1874    case llvm::Triple::arm:
1875    case llvm::Triple::armeb:
1876    case llvm::Triple::thumb:
1877    case llvm::Triple::thumbeb:
1878      return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1879    case llvm::Triple::aarch64:
1880    case llvm::Triple::aarch64_32:
1881    case llvm::Triple::aarch64_be:
1882      return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1883    case llvm::Triple::bpfeb:
1884    case llvm::Triple::bpfel:
1885      return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1886    case llvm::Triple::hexagon:
1887      return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1888    case llvm::Triple::mips:
1889    case llvm::Triple::mipsel:
1890    case llvm::Triple::mips64:
1891    case llvm::Triple::mips64el:
1892      return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1893    case llvm::Triple::systemz:
1894      return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1895    case llvm::Triple::x86:
1896    case llvm::Triple::x86_64:
1897      return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1898    case llvm::Triple::ppc:
1899    case llvm::Triple::ppcle:
1900    case llvm::Triple::ppc64:
1901    case llvm::Triple::ppc64le:
1902      return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1903    case llvm::Triple::amdgcn:
1904      return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1905    case llvm::Triple::riscv32:
1906    case llvm::Triple::riscv64:
1907      return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1908    case llvm::Triple::loongarch32:
1909    case llvm::Triple::loongarch64:
1910      return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID,
1911                                                           TheCall);
1912    case llvm::Triple::wasm32:
1913    case llvm::Triple::wasm64:
1914      return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
1915    case llvm::Triple::nvptx:
1916    case llvm::Triple::nvptx64:
1917      return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
1918    }
1919  }
1920  
1921  // Check if \p Ty is a valid type for the elementwise math builtins. If it is
1922  // not a valid type, emit an error message and return true. Otherwise return
1923  // false.
checkMathBuiltinElementType(Sema & S,SourceLocation Loc,QualType ArgTy,int ArgIndex)1924  static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
1925                                          QualType ArgTy, int ArgIndex) {
1926    if (!ArgTy->getAs<VectorType>() &&
1927        !ConstantMatrixType::isValidElementType(ArgTy)) {
1928      return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1929             << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy;
1930    }
1931  
1932    return false;
1933  }
1934  
checkFPMathBuiltinElementType(Sema & S,SourceLocation Loc,QualType ArgTy,int ArgIndex)1935  static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc,
1936                                            QualType ArgTy, int ArgIndex) {
1937    QualType EltTy = ArgTy;
1938    if (auto *VecTy = EltTy->getAs<VectorType>())
1939      EltTy = VecTy->getElementType();
1940  
1941    if (!EltTy->isRealFloatingType()) {
1942      return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1943             << ArgIndex << /* vector or float ty*/ 5 << ArgTy;
1944    }
1945  
1946    return false;
1947  }
1948  
1949  /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *).
1950  /// This checks that the target supports the builtin and that the string
1951  /// argument is constant and valid.
BuiltinCpu(Sema & S,const TargetInfo & TI,CallExpr * TheCall,const TargetInfo * AuxTI,unsigned BuiltinID)1952  static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall,
1953                         const TargetInfo *AuxTI, unsigned BuiltinID) {
1954    assert((BuiltinID == Builtin::BI__builtin_cpu_supports ||
1955            BuiltinID == Builtin::BI__builtin_cpu_is) &&
1956           "Expecting __builtin_cpu_...");
1957  
1958    bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports;
1959    const TargetInfo *TheTI = &TI;
1960    auto SupportsBI = [=](const TargetInfo *TInfo) {
1961      return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) ||
1962                       (!IsCPUSupports && TInfo->supportsCpuIs()));
1963    };
1964    if (!SupportsBI(&TI) && SupportsBI(AuxTI))
1965      TheTI = AuxTI;
1966  
1967    if ((!IsCPUSupports && !TheTI->supportsCpuIs()) ||
1968        (IsCPUSupports && !TheTI->supportsCpuSupports()))
1969      return S.Diag(TheCall->getBeginLoc(),
1970                    TI.getTriple().isOSAIX()
1971                        ? diag::err_builtin_aix_os_unsupported
1972                        : diag::err_builtin_target_unsupported)
1973             << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
1974  
1975    Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts();
1976    // Check if the argument is a string literal.
1977    if (!isa<StringLiteral>(Arg))
1978      return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
1979             << Arg->getSourceRange();
1980  
1981    // Check the contents of the string.
1982    StringRef Feature = cast<StringLiteral>(Arg)->getString();
1983    if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) {
1984      S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports)
1985          << Arg->getSourceRange();
1986      return false;
1987    }
1988    if (!IsCPUSupports && !TheTI->validateCpuIs(Feature))
1989      return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
1990             << Arg->getSourceRange();
1991    return false;
1992  }
1993  
1994  /// Checks that __builtin_popcountg was called with a single argument, which is
1995  /// an unsigned integer.
BuiltinPopcountg(Sema & S,CallExpr * TheCall)1996  static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) {
1997    if (S.checkArgCount(TheCall, 1))
1998      return true;
1999  
2000    ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0));
2001    if (ArgRes.isInvalid())
2002      return true;
2003  
2004    Expr *Arg = ArgRes.get();
2005    TheCall->setArg(0, Arg);
2006  
2007    QualType ArgTy = Arg->getType();
2008  
2009    if (!ArgTy->isUnsignedIntegerType()) {
2010      S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2011          << 1 << /*unsigned integer ty*/ 7 << ArgTy;
2012      return true;
2013    }
2014    return false;
2015  }
2016  
2017  /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is
2018  /// an unsigned integer, and an optional second argument, which is promoted to
2019  /// an 'int'.
BuiltinCountZeroBitsGeneric(Sema & S,CallExpr * TheCall)2020  static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) {
2021    if (S.checkArgCountRange(TheCall, 1, 2))
2022      return true;
2023  
2024    ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0));
2025    if (Arg0Res.isInvalid())
2026      return true;
2027  
2028    Expr *Arg0 = Arg0Res.get();
2029    TheCall->setArg(0, Arg0);
2030  
2031    QualType Arg0Ty = Arg0->getType();
2032  
2033    if (!Arg0Ty->isUnsignedIntegerType()) {
2034      S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2035          << 1 << /*unsigned integer ty*/ 7 << Arg0Ty;
2036      return true;
2037    }
2038  
2039    if (TheCall->getNumArgs() > 1) {
2040      ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1));
2041      if (Arg1Res.isInvalid())
2042        return true;
2043  
2044      Expr *Arg1 = Arg1Res.get();
2045      TheCall->setArg(1, Arg1);
2046  
2047      QualType Arg1Ty = Arg1->getType();
2048  
2049      if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) {
2050        S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2051            << 2 << /*'int' ty*/ 8 << Arg1Ty;
2052        return true;
2053      }
2054    }
2055  
2056    return false;
2057  }
2058  
2059  ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)2060  Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
2061                                 CallExpr *TheCall) {
2062    ExprResult TheCallResult(TheCall);
2063  
2064    // Find out if any arguments are required to be integer constant expressions.
2065    unsigned ICEArguments = 0;
2066    ASTContext::GetBuiltinTypeError Error;
2067    Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
2068    if (Error != ASTContext::GE_None)
2069      ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
2070  
2071    // If any arguments are required to be ICE's, check and diagnose.
2072    for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2073      // Skip arguments not required to be ICE's.
2074      if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2075  
2076      llvm::APSInt Result;
2077      // If we don't have enough arguments, continue so we can issue better
2078      // diagnostic in checkArgCount(...)
2079      if (ArgNo < TheCall->getNumArgs() &&
2080          BuiltinConstantArg(TheCall, ArgNo, Result))
2081        return true;
2082      ICEArguments &= ~(1 << ArgNo);
2083    }
2084  
2085    FPOptions FPO;
2086    switch (BuiltinID) {
2087    case Builtin::BI__builtin_cpu_supports:
2088    case Builtin::BI__builtin_cpu_is:
2089      if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall,
2090                     Context.getAuxTargetInfo(), BuiltinID))
2091        return ExprError();
2092      break;
2093    case Builtin::BI__builtin_cpu_init:
2094      if (!Context.getTargetInfo().supportsCpuInit()) {
2095        Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
2096            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
2097        return ExprError();
2098      }
2099      break;
2100    case Builtin::BI__builtin___CFStringMakeConstantString:
2101      // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2102      // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2103      if (CheckBuiltinTargetNotInUnsupported(
2104              *this, BuiltinID, TheCall,
2105              {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2106        return ExprError();
2107      assert(TheCall->getNumArgs() == 1 &&
2108             "Wrong # arguments to builtin CFStringMakeConstantString");
2109      if (ObjC().CheckObjCString(TheCall->getArg(0)))
2110        return ExprError();
2111      break;
2112    case Builtin::BI__builtin_ms_va_start:
2113    case Builtin::BI__builtin_stdarg_start:
2114    case Builtin::BI__builtin_va_start:
2115      if (BuiltinVAStart(BuiltinID, TheCall))
2116        return ExprError();
2117      break;
2118    case Builtin::BI__va_start: {
2119      switch (Context.getTargetInfo().getTriple().getArch()) {
2120      case llvm::Triple::aarch64:
2121      case llvm::Triple::arm:
2122      case llvm::Triple::thumb:
2123        if (BuiltinVAStartARMMicrosoft(TheCall))
2124          return ExprError();
2125        break;
2126      default:
2127        if (BuiltinVAStart(BuiltinID, TheCall))
2128          return ExprError();
2129        break;
2130      }
2131      break;
2132    }
2133  
2134    // The acquire, release, and no fence variants are ARM and AArch64 only.
2135    case Builtin::BI_interlockedbittestandset_acq:
2136    case Builtin::BI_interlockedbittestandset_rel:
2137    case Builtin::BI_interlockedbittestandset_nf:
2138    case Builtin::BI_interlockedbittestandreset_acq:
2139    case Builtin::BI_interlockedbittestandreset_rel:
2140    case Builtin::BI_interlockedbittestandreset_nf:
2141      if (CheckBuiltinTargetInSupported(
2142              *this, BuiltinID, TheCall,
2143              {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2144        return ExprError();
2145      break;
2146  
2147    // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2148    case Builtin::BI_bittest64:
2149    case Builtin::BI_bittestandcomplement64:
2150    case Builtin::BI_bittestandreset64:
2151    case Builtin::BI_bittestandset64:
2152    case Builtin::BI_interlockedbittestandreset64:
2153    case Builtin::BI_interlockedbittestandset64:
2154      if (CheckBuiltinTargetInSupported(
2155              *this, BuiltinID, TheCall,
2156              {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb,
2157               llvm::Triple::aarch64, llvm::Triple::amdgcn}))
2158        return ExprError();
2159      break;
2160  
2161    case Builtin::BI__builtin_set_flt_rounds:
2162      if (CheckBuiltinTargetInSupported(
2163              *this, BuiltinID, TheCall,
2164              {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm,
2165               llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn}))
2166        return ExprError();
2167      break;
2168  
2169    case Builtin::BI__builtin_isgreater:
2170    case Builtin::BI__builtin_isgreaterequal:
2171    case Builtin::BI__builtin_isless:
2172    case Builtin::BI__builtin_islessequal:
2173    case Builtin::BI__builtin_islessgreater:
2174    case Builtin::BI__builtin_isunordered:
2175      if (BuiltinUnorderedCompare(TheCall, BuiltinID))
2176        return ExprError();
2177      break;
2178    case Builtin::BI__builtin_fpclassify:
2179      if (BuiltinFPClassification(TheCall, 6, BuiltinID))
2180        return ExprError();
2181      break;
2182    case Builtin::BI__builtin_isfpclass:
2183      if (BuiltinFPClassification(TheCall, 2, BuiltinID))
2184        return ExprError();
2185      break;
2186    case Builtin::BI__builtin_isfinite:
2187    case Builtin::BI__builtin_isinf:
2188    case Builtin::BI__builtin_isinf_sign:
2189    case Builtin::BI__builtin_isnan:
2190    case Builtin::BI__builtin_issignaling:
2191    case Builtin::BI__builtin_isnormal:
2192    case Builtin::BI__builtin_issubnormal:
2193    case Builtin::BI__builtin_iszero:
2194    case Builtin::BI__builtin_signbit:
2195    case Builtin::BI__builtin_signbitf:
2196    case Builtin::BI__builtin_signbitl:
2197      if (BuiltinFPClassification(TheCall, 1, BuiltinID))
2198        return ExprError();
2199      break;
2200    case Builtin::BI__builtin_shufflevector:
2201      return BuiltinShuffleVector(TheCall);
2202      // TheCall will be freed by the smart pointer here, but that's fine, since
2203      // BuiltinShuffleVector guts it, but then doesn't release it.
2204    case Builtin::BI__builtin_prefetch:
2205      if (BuiltinPrefetch(TheCall))
2206        return ExprError();
2207      break;
2208    case Builtin::BI__builtin_alloca_with_align:
2209    case Builtin::BI__builtin_alloca_with_align_uninitialized:
2210      if (BuiltinAllocaWithAlign(TheCall))
2211        return ExprError();
2212      [[fallthrough]];
2213    case Builtin::BI__builtin_alloca:
2214    case Builtin::BI__builtin_alloca_uninitialized:
2215      Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2216          << TheCall->getDirectCallee();
2217      break;
2218    case Builtin::BI__arithmetic_fence:
2219      if (BuiltinArithmeticFence(TheCall))
2220        return ExprError();
2221      break;
2222    case Builtin::BI__assume:
2223    case Builtin::BI__builtin_assume:
2224      if (BuiltinAssume(TheCall))
2225        return ExprError();
2226      break;
2227    case Builtin::BI__builtin_assume_aligned:
2228      if (BuiltinAssumeAligned(TheCall))
2229        return ExprError();
2230      break;
2231    case Builtin::BI__builtin_dynamic_object_size:
2232    case Builtin::BI__builtin_object_size:
2233      if (BuiltinConstantArgRange(TheCall, 1, 0, 3))
2234        return ExprError();
2235      break;
2236    case Builtin::BI__builtin_longjmp:
2237      if (BuiltinLongjmp(TheCall))
2238        return ExprError();
2239      break;
2240    case Builtin::BI__builtin_setjmp:
2241      if (BuiltinSetjmp(TheCall))
2242        return ExprError();
2243      break;
2244    case Builtin::BI__builtin_classify_type:
2245      if (checkArgCount(TheCall, 1))
2246        return true;
2247      TheCall->setType(Context.IntTy);
2248      break;
2249    case Builtin::BI__builtin_complex:
2250      if (BuiltinComplex(TheCall))
2251        return ExprError();
2252      break;
2253    case Builtin::BI__builtin_constant_p: {
2254      if (checkArgCount(TheCall, 1))
2255        return true;
2256      ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2257      if (Arg.isInvalid()) return true;
2258      TheCall->setArg(0, Arg.get());
2259      TheCall->setType(Context.IntTy);
2260      break;
2261    }
2262    case Builtin::BI__builtin_launder:
2263      return BuiltinLaunder(*this, TheCall);
2264    case Builtin::BI__sync_fetch_and_add:
2265    case Builtin::BI__sync_fetch_and_add_1:
2266    case Builtin::BI__sync_fetch_and_add_2:
2267    case Builtin::BI__sync_fetch_and_add_4:
2268    case Builtin::BI__sync_fetch_and_add_8:
2269    case Builtin::BI__sync_fetch_and_add_16:
2270    case Builtin::BI__sync_fetch_and_sub:
2271    case Builtin::BI__sync_fetch_and_sub_1:
2272    case Builtin::BI__sync_fetch_and_sub_2:
2273    case Builtin::BI__sync_fetch_and_sub_4:
2274    case Builtin::BI__sync_fetch_and_sub_8:
2275    case Builtin::BI__sync_fetch_and_sub_16:
2276    case Builtin::BI__sync_fetch_and_or:
2277    case Builtin::BI__sync_fetch_and_or_1:
2278    case Builtin::BI__sync_fetch_and_or_2:
2279    case Builtin::BI__sync_fetch_and_or_4:
2280    case Builtin::BI__sync_fetch_and_or_8:
2281    case Builtin::BI__sync_fetch_and_or_16:
2282    case Builtin::BI__sync_fetch_and_and:
2283    case Builtin::BI__sync_fetch_and_and_1:
2284    case Builtin::BI__sync_fetch_and_and_2:
2285    case Builtin::BI__sync_fetch_and_and_4:
2286    case Builtin::BI__sync_fetch_and_and_8:
2287    case Builtin::BI__sync_fetch_and_and_16:
2288    case Builtin::BI__sync_fetch_and_xor:
2289    case Builtin::BI__sync_fetch_and_xor_1:
2290    case Builtin::BI__sync_fetch_and_xor_2:
2291    case Builtin::BI__sync_fetch_and_xor_4:
2292    case Builtin::BI__sync_fetch_and_xor_8:
2293    case Builtin::BI__sync_fetch_and_xor_16:
2294    case Builtin::BI__sync_fetch_and_nand:
2295    case Builtin::BI__sync_fetch_and_nand_1:
2296    case Builtin::BI__sync_fetch_and_nand_2:
2297    case Builtin::BI__sync_fetch_and_nand_4:
2298    case Builtin::BI__sync_fetch_and_nand_8:
2299    case Builtin::BI__sync_fetch_and_nand_16:
2300    case Builtin::BI__sync_add_and_fetch:
2301    case Builtin::BI__sync_add_and_fetch_1:
2302    case Builtin::BI__sync_add_and_fetch_2:
2303    case Builtin::BI__sync_add_and_fetch_4:
2304    case Builtin::BI__sync_add_and_fetch_8:
2305    case Builtin::BI__sync_add_and_fetch_16:
2306    case Builtin::BI__sync_sub_and_fetch:
2307    case Builtin::BI__sync_sub_and_fetch_1:
2308    case Builtin::BI__sync_sub_and_fetch_2:
2309    case Builtin::BI__sync_sub_and_fetch_4:
2310    case Builtin::BI__sync_sub_and_fetch_8:
2311    case Builtin::BI__sync_sub_and_fetch_16:
2312    case Builtin::BI__sync_and_and_fetch:
2313    case Builtin::BI__sync_and_and_fetch_1:
2314    case Builtin::BI__sync_and_and_fetch_2:
2315    case Builtin::BI__sync_and_and_fetch_4:
2316    case Builtin::BI__sync_and_and_fetch_8:
2317    case Builtin::BI__sync_and_and_fetch_16:
2318    case Builtin::BI__sync_or_and_fetch:
2319    case Builtin::BI__sync_or_and_fetch_1:
2320    case Builtin::BI__sync_or_and_fetch_2:
2321    case Builtin::BI__sync_or_and_fetch_4:
2322    case Builtin::BI__sync_or_and_fetch_8:
2323    case Builtin::BI__sync_or_and_fetch_16:
2324    case Builtin::BI__sync_xor_and_fetch:
2325    case Builtin::BI__sync_xor_and_fetch_1:
2326    case Builtin::BI__sync_xor_and_fetch_2:
2327    case Builtin::BI__sync_xor_and_fetch_4:
2328    case Builtin::BI__sync_xor_and_fetch_8:
2329    case Builtin::BI__sync_xor_and_fetch_16:
2330    case Builtin::BI__sync_nand_and_fetch:
2331    case Builtin::BI__sync_nand_and_fetch_1:
2332    case Builtin::BI__sync_nand_and_fetch_2:
2333    case Builtin::BI__sync_nand_and_fetch_4:
2334    case Builtin::BI__sync_nand_and_fetch_8:
2335    case Builtin::BI__sync_nand_and_fetch_16:
2336    case Builtin::BI__sync_val_compare_and_swap:
2337    case Builtin::BI__sync_val_compare_and_swap_1:
2338    case Builtin::BI__sync_val_compare_and_swap_2:
2339    case Builtin::BI__sync_val_compare_and_swap_4:
2340    case Builtin::BI__sync_val_compare_and_swap_8:
2341    case Builtin::BI__sync_val_compare_and_swap_16:
2342    case Builtin::BI__sync_bool_compare_and_swap:
2343    case Builtin::BI__sync_bool_compare_and_swap_1:
2344    case Builtin::BI__sync_bool_compare_and_swap_2:
2345    case Builtin::BI__sync_bool_compare_and_swap_4:
2346    case Builtin::BI__sync_bool_compare_and_swap_8:
2347    case Builtin::BI__sync_bool_compare_and_swap_16:
2348    case Builtin::BI__sync_lock_test_and_set:
2349    case Builtin::BI__sync_lock_test_and_set_1:
2350    case Builtin::BI__sync_lock_test_and_set_2:
2351    case Builtin::BI__sync_lock_test_and_set_4:
2352    case Builtin::BI__sync_lock_test_and_set_8:
2353    case Builtin::BI__sync_lock_test_and_set_16:
2354    case Builtin::BI__sync_lock_release:
2355    case Builtin::BI__sync_lock_release_1:
2356    case Builtin::BI__sync_lock_release_2:
2357    case Builtin::BI__sync_lock_release_4:
2358    case Builtin::BI__sync_lock_release_8:
2359    case Builtin::BI__sync_lock_release_16:
2360    case Builtin::BI__sync_swap:
2361    case Builtin::BI__sync_swap_1:
2362    case Builtin::BI__sync_swap_2:
2363    case Builtin::BI__sync_swap_4:
2364    case Builtin::BI__sync_swap_8:
2365    case Builtin::BI__sync_swap_16:
2366      return BuiltinAtomicOverloaded(TheCallResult);
2367    case Builtin::BI__sync_synchronize:
2368      Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2369          << TheCall->getCallee()->getSourceRange();
2370      break;
2371    case Builtin::BI__builtin_nontemporal_load:
2372    case Builtin::BI__builtin_nontemporal_store:
2373      return BuiltinNontemporalOverloaded(TheCallResult);
2374    case Builtin::BI__builtin_memcpy_inline: {
2375      clang::Expr *SizeOp = TheCall->getArg(2);
2376      // We warn about copying to or from `nullptr` pointers when `size` is
2377      // greater than 0. When `size` is value dependent we cannot evaluate its
2378      // value so we bail out.
2379      if (SizeOp->isValueDependent())
2380        break;
2381      if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2382        CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2383        CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2384      }
2385      break;
2386    }
2387    case Builtin::BI__builtin_memset_inline: {
2388      clang::Expr *SizeOp = TheCall->getArg(2);
2389      // We warn about filling to `nullptr` pointers when `size` is greater than
2390      // 0. When `size` is value dependent we cannot evaluate its value so we bail
2391      // out.
2392      if (SizeOp->isValueDependent())
2393        break;
2394      if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2395        CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2396      break;
2397    }
2398  #define BUILTIN(ID, TYPE, ATTRS)
2399  #define ATOMIC_BUILTIN(ID, TYPE, ATTRS)                                        \
2400    case Builtin::BI##ID:                                                        \
2401      return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2402  #include "clang/Basic/Builtins.inc"
2403    case Builtin::BI__annotation:
2404      if (BuiltinMSVCAnnotation(*this, TheCall))
2405        return ExprError();
2406      break;
2407    case Builtin::BI__builtin_annotation:
2408      if (BuiltinAnnotation(*this, TheCall))
2409        return ExprError();
2410      break;
2411    case Builtin::BI__builtin_addressof:
2412      if (BuiltinAddressof(*this, TheCall))
2413        return ExprError();
2414      break;
2415    case Builtin::BI__builtin_function_start:
2416      if (BuiltinFunctionStart(*this, TheCall))
2417        return ExprError();
2418      break;
2419    case Builtin::BI__builtin_is_aligned:
2420    case Builtin::BI__builtin_align_up:
2421    case Builtin::BI__builtin_align_down:
2422      if (BuiltinAlignment(*this, TheCall, BuiltinID))
2423        return ExprError();
2424      break;
2425    case Builtin::BI__builtin_add_overflow:
2426    case Builtin::BI__builtin_sub_overflow:
2427    case Builtin::BI__builtin_mul_overflow:
2428      if (BuiltinOverflow(*this, TheCall, BuiltinID))
2429        return ExprError();
2430      break;
2431    case Builtin::BI__builtin_operator_new:
2432    case Builtin::BI__builtin_operator_delete: {
2433      bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2434      ExprResult Res =
2435          BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2436      if (Res.isInvalid())
2437        CorrectDelayedTyposInExpr(TheCallResult.get());
2438      return Res;
2439    }
2440    case Builtin::BI__builtin_dump_struct:
2441      return BuiltinDumpStruct(*this, TheCall);
2442    case Builtin::BI__builtin_expect_with_probability: {
2443      // We first want to ensure we are called with 3 arguments
2444      if (checkArgCount(TheCall, 3))
2445        return ExprError();
2446      // then check probability is constant float in range [0.0, 1.0]
2447      const Expr *ProbArg = TheCall->getArg(2);
2448      SmallVector<PartialDiagnosticAt, 8> Notes;
2449      Expr::EvalResult Eval;
2450      Eval.Diag = &Notes;
2451      if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2452          !Eval.Val.isFloat()) {
2453        Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2454            << ProbArg->getSourceRange();
2455        for (const PartialDiagnosticAt &PDiag : Notes)
2456          Diag(PDiag.first, PDiag.second);
2457        return ExprError();
2458      }
2459      llvm::APFloat Probability = Eval.Val.getFloat();
2460      bool LoseInfo = false;
2461      Probability.convert(llvm::APFloat::IEEEdouble(),
2462                          llvm::RoundingMode::Dynamic, &LoseInfo);
2463      if (!(Probability >= llvm::APFloat(0.0) &&
2464            Probability <= llvm::APFloat(1.0))) {
2465        Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2466            << ProbArg->getSourceRange();
2467        return ExprError();
2468      }
2469      break;
2470    }
2471    case Builtin::BI__builtin_preserve_access_index:
2472      if (BuiltinPreserveAI(*this, TheCall))
2473        return ExprError();
2474      break;
2475    case Builtin::BI__builtin_call_with_static_chain:
2476      if (BuiltinCallWithStaticChain(*this, TheCall))
2477        return ExprError();
2478      break;
2479    case Builtin::BI__exception_code:
2480    case Builtin::BI_exception_code:
2481      if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2482                               diag::err_seh___except_block))
2483        return ExprError();
2484      break;
2485    case Builtin::BI__exception_info:
2486    case Builtin::BI_exception_info:
2487      if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2488                               diag::err_seh___except_filter))
2489        return ExprError();
2490      break;
2491    case Builtin::BI__GetExceptionInfo:
2492      if (checkArgCount(TheCall, 1))
2493        return ExprError();
2494  
2495      if (CheckCXXThrowOperand(
2496              TheCall->getBeginLoc(),
2497              Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2498              TheCall))
2499        return ExprError();
2500  
2501      TheCall->setType(Context.VoidPtrTy);
2502      break;
2503    case Builtin::BIaddressof:
2504    case Builtin::BI__addressof:
2505    case Builtin::BIforward:
2506    case Builtin::BIforward_like:
2507    case Builtin::BImove:
2508    case Builtin::BImove_if_noexcept:
2509    case Builtin::BIas_const: {
2510      // These are all expected to be of the form
2511      //   T &/&&/* f(U &/&&)
2512      // where T and U only differ in qualification.
2513      if (checkArgCount(TheCall, 1))
2514        return ExprError();
2515      QualType Param = FDecl->getParamDecl(0)->getType();
2516      QualType Result = FDecl->getReturnType();
2517      bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2518                            BuiltinID == Builtin::BI__addressof;
2519      if (!(Param->isReferenceType() &&
2520            (ReturnsPointer ? Result->isAnyPointerType()
2521                            : Result->isReferenceType()) &&
2522            Context.hasSameUnqualifiedType(Param->getPointeeType(),
2523                                           Result->getPointeeType()))) {
2524        Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2525            << FDecl;
2526        return ExprError();
2527      }
2528      break;
2529    }
2530    case Builtin::BI__builtin_ptrauth_strip:
2531      return PointerAuthStrip(*this, TheCall);
2532    case Builtin::BI__builtin_ptrauth_blend_discriminator:
2533      return PointerAuthBlendDiscriminator(*this, TheCall);
2534    case Builtin::BI__builtin_ptrauth_sign_constant:
2535      return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2536                                   /*RequireConstant=*/true);
2537    case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
2538      return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2539                                   /*RequireConstant=*/false);
2540    case Builtin::BI__builtin_ptrauth_auth:
2541      return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth,
2542                                   /*RequireConstant=*/false);
2543    case Builtin::BI__builtin_ptrauth_sign_generic_data:
2544      return PointerAuthSignGenericData(*this, TheCall);
2545    case Builtin::BI__builtin_ptrauth_auth_and_resign:
2546      return PointerAuthAuthAndResign(*this, TheCall);
2547    case Builtin::BI__builtin_ptrauth_string_discriminator:
2548      return PointerAuthStringDiscriminator(*this, TheCall);
2549    // OpenCL v2.0, s6.13.16 - Pipe functions
2550    case Builtin::BIread_pipe:
2551    case Builtin::BIwrite_pipe:
2552      // Since those two functions are declared with var args, we need a semantic
2553      // check for the argument.
2554      if (OpenCL().checkBuiltinRWPipe(TheCall))
2555        return ExprError();
2556      break;
2557    case Builtin::BIreserve_read_pipe:
2558    case Builtin::BIreserve_write_pipe:
2559    case Builtin::BIwork_group_reserve_read_pipe:
2560    case Builtin::BIwork_group_reserve_write_pipe:
2561      if (OpenCL().checkBuiltinReserveRWPipe(TheCall))
2562        return ExprError();
2563      break;
2564    case Builtin::BIsub_group_reserve_read_pipe:
2565    case Builtin::BIsub_group_reserve_write_pipe:
2566      if (OpenCL().checkSubgroupExt(TheCall) ||
2567          OpenCL().checkBuiltinReserveRWPipe(TheCall))
2568        return ExprError();
2569      break;
2570    case Builtin::BIcommit_read_pipe:
2571    case Builtin::BIcommit_write_pipe:
2572    case Builtin::BIwork_group_commit_read_pipe:
2573    case Builtin::BIwork_group_commit_write_pipe:
2574      if (OpenCL().checkBuiltinCommitRWPipe(TheCall))
2575        return ExprError();
2576      break;
2577    case Builtin::BIsub_group_commit_read_pipe:
2578    case Builtin::BIsub_group_commit_write_pipe:
2579      if (OpenCL().checkSubgroupExt(TheCall) ||
2580          OpenCL().checkBuiltinCommitRWPipe(TheCall))
2581        return ExprError();
2582      break;
2583    case Builtin::BIget_pipe_num_packets:
2584    case Builtin::BIget_pipe_max_packets:
2585      if (OpenCL().checkBuiltinPipePackets(TheCall))
2586        return ExprError();
2587      break;
2588    case Builtin::BIto_global:
2589    case Builtin::BIto_local:
2590    case Builtin::BIto_private:
2591      if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall))
2592        return ExprError();
2593      break;
2594    // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2595    case Builtin::BIenqueue_kernel:
2596      if (OpenCL().checkBuiltinEnqueueKernel(TheCall))
2597        return ExprError();
2598      break;
2599    case Builtin::BIget_kernel_work_group_size:
2600    case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2601      if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall))
2602        return ExprError();
2603      break;
2604    case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2605    case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2606      if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall))
2607        return ExprError();
2608      break;
2609    case Builtin::BI__builtin_os_log_format:
2610      Cleanup.setExprNeedsCleanups(true);
2611      [[fallthrough]];
2612    case Builtin::BI__builtin_os_log_format_buffer_size:
2613      if (BuiltinOSLogFormat(TheCall))
2614        return ExprError();
2615      break;
2616    case Builtin::BI__builtin_frame_address:
2617    case Builtin::BI__builtin_return_address: {
2618      if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2619        return ExprError();
2620  
2621      // -Wframe-address warning if non-zero passed to builtin
2622      // return/frame address.
2623      Expr::EvalResult Result;
2624      if (!TheCall->getArg(0)->isValueDependent() &&
2625          TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2626          Result.Val.getInt() != 0)
2627        Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2628            << ((BuiltinID == Builtin::BI__builtin_return_address)
2629                    ? "__builtin_return_address"
2630                    : "__builtin_frame_address")
2631            << TheCall->getSourceRange();
2632      break;
2633    }
2634  
2635    case Builtin::BI__builtin_nondeterministic_value: {
2636      if (BuiltinNonDeterministicValue(TheCall))
2637        return ExprError();
2638      break;
2639    }
2640  
2641    // __builtin_elementwise_abs restricts the element type to signed integers or
2642    // floating point types only.
2643    case Builtin::BI__builtin_elementwise_abs: {
2644      if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2645        return ExprError();
2646  
2647      QualType ArgTy = TheCall->getArg(0)->getType();
2648      QualType EltTy = ArgTy;
2649  
2650      if (auto *VecTy = EltTy->getAs<VectorType>())
2651        EltTy = VecTy->getElementType();
2652      if (EltTy->isUnsignedIntegerType()) {
2653        Diag(TheCall->getArg(0)->getBeginLoc(),
2654             diag::err_builtin_invalid_arg_type)
2655            << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2656        return ExprError();
2657      }
2658      break;
2659    }
2660  
2661    // These builtins restrict the element type to floating point
2662    // types only.
2663    case Builtin::BI__builtin_elementwise_acos:
2664    case Builtin::BI__builtin_elementwise_asin:
2665    case Builtin::BI__builtin_elementwise_atan:
2666    case Builtin::BI__builtin_elementwise_ceil:
2667    case Builtin::BI__builtin_elementwise_cos:
2668    case Builtin::BI__builtin_elementwise_cosh:
2669    case Builtin::BI__builtin_elementwise_exp:
2670    case Builtin::BI__builtin_elementwise_exp2:
2671    case Builtin::BI__builtin_elementwise_floor:
2672    case Builtin::BI__builtin_elementwise_log:
2673    case Builtin::BI__builtin_elementwise_log2:
2674    case Builtin::BI__builtin_elementwise_log10:
2675    case Builtin::BI__builtin_elementwise_roundeven:
2676    case Builtin::BI__builtin_elementwise_round:
2677    case Builtin::BI__builtin_elementwise_rint:
2678    case Builtin::BI__builtin_elementwise_nearbyint:
2679    case Builtin::BI__builtin_elementwise_sin:
2680    case Builtin::BI__builtin_elementwise_sinh:
2681    case Builtin::BI__builtin_elementwise_sqrt:
2682    case Builtin::BI__builtin_elementwise_tan:
2683    case Builtin::BI__builtin_elementwise_tanh:
2684    case Builtin::BI__builtin_elementwise_trunc:
2685    case Builtin::BI__builtin_elementwise_canonicalize: {
2686      if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2687        return ExprError();
2688  
2689      QualType ArgTy = TheCall->getArg(0)->getType();
2690      if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2691                                        ArgTy, 1))
2692        return ExprError();
2693      break;
2694    }
2695    case Builtin::BI__builtin_elementwise_fma: {
2696      if (BuiltinElementwiseTernaryMath(TheCall))
2697        return ExprError();
2698      break;
2699    }
2700  
2701    // These builtins restrict the element type to floating point
2702    // types only, and take in two arguments.
2703    case Builtin::BI__builtin_elementwise_pow: {
2704      if (BuiltinElementwiseMath(TheCall))
2705        return ExprError();
2706  
2707      QualType ArgTy = TheCall->getArg(0)->getType();
2708      if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2709                                        ArgTy, 1) ||
2710          checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2711                                        ArgTy, 2))
2712        return ExprError();
2713      break;
2714    }
2715  
2716    // These builtins restrict the element type to integer
2717    // types only.
2718    case Builtin::BI__builtin_elementwise_add_sat:
2719    case Builtin::BI__builtin_elementwise_sub_sat: {
2720      if (BuiltinElementwiseMath(TheCall))
2721        return ExprError();
2722  
2723      const Expr *Arg = TheCall->getArg(0);
2724      QualType ArgTy = Arg->getType();
2725      QualType EltTy = ArgTy;
2726  
2727      if (auto *VecTy = EltTy->getAs<VectorType>())
2728        EltTy = VecTy->getElementType();
2729  
2730      if (!EltTy->isIntegerType()) {
2731        Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2732            << 1 << /* integer ty */ 6 << ArgTy;
2733        return ExprError();
2734      }
2735      break;
2736    }
2737  
2738    case Builtin::BI__builtin_elementwise_min:
2739    case Builtin::BI__builtin_elementwise_max:
2740      if (BuiltinElementwiseMath(TheCall))
2741        return ExprError();
2742      break;
2743  
2744    case Builtin::BI__builtin_elementwise_bitreverse: {
2745      if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2746        return ExprError();
2747  
2748      const Expr *Arg = TheCall->getArg(0);
2749      QualType ArgTy = Arg->getType();
2750      QualType EltTy = ArgTy;
2751  
2752      if (auto *VecTy = EltTy->getAs<VectorType>())
2753        EltTy = VecTy->getElementType();
2754  
2755      if (!EltTy->isIntegerType()) {
2756        Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2757            << 1 << /* integer ty */ 6 << ArgTy;
2758        return ExprError();
2759      }
2760      break;
2761    }
2762  
2763    case Builtin::BI__builtin_elementwise_copysign: {
2764      if (checkArgCount(TheCall, 2))
2765        return ExprError();
2766  
2767      ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
2768      ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
2769      if (Magnitude.isInvalid() || Sign.isInvalid())
2770        return ExprError();
2771  
2772      QualType MagnitudeTy = Magnitude.get()->getType();
2773      QualType SignTy = Sign.get()->getType();
2774      if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2775                                        MagnitudeTy, 1) ||
2776          checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2777                                        SignTy, 2)) {
2778        return ExprError();
2779      }
2780  
2781      if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
2782        return Diag(Sign.get()->getBeginLoc(),
2783                    diag::err_typecheck_call_different_arg_types)
2784               << MagnitudeTy << SignTy;
2785      }
2786  
2787      TheCall->setArg(0, Magnitude.get());
2788      TheCall->setArg(1, Sign.get());
2789      TheCall->setType(Magnitude.get()->getType());
2790      break;
2791    }
2792    case Builtin::BI__builtin_reduce_max:
2793    case Builtin::BI__builtin_reduce_min: {
2794      if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2795        return ExprError();
2796  
2797      const Expr *Arg = TheCall->getArg(0);
2798      const auto *TyA = Arg->getType()->getAs<VectorType>();
2799  
2800      QualType ElTy;
2801      if (TyA)
2802        ElTy = TyA->getElementType();
2803      else if (Arg->getType()->isSizelessVectorType())
2804        ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2805  
2806      if (ElTy.isNull()) {
2807        Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2808            << 1 << /* vector ty*/ 4 << Arg->getType();
2809        return ExprError();
2810      }
2811  
2812      TheCall->setType(ElTy);
2813      break;
2814    }
2815  
2816    // These builtins support vectors of integers only.
2817    // TODO: ADD/MUL should support floating-point types.
2818    case Builtin::BI__builtin_reduce_add:
2819    case Builtin::BI__builtin_reduce_mul:
2820    case Builtin::BI__builtin_reduce_xor:
2821    case Builtin::BI__builtin_reduce_or:
2822    case Builtin::BI__builtin_reduce_and: {
2823      if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2824        return ExprError();
2825  
2826      const Expr *Arg = TheCall->getArg(0);
2827      const auto *TyA = Arg->getType()->getAs<VectorType>();
2828  
2829      QualType ElTy;
2830      if (TyA)
2831        ElTy = TyA->getElementType();
2832      else if (Arg->getType()->isSizelessVectorType())
2833        ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2834  
2835      if (ElTy.isNull() || !ElTy->isIntegerType()) {
2836        Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2837            << 1  << /* vector of integers */ 6 << Arg->getType();
2838        return ExprError();
2839      }
2840  
2841      TheCall->setType(ElTy);
2842      break;
2843    }
2844  
2845    case Builtin::BI__builtin_matrix_transpose:
2846      return BuiltinMatrixTranspose(TheCall, TheCallResult);
2847  
2848    case Builtin::BI__builtin_matrix_column_major_load:
2849      return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2850  
2851    case Builtin::BI__builtin_matrix_column_major_store:
2852      return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2853  
2854    case Builtin::BI__builtin_verbose_trap:
2855      if (!checkBuiltinVerboseTrap(TheCall, *this))
2856        return ExprError();
2857      break;
2858  
2859    case Builtin::BI__builtin_get_device_side_mangled_name: {
2860      auto Check = [](CallExpr *TheCall) {
2861        if (TheCall->getNumArgs() != 1)
2862          return false;
2863        auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2864        if (!DRE)
2865          return false;
2866        auto *D = DRE->getDecl();
2867        if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2868          return false;
2869        return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2870               D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2871      };
2872      if (!Check(TheCall)) {
2873        Diag(TheCall->getBeginLoc(),
2874             diag::err_hip_invalid_args_builtin_mangled_name);
2875        return ExprError();
2876      }
2877      break;
2878    }
2879    case Builtin::BI__builtin_popcountg:
2880      if (BuiltinPopcountg(*this, TheCall))
2881        return ExprError();
2882      break;
2883    case Builtin::BI__builtin_clzg:
2884    case Builtin::BI__builtin_ctzg:
2885      if (BuiltinCountZeroBitsGeneric(*this, TheCall))
2886        return ExprError();
2887      break;
2888  
2889    case Builtin::BI__builtin_allow_runtime_check: {
2890      Expr *Arg = TheCall->getArg(0);
2891      // Check if the argument is a string literal.
2892      if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) {
2893        Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
2894            << Arg->getSourceRange();
2895        return ExprError();
2896      }
2897      break;
2898    }
2899    }
2900  
2901    if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall))
2902      return ExprError();
2903  
2904    // Since the target specific builtins for each arch overlap, only check those
2905    // of the arch we are compiling for.
2906    if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2907      if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2908        assert(Context.getAuxTargetInfo() &&
2909               "Aux Target Builtin, but not an aux target?");
2910  
2911        if (CheckTSBuiltinFunctionCall(
2912                *Context.getAuxTargetInfo(),
2913                Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2914          return ExprError();
2915      } else {
2916        if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2917                                       TheCall))
2918          return ExprError();
2919      }
2920    }
2921  
2922    return TheCallResult;
2923  }
2924  
ValueIsRunOfOnes(CallExpr * TheCall,unsigned ArgNum)2925  bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
2926    llvm::APSInt Result;
2927    // We can't check the value of a dependent argument.
2928    Expr *Arg = TheCall->getArg(ArgNum);
2929    if (Arg->isTypeDependent() || Arg->isValueDependent())
2930      return false;
2931  
2932    // Check constant-ness first.
2933    if (BuiltinConstantArg(TheCall, ArgNum, Result))
2934      return true;
2935  
2936    // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
2937    if (Result.isShiftedMask() || (~Result).isShiftedMask())
2938      return false;
2939  
2940    return Diag(TheCall->getBeginLoc(),
2941                diag::err_argument_not_contiguous_bit_field)
2942           << ArgNum << Arg->getSourceRange();
2943  }
2944  
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,bool IsVariadic,FormatStringInfo * FSI)2945  bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
2946                                 bool IsVariadic, FormatStringInfo *FSI) {
2947    if (Format->getFirstArg() == 0)
2948      FSI->ArgPassingKind = FAPK_VAList;
2949    else if (IsVariadic)
2950      FSI->ArgPassingKind = FAPK_Variadic;
2951    else
2952      FSI->ArgPassingKind = FAPK_Fixed;
2953    FSI->FormatIdx = Format->getFormatIdx() - 1;
2954    FSI->FirstDataArg =
2955        FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
2956  
2957    // The way the format attribute works in GCC, the implicit this argument
2958    // of member functions is counted. However, it doesn't appear in our own
2959    // lists, so decrement format_idx in that case.
2960    if (IsCXXMember) {
2961      if(FSI->FormatIdx == 0)
2962        return false;
2963      --FSI->FormatIdx;
2964      if (FSI->FirstDataArg != 0)
2965        --FSI->FirstDataArg;
2966    }
2967    return true;
2968  }
2969  
2970  /// Checks if a the given expression evaluates to null.
2971  ///
2972  /// Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)2973  static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
2974    // Treat (smart) pointers constructed from nullptr as null, whether we can
2975    // const-evaluate them or not.
2976    // This must happen first: the smart pointer expr might have _Nonnull type!
2977    if (isa<CXXNullPtrLiteralExpr>(
2978            IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep,
2979                            IgnoreElidableImplicitConstructorSingleStep)))
2980      return true;
2981  
2982    // If the expression has non-null type, it doesn't evaluate to null.
2983    if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
2984      if (*nullability == NullabilityKind::NonNull)
2985        return false;
2986    }
2987  
2988    // As a special case, transparent unions initialized with zero are
2989    // considered null for the purposes of the nonnull attribute.
2990    if (const RecordType *UT = Expr->getType()->getAsUnionType();
2991        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
2992      if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Expr))
2993        if (const auto *ILE = dyn_cast<InitListExpr>(CLE->getInitializer()))
2994          Expr = ILE->getInit(0);
2995    }
2996  
2997    bool Result;
2998    return (!Expr->isValueDependent() &&
2999            Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
3000            !Result);
3001  }
3002  
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)3003  static void CheckNonNullArgument(Sema &S,
3004                                   const Expr *ArgExpr,
3005                                   SourceLocation CallSiteLoc) {
3006    if (CheckNonNullExpr(S, ArgExpr))
3007      S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
3008                            S.PDiag(diag::warn_null_arg)
3009                                << ArgExpr->getSourceRange());
3010  }
3011  
3012  /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(QualType type)3013  static bool isNonNullType(QualType type) {
3014    if (auto nullability = type->getNullability())
3015      return *nullability == NullabilityKind::NonNull;
3016  
3017    return false;
3018  }
3019  
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)3020  static void CheckNonNullArguments(Sema &S,
3021                                    const NamedDecl *FDecl,
3022                                    const FunctionProtoType *Proto,
3023                                    ArrayRef<const Expr *> Args,
3024                                    SourceLocation CallSiteLoc) {
3025    assert((FDecl || Proto) && "Need a function declaration or prototype");
3026  
3027    // Already checked by constant evaluator.
3028    if (S.isConstantEvaluatedContext())
3029      return;
3030    // Check the attributes attached to the method/function itself.
3031    llvm::SmallBitVector NonNullArgs;
3032    if (FDecl) {
3033      // Handle the nonnull attribute on the function/method declaration itself.
3034      for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
3035        if (!NonNull->args_size()) {
3036          // Easy case: all pointer arguments are nonnull.
3037          for (const auto *Arg : Args)
3038            if (S.isValidPointerAttrType(Arg->getType()))
3039              CheckNonNullArgument(S, Arg, CallSiteLoc);
3040          return;
3041        }
3042  
3043        for (const ParamIdx &Idx : NonNull->args()) {
3044          unsigned IdxAST = Idx.getASTIndex();
3045          if (IdxAST >= Args.size())
3046            continue;
3047          if (NonNullArgs.empty())
3048            NonNullArgs.resize(Args.size());
3049          NonNullArgs.set(IdxAST);
3050        }
3051      }
3052    }
3053  
3054    if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
3055      // Handle the nonnull attribute on the parameters of the
3056      // function/method.
3057      ArrayRef<ParmVarDecl*> parms;
3058      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
3059        parms = FD->parameters();
3060      else
3061        parms = cast<ObjCMethodDecl>(FDecl)->parameters();
3062  
3063      unsigned ParamIndex = 0;
3064      for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
3065           I != E; ++I, ++ParamIndex) {
3066        const ParmVarDecl *PVD = *I;
3067        if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
3068          if (NonNullArgs.empty())
3069            NonNullArgs.resize(Args.size());
3070  
3071          NonNullArgs.set(ParamIndex);
3072        }
3073      }
3074    } else {
3075      // If we have a non-function, non-method declaration but no
3076      // function prototype, try to dig out the function prototype.
3077      if (!Proto) {
3078        if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
3079          QualType type = VD->getType().getNonReferenceType();
3080          if (auto pointerType = type->getAs<PointerType>())
3081            type = pointerType->getPointeeType();
3082          else if (auto blockType = type->getAs<BlockPointerType>())
3083            type = blockType->getPointeeType();
3084          // FIXME: data member pointers?
3085  
3086          // Dig out the function prototype, if there is one.
3087          Proto = type->getAs<FunctionProtoType>();
3088        }
3089      }
3090  
3091      // Fill in non-null argument information from the nullability
3092      // information on the parameter types (if we have them).
3093      if (Proto) {
3094        unsigned Index = 0;
3095        for (auto paramType : Proto->getParamTypes()) {
3096          if (isNonNullType(paramType)) {
3097            if (NonNullArgs.empty())
3098              NonNullArgs.resize(Args.size());
3099  
3100            NonNullArgs.set(Index);
3101          }
3102  
3103          ++Index;
3104        }
3105      }
3106    }
3107  
3108    // Check for non-null arguments.
3109    for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
3110         ArgIndex != ArgIndexEnd; ++ArgIndex) {
3111      if (NonNullArgs[ArgIndex])
3112        CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
3113    }
3114  }
3115  
CheckArgAlignment(SourceLocation Loc,NamedDecl * FDecl,StringRef ParamName,QualType ArgTy,QualType ParamTy)3116  void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
3117                               StringRef ParamName, QualType ArgTy,
3118                               QualType ParamTy) {
3119  
3120    // If a function accepts a pointer or reference type
3121    if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
3122      return;
3123  
3124    // If the parameter is a pointer type, get the pointee type for the
3125    // argument too. If the parameter is a reference type, don't try to get
3126    // the pointee type for the argument.
3127    if (ParamTy->isPointerType())
3128      ArgTy = ArgTy->getPointeeType();
3129  
3130    // Remove reference or pointer
3131    ParamTy = ParamTy->getPointeeType();
3132  
3133    // Find expected alignment, and the actual alignment of the passed object.
3134    // getTypeAlignInChars requires complete types
3135    if (ArgTy.isNull() || ParamTy->isDependentType() ||
3136        ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
3137        ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
3138      return;
3139  
3140    CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
3141    CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
3142  
3143    // If the argument is less aligned than the parameter, there is a
3144    // potential alignment issue.
3145    if (ArgAlign < ParamAlign)
3146      Diag(Loc, diag::warn_param_mismatched_alignment)
3147          << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
3148          << ParamName << (FDecl != nullptr) << FDecl;
3149  }
3150  
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,const Expr * ThisArg,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)3151  void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
3152                       const Expr *ThisArg, ArrayRef<const Expr *> Args,
3153                       bool IsMemberFunction, SourceLocation Loc,
3154                       SourceRange Range, VariadicCallType CallType) {
3155    // FIXME: We should check as much as we can in the template definition.
3156    if (CurContext->isDependentContext())
3157      return;
3158  
3159    // Printf and scanf checking.
3160    llvm::SmallBitVector CheckedVarArgs;
3161    if (FDecl) {
3162      for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
3163        // Only create vector if there are format attributes.
3164        CheckedVarArgs.resize(Args.size());
3165  
3166        CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
3167                             CheckedVarArgs);
3168      }
3169    }
3170  
3171    // Refuse POD arguments that weren't caught by the format string
3172    // checks above.
3173    auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
3174    if (CallType != VariadicDoesNotApply &&
3175        (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
3176      unsigned NumParams = Proto ? Proto->getNumParams()
3177                           : isa_and_nonnull<FunctionDecl>(FDecl)
3178                               ? cast<FunctionDecl>(FDecl)->getNumParams()
3179                           : isa_and_nonnull<ObjCMethodDecl>(FDecl)
3180                               ? cast<ObjCMethodDecl>(FDecl)->param_size()
3181                               : 0;
3182  
3183      for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
3184        // Args[ArgIdx] can be null in malformed code.
3185        if (const Expr *Arg = Args[ArgIdx]) {
3186          if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
3187            checkVariadicArgument(Arg, CallType);
3188        }
3189      }
3190    }
3191  
3192    if (FDecl || Proto) {
3193      CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
3194  
3195      // Type safety checking.
3196      if (FDecl) {
3197        for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
3198          CheckArgumentWithTypeTag(I, Args, Loc);
3199      }
3200    }
3201  
3202    // Check that passed arguments match the alignment of original arguments.
3203    // Try to get the missing prototype from the declaration.
3204    if (!Proto && FDecl) {
3205      const auto *FT = FDecl->getFunctionType();
3206      if (isa_and_nonnull<FunctionProtoType>(FT))
3207        Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
3208    }
3209    if (Proto) {
3210      // For variadic functions, we may have more args than parameters.
3211      // For some K&R functions, we may have less args than parameters.
3212      const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
3213      bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType();
3214      bool IsScalableArg = false;
3215      for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
3216        // Args[ArgIdx] can be null in malformed code.
3217        if (const Expr *Arg = Args[ArgIdx]) {
3218          if (Arg->containsErrors())
3219            continue;
3220  
3221          if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
3222              FDecl->hasLinkage() &&
3223              FDecl->getFormalLinkage() != Linkage::Internal &&
3224              CallType == VariadicDoesNotApply)
3225            PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
3226  
3227          QualType ParamTy = Proto->getParamType(ArgIdx);
3228          if (ParamTy->isSizelessVectorType())
3229            IsScalableArg = true;
3230          QualType ArgTy = Arg->getType();
3231          CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
3232                            ArgTy, ParamTy);
3233        }
3234      }
3235  
3236      // If the callee has an AArch64 SME attribute to indicate that it is an
3237      // __arm_streaming function, then the caller requires SME to be available.
3238      FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
3239      if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
3240        if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
3241          llvm::StringMap<bool> CallerFeatureMap;
3242          Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
3243          if (!CallerFeatureMap.contains("sme"))
3244            Diag(Loc, diag::err_sme_call_in_non_sme_target);
3245        } else if (!Context.getTargetInfo().hasFeature("sme")) {
3246          Diag(Loc, diag::err_sme_call_in_non_sme_target);
3247        }
3248      }
3249  
3250      // If the call requires a streaming-mode change and has scalable vector
3251      // arguments or return values, then warn the user that the streaming and
3252      // non-streaming vector lengths may be different.
3253      const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext);
3254      if (CallerFD && (!FD || !FD->getBuiltinID()) &&
3255          (IsScalableArg || IsScalableRet)) {
3256        bool IsCalleeStreaming =
3257            ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
3258        bool IsCalleeStreamingCompatible =
3259            ExtInfo.AArch64SMEAttributes &
3260            FunctionType::SME_PStateSMCompatibleMask;
3261        SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD);
3262        if (!IsCalleeStreamingCompatible &&
3263            (CallerFnType == SemaARM::ArmStreamingCompatible ||
3264             ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) {
3265          if (IsScalableArg)
3266            Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3267                << /*IsArg=*/true;
3268          if (IsScalableRet)
3269            Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3270                << /*IsArg=*/false;
3271        }
3272      }
3273  
3274      FunctionType::ArmStateValue CalleeArmZAState =
3275          FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
3276      FunctionType::ArmStateValue CalleeArmZT0State =
3277          FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes);
3278      if (CalleeArmZAState != FunctionType::ARM_None ||
3279          CalleeArmZT0State != FunctionType::ARM_None) {
3280        bool CallerHasZAState = false;
3281        bool CallerHasZT0State = false;
3282        if (CallerFD) {
3283          auto *Attr = CallerFD->getAttr<ArmNewAttr>();
3284          if (Attr && Attr->isNewZA())
3285            CallerHasZAState = true;
3286          if (Attr && Attr->isNewZT0())
3287            CallerHasZT0State = true;
3288          if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) {
3289            CallerHasZAState |=
3290                FunctionType::getArmZAState(
3291                    FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3292                FunctionType::ARM_None;
3293            CallerHasZT0State |=
3294                FunctionType::getArmZT0State(
3295                    FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3296                FunctionType::ARM_None;
3297          }
3298        }
3299  
3300        if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState)
3301          Diag(Loc, diag::err_sme_za_call_no_za_state);
3302  
3303        if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State)
3304          Diag(Loc, diag::err_sme_zt0_call_no_zt0_state);
3305  
3306        if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None &&
3307            CalleeArmZT0State != FunctionType::ARM_None) {
3308          Diag(Loc, diag::err_sme_unimplemented_za_save_restore);
3309          Diag(Loc, diag::note_sme_use_preserves_za);
3310        }
3311      }
3312    }
3313  
3314    if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
3315      auto *AA = FDecl->getAttr<AllocAlignAttr>();
3316      const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
3317      if (!Arg->isValueDependent()) {
3318        Expr::EvalResult Align;
3319        if (Arg->EvaluateAsInt(Align, Context)) {
3320          const llvm::APSInt &I = Align.Val.getInt();
3321          if (!I.isPowerOf2())
3322            Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
3323                << Arg->getSourceRange();
3324  
3325          if (I > Sema::MaximumAlignment)
3326            Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
3327                << Arg->getSourceRange() << Sema::MaximumAlignment;
3328        }
3329      }
3330    }
3331  
3332    if (FD)
3333      diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
3334  }
3335  
CheckConstrainedAuto(const AutoType * AutoT,SourceLocation Loc)3336  void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) {
3337    if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) {
3338      DiagnoseUseOfDecl(Decl, Loc);
3339    }
3340  }
3341  
CheckConstructorCall(FunctionDecl * FDecl,QualType ThisType,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)3342  void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
3343                                  ArrayRef<const Expr *> Args,
3344                                  const FunctionProtoType *Proto,
3345                                  SourceLocation Loc) {
3346    VariadicCallType CallType =
3347        Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3348  
3349    auto *Ctor = cast<CXXConstructorDecl>(FDecl);
3350    CheckArgAlignment(
3351        Loc, FDecl, "'this'", Context.getPointerType(ThisType),
3352        Context.getPointerType(Ctor->getFunctionObjectParameterType()));
3353  
3354    checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
3355              Loc, SourceRange(), CallType);
3356  }
3357  
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)3358  bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
3359                               const FunctionProtoType *Proto) {
3360    bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
3361                                isa<CXXMethodDecl>(FDecl);
3362    bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
3363                            IsMemberOperatorCall;
3364    VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
3365                                                    TheCall->getCallee());
3366    Expr** Args = TheCall->getArgs();
3367    unsigned NumArgs = TheCall->getNumArgs();
3368  
3369    Expr *ImplicitThis = nullptr;
3370    if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) {
3371      // If this is a call to a member operator, hide the first
3372      // argument from checkCall.
3373      // FIXME: Our choice of AST representation here is less than ideal.
3374      ImplicitThis = Args[0];
3375      ++Args;
3376      --NumArgs;
3377    } else if (IsMemberFunction && !FDecl->isStatic() &&
3378               !FDecl->hasCXXExplicitFunctionObjectParameter())
3379      ImplicitThis =
3380          cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
3381  
3382    if (ImplicitThis) {
3383      // ImplicitThis may or may not be a pointer, depending on whether . or -> is
3384      // used.
3385      QualType ThisType = ImplicitThis->getType();
3386      if (!ThisType->isPointerType()) {
3387        assert(!ThisType->isReferenceType());
3388        ThisType = Context.getPointerType(ThisType);
3389      }
3390  
3391      QualType ThisTypeFromDecl = Context.getPointerType(
3392          cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
3393  
3394      CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
3395                        ThisTypeFromDecl);
3396    }
3397  
3398    checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
3399              IsMemberFunction, TheCall->getRParenLoc(),
3400              TheCall->getCallee()->getSourceRange(), CallType);
3401  
3402    IdentifierInfo *FnInfo = FDecl->getIdentifier();
3403    // None of the checks below are needed for functions that don't have
3404    // simple names (e.g., C++ conversion functions).
3405    if (!FnInfo)
3406      return false;
3407  
3408    // Enforce TCB except for builtin calls, which are always allowed.
3409    if (FDecl->getBuiltinID() == 0)
3410      CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
3411  
3412    CheckAbsoluteValueFunction(TheCall, FDecl);
3413    CheckMaxUnsignedZero(TheCall, FDecl);
3414    CheckInfNaNFunction(TheCall, FDecl);
3415  
3416    if (getLangOpts().ObjC)
3417      ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs);
3418  
3419    unsigned CMId = FDecl->getMemoryFunctionKind();
3420  
3421    // Handle memory setting and copying functions.
3422    switch (CMId) {
3423    case 0:
3424      return false;
3425    case Builtin::BIstrlcpy: // fallthrough
3426    case Builtin::BIstrlcat:
3427      CheckStrlcpycatArguments(TheCall, FnInfo);
3428      break;
3429    case Builtin::BIstrncat:
3430      CheckStrncatArguments(TheCall, FnInfo);
3431      break;
3432    case Builtin::BIfree:
3433      CheckFreeArguments(TheCall);
3434      break;
3435    default:
3436      CheckMemaccessArguments(TheCall, CMId, FnInfo);
3437    }
3438  
3439    return false;
3440  }
3441  
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)3442  bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
3443                              const FunctionProtoType *Proto) {
3444    QualType Ty;
3445    if (const auto *V = dyn_cast<VarDecl>(NDecl))
3446      Ty = V->getType().getNonReferenceType();
3447    else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
3448      Ty = F->getType().getNonReferenceType();
3449    else
3450      return false;
3451  
3452    if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
3453        !Ty->isFunctionProtoType())
3454      return false;
3455  
3456    VariadicCallType CallType;
3457    if (!Proto || !Proto->isVariadic()) {
3458      CallType = VariadicDoesNotApply;
3459    } else if (Ty->isBlockPointerType()) {
3460      CallType = VariadicBlock;
3461    } else { // Ty->isFunctionPointerType()
3462      CallType = VariadicFunction;
3463    }
3464  
3465    checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
3466              llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3467              /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3468              TheCall->getCallee()->getSourceRange(), CallType);
3469  
3470    return false;
3471  }
3472  
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)3473  bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
3474    VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
3475                                                    TheCall->getCallee());
3476    checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
3477              llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3478              /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3479              TheCall->getCallee()->getSourceRange(), CallType);
3480  
3481    return false;
3482  }
3483  
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)3484  static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
3485    if (!llvm::isValidAtomicOrderingCABI(Ordering))
3486      return false;
3487  
3488    auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
3489    switch (Op) {
3490    case AtomicExpr::AO__c11_atomic_init:
3491    case AtomicExpr::AO__opencl_atomic_init:
3492      llvm_unreachable("There is no ordering argument for an init");
3493  
3494    case AtomicExpr::AO__c11_atomic_load:
3495    case AtomicExpr::AO__opencl_atomic_load:
3496    case AtomicExpr::AO__hip_atomic_load:
3497    case AtomicExpr::AO__atomic_load_n:
3498    case AtomicExpr::AO__atomic_load:
3499    case AtomicExpr::AO__scoped_atomic_load_n:
3500    case AtomicExpr::AO__scoped_atomic_load:
3501      return OrderingCABI != llvm::AtomicOrderingCABI::release &&
3502             OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3503  
3504    case AtomicExpr::AO__c11_atomic_store:
3505    case AtomicExpr::AO__opencl_atomic_store:
3506    case AtomicExpr::AO__hip_atomic_store:
3507    case AtomicExpr::AO__atomic_store:
3508    case AtomicExpr::AO__atomic_store_n:
3509    case AtomicExpr::AO__scoped_atomic_store:
3510    case AtomicExpr::AO__scoped_atomic_store_n:
3511      return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
3512             OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
3513             OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3514  
3515    default:
3516      return true;
3517    }
3518  }
3519  
AtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)3520  ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult,
3521                                       AtomicExpr::AtomicOp Op) {
3522    CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3523    DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3524    MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
3525    return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
3526                           DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
3527                           Op);
3528  }
3529  
BuildAtomicExpr(SourceRange CallRange,SourceRange ExprRange,SourceLocation RParenLoc,MultiExprArg Args,AtomicExpr::AtomicOp Op,AtomicArgumentOrder ArgOrder)3530  ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
3531                                   SourceLocation RParenLoc, MultiExprArg Args,
3532                                   AtomicExpr::AtomicOp Op,
3533                                   AtomicArgumentOrder ArgOrder) {
3534    // All the non-OpenCL operations take one of the following forms.
3535    // The OpenCL operations take the __c11 forms with one extra argument for
3536    // synchronization scope.
3537    enum {
3538      // C    __c11_atomic_init(A *, C)
3539      Init,
3540  
3541      // C    __c11_atomic_load(A *, int)
3542      Load,
3543  
3544      // void __atomic_load(A *, CP, int)
3545      LoadCopy,
3546  
3547      // void __atomic_store(A *, CP, int)
3548      Copy,
3549  
3550      // C    __c11_atomic_add(A *, M, int)
3551      Arithmetic,
3552  
3553      // C    __atomic_exchange_n(A *, CP, int)
3554      Xchg,
3555  
3556      // void __atomic_exchange(A *, C *, CP, int)
3557      GNUXchg,
3558  
3559      // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
3560      C11CmpXchg,
3561  
3562      // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
3563      GNUCmpXchg
3564    } Form = Init;
3565  
3566    const unsigned NumForm = GNUCmpXchg + 1;
3567    const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
3568    const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
3569    // where:
3570    //   C is an appropriate type,
3571    //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
3572    //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
3573    //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
3574    //   the int parameters are for orderings.
3575  
3576    static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
3577        && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
3578        "need to update code for modified forms");
3579    static_assert(AtomicExpr::AO__atomic_add_fetch == 0 &&
3580                      AtomicExpr::AO__atomic_xor_fetch + 1 ==
3581                          AtomicExpr::AO__c11_atomic_compare_exchange_strong,
3582                  "need to update code for modified C11 atomics");
3583    bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong &&
3584                    Op <= AtomicExpr::AO__opencl_atomic_store;
3585    bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong &&
3586                 Op <= AtomicExpr::AO__hip_atomic_store;
3587    bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch &&
3588                    Op <= AtomicExpr::AO__scoped_atomic_xor_fetch;
3589    bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong &&
3590                  Op <= AtomicExpr::AO__c11_atomic_store) ||
3591                 IsOpenCL;
3592    bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
3593               Op == AtomicExpr::AO__atomic_store_n ||
3594               Op == AtomicExpr::AO__atomic_exchange_n ||
3595               Op == AtomicExpr::AO__atomic_compare_exchange_n ||
3596               Op == AtomicExpr::AO__scoped_atomic_load_n ||
3597               Op == AtomicExpr::AO__scoped_atomic_store_n ||
3598               Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
3599               Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
3600    // Bit mask for extra allowed value types other than integers for atomic
3601    // arithmetic operations. Add/sub allow pointer and floating point. Min/max
3602    // allow floating point.
3603    enum ArithOpExtraValueType {
3604      AOEVT_None = 0,
3605      AOEVT_Pointer = 1,
3606      AOEVT_FP = 2,
3607    };
3608    unsigned ArithAllows = AOEVT_None;
3609  
3610    switch (Op) {
3611    case AtomicExpr::AO__c11_atomic_init:
3612    case AtomicExpr::AO__opencl_atomic_init:
3613      Form = Init;
3614      break;
3615  
3616    case AtomicExpr::AO__c11_atomic_load:
3617    case AtomicExpr::AO__opencl_atomic_load:
3618    case AtomicExpr::AO__hip_atomic_load:
3619    case AtomicExpr::AO__atomic_load_n:
3620    case AtomicExpr::AO__scoped_atomic_load_n:
3621      Form = Load;
3622      break;
3623  
3624    case AtomicExpr::AO__atomic_load:
3625    case AtomicExpr::AO__scoped_atomic_load:
3626      Form = LoadCopy;
3627      break;
3628  
3629    case AtomicExpr::AO__c11_atomic_store:
3630    case AtomicExpr::AO__opencl_atomic_store:
3631    case AtomicExpr::AO__hip_atomic_store:
3632    case AtomicExpr::AO__atomic_store:
3633    case AtomicExpr::AO__atomic_store_n:
3634    case AtomicExpr::AO__scoped_atomic_store:
3635    case AtomicExpr::AO__scoped_atomic_store_n:
3636      Form = Copy;
3637      break;
3638    case AtomicExpr::AO__atomic_fetch_add:
3639    case AtomicExpr::AO__atomic_fetch_sub:
3640    case AtomicExpr::AO__atomic_add_fetch:
3641    case AtomicExpr::AO__atomic_sub_fetch:
3642    case AtomicExpr::AO__scoped_atomic_fetch_add:
3643    case AtomicExpr::AO__scoped_atomic_fetch_sub:
3644    case AtomicExpr::AO__scoped_atomic_add_fetch:
3645    case AtomicExpr::AO__scoped_atomic_sub_fetch:
3646    case AtomicExpr::AO__c11_atomic_fetch_add:
3647    case AtomicExpr::AO__c11_atomic_fetch_sub:
3648    case AtomicExpr::AO__opencl_atomic_fetch_add:
3649    case AtomicExpr::AO__opencl_atomic_fetch_sub:
3650    case AtomicExpr::AO__hip_atomic_fetch_add:
3651    case AtomicExpr::AO__hip_atomic_fetch_sub:
3652      ArithAllows = AOEVT_Pointer | AOEVT_FP;
3653      Form = Arithmetic;
3654      break;
3655    case AtomicExpr::AO__atomic_fetch_max:
3656    case AtomicExpr::AO__atomic_fetch_min:
3657    case AtomicExpr::AO__atomic_max_fetch:
3658    case AtomicExpr::AO__atomic_min_fetch:
3659    case AtomicExpr::AO__scoped_atomic_fetch_max:
3660    case AtomicExpr::AO__scoped_atomic_fetch_min:
3661    case AtomicExpr::AO__scoped_atomic_max_fetch:
3662    case AtomicExpr::AO__scoped_atomic_min_fetch:
3663    case AtomicExpr::AO__c11_atomic_fetch_max:
3664    case AtomicExpr::AO__c11_atomic_fetch_min:
3665    case AtomicExpr::AO__opencl_atomic_fetch_max:
3666    case AtomicExpr::AO__opencl_atomic_fetch_min:
3667    case AtomicExpr::AO__hip_atomic_fetch_max:
3668    case AtomicExpr::AO__hip_atomic_fetch_min:
3669      ArithAllows = AOEVT_FP;
3670      Form = Arithmetic;
3671      break;
3672    case AtomicExpr::AO__c11_atomic_fetch_and:
3673    case AtomicExpr::AO__c11_atomic_fetch_or:
3674    case AtomicExpr::AO__c11_atomic_fetch_xor:
3675    case AtomicExpr::AO__hip_atomic_fetch_and:
3676    case AtomicExpr::AO__hip_atomic_fetch_or:
3677    case AtomicExpr::AO__hip_atomic_fetch_xor:
3678    case AtomicExpr::AO__c11_atomic_fetch_nand:
3679    case AtomicExpr::AO__opencl_atomic_fetch_and:
3680    case AtomicExpr::AO__opencl_atomic_fetch_or:
3681    case AtomicExpr::AO__opencl_atomic_fetch_xor:
3682    case AtomicExpr::AO__atomic_fetch_and:
3683    case AtomicExpr::AO__atomic_fetch_or:
3684    case AtomicExpr::AO__atomic_fetch_xor:
3685    case AtomicExpr::AO__atomic_fetch_nand:
3686    case AtomicExpr::AO__atomic_and_fetch:
3687    case AtomicExpr::AO__atomic_or_fetch:
3688    case AtomicExpr::AO__atomic_xor_fetch:
3689    case AtomicExpr::AO__atomic_nand_fetch:
3690    case AtomicExpr::AO__scoped_atomic_fetch_and:
3691    case AtomicExpr::AO__scoped_atomic_fetch_or:
3692    case AtomicExpr::AO__scoped_atomic_fetch_xor:
3693    case AtomicExpr::AO__scoped_atomic_fetch_nand:
3694    case AtomicExpr::AO__scoped_atomic_and_fetch:
3695    case AtomicExpr::AO__scoped_atomic_or_fetch:
3696    case AtomicExpr::AO__scoped_atomic_xor_fetch:
3697    case AtomicExpr::AO__scoped_atomic_nand_fetch:
3698      Form = Arithmetic;
3699      break;
3700  
3701    case AtomicExpr::AO__c11_atomic_exchange:
3702    case AtomicExpr::AO__hip_atomic_exchange:
3703    case AtomicExpr::AO__opencl_atomic_exchange:
3704    case AtomicExpr::AO__atomic_exchange_n:
3705    case AtomicExpr::AO__scoped_atomic_exchange_n:
3706      Form = Xchg;
3707      break;
3708  
3709    case AtomicExpr::AO__atomic_exchange:
3710    case AtomicExpr::AO__scoped_atomic_exchange:
3711      Form = GNUXchg;
3712      break;
3713  
3714    case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3715    case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3716    case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
3717    case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
3718    case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
3719    case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
3720      Form = C11CmpXchg;
3721      break;
3722  
3723    case AtomicExpr::AO__atomic_compare_exchange:
3724    case AtomicExpr::AO__atomic_compare_exchange_n:
3725    case AtomicExpr::AO__scoped_atomic_compare_exchange:
3726    case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
3727      Form = GNUCmpXchg;
3728      break;
3729    }
3730  
3731    unsigned AdjustedNumArgs = NumArgs[Form];
3732    if ((IsOpenCL || IsHIP || IsScoped) &&
3733        Op != AtomicExpr::AO__opencl_atomic_init)
3734      ++AdjustedNumArgs;
3735    // Check we have the right number of arguments.
3736    if (Args.size() < AdjustedNumArgs) {
3737      Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
3738          << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3739          << /*is non object*/ 0 << ExprRange;
3740      return ExprError();
3741    } else if (Args.size() > AdjustedNumArgs) {
3742      Diag(Args[AdjustedNumArgs]->getBeginLoc(),
3743           diag::err_typecheck_call_too_many_args)
3744          << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3745          << /*is non object*/ 0 << ExprRange;
3746      return ExprError();
3747    }
3748  
3749    // Inspect the first argument of the atomic operation.
3750    Expr *Ptr = Args[0];
3751    ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
3752    if (ConvertedPtr.isInvalid())
3753      return ExprError();
3754  
3755    Ptr = ConvertedPtr.get();
3756    const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
3757    if (!pointerType) {
3758      Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3759          << Ptr->getType() << 0 << Ptr->getSourceRange();
3760      return ExprError();
3761    }
3762  
3763    // For a __c11 builtin, this should be a pointer to an _Atomic type.
3764    QualType AtomTy = pointerType->getPointeeType(); // 'A'
3765    QualType ValType = AtomTy; // 'C'
3766    if (IsC11) {
3767      if (!AtomTy->isAtomicType()) {
3768        Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
3769            << Ptr->getType() << Ptr->getSourceRange();
3770        return ExprError();
3771      }
3772      if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
3773          AtomTy.getAddressSpace() == LangAS::opencl_constant) {
3774        Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
3775            << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
3776            << Ptr->getSourceRange();
3777        return ExprError();
3778      }
3779      ValType = AtomTy->castAs<AtomicType>()->getValueType();
3780    } else if (Form != Load && Form != LoadCopy) {
3781      if (ValType.isConstQualified()) {
3782        Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
3783            << Ptr->getType() << Ptr->getSourceRange();
3784        return ExprError();
3785      }
3786    }
3787  
3788    // Pointer to object of size zero is not allowed.
3789    if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy,
3790                            diag::err_incomplete_type))
3791      return ExprError();
3792    if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) {
3793      Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3794          << Ptr->getType() << 1 << Ptr->getSourceRange();
3795      return ExprError();
3796    }
3797  
3798    // For an arithmetic operation, the implied arithmetic must be well-formed.
3799    if (Form == Arithmetic) {
3800      // GCC does not enforce these rules for GNU atomics, but we do to help catch
3801      // trivial type errors.
3802      auto IsAllowedValueType = [&](QualType ValType,
3803                                    unsigned AllowedType) -> bool {
3804        if (ValType->isIntegerType())
3805          return true;
3806        if (ValType->isPointerType())
3807          return AllowedType & AOEVT_Pointer;
3808        if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
3809          return false;
3810        // LLVM Parser does not allow atomicrmw with x86_fp80 type.
3811        if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
3812            &Context.getTargetInfo().getLongDoubleFormat() ==
3813                &llvm::APFloat::x87DoubleExtended())
3814          return false;
3815        return true;
3816      };
3817      if (!IsAllowedValueType(ValType, ArithAllows)) {
3818        auto DID = ArithAllows & AOEVT_FP
3819                       ? (ArithAllows & AOEVT_Pointer
3820                              ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
3821                              : diag::err_atomic_op_needs_atomic_int_or_fp)
3822                       : diag::err_atomic_op_needs_atomic_int;
3823        Diag(ExprRange.getBegin(), DID)
3824            << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3825        return ExprError();
3826      }
3827      if (IsC11 && ValType->isPointerType() &&
3828          RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
3829                              diag::err_incomplete_type)) {
3830        return ExprError();
3831      }
3832    } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
3833      // For __atomic_*_n operations, the value type must be a scalar integral or
3834      // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
3835      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
3836          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3837      return ExprError();
3838    }
3839  
3840    if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
3841        !AtomTy->isScalarType()) {
3842      // For GNU atomics, require a trivially-copyable type. This is not part of
3843      // the GNU atomics specification but we enforce it for consistency with
3844      // other atomics which generally all require a trivially-copyable type. This
3845      // is because atomics just copy bits.
3846      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
3847          << Ptr->getType() << Ptr->getSourceRange();
3848      return ExprError();
3849    }
3850  
3851    switch (ValType.getObjCLifetime()) {
3852    case Qualifiers::OCL_None:
3853    case Qualifiers::OCL_ExplicitNone:
3854      // okay
3855      break;
3856  
3857    case Qualifiers::OCL_Weak:
3858    case Qualifiers::OCL_Strong:
3859    case Qualifiers::OCL_Autoreleasing:
3860      // FIXME: Can this happen? By this point, ValType should be known
3861      // to be trivially copyable.
3862      Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
3863          << ValType << Ptr->getSourceRange();
3864      return ExprError();
3865    }
3866  
3867    // All atomic operations have an overload which takes a pointer to a volatile
3868    // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
3869    // into the result or the other operands. Similarly atomic_load takes a
3870    // pointer to a const 'A'.
3871    ValType.removeLocalVolatile();
3872    ValType.removeLocalConst();
3873    QualType ResultType = ValType;
3874    if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
3875        Form == Init)
3876      ResultType = Context.VoidTy;
3877    else if (Form == C11CmpXchg || Form == GNUCmpXchg)
3878      ResultType = Context.BoolTy;
3879  
3880    // The type of a parameter passed 'by value'. In the GNU atomics, such
3881    // arguments are actually passed as pointers.
3882    QualType ByValType = ValType; // 'CP'
3883    bool IsPassedByAddress = false;
3884    if (!IsC11 && !IsHIP && !IsN) {
3885      ByValType = Ptr->getType();
3886      IsPassedByAddress = true;
3887    }
3888  
3889    SmallVector<Expr *, 5> APIOrderedArgs;
3890    if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
3891      APIOrderedArgs.push_back(Args[0]);
3892      switch (Form) {
3893      case Init:
3894      case Load:
3895        APIOrderedArgs.push_back(Args[1]); // Val1/Order
3896        break;
3897      case LoadCopy:
3898      case Copy:
3899      case Arithmetic:
3900      case Xchg:
3901        APIOrderedArgs.push_back(Args[2]); // Val1
3902        APIOrderedArgs.push_back(Args[1]); // Order
3903        break;
3904      case GNUXchg:
3905        APIOrderedArgs.push_back(Args[2]); // Val1
3906        APIOrderedArgs.push_back(Args[3]); // Val2
3907        APIOrderedArgs.push_back(Args[1]); // Order
3908        break;
3909      case C11CmpXchg:
3910        APIOrderedArgs.push_back(Args[2]); // Val1
3911        APIOrderedArgs.push_back(Args[4]); // Val2
3912        APIOrderedArgs.push_back(Args[1]); // Order
3913        APIOrderedArgs.push_back(Args[3]); // OrderFail
3914        break;
3915      case GNUCmpXchg:
3916        APIOrderedArgs.push_back(Args[2]); // Val1
3917        APIOrderedArgs.push_back(Args[4]); // Val2
3918        APIOrderedArgs.push_back(Args[5]); // Weak
3919        APIOrderedArgs.push_back(Args[1]); // Order
3920        APIOrderedArgs.push_back(Args[3]); // OrderFail
3921        break;
3922      }
3923    } else
3924      APIOrderedArgs.append(Args.begin(), Args.end());
3925  
3926    // The first argument's non-CV pointer type is used to deduce the type of
3927    // subsequent arguments, except for:
3928    //  - weak flag (always converted to bool)
3929    //  - memory order (always converted to int)
3930    //  - scope  (always converted to int)
3931    for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
3932      QualType Ty;
3933      if (i < NumVals[Form] + 1) {
3934        switch (i) {
3935        case 0:
3936          // The first argument is always a pointer. It has a fixed type.
3937          // It is always dereferenced, a nullptr is undefined.
3938          CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
3939          // Nothing else to do: we already know all we want about this pointer.
3940          continue;
3941        case 1:
3942          // The second argument is the non-atomic operand. For arithmetic, this
3943          // is always passed by value, and for a compare_exchange it is always
3944          // passed by address. For the rest, GNU uses by-address and C11 uses
3945          // by-value.
3946          assert(Form != Load);
3947          if (Form == Arithmetic && ValType->isPointerType())
3948            Ty = Context.getPointerDiffType();
3949          else if (Form == Init || Form == Arithmetic)
3950            Ty = ValType;
3951          else if (Form == Copy || Form == Xchg) {
3952            if (IsPassedByAddress) {
3953              // The value pointer is always dereferenced, a nullptr is undefined.
3954              CheckNonNullArgument(*this, APIOrderedArgs[i],
3955                                   ExprRange.getBegin());
3956            }
3957            Ty = ByValType;
3958          } else {
3959            Expr *ValArg = APIOrderedArgs[i];
3960            // The value pointer is always dereferenced, a nullptr is undefined.
3961            CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
3962            LangAS AS = LangAS::Default;
3963            // Keep address space of non-atomic pointer type.
3964            if (const PointerType *PtrTy =
3965                    ValArg->getType()->getAs<PointerType>()) {
3966              AS = PtrTy->getPointeeType().getAddressSpace();
3967            }
3968            Ty = Context.getPointerType(
3969                Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
3970          }
3971          break;
3972        case 2:
3973          // The third argument to compare_exchange / GNU exchange is the desired
3974          // value, either by-value (for the C11 and *_n variant) or as a pointer.
3975          if (IsPassedByAddress)
3976            CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
3977          Ty = ByValType;
3978          break;
3979        case 3:
3980          // The fourth argument to GNU compare_exchange is a 'weak' flag.
3981          Ty = Context.BoolTy;
3982          break;
3983        }
3984      } else {
3985        // The order(s) and scope are always converted to int.
3986        Ty = Context.IntTy;
3987      }
3988  
3989      InitializedEntity Entity =
3990          InitializedEntity::InitializeParameter(Context, Ty, false);
3991      ExprResult Arg = APIOrderedArgs[i];
3992      Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3993      if (Arg.isInvalid())
3994        return true;
3995      APIOrderedArgs[i] = Arg.get();
3996    }
3997  
3998    // Permute the arguments into a 'consistent' order.
3999    SmallVector<Expr*, 5> SubExprs;
4000    SubExprs.push_back(Ptr);
4001    switch (Form) {
4002    case Init:
4003      // Note, AtomicExpr::getVal1() has a special case for this atomic.
4004      SubExprs.push_back(APIOrderedArgs[1]); // Val1
4005      break;
4006    case Load:
4007      SubExprs.push_back(APIOrderedArgs[1]); // Order
4008      break;
4009    case LoadCopy:
4010    case Copy:
4011    case Arithmetic:
4012    case Xchg:
4013      SubExprs.push_back(APIOrderedArgs[2]); // Order
4014      SubExprs.push_back(APIOrderedArgs[1]); // Val1
4015      break;
4016    case GNUXchg:
4017      // Note, AtomicExpr::getVal2() has a special case for this atomic.
4018      SubExprs.push_back(APIOrderedArgs[3]); // Order
4019      SubExprs.push_back(APIOrderedArgs[1]); // Val1
4020      SubExprs.push_back(APIOrderedArgs[2]); // Val2
4021      break;
4022    case C11CmpXchg:
4023      SubExprs.push_back(APIOrderedArgs[3]); // Order
4024      SubExprs.push_back(APIOrderedArgs[1]); // Val1
4025      SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
4026      SubExprs.push_back(APIOrderedArgs[2]); // Val2
4027      break;
4028    case GNUCmpXchg:
4029      SubExprs.push_back(APIOrderedArgs[4]); // Order
4030      SubExprs.push_back(APIOrderedArgs[1]); // Val1
4031      SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
4032      SubExprs.push_back(APIOrderedArgs[2]); // Val2
4033      SubExprs.push_back(APIOrderedArgs[3]); // Weak
4034      break;
4035    }
4036  
4037    // If the memory orders are constants, check they are valid.
4038    if (SubExprs.size() >= 2 && Form != Init) {
4039      std::optional<llvm::APSInt> Success =
4040          SubExprs[1]->getIntegerConstantExpr(Context);
4041      if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
4042        Diag(SubExprs[1]->getBeginLoc(),
4043             diag::warn_atomic_op_has_invalid_memory_order)
4044            << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
4045            << SubExprs[1]->getSourceRange();
4046      }
4047      if (SubExprs.size() >= 5) {
4048        if (std::optional<llvm::APSInt> Failure =
4049                SubExprs[3]->getIntegerConstantExpr(Context)) {
4050          if (!llvm::is_contained(
4051                  {llvm::AtomicOrderingCABI::relaxed,
4052                   llvm::AtomicOrderingCABI::consume,
4053                   llvm::AtomicOrderingCABI::acquire,
4054                   llvm::AtomicOrderingCABI::seq_cst},
4055                  (llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
4056            Diag(SubExprs[3]->getBeginLoc(),
4057                 diag::warn_atomic_op_has_invalid_memory_order)
4058                << /*failure=*/2 << SubExprs[3]->getSourceRange();
4059          }
4060        }
4061      }
4062    }
4063  
4064    if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
4065      auto *Scope = Args[Args.size() - 1];
4066      if (std::optional<llvm::APSInt> Result =
4067              Scope->getIntegerConstantExpr(Context)) {
4068        if (!ScopeModel->isValid(Result->getZExtValue()))
4069          Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
4070              << Scope->getSourceRange();
4071      }
4072      SubExprs.push_back(Scope);
4073    }
4074  
4075    AtomicExpr *AE = new (Context)
4076        AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
4077  
4078    if ((Op == AtomicExpr::AO__c11_atomic_load ||
4079         Op == AtomicExpr::AO__c11_atomic_store ||
4080         Op == AtomicExpr::AO__opencl_atomic_load ||
4081         Op == AtomicExpr::AO__hip_atomic_load ||
4082         Op == AtomicExpr::AO__opencl_atomic_store ||
4083         Op == AtomicExpr::AO__hip_atomic_store) &&
4084        Context.AtomicUsesUnsupportedLibcall(AE))
4085      Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
4086          << ((Op == AtomicExpr::AO__c11_atomic_load ||
4087               Op == AtomicExpr::AO__opencl_atomic_load ||
4088               Op == AtomicExpr::AO__hip_atomic_load)
4089                  ? 0
4090                  : 1);
4091  
4092    if (ValType->isBitIntType()) {
4093      Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
4094      return ExprError();
4095    }
4096  
4097    return AE;
4098  }
4099  
4100  /// checkBuiltinArgument - Given a call to a builtin function, perform
4101  /// normal type-checking on the given argument, updating the call in
4102  /// place.  This is useful when a builtin function requires custom
4103  /// type-checking for some of its arguments but not necessarily all of
4104  /// them.
4105  ///
4106  /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)4107  static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
4108    FunctionDecl *Fn = E->getDirectCallee();
4109    assert(Fn && "builtin call without direct callee!");
4110  
4111    ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
4112    InitializedEntity Entity =
4113      InitializedEntity::InitializeParameter(S.Context, Param);
4114  
4115    ExprResult Arg = E->getArg(ArgIndex);
4116    Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
4117    if (Arg.isInvalid())
4118      return true;
4119  
4120    E->setArg(ArgIndex, Arg.get());
4121    return false;
4122  }
4123  
BuiltinAtomicOverloaded(ExprResult TheCallResult)4124  ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) {
4125    CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
4126    Expr *Callee = TheCall->getCallee();
4127    DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
4128    FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4129  
4130    // Ensure that we have at least one argument to do type inference from.
4131    if (TheCall->getNumArgs() < 1) {
4132      Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4133          << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
4134          << Callee->getSourceRange();
4135      return ExprError();
4136    }
4137  
4138    // Inspect the first argument of the atomic builtin.  This should always be
4139    // a pointer type, whose element is an integral scalar or pointer type.
4140    // Because it is a pointer type, we don't have to worry about any implicit
4141    // casts here.
4142    // FIXME: We don't allow floating point scalars as input.
4143    Expr *FirstArg = TheCall->getArg(0);
4144    ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
4145    if (FirstArgResult.isInvalid())
4146      return ExprError();
4147    FirstArg = FirstArgResult.get();
4148    TheCall->setArg(0, FirstArg);
4149  
4150    const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
4151    if (!pointerType) {
4152      Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4153          << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4154      return ExprError();
4155    }
4156  
4157    QualType ValType = pointerType->getPointeeType();
4158    if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4159        !ValType->isBlockPointerType()) {
4160      Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
4161          << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4162      return ExprError();
4163    }
4164  
4165    if (ValType.isConstQualified()) {
4166      Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
4167          << FirstArg->getType() << FirstArg->getSourceRange();
4168      return ExprError();
4169    }
4170  
4171    switch (ValType.getObjCLifetime()) {
4172    case Qualifiers::OCL_None:
4173    case Qualifiers::OCL_ExplicitNone:
4174      // okay
4175      break;
4176  
4177    case Qualifiers::OCL_Weak:
4178    case Qualifiers::OCL_Strong:
4179    case Qualifiers::OCL_Autoreleasing:
4180      Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4181          << ValType << FirstArg->getSourceRange();
4182      return ExprError();
4183    }
4184  
4185    // Strip any qualifiers off ValType.
4186    ValType = ValType.getUnqualifiedType();
4187  
4188    // The majority of builtins return a value, but a few have special return
4189    // types, so allow them to override appropriately below.
4190    QualType ResultType = ValType;
4191  
4192    // We need to figure out which concrete builtin this maps onto.  For example,
4193    // __sync_fetch_and_add with a 2 byte object turns into
4194    // __sync_fetch_and_add_2.
4195  #define BUILTIN_ROW(x) \
4196    { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
4197      Builtin::BI##x##_8, Builtin::BI##x##_16 }
4198  
4199    static const unsigned BuiltinIndices[][5] = {
4200      BUILTIN_ROW(__sync_fetch_and_add),
4201      BUILTIN_ROW(__sync_fetch_and_sub),
4202      BUILTIN_ROW(__sync_fetch_and_or),
4203      BUILTIN_ROW(__sync_fetch_and_and),
4204      BUILTIN_ROW(__sync_fetch_and_xor),
4205      BUILTIN_ROW(__sync_fetch_and_nand),
4206  
4207      BUILTIN_ROW(__sync_add_and_fetch),
4208      BUILTIN_ROW(__sync_sub_and_fetch),
4209      BUILTIN_ROW(__sync_and_and_fetch),
4210      BUILTIN_ROW(__sync_or_and_fetch),
4211      BUILTIN_ROW(__sync_xor_and_fetch),
4212      BUILTIN_ROW(__sync_nand_and_fetch),
4213  
4214      BUILTIN_ROW(__sync_val_compare_and_swap),
4215      BUILTIN_ROW(__sync_bool_compare_and_swap),
4216      BUILTIN_ROW(__sync_lock_test_and_set),
4217      BUILTIN_ROW(__sync_lock_release),
4218      BUILTIN_ROW(__sync_swap)
4219    };
4220  #undef BUILTIN_ROW
4221  
4222    // Determine the index of the size.
4223    unsigned SizeIndex;
4224    switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4225    case 1: SizeIndex = 0; break;
4226    case 2: SizeIndex = 1; break;
4227    case 4: SizeIndex = 2; break;
4228    case 8: SizeIndex = 3; break;
4229    case 16: SizeIndex = 4; break;
4230    default:
4231      Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
4232          << FirstArg->getType() << FirstArg->getSourceRange();
4233      return ExprError();
4234    }
4235  
4236    // Each of these builtins has one pointer argument, followed by some number of
4237    // values (0, 1 or 2) followed by a potentially empty varags list of stuff
4238    // that we ignore.  Find out which row of BuiltinIndices to read from as well
4239    // as the number of fixed args.
4240    unsigned BuiltinID = FDecl->getBuiltinID();
4241    unsigned BuiltinIndex, NumFixed = 1;
4242    bool WarnAboutSemanticsChange = false;
4243    switch (BuiltinID) {
4244    default: llvm_unreachable("Unknown overloaded atomic builtin!");
4245    case Builtin::BI__sync_fetch_and_add:
4246    case Builtin::BI__sync_fetch_and_add_1:
4247    case Builtin::BI__sync_fetch_and_add_2:
4248    case Builtin::BI__sync_fetch_and_add_4:
4249    case Builtin::BI__sync_fetch_and_add_8:
4250    case Builtin::BI__sync_fetch_and_add_16:
4251      BuiltinIndex = 0;
4252      break;
4253  
4254    case Builtin::BI__sync_fetch_and_sub:
4255    case Builtin::BI__sync_fetch_and_sub_1:
4256    case Builtin::BI__sync_fetch_and_sub_2:
4257    case Builtin::BI__sync_fetch_and_sub_4:
4258    case Builtin::BI__sync_fetch_and_sub_8:
4259    case Builtin::BI__sync_fetch_and_sub_16:
4260      BuiltinIndex = 1;
4261      break;
4262  
4263    case Builtin::BI__sync_fetch_and_or:
4264    case Builtin::BI__sync_fetch_and_or_1:
4265    case Builtin::BI__sync_fetch_and_or_2:
4266    case Builtin::BI__sync_fetch_and_or_4:
4267    case Builtin::BI__sync_fetch_and_or_8:
4268    case Builtin::BI__sync_fetch_and_or_16:
4269      BuiltinIndex = 2;
4270      break;
4271  
4272    case Builtin::BI__sync_fetch_and_and:
4273    case Builtin::BI__sync_fetch_and_and_1:
4274    case Builtin::BI__sync_fetch_and_and_2:
4275    case Builtin::BI__sync_fetch_and_and_4:
4276    case Builtin::BI__sync_fetch_and_and_8:
4277    case Builtin::BI__sync_fetch_and_and_16:
4278      BuiltinIndex = 3;
4279      break;
4280  
4281    case Builtin::BI__sync_fetch_and_xor:
4282    case Builtin::BI__sync_fetch_and_xor_1:
4283    case Builtin::BI__sync_fetch_and_xor_2:
4284    case Builtin::BI__sync_fetch_and_xor_4:
4285    case Builtin::BI__sync_fetch_and_xor_8:
4286    case Builtin::BI__sync_fetch_and_xor_16:
4287      BuiltinIndex = 4;
4288      break;
4289  
4290    case Builtin::BI__sync_fetch_and_nand:
4291    case Builtin::BI__sync_fetch_and_nand_1:
4292    case Builtin::BI__sync_fetch_and_nand_2:
4293    case Builtin::BI__sync_fetch_and_nand_4:
4294    case Builtin::BI__sync_fetch_and_nand_8:
4295    case Builtin::BI__sync_fetch_and_nand_16:
4296      BuiltinIndex = 5;
4297      WarnAboutSemanticsChange = true;
4298      break;
4299  
4300    case Builtin::BI__sync_add_and_fetch:
4301    case Builtin::BI__sync_add_and_fetch_1:
4302    case Builtin::BI__sync_add_and_fetch_2:
4303    case Builtin::BI__sync_add_and_fetch_4:
4304    case Builtin::BI__sync_add_and_fetch_8:
4305    case Builtin::BI__sync_add_and_fetch_16:
4306      BuiltinIndex = 6;
4307      break;
4308  
4309    case Builtin::BI__sync_sub_and_fetch:
4310    case Builtin::BI__sync_sub_and_fetch_1:
4311    case Builtin::BI__sync_sub_and_fetch_2:
4312    case Builtin::BI__sync_sub_and_fetch_4:
4313    case Builtin::BI__sync_sub_and_fetch_8:
4314    case Builtin::BI__sync_sub_and_fetch_16:
4315      BuiltinIndex = 7;
4316      break;
4317  
4318    case Builtin::BI__sync_and_and_fetch:
4319    case Builtin::BI__sync_and_and_fetch_1:
4320    case Builtin::BI__sync_and_and_fetch_2:
4321    case Builtin::BI__sync_and_and_fetch_4:
4322    case Builtin::BI__sync_and_and_fetch_8:
4323    case Builtin::BI__sync_and_and_fetch_16:
4324      BuiltinIndex = 8;
4325      break;
4326  
4327    case Builtin::BI__sync_or_and_fetch:
4328    case Builtin::BI__sync_or_and_fetch_1:
4329    case Builtin::BI__sync_or_and_fetch_2:
4330    case Builtin::BI__sync_or_and_fetch_4:
4331    case Builtin::BI__sync_or_and_fetch_8:
4332    case Builtin::BI__sync_or_and_fetch_16:
4333      BuiltinIndex = 9;
4334      break;
4335  
4336    case Builtin::BI__sync_xor_and_fetch:
4337    case Builtin::BI__sync_xor_and_fetch_1:
4338    case Builtin::BI__sync_xor_and_fetch_2:
4339    case Builtin::BI__sync_xor_and_fetch_4:
4340    case Builtin::BI__sync_xor_and_fetch_8:
4341    case Builtin::BI__sync_xor_and_fetch_16:
4342      BuiltinIndex = 10;
4343      break;
4344  
4345    case Builtin::BI__sync_nand_and_fetch:
4346    case Builtin::BI__sync_nand_and_fetch_1:
4347    case Builtin::BI__sync_nand_and_fetch_2:
4348    case Builtin::BI__sync_nand_and_fetch_4:
4349    case Builtin::BI__sync_nand_and_fetch_8:
4350    case Builtin::BI__sync_nand_and_fetch_16:
4351      BuiltinIndex = 11;
4352      WarnAboutSemanticsChange = true;
4353      break;
4354  
4355    case Builtin::BI__sync_val_compare_and_swap:
4356    case Builtin::BI__sync_val_compare_and_swap_1:
4357    case Builtin::BI__sync_val_compare_and_swap_2:
4358    case Builtin::BI__sync_val_compare_and_swap_4:
4359    case Builtin::BI__sync_val_compare_and_swap_8:
4360    case Builtin::BI__sync_val_compare_and_swap_16:
4361      BuiltinIndex = 12;
4362      NumFixed = 2;
4363      break;
4364  
4365    case Builtin::BI__sync_bool_compare_and_swap:
4366    case Builtin::BI__sync_bool_compare_and_swap_1:
4367    case Builtin::BI__sync_bool_compare_and_swap_2:
4368    case Builtin::BI__sync_bool_compare_and_swap_4:
4369    case Builtin::BI__sync_bool_compare_and_swap_8:
4370    case Builtin::BI__sync_bool_compare_and_swap_16:
4371      BuiltinIndex = 13;
4372      NumFixed = 2;
4373      ResultType = Context.BoolTy;
4374      break;
4375  
4376    case Builtin::BI__sync_lock_test_and_set:
4377    case Builtin::BI__sync_lock_test_and_set_1:
4378    case Builtin::BI__sync_lock_test_and_set_2:
4379    case Builtin::BI__sync_lock_test_and_set_4:
4380    case Builtin::BI__sync_lock_test_and_set_8:
4381    case Builtin::BI__sync_lock_test_and_set_16:
4382      BuiltinIndex = 14;
4383      break;
4384  
4385    case Builtin::BI__sync_lock_release:
4386    case Builtin::BI__sync_lock_release_1:
4387    case Builtin::BI__sync_lock_release_2:
4388    case Builtin::BI__sync_lock_release_4:
4389    case Builtin::BI__sync_lock_release_8:
4390    case Builtin::BI__sync_lock_release_16:
4391      BuiltinIndex = 15;
4392      NumFixed = 0;
4393      ResultType = Context.VoidTy;
4394      break;
4395  
4396    case Builtin::BI__sync_swap:
4397    case Builtin::BI__sync_swap_1:
4398    case Builtin::BI__sync_swap_2:
4399    case Builtin::BI__sync_swap_4:
4400    case Builtin::BI__sync_swap_8:
4401    case Builtin::BI__sync_swap_16:
4402      BuiltinIndex = 16;
4403      break;
4404    }
4405  
4406    // Now that we know how many fixed arguments we expect, first check that we
4407    // have at least that many.
4408    if (TheCall->getNumArgs() < 1+NumFixed) {
4409      Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4410          << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
4411          << Callee->getSourceRange();
4412      return ExprError();
4413    }
4414  
4415    Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
4416        << Callee->getSourceRange();
4417  
4418    if (WarnAboutSemanticsChange) {
4419      Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
4420          << Callee->getSourceRange();
4421    }
4422  
4423    // Get the decl for the concrete builtin from this, we can tell what the
4424    // concrete integer type we should convert to is.
4425    unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
4426    StringRef NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
4427    FunctionDecl *NewBuiltinDecl;
4428    if (NewBuiltinID == BuiltinID)
4429      NewBuiltinDecl = FDecl;
4430    else {
4431      // Perform builtin lookup to avoid redeclaring it.
4432      DeclarationName DN(&Context.Idents.get(NewBuiltinName));
4433      LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
4434      LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
4435      assert(Res.getFoundDecl());
4436      NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
4437      if (!NewBuiltinDecl)
4438        return ExprError();
4439    }
4440  
4441    // The first argument --- the pointer --- has a fixed type; we
4442    // deduce the types of the rest of the arguments accordingly.  Walk
4443    // the remaining arguments, converting them to the deduced value type.
4444    for (unsigned i = 0; i != NumFixed; ++i) {
4445      ExprResult Arg = TheCall->getArg(i+1);
4446  
4447      // GCC does an implicit conversion to the pointer or integer ValType.  This
4448      // can fail in some cases (1i -> int**), check for this error case now.
4449      // Initialize the argument.
4450      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
4451                                                     ValType, /*consume*/ false);
4452      Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4453      if (Arg.isInvalid())
4454        return ExprError();
4455  
4456      // Okay, we have something that *can* be converted to the right type.  Check
4457      // to see if there is a potentially weird extension going on here.  This can
4458      // happen when you do an atomic operation on something like an char* and
4459      // pass in 42.  The 42 gets converted to char.  This is even more strange
4460      // for things like 45.123 -> char, etc.
4461      // FIXME: Do this check.
4462      TheCall->setArg(i+1, Arg.get());
4463    }
4464  
4465    // Create a new DeclRefExpr to refer to the new decl.
4466    DeclRefExpr *NewDRE = DeclRefExpr::Create(
4467        Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
4468        /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
4469        DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
4470  
4471    // Set the callee in the CallExpr.
4472    // FIXME: This loses syntactic information.
4473    QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
4474    ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
4475                                                CK_BuiltinFnToFnPtr);
4476    TheCall->setCallee(PromotedCall.get());
4477  
4478    // Change the result type of the call to match the original value type. This
4479    // is arbitrary, but the codegen for these builtins ins design to handle it
4480    // gracefully.
4481    TheCall->setType(ResultType);
4482  
4483    // Prohibit problematic uses of bit-precise integer types with atomic
4484    // builtins. The arguments would have already been converted to the first
4485    // argument's type, so only need to check the first argument.
4486    const auto *BitIntValType = ValType->getAs<BitIntType>();
4487    if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
4488      Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
4489      return ExprError();
4490    }
4491  
4492    return TheCallResult;
4493  }
4494  
BuiltinNontemporalOverloaded(ExprResult TheCallResult)4495  ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) {
4496    CallExpr *TheCall = (CallExpr *)TheCallResult.get();
4497    DeclRefExpr *DRE =
4498        cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4499    FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4500    unsigned BuiltinID = FDecl->getBuiltinID();
4501    assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
4502            BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
4503           "Unexpected nontemporal load/store builtin!");
4504    bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
4505    unsigned numArgs = isStore ? 2 : 1;
4506  
4507    // Ensure that we have the proper number of arguments.
4508    if (checkArgCount(TheCall, numArgs))
4509      return ExprError();
4510  
4511    // Inspect the last argument of the nontemporal builtin.  This should always
4512    // be a pointer type, from which we imply the type of the memory access.
4513    // Because it is a pointer type, we don't have to worry about any implicit
4514    // casts here.
4515    Expr *PointerArg = TheCall->getArg(numArgs - 1);
4516    ExprResult PointerArgResult =
4517        DefaultFunctionArrayLvalueConversion(PointerArg);
4518  
4519    if (PointerArgResult.isInvalid())
4520      return ExprError();
4521    PointerArg = PointerArgResult.get();
4522    TheCall->setArg(numArgs - 1, PointerArg);
4523  
4524    const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
4525    if (!pointerType) {
4526      Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
4527          << PointerArg->getType() << PointerArg->getSourceRange();
4528      return ExprError();
4529    }
4530  
4531    QualType ValType = pointerType->getPointeeType();
4532  
4533    // Strip any qualifiers off ValType.
4534    ValType = ValType.getUnqualifiedType();
4535    if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4536        !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
4537        !ValType->isVectorType()) {
4538      Diag(DRE->getBeginLoc(),
4539           diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
4540          << PointerArg->getType() << PointerArg->getSourceRange();
4541      return ExprError();
4542    }
4543  
4544    if (!isStore) {
4545      TheCall->setType(ValType);
4546      return TheCallResult;
4547    }
4548  
4549    ExprResult ValArg = TheCall->getArg(0);
4550    InitializedEntity Entity = InitializedEntity::InitializeParameter(
4551        Context, ValType, /*consume*/ false);
4552    ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
4553    if (ValArg.isInvalid())
4554      return ExprError();
4555  
4556    TheCall->setArg(0, ValArg.get());
4557    TheCall->setType(Context.VoidTy);
4558    return TheCallResult;
4559  }
4560  
4561  /// CheckObjCString - Checks that the format string argument to the os_log()
4562  /// and os_trace() functions is correct, and converts it to const char *.
CheckOSLogFormatStringArg(Expr * Arg)4563  ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
4564    Arg = Arg->IgnoreParenCasts();
4565    auto *Literal = dyn_cast<StringLiteral>(Arg);
4566    if (!Literal) {
4567      if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
4568        Literal = ObjcLiteral->getString();
4569      }
4570    }
4571  
4572    if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
4573      return ExprError(
4574          Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
4575          << Arg->getSourceRange());
4576    }
4577  
4578    ExprResult Result(Literal);
4579    QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
4580    InitializedEntity Entity =
4581        InitializedEntity::InitializeParameter(Context, ResultTy, false);
4582    Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
4583    return Result;
4584  }
4585  
4586  /// Check that the user is calling the appropriate va_start builtin for the
4587  /// target and calling convention.
checkVAStartABI(Sema & S,unsigned BuiltinID,Expr * Fn)4588  static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
4589    const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
4590    bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
4591    bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
4592                      TT.getArch() == llvm::Triple::aarch64_32);
4593    bool IsWindows = TT.isOSWindows();
4594    bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
4595    if (IsX64 || IsAArch64) {
4596      CallingConv CC = CC_C;
4597      if (const FunctionDecl *FD = S.getCurFunctionDecl())
4598        CC = FD->getType()->castAs<FunctionType>()->getCallConv();
4599      if (IsMSVAStart) {
4600        // Don't allow this in System V ABI functions.
4601        if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
4602          return S.Diag(Fn->getBeginLoc(),
4603                        diag::err_ms_va_start_used_in_sysv_function);
4604      } else {
4605        // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
4606        // On x64 Windows, don't allow this in System V ABI functions.
4607        // (Yes, that means there's no corresponding way to support variadic
4608        // System V ABI functions on Windows.)
4609        if ((IsWindows && CC == CC_X86_64SysV) ||
4610            (!IsWindows && CC == CC_Win64))
4611          return S.Diag(Fn->getBeginLoc(),
4612                        diag::err_va_start_used_in_wrong_abi_function)
4613                 << !IsWindows;
4614      }
4615      return false;
4616    }
4617  
4618    if (IsMSVAStart)
4619      return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
4620    return false;
4621  }
4622  
checkVAStartIsInVariadicFunction(Sema & S,Expr * Fn,ParmVarDecl ** LastParam=nullptr)4623  static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
4624                                               ParmVarDecl **LastParam = nullptr) {
4625    // Determine whether the current function, block, or obj-c method is variadic
4626    // and get its parameter list.
4627    bool IsVariadic = false;
4628    ArrayRef<ParmVarDecl *> Params;
4629    DeclContext *Caller = S.CurContext;
4630    if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
4631      IsVariadic = Block->isVariadic();
4632      Params = Block->parameters();
4633    } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
4634      IsVariadic = FD->isVariadic();
4635      Params = FD->parameters();
4636    } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
4637      IsVariadic = MD->isVariadic();
4638      // FIXME: This isn't correct for methods (results in bogus warning).
4639      Params = MD->parameters();
4640    } else if (isa<CapturedDecl>(Caller)) {
4641      // We don't support va_start in a CapturedDecl.
4642      S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
4643      return true;
4644    } else {
4645      // This must be some other declcontext that parses exprs.
4646      S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
4647      return true;
4648    }
4649  
4650    if (!IsVariadic) {
4651      S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
4652      return true;
4653    }
4654  
4655    if (LastParam)
4656      *LastParam = Params.empty() ? nullptr : Params.back();
4657  
4658    return false;
4659  }
4660  
BuiltinVAStart(unsigned BuiltinID,CallExpr * TheCall)4661  bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
4662    Expr *Fn = TheCall->getCallee();
4663  
4664    if (checkVAStartABI(*this, BuiltinID, Fn))
4665      return true;
4666  
4667    // In C23 mode, va_start only needs one argument. However, the builtin still
4668    // requires two arguments (which matches the behavior of the GCC builtin),
4669    // <stdarg.h> passes `0` as the second argument in C23 mode.
4670    if (checkArgCount(TheCall, 2))
4671      return true;
4672  
4673    // Type-check the first argument normally.
4674    if (checkBuiltinArgument(*this, TheCall, 0))
4675      return true;
4676  
4677    // Check that the current function is variadic, and get its last parameter.
4678    ParmVarDecl *LastParam;
4679    if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
4680      return true;
4681  
4682    // Verify that the second argument to the builtin is the last argument of the
4683    // current function or method. In C23 mode, if the second argument is an
4684    // integer constant expression with value 0, then we don't bother with this
4685    // check.
4686    bool SecondArgIsLastNamedArgument = false;
4687    const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
4688    if (std::optional<llvm::APSInt> Val =
4689            TheCall->getArg(1)->getIntegerConstantExpr(Context);
4690        Val && LangOpts.C23 && *Val == 0)
4691      return false;
4692  
4693    // These are valid if SecondArgIsLastNamedArgument is false after the next
4694    // block.
4695    QualType Type;
4696    SourceLocation ParamLoc;
4697    bool IsCRegister = false;
4698  
4699    if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
4700      if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
4701        SecondArgIsLastNamedArgument = PV == LastParam;
4702  
4703        Type = PV->getType();
4704        ParamLoc = PV->getLocation();
4705        IsCRegister =
4706            PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
4707      }
4708    }
4709  
4710    if (!SecondArgIsLastNamedArgument)
4711      Diag(TheCall->getArg(1)->getBeginLoc(),
4712           diag::warn_second_arg_of_va_start_not_last_named_param);
4713    else if (IsCRegister || Type->isReferenceType() ||
4714             Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
4715               // Promotable integers are UB, but enumerations need a bit of
4716               // extra checking to see what their promotable type actually is.
4717               if (!Context.isPromotableIntegerType(Type))
4718                 return false;
4719               if (!Type->isEnumeralType())
4720                 return true;
4721               const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
4722               return !(ED &&
4723                        Context.typesAreCompatible(ED->getPromotionType(), Type));
4724             }()) {
4725      unsigned Reason = 0;
4726      if (Type->isReferenceType())  Reason = 1;
4727      else if (IsCRegister)         Reason = 2;
4728      Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
4729      Diag(ParamLoc, diag::note_parameter_type) << Type;
4730    }
4731  
4732    return false;
4733  }
4734  
BuiltinVAStartARMMicrosoft(CallExpr * Call)4735  bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) {
4736    auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
4737      const LangOptions &LO = getLangOpts();
4738  
4739      if (LO.CPlusPlus)
4740        return Arg->getType()
4741                   .getCanonicalType()
4742                   .getTypePtr()
4743                   ->getPointeeType()
4744                   .withoutLocalFastQualifiers() == Context.CharTy;
4745  
4746      // In C, allow aliasing through `char *`, this is required for AArch64 at
4747      // least.
4748      return true;
4749    };
4750  
4751    // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
4752    //                 const char *named_addr);
4753  
4754    Expr *Func = Call->getCallee();
4755  
4756    if (Call->getNumArgs() < 3)
4757      return Diag(Call->getEndLoc(),
4758                  diag::err_typecheck_call_too_few_args_at_least)
4759             << 0 /*function call*/ << 3 << Call->getNumArgs()
4760             << /*is non object*/ 0;
4761  
4762    // Type-check the first argument normally.
4763    if (checkBuiltinArgument(*this, Call, 0))
4764      return true;
4765  
4766    // Check that the current function is variadic.
4767    if (checkVAStartIsInVariadicFunction(*this, Func))
4768      return true;
4769  
4770    // __va_start on Windows does not validate the parameter qualifiers
4771  
4772    const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
4773    const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
4774  
4775    const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
4776    const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
4777  
4778    const QualType &ConstCharPtrTy =
4779        Context.getPointerType(Context.CharTy.withConst());
4780    if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
4781      Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4782          << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
4783          << 0                                      /* qualifier difference */
4784          << 3                                      /* parameter mismatch */
4785          << 2 << Arg1->getType() << ConstCharPtrTy;
4786  
4787    const QualType SizeTy = Context.getSizeType();
4788    if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
4789      Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4790          << Arg2->getType() << SizeTy << 1 /* different class */
4791          << 0                              /* qualifier difference */
4792          << 3                              /* parameter mismatch */
4793          << 3 << Arg2->getType() << SizeTy;
4794  
4795    return false;
4796  }
4797  
BuiltinUnorderedCompare(CallExpr * TheCall,unsigned BuiltinID)4798  bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) {
4799    if (checkArgCount(TheCall, 2))
4800      return true;
4801  
4802    if (BuiltinID == Builtin::BI__builtin_isunordered &&
4803        TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs())
4804      Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4805          << 1 << 0 << TheCall->getSourceRange();
4806  
4807    ExprResult OrigArg0 = TheCall->getArg(0);
4808    ExprResult OrigArg1 = TheCall->getArg(1);
4809  
4810    // Do standard promotions between the two arguments, returning their common
4811    // type.
4812    QualType Res = UsualArithmeticConversions(
4813        OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
4814    if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
4815      return true;
4816  
4817    // Make sure any conversions are pushed back into the call; this is
4818    // type safe since unordered compare builtins are declared as "_Bool
4819    // foo(...)".
4820    TheCall->setArg(0, OrigArg0.get());
4821    TheCall->setArg(1, OrigArg1.get());
4822  
4823    if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
4824      return false;
4825  
4826    // If the common type isn't a real floating type, then the arguments were
4827    // invalid for this operation.
4828    if (Res.isNull() || !Res->isRealFloatingType())
4829      return Diag(OrigArg0.get()->getBeginLoc(),
4830                  diag::err_typecheck_call_invalid_ordered_compare)
4831             << OrigArg0.get()->getType() << OrigArg1.get()->getType()
4832             << SourceRange(OrigArg0.get()->getBeginLoc(),
4833                            OrigArg1.get()->getEndLoc());
4834  
4835    return false;
4836  }
4837  
BuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs,unsigned BuiltinID)4838  bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
4839                                     unsigned BuiltinID) {
4840    if (checkArgCount(TheCall, NumArgs))
4841      return true;
4842  
4843    FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts());
4844    if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite ||
4845                                 BuiltinID == Builtin::BI__builtin_isinf ||
4846                                 BuiltinID == Builtin::BI__builtin_isinf_sign))
4847      Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4848          << 0 << 0 << TheCall->getSourceRange();
4849  
4850    if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan ||
4851                                 BuiltinID == Builtin::BI__builtin_isunordered))
4852      Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4853          << 1 << 0 << TheCall->getSourceRange();
4854  
4855    bool IsFPClass = NumArgs == 2;
4856  
4857    // Find out position of floating-point argument.
4858    unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
4859  
4860    // We can count on all parameters preceding the floating-point just being int.
4861    // Try all of those.
4862    for (unsigned i = 0; i < FPArgNo; ++i) {
4863      Expr *Arg = TheCall->getArg(i);
4864  
4865      if (Arg->isTypeDependent())
4866        return false;
4867  
4868      ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
4869  
4870      if (Res.isInvalid())
4871        return true;
4872      TheCall->setArg(i, Res.get());
4873    }
4874  
4875    Expr *OrigArg = TheCall->getArg(FPArgNo);
4876  
4877    if (OrigArg->isTypeDependent())
4878      return false;
4879  
4880    // Usual Unary Conversions will convert half to float, which we want for
4881    // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
4882    // type how it is, but do normal L->Rvalue conversions.
4883    if (Context.getTargetInfo().useFP16ConversionIntrinsics())
4884      OrigArg = UsualUnaryConversions(OrigArg).get();
4885    else
4886      OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
4887    TheCall->setArg(FPArgNo, OrigArg);
4888  
4889    QualType VectorResultTy;
4890    QualType ElementTy = OrigArg->getType();
4891    // TODO: When all classification function are implemented with is_fpclass,
4892    // vector argument can be supported in all of them.
4893    if (ElementTy->isVectorType() && IsFPClass) {
4894      VectorResultTy = GetSignedVectorType(ElementTy);
4895      ElementTy = ElementTy->castAs<VectorType>()->getElementType();
4896    }
4897  
4898    // This operation requires a non-_Complex floating-point number.
4899    if (!ElementTy->isRealFloatingType())
4900      return Diag(OrigArg->getBeginLoc(),
4901                  diag::err_typecheck_call_invalid_unary_fp)
4902             << OrigArg->getType() << OrigArg->getSourceRange();
4903  
4904    // __builtin_isfpclass has integer parameter that specify test mask. It is
4905    // passed in (...), so it should be analyzed completely here.
4906    if (IsFPClass)
4907      if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
4908        return true;
4909  
4910    // TODO: enable this code to all classification functions.
4911    if (IsFPClass) {
4912      QualType ResultTy;
4913      if (!VectorResultTy.isNull())
4914        ResultTy = VectorResultTy;
4915      else
4916        ResultTy = Context.IntTy;
4917      TheCall->setType(ResultTy);
4918    }
4919  
4920    return false;
4921  }
4922  
BuiltinComplex(CallExpr * TheCall)4923  bool Sema::BuiltinComplex(CallExpr *TheCall) {
4924    if (checkArgCount(TheCall, 2))
4925      return true;
4926  
4927    bool Dependent = false;
4928    for (unsigned I = 0; I != 2; ++I) {
4929      Expr *Arg = TheCall->getArg(I);
4930      QualType T = Arg->getType();
4931      if (T->isDependentType()) {
4932        Dependent = true;
4933        continue;
4934      }
4935  
4936      // Despite supporting _Complex int, GCC requires a real floating point type
4937      // for the operands of __builtin_complex.
4938      if (!T->isRealFloatingType()) {
4939        return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
4940               << Arg->getType() << Arg->getSourceRange();
4941      }
4942  
4943      ExprResult Converted = DefaultLvalueConversion(Arg);
4944      if (Converted.isInvalid())
4945        return true;
4946      TheCall->setArg(I, Converted.get());
4947    }
4948  
4949    if (Dependent) {
4950      TheCall->setType(Context.DependentTy);
4951      return false;
4952    }
4953  
4954    Expr *Real = TheCall->getArg(0);
4955    Expr *Imag = TheCall->getArg(1);
4956    if (!Context.hasSameType(Real->getType(), Imag->getType())) {
4957      return Diag(Real->getBeginLoc(),
4958                  diag::err_typecheck_call_different_arg_types)
4959             << Real->getType() << Imag->getType()
4960             << Real->getSourceRange() << Imag->getSourceRange();
4961    }
4962  
4963    // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
4964    // don't allow this builtin to form those types either.
4965    // FIXME: Should we allow these types?
4966    if (Real->getType()->isFloat16Type())
4967      return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
4968             << "_Float16";
4969    if (Real->getType()->isHalfType())
4970      return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
4971             << "half";
4972  
4973    TheCall->setType(Context.getComplexType(Real->getType()));
4974    return false;
4975  }
4976  
4977  /// BuiltinShuffleVector - Handle __builtin_shufflevector.
4978  // This is declared to take (...), so we have to check everything.
BuiltinShuffleVector(CallExpr * TheCall)4979  ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) {
4980    if (TheCall->getNumArgs() < 2)
4981      return ExprError(Diag(TheCall->getEndLoc(),
4982                            diag::err_typecheck_call_too_few_args_at_least)
4983                       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
4984                       << /*is non object*/ 0 << TheCall->getSourceRange());
4985  
4986    // Determine which of the following types of shufflevector we're checking:
4987    // 1) unary, vector mask: (lhs, mask)
4988    // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
4989    QualType resType = TheCall->getArg(0)->getType();
4990    unsigned numElements = 0;
4991  
4992    if (!TheCall->getArg(0)->isTypeDependent() &&
4993        !TheCall->getArg(1)->isTypeDependent()) {
4994      QualType LHSType = TheCall->getArg(0)->getType();
4995      QualType RHSType = TheCall->getArg(1)->getType();
4996  
4997      if (!LHSType->isVectorType() || !RHSType->isVectorType())
4998        return ExprError(
4999            Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5000            << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false
5001            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5002                           TheCall->getArg(1)->getEndLoc()));
5003  
5004      numElements = LHSType->castAs<VectorType>()->getNumElements();
5005      unsigned numResElements = TheCall->getNumArgs() - 2;
5006  
5007      // Check to see if we have a call with 2 vector arguments, the unary shuffle
5008      // with mask.  If so, verify that RHS is an integer vector type with the
5009      // same number of elts as lhs.
5010      if (TheCall->getNumArgs() == 2) {
5011        if (!RHSType->hasIntegerRepresentation() ||
5012            RHSType->castAs<VectorType>()->getNumElements() != numElements)
5013          return ExprError(Diag(TheCall->getBeginLoc(),
5014                                diag::err_vec_builtin_incompatible_vector)
5015                           << TheCall->getDirectCallee()
5016                           << /*isMorethantwoArgs*/ false
5017                           << SourceRange(TheCall->getArg(1)->getBeginLoc(),
5018                                          TheCall->getArg(1)->getEndLoc()));
5019      } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
5020        return ExprError(Diag(TheCall->getBeginLoc(),
5021                              diag::err_vec_builtin_incompatible_vector)
5022                         << TheCall->getDirectCallee()
5023                         << /*isMorethantwoArgs*/ false
5024                         << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5025                                        TheCall->getArg(1)->getEndLoc()));
5026      } else if (numElements != numResElements) {
5027        QualType eltType = LHSType->castAs<VectorType>()->getElementType();
5028        resType =
5029            Context.getVectorType(eltType, numResElements, VectorKind::Generic);
5030      }
5031    }
5032  
5033    for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
5034      if (TheCall->getArg(i)->isTypeDependent() ||
5035          TheCall->getArg(i)->isValueDependent())
5036        continue;
5037  
5038      std::optional<llvm::APSInt> Result;
5039      if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
5040        return ExprError(Diag(TheCall->getBeginLoc(),
5041                              diag::err_shufflevector_nonconstant_argument)
5042                         << TheCall->getArg(i)->getSourceRange());
5043  
5044      // Allow -1 which will be translated to undef in the IR.
5045      if (Result->isSigned() && Result->isAllOnes())
5046        continue;
5047  
5048      if (Result->getActiveBits() > 64 ||
5049          Result->getZExtValue() >= numElements * 2)
5050        return ExprError(Diag(TheCall->getBeginLoc(),
5051                              diag::err_shufflevector_argument_too_large)
5052                         << TheCall->getArg(i)->getSourceRange());
5053    }
5054  
5055    SmallVector<Expr*, 32> exprs;
5056  
5057    for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
5058      exprs.push_back(TheCall->getArg(i));
5059      TheCall->setArg(i, nullptr);
5060    }
5061  
5062    return new (Context) ShuffleVectorExpr(Context, exprs, resType,
5063                                           TheCall->getCallee()->getBeginLoc(),
5064                                           TheCall->getRParenLoc());
5065  }
5066  
ConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)5067  ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
5068                                     SourceLocation BuiltinLoc,
5069                                     SourceLocation RParenLoc) {
5070    ExprValueKind VK = VK_PRValue;
5071    ExprObjectKind OK = OK_Ordinary;
5072    QualType DstTy = TInfo->getType();
5073    QualType SrcTy = E->getType();
5074  
5075    if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
5076      return ExprError(Diag(BuiltinLoc,
5077                            diag::err_convertvector_non_vector)
5078                       << E->getSourceRange());
5079    if (!DstTy->isVectorType() && !DstTy->isDependentType())
5080      return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
5081                       << "second"
5082                       << "__builtin_convertvector");
5083  
5084    if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
5085      unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
5086      unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
5087      if (SrcElts != DstElts)
5088        return ExprError(Diag(BuiltinLoc,
5089                              diag::err_convertvector_incompatible_vector)
5090                         << E->getSourceRange());
5091    }
5092  
5093    return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
5094                                                 BuiltinLoc, RParenLoc);
5095  }
5096  
BuiltinPrefetch(CallExpr * TheCall)5097  bool Sema::BuiltinPrefetch(CallExpr *TheCall) {
5098    unsigned NumArgs = TheCall->getNumArgs();
5099  
5100    if (NumArgs > 3)
5101      return Diag(TheCall->getEndLoc(),
5102                  diag::err_typecheck_call_too_many_args_at_most)
5103             << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
5104             << TheCall->getSourceRange();
5105  
5106    // Argument 0 is checked for us and the remaining arguments must be
5107    // constant integers.
5108    for (unsigned i = 1; i != NumArgs; ++i)
5109      if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
5110        return true;
5111  
5112    return false;
5113  }
5114  
BuiltinArithmeticFence(CallExpr * TheCall)5115  bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) {
5116    if (!Context.getTargetInfo().checkArithmeticFenceSupported())
5117      return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
5118             << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5119    if (checkArgCount(TheCall, 1))
5120      return true;
5121    Expr *Arg = TheCall->getArg(0);
5122    if (Arg->isInstantiationDependent())
5123      return false;
5124  
5125    QualType ArgTy = Arg->getType();
5126    if (!ArgTy->hasFloatingRepresentation())
5127      return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
5128             << ArgTy;
5129    if (Arg->isLValue()) {
5130      ExprResult FirstArg = DefaultLvalueConversion(Arg);
5131      TheCall->setArg(0, FirstArg.get());
5132    }
5133    TheCall->setType(TheCall->getArg(0)->getType());
5134    return false;
5135  }
5136  
BuiltinAssume(CallExpr * TheCall)5137  bool Sema::BuiltinAssume(CallExpr *TheCall) {
5138    Expr *Arg = TheCall->getArg(0);
5139    if (Arg->isInstantiationDependent()) return false;
5140  
5141    if (Arg->HasSideEffects(Context))
5142      Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
5143          << Arg->getSourceRange()
5144          << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
5145  
5146    return false;
5147  }
5148  
BuiltinAllocaWithAlign(CallExpr * TheCall)5149  bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) {
5150    // The alignment must be a constant integer.
5151    Expr *Arg = TheCall->getArg(1);
5152  
5153    // We can't check the value of a dependent argument.
5154    if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5155      if (const auto *UE =
5156              dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
5157        if (UE->getKind() == UETT_AlignOf ||
5158            UE->getKind() == UETT_PreferredAlignOf)
5159          Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
5160              << Arg->getSourceRange();
5161  
5162      llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
5163  
5164      if (!Result.isPowerOf2())
5165        return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5166               << Arg->getSourceRange();
5167  
5168      if (Result < Context.getCharWidth())
5169        return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
5170               << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
5171  
5172      if (Result > std::numeric_limits<int32_t>::max())
5173        return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
5174               << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
5175    }
5176  
5177    return false;
5178  }
5179  
BuiltinAssumeAligned(CallExpr * TheCall)5180  bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) {
5181    if (checkArgCountRange(TheCall, 2, 3))
5182      return true;
5183  
5184    unsigned NumArgs = TheCall->getNumArgs();
5185    Expr *FirstArg = TheCall->getArg(0);
5186  
5187    {
5188      ExprResult FirstArgResult =
5189          DefaultFunctionArrayLvalueConversion(FirstArg);
5190      if (checkBuiltinArgument(*this, TheCall, 0))
5191        return true;
5192      /// In-place updation of FirstArg by checkBuiltinArgument is ignored.
5193      TheCall->setArg(0, FirstArgResult.get());
5194    }
5195  
5196    // The alignment must be a constant integer.
5197    Expr *SecondArg = TheCall->getArg(1);
5198  
5199    // We can't check the value of a dependent argument.
5200    if (!SecondArg->isValueDependent()) {
5201      llvm::APSInt Result;
5202      if (BuiltinConstantArg(TheCall, 1, Result))
5203        return true;
5204  
5205      if (!Result.isPowerOf2())
5206        return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5207               << SecondArg->getSourceRange();
5208  
5209      if (Result > Sema::MaximumAlignment)
5210        Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
5211            << SecondArg->getSourceRange() << Sema::MaximumAlignment;
5212    }
5213  
5214    if (NumArgs > 2) {
5215      Expr *ThirdArg = TheCall->getArg(2);
5216      if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
5217        return true;
5218      TheCall->setArg(2, ThirdArg);
5219    }
5220  
5221    return false;
5222  }
5223  
BuiltinOSLogFormat(CallExpr * TheCall)5224  bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) {
5225    unsigned BuiltinID =
5226        cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
5227    bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
5228  
5229    unsigned NumArgs = TheCall->getNumArgs();
5230    unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
5231    if (NumArgs < NumRequiredArgs) {
5232      return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5233             << 0 /* function call */ << NumRequiredArgs << NumArgs
5234             << /*is non object*/ 0 << TheCall->getSourceRange();
5235    }
5236    if (NumArgs >= NumRequiredArgs + 0x100) {
5237      return Diag(TheCall->getEndLoc(),
5238                  diag::err_typecheck_call_too_many_args_at_most)
5239             << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
5240             << /*is non object*/ 0 << TheCall->getSourceRange();
5241    }
5242    unsigned i = 0;
5243  
5244    // For formatting call, check buffer arg.
5245    if (!IsSizeCall) {
5246      ExprResult Arg(TheCall->getArg(i));
5247      InitializedEntity Entity = InitializedEntity::InitializeParameter(
5248          Context, Context.VoidPtrTy, false);
5249      Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5250      if (Arg.isInvalid())
5251        return true;
5252      TheCall->setArg(i, Arg.get());
5253      i++;
5254    }
5255  
5256    // Check string literal arg.
5257    unsigned FormatIdx = i;
5258    {
5259      ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
5260      if (Arg.isInvalid())
5261        return true;
5262      TheCall->setArg(i, Arg.get());
5263      i++;
5264    }
5265  
5266    // Make sure variadic args are scalar.
5267    unsigned FirstDataArg = i;
5268    while (i < NumArgs) {
5269      ExprResult Arg = DefaultVariadicArgumentPromotion(
5270          TheCall->getArg(i), VariadicFunction, nullptr);
5271      if (Arg.isInvalid())
5272        return true;
5273      CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
5274      if (ArgSize.getQuantity() >= 0x100) {
5275        return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
5276               << i << (int)ArgSize.getQuantity() << 0xff
5277               << TheCall->getSourceRange();
5278      }
5279      TheCall->setArg(i, Arg.get());
5280      i++;
5281    }
5282  
5283    // Check formatting specifiers. NOTE: We're only doing this for the non-size
5284    // call to avoid duplicate diagnostics.
5285    if (!IsSizeCall) {
5286      llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
5287      ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
5288      bool Success = CheckFormatArguments(
5289          Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
5290          VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
5291          CheckedVarArgs);
5292      if (!Success)
5293        return true;
5294    }
5295  
5296    if (IsSizeCall) {
5297      TheCall->setType(Context.getSizeType());
5298    } else {
5299      TheCall->setType(Context.VoidPtrTy);
5300    }
5301    return false;
5302  }
5303  
BuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)5304  bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum,
5305                                llvm::APSInt &Result) {
5306    Expr *Arg = TheCall->getArg(ArgNum);
5307    DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5308    FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5309  
5310    if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
5311  
5312    std::optional<llvm::APSInt> R;
5313    if (!(R = Arg->getIntegerConstantExpr(Context)))
5314      return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
5315             << FDecl->getDeclName() << Arg->getSourceRange();
5316    Result = *R;
5317    return false;
5318  }
5319  
BuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High,bool RangeIsError)5320  bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
5321                                     int High, bool RangeIsError) {
5322    if (isConstantEvaluatedContext())
5323      return false;
5324    llvm::APSInt Result;
5325  
5326    // We can't check the value of a dependent argument.
5327    Expr *Arg = TheCall->getArg(ArgNum);
5328    if (Arg->isTypeDependent() || Arg->isValueDependent())
5329      return false;
5330  
5331    // Check constant-ness first.
5332    if (BuiltinConstantArg(TheCall, ArgNum, Result))
5333      return true;
5334  
5335    if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
5336      if (RangeIsError)
5337        return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
5338               << toString(Result, 10) << Low << High << Arg->getSourceRange();
5339      else
5340        // Defer the warning until we know if the code will be emitted so that
5341        // dead code can ignore this.
5342        DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
5343                            PDiag(diag::warn_argument_invalid_range)
5344                                << toString(Result, 10) << Low << High
5345                                << Arg->getSourceRange());
5346    }
5347  
5348    return false;
5349  }
5350  
BuiltinConstantArgMultiple(CallExpr * TheCall,int ArgNum,unsigned Num)5351  bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
5352                                        unsigned Num) {
5353    llvm::APSInt Result;
5354  
5355    // We can't check the value of a dependent argument.
5356    Expr *Arg = TheCall->getArg(ArgNum);
5357    if (Arg->isTypeDependent() || Arg->isValueDependent())
5358      return false;
5359  
5360    // Check constant-ness first.
5361    if (BuiltinConstantArg(TheCall, ArgNum, Result))
5362      return true;
5363  
5364    if (Result.getSExtValue() % Num != 0)
5365      return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
5366             << Num << Arg->getSourceRange();
5367  
5368    return false;
5369  }
5370  
BuiltinConstantArgPower2(CallExpr * TheCall,int ArgNum)5371  bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
5372    llvm::APSInt Result;
5373  
5374    // We can't check the value of a dependent argument.
5375    Expr *Arg = TheCall->getArg(ArgNum);
5376    if (Arg->isTypeDependent() || Arg->isValueDependent())
5377      return false;
5378  
5379    // Check constant-ness first.
5380    if (BuiltinConstantArg(TheCall, ArgNum, Result))
5381      return true;
5382  
5383    // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
5384    // and only if x is a power of 2.
5385    if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
5386      return false;
5387  
5388    return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
5389           << Arg->getSourceRange();
5390  }
5391  
IsShiftedByte(llvm::APSInt Value)5392  static bool IsShiftedByte(llvm::APSInt Value) {
5393    if (Value.isNegative())
5394      return false;
5395  
5396    // Check if it's a shifted byte, by shifting it down
5397    while (true) {
5398      // If the value fits in the bottom byte, the check passes.
5399      if (Value < 0x100)
5400        return true;
5401  
5402      // Otherwise, if the value has _any_ bits in the bottom byte, the check
5403      // fails.
5404      if ((Value & 0xFF) != 0)
5405        return false;
5406  
5407      // If the bottom 8 bits are all 0, but something above that is nonzero,
5408      // then shifting the value right by 8 bits won't affect whether it's a
5409      // shifted byte or not. So do that, and go round again.
5410      Value >>= 8;
5411    }
5412  }
5413  
BuiltinConstantArgShiftedByte(CallExpr * TheCall,int ArgNum,unsigned ArgBits)5414  bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
5415                                           unsigned ArgBits) {
5416    llvm::APSInt Result;
5417  
5418    // We can't check the value of a dependent argument.
5419    Expr *Arg = TheCall->getArg(ArgNum);
5420    if (Arg->isTypeDependent() || Arg->isValueDependent())
5421      return false;
5422  
5423    // Check constant-ness first.
5424    if (BuiltinConstantArg(TheCall, ArgNum, Result))
5425      return true;
5426  
5427    // Truncate to the given size.
5428    Result = Result.getLoBits(ArgBits);
5429    Result.setIsUnsigned(true);
5430  
5431    if (IsShiftedByte(Result))
5432      return false;
5433  
5434    return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
5435           << Arg->getSourceRange();
5436  }
5437  
BuiltinConstantArgShiftedByteOrXXFF(CallExpr * TheCall,int ArgNum,unsigned ArgBits)5438  bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
5439                                                 unsigned ArgBits) {
5440    llvm::APSInt Result;
5441  
5442    // We can't check the value of a dependent argument.
5443    Expr *Arg = TheCall->getArg(ArgNum);
5444    if (Arg->isTypeDependent() || Arg->isValueDependent())
5445      return false;
5446  
5447    // Check constant-ness first.
5448    if (BuiltinConstantArg(TheCall, ArgNum, Result))
5449      return true;
5450  
5451    // Truncate to the given size.
5452    Result = Result.getLoBits(ArgBits);
5453    Result.setIsUnsigned(true);
5454  
5455    // Check to see if it's in either of the required forms.
5456    if (IsShiftedByte(Result) ||
5457        (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
5458      return false;
5459  
5460    return Diag(TheCall->getBeginLoc(),
5461                diag::err_argument_not_shifted_byte_or_xxff)
5462           << Arg->getSourceRange();
5463  }
5464  
BuiltinLongjmp(CallExpr * TheCall)5465  bool Sema::BuiltinLongjmp(CallExpr *TheCall) {
5466    if (!Context.getTargetInfo().hasSjLjLowering())
5467      return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
5468             << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5469  
5470    Expr *Arg = TheCall->getArg(1);
5471    llvm::APSInt Result;
5472  
5473    // TODO: This is less than ideal. Overload this to take a value.
5474    if (BuiltinConstantArg(TheCall, 1, Result))
5475      return true;
5476  
5477    if (Result != 1)
5478      return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
5479             << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
5480  
5481    return false;
5482  }
5483  
BuiltinSetjmp(CallExpr * TheCall)5484  bool Sema::BuiltinSetjmp(CallExpr *TheCall) {
5485    if (!Context.getTargetInfo().hasSjLjLowering())
5486      return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
5487             << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5488    return false;
5489  }
5490  
5491  namespace {
5492  
5493  class UncoveredArgHandler {
5494    enum { Unknown = -1, AllCovered = -2 };
5495  
5496    signed FirstUncoveredArg = Unknown;
5497    SmallVector<const Expr *, 4> DiagnosticExprs;
5498  
5499  public:
5500    UncoveredArgHandler() = default;
5501  
hasUncoveredArg() const5502    bool hasUncoveredArg() const {
5503      return (FirstUncoveredArg >= 0);
5504    }
5505  
getUncoveredArg() const5506    unsigned getUncoveredArg() const {
5507      assert(hasUncoveredArg() && "no uncovered argument");
5508      return FirstUncoveredArg;
5509    }
5510  
setAllCovered()5511    void setAllCovered() {
5512      // A string has been found with all arguments covered, so clear out
5513      // the diagnostics.
5514      DiagnosticExprs.clear();
5515      FirstUncoveredArg = AllCovered;
5516    }
5517  
Update(signed NewFirstUncoveredArg,const Expr * StrExpr)5518    void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
5519      assert(NewFirstUncoveredArg >= 0 && "Outside range");
5520  
5521      // Don't update if a previous string covers all arguments.
5522      if (FirstUncoveredArg == AllCovered)
5523        return;
5524  
5525      // UncoveredArgHandler tracks the highest uncovered argument index
5526      // and with it all the strings that match this index.
5527      if (NewFirstUncoveredArg == FirstUncoveredArg)
5528        DiagnosticExprs.push_back(StrExpr);
5529      else if (NewFirstUncoveredArg > FirstUncoveredArg) {
5530        DiagnosticExprs.clear();
5531        DiagnosticExprs.push_back(StrExpr);
5532        FirstUncoveredArg = NewFirstUncoveredArg;
5533      }
5534    }
5535  
5536    void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
5537  };
5538  
5539  enum StringLiteralCheckType {
5540    SLCT_NotALiteral,
5541    SLCT_UncheckedLiteral,
5542    SLCT_CheckedLiteral
5543  };
5544  
5545  } // namespace
5546  
sumOffsets(llvm::APSInt & Offset,llvm::APSInt Addend,BinaryOperatorKind BinOpKind,bool AddendIsRight)5547  static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
5548                                       BinaryOperatorKind BinOpKind,
5549                                       bool AddendIsRight) {
5550    unsigned BitWidth = Offset.getBitWidth();
5551    unsigned AddendBitWidth = Addend.getBitWidth();
5552    // There might be negative interim results.
5553    if (Addend.isUnsigned()) {
5554      Addend = Addend.zext(++AddendBitWidth);
5555      Addend.setIsSigned(true);
5556    }
5557    // Adjust the bit width of the APSInts.
5558    if (AddendBitWidth > BitWidth) {
5559      Offset = Offset.sext(AddendBitWidth);
5560      BitWidth = AddendBitWidth;
5561    } else if (BitWidth > AddendBitWidth) {
5562      Addend = Addend.sext(BitWidth);
5563    }
5564  
5565    bool Ov = false;
5566    llvm::APSInt ResOffset = Offset;
5567    if (BinOpKind == BO_Add)
5568      ResOffset = Offset.sadd_ov(Addend, Ov);
5569    else {
5570      assert(AddendIsRight && BinOpKind == BO_Sub &&
5571             "operator must be add or sub with addend on the right");
5572      ResOffset = Offset.ssub_ov(Addend, Ov);
5573    }
5574  
5575    // We add an offset to a pointer here so we should support an offset as big as
5576    // possible.
5577    if (Ov) {
5578      assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
5579             "index (intermediate) result too big");
5580      Offset = Offset.sext(2 * BitWidth);
5581      sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
5582      return;
5583    }
5584  
5585    Offset = ResOffset;
5586  }
5587  
5588  namespace {
5589  
5590  // This is a wrapper class around StringLiteral to support offsetted string
5591  // literals as format strings. It takes the offset into account when returning
5592  // the string and its length or the source locations to display notes correctly.
5593  class FormatStringLiteral {
5594    const StringLiteral *FExpr;
5595    int64_t Offset;
5596  
5597   public:
FormatStringLiteral(const StringLiteral * fexpr,int64_t Offset=0)5598    FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
5599        : FExpr(fexpr), Offset(Offset) {}
5600  
getString() const5601    StringRef getString() const {
5602      return FExpr->getString().drop_front(Offset);
5603    }
5604  
getByteLength() const5605    unsigned getByteLength() const {
5606      return FExpr->getByteLength() - getCharByteWidth() * Offset;
5607    }
5608  
getLength() const5609    unsigned getLength() const { return FExpr->getLength() - Offset; }
getCharByteWidth() const5610    unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
5611  
getKind() const5612    StringLiteralKind getKind() const { return FExpr->getKind(); }
5613  
getType() const5614    QualType getType() const { return FExpr->getType(); }
5615  
isAscii() const5616    bool isAscii() const { return FExpr->isOrdinary(); }
isWide() const5617    bool isWide() const { return FExpr->isWide(); }
isUTF8() const5618    bool isUTF8() const { return FExpr->isUTF8(); }
isUTF16() const5619    bool isUTF16() const { return FExpr->isUTF16(); }
isUTF32() const5620    bool isUTF32() const { return FExpr->isUTF32(); }
isPascal() const5621    bool isPascal() const { return FExpr->isPascal(); }
5622  
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken=nullptr,unsigned * StartTokenByteOffset=nullptr) const5623    SourceLocation getLocationOfByte(
5624        unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
5625        const TargetInfo &Target, unsigned *StartToken = nullptr,
5626        unsigned *StartTokenByteOffset = nullptr) const {
5627      return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
5628                                      StartToken, StartTokenByteOffset);
5629    }
5630  
getBeginLoc() const5631    SourceLocation getBeginLoc() const LLVM_READONLY {
5632      return FExpr->getBeginLoc().getLocWithOffset(Offset);
5633    }
5634  
getEndLoc() const5635    SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
5636  };
5637  
5638  } // namespace
5639  
5640  static void CheckFormatString(
5641      Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
5642      ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
5643      unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
5644      bool inFunctionCall, Sema::VariadicCallType CallType,
5645      llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
5646      bool IgnoreStringsWithoutSpecifiers);
5647  
5648  static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
5649                                                 const Expr *E);
5650  
5651  // Determine if an expression is a string literal or constant string.
5652  // If this function returns false on the arguments to a function expecting a
5653  // format string, we will usually need to emit a warning.
5654  // True string literals are then checked by CheckFormatString.
5655  static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,llvm::APSInt Offset,bool IgnoreStringsWithoutSpecifiers=false)5656  checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
5657                        Sema::FormatArgumentPassingKind APK, unsigned format_idx,
5658                        unsigned firstDataArg, Sema::FormatStringType Type,
5659                        Sema::VariadicCallType CallType, bool InFunctionCall,
5660                        llvm::SmallBitVector &CheckedVarArgs,
5661                        UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
5662                        bool IgnoreStringsWithoutSpecifiers = false) {
5663    if (S.isConstantEvaluatedContext())
5664      return SLCT_NotALiteral;
5665  tryAgain:
5666    assert(Offset.isSigned() && "invalid offset");
5667  
5668    if (E->isTypeDependent() || E->isValueDependent())
5669      return SLCT_NotALiteral;
5670  
5671    E = E->IgnoreParenCasts();
5672  
5673    if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
5674      // Technically -Wformat-nonliteral does not warn about this case.
5675      // The behavior of printf and friends in this case is implementation
5676      // dependent.  Ideally if the format string cannot be null then
5677      // it should have a 'nonnull' attribute in the function prototype.
5678      return SLCT_UncheckedLiteral;
5679  
5680    switch (E->getStmtClass()) {
5681    case Stmt::InitListExprClass:
5682      // Handle expressions like {"foobar"}.
5683      if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
5684        return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
5685                                     Type, CallType, /*InFunctionCall*/ false,
5686                                     CheckedVarArgs, UncoveredArg, Offset,
5687                                     IgnoreStringsWithoutSpecifiers);
5688      }
5689      return SLCT_NotALiteral;
5690    case Stmt::BinaryConditionalOperatorClass:
5691    case Stmt::ConditionalOperatorClass: {
5692      // The expression is a literal if both sub-expressions were, and it was
5693      // completely checked only if both sub-expressions were checked.
5694      const AbstractConditionalOperator *C =
5695          cast<AbstractConditionalOperator>(E);
5696  
5697      // Determine whether it is necessary to check both sub-expressions, for
5698      // example, because the condition expression is a constant that can be
5699      // evaluated at compile time.
5700      bool CheckLeft = true, CheckRight = true;
5701  
5702      bool Cond;
5703      if (C->getCond()->EvaluateAsBooleanCondition(
5704              Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
5705        if (Cond)
5706          CheckRight = false;
5707        else
5708          CheckLeft = false;
5709      }
5710  
5711      // We need to maintain the offsets for the right and the left hand side
5712      // separately to check if every possible indexed expression is a valid
5713      // string literal. They might have different offsets for different string
5714      // literals in the end.
5715      StringLiteralCheckType Left;
5716      if (!CheckLeft)
5717        Left = SLCT_UncheckedLiteral;
5718      else {
5719        Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
5720                                     firstDataArg, Type, CallType, InFunctionCall,
5721                                     CheckedVarArgs, UncoveredArg, Offset,
5722                                     IgnoreStringsWithoutSpecifiers);
5723        if (Left == SLCT_NotALiteral || !CheckRight) {
5724          return Left;
5725        }
5726      }
5727  
5728      StringLiteralCheckType Right = checkFormatStringExpr(
5729          S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
5730          CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5731          IgnoreStringsWithoutSpecifiers);
5732  
5733      return (CheckLeft && Left < Right) ? Left : Right;
5734    }
5735  
5736    case Stmt::ImplicitCastExprClass:
5737      E = cast<ImplicitCastExpr>(E)->getSubExpr();
5738      goto tryAgain;
5739  
5740    case Stmt::OpaqueValueExprClass:
5741      if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
5742        E = src;
5743        goto tryAgain;
5744      }
5745      return SLCT_NotALiteral;
5746  
5747    case Stmt::PredefinedExprClass:
5748      // While __func__, etc., are technically not string literals, they
5749      // cannot contain format specifiers and thus are not a security
5750      // liability.
5751      return SLCT_UncheckedLiteral;
5752  
5753    case Stmt::DeclRefExprClass: {
5754      const DeclRefExpr *DR = cast<DeclRefExpr>(E);
5755  
5756      // As an exception, do not flag errors for variables binding to
5757      // const string literals.
5758      if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
5759        bool isConstant = false;
5760        QualType T = DR->getType();
5761  
5762        if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
5763          isConstant = AT->getElementType().isConstant(S.Context);
5764        } else if (const PointerType *PT = T->getAs<PointerType>()) {
5765          isConstant = T.isConstant(S.Context) &&
5766                       PT->getPointeeType().isConstant(S.Context);
5767        } else if (T->isObjCObjectPointerType()) {
5768          // In ObjC, there is usually no "const ObjectPointer" type,
5769          // so don't check if the pointee type is constant.
5770          isConstant = T.isConstant(S.Context);
5771        }
5772  
5773        if (isConstant) {
5774          if (const Expr *Init = VD->getAnyInitializer()) {
5775            // Look through initializers like const char c[] = { "foo" }
5776            if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
5777              if (InitList->isStringLiteralInit())
5778                Init = InitList->getInit(0)->IgnoreParenImpCasts();
5779            }
5780            return checkFormatStringExpr(
5781                S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
5782                /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
5783          }
5784        }
5785  
5786        // When the format argument is an argument of this function, and this
5787        // function also has the format attribute, there are several interactions
5788        // for which there shouldn't be a warning. For instance, when calling
5789        // v*printf from a function that has the printf format attribute, we
5790        // should not emit a warning about using `fmt`, even though it's not
5791        // constant, because the arguments have already been checked for the
5792        // caller of `logmessage`:
5793        //
5794        //  __attribute__((format(printf, 1, 2)))
5795        //  void logmessage(char const *fmt, ...) {
5796        //    va_list ap;
5797        //    va_start(ap, fmt);
5798        //    vprintf(fmt, ap);  /* do not emit a warning about "fmt" */
5799        //    ...
5800        // }
5801        //
5802        // Another interaction that we need to support is calling a variadic
5803        // format function from a format function that has fixed arguments. For
5804        // instance:
5805        //
5806        //  __attribute__((format(printf, 1, 2)))
5807        //  void logstring(char const *fmt, char const *str) {
5808        //    printf(fmt, str);  /* do not emit a warning about "fmt" */
5809        //  }
5810        //
5811        // Same (and perhaps more relatably) for the variadic template case:
5812        //
5813        //  template<typename... Args>
5814        //  __attribute__((format(printf, 1, 2)))
5815        //  void log(const char *fmt, Args&&... args) {
5816        //    printf(fmt, forward<Args>(args)...);
5817        //           /* do not emit a warning about "fmt" */
5818        //  }
5819        //
5820        // Due to implementation difficulty, we only check the format, not the
5821        // format arguments, in all cases.
5822        //
5823        if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
5824          if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
5825            for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
5826              bool IsCXXMember = false;
5827              if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
5828                IsCXXMember = MD->isInstance();
5829  
5830              bool IsVariadic = false;
5831              if (const FunctionType *FnTy = D->getFunctionType())
5832                IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
5833              else if (const auto *BD = dyn_cast<BlockDecl>(D))
5834                IsVariadic = BD->isVariadic();
5835              else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
5836                IsVariadic = OMD->isVariadic();
5837  
5838              Sema::FormatStringInfo CallerFSI;
5839              if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
5840                                            &CallerFSI)) {
5841                // We also check if the formats are compatible.
5842                // We can't pass a 'scanf' string to a 'printf' function.
5843                if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
5844                    Type == S.GetFormatStringType(PVFormat)) {
5845                  // Lastly, check that argument passing kinds transition in a
5846                  // way that makes sense:
5847                  // from a caller with FAPK_VAList, allow FAPK_VAList
5848                  // from a caller with FAPK_Fixed, allow FAPK_Fixed
5849                  // from a caller with FAPK_Fixed, allow FAPK_Variadic
5850                  // from a caller with FAPK_Variadic, allow FAPK_VAList
5851                  switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
5852                  case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
5853                  case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
5854                  case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
5855                  case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
5856                    return SLCT_UncheckedLiteral;
5857                  }
5858                }
5859              }
5860            }
5861          }
5862        }
5863      }
5864  
5865      return SLCT_NotALiteral;
5866    }
5867  
5868    case Stmt::CallExprClass:
5869    case Stmt::CXXMemberCallExprClass: {
5870      const CallExpr *CE = cast<CallExpr>(E);
5871      if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
5872        bool IsFirst = true;
5873        StringLiteralCheckType CommonResult;
5874        for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
5875          const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
5876          StringLiteralCheckType Result = checkFormatStringExpr(
5877              S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
5878              InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5879              IgnoreStringsWithoutSpecifiers);
5880          if (IsFirst) {
5881            CommonResult = Result;
5882            IsFirst = false;
5883          }
5884        }
5885        if (!IsFirst)
5886          return CommonResult;
5887  
5888        if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
5889          unsigned BuiltinID = FD->getBuiltinID();
5890          if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
5891              BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
5892            const Expr *Arg = CE->getArg(0);
5893            return checkFormatStringExpr(
5894                S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
5895                InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5896                IgnoreStringsWithoutSpecifiers);
5897          }
5898        }
5899      }
5900      if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
5901        return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
5902                                     Type, CallType, /*InFunctionCall*/ false,
5903                                     CheckedVarArgs, UncoveredArg, Offset,
5904                                     IgnoreStringsWithoutSpecifiers);
5905      return SLCT_NotALiteral;
5906    }
5907    case Stmt::ObjCMessageExprClass: {
5908      const auto *ME = cast<ObjCMessageExpr>(E);
5909      if (const auto *MD = ME->getMethodDecl()) {
5910        if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
5911          // As a special case heuristic, if we're using the method -[NSBundle
5912          // localizedStringForKey:value:table:], ignore any key strings that lack
5913          // format specifiers. The idea is that if the key doesn't have any
5914          // format specifiers then its probably just a key to map to the
5915          // localized strings. If it does have format specifiers though, then its
5916          // likely that the text of the key is the format string in the
5917          // programmer's language, and should be checked.
5918          const ObjCInterfaceDecl *IFace;
5919          if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
5920              IFace->getIdentifier()->isStr("NSBundle") &&
5921              MD->getSelector().isKeywordSelector(
5922                  {"localizedStringForKey", "value", "table"})) {
5923            IgnoreStringsWithoutSpecifiers = true;
5924          }
5925  
5926          const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
5927          return checkFormatStringExpr(
5928              S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
5929              InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5930              IgnoreStringsWithoutSpecifiers);
5931        }
5932      }
5933  
5934      return SLCT_NotALiteral;
5935    }
5936    case Stmt::ObjCStringLiteralClass:
5937    case Stmt::StringLiteralClass: {
5938      const StringLiteral *StrE = nullptr;
5939  
5940      if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
5941        StrE = ObjCFExpr->getString();
5942      else
5943        StrE = cast<StringLiteral>(E);
5944  
5945      if (StrE) {
5946        if (Offset.isNegative() || Offset > StrE->getLength()) {
5947          // TODO: It would be better to have an explicit warning for out of
5948          // bounds literals.
5949          return SLCT_NotALiteral;
5950        }
5951        FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
5952        CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
5953                          InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
5954                          IgnoreStringsWithoutSpecifiers);
5955        return SLCT_CheckedLiteral;
5956      }
5957  
5958      return SLCT_NotALiteral;
5959    }
5960    case Stmt::BinaryOperatorClass: {
5961      const BinaryOperator *BinOp = cast<BinaryOperator>(E);
5962  
5963      // A string literal + an int offset is still a string literal.
5964      if (BinOp->isAdditiveOp()) {
5965        Expr::EvalResult LResult, RResult;
5966  
5967        bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
5968            LResult, S.Context, Expr::SE_NoSideEffects,
5969            S.isConstantEvaluatedContext());
5970        bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
5971            RResult, S.Context, Expr::SE_NoSideEffects,
5972            S.isConstantEvaluatedContext());
5973  
5974        if (LIsInt != RIsInt) {
5975          BinaryOperatorKind BinOpKind = BinOp->getOpcode();
5976  
5977          if (LIsInt) {
5978            if (BinOpKind == BO_Add) {
5979              sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
5980              E = BinOp->getRHS();
5981              goto tryAgain;
5982            }
5983          } else {
5984            sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
5985            E = BinOp->getLHS();
5986            goto tryAgain;
5987          }
5988        }
5989      }
5990  
5991      return SLCT_NotALiteral;
5992    }
5993    case Stmt::UnaryOperatorClass: {
5994      const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
5995      auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
5996      if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
5997        Expr::EvalResult IndexResult;
5998        if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
5999                                         Expr::SE_NoSideEffects,
6000                                         S.isConstantEvaluatedContext())) {
6001          sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
6002                     /*RHS is int*/ true);
6003          E = ASE->getBase();
6004          goto tryAgain;
6005        }
6006      }
6007  
6008      return SLCT_NotALiteral;
6009    }
6010  
6011    default:
6012      return SLCT_NotALiteral;
6013    }
6014  }
6015  
6016  // If this expression can be evaluated at compile-time,
6017  // check if the result is a StringLiteral and return it
6018  // otherwise return nullptr
maybeConstEvalStringLiteral(ASTContext & Context,const Expr * E)6019  static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
6020                                                 const Expr *E) {
6021    Expr::EvalResult Result;
6022    if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
6023      const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
6024      if (isa_and_nonnull<StringLiteral>(LVE))
6025        return LVE;
6026    }
6027    return nullptr;
6028  }
6029  
GetFormatStringType(const FormatAttr * Format)6030  Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
6031    return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
6032        .Case("scanf", FST_Scanf)
6033        .Cases("printf", "printf0", FST_Printf)
6034        .Cases("NSString", "CFString", FST_NSString)
6035        .Case("strftime", FST_Strftime)
6036        .Case("strfmon", FST_Strfmon)
6037        .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
6038        .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
6039        .Case("os_trace", FST_OSLog)
6040        .Case("os_log", FST_OSLog)
6041        .Default(FST_Unknown);
6042  }
6043  
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)6044  bool Sema::CheckFormatArguments(const FormatAttr *Format,
6045                                  ArrayRef<const Expr *> Args, bool IsCXXMember,
6046                                  VariadicCallType CallType, SourceLocation Loc,
6047                                  SourceRange Range,
6048                                  llvm::SmallBitVector &CheckedVarArgs) {
6049    FormatStringInfo FSI;
6050    if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
6051                            &FSI))
6052      return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
6053                                  FSI.FirstDataArg, GetFormatStringType(Format),
6054                                  CallType, Loc, Range, CheckedVarArgs);
6055    return false;
6056  }
6057  
CheckFormatArguments(ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)6058  bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
6059                                  Sema::FormatArgumentPassingKind APK,
6060                                  unsigned format_idx, unsigned firstDataArg,
6061                                  FormatStringType Type,
6062                                  VariadicCallType CallType, SourceLocation Loc,
6063                                  SourceRange Range,
6064                                  llvm::SmallBitVector &CheckedVarArgs) {
6065    // CHECK: printf/scanf-like function is called with no format string.
6066    if (format_idx >= Args.size()) {
6067      Diag(Loc, diag::warn_missing_format_string) << Range;
6068      return false;
6069    }
6070  
6071    const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
6072  
6073    // CHECK: format string is not a string literal.
6074    //
6075    // Dynamically generated format strings are difficult to
6076    // automatically vet at compile time.  Requiring that format strings
6077    // are string literals: (1) permits the checking of format strings by
6078    // the compiler and thereby (2) can practically remove the source of
6079    // many format string exploits.
6080  
6081    // Format string can be either ObjC string (e.g. @"%d") or
6082    // C string (e.g. "%d")
6083    // ObjC string uses the same format specifiers as C string, so we can use
6084    // the same format string checking logic for both ObjC and C strings.
6085    UncoveredArgHandler UncoveredArg;
6086    StringLiteralCheckType CT = checkFormatStringExpr(
6087        *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
6088        CallType,
6089        /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
6090        /*no string offset*/ llvm::APSInt(64, false) = 0);
6091  
6092    // Generate a diagnostic where an uncovered argument is detected.
6093    if (UncoveredArg.hasUncoveredArg()) {
6094      unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
6095      assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
6096      UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
6097    }
6098  
6099    if (CT != SLCT_NotALiteral)
6100      // Literal format string found, check done!
6101      return CT == SLCT_CheckedLiteral;
6102  
6103    // Strftime is particular as it always uses a single 'time' argument,
6104    // so it is safe to pass a non-literal string.
6105    if (Type == FST_Strftime)
6106      return false;
6107  
6108    // Do not emit diag when the string param is a macro expansion and the
6109    // format is either NSString or CFString. This is a hack to prevent
6110    // diag when using the NSLocalizedString and CFCopyLocalizedString macros
6111    // which are usually used in place of NS and CF string literals.
6112    SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
6113    if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
6114      return false;
6115  
6116    // If there are no arguments specified, warn with -Wformat-security, otherwise
6117    // warn only with -Wformat-nonliteral.
6118    if (Args.size() == firstDataArg) {
6119      Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
6120        << OrigFormatExpr->getSourceRange();
6121      switch (Type) {
6122      default:
6123        break;
6124      case FST_Kprintf:
6125      case FST_FreeBSDKPrintf:
6126      case FST_Printf:
6127        Diag(FormatLoc, diag::note_format_security_fixit)
6128          << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
6129        break;
6130      case FST_NSString:
6131        Diag(FormatLoc, diag::note_format_security_fixit)
6132          << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
6133        break;
6134      }
6135    } else {
6136      Diag(FormatLoc, diag::warn_format_nonliteral)
6137        << OrigFormatExpr->getSourceRange();
6138    }
6139    return false;
6140  }
6141  
6142  namespace {
6143  
6144  class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
6145  protected:
6146    Sema &S;
6147    const FormatStringLiteral *FExpr;
6148    const Expr *OrigFormatExpr;
6149    const Sema::FormatStringType FSType;
6150    const unsigned FirstDataArg;
6151    const unsigned NumDataArgs;
6152    const char *Beg; // Start of format string.
6153    const Sema::FormatArgumentPassingKind ArgPassingKind;
6154    ArrayRef<const Expr *> Args;
6155    unsigned FormatIdx;
6156    llvm::SmallBitVector CoveredArgs;
6157    bool usesPositionalArgs = false;
6158    bool atFirstArg = true;
6159    bool inFunctionCall;
6160    Sema::VariadicCallType CallType;
6161    llvm::SmallBitVector &CheckedVarArgs;
6162    UncoveredArgHandler &UncoveredArg;
6163  
6164  public:
CheckFormatHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)6165    CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
6166                       const Expr *origFormatExpr,
6167                       const Sema::FormatStringType type, unsigned firstDataArg,
6168                       unsigned numDataArgs, const char *beg,
6169                       Sema::FormatArgumentPassingKind APK,
6170                       ArrayRef<const Expr *> Args, unsigned formatIdx,
6171                       bool inFunctionCall, Sema::VariadicCallType callType,
6172                       llvm::SmallBitVector &CheckedVarArgs,
6173                       UncoveredArgHandler &UncoveredArg)
6174        : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
6175          FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
6176          ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
6177          inFunctionCall(inFunctionCall), CallType(callType),
6178          CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
6179      CoveredArgs.resize(numDataArgs);
6180      CoveredArgs.reset();
6181    }
6182  
6183    void DoneProcessing();
6184  
6185    void HandleIncompleteSpecifier(const char *startSpecifier,
6186                                   unsigned specifierLen) override;
6187  
6188    void HandleInvalidLengthModifier(
6189                             const analyze_format_string::FormatSpecifier &FS,
6190                             const analyze_format_string::ConversionSpecifier &CS,
6191                             const char *startSpecifier, unsigned specifierLen,
6192                             unsigned DiagID);
6193  
6194    void HandleNonStandardLengthModifier(
6195                      const analyze_format_string::FormatSpecifier &FS,
6196                      const char *startSpecifier, unsigned specifierLen);
6197  
6198    void HandleNonStandardConversionSpecifier(
6199                      const analyze_format_string::ConversionSpecifier &CS,
6200                      const char *startSpecifier, unsigned specifierLen);
6201  
6202    void HandlePosition(const char *startPos, unsigned posLen) override;
6203  
6204    void HandleInvalidPosition(const char *startSpecifier,
6205                               unsigned specifierLen,
6206                               analyze_format_string::PositionContext p) override;
6207  
6208    void HandleZeroPosition(const char *startPos, unsigned posLen) override;
6209  
6210    void HandleNullChar(const char *nullCharacter) override;
6211  
6212    template <typename Range>
6213    static void
6214    EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
6215                         const PartialDiagnostic &PDiag, SourceLocation StringLoc,
6216                         bool IsStringLocation, Range StringRange,
6217                         ArrayRef<FixItHint> Fixit = std::nullopt);
6218  
6219  protected:
6220    bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
6221                                          const char *startSpec,
6222                                          unsigned specifierLen,
6223                                          const char *csStart, unsigned csLen);
6224  
6225    void HandlePositionalNonpositionalArgs(SourceLocation Loc,
6226                                           const char *startSpec,
6227                                           unsigned specifierLen);
6228  
6229    SourceRange getFormatStringRange();
6230    CharSourceRange getSpecifierRange(const char *startSpecifier,
6231                                      unsigned specifierLen);
6232    SourceLocation getLocationOfByte(const char *x);
6233  
6234    const Expr *getDataArg(unsigned i) const;
6235  
6236    bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
6237                      const analyze_format_string::ConversionSpecifier &CS,
6238                      const char *startSpecifier, unsigned specifierLen,
6239                      unsigned argIndex);
6240  
6241    template <typename Range>
6242    void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
6243                              bool IsStringLocation, Range StringRange,
6244                              ArrayRef<FixItHint> Fixit = std::nullopt);
6245  };
6246  
6247  } // namespace
6248  
getFormatStringRange()6249  SourceRange CheckFormatHandler::getFormatStringRange() {
6250    return OrigFormatExpr->getSourceRange();
6251  }
6252  
6253  CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)6254  getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
6255    SourceLocation Start = getLocationOfByte(startSpecifier);
6256    SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
6257  
6258    // Advance the end SourceLocation by one due to half-open ranges.
6259    End = End.getLocWithOffset(1);
6260  
6261    return CharSourceRange::getCharRange(Start, End);
6262  }
6263  
getLocationOfByte(const char * x)6264  SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
6265    return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
6266                                    S.getLangOpts(), S.Context.getTargetInfo());
6267  }
6268  
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)6269  void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
6270                                                     unsigned specifierLen){
6271    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
6272                         getLocationOfByte(startSpecifier),
6273                         /*IsStringLocation*/true,
6274                         getSpecifierRange(startSpecifier, specifierLen));
6275  }
6276  
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)6277  void CheckFormatHandler::HandleInvalidLengthModifier(
6278      const analyze_format_string::FormatSpecifier &FS,
6279      const analyze_format_string::ConversionSpecifier &CS,
6280      const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
6281    using namespace analyze_format_string;
6282  
6283    const LengthModifier &LM = FS.getLengthModifier();
6284    CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6285  
6286    // See if we know how to fix this length modifier.
6287    std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6288    if (FixedLM) {
6289      EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6290                           getLocationOfByte(LM.getStart()),
6291                           /*IsStringLocation*/true,
6292                           getSpecifierRange(startSpecifier, specifierLen));
6293  
6294      S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6295        << FixedLM->toString()
6296        << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6297  
6298    } else {
6299      FixItHint Hint;
6300      if (DiagID == diag::warn_format_nonsensical_length)
6301        Hint = FixItHint::CreateRemoval(LMRange);
6302  
6303      EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6304                           getLocationOfByte(LM.getStart()),
6305                           /*IsStringLocation*/true,
6306                           getSpecifierRange(startSpecifier, specifierLen),
6307                           Hint);
6308    }
6309  }
6310  
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)6311  void CheckFormatHandler::HandleNonStandardLengthModifier(
6312      const analyze_format_string::FormatSpecifier &FS,
6313      const char *startSpecifier, unsigned specifierLen) {
6314    using namespace analyze_format_string;
6315  
6316    const LengthModifier &LM = FS.getLengthModifier();
6317    CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6318  
6319    // See if we know how to fix this length modifier.
6320    std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6321    if (FixedLM) {
6322      EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6323                             << LM.toString() << 0,
6324                           getLocationOfByte(LM.getStart()),
6325                           /*IsStringLocation*/true,
6326                           getSpecifierRange(startSpecifier, specifierLen));
6327  
6328      S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6329        << FixedLM->toString()
6330        << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6331  
6332    } else {
6333      EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6334                             << LM.toString() << 0,
6335                           getLocationOfByte(LM.getStart()),
6336                           /*IsStringLocation*/true,
6337                           getSpecifierRange(startSpecifier, specifierLen));
6338    }
6339  }
6340  
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)6341  void CheckFormatHandler::HandleNonStandardConversionSpecifier(
6342      const analyze_format_string::ConversionSpecifier &CS,
6343      const char *startSpecifier, unsigned specifierLen) {
6344    using namespace analyze_format_string;
6345  
6346    // See if we know how to fix this conversion specifier.
6347    std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
6348    if (FixedCS) {
6349      EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6350                            << CS.toString() << /*conversion specifier*/1,
6351                           getLocationOfByte(CS.getStart()),
6352                           /*IsStringLocation*/true,
6353                           getSpecifierRange(startSpecifier, specifierLen));
6354  
6355      CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
6356      S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
6357        << FixedCS->toString()
6358        << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
6359    } else {
6360      EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6361                            << CS.toString() << /*conversion specifier*/1,
6362                           getLocationOfByte(CS.getStart()),
6363                           /*IsStringLocation*/true,
6364                           getSpecifierRange(startSpecifier, specifierLen));
6365    }
6366  }
6367  
HandlePosition(const char * startPos,unsigned posLen)6368  void CheckFormatHandler::HandlePosition(const char *startPos,
6369                                          unsigned posLen) {
6370    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
6371                                 getLocationOfByte(startPos),
6372                                 /*IsStringLocation*/true,
6373                                 getSpecifierRange(startPos, posLen));
6374  }
6375  
HandleInvalidPosition(const char * startSpecifier,unsigned specifierLen,analyze_format_string::PositionContext p)6376  void CheckFormatHandler::HandleInvalidPosition(
6377      const char *startSpecifier, unsigned specifierLen,
6378      analyze_format_string::PositionContext p) {
6379    EmitFormatDiagnostic(
6380        S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
6381        getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
6382        getSpecifierRange(startSpecifier, specifierLen));
6383  }
6384  
HandleZeroPosition(const char * startPos,unsigned posLen)6385  void CheckFormatHandler::HandleZeroPosition(const char *startPos,
6386                                              unsigned posLen) {
6387    EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
6388                                 getLocationOfByte(startPos),
6389                                 /*IsStringLocation*/true,
6390                                 getSpecifierRange(startPos, posLen));
6391  }
6392  
HandleNullChar(const char * nullCharacter)6393  void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
6394    if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
6395      // The presence of a null character is likely an error.
6396      EmitFormatDiagnostic(
6397        S.PDiag(diag::warn_printf_format_string_contains_null_char),
6398        getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
6399        getFormatStringRange());
6400    }
6401  }
6402  
6403  // Note that this may return NULL if there was an error parsing or building
6404  // one of the argument expressions.
getDataArg(unsigned i) const6405  const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
6406    return Args[FirstDataArg + i];
6407  }
6408  
DoneProcessing()6409  void CheckFormatHandler::DoneProcessing() {
6410    // Does the number of data arguments exceed the number of
6411    // format conversions in the format string?
6412    if (ArgPassingKind != Sema::FAPK_VAList) {
6413      // Find any arguments that weren't covered.
6414      CoveredArgs.flip();
6415      signed notCoveredArg = CoveredArgs.find_first();
6416      if (notCoveredArg >= 0) {
6417        assert((unsigned)notCoveredArg < NumDataArgs);
6418        UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
6419      } else {
6420        UncoveredArg.setAllCovered();
6421      }
6422    }
6423  }
6424  
Diagnose(Sema & S,bool IsFunctionCall,const Expr * ArgExpr)6425  void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
6426                                     const Expr *ArgExpr) {
6427    assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
6428           "Invalid state");
6429  
6430    if (!ArgExpr)
6431      return;
6432  
6433    SourceLocation Loc = ArgExpr->getBeginLoc();
6434  
6435    if (S.getSourceManager().isInSystemMacro(Loc))
6436      return;
6437  
6438    PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
6439    for (auto E : DiagnosticExprs)
6440      PDiag << E->getSourceRange();
6441  
6442    CheckFormatHandler::EmitFormatDiagnostic(
6443                                    S, IsFunctionCall, DiagnosticExprs[0],
6444                                    PDiag, Loc, /*IsStringLocation*/false,
6445                                    DiagnosticExprs[0]->getSourceRange());
6446  }
6447  
6448  bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)6449  CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
6450                                                       SourceLocation Loc,
6451                                                       const char *startSpec,
6452                                                       unsigned specifierLen,
6453                                                       const char *csStart,
6454                                                       unsigned csLen) {
6455    bool keepGoing = true;
6456    if (argIndex < NumDataArgs) {
6457      // Consider the argument coverered, even though the specifier doesn't
6458      // make sense.
6459      CoveredArgs.set(argIndex);
6460    }
6461    else {
6462      // If argIndex exceeds the number of data arguments we
6463      // don't issue a warning because that is just a cascade of warnings (and
6464      // they may have intended '%%' anyway). We don't want to continue processing
6465      // the format string after this point, however, as we will like just get
6466      // gibberish when trying to match arguments.
6467      keepGoing = false;
6468    }
6469  
6470    StringRef Specifier(csStart, csLen);
6471  
6472    // If the specifier in non-printable, it could be the first byte of a UTF-8
6473    // sequence. In that case, print the UTF-8 code point. If not, print the byte
6474    // hex value.
6475    std::string CodePointStr;
6476    if (!llvm::sys::locale::isPrint(*csStart)) {
6477      llvm::UTF32 CodePoint;
6478      const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
6479      const llvm::UTF8 *E =
6480          reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
6481      llvm::ConversionResult Result =
6482          llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
6483  
6484      if (Result != llvm::conversionOK) {
6485        unsigned char FirstChar = *csStart;
6486        CodePoint = (llvm::UTF32)FirstChar;
6487      }
6488  
6489      llvm::raw_string_ostream OS(CodePointStr);
6490      if (CodePoint < 256)
6491        OS << "\\x" << llvm::format("%02x", CodePoint);
6492      else if (CodePoint <= 0xFFFF)
6493        OS << "\\u" << llvm::format("%04x", CodePoint);
6494      else
6495        OS << "\\U" << llvm::format("%08x", CodePoint);
6496      OS.flush();
6497      Specifier = CodePointStr;
6498    }
6499  
6500    EmitFormatDiagnostic(
6501        S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
6502        /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
6503  
6504    return keepGoing;
6505  }
6506  
6507  void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)6508  CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
6509                                                        const char *startSpec,
6510                                                        unsigned specifierLen) {
6511    EmitFormatDiagnostic(
6512      S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
6513      Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
6514  }
6515  
6516  bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)6517  CheckFormatHandler::CheckNumArgs(
6518    const analyze_format_string::FormatSpecifier &FS,
6519    const analyze_format_string::ConversionSpecifier &CS,
6520    const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
6521  
6522    if (argIndex >= NumDataArgs) {
6523      PartialDiagnostic PDiag = FS.usesPositionalArg()
6524        ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
6525             << (argIndex+1) << NumDataArgs)
6526        : S.PDiag(diag::warn_printf_insufficient_data_args);
6527      EmitFormatDiagnostic(
6528        PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
6529        getSpecifierRange(startSpecifier, specifierLen));
6530  
6531      // Since more arguments than conversion tokens are given, by extension
6532      // all arguments are covered, so mark this as so.
6533      UncoveredArg.setAllCovered();
6534      return false;
6535    }
6536    return true;
6537  }
6538  
6539  template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)6540  void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
6541                                                SourceLocation Loc,
6542                                                bool IsStringLocation,
6543                                                Range StringRange,
6544                                                ArrayRef<FixItHint> FixIt) {
6545    EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
6546                         Loc, IsStringLocation, StringRange, FixIt);
6547  }
6548  
6549  /// If the format string is not within the function call, emit a note
6550  /// so that the function call and string are in diagnostic messages.
6551  ///
6552  /// \param InFunctionCall if true, the format string is within the function
6553  /// call and only one diagnostic message will be produced.  Otherwise, an
6554  /// extra note will be emitted pointing to location of the format string.
6555  ///
6556  /// \param ArgumentExpr the expression that is passed as the format string
6557  /// argument in the function call.  Used for getting locations when two
6558  /// diagnostics are emitted.
6559  ///
6560  /// \param PDiag the callee should already have provided any strings for the
6561  /// diagnostic message.  This function only adds locations and fixits
6562  /// to diagnostics.
6563  ///
6564  /// \param Loc primary location for diagnostic.  If two diagnostics are
6565  /// required, one will be at Loc and a new SourceLocation will be created for
6566  /// the other one.
6567  ///
6568  /// \param IsStringLocation if true, Loc points to the format string should be
6569  /// used for the note.  Otherwise, Loc points to the argument list and will
6570  /// be used with PDiag.
6571  ///
6572  /// \param StringRange some or all of the string to highlight.  This is
6573  /// templated so it can accept either a CharSourceRange or a SourceRange.
6574  ///
6575  /// \param FixIt optional fix it hint for the format string.
6576  template <typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,const PartialDiagnostic & PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)6577  void CheckFormatHandler::EmitFormatDiagnostic(
6578      Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
6579      const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
6580      Range StringRange, ArrayRef<FixItHint> FixIt) {
6581    if (InFunctionCall) {
6582      const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
6583      D << StringRange;
6584      D << FixIt;
6585    } else {
6586      S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
6587        << ArgumentExpr->getSourceRange();
6588  
6589      const Sema::SemaDiagnosticBuilder &Note =
6590        S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
6591               diag::note_format_string_defined);
6592  
6593      Note << StringRange;
6594      Note << FixIt;
6595    }
6596  }
6597  
6598  //===--- CHECK: Printf format string checking -----------------------------===//
6599  
6600  namespace {
6601  
6602  class CheckPrintfHandler : public CheckFormatHandler {
6603  public:
CheckPrintfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)6604    CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
6605                       const Expr *origFormatExpr,
6606                       const Sema::FormatStringType type, unsigned firstDataArg,
6607                       unsigned numDataArgs, bool isObjC, const char *beg,
6608                       Sema::FormatArgumentPassingKind APK,
6609                       ArrayRef<const Expr *> Args, unsigned formatIdx,
6610                       bool inFunctionCall, Sema::VariadicCallType CallType,
6611                       llvm::SmallBitVector &CheckedVarArgs,
6612                       UncoveredArgHandler &UncoveredArg)
6613        : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
6614                             numDataArgs, beg, APK, Args, formatIdx,
6615                             inFunctionCall, CallType, CheckedVarArgs,
6616                             UncoveredArg) {}
6617  
isObjCContext() const6618    bool isObjCContext() const { return FSType == Sema::FST_NSString; }
6619  
6620    /// Returns true if '%@' specifiers are allowed in the format string.
allowsObjCArg() const6621    bool allowsObjCArg() const {
6622      return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
6623             FSType == Sema::FST_OSTrace;
6624    }
6625  
6626    bool HandleInvalidPrintfConversionSpecifier(
6627                                        const analyze_printf::PrintfSpecifier &FS,
6628                                        const char *startSpecifier,
6629                                        unsigned specifierLen) override;
6630  
6631    void handleInvalidMaskType(StringRef MaskType) override;
6632  
6633    bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
6634                               const char *startSpecifier, unsigned specifierLen,
6635                               const TargetInfo &Target) override;
6636    bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
6637                         const char *StartSpecifier,
6638                         unsigned SpecifierLen,
6639                         const Expr *E);
6640  
6641    bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
6642                      const char *startSpecifier, unsigned specifierLen);
6643    void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
6644                             const analyze_printf::OptionalAmount &Amt,
6645                             unsigned type,
6646                             const char *startSpecifier, unsigned specifierLen);
6647    void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6648                    const analyze_printf::OptionalFlag &flag,
6649                    const char *startSpecifier, unsigned specifierLen);
6650    void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
6651                           const analyze_printf::OptionalFlag &ignoredFlag,
6652                           const analyze_printf::OptionalFlag &flag,
6653                           const char *startSpecifier, unsigned specifierLen);
6654    bool checkForCStrMembers(const analyze_printf::ArgType &AT,
6655                             const Expr *E);
6656  
6657    void HandleEmptyObjCModifierFlag(const char *startFlag,
6658                                     unsigned flagLen) override;
6659  
6660    void HandleInvalidObjCModifierFlag(const char *startFlag,
6661                                              unsigned flagLen) override;
6662  
6663    void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
6664                                             const char *flagsEnd,
6665                                             const char *conversionPosition)
6666                                               override;
6667  };
6668  
6669  } // namespace
6670  
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)6671  bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
6672                                        const analyze_printf::PrintfSpecifier &FS,
6673                                        const char *startSpecifier,
6674                                        unsigned specifierLen) {
6675    const analyze_printf::PrintfConversionSpecifier &CS =
6676      FS.getConversionSpecifier();
6677  
6678    return HandleInvalidConversionSpecifier(FS.getArgIndex(),
6679                                            getLocationOfByte(CS.getStart()),
6680                                            startSpecifier, specifierLen,
6681                                            CS.getStart(), CS.getLength());
6682  }
6683  
handleInvalidMaskType(StringRef MaskType)6684  void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
6685    S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
6686  }
6687  
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)6688  bool CheckPrintfHandler::HandleAmount(
6689      const analyze_format_string::OptionalAmount &Amt, unsigned k,
6690      const char *startSpecifier, unsigned specifierLen) {
6691    if (Amt.hasDataArgument()) {
6692      if (ArgPassingKind != Sema::FAPK_VAList) {
6693        unsigned argIndex = Amt.getArgIndex();
6694        if (argIndex >= NumDataArgs) {
6695          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
6696                                   << k,
6697                               getLocationOfByte(Amt.getStart()),
6698                               /*IsStringLocation*/ true,
6699                               getSpecifierRange(startSpecifier, specifierLen));
6700          // Don't do any more checking.  We will just emit
6701          // spurious errors.
6702          return false;
6703        }
6704  
6705        // Type check the data argument.  It should be an 'int'.
6706        // Although not in conformance with C99, we also allow the argument to be
6707        // an 'unsigned int' as that is a reasonably safe case.  GCC also
6708        // doesn't emit a warning for that case.
6709        CoveredArgs.set(argIndex);
6710        const Expr *Arg = getDataArg(argIndex);
6711        if (!Arg)
6712          return false;
6713  
6714        QualType T = Arg->getType();
6715  
6716        const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
6717        assert(AT.isValid());
6718  
6719        if (!AT.matchesType(S.Context, T)) {
6720          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
6721                                 << k << AT.getRepresentativeTypeName(S.Context)
6722                                 << T << Arg->getSourceRange(),
6723                               getLocationOfByte(Amt.getStart()),
6724                               /*IsStringLocation*/true,
6725                               getSpecifierRange(startSpecifier, specifierLen));
6726          // Don't do any more checking.  We will just emit
6727          // spurious errors.
6728          return false;
6729        }
6730      }
6731    }
6732    return true;
6733  }
6734  
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)6735  void CheckPrintfHandler::HandleInvalidAmount(
6736                                        const analyze_printf::PrintfSpecifier &FS,
6737                                        const analyze_printf::OptionalAmount &Amt,
6738                                        unsigned type,
6739                                        const char *startSpecifier,
6740                                        unsigned specifierLen) {
6741    const analyze_printf::PrintfConversionSpecifier &CS =
6742      FS.getConversionSpecifier();
6743  
6744    FixItHint fixit =
6745      Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
6746        ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
6747                                   Amt.getConstantLength()))
6748        : FixItHint();
6749  
6750    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
6751                           << type << CS.toString(),
6752                         getLocationOfByte(Amt.getStart()),
6753                         /*IsStringLocation*/true,
6754                         getSpecifierRange(startSpecifier, specifierLen),
6755                         fixit);
6756  }
6757  
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)6758  void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6759                                      const analyze_printf::OptionalFlag &flag,
6760                                      const char *startSpecifier,
6761                                      unsigned specifierLen) {
6762    // Warn about pointless flag with a fixit removal.
6763    const analyze_printf::PrintfConversionSpecifier &CS =
6764      FS.getConversionSpecifier();
6765    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
6766                           << flag.toString() << CS.toString(),
6767                         getLocationOfByte(flag.getPosition()),
6768                         /*IsStringLocation*/true,
6769                         getSpecifierRange(startSpecifier, specifierLen),
6770                         FixItHint::CreateRemoval(
6771                           getSpecifierRange(flag.getPosition(), 1)));
6772  }
6773  
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)6774  void CheckPrintfHandler::HandleIgnoredFlag(
6775                                  const analyze_printf::PrintfSpecifier &FS,
6776                                  const analyze_printf::OptionalFlag &ignoredFlag,
6777                                  const analyze_printf::OptionalFlag &flag,
6778                                  const char *startSpecifier,
6779                                  unsigned specifierLen) {
6780    // Warn about ignored flag with a fixit removal.
6781    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
6782                           << ignoredFlag.toString() << flag.toString(),
6783                         getLocationOfByte(ignoredFlag.getPosition()),
6784                         /*IsStringLocation*/true,
6785                         getSpecifierRange(startSpecifier, specifierLen),
6786                         FixItHint::CreateRemoval(
6787                           getSpecifierRange(ignoredFlag.getPosition(), 1)));
6788  }
6789  
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)6790  void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
6791                                                       unsigned flagLen) {
6792    // Warn about an empty flag.
6793    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
6794                         getLocationOfByte(startFlag),
6795                         /*IsStringLocation*/true,
6796                         getSpecifierRange(startFlag, flagLen));
6797  }
6798  
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)6799  void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
6800                                                         unsigned flagLen) {
6801    // Warn about an invalid flag.
6802    auto Range = getSpecifierRange(startFlag, flagLen);
6803    StringRef flag(startFlag, flagLen);
6804    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
6805                        getLocationOfByte(startFlag),
6806                        /*IsStringLocation*/true,
6807                        Range, FixItHint::CreateRemoval(Range));
6808  }
6809  
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)6810  void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
6811      const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
6812      // Warn about using '[...]' without a '@' conversion.
6813      auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
6814      auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
6815      EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
6816                           getLocationOfByte(conversionPosition),
6817                           /*IsStringLocation*/true,
6818                           Range, FixItHint::CreateRemoval(Range));
6819  }
6820  
6821  // Determines if the specified is a C++ class or struct containing
6822  // a member with the specified name and kind (e.g. a CXXMethodDecl named
6823  // "c_str()").
6824  template<typename MemberKind>
6825  static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)6826  CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
6827    const RecordType *RT = Ty->getAs<RecordType>();
6828    llvm::SmallPtrSet<MemberKind*, 1> Results;
6829  
6830    if (!RT)
6831      return Results;
6832    const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
6833    if (!RD || !RD->getDefinition())
6834      return Results;
6835  
6836    LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
6837                   Sema::LookupMemberName);
6838    R.suppressDiagnostics();
6839  
6840    // We just need to include all members of the right kind turned up by the
6841    // filter, at this point.
6842    if (S.LookupQualifiedName(R, RT->getDecl()))
6843      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6844        NamedDecl *decl = (*I)->getUnderlyingDecl();
6845        if (MemberKind *FK = dyn_cast<MemberKind>(decl))
6846          Results.insert(FK);
6847      }
6848    return Results;
6849  }
6850  
6851  /// Check if we could call '.c_str()' on an object.
6852  ///
6853  /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
6854  /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)6855  bool Sema::hasCStrMethod(const Expr *E) {
6856    using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
6857  
6858    MethodSet Results =
6859        CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
6860    for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
6861         MI != ME; ++MI)
6862      if ((*MI)->getMinRequiredArguments() == 0)
6863        return true;
6864    return false;
6865  }
6866  
6867  // Check if a (w)string was passed when a (w)char* was needed, and offer a
6868  // better diagnostic if so. AT is assumed to be valid.
6869  // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)6870  bool CheckPrintfHandler::checkForCStrMembers(
6871      const analyze_printf::ArgType &AT, const Expr *E) {
6872    using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
6873  
6874    MethodSet Results =
6875        CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
6876  
6877    for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
6878         MI != ME; ++MI) {
6879      const CXXMethodDecl *Method = *MI;
6880      if (Method->getMinRequiredArguments() == 0 &&
6881          AT.matchesType(S.Context, Method->getReturnType())) {
6882        // FIXME: Suggest parens if the expression needs them.
6883        SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
6884        S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
6885            << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
6886        return true;
6887      }
6888    }
6889  
6890    return false;
6891  }
6892  
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen,const TargetInfo & Target)6893  bool CheckPrintfHandler::HandlePrintfSpecifier(
6894      const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
6895      unsigned specifierLen, const TargetInfo &Target) {
6896    using namespace analyze_format_string;
6897    using namespace analyze_printf;
6898  
6899    const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
6900  
6901    if (FS.consumesDataArgument()) {
6902      if (atFirstArg) {
6903          atFirstArg = false;
6904          usesPositionalArgs = FS.usesPositionalArg();
6905      }
6906      else if (usesPositionalArgs != FS.usesPositionalArg()) {
6907        HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
6908                                          startSpecifier, specifierLen);
6909        return false;
6910      }
6911    }
6912  
6913    // First check if the field width, precision, and conversion specifier
6914    // have matching data arguments.
6915    if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
6916                      startSpecifier, specifierLen)) {
6917      return false;
6918    }
6919  
6920    if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
6921                      startSpecifier, specifierLen)) {
6922      return false;
6923    }
6924  
6925    if (!CS.consumesDataArgument()) {
6926      // FIXME: Technically specifying a precision or field width here
6927      // makes no sense.  Worth issuing a warning at some point.
6928      return true;
6929    }
6930  
6931    // Consume the argument.
6932    unsigned argIndex = FS.getArgIndex();
6933    if (argIndex < NumDataArgs) {
6934      // The check to see if the argIndex is valid will come later.
6935      // We set the bit here because we may exit early from this
6936      // function if we encounter some other error.
6937      CoveredArgs.set(argIndex);
6938    }
6939  
6940    // FreeBSD kernel extensions.
6941    if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
6942        CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
6943      // We need at least two arguments.
6944      if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
6945        return false;
6946  
6947      // Claim the second argument.
6948      CoveredArgs.set(argIndex + 1);
6949  
6950      // Type check the first argument (int for %b, pointer for %D)
6951      const Expr *Ex = getDataArg(argIndex);
6952      const analyze_printf::ArgType &AT =
6953        (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
6954          ArgType(S.Context.IntTy) : ArgType::CPointerTy;
6955      if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
6956        EmitFormatDiagnostic(
6957            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
6958                << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
6959                << false << Ex->getSourceRange(),
6960            Ex->getBeginLoc(), /*IsStringLocation*/ false,
6961            getSpecifierRange(startSpecifier, specifierLen));
6962  
6963      // Type check the second argument (char * for both %b and %D)
6964      Ex = getDataArg(argIndex + 1);
6965      const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
6966      if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
6967        EmitFormatDiagnostic(
6968            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
6969                << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
6970                << false << Ex->getSourceRange(),
6971            Ex->getBeginLoc(), /*IsStringLocation*/ false,
6972            getSpecifierRange(startSpecifier, specifierLen));
6973  
6974       return true;
6975    }
6976  
6977    // Check for using an Objective-C specific conversion specifier
6978    // in a non-ObjC literal.
6979    if (!allowsObjCArg() && CS.isObjCArg()) {
6980      return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
6981                                                    specifierLen);
6982    }
6983  
6984    // %P can only be used with os_log.
6985    if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
6986      return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
6987                                                    specifierLen);
6988    }
6989  
6990    // %n is not allowed with os_log.
6991    if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
6992      EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
6993                           getLocationOfByte(CS.getStart()),
6994                           /*IsStringLocation*/ false,
6995                           getSpecifierRange(startSpecifier, specifierLen));
6996  
6997      return true;
6998    }
6999  
7000    // Only scalars are allowed for os_trace.
7001    if (FSType == Sema::FST_OSTrace &&
7002        (CS.getKind() == ConversionSpecifier::PArg ||
7003         CS.getKind() == ConversionSpecifier::sArg ||
7004         CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
7005      return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7006                                                    specifierLen);
7007    }
7008  
7009    // Check for use of public/private annotation outside of os_log().
7010    if (FSType != Sema::FST_OSLog) {
7011      if (FS.isPublic().isSet()) {
7012        EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7013                                 << "public",
7014                             getLocationOfByte(FS.isPublic().getPosition()),
7015                             /*IsStringLocation*/ false,
7016                             getSpecifierRange(startSpecifier, specifierLen));
7017      }
7018      if (FS.isPrivate().isSet()) {
7019        EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7020                                 << "private",
7021                             getLocationOfByte(FS.isPrivate().getPosition()),
7022                             /*IsStringLocation*/ false,
7023                             getSpecifierRange(startSpecifier, specifierLen));
7024      }
7025    }
7026  
7027    const llvm::Triple &Triple = Target.getTriple();
7028    if (CS.getKind() == ConversionSpecifier::nArg &&
7029        (Triple.isAndroid() || Triple.isOSFuchsia())) {
7030      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
7031                           getLocationOfByte(CS.getStart()),
7032                           /*IsStringLocation*/ false,
7033                           getSpecifierRange(startSpecifier, specifierLen));
7034    }
7035  
7036    // Check for invalid use of field width
7037    if (!FS.hasValidFieldWidth()) {
7038      HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
7039          startSpecifier, specifierLen);
7040    }
7041  
7042    // Check for invalid use of precision
7043    if (!FS.hasValidPrecision()) {
7044      HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
7045          startSpecifier, specifierLen);
7046    }
7047  
7048    // Precision is mandatory for %P specifier.
7049    if (CS.getKind() == ConversionSpecifier::PArg &&
7050        FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
7051      EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
7052                           getLocationOfByte(startSpecifier),
7053                           /*IsStringLocation*/ false,
7054                           getSpecifierRange(startSpecifier, specifierLen));
7055    }
7056  
7057    // Check each flag does not conflict with any other component.
7058    if (!FS.hasValidThousandsGroupingPrefix())
7059      HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
7060    if (!FS.hasValidLeadingZeros())
7061      HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
7062    if (!FS.hasValidPlusPrefix())
7063      HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
7064    if (!FS.hasValidSpacePrefix())
7065      HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
7066    if (!FS.hasValidAlternativeForm())
7067      HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
7068    if (!FS.hasValidLeftJustified())
7069      HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
7070  
7071    // Check that flags are not ignored by another flag
7072    if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
7073      HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
7074          startSpecifier, specifierLen);
7075    if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
7076      HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
7077              startSpecifier, specifierLen);
7078  
7079    // Check the length modifier is valid with the given conversion specifier.
7080    if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7081                                   S.getLangOpts()))
7082      HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7083                                  diag::warn_format_nonsensical_length);
7084    else if (!FS.hasStandardLengthModifier())
7085      HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7086    else if (!FS.hasStandardLengthConversionCombination())
7087      HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7088                                  diag::warn_format_non_standard_conversion_spec);
7089  
7090    if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7091      HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7092  
7093    // The remaining checks depend on the data arguments.
7094    if (ArgPassingKind == Sema::FAPK_VAList)
7095      return true;
7096  
7097    if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7098      return false;
7099  
7100    const Expr *Arg = getDataArg(argIndex);
7101    if (!Arg)
7102      return true;
7103  
7104    return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
7105  }
7106  
requiresParensToAddCast(const Expr * E)7107  static bool requiresParensToAddCast(const Expr *E) {
7108    // FIXME: We should have a general way to reason about operator
7109    // precedence and whether parens are actually needed here.
7110    // Take care of a few common cases where they aren't.
7111    const Expr *Inside = E->IgnoreImpCasts();
7112    if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
7113      Inside = POE->getSyntacticForm()->IgnoreImpCasts();
7114  
7115    switch (Inside->getStmtClass()) {
7116    case Stmt::ArraySubscriptExprClass:
7117    case Stmt::CallExprClass:
7118    case Stmt::CharacterLiteralClass:
7119    case Stmt::CXXBoolLiteralExprClass:
7120    case Stmt::DeclRefExprClass:
7121    case Stmt::FloatingLiteralClass:
7122    case Stmt::IntegerLiteralClass:
7123    case Stmt::MemberExprClass:
7124    case Stmt::ObjCArrayLiteralClass:
7125    case Stmt::ObjCBoolLiteralExprClass:
7126    case Stmt::ObjCBoxedExprClass:
7127    case Stmt::ObjCDictionaryLiteralClass:
7128    case Stmt::ObjCEncodeExprClass:
7129    case Stmt::ObjCIvarRefExprClass:
7130    case Stmt::ObjCMessageExprClass:
7131    case Stmt::ObjCPropertyRefExprClass:
7132    case Stmt::ObjCStringLiteralClass:
7133    case Stmt::ObjCSubscriptRefExprClass:
7134    case Stmt::ParenExprClass:
7135    case Stmt::StringLiteralClass:
7136    case Stmt::UnaryOperatorClass:
7137      return false;
7138    default:
7139      return true;
7140    }
7141  }
7142  
7143  static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)7144  shouldNotPrintDirectly(const ASTContext &Context,
7145                         QualType IntendedTy,
7146                         const Expr *E) {
7147    // Use a 'while' to peel off layers of typedefs.
7148    QualType TyTy = IntendedTy;
7149    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
7150      StringRef Name = UserTy->getDecl()->getName();
7151      QualType CastTy = llvm::StringSwitch<QualType>(Name)
7152        .Case("CFIndex", Context.getNSIntegerType())
7153        .Case("NSInteger", Context.getNSIntegerType())
7154        .Case("NSUInteger", Context.getNSUIntegerType())
7155        .Case("SInt32", Context.IntTy)
7156        .Case("UInt32", Context.UnsignedIntTy)
7157        .Default(QualType());
7158  
7159      if (!CastTy.isNull())
7160        return std::make_pair(CastTy, Name);
7161  
7162      TyTy = UserTy->desugar();
7163    }
7164  
7165    // Strip parens if necessary.
7166    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
7167      return shouldNotPrintDirectly(Context,
7168                                    PE->getSubExpr()->getType(),
7169                                    PE->getSubExpr());
7170  
7171    // If this is a conditional expression, then its result type is constructed
7172    // via usual arithmetic conversions and thus there might be no necessary
7173    // typedef sugar there.  Recurse to operands to check for NSInteger &
7174    // Co. usage condition.
7175    if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7176      QualType TrueTy, FalseTy;
7177      StringRef TrueName, FalseName;
7178  
7179      std::tie(TrueTy, TrueName) =
7180        shouldNotPrintDirectly(Context,
7181                               CO->getTrueExpr()->getType(),
7182                               CO->getTrueExpr());
7183      std::tie(FalseTy, FalseName) =
7184        shouldNotPrintDirectly(Context,
7185                               CO->getFalseExpr()->getType(),
7186                               CO->getFalseExpr());
7187  
7188      if (TrueTy == FalseTy)
7189        return std::make_pair(TrueTy, TrueName);
7190      else if (TrueTy.isNull())
7191        return std::make_pair(FalseTy, FalseName);
7192      else if (FalseTy.isNull())
7193        return std::make_pair(TrueTy, TrueName);
7194    }
7195  
7196    return std::make_pair(QualType(), StringRef());
7197  }
7198  
7199  /// Return true if \p ICE is an implicit argument promotion of an arithmetic
7200  /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
7201  /// type do not count.
7202  static bool
isArithmeticArgumentPromotion(Sema & S,const ImplicitCastExpr * ICE)7203  isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
7204    QualType From = ICE->getSubExpr()->getType();
7205    QualType To = ICE->getType();
7206    // It's an integer promotion if the destination type is the promoted
7207    // source type.
7208    if (ICE->getCastKind() == CK_IntegralCast &&
7209        S.Context.isPromotableIntegerType(From) &&
7210        S.Context.getPromotedIntegerType(From) == To)
7211      return true;
7212    // Look through vector types, since we do default argument promotion for
7213    // those in OpenCL.
7214    if (const auto *VecTy = From->getAs<ExtVectorType>())
7215      From = VecTy->getElementType();
7216    if (const auto *VecTy = To->getAs<ExtVectorType>())
7217      To = VecTy->getElementType();
7218    // It's a floating promotion if the source type is a lower rank.
7219    return ICE->getCastKind() == CK_FloatingCast &&
7220           S.Context.getFloatingTypeOrder(From, To) < 0;
7221  }
7222  
7223  static analyze_format_string::ArgType::MatchKind
handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,DiagnosticsEngine & Diags,SourceLocation Loc)7224  handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,
7225                         DiagnosticsEngine &Diags, SourceLocation Loc) {
7226    if (Match == analyze_format_string::ArgType::NoMatchSignedness) {
7227      Match =
7228          Diags.isIgnored(
7229              diag::warn_format_conversion_argument_type_mismatch_signedness, Loc)
7230              ? analyze_format_string::ArgType::Match
7231              : analyze_format_string::ArgType::NoMatch;
7232    }
7233    return Match;
7234  }
7235  
7236  bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)7237  CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7238                                      const char *StartSpecifier,
7239                                      unsigned SpecifierLen,
7240                                      const Expr *E) {
7241    using namespace analyze_format_string;
7242    using namespace analyze_printf;
7243  
7244    // Now type check the data expression that matches the
7245    // format specifier.
7246    const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
7247    if (!AT.isValid())
7248      return true;
7249  
7250    QualType ExprTy = E->getType();
7251    while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
7252      ExprTy = TET->getUnderlyingExpr()->getType();
7253    }
7254  
7255    // When using the format attribute in C++, you can receive a function or an
7256    // array that will necessarily decay to a pointer when passed to the final
7257    // format consumer. Apply decay before type comparison.
7258    if (ExprTy->canDecayToPointerType())
7259      ExprTy = S.Context.getDecayedType(ExprTy);
7260  
7261    // Diagnose attempts to print a boolean value as a character. Unlike other
7262    // -Wformat diagnostics, this is fine from a type perspective, but it still
7263    // doesn't make sense.
7264    if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
7265        E->isKnownToHaveBooleanValue()) {
7266      const CharSourceRange &CSR =
7267          getSpecifierRange(StartSpecifier, SpecifierLen);
7268      SmallString<4> FSString;
7269      llvm::raw_svector_ostream os(FSString);
7270      FS.toString(os);
7271      EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
7272                               << FSString,
7273                           E->getExprLoc(), false, CSR);
7274      return true;
7275    }
7276  
7277    // Diagnose attempts to use '%P' with ObjC object types, which will result in
7278    // dumping raw class data (like is-a pointer), not actual data.
7279    if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg &&
7280        ExprTy->isObjCObjectPointerType()) {
7281      const CharSourceRange &CSR =
7282          getSpecifierRange(StartSpecifier, SpecifierLen);
7283      EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer),
7284                           E->getExprLoc(), false, CSR);
7285      return true;
7286    }
7287  
7288    ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
7289    ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
7290    ArgType::MatchKind OrigMatch = Match;
7291  
7292    Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc());
7293    if (Match == ArgType::Match)
7294      return true;
7295  
7296    // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
7297    assert(Match != ArgType::NoMatchPromotionTypeConfusion);
7298  
7299    // Look through argument promotions for our error message's reported type.
7300    // This includes the integral and floating promotions, but excludes array
7301    // and function pointer decay (seeing that an argument intended to be a
7302    // string has type 'char [6]' is probably more confusing than 'char *') and
7303    // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
7304    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7305      if (isArithmeticArgumentPromotion(S, ICE)) {
7306        E = ICE->getSubExpr();
7307        ExprTy = E->getType();
7308  
7309        // Check if we didn't match because of an implicit cast from a 'char'
7310        // or 'short' to an 'int'.  This is done because printf is a varargs
7311        // function.
7312        if (ICE->getType() == S.Context.IntTy ||
7313            ICE->getType() == S.Context.UnsignedIntTy) {
7314          // All further checking is done on the subexpression
7315          ImplicitMatch = AT.matchesType(S.Context, ExprTy);
7316          if (OrigMatch == ArgType::NoMatchSignedness &&
7317              ImplicitMatch != ArgType::NoMatchSignedness)
7318            // If the original match was a signedness match this match on the
7319            // implicit cast type also need to be signedness match otherwise we
7320            // might introduce new unexpected warnings from -Wformat-signedness.
7321            return true;
7322          ImplicitMatch = handleFormatSignedness(
7323              ImplicitMatch, S.getDiagnostics(), E->getExprLoc());
7324          if (ImplicitMatch == ArgType::Match)
7325            return true;
7326        }
7327      }
7328    } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
7329      // Special case for 'a', which has type 'int' in C.
7330      // Note, however, that we do /not/ want to treat multibyte constants like
7331      // 'MooV' as characters! This form is deprecated but still exists. In
7332      // addition, don't treat expressions as of type 'char' if one byte length
7333      // modifier is provided.
7334      if (ExprTy == S.Context.IntTy &&
7335          FS.getLengthModifier().getKind() != LengthModifier::AsChar)
7336        if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
7337          ExprTy = S.Context.CharTy;
7338          // To improve check results, we consider a character literal in C
7339          // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
7340          // more likely a type confusion situation, so we will suggest to
7341          // use '%hhd' instead by discarding the MatchPromotion.
7342          if (Match == ArgType::MatchPromotion)
7343            Match = ArgType::NoMatch;
7344        }
7345    }
7346    if (Match == ArgType::MatchPromotion) {
7347      // WG14 N2562 only clarified promotions in *printf
7348      // For NSLog in ObjC, just preserve -Wformat behavior
7349      if (!S.getLangOpts().ObjC &&
7350          ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
7351          ImplicitMatch != ArgType::NoMatchTypeConfusion)
7352        return true;
7353      Match = ArgType::NoMatch;
7354    }
7355    if (ImplicitMatch == ArgType::NoMatchPedantic ||
7356        ImplicitMatch == ArgType::NoMatchTypeConfusion)
7357      Match = ImplicitMatch;
7358    assert(Match != ArgType::MatchPromotion);
7359  
7360    // Look through unscoped enums to their underlying type.
7361    bool IsEnum = false;
7362    bool IsScopedEnum = false;
7363    QualType IntendedTy = ExprTy;
7364    if (auto EnumTy = ExprTy->getAs<EnumType>()) {
7365      IntendedTy = EnumTy->getDecl()->getIntegerType();
7366      if (EnumTy->isUnscopedEnumerationType()) {
7367        ExprTy = IntendedTy;
7368        // This controls whether we're talking about the underlying type or not,
7369        // which we only want to do when it's an unscoped enum.
7370        IsEnum = true;
7371      } else {
7372        IsScopedEnum = true;
7373      }
7374    }
7375  
7376    // %C in an Objective-C context prints a unichar, not a wchar_t.
7377    // If the argument is an integer of some kind, believe the %C and suggest
7378    // a cast instead of changing the conversion specifier.
7379    if (isObjCContext() &&
7380        FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
7381      if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
7382          !ExprTy->isCharType()) {
7383        // 'unichar' is defined as a typedef of unsigned short, but we should
7384        // prefer using the typedef if it is visible.
7385        IntendedTy = S.Context.UnsignedShortTy;
7386  
7387        // While we are here, check if the value is an IntegerLiteral that happens
7388        // to be within the valid range.
7389        if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
7390          const llvm::APInt &V = IL->getValue();
7391          if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
7392            return true;
7393        }
7394  
7395        LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
7396                            Sema::LookupOrdinaryName);
7397        if (S.LookupName(Result, S.getCurScope())) {
7398          NamedDecl *ND = Result.getFoundDecl();
7399          if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
7400            if (TD->getUnderlyingType() == IntendedTy)
7401              IntendedTy = S.Context.getTypedefType(TD);
7402        }
7403      }
7404    }
7405  
7406    // Special-case some of Darwin's platform-independence types by suggesting
7407    // casts to primitive types that are known to be large enough.
7408    bool ShouldNotPrintDirectly = false; StringRef CastTyName;
7409    if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
7410      QualType CastTy;
7411      std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
7412      if (!CastTy.isNull()) {
7413        // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
7414        // (long in ASTContext). Only complain to pedants or when they're the
7415        // underlying type of a scoped enum (which always needs a cast).
7416        if (!IsScopedEnum &&
7417            (CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
7418            (AT.isSizeT() || AT.isPtrdiffT()) &&
7419            AT.matchesType(S.Context, CastTy))
7420          Match = ArgType::NoMatchPedantic;
7421        IntendedTy = CastTy;
7422        ShouldNotPrintDirectly = true;
7423      }
7424    }
7425  
7426    // We may be able to offer a FixItHint if it is a supported type.
7427    PrintfSpecifier fixedFS = FS;
7428    bool Success =
7429        fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
7430  
7431    if (Success) {
7432      // Get the fix string from the fixed format specifier
7433      SmallString<16> buf;
7434      llvm::raw_svector_ostream os(buf);
7435      fixedFS.toString(os);
7436  
7437      CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
7438  
7439      if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
7440        unsigned Diag;
7441        switch (Match) {
7442        case ArgType::Match:
7443        case ArgType::MatchPromotion:
7444        case ArgType::NoMatchPromotionTypeConfusion:
7445        case ArgType::NoMatchSignedness:
7446          llvm_unreachable("expected non-matching");
7447        case ArgType::NoMatchPedantic:
7448          Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7449          break;
7450        case ArgType::NoMatchTypeConfusion:
7451          Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7452          break;
7453        case ArgType::NoMatch:
7454          Diag = diag::warn_format_conversion_argument_type_mismatch;
7455          break;
7456        }
7457  
7458        // In this case, the specifier is wrong and should be changed to match
7459        // the argument.
7460        EmitFormatDiagnostic(S.PDiag(Diag)
7461                                 << AT.getRepresentativeTypeName(S.Context)
7462                                 << IntendedTy << IsEnum << E->getSourceRange(),
7463                             E->getBeginLoc(),
7464                             /*IsStringLocation*/ false, SpecRange,
7465                             FixItHint::CreateReplacement(SpecRange, os.str()));
7466      } else {
7467        // The canonical type for formatting this value is different from the
7468        // actual type of the expression. (This occurs, for example, with Darwin's
7469        // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
7470        // should be printed as 'long' for 64-bit compatibility.)
7471        // Rather than emitting a normal format/argument mismatch, we want to
7472        // add a cast to the recommended type (and correct the format string
7473        // if necessary). We should also do so for scoped enumerations.
7474        SmallString<16> CastBuf;
7475        llvm::raw_svector_ostream CastFix(CastBuf);
7476        CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
7477        IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
7478        CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
7479  
7480        SmallVector<FixItHint,4> Hints;
7481        ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy);
7482        IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(),
7483                                               E->getExprLoc());
7484        if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly)
7485          Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
7486  
7487        if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
7488          // If there's already a cast present, just replace it.
7489          SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
7490          Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
7491  
7492        } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
7493          // If the expression has high enough precedence,
7494          // just write the C-style cast.
7495          Hints.push_back(
7496              FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7497        } else {
7498          // Otherwise, add parens around the expression as well as the cast.
7499          CastFix << "(";
7500          Hints.push_back(
7501              FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7502  
7503          // We don't use getLocForEndOfToken because it returns invalid source
7504          // locations for macro expansions (by design).
7505          SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
7506          SourceLocation After = EndLoc.getLocWithOffset(
7507              Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
7508          Hints.push_back(FixItHint::CreateInsertion(After, ")"));
7509        }
7510  
7511        if (ShouldNotPrintDirectly && !IsScopedEnum) {
7512          // The expression has a type that should not be printed directly.
7513          // We extract the name from the typedef because we don't want to show
7514          // the underlying type in the diagnostic.
7515          StringRef Name;
7516          if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
7517            Name = TypedefTy->getDecl()->getName();
7518          else
7519            Name = CastTyName;
7520          unsigned Diag = Match == ArgType::NoMatchPedantic
7521                              ? diag::warn_format_argument_needs_cast_pedantic
7522                              : diag::warn_format_argument_needs_cast;
7523          EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
7524                                             << E->getSourceRange(),
7525                               E->getBeginLoc(), /*IsStringLocation=*/false,
7526                               SpecRange, Hints);
7527        } else {
7528          // In this case, the expression could be printed using a different
7529          // specifier, but we've decided that the specifier is probably correct
7530          // and we should cast instead. Just use the normal warning message.
7531  
7532          unsigned Diag =
7533              IsScopedEnum
7534                  ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7535                  : diag::warn_format_conversion_argument_type_mismatch;
7536  
7537          EmitFormatDiagnostic(
7538              S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7539                            << IsEnum << E->getSourceRange(),
7540              E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
7541        }
7542      }
7543    } else {
7544      const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
7545                                                     SpecifierLen);
7546      // Since the warning for passing non-POD types to variadic functions
7547      // was deferred until now, we emit a warning for non-POD
7548      // arguments here.
7549      bool EmitTypeMismatch = false;
7550      switch (S.isValidVarArgType(ExprTy)) {
7551      case Sema::VAK_Valid:
7552      case Sema::VAK_ValidInCXX11: {
7553        unsigned Diag;
7554        switch (Match) {
7555        case ArgType::Match:
7556        case ArgType::MatchPromotion:
7557        case ArgType::NoMatchPromotionTypeConfusion:
7558        case ArgType::NoMatchSignedness:
7559          llvm_unreachable("expected non-matching");
7560        case ArgType::NoMatchPedantic:
7561          Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7562          break;
7563        case ArgType::NoMatchTypeConfusion:
7564          Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7565          break;
7566        case ArgType::NoMatch:
7567          Diag = diag::warn_format_conversion_argument_type_mismatch;
7568          break;
7569        }
7570  
7571        EmitFormatDiagnostic(
7572            S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7573                          << IsEnum << CSR << E->getSourceRange(),
7574            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7575        break;
7576      }
7577      case Sema::VAK_Undefined:
7578      case Sema::VAK_MSVCUndefined:
7579        if (CallType == Sema::VariadicDoesNotApply) {
7580          EmitTypeMismatch = true;
7581        } else {
7582          EmitFormatDiagnostic(
7583              S.PDiag(diag::warn_non_pod_vararg_with_format_string)
7584                  << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7585                  << AT.getRepresentativeTypeName(S.Context) << CSR
7586                  << E->getSourceRange(),
7587              E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7588          checkForCStrMembers(AT, E);
7589        }
7590        break;
7591  
7592      case Sema::VAK_Invalid:
7593        if (CallType == Sema::VariadicDoesNotApply)
7594          EmitTypeMismatch = true;
7595        else if (ExprTy->isObjCObjectType())
7596          EmitFormatDiagnostic(
7597              S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
7598                  << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7599                  << AT.getRepresentativeTypeName(S.Context) << CSR
7600                  << E->getSourceRange(),
7601              E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7602        else
7603          // FIXME: If this is an initializer list, suggest removing the braces
7604          // or inserting a cast to the target type.
7605          S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
7606              << isa<InitListExpr>(E) << ExprTy << CallType
7607              << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
7608        break;
7609      }
7610  
7611      if (EmitTypeMismatch) {
7612        // The function is not variadic, so we do not generate warnings about
7613        // being allowed to pass that object as a variadic argument. Instead,
7614        // since there are inherently no printf specifiers for types which cannot
7615        // be passed as variadic arguments, emit a plain old specifier mismatch
7616        // argument.
7617        EmitFormatDiagnostic(
7618            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7619                << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
7620                << E->getSourceRange(),
7621            E->getBeginLoc(), false, CSR);
7622      }
7623  
7624      assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
7625             "format string specifier index out of range");
7626      CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
7627    }
7628  
7629    return true;
7630  }
7631  
7632  //===--- CHECK: Scanf format string checking ------------------------------===//
7633  
7634  namespace {
7635  
7636  class CheckScanfHandler : public CheckFormatHandler {
7637  public:
CheckScanfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,Sema::FormatArgumentPassingKind APK,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)7638    CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
7639                      const Expr *origFormatExpr, Sema::FormatStringType type,
7640                      unsigned firstDataArg, unsigned numDataArgs,
7641                      const char *beg, Sema::FormatArgumentPassingKind APK,
7642                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7643                      bool inFunctionCall, Sema::VariadicCallType CallType,
7644                      llvm::SmallBitVector &CheckedVarArgs,
7645                      UncoveredArgHandler &UncoveredArg)
7646        : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7647                             numDataArgs, beg, APK, Args, formatIdx,
7648                             inFunctionCall, CallType, CheckedVarArgs,
7649                             UncoveredArg) {}
7650  
7651    bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
7652                              const char *startSpecifier,
7653                              unsigned specifierLen) override;
7654  
7655    bool HandleInvalidScanfConversionSpecifier(
7656            const analyze_scanf::ScanfSpecifier &FS,
7657            const char *startSpecifier,
7658            unsigned specifierLen) override;
7659  
7660    void HandleIncompleteScanList(const char *start, const char *end) override;
7661  };
7662  
7663  } // namespace
7664  
HandleIncompleteScanList(const char * start,const char * end)7665  void CheckScanfHandler::HandleIncompleteScanList(const char *start,
7666                                                   const char *end) {
7667    EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
7668                         getLocationOfByte(end), /*IsStringLocation*/true,
7669                         getSpecifierRange(start, end - start));
7670  }
7671  
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)7672  bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
7673                                          const analyze_scanf::ScanfSpecifier &FS,
7674                                          const char *startSpecifier,
7675                                          unsigned specifierLen) {
7676    const analyze_scanf::ScanfConversionSpecifier &CS =
7677      FS.getConversionSpecifier();
7678  
7679    return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7680                                            getLocationOfByte(CS.getStart()),
7681                                            startSpecifier, specifierLen,
7682                                            CS.getStart(), CS.getLength());
7683  }
7684  
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)7685  bool CheckScanfHandler::HandleScanfSpecifier(
7686                                         const analyze_scanf::ScanfSpecifier &FS,
7687                                         const char *startSpecifier,
7688                                         unsigned specifierLen) {
7689    using namespace analyze_scanf;
7690    using namespace analyze_format_string;
7691  
7692    const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
7693  
7694    // Handle case where '%' and '*' don't consume an argument.  These shouldn't
7695    // be used to decide if we are using positional arguments consistently.
7696    if (FS.consumesDataArgument()) {
7697      if (atFirstArg) {
7698        atFirstArg = false;
7699        usesPositionalArgs = FS.usesPositionalArg();
7700      }
7701      else if (usesPositionalArgs != FS.usesPositionalArg()) {
7702        HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7703                                          startSpecifier, specifierLen);
7704        return false;
7705      }
7706    }
7707  
7708    // Check if the field with is non-zero.
7709    const OptionalAmount &Amt = FS.getFieldWidth();
7710    if (Amt.getHowSpecified() == OptionalAmount::Constant) {
7711      if (Amt.getConstantAmount() == 0) {
7712        const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
7713                                                     Amt.getConstantLength());
7714        EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
7715                             getLocationOfByte(Amt.getStart()),
7716                             /*IsStringLocation*/true, R,
7717                             FixItHint::CreateRemoval(R));
7718      }
7719    }
7720  
7721    if (!FS.consumesDataArgument()) {
7722      // FIXME: Technically specifying a precision or field width here
7723      // makes no sense.  Worth issuing a warning at some point.
7724      return true;
7725    }
7726  
7727    // Consume the argument.
7728    unsigned argIndex = FS.getArgIndex();
7729    if (argIndex < NumDataArgs) {
7730        // The check to see if the argIndex is valid will come later.
7731        // We set the bit here because we may exit early from this
7732        // function if we encounter some other error.
7733      CoveredArgs.set(argIndex);
7734    }
7735  
7736    // Check the length modifier is valid with the given conversion specifier.
7737    if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7738                                   S.getLangOpts()))
7739      HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7740                                  diag::warn_format_nonsensical_length);
7741    else if (!FS.hasStandardLengthModifier())
7742      HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7743    else if (!FS.hasStandardLengthConversionCombination())
7744      HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7745                                  diag::warn_format_non_standard_conversion_spec);
7746  
7747    if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7748      HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7749  
7750    // The remaining checks depend on the data arguments.
7751    if (ArgPassingKind == Sema::FAPK_VAList)
7752      return true;
7753  
7754    if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7755      return false;
7756  
7757    // Check that the argument type matches the format specifier.
7758    const Expr *Ex = getDataArg(argIndex);
7759    if (!Ex)
7760      return true;
7761  
7762    const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
7763  
7764    if (!AT.isValid()) {
7765      return true;
7766    }
7767  
7768    analyze_format_string::ArgType::MatchKind Match =
7769        AT.matchesType(S.Context, Ex->getType());
7770    Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc());
7771    bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
7772    if (Match == analyze_format_string::ArgType::Match)
7773      return true;
7774  
7775    ScanfSpecifier fixedFS = FS;
7776    bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
7777                                   S.getLangOpts(), S.Context);
7778  
7779    unsigned Diag =
7780        Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7781                 : diag::warn_format_conversion_argument_type_mismatch;
7782  
7783    if (Success) {
7784      // Get the fix string from the fixed format specifier.
7785      SmallString<128> buf;
7786      llvm::raw_svector_ostream os(buf);
7787      fixedFS.toString(os);
7788  
7789      EmitFormatDiagnostic(
7790          S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
7791                        << Ex->getType() << false << Ex->getSourceRange(),
7792          Ex->getBeginLoc(),
7793          /*IsStringLocation*/ false,
7794          getSpecifierRange(startSpecifier, specifierLen),
7795          FixItHint::CreateReplacement(
7796              getSpecifierRange(startSpecifier, specifierLen), os.str()));
7797    } else {
7798      EmitFormatDiagnostic(S.PDiag(Diag)
7799                               << AT.getRepresentativeTypeName(S.Context)
7800                               << Ex->getType() << false << Ex->getSourceRange(),
7801                           Ex->getBeginLoc(),
7802                           /*IsStringLocation*/ false,
7803                           getSpecifierRange(startSpecifier, specifierLen));
7804    }
7805  
7806    return true;
7807  }
7808  
CheckFormatString(Sema & S,const FormatStringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,Sema::FormatArgumentPassingKind APK,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,bool IgnoreStringsWithoutSpecifiers)7809  static void CheckFormatString(
7810      Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
7811      ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
7812      unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
7813      bool inFunctionCall, Sema::VariadicCallType CallType,
7814      llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
7815      bool IgnoreStringsWithoutSpecifiers) {
7816    // CHECK: is the format string a wide literal?
7817    if (!FExpr->isAscii() && !FExpr->isUTF8()) {
7818      CheckFormatHandler::EmitFormatDiagnostic(
7819          S, inFunctionCall, Args[format_idx],
7820          S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
7821          /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
7822      return;
7823    }
7824  
7825    // Str - The format string.  NOTE: this is NOT null-terminated!
7826    StringRef StrRef = FExpr->getString();
7827    const char *Str = StrRef.data();
7828    // Account for cases where the string literal is truncated in a declaration.
7829    const ConstantArrayType *T =
7830      S.Context.getAsConstantArrayType(FExpr->getType());
7831    assert(T && "String literal not of constant array type!");
7832    size_t TypeSize = T->getZExtSize();
7833    size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
7834    const unsigned numDataArgs = Args.size() - firstDataArg;
7835  
7836    if (IgnoreStringsWithoutSpecifiers &&
7837        !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
7838            Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
7839      return;
7840  
7841    // Emit a warning if the string literal is truncated and does not contain an
7842    // embedded null character.
7843    if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
7844      CheckFormatHandler::EmitFormatDiagnostic(
7845          S, inFunctionCall, Args[format_idx],
7846          S.PDiag(diag::warn_printf_format_string_not_null_terminated),
7847          FExpr->getBeginLoc(),
7848          /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
7849      return;
7850    }
7851  
7852    // CHECK: empty format string?
7853    if (StrLen == 0 && numDataArgs > 0) {
7854      CheckFormatHandler::EmitFormatDiagnostic(
7855          S, inFunctionCall, Args[format_idx],
7856          S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
7857          /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
7858      return;
7859    }
7860  
7861    if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
7862        Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
7863        Type == Sema::FST_OSTrace) {
7864      CheckPrintfHandler H(
7865          S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
7866          (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
7867          Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
7868          UncoveredArg);
7869  
7870      if (!analyze_format_string::ParsePrintfString(
7871              H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
7872              Type == Sema::FST_FreeBSDKPrintf))
7873        H.DoneProcessing();
7874    } else if (Type == Sema::FST_Scanf) {
7875      CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
7876                          numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
7877                          CallType, CheckedVarArgs, UncoveredArg);
7878  
7879      if (!analyze_format_string::ParseScanfString(
7880              H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
7881        H.DoneProcessing();
7882    } // TODO: handle other formats
7883  }
7884  
FormatStringHasSArg(const StringLiteral * FExpr)7885  bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
7886    // Str - The format string.  NOTE: this is NOT null-terminated!
7887    StringRef StrRef = FExpr->getString();
7888    const char *Str = StrRef.data();
7889    // Account for cases where the string literal is truncated in a declaration.
7890    const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
7891    assert(T && "String literal not of constant array type!");
7892    size_t TypeSize = T->getZExtSize();
7893    size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
7894    return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
7895                                                           getLangOpts(),
7896                                                           Context.getTargetInfo());
7897  }
7898  
7899  //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
7900  
7901  // Returns the related absolute value function that is larger, of 0 if one
7902  // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)7903  static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
7904    switch (AbsFunction) {
7905    default:
7906      return 0;
7907  
7908    case Builtin::BI__builtin_abs:
7909      return Builtin::BI__builtin_labs;
7910    case Builtin::BI__builtin_labs:
7911      return Builtin::BI__builtin_llabs;
7912    case Builtin::BI__builtin_llabs:
7913      return 0;
7914  
7915    case Builtin::BI__builtin_fabsf:
7916      return Builtin::BI__builtin_fabs;
7917    case Builtin::BI__builtin_fabs:
7918      return Builtin::BI__builtin_fabsl;
7919    case Builtin::BI__builtin_fabsl:
7920      return 0;
7921  
7922    case Builtin::BI__builtin_cabsf:
7923      return Builtin::BI__builtin_cabs;
7924    case Builtin::BI__builtin_cabs:
7925      return Builtin::BI__builtin_cabsl;
7926    case Builtin::BI__builtin_cabsl:
7927      return 0;
7928  
7929    case Builtin::BIabs:
7930      return Builtin::BIlabs;
7931    case Builtin::BIlabs:
7932      return Builtin::BIllabs;
7933    case Builtin::BIllabs:
7934      return 0;
7935  
7936    case Builtin::BIfabsf:
7937      return Builtin::BIfabs;
7938    case Builtin::BIfabs:
7939      return Builtin::BIfabsl;
7940    case Builtin::BIfabsl:
7941      return 0;
7942  
7943    case Builtin::BIcabsf:
7944     return Builtin::BIcabs;
7945    case Builtin::BIcabs:
7946      return Builtin::BIcabsl;
7947    case Builtin::BIcabsl:
7948      return 0;
7949    }
7950  }
7951  
7952  // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)7953  static QualType getAbsoluteValueArgumentType(ASTContext &Context,
7954                                               unsigned AbsType) {
7955    if (AbsType == 0)
7956      return QualType();
7957  
7958    ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
7959    QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
7960    if (Error != ASTContext::GE_None)
7961      return QualType();
7962  
7963    const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
7964    if (!FT)
7965      return QualType();
7966  
7967    if (FT->getNumParams() != 1)
7968      return QualType();
7969  
7970    return FT->getParamType(0);
7971  }
7972  
7973  // Returns the best absolute value function, or zero, based on type and
7974  // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)7975  static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
7976                                     unsigned AbsFunctionKind) {
7977    unsigned BestKind = 0;
7978    uint64_t ArgSize = Context.getTypeSize(ArgType);
7979    for (unsigned Kind = AbsFunctionKind; Kind != 0;
7980         Kind = getLargerAbsoluteValueFunction(Kind)) {
7981      QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
7982      if (Context.getTypeSize(ParamType) >= ArgSize) {
7983        if (BestKind == 0)
7984          BestKind = Kind;
7985        else if (Context.hasSameType(ParamType, ArgType)) {
7986          BestKind = Kind;
7987          break;
7988        }
7989      }
7990    }
7991    return BestKind;
7992  }
7993  
7994  enum AbsoluteValueKind {
7995    AVK_Integer,
7996    AVK_Floating,
7997    AVK_Complex
7998  };
7999  
getAbsoluteValueKind(QualType T)8000  static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
8001    if (T->isIntegralOrEnumerationType())
8002      return AVK_Integer;
8003    if (T->isRealFloatingType())
8004      return AVK_Floating;
8005    if (T->isAnyComplexType())
8006      return AVK_Complex;
8007  
8008    llvm_unreachable("Type not integer, floating, or complex");
8009  }
8010  
8011  // Changes the absolute value function to a different type.  Preserves whether
8012  // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)8013  static unsigned changeAbsFunction(unsigned AbsKind,
8014                                    AbsoluteValueKind ValueKind) {
8015    switch (ValueKind) {
8016    case AVK_Integer:
8017      switch (AbsKind) {
8018      default:
8019        return 0;
8020      case Builtin::BI__builtin_fabsf:
8021      case Builtin::BI__builtin_fabs:
8022      case Builtin::BI__builtin_fabsl:
8023      case Builtin::BI__builtin_cabsf:
8024      case Builtin::BI__builtin_cabs:
8025      case Builtin::BI__builtin_cabsl:
8026        return Builtin::BI__builtin_abs;
8027      case Builtin::BIfabsf:
8028      case Builtin::BIfabs:
8029      case Builtin::BIfabsl:
8030      case Builtin::BIcabsf:
8031      case Builtin::BIcabs:
8032      case Builtin::BIcabsl:
8033        return Builtin::BIabs;
8034      }
8035    case AVK_Floating:
8036      switch (AbsKind) {
8037      default:
8038        return 0;
8039      case Builtin::BI__builtin_abs:
8040      case Builtin::BI__builtin_labs:
8041      case Builtin::BI__builtin_llabs:
8042      case Builtin::BI__builtin_cabsf:
8043      case Builtin::BI__builtin_cabs:
8044      case Builtin::BI__builtin_cabsl:
8045        return Builtin::BI__builtin_fabsf;
8046      case Builtin::BIabs:
8047      case Builtin::BIlabs:
8048      case Builtin::BIllabs:
8049      case Builtin::BIcabsf:
8050      case Builtin::BIcabs:
8051      case Builtin::BIcabsl:
8052        return Builtin::BIfabsf;
8053      }
8054    case AVK_Complex:
8055      switch (AbsKind) {
8056      default:
8057        return 0;
8058      case Builtin::BI__builtin_abs:
8059      case Builtin::BI__builtin_labs:
8060      case Builtin::BI__builtin_llabs:
8061      case Builtin::BI__builtin_fabsf:
8062      case Builtin::BI__builtin_fabs:
8063      case Builtin::BI__builtin_fabsl:
8064        return Builtin::BI__builtin_cabsf;
8065      case Builtin::BIabs:
8066      case Builtin::BIlabs:
8067      case Builtin::BIllabs:
8068      case Builtin::BIfabsf:
8069      case Builtin::BIfabs:
8070      case Builtin::BIfabsl:
8071        return Builtin::BIcabsf;
8072      }
8073    }
8074    llvm_unreachable("Unable to convert function");
8075  }
8076  
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)8077  static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
8078    const IdentifierInfo *FnInfo = FDecl->getIdentifier();
8079    if (!FnInfo)
8080      return 0;
8081  
8082    switch (FDecl->getBuiltinID()) {
8083    default:
8084      return 0;
8085    case Builtin::BI__builtin_abs:
8086    case Builtin::BI__builtin_fabs:
8087    case Builtin::BI__builtin_fabsf:
8088    case Builtin::BI__builtin_fabsl:
8089    case Builtin::BI__builtin_labs:
8090    case Builtin::BI__builtin_llabs:
8091    case Builtin::BI__builtin_cabs:
8092    case Builtin::BI__builtin_cabsf:
8093    case Builtin::BI__builtin_cabsl:
8094    case Builtin::BIabs:
8095    case Builtin::BIlabs:
8096    case Builtin::BIllabs:
8097    case Builtin::BIfabs:
8098    case Builtin::BIfabsf:
8099    case Builtin::BIfabsl:
8100    case Builtin::BIcabs:
8101    case Builtin::BIcabsf:
8102    case Builtin::BIcabsl:
8103      return FDecl->getBuiltinID();
8104    }
8105    llvm_unreachable("Unknown Builtin type");
8106  }
8107  
8108  // If the replacement is valid, emit a note with replacement function.
8109  // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)8110  static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
8111                              unsigned AbsKind, QualType ArgType) {
8112    bool EmitHeaderHint = true;
8113    const char *HeaderName = nullptr;
8114    StringRef FunctionName;
8115    if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
8116      FunctionName = "std::abs";
8117      if (ArgType->isIntegralOrEnumerationType()) {
8118        HeaderName = "cstdlib";
8119      } else if (ArgType->isRealFloatingType()) {
8120        HeaderName = "cmath";
8121      } else {
8122        llvm_unreachable("Invalid Type");
8123      }
8124  
8125      // Lookup all std::abs
8126      if (NamespaceDecl *Std = S.getStdNamespace()) {
8127        LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
8128        R.suppressDiagnostics();
8129        S.LookupQualifiedName(R, Std);
8130  
8131        for (const auto *I : R) {
8132          const FunctionDecl *FDecl = nullptr;
8133          if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
8134            FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
8135          } else {
8136            FDecl = dyn_cast<FunctionDecl>(I);
8137          }
8138          if (!FDecl)
8139            continue;
8140  
8141          // Found std::abs(), check that they are the right ones.
8142          if (FDecl->getNumParams() != 1)
8143            continue;
8144  
8145          // Check that the parameter type can handle the argument.
8146          QualType ParamType = FDecl->getParamDecl(0)->getType();
8147          if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
8148              S.Context.getTypeSize(ArgType) <=
8149                  S.Context.getTypeSize(ParamType)) {
8150            // Found a function, don't need the header hint.
8151            EmitHeaderHint = false;
8152            break;
8153          }
8154        }
8155      }
8156    } else {
8157      FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
8158      HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
8159  
8160      if (HeaderName) {
8161        DeclarationName DN(&S.Context.Idents.get(FunctionName));
8162        LookupResult R(S, DN, Loc, Sema::LookupAnyName);
8163        R.suppressDiagnostics();
8164        S.LookupName(R, S.getCurScope());
8165  
8166        if (R.isSingleResult()) {
8167          FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
8168          if (FD && FD->getBuiltinID() == AbsKind) {
8169            EmitHeaderHint = false;
8170          } else {
8171            return;
8172          }
8173        } else if (!R.empty()) {
8174          return;
8175        }
8176      }
8177    }
8178  
8179    S.Diag(Loc, diag::note_replace_abs_function)
8180        << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
8181  
8182    if (!HeaderName)
8183      return;
8184  
8185    if (!EmitHeaderHint)
8186      return;
8187  
8188    S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
8189                                                      << FunctionName;
8190  }
8191  
8192  template <std::size_t StrLen>
IsStdFunction(const FunctionDecl * FDecl,const char (& Str)[StrLen])8193  static bool IsStdFunction(const FunctionDecl *FDecl,
8194                            const char (&Str)[StrLen]) {
8195    if (!FDecl)
8196      return false;
8197    if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
8198      return false;
8199    if (!FDecl->isInStdNamespace())
8200      return false;
8201  
8202    return true;
8203  }
8204  
CheckInfNaNFunction(const CallExpr * Call,const FunctionDecl * FDecl)8205  void Sema::CheckInfNaNFunction(const CallExpr *Call,
8206                                 const FunctionDecl *FDecl) {
8207    FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts());
8208    if ((IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered") ||
8209         (Call->getBuiltinCallee() == Builtin::BI__builtin_nanf)) &&
8210        FPO.getNoHonorNaNs())
8211      Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8212          << 1 << 0 << Call->getSourceRange();
8213    else if ((IsStdFunction(FDecl, "isinf") ||
8214              (IsStdFunction(FDecl, "isfinite") ||
8215               (FDecl->getIdentifier() && FDecl->getName() == "infinity"))) &&
8216             FPO.getNoHonorInfs())
8217      Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8218          << 0 << 0 << Call->getSourceRange();
8219  }
8220  
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl)8221  void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
8222                                        const FunctionDecl *FDecl) {
8223    if (Call->getNumArgs() != 1)
8224      return;
8225  
8226    unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
8227    bool IsStdAbs = IsStdFunction(FDecl, "abs");
8228    if (AbsKind == 0 && !IsStdAbs)
8229      return;
8230  
8231    QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8232    QualType ParamType = Call->getArg(0)->getType();
8233  
8234    // Unsigned types cannot be negative.  Suggest removing the absolute value
8235    // function call.
8236    if (ArgType->isUnsignedIntegerType()) {
8237      StringRef FunctionName =
8238          IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
8239      Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
8240      Diag(Call->getExprLoc(), diag::note_remove_abs)
8241          << FunctionName
8242          << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
8243      return;
8244    }
8245  
8246    // Taking the absolute value of a pointer is very suspicious, they probably
8247    // wanted to index into an array, dereference a pointer, call a function, etc.
8248    if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
8249      unsigned DiagType = 0;
8250      if (ArgType->isFunctionType())
8251        DiagType = 1;
8252      else if (ArgType->isArrayType())
8253        DiagType = 2;
8254  
8255      Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
8256      return;
8257    }
8258  
8259    // std::abs has overloads which prevent most of the absolute value problems
8260    // from occurring.
8261    if (IsStdAbs)
8262      return;
8263  
8264    AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
8265    AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
8266  
8267    // The argument and parameter are the same kind.  Check if they are the right
8268    // size.
8269    if (ArgValueKind == ParamValueKind) {
8270      if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
8271        return;
8272  
8273      unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
8274      Diag(Call->getExprLoc(), diag::warn_abs_too_small)
8275          << FDecl << ArgType << ParamType;
8276  
8277      if (NewAbsKind == 0)
8278        return;
8279  
8280      emitReplacement(*this, Call->getExprLoc(),
8281                      Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8282      return;
8283    }
8284  
8285    // ArgValueKind != ParamValueKind
8286    // The wrong type of absolute value function was used.  Attempt to find the
8287    // proper one.
8288    unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
8289    NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
8290    if (NewAbsKind == 0)
8291      return;
8292  
8293    Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
8294        << FDecl << ParamValueKind << ArgValueKind;
8295  
8296    emitReplacement(*this, Call->getExprLoc(),
8297                    Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8298  }
8299  
8300  //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
CheckMaxUnsignedZero(const CallExpr * Call,const FunctionDecl * FDecl)8301  void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
8302                                  const FunctionDecl *FDecl) {
8303    if (!Call || !FDecl) return;
8304  
8305    // Ignore template specializations and macros.
8306    if (inTemplateInstantiation()) return;
8307    if (Call->getExprLoc().isMacroID()) return;
8308  
8309    // Only care about the one template argument, two function parameter std::max
8310    if (Call->getNumArgs() != 2) return;
8311    if (!IsStdFunction(FDecl, "max")) return;
8312    const auto * ArgList = FDecl->getTemplateSpecializationArgs();
8313    if (!ArgList) return;
8314    if (ArgList->size() != 1) return;
8315  
8316    // Check that template type argument is unsigned integer.
8317    const auto& TA = ArgList->get(0);
8318    if (TA.getKind() != TemplateArgument::Type) return;
8319    QualType ArgType = TA.getAsType();
8320    if (!ArgType->isUnsignedIntegerType()) return;
8321  
8322    // See if either argument is a literal zero.
8323    auto IsLiteralZeroArg = [](const Expr* E) -> bool {
8324      const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
8325      if (!MTE) return false;
8326      const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
8327      if (!Num) return false;
8328      if (Num->getValue() != 0) return false;
8329      return true;
8330    };
8331  
8332    const Expr *FirstArg = Call->getArg(0);
8333    const Expr *SecondArg = Call->getArg(1);
8334    const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
8335    const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
8336  
8337    // Only warn when exactly one argument is zero.
8338    if (IsFirstArgZero == IsSecondArgZero) return;
8339  
8340    SourceRange FirstRange = FirstArg->getSourceRange();
8341    SourceRange SecondRange = SecondArg->getSourceRange();
8342  
8343    SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
8344  
8345    Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
8346        << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
8347  
8348    // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
8349    SourceRange RemovalRange;
8350    if (IsFirstArgZero) {
8351      RemovalRange = SourceRange(FirstRange.getBegin(),
8352                                 SecondRange.getBegin().getLocWithOffset(-1));
8353    } else {
8354      RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
8355                                 SecondRange.getEnd());
8356    }
8357  
8358    Diag(Call->getExprLoc(), diag::note_remove_max_call)
8359          << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
8360          << FixItHint::CreateRemoval(RemovalRange);
8361  }
8362  
8363  //===--- CHECK: Standard memory functions ---------------------------------===//
8364  
8365  /// Takes the expression passed to the size_t parameter of functions
8366  /// such as memcmp, strncat, etc and warns if it's a comparison.
8367  ///
8368  /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)8369  static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
8370                                             IdentifierInfo *FnName,
8371                                             SourceLocation FnLoc,
8372                                             SourceLocation RParenLoc) {
8373    const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
8374    if (!Size)
8375      return false;
8376  
8377    // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
8378    if (!Size->isComparisonOp() && !Size->isLogicalOp())
8379      return false;
8380  
8381    SourceRange SizeRange = Size->getSourceRange();
8382    S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
8383        << SizeRange << FnName;
8384    S.Diag(FnLoc, diag::note_memsize_comparison_paren)
8385        << FnName
8386        << FixItHint::CreateInsertion(
8387               S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
8388        << FixItHint::CreateRemoval(RParenLoc);
8389    S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
8390        << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
8391        << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
8392                                      ")");
8393  
8394    return true;
8395  }
8396  
8397  /// Determine whether the given type is or contains a dynamic class type
8398  /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)8399  static const CXXRecordDecl *getContainedDynamicClass(QualType T,
8400                                                       bool &IsContained) {
8401    // Look through array types while ignoring qualifiers.
8402    const Type *Ty = T->getBaseElementTypeUnsafe();
8403    IsContained = false;
8404  
8405    const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
8406    RD = RD ? RD->getDefinition() : nullptr;
8407    if (!RD || RD->isInvalidDecl())
8408      return nullptr;
8409  
8410    if (RD->isDynamicClass())
8411      return RD;
8412  
8413    // Check all the fields.  If any bases were dynamic, the class is dynamic.
8414    // It's impossible for a class to transitively contain itself by value, so
8415    // infinite recursion is impossible.
8416    for (auto *FD : RD->fields()) {
8417      bool SubContained;
8418      if (const CXXRecordDecl *ContainedRD =
8419              getContainedDynamicClass(FD->getType(), SubContained)) {
8420        IsContained = true;
8421        return ContainedRD;
8422      }
8423    }
8424  
8425    return nullptr;
8426  }
8427  
getAsSizeOfExpr(const Expr * E)8428  static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
8429    if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
8430      if (Unary->getKind() == UETT_SizeOf)
8431        return Unary;
8432    return nullptr;
8433  }
8434  
8435  /// If E is a sizeof expression, returns its argument expression,
8436  /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)8437  static const Expr *getSizeOfExprArg(const Expr *E) {
8438    if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8439      if (!SizeOf->isArgumentType())
8440        return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
8441    return nullptr;
8442  }
8443  
8444  /// If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)8445  static QualType getSizeOfArgType(const Expr *E) {
8446    if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8447      return SizeOf->getTypeOfArgument();
8448    return QualType();
8449  }
8450  
8451  namespace {
8452  
8453  struct SearchNonTrivialToInitializeField
8454      : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
8455    using Super =
8456        DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
8457  
SearchNonTrivialToInitializeField__anon28c3fbb11f11::SearchNonTrivialToInitializeField8458    SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
8459  
visitWithKind__anon28c3fbb11f11::SearchNonTrivialToInitializeField8460    void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
8461                       SourceLocation SL) {
8462      if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8463        asDerived().visitArray(PDIK, AT, SL);
8464        return;
8465      }
8466  
8467      Super::visitWithKind(PDIK, FT, SL);
8468    }
8469  
visitARCStrong__anon28c3fbb11f11::SearchNonTrivialToInitializeField8470    void visitARCStrong(QualType FT, SourceLocation SL) {
8471      S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8472    }
visitARCWeak__anon28c3fbb11f11::SearchNonTrivialToInitializeField8473    void visitARCWeak(QualType FT, SourceLocation SL) {
8474      S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8475    }
visitStruct__anon28c3fbb11f11::SearchNonTrivialToInitializeField8476    void visitStruct(QualType FT, SourceLocation SL) {
8477      for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8478        visit(FD->getType(), FD->getLocation());
8479    }
visitArray__anon28c3fbb11f11::SearchNonTrivialToInitializeField8480    void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
8481                    const ArrayType *AT, SourceLocation SL) {
8482      visit(getContext().getBaseElementType(AT), SL);
8483    }
visitTrivial__anon28c3fbb11f11::SearchNonTrivialToInitializeField8484    void visitTrivial(QualType FT, SourceLocation SL) {}
8485  
diag__anon28c3fbb11f11::SearchNonTrivialToInitializeField8486    static void diag(QualType RT, const Expr *E, Sema &S) {
8487      SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
8488    }
8489  
getContext__anon28c3fbb11f11::SearchNonTrivialToInitializeField8490    ASTContext &getContext() { return S.getASTContext(); }
8491  
8492    const Expr *E;
8493    Sema &S;
8494  };
8495  
8496  struct SearchNonTrivialToCopyField
8497      : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
8498    using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
8499  
SearchNonTrivialToCopyField__anon28c3fbb11f11::SearchNonTrivialToCopyField8500    SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
8501  
visitWithKind__anon28c3fbb11f11::SearchNonTrivialToCopyField8502    void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
8503                       SourceLocation SL) {
8504      if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8505        asDerived().visitArray(PCK, AT, SL);
8506        return;
8507      }
8508  
8509      Super::visitWithKind(PCK, FT, SL);
8510    }
8511  
visitARCStrong__anon28c3fbb11f11::SearchNonTrivialToCopyField8512    void visitARCStrong(QualType FT, SourceLocation SL) {
8513      S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8514    }
visitARCWeak__anon28c3fbb11f11::SearchNonTrivialToCopyField8515    void visitARCWeak(QualType FT, SourceLocation SL) {
8516      S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8517    }
visitStruct__anon28c3fbb11f11::SearchNonTrivialToCopyField8518    void visitStruct(QualType FT, SourceLocation SL) {
8519      for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8520        visit(FD->getType(), FD->getLocation());
8521    }
visitArray__anon28c3fbb11f11::SearchNonTrivialToCopyField8522    void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
8523                    SourceLocation SL) {
8524      visit(getContext().getBaseElementType(AT), SL);
8525    }
preVisit__anon28c3fbb11f11::SearchNonTrivialToCopyField8526    void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
8527                  SourceLocation SL) {}
visitTrivial__anon28c3fbb11f11::SearchNonTrivialToCopyField8528    void visitTrivial(QualType FT, SourceLocation SL) {}
visitVolatileTrivial__anon28c3fbb11f11::SearchNonTrivialToCopyField8529    void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
8530  
diag__anon28c3fbb11f11::SearchNonTrivialToCopyField8531    static void diag(QualType RT, const Expr *E, Sema &S) {
8532      SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
8533    }
8534  
getContext__anon28c3fbb11f11::SearchNonTrivialToCopyField8535    ASTContext &getContext() { return S.getASTContext(); }
8536  
8537    const Expr *E;
8538    Sema &S;
8539  };
8540  
8541  }
8542  
8543  /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
doesExprLikelyComputeSize(const Expr * SizeofExpr)8544  static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
8545    SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
8546  
8547    if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
8548      if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
8549        return false;
8550  
8551      return doesExprLikelyComputeSize(BO->getLHS()) ||
8552             doesExprLikelyComputeSize(BO->getRHS());
8553    }
8554  
8555    return getAsSizeOfExpr(SizeofExpr) != nullptr;
8556  }
8557  
8558  /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
8559  ///
8560  /// \code
8561  ///   #define MACRO 0
8562  ///   foo(MACRO);
8563  ///   foo(0);
8564  /// \endcode
8565  ///
8566  /// This should return true for the first call to foo, but not for the second
8567  /// (regardless of whether foo is a macro or function).
isArgumentExpandedFromMacro(SourceManager & SM,SourceLocation CallLoc,SourceLocation ArgLoc)8568  static bool isArgumentExpandedFromMacro(SourceManager &SM,
8569                                          SourceLocation CallLoc,
8570                                          SourceLocation ArgLoc) {
8571    if (!CallLoc.isMacroID())
8572      return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
8573  
8574    return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
8575           SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
8576  }
8577  
8578  /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
8579  /// last two arguments transposed.
CheckMemaccessSize(Sema & S,unsigned BId,const CallExpr * Call)8580  static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
8581    if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
8582      return;
8583  
8584    const Expr *SizeArg =
8585      Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
8586  
8587    auto isLiteralZero = [](const Expr *E) {
8588      return (isa<IntegerLiteral>(E) &&
8589              cast<IntegerLiteral>(E)->getValue() == 0) ||
8590             (isa<CharacterLiteral>(E) &&
8591              cast<CharacterLiteral>(E)->getValue() == 0);
8592    };
8593  
8594    // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
8595    SourceLocation CallLoc = Call->getRParenLoc();
8596    SourceManager &SM = S.getSourceManager();
8597    if (isLiteralZero(SizeArg) &&
8598        !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
8599  
8600      SourceLocation DiagLoc = SizeArg->getExprLoc();
8601  
8602      // Some platforms #define bzero to __builtin_memset. See if this is the
8603      // case, and if so, emit a better diagnostic.
8604      if (BId == Builtin::BIbzero ||
8605          (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
8606                                      CallLoc, SM, S.getLangOpts()) == "bzero")) {
8607        S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
8608        S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
8609      } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
8610        S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
8611        S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
8612      }
8613      return;
8614    }
8615  
8616    // If the second argument to a memset is a sizeof expression and the third
8617    // isn't, this is also likely an error. This should catch
8618    // 'memset(buf, sizeof(buf), 0xff)'.
8619    if (BId == Builtin::BImemset &&
8620        doesExprLikelyComputeSize(Call->getArg(1)) &&
8621        !doesExprLikelyComputeSize(Call->getArg(2))) {
8622      SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
8623      S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
8624      S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
8625      return;
8626    }
8627  }
8628  
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)8629  void Sema::CheckMemaccessArguments(const CallExpr *Call,
8630                                     unsigned BId,
8631                                     IdentifierInfo *FnName) {
8632    assert(BId != 0);
8633  
8634    // It is possible to have a non-standard definition of memset.  Validate
8635    // we have enough arguments, and if not, abort further checking.
8636    unsigned ExpectedNumArgs =
8637        (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
8638    if (Call->getNumArgs() < ExpectedNumArgs)
8639      return;
8640  
8641    unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
8642                        BId == Builtin::BIstrndup ? 1 : 2);
8643    unsigned LenArg =
8644        (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
8645    const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
8646  
8647    if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
8648                                       Call->getBeginLoc(), Call->getRParenLoc()))
8649      return;
8650  
8651    // Catch cases like 'memset(buf, sizeof(buf), 0)'.
8652    CheckMemaccessSize(*this, BId, Call);
8653  
8654    // We have special checking when the length is a sizeof expression.
8655    QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
8656    const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
8657    llvm::FoldingSetNodeID SizeOfArgID;
8658  
8659    // Although widely used, 'bzero' is not a standard function. Be more strict
8660    // with the argument types before allowing diagnostics and only allow the
8661    // form bzero(ptr, sizeof(...)).
8662    QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8663    if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
8664      return;
8665  
8666    for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
8667      const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
8668      SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
8669  
8670      QualType DestTy = Dest->getType();
8671      QualType PointeeTy;
8672      if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
8673        PointeeTy = DestPtrTy->getPointeeType();
8674  
8675        // Never warn about void type pointers. This can be used to suppress
8676        // false positives.
8677        if (PointeeTy->isVoidType())
8678          continue;
8679  
8680        // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
8681        // actually comparing the expressions for equality. Because computing the
8682        // expression IDs can be expensive, we only do this if the diagnostic is
8683        // enabled.
8684        if (SizeOfArg &&
8685            !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
8686                             SizeOfArg->getExprLoc())) {
8687          // We only compute IDs for expressions if the warning is enabled, and
8688          // cache the sizeof arg's ID.
8689          if (SizeOfArgID == llvm::FoldingSetNodeID())
8690            SizeOfArg->Profile(SizeOfArgID, Context, true);
8691          llvm::FoldingSetNodeID DestID;
8692          Dest->Profile(DestID, Context, true);
8693          if (DestID == SizeOfArgID) {
8694            // TODO: For strncpy() and friends, this could suggest sizeof(dst)
8695            //       over sizeof(src) as well.
8696            unsigned ActionIdx = 0; // Default is to suggest dereferencing.
8697            StringRef ReadableName = FnName->getName();
8698  
8699            if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
8700              if (UnaryOp->getOpcode() == UO_AddrOf)
8701                ActionIdx = 1; // If its an address-of operator, just remove it.
8702            if (!PointeeTy->isIncompleteType() &&
8703                (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
8704              ActionIdx = 2; // If the pointee's size is sizeof(char),
8705                             // suggest an explicit length.
8706  
8707            // If the function is defined as a builtin macro, do not show macro
8708            // expansion.
8709            SourceLocation SL = SizeOfArg->getExprLoc();
8710            SourceRange DSR = Dest->getSourceRange();
8711            SourceRange SSR = SizeOfArg->getSourceRange();
8712            SourceManager &SM = getSourceManager();
8713  
8714            if (SM.isMacroArgExpansion(SL)) {
8715              ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
8716              SL = SM.getSpellingLoc(SL);
8717              DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
8718                               SM.getSpellingLoc(DSR.getEnd()));
8719              SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
8720                               SM.getSpellingLoc(SSR.getEnd()));
8721            }
8722  
8723            DiagRuntimeBehavior(SL, SizeOfArg,
8724                                PDiag(diag::warn_sizeof_pointer_expr_memaccess)
8725                                  << ReadableName
8726                                  << PointeeTy
8727                                  << DestTy
8728                                  << DSR
8729                                  << SSR);
8730            DiagRuntimeBehavior(SL, SizeOfArg,
8731                           PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
8732                                  << ActionIdx
8733                                  << SSR);
8734  
8735            break;
8736          }
8737        }
8738  
8739        // Also check for cases where the sizeof argument is the exact same
8740        // type as the memory argument, and where it points to a user-defined
8741        // record type.
8742        if (SizeOfArgTy != QualType()) {
8743          if (PointeeTy->isRecordType() &&
8744              Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
8745            DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
8746                                PDiag(diag::warn_sizeof_pointer_type_memaccess)
8747                                  << FnName << SizeOfArgTy << ArgIdx
8748                                  << PointeeTy << Dest->getSourceRange()
8749                                  << LenExpr->getSourceRange());
8750            break;
8751          }
8752        }
8753      } else if (DestTy->isArrayType()) {
8754        PointeeTy = DestTy;
8755      }
8756  
8757      if (PointeeTy == QualType())
8758        continue;
8759  
8760      // Always complain about dynamic classes.
8761      bool IsContained;
8762      if (const CXXRecordDecl *ContainedRD =
8763              getContainedDynamicClass(PointeeTy, IsContained)) {
8764  
8765        unsigned OperationType = 0;
8766        const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
8767        // "overwritten" if we're warning about the destination for any call
8768        // but memcmp; otherwise a verb appropriate to the call.
8769        if (ArgIdx != 0 || IsCmp) {
8770          if (BId == Builtin::BImemcpy)
8771            OperationType = 1;
8772          else if(BId == Builtin::BImemmove)
8773            OperationType = 2;
8774          else if (IsCmp)
8775            OperationType = 3;
8776        }
8777  
8778        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
8779                            PDiag(diag::warn_dyn_class_memaccess)
8780                                << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
8781                                << IsContained << ContainedRD << OperationType
8782                                << Call->getCallee()->getSourceRange());
8783      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
8784               BId != Builtin::BImemset)
8785        DiagRuntimeBehavior(
8786          Dest->getExprLoc(), Dest,
8787          PDiag(diag::warn_arc_object_memaccess)
8788            << ArgIdx << FnName << PointeeTy
8789            << Call->getCallee()->getSourceRange());
8790      else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
8791        if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
8792            RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
8793          DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
8794                              PDiag(diag::warn_cstruct_memaccess)
8795                                  << ArgIdx << FnName << PointeeTy << 0);
8796          SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
8797        } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
8798                   RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
8799          DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
8800                              PDiag(diag::warn_cstruct_memaccess)
8801                                  << ArgIdx << FnName << PointeeTy << 1);
8802          SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
8803        } else {
8804          continue;
8805        }
8806      } else
8807        continue;
8808  
8809      DiagRuntimeBehavior(
8810        Dest->getExprLoc(), Dest,
8811        PDiag(diag::note_bad_memaccess_silence)
8812          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
8813      break;
8814    }
8815  }
8816  
8817  // A little helper routine: ignore addition and subtraction of integer literals.
8818  // This intentionally does not ignore all integer constant expressions because
8819  // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)8820  static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
8821    Ex = Ex->IgnoreParenCasts();
8822  
8823    while (true) {
8824      const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
8825      if (!BO || !BO->isAdditiveOp())
8826        break;
8827  
8828      const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
8829      const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
8830  
8831      if (isa<IntegerLiteral>(RHS))
8832        Ex = LHS;
8833      else if (isa<IntegerLiteral>(LHS))
8834        Ex = RHS;
8835      else
8836        break;
8837    }
8838  
8839    return Ex;
8840  }
8841  
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)8842  static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
8843                                                        ASTContext &Context) {
8844    // Only handle constant-sized or VLAs, but not flexible members.
8845    if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
8846      // Only issue the FIXIT for arrays of size > 1.
8847      if (CAT->getZExtSize() <= 1)
8848        return false;
8849    } else if (!Ty->isVariableArrayType()) {
8850      return false;
8851    }
8852    return true;
8853  }
8854  
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)8855  void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
8856                                      IdentifierInfo *FnName) {
8857  
8858    // Don't crash if the user has the wrong number of arguments
8859    unsigned NumArgs = Call->getNumArgs();
8860    if ((NumArgs != 3) && (NumArgs != 4))
8861      return;
8862  
8863    const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
8864    const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
8865    const Expr *CompareWithSrc = nullptr;
8866  
8867    if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
8868                                       Call->getBeginLoc(), Call->getRParenLoc()))
8869      return;
8870  
8871    // Look for 'strlcpy(dst, x, sizeof(x))'
8872    if (const Expr *Ex = getSizeOfExprArg(SizeArg))
8873      CompareWithSrc = Ex;
8874    else {
8875      // Look for 'strlcpy(dst, x, strlen(x))'
8876      if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
8877        if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
8878            SizeCall->getNumArgs() == 1)
8879          CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
8880      }
8881    }
8882  
8883    if (!CompareWithSrc)
8884      return;
8885  
8886    // Determine if the argument to sizeof/strlen is equal to the source
8887    // argument.  In principle there's all kinds of things you could do
8888    // here, for instance creating an == expression and evaluating it with
8889    // EvaluateAsBooleanCondition, but this uses a more direct technique:
8890    const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
8891    if (!SrcArgDRE)
8892      return;
8893  
8894    const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
8895    if (!CompareWithSrcDRE ||
8896        SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
8897      return;
8898  
8899    const Expr *OriginalSizeArg = Call->getArg(2);
8900    Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
8901        << OriginalSizeArg->getSourceRange() << FnName;
8902  
8903    // Output a FIXIT hint if the destination is an array (rather than a
8904    // pointer to an array).  This could be enhanced to handle some
8905    // pointers if we know the actual size, like if DstArg is 'array+2'
8906    // we could say 'sizeof(array)-2'.
8907    const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
8908    if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
8909      return;
8910  
8911    SmallString<128> sizeString;
8912    llvm::raw_svector_ostream OS(sizeString);
8913    OS << "sizeof(";
8914    DstArg->printPretty(OS, nullptr, getPrintingPolicy());
8915    OS << ")";
8916  
8917    Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
8918        << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
8919                                        OS.str());
8920  }
8921  
8922  /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)8923  static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
8924    if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
8925      if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
8926        return D1->getDecl() == D2->getDecl();
8927    return false;
8928  }
8929  
getStrlenExprArg(const Expr * E)8930  static const Expr *getStrlenExprArg(const Expr *E) {
8931    if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8932      const FunctionDecl *FD = CE->getDirectCallee();
8933      if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
8934        return nullptr;
8935      return CE->getArg(0)->IgnoreParenCasts();
8936    }
8937    return nullptr;
8938  }
8939  
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)8940  void Sema::CheckStrncatArguments(const CallExpr *CE,
8941                                   IdentifierInfo *FnName) {
8942    // Don't crash if the user has the wrong number of arguments.
8943    if (CE->getNumArgs() < 3)
8944      return;
8945    const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
8946    const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
8947    const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
8948  
8949    if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
8950                                       CE->getRParenLoc()))
8951      return;
8952  
8953    // Identify common expressions, which are wrongly used as the size argument
8954    // to strncat and may lead to buffer overflows.
8955    unsigned PatternType = 0;
8956    if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
8957      // - sizeof(dst)
8958      if (referToTheSameDecl(SizeOfArg, DstArg))
8959        PatternType = 1;
8960      // - sizeof(src)
8961      else if (referToTheSameDecl(SizeOfArg, SrcArg))
8962        PatternType = 2;
8963    } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
8964      if (BE->getOpcode() == BO_Sub) {
8965        const Expr *L = BE->getLHS()->IgnoreParenCasts();
8966        const Expr *R = BE->getRHS()->IgnoreParenCasts();
8967        // - sizeof(dst) - strlen(dst)
8968        if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
8969            referToTheSameDecl(DstArg, getStrlenExprArg(R)))
8970          PatternType = 1;
8971        // - sizeof(src) - (anything)
8972        else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
8973          PatternType = 2;
8974      }
8975    }
8976  
8977    if (PatternType == 0)
8978      return;
8979  
8980    // Generate the diagnostic.
8981    SourceLocation SL = LenArg->getBeginLoc();
8982    SourceRange SR = LenArg->getSourceRange();
8983    SourceManager &SM = getSourceManager();
8984  
8985    // If the function is defined as a builtin macro, do not show macro expansion.
8986    if (SM.isMacroArgExpansion(SL)) {
8987      SL = SM.getSpellingLoc(SL);
8988      SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
8989                       SM.getSpellingLoc(SR.getEnd()));
8990    }
8991  
8992    // Check if the destination is an array (rather than a pointer to an array).
8993    QualType DstTy = DstArg->getType();
8994    bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
8995                                                                      Context);
8996    if (!isKnownSizeArray) {
8997      if (PatternType == 1)
8998        Diag(SL, diag::warn_strncat_wrong_size) << SR;
8999      else
9000        Diag(SL, diag::warn_strncat_src_size) << SR;
9001      return;
9002    }
9003  
9004    if (PatternType == 1)
9005      Diag(SL, diag::warn_strncat_large_size) << SR;
9006    else
9007      Diag(SL, diag::warn_strncat_src_size) << SR;
9008  
9009    SmallString<128> sizeString;
9010    llvm::raw_svector_ostream OS(sizeString);
9011    OS << "sizeof(";
9012    DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9013    OS << ") - ";
9014    OS << "strlen(";
9015    DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9016    OS << ") - 1";
9017  
9018    Diag(SL, diag::note_strncat_wrong_size)
9019      << FixItHint::CreateReplacement(SR, OS.str());
9020  }
9021  
9022  namespace {
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const Decl * D)9023  void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
9024                                  const UnaryOperator *UnaryExpr, const Decl *D) {
9025    if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
9026      S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
9027          << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
9028      return;
9029    }
9030  }
9031  
CheckFreeArgumentsAddressof(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)9032  void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
9033                                   const UnaryOperator *UnaryExpr) {
9034    if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
9035      const Decl *D = Lvalue->getDecl();
9036      if (isa<DeclaratorDecl>(D))
9037        if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
9038          return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
9039    }
9040  
9041    if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
9042      return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
9043                                        Lvalue->getMemberDecl());
9044  }
9045  
CheckFreeArgumentsPlus(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)9046  void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
9047                              const UnaryOperator *UnaryExpr) {
9048    const auto *Lambda = dyn_cast<LambdaExpr>(
9049        UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
9050    if (!Lambda)
9051      return;
9052  
9053    S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
9054        << CalleeName << 2 /*object: lambda expression*/;
9055  }
9056  
CheckFreeArgumentsStackArray(Sema & S,const std::string & CalleeName,const DeclRefExpr * Lvalue)9057  void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
9058                                    const DeclRefExpr *Lvalue) {
9059    const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
9060    if (Var == nullptr)
9061      return;
9062  
9063    S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
9064        << CalleeName << 0 /*object: */ << Var;
9065  }
9066  
CheckFreeArgumentsCast(Sema & S,const std::string & CalleeName,const CastExpr * Cast)9067  void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
9068                              const CastExpr *Cast) {
9069    SmallString<128> SizeString;
9070    llvm::raw_svector_ostream OS(SizeString);
9071  
9072    clang::CastKind Kind = Cast->getCastKind();
9073    if (Kind == clang::CK_BitCast &&
9074        !Cast->getSubExpr()->getType()->isFunctionPointerType())
9075      return;
9076    if (Kind == clang::CK_IntegralToPointer &&
9077        !isa<IntegerLiteral>(
9078            Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
9079      return;
9080  
9081    switch (Cast->getCastKind()) {
9082    case clang::CK_BitCast:
9083    case clang::CK_IntegralToPointer:
9084    case clang::CK_FunctionToPointerDecay:
9085      OS << '\'';
9086      Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
9087      OS << '\'';
9088      break;
9089    default:
9090      return;
9091    }
9092  
9093    S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
9094        << CalleeName << 0 /*object: */ << OS.str();
9095  }
9096  } // namespace
9097  
CheckFreeArguments(const CallExpr * E)9098  void Sema::CheckFreeArguments(const CallExpr *E) {
9099    const std::string CalleeName =
9100        cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
9101  
9102    { // Prefer something that doesn't involve a cast to make things simpler.
9103      const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
9104      if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
9105        switch (UnaryExpr->getOpcode()) {
9106        case UnaryOperator::Opcode::UO_AddrOf:
9107          return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
9108        case UnaryOperator::Opcode::UO_Plus:
9109          return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
9110        default:
9111          break;
9112        }
9113  
9114      if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
9115        if (Lvalue->getType()->isArrayType())
9116          return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
9117  
9118      if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
9119        Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
9120            << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
9121        return;
9122      }
9123  
9124      if (isa<BlockExpr>(Arg)) {
9125        Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
9126            << CalleeName << 1 /*object: block*/;
9127        return;
9128      }
9129    }
9130    // Maybe the cast was important, check after the other cases.
9131    if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
9132      return CheckFreeArgumentsCast(*this, CalleeName, Cast);
9133  }
9134  
9135  void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)9136  Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
9137                           SourceLocation ReturnLoc,
9138                           bool isObjCMethod,
9139                           const AttrVec *Attrs,
9140                           const FunctionDecl *FD) {
9141    // Check if the return value is null but should not be.
9142    if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
9143         (!isObjCMethod && isNonNullType(lhsType))) &&
9144        CheckNonNullExpr(*this, RetValExp))
9145      Diag(ReturnLoc, diag::warn_null_ret)
9146        << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
9147  
9148    // C++11 [basic.stc.dynamic.allocation]p4:
9149    //   If an allocation function declared with a non-throwing
9150    //   exception-specification fails to allocate storage, it shall return
9151    //   a null pointer. Any other allocation function that fails to allocate
9152    //   storage shall indicate failure only by throwing an exception [...]
9153    if (FD) {
9154      OverloadedOperatorKind Op = FD->getOverloadedOperator();
9155      if (Op == OO_New || Op == OO_Array_New) {
9156        const FunctionProtoType *Proto
9157          = FD->getType()->castAs<FunctionProtoType>();
9158        if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
9159            CheckNonNullExpr(*this, RetValExp))
9160          Diag(ReturnLoc, diag::warn_operator_new_returns_null)
9161            << FD << getLangOpts().CPlusPlus11;
9162      }
9163    }
9164  
9165    if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
9166      Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
9167    }
9168  
9169    // PPC MMA non-pointer types are not allowed as return type. Checking the type
9170    // here prevent the user from using a PPC MMA type as trailing return type.
9171    if (Context.getTargetInfo().getTriple().isPPC64())
9172      PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
9173  }
9174  
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opcode)9175  void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
9176                                  BinaryOperatorKind Opcode) {
9177    if (!BinaryOperator::isEqualityOp(Opcode))
9178      return;
9179  
9180    // Match and capture subexpressions such as "(float) X == 0.1".
9181    FloatingLiteral *FPLiteral;
9182    CastExpr *FPCast;
9183    auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
9184      FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
9185      FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
9186      return FPLiteral && FPCast;
9187    };
9188  
9189    if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
9190      auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
9191      auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
9192      if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
9193          TargetTy->isFloatingPoint()) {
9194        bool Lossy;
9195        llvm::APFloat TargetC = FPLiteral->getValue();
9196        TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
9197                        llvm::APFloat::rmNearestTiesToEven, &Lossy);
9198        if (Lossy) {
9199          // If the literal cannot be represented in the source type, then a
9200          // check for == is always false and check for != is always true.
9201          Diag(Loc, diag::warn_float_compare_literal)
9202              << (Opcode == BO_EQ) << QualType(SourceTy, 0)
9203              << LHS->getSourceRange() << RHS->getSourceRange();
9204          return;
9205        }
9206      }
9207    }
9208  
9209    // Match a more general floating-point equality comparison (-Wfloat-equal).
9210    Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
9211    Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
9212  
9213    // Special case: check for x == x (which is OK).
9214    // Do not emit warnings for such cases.
9215    if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
9216      if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
9217        if (DRL->getDecl() == DRR->getDecl())
9218          return;
9219  
9220    // Special case: check for comparisons against literals that can be exactly
9221    //  represented by APFloat.  In such cases, do not emit a warning.  This
9222    //  is a heuristic: often comparison against such literals are used to
9223    //  detect if a value in a variable has not changed.  This clearly can
9224    //  lead to false negatives.
9225    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
9226      if (FLL->isExact())
9227        return;
9228    } else
9229      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
9230        if (FLR->isExact())
9231          return;
9232  
9233    // Check for comparisons with builtin types.
9234    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
9235      if (CL->getBuiltinCallee())
9236        return;
9237  
9238    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
9239      if (CR->getBuiltinCallee())
9240        return;
9241  
9242    // Emit the diagnostic.
9243    Diag(Loc, diag::warn_floatingpoint_eq)
9244      << LHS->getSourceRange() << RHS->getSourceRange();
9245  }
9246  
9247  //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
9248  //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
9249  
9250  namespace {
9251  
9252  /// Structure recording the 'active' range of an integer-valued
9253  /// expression.
9254  struct IntRange {
9255    /// The number of bits active in the int. Note that this includes exactly one
9256    /// sign bit if !NonNegative.
9257    unsigned Width;
9258  
9259    /// True if the int is known not to have negative values. If so, all leading
9260    /// bits before Width are known zero, otherwise they are known to be the
9261    /// same as the MSB within Width.
9262    bool NonNegative;
9263  
IntRange__anon28c3fbb12311::IntRange9264    IntRange(unsigned Width, bool NonNegative)
9265        : Width(Width), NonNegative(NonNegative) {}
9266  
9267    /// Number of bits excluding the sign bit.
valueBits__anon28c3fbb12311::IntRange9268    unsigned valueBits() const {
9269      return NonNegative ? Width : Width - 1;
9270    }
9271  
9272    /// Returns the range of the bool type.
forBoolType__anon28c3fbb12311::IntRange9273    static IntRange forBoolType() {
9274      return IntRange(1, true);
9275    }
9276  
9277    /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon28c3fbb12311::IntRange9278    static IntRange forValueOfType(ASTContext &C, QualType T) {
9279      return forValueOfCanonicalType(C,
9280                            T->getCanonicalTypeInternal().getTypePtr());
9281    }
9282  
9283    /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon28c3fbb12311::IntRange9284    static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
9285      assert(T->isCanonicalUnqualified());
9286  
9287      if (const VectorType *VT = dyn_cast<VectorType>(T))
9288        T = VT->getElementType().getTypePtr();
9289      if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9290        T = CT->getElementType().getTypePtr();
9291      if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9292        T = AT->getValueType().getTypePtr();
9293  
9294      if (!C.getLangOpts().CPlusPlus) {
9295        // For enum types in C code, use the underlying datatype.
9296        if (const EnumType *ET = dyn_cast<EnumType>(T))
9297          T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
9298      } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
9299        // For enum types in C++, use the known bit width of the enumerators.
9300        EnumDecl *Enum = ET->getDecl();
9301        // In C++11, enums can have a fixed underlying type. Use this type to
9302        // compute the range.
9303        if (Enum->isFixed()) {
9304          return IntRange(C.getIntWidth(QualType(T, 0)),
9305                          !ET->isSignedIntegerOrEnumerationType());
9306        }
9307  
9308        unsigned NumPositive = Enum->getNumPositiveBits();
9309        unsigned NumNegative = Enum->getNumNegativeBits();
9310  
9311        if (NumNegative == 0)
9312          return IntRange(NumPositive, true/*NonNegative*/);
9313        else
9314          return IntRange(std::max(NumPositive + 1, NumNegative),
9315                          false/*NonNegative*/);
9316      }
9317  
9318      if (const auto *EIT = dyn_cast<BitIntType>(T))
9319        return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9320  
9321      const BuiltinType *BT = cast<BuiltinType>(T);
9322      assert(BT->isInteger());
9323  
9324      return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9325    }
9326  
9327    /// Returns the "target" range of a canonical integral type, i.e.
9328    /// the range of values expressible in the type.
9329    ///
9330    /// This matches forValueOfCanonicalType except that enums have the
9331    /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon28c3fbb12311::IntRange9332    static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
9333      assert(T->isCanonicalUnqualified());
9334  
9335      if (const VectorType *VT = dyn_cast<VectorType>(T))
9336        T = VT->getElementType().getTypePtr();
9337      if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9338        T = CT->getElementType().getTypePtr();
9339      if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9340        T = AT->getValueType().getTypePtr();
9341      if (const EnumType *ET = dyn_cast<EnumType>(T))
9342        T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
9343  
9344      if (const auto *EIT = dyn_cast<BitIntType>(T))
9345        return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9346  
9347      const BuiltinType *BT = cast<BuiltinType>(T);
9348      assert(BT->isInteger());
9349  
9350      return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9351    }
9352  
9353    /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon28c3fbb12311::IntRange9354    static IntRange join(IntRange L, IntRange R) {
9355      bool Unsigned = L.NonNegative && R.NonNegative;
9356      return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
9357                      L.NonNegative && R.NonNegative);
9358    }
9359  
9360    /// Return the range of a bitwise-AND of the two ranges.
bit_and__anon28c3fbb12311::IntRange9361    static IntRange bit_and(IntRange L, IntRange R) {
9362      unsigned Bits = std::max(L.Width, R.Width);
9363      bool NonNegative = false;
9364      if (L.NonNegative) {
9365        Bits = std::min(Bits, L.Width);
9366        NonNegative = true;
9367      }
9368      if (R.NonNegative) {
9369        Bits = std::min(Bits, R.Width);
9370        NonNegative = true;
9371      }
9372      return IntRange(Bits, NonNegative);
9373    }
9374  
9375    /// Return the range of a sum of the two ranges.
sum__anon28c3fbb12311::IntRange9376    static IntRange sum(IntRange L, IntRange R) {
9377      bool Unsigned = L.NonNegative && R.NonNegative;
9378      return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
9379                      Unsigned);
9380    }
9381  
9382    /// Return the range of a difference of the two ranges.
difference__anon28c3fbb12311::IntRange9383    static IntRange difference(IntRange L, IntRange R) {
9384      // We need a 1-bit-wider range if:
9385      //   1) LHS can be negative: least value can be reduced.
9386      //   2) RHS can be negative: greatest value can be increased.
9387      bool CanWiden = !L.NonNegative || !R.NonNegative;
9388      bool Unsigned = L.NonNegative && R.Width == 0;
9389      return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
9390                          !Unsigned,
9391                      Unsigned);
9392    }
9393  
9394    /// Return the range of a product of the two ranges.
product__anon28c3fbb12311::IntRange9395    static IntRange product(IntRange L, IntRange R) {
9396      // If both LHS and RHS can be negative, we can form
9397      //   -2^L * -2^R = 2^(L + R)
9398      // which requires L + R + 1 value bits to represent.
9399      bool CanWiden = !L.NonNegative && !R.NonNegative;
9400      bool Unsigned = L.NonNegative && R.NonNegative;
9401      return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
9402                      Unsigned);
9403    }
9404  
9405    /// Return the range of a remainder operation between the two ranges.
rem__anon28c3fbb12311::IntRange9406    static IntRange rem(IntRange L, IntRange R) {
9407      // The result of a remainder can't be larger than the result of
9408      // either side. The sign of the result is the sign of the LHS.
9409      bool Unsigned = L.NonNegative;
9410      return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
9411                      Unsigned);
9412    }
9413  };
9414  
9415  } // namespace
9416  
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)9417  static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
9418                                unsigned MaxWidth) {
9419    if (value.isSigned() && value.isNegative())
9420      return IntRange(value.getSignificantBits(), false);
9421  
9422    if (value.getBitWidth() > MaxWidth)
9423      value = value.trunc(MaxWidth);
9424  
9425    // isNonNegative() just checks the sign bit without considering
9426    // signedness.
9427    return IntRange(value.getActiveBits(), true);
9428  }
9429  
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)9430  static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
9431                                unsigned MaxWidth) {
9432    if (result.isInt())
9433      return GetValueRange(C, result.getInt(), MaxWidth);
9434  
9435    if (result.isVector()) {
9436      IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
9437      for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
9438        IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
9439        R = IntRange::join(R, El);
9440      }
9441      return R;
9442    }
9443  
9444    if (result.isComplexInt()) {
9445      IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
9446      IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
9447      return IntRange::join(R, I);
9448    }
9449  
9450    // This can happen with lossless casts to intptr_t of "based" lvalues.
9451    // Assume it might use arbitrary bits.
9452    // FIXME: The only reason we need to pass the type in here is to get
9453    // the sign right on this one case.  It would be nice if APValue
9454    // preserved this.
9455    assert(result.isLValue() || result.isAddrLabelDiff());
9456    return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
9457  }
9458  
GetExprType(const Expr * E)9459  static QualType GetExprType(const Expr *E) {
9460    QualType Ty = E->getType();
9461    if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
9462      Ty = AtomicRHS->getValueType();
9463    return Ty;
9464  }
9465  
9466  /// Pseudo-evaluate the given integer expression, estimating the
9467  /// range of values it might take.
9468  ///
9469  /// \param MaxWidth The width to which the value will be truncated.
9470  /// \param Approximate If \c true, return a likely range for the result: in
9471  ///        particular, assume that arithmetic on narrower types doesn't leave
9472  ///        those types. If \c false, return a range including all possible
9473  ///        result values.
GetExprRange(ASTContext & C,const Expr * E,unsigned MaxWidth,bool InConstantContext,bool Approximate)9474  static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
9475                               bool InConstantContext, bool Approximate) {
9476    E = E->IgnoreParens();
9477  
9478    // Try a full evaluation first.
9479    Expr::EvalResult result;
9480    if (E->EvaluateAsRValue(result, C, InConstantContext))
9481      return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
9482  
9483    // I think we only want to look through implicit casts here; if the
9484    // user has an explicit widening cast, we should treat the value as
9485    // being of the new, wider type.
9486    if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
9487      if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
9488        return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
9489                            Approximate);
9490  
9491      IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
9492  
9493      bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
9494                           CE->getCastKind() == CK_BooleanToSignedIntegral;
9495  
9496      // Assume that non-integer casts can span the full range of the type.
9497      if (!isIntegerCast)
9498        return OutputTypeRange;
9499  
9500      IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
9501                                       std::min(MaxWidth, OutputTypeRange.Width),
9502                                       InConstantContext, Approximate);
9503  
9504      // Bail out if the subexpr's range is as wide as the cast type.
9505      if (SubRange.Width >= OutputTypeRange.Width)
9506        return OutputTypeRange;
9507  
9508      // Otherwise, we take the smaller width, and we're non-negative if
9509      // either the output type or the subexpr is.
9510      return IntRange(SubRange.Width,
9511                      SubRange.NonNegative || OutputTypeRange.NonNegative);
9512    }
9513  
9514    if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
9515      // If we can fold the condition, just take that operand.
9516      bool CondResult;
9517      if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
9518        return GetExprRange(C,
9519                            CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
9520                            MaxWidth, InConstantContext, Approximate);
9521  
9522      // Otherwise, conservatively merge.
9523      // GetExprRange requires an integer expression, but a throw expression
9524      // results in a void type.
9525      Expr *E = CO->getTrueExpr();
9526      IntRange L = E->getType()->isVoidType()
9527                       ? IntRange{0, true}
9528                       : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
9529      E = CO->getFalseExpr();
9530      IntRange R = E->getType()->isVoidType()
9531                       ? IntRange{0, true}
9532                       : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
9533      return IntRange::join(L, R);
9534    }
9535  
9536    if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
9537      IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
9538  
9539      switch (BO->getOpcode()) {
9540      case BO_Cmp:
9541        llvm_unreachable("builtin <=> should have class type");
9542  
9543      // Boolean-valued operations are single-bit and positive.
9544      case BO_LAnd:
9545      case BO_LOr:
9546      case BO_LT:
9547      case BO_GT:
9548      case BO_LE:
9549      case BO_GE:
9550      case BO_EQ:
9551      case BO_NE:
9552        return IntRange::forBoolType();
9553  
9554      // The type of the assignments is the type of the LHS, so the RHS
9555      // is not necessarily the same type.
9556      case BO_MulAssign:
9557      case BO_DivAssign:
9558      case BO_RemAssign:
9559      case BO_AddAssign:
9560      case BO_SubAssign:
9561      case BO_XorAssign:
9562      case BO_OrAssign:
9563        // TODO: bitfields?
9564        return IntRange::forValueOfType(C, GetExprType(E));
9565  
9566      // Simple assignments just pass through the RHS, which will have
9567      // been coerced to the LHS type.
9568      case BO_Assign:
9569        // TODO: bitfields?
9570        return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9571                            Approximate);
9572  
9573      // Operations with opaque sources are black-listed.
9574      case BO_PtrMemD:
9575      case BO_PtrMemI:
9576        return IntRange::forValueOfType(C, GetExprType(E));
9577  
9578      // Bitwise-and uses the *infinum* of the two source ranges.
9579      case BO_And:
9580      case BO_AndAssign:
9581        Combine = IntRange::bit_and;
9582        break;
9583  
9584      // Left shift gets black-listed based on a judgement call.
9585      case BO_Shl:
9586        // ...except that we want to treat '1 << (blah)' as logically
9587        // positive.  It's an important idiom.
9588        if (IntegerLiteral *I
9589              = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
9590          if (I->getValue() == 1) {
9591            IntRange R = IntRange::forValueOfType(C, GetExprType(E));
9592            return IntRange(R.Width, /*NonNegative*/ true);
9593          }
9594        }
9595        [[fallthrough]];
9596  
9597      case BO_ShlAssign:
9598        return IntRange::forValueOfType(C, GetExprType(E));
9599  
9600      // Right shift by a constant can narrow its left argument.
9601      case BO_Shr:
9602      case BO_ShrAssign: {
9603        IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
9604                                  Approximate);
9605  
9606        // If the shift amount is a positive constant, drop the width by
9607        // that much.
9608        if (std::optional<llvm::APSInt> shift =
9609                BO->getRHS()->getIntegerConstantExpr(C)) {
9610          if (shift->isNonNegative()) {
9611            if (shift->uge(L.Width))
9612              L.Width = (L.NonNegative ? 0 : 1);
9613            else
9614              L.Width -= shift->getZExtValue();
9615          }
9616        }
9617  
9618        return L;
9619      }
9620  
9621      // Comma acts as its right operand.
9622      case BO_Comma:
9623        return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9624                            Approximate);
9625  
9626      case BO_Add:
9627        if (!Approximate)
9628          Combine = IntRange::sum;
9629        break;
9630  
9631      case BO_Sub:
9632        if (BO->getLHS()->getType()->isPointerType())
9633          return IntRange::forValueOfType(C, GetExprType(E));
9634        if (!Approximate)
9635          Combine = IntRange::difference;
9636        break;
9637  
9638      case BO_Mul:
9639        if (!Approximate)
9640          Combine = IntRange::product;
9641        break;
9642  
9643      // The width of a division result is mostly determined by the size
9644      // of the LHS.
9645      case BO_Div: {
9646        // Don't 'pre-truncate' the operands.
9647        unsigned opWidth = C.getIntWidth(GetExprType(E));
9648        IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
9649                                  Approximate);
9650  
9651        // If the divisor is constant, use that.
9652        if (std::optional<llvm::APSInt> divisor =
9653                BO->getRHS()->getIntegerConstantExpr(C)) {
9654          unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
9655          if (log2 >= L.Width)
9656            L.Width = (L.NonNegative ? 0 : 1);
9657          else
9658            L.Width = std::min(L.Width - log2, MaxWidth);
9659          return L;
9660        }
9661  
9662        // Otherwise, just use the LHS's width.
9663        // FIXME: This is wrong if the LHS could be its minimal value and the RHS
9664        // could be -1.
9665        IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
9666                                  Approximate);
9667        return IntRange(L.Width, L.NonNegative && R.NonNegative);
9668      }
9669  
9670      case BO_Rem:
9671        Combine = IntRange::rem;
9672        break;
9673  
9674      // The default behavior is okay for these.
9675      case BO_Xor:
9676      case BO_Or:
9677        break;
9678      }
9679  
9680      // Combine the two ranges, but limit the result to the type in which we
9681      // performed the computation.
9682      QualType T = GetExprType(E);
9683      unsigned opWidth = C.getIntWidth(T);
9684      IntRange L =
9685          GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
9686      IntRange R =
9687          GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
9688      IntRange C = Combine(L, R);
9689      C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
9690      C.Width = std::min(C.Width, MaxWidth);
9691      return C;
9692    }
9693  
9694    if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
9695      switch (UO->getOpcode()) {
9696      // Boolean-valued operations are white-listed.
9697      case UO_LNot:
9698        return IntRange::forBoolType();
9699  
9700      // Operations with opaque sources are black-listed.
9701      case UO_Deref:
9702      case UO_AddrOf: // should be impossible
9703        return IntRange::forValueOfType(C, GetExprType(E));
9704  
9705      default:
9706        return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
9707                            Approximate);
9708      }
9709    }
9710  
9711    if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
9712      return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
9713                          Approximate);
9714  
9715    if (const auto *BitField = E->getSourceBitField())
9716      return IntRange(BitField->getBitWidthValue(C),
9717                      BitField->getType()->isUnsignedIntegerOrEnumerationType());
9718  
9719    return IntRange::forValueOfType(C, GetExprType(E));
9720  }
9721  
GetExprRange(ASTContext & C,const Expr * E,bool InConstantContext,bool Approximate)9722  static IntRange GetExprRange(ASTContext &C, const Expr *E,
9723                               bool InConstantContext, bool Approximate) {
9724    return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
9725                        Approximate);
9726  }
9727  
9728  /// Checks whether the given value, which currently has the given
9729  /// source semantics, has the same value when coerced through the
9730  /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)9731  static bool IsSameFloatAfterCast(const llvm::APFloat &value,
9732                                   const llvm::fltSemantics &Src,
9733                                   const llvm::fltSemantics &Tgt) {
9734    llvm::APFloat truncated = value;
9735  
9736    bool ignored;
9737    truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
9738    truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
9739  
9740    return truncated.bitwiseIsEqual(value);
9741  }
9742  
9743  /// Checks whether the given value, which currently has the given
9744  /// source semantics, has the same value when coerced through the
9745  /// target semantics.
9746  ///
9747  /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)9748  static bool IsSameFloatAfterCast(const APValue &value,
9749                                   const llvm::fltSemantics &Src,
9750                                   const llvm::fltSemantics &Tgt) {
9751    if (value.isFloat())
9752      return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
9753  
9754    if (value.isVector()) {
9755      for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
9756        if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
9757          return false;
9758      return true;
9759    }
9760  
9761    assert(value.isComplexFloat());
9762    return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
9763            IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
9764  }
9765  
9766  static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
9767                                         bool IsListInit = false);
9768  
IsEnumConstOrFromMacro(Sema & S,Expr * E)9769  static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
9770    // Suppress cases where we are comparing against an enum constant.
9771    if (const DeclRefExpr *DR =
9772        dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
9773      if (isa<EnumConstantDecl>(DR->getDecl()))
9774        return true;
9775  
9776    // Suppress cases where the value is expanded from a macro, unless that macro
9777    // is how a language represents a boolean literal. This is the case in both C
9778    // and Objective-C.
9779    SourceLocation BeginLoc = E->getBeginLoc();
9780    if (BeginLoc.isMacroID()) {
9781      StringRef MacroName = Lexer::getImmediateMacroName(
9782          BeginLoc, S.getSourceManager(), S.getLangOpts());
9783      return MacroName != "YES" && MacroName != "NO" &&
9784             MacroName != "true" && MacroName != "false";
9785    }
9786  
9787    return false;
9788  }
9789  
isKnownToHaveUnsignedValue(Expr * E)9790  static bool isKnownToHaveUnsignedValue(Expr *E) {
9791    return E->getType()->isIntegerType() &&
9792           (!E->getType()->isSignedIntegerType() ||
9793            !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
9794  }
9795  
9796  namespace {
9797  /// The promoted range of values of a type. In general this has the
9798  /// following structure:
9799  ///
9800  ///     |-----------| . . . |-----------|
9801  ///     ^           ^       ^           ^
9802  ///    Min       HoleMin  HoleMax      Max
9803  ///
9804  /// ... where there is only a hole if a signed type is promoted to unsigned
9805  /// (in which case Min and Max are the smallest and largest representable
9806  /// values).
9807  struct PromotedRange {
9808    // Min, or HoleMax if there is a hole.
9809    llvm::APSInt PromotedMin;
9810    // Max, or HoleMin if there is a hole.
9811    llvm::APSInt PromotedMax;
9812  
PromotedRange__anon28c3fbb12411::PromotedRange9813    PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
9814      if (R.Width == 0)
9815        PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
9816      else if (R.Width >= BitWidth && !Unsigned) {
9817        // Promotion made the type *narrower*. This happens when promoting
9818        // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
9819        // Treat all values of 'signed int' as being in range for now.
9820        PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
9821        PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
9822      } else {
9823        PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
9824                          .extOrTrunc(BitWidth);
9825        PromotedMin.setIsUnsigned(Unsigned);
9826  
9827        PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
9828                          .extOrTrunc(BitWidth);
9829        PromotedMax.setIsUnsigned(Unsigned);
9830      }
9831    }
9832  
9833    // Determine whether this range is contiguous (has no hole).
isContiguous__anon28c3fbb12411::PromotedRange9834    bool isContiguous() const { return PromotedMin <= PromotedMax; }
9835  
9836    // Where a constant value is within the range.
9837    enum ComparisonResult {
9838      LT = 0x1,
9839      LE = 0x2,
9840      GT = 0x4,
9841      GE = 0x8,
9842      EQ = 0x10,
9843      NE = 0x20,
9844      InRangeFlag = 0x40,
9845  
9846      Less = LE | LT | NE,
9847      Min = LE | InRangeFlag,
9848      InRange = InRangeFlag,
9849      Max = GE | InRangeFlag,
9850      Greater = GE | GT | NE,
9851  
9852      OnlyValue = LE | GE | EQ | InRangeFlag,
9853      InHole = NE
9854    };
9855  
compare__anon28c3fbb12411::PromotedRange9856    ComparisonResult compare(const llvm::APSInt &Value) const {
9857      assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
9858             Value.isUnsigned() == PromotedMin.isUnsigned());
9859      if (!isContiguous()) {
9860        assert(Value.isUnsigned() && "discontiguous range for signed compare");
9861        if (Value.isMinValue()) return Min;
9862        if (Value.isMaxValue()) return Max;
9863        if (Value >= PromotedMin) return InRange;
9864        if (Value <= PromotedMax) return InRange;
9865        return InHole;
9866      }
9867  
9868      switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
9869      case -1: return Less;
9870      case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
9871      case 1:
9872        switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
9873        case -1: return InRange;
9874        case 0: return Max;
9875        case 1: return Greater;
9876        }
9877      }
9878  
9879      llvm_unreachable("impossible compare result");
9880    }
9881  
9882    static std::optional<StringRef>
constantValue__anon28c3fbb12411::PromotedRange9883    constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
9884      if (Op == BO_Cmp) {
9885        ComparisonResult LTFlag = LT, GTFlag = GT;
9886        if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
9887  
9888        if (R & EQ) return StringRef("'std::strong_ordering::equal'");
9889        if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
9890        if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
9891        return std::nullopt;
9892      }
9893  
9894      ComparisonResult TrueFlag, FalseFlag;
9895      if (Op == BO_EQ) {
9896        TrueFlag = EQ;
9897        FalseFlag = NE;
9898      } else if (Op == BO_NE) {
9899        TrueFlag = NE;
9900        FalseFlag = EQ;
9901      } else {
9902        if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
9903          TrueFlag = LT;
9904          FalseFlag = GE;
9905        } else {
9906          TrueFlag = GT;
9907          FalseFlag = LE;
9908        }
9909        if (Op == BO_GE || Op == BO_LE)
9910          std::swap(TrueFlag, FalseFlag);
9911      }
9912      if (R & TrueFlag)
9913        return StringRef("true");
9914      if (R & FalseFlag)
9915        return StringRef("false");
9916      return std::nullopt;
9917    }
9918  };
9919  }
9920  
HasEnumType(Expr * E)9921  static bool HasEnumType(Expr *E) {
9922    // Strip off implicit integral promotions.
9923    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9924      if (ICE->getCastKind() != CK_IntegralCast &&
9925          ICE->getCastKind() != CK_NoOp)
9926        break;
9927      E = ICE->getSubExpr();
9928    }
9929  
9930    return E->getType()->isEnumeralType();
9931  }
9932  
classifyConstantValue(Expr * Constant)9933  static int classifyConstantValue(Expr *Constant) {
9934    // The values of this enumeration are used in the diagnostics
9935    // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
9936    enum ConstantValueKind {
9937      Miscellaneous = 0,
9938      LiteralTrue,
9939      LiteralFalse
9940    };
9941    if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
9942      return BL->getValue() ? ConstantValueKind::LiteralTrue
9943                            : ConstantValueKind::LiteralFalse;
9944    return ConstantValueKind::Miscellaneous;
9945  }
9946  
CheckTautologicalComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,const llvm::APSInt & Value,bool RhsConstant)9947  static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
9948                                          Expr *Constant, Expr *Other,
9949                                          const llvm::APSInt &Value,
9950                                          bool RhsConstant) {
9951    if (S.inTemplateInstantiation())
9952      return false;
9953  
9954    Expr *OriginalOther = Other;
9955  
9956    Constant = Constant->IgnoreParenImpCasts();
9957    Other = Other->IgnoreParenImpCasts();
9958  
9959    // Suppress warnings on tautological comparisons between values of the same
9960    // enumeration type. There are only two ways we could warn on this:
9961    //  - If the constant is outside the range of representable values of
9962    //    the enumeration. In such a case, we should warn about the cast
9963    //    to enumeration type, not about the comparison.
9964    //  - If the constant is the maximum / minimum in-range value. For an
9965    //    enumeratin type, such comparisons can be meaningful and useful.
9966    if (Constant->getType()->isEnumeralType() &&
9967        S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
9968      return false;
9969  
9970    IntRange OtherValueRange = GetExprRange(
9971        S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
9972  
9973    QualType OtherT = Other->getType();
9974    if (const auto *AT = OtherT->getAs<AtomicType>())
9975      OtherT = AT->getValueType();
9976    IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
9977  
9978    // Special case for ObjC BOOL on targets where its a typedef for a signed char
9979    // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
9980    bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
9981                                S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) &&
9982                                OtherT->isSpecificBuiltinType(BuiltinType::SChar);
9983  
9984    // Whether we're treating Other as being a bool because of the form of
9985    // expression despite it having another type (typically 'int' in C).
9986    bool OtherIsBooleanDespiteType =
9987        !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
9988    if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
9989      OtherTypeRange = OtherValueRange = IntRange::forBoolType();
9990  
9991    // Check if all values in the range of possible values of this expression
9992    // lead to the same comparison outcome.
9993    PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
9994                                          Value.isUnsigned());
9995    auto Cmp = OtherPromotedValueRange.compare(Value);
9996    auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
9997    if (!Result)
9998      return false;
9999  
10000    // Also consider the range determined by the type alone. This allows us to
10001    // classify the warning under the proper diagnostic group.
10002    bool TautologicalTypeCompare = false;
10003    {
10004      PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
10005                                           Value.isUnsigned());
10006      auto TypeCmp = OtherPromotedTypeRange.compare(Value);
10007      if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
10008                                                         RhsConstant)) {
10009        TautologicalTypeCompare = true;
10010        Cmp = TypeCmp;
10011        Result = TypeResult;
10012      }
10013    }
10014  
10015    // Don't warn if the non-constant operand actually always evaluates to the
10016    // same value.
10017    if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
10018      return false;
10019  
10020    // Suppress the diagnostic for an in-range comparison if the constant comes
10021    // from a macro or enumerator. We don't want to diagnose
10022    //
10023    //   some_long_value <= INT_MAX
10024    //
10025    // when sizeof(int) == sizeof(long).
10026    bool InRange = Cmp & PromotedRange::InRangeFlag;
10027    if (InRange && IsEnumConstOrFromMacro(S, Constant))
10028      return false;
10029  
10030    // A comparison of an unsigned bit-field against 0 is really a type problem,
10031    // even though at the type level the bit-field might promote to 'signed int'.
10032    if (Other->refersToBitField() && InRange && Value == 0 &&
10033        Other->getType()->isUnsignedIntegerOrEnumerationType())
10034      TautologicalTypeCompare = true;
10035  
10036    // If this is a comparison to an enum constant, include that
10037    // constant in the diagnostic.
10038    const EnumConstantDecl *ED = nullptr;
10039    if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10040      ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10041  
10042    // Should be enough for uint128 (39 decimal digits)
10043    SmallString<64> PrettySourceValue;
10044    llvm::raw_svector_ostream OS(PrettySourceValue);
10045    if (ED) {
10046      OS << '\'' << *ED << "' (" << Value << ")";
10047    } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10048                 Constant->IgnoreParenImpCasts())) {
10049      OS << (BL->getValue() ? "YES" : "NO");
10050    } else {
10051      OS << Value;
10052    }
10053  
10054    if (!TautologicalTypeCompare) {
10055      S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
10056          << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
10057          << E->getOpcodeStr() << OS.str() << *Result
10058          << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10059      return true;
10060    }
10061  
10062    if (IsObjCSignedCharBool) {
10063      S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10064                            S.PDiag(diag::warn_tautological_compare_objc_bool)
10065                                << OS.str() << *Result);
10066      return true;
10067    }
10068  
10069    // FIXME: We use a somewhat different formatting for the in-range cases and
10070    // cases involving boolean values for historical reasons. We should pick a
10071    // consistent way of presenting these diagnostics.
10072    if (!InRange || Other->isKnownToHaveBooleanValue()) {
10073  
10074      S.DiagRuntimeBehavior(
10075          E->getOperatorLoc(), E,
10076          S.PDiag(!InRange ? diag::warn_out_of_range_compare
10077                           : diag::warn_tautological_bool_compare)
10078              << OS.str() << classifyConstantValue(Constant) << OtherT
10079              << OtherIsBooleanDespiteType << *Result
10080              << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10081    } else {
10082      bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
10083      unsigned Diag =
10084          (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10085              ? (HasEnumType(OriginalOther)
10086                     ? diag::warn_unsigned_enum_always_true_comparison
10087                     : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
10088                                : diag::warn_unsigned_always_true_comparison)
10089              : diag::warn_tautological_constant_compare;
10090  
10091      S.Diag(E->getOperatorLoc(), Diag)
10092          << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10093          << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10094    }
10095  
10096    return true;
10097  }
10098  
10099  /// Analyze the operands of the given comparison.  Implements the
10100  /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)10101  static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10102    AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10103    AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10104  }
10105  
10106  /// Implements -Wsign-compare.
10107  ///
10108  /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)10109  static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10110    // The type the comparison is being performed in.
10111    QualType T = E->getLHS()->getType();
10112  
10113    // Only analyze comparison operators where both sides have been converted to
10114    // the same type.
10115    if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10116      return AnalyzeImpConvsInComparison(S, E);
10117  
10118    // Don't analyze value-dependent comparisons directly.
10119    if (E->isValueDependent())
10120      return AnalyzeImpConvsInComparison(S, E);
10121  
10122    Expr *LHS = E->getLHS();
10123    Expr *RHS = E->getRHS();
10124  
10125    if (T->isIntegralType(S.Context)) {
10126      std::optional<llvm::APSInt> RHSValue =
10127          RHS->getIntegerConstantExpr(S.Context);
10128      std::optional<llvm::APSInt> LHSValue =
10129          LHS->getIntegerConstantExpr(S.Context);
10130  
10131      // We don't care about expressions whose result is a constant.
10132      if (RHSValue && LHSValue)
10133        return AnalyzeImpConvsInComparison(S, E);
10134  
10135      // We only care about expressions where just one side is literal
10136      if ((bool)RHSValue ^ (bool)LHSValue) {
10137        // Is the constant on the RHS or LHS?
10138        const bool RhsConstant = (bool)RHSValue;
10139        Expr *Const = RhsConstant ? RHS : LHS;
10140        Expr *Other = RhsConstant ? LHS : RHS;
10141        const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
10142  
10143        // Check whether an integer constant comparison results in a value
10144        // of 'true' or 'false'.
10145        if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10146          return AnalyzeImpConvsInComparison(S, E);
10147      }
10148    }
10149  
10150    if (!T->hasUnsignedIntegerRepresentation()) {
10151      // We don't do anything special if this isn't an unsigned integral
10152      // comparison:  we're only interested in integral comparisons, and
10153      // signed comparisons only happen in cases we don't care to warn about.
10154      return AnalyzeImpConvsInComparison(S, E);
10155    }
10156  
10157    LHS = LHS->IgnoreParenImpCasts();
10158    RHS = RHS->IgnoreParenImpCasts();
10159  
10160    if (!S.getLangOpts().CPlusPlus) {
10161      // Avoid warning about comparison of integers with different signs when
10162      // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10163      // the type of `E`.
10164      if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10165        LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10166      if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10167        RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10168    }
10169  
10170    // Check to see if one of the (unmodified) operands is of different
10171    // signedness.
10172    Expr *signedOperand, *unsignedOperand;
10173    if (LHS->getType()->hasSignedIntegerRepresentation()) {
10174      assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10175             "unsigned comparison between two signed integer expressions?");
10176      signedOperand = LHS;
10177      unsignedOperand = RHS;
10178    } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10179      signedOperand = RHS;
10180      unsignedOperand = LHS;
10181    } else {
10182      return AnalyzeImpConvsInComparison(S, E);
10183    }
10184  
10185    // Otherwise, calculate the effective range of the signed operand.
10186    IntRange signedRange =
10187        GetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
10188                     /*Approximate=*/true);
10189  
10190    // Go ahead and analyze implicit conversions in the operands.  Note
10191    // that we skip the implicit conversions on both sides.
10192    AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10193    AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10194  
10195    // If the signed range is non-negative, -Wsign-compare won't fire.
10196    if (signedRange.NonNegative)
10197      return;
10198  
10199    // For (in)equality comparisons, if the unsigned operand is a
10200    // constant which cannot collide with a overflowed signed operand,
10201    // then reinterpreting the signed operand as unsigned will not
10202    // change the result of the comparison.
10203    if (E->isEqualityOp()) {
10204      unsigned comparisonWidth = S.Context.getIntWidth(T);
10205      IntRange unsignedRange =
10206          GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
10207                       /*Approximate=*/true);
10208  
10209      // We should never be unable to prove that the unsigned operand is
10210      // non-negative.
10211      assert(unsignedRange.NonNegative && "unsigned range includes negative?");
10212  
10213      if (unsignedRange.Width < comparisonWidth)
10214        return;
10215    }
10216  
10217    S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10218                          S.PDiag(diag::warn_mixed_sign_comparison)
10219                              << LHS->getType() << RHS->getType()
10220                              << LHS->getSourceRange() << RHS->getSourceRange());
10221  }
10222  
10223  /// Analyzes an attempt to assign the given value to a bitfield.
10224  ///
10225  /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)10226  static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
10227                                        SourceLocation InitLoc) {
10228    assert(Bitfield->isBitField());
10229    if (Bitfield->isInvalidDecl())
10230      return false;
10231  
10232    // White-list bool bitfields.
10233    QualType BitfieldType = Bitfield->getType();
10234    if (BitfieldType->isBooleanType())
10235       return false;
10236  
10237    if (BitfieldType->isEnumeralType()) {
10238      EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
10239      // If the underlying enum type was not explicitly specified as an unsigned
10240      // type and the enum contain only positive values, MSVC++ will cause an
10241      // inconsistency by storing this as a signed type.
10242      if (S.getLangOpts().CPlusPlus11 &&
10243          !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
10244          BitfieldEnumDecl->getNumPositiveBits() > 0 &&
10245          BitfieldEnumDecl->getNumNegativeBits() == 0) {
10246        S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
10247            << BitfieldEnumDecl;
10248      }
10249    }
10250  
10251    // Ignore value- or type-dependent expressions.
10252    if (Bitfield->getBitWidth()->isValueDependent() ||
10253        Bitfield->getBitWidth()->isTypeDependent() ||
10254        Init->isValueDependent() ||
10255        Init->isTypeDependent())
10256      return false;
10257  
10258    Expr *OriginalInit = Init->IgnoreParenImpCasts();
10259    unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
10260  
10261    Expr::EvalResult Result;
10262    if (!OriginalInit->EvaluateAsInt(Result, S.Context,
10263                                     Expr::SE_AllowSideEffects)) {
10264      // The RHS is not constant.  If the RHS has an enum type, make sure the
10265      // bitfield is wide enough to hold all the values of the enum without
10266      // truncation.
10267      if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
10268        EnumDecl *ED = EnumTy->getDecl();
10269        bool SignedBitfield = BitfieldType->isSignedIntegerType();
10270  
10271        // Enum types are implicitly signed on Windows, so check if there are any
10272        // negative enumerators to see if the enum was intended to be signed or
10273        // not.
10274        bool SignedEnum = ED->getNumNegativeBits() > 0;
10275  
10276        // Check for surprising sign changes when assigning enum values to a
10277        // bitfield of different signedness.  If the bitfield is signed and we
10278        // have exactly the right number of bits to store this unsigned enum,
10279        // suggest changing the enum to an unsigned type. This typically happens
10280        // on Windows where unfixed enums always use an underlying type of 'int'.
10281        unsigned DiagID = 0;
10282        if (SignedEnum && !SignedBitfield) {
10283          DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
10284        } else if (SignedBitfield && !SignedEnum &&
10285                   ED->getNumPositiveBits() == FieldWidth) {
10286          DiagID = diag::warn_signed_bitfield_enum_conversion;
10287        }
10288  
10289        if (DiagID) {
10290          S.Diag(InitLoc, DiagID) << Bitfield << ED;
10291          TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
10292          SourceRange TypeRange =
10293              TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
10294          S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
10295              << SignedEnum << TypeRange;
10296        }
10297  
10298        // Compute the required bitwidth. If the enum has negative values, we need
10299        // one more bit than the normal number of positive bits to represent the
10300        // sign bit.
10301        unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
10302                                                    ED->getNumNegativeBits())
10303                                         : ED->getNumPositiveBits();
10304  
10305        // Check the bitwidth.
10306        if (BitsNeeded > FieldWidth) {
10307          Expr *WidthExpr = Bitfield->getBitWidth();
10308          S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
10309              << Bitfield << ED;
10310          S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
10311              << BitsNeeded << ED << WidthExpr->getSourceRange();
10312        }
10313      }
10314  
10315      return false;
10316    }
10317  
10318    llvm::APSInt Value = Result.Val.getInt();
10319  
10320    unsigned OriginalWidth = Value.getBitWidth();
10321  
10322    // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
10323    // false positives where the user is demonstrating they intend to use the
10324    // bit-field as a Boolean, check to see if the value is 1 and we're assigning
10325    // to a one-bit bit-field to see if the value came from a macro named 'true'.
10326    bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
10327    if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
10328      SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
10329      if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
10330          S.findMacroSpelling(MaybeMacroLoc, "true"))
10331        return false;
10332    }
10333  
10334    if (!Value.isSigned() || Value.isNegative())
10335      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
10336        if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
10337          OriginalWidth = Value.getSignificantBits();
10338  
10339    if (OriginalWidth <= FieldWidth)
10340      return false;
10341  
10342    // Compute the value which the bitfield will contain.
10343    llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
10344    TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
10345  
10346    // Check whether the stored value is equal to the original value.
10347    TruncatedValue = TruncatedValue.extend(OriginalWidth);
10348    if (llvm::APSInt::isSameValue(Value, TruncatedValue))
10349      return false;
10350  
10351    std::string PrettyValue = toString(Value, 10);
10352    std::string PrettyTrunc = toString(TruncatedValue, 10);
10353  
10354    S.Diag(InitLoc, OneAssignedToOneBitBitfield
10355                        ? diag::warn_impcast_single_bit_bitield_precision_constant
10356                        : diag::warn_impcast_bitfield_precision_constant)
10357        << PrettyValue << PrettyTrunc << OriginalInit->getType()
10358        << Init->getSourceRange();
10359  
10360    return true;
10361  }
10362  
10363  /// Analyze the given simple or compound assignment for warning-worthy
10364  /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)10365  static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
10366    // Just recurse on the LHS.
10367    AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10368  
10369    // We want to recurse on the RHS as normal unless we're assigning to
10370    // a bitfield.
10371    if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
10372      if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
10373                                    E->getOperatorLoc())) {
10374        // Recurse, ignoring any implicit conversions on the RHS.
10375        return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
10376                                          E->getOperatorLoc());
10377      }
10378    }
10379  
10380    AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10381  
10382    // Diagnose implicitly sequentially-consistent atomic assignment.
10383    if (E->getLHS()->getType()->isAtomicType())
10384      S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
10385  }
10386  
10387  /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)10388  static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
10389                              SourceLocation CContext, unsigned diag,
10390                              bool pruneControlFlow = false) {
10391    if (pruneControlFlow) {
10392      S.DiagRuntimeBehavior(E->getExprLoc(), E,
10393                            S.PDiag(diag)
10394                                << SourceType << T << E->getSourceRange()
10395                                << SourceRange(CContext));
10396      return;
10397    }
10398    S.Diag(E->getExprLoc(), diag)
10399      << SourceType << T << E->getSourceRange() << SourceRange(CContext);
10400  }
10401  
10402  /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)10403  static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
10404                              SourceLocation CContext,
10405                              unsigned diag, bool pruneControlFlow = false) {
10406    DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
10407  }
10408  
10409  /// Diagnose an implicit cast from a floating point value to an integer value.
DiagnoseFloatingImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext)10410  static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
10411                                      SourceLocation CContext) {
10412    const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
10413    const bool PruneWarnings = S.inTemplateInstantiation();
10414  
10415    Expr *InnerE = E->IgnoreParenImpCasts();
10416    // We also want to warn on, e.g., "int i = -1.234"
10417    if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
10418      if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
10419        InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
10420  
10421    const bool IsLiteral =
10422        isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
10423  
10424    llvm::APFloat Value(0.0);
10425    bool IsConstant =
10426      E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
10427    if (!IsConstant) {
10428      if (S.ObjC().isSignedCharBool(T)) {
10429        return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10430            E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
10431                   << E->getType());
10432      }
10433  
10434      return DiagnoseImpCast(S, E, T, CContext,
10435                             diag::warn_impcast_float_integer, PruneWarnings);
10436    }
10437  
10438    bool isExact = false;
10439  
10440    llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
10441                              T->hasUnsignedIntegerRepresentation());
10442    llvm::APFloat::opStatus Result = Value.convertToInteger(
10443        IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
10444  
10445    // FIXME: Force the precision of the source value down so we don't print
10446    // digits which are usually useless (we don't really care here if we
10447    // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
10448    // would automatically print the shortest representation, but it's a bit
10449    // tricky to implement.
10450    SmallString<16> PrettySourceValue;
10451    unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
10452    precision = (precision * 59 + 195) / 196;
10453    Value.toString(PrettySourceValue, precision);
10454  
10455    if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) {
10456      return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10457          E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
10458                 << PrettySourceValue);
10459    }
10460  
10461    if (Result == llvm::APFloat::opOK && isExact) {
10462      if (IsLiteral) return;
10463      return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
10464                             PruneWarnings);
10465    }
10466  
10467    // Conversion of a floating-point value to a non-bool integer where the
10468    // integral part cannot be represented by the integer type is undefined.
10469    if (!IsBool && Result == llvm::APFloat::opInvalidOp)
10470      return DiagnoseImpCast(
10471          S, E, T, CContext,
10472          IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
10473                    : diag::warn_impcast_float_to_integer_out_of_range,
10474          PruneWarnings);
10475  
10476    unsigned DiagID = 0;
10477    if (IsLiteral) {
10478      // Warn on floating point literal to integer.
10479      DiagID = diag::warn_impcast_literal_float_to_integer;
10480    } else if (IntegerValue == 0) {
10481      if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
10482        return DiagnoseImpCast(S, E, T, CContext,
10483                               diag::warn_impcast_float_integer, PruneWarnings);
10484      }
10485      // Warn on non-zero to zero conversion.
10486      DiagID = diag::warn_impcast_float_to_integer_zero;
10487    } else {
10488      if (IntegerValue.isUnsigned()) {
10489        if (!IntegerValue.isMaxValue()) {
10490          return DiagnoseImpCast(S, E, T, CContext,
10491                                 diag::warn_impcast_float_integer, PruneWarnings);
10492        }
10493      } else {  // IntegerValue.isSigned()
10494        if (!IntegerValue.isMaxSignedValue() &&
10495            !IntegerValue.isMinSignedValue()) {
10496          return DiagnoseImpCast(S, E, T, CContext,
10497                                 diag::warn_impcast_float_integer, PruneWarnings);
10498        }
10499      }
10500      // Warn on evaluatable floating point expression to integer conversion.
10501      DiagID = diag::warn_impcast_float_to_integer;
10502    }
10503  
10504    SmallString<16> PrettyTargetValue;
10505    if (IsBool)
10506      PrettyTargetValue = Value.isZero() ? "false" : "true";
10507    else
10508      IntegerValue.toString(PrettyTargetValue);
10509  
10510    if (PruneWarnings) {
10511      S.DiagRuntimeBehavior(E->getExprLoc(), E,
10512                            S.PDiag(DiagID)
10513                                << E->getType() << T.getUnqualifiedType()
10514                                << PrettySourceValue << PrettyTargetValue
10515                                << E->getSourceRange() << SourceRange(CContext));
10516    } else {
10517      S.Diag(E->getExprLoc(), DiagID)
10518          << E->getType() << T.getUnqualifiedType() << PrettySourceValue
10519          << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
10520    }
10521  }
10522  
10523  /// Analyze the given compound assignment for the possible losing of
10524  /// floating-point precision.
AnalyzeCompoundAssignment(Sema & S,BinaryOperator * E)10525  static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
10526    assert(isa<CompoundAssignOperator>(E) &&
10527           "Must be compound assignment operation");
10528    // Recurse on the LHS and RHS in here
10529    AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10530    AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10531  
10532    if (E->getLHS()->getType()->isAtomicType())
10533      S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
10534  
10535    // Now check the outermost expression
10536    const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
10537    const auto *RBT = cast<CompoundAssignOperator>(E)
10538                          ->getComputationResultType()
10539                          ->getAs<BuiltinType>();
10540  
10541    // The below checks assume source is floating point.
10542    if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
10543  
10544    // If source is floating point but target is an integer.
10545    if (ResultBT->isInteger())
10546      return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
10547                             E->getExprLoc(), diag::warn_impcast_float_integer);
10548  
10549    if (!ResultBT->isFloatingPoint())
10550      return;
10551  
10552    // If both source and target are floating points, warn about losing precision.
10553    int Order = S.getASTContext().getFloatingTypeSemanticOrder(
10554        QualType(ResultBT, 0), QualType(RBT, 0));
10555    if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
10556      // warn about dropping FP rank.
10557      DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
10558                      diag::warn_impcast_float_result_precision);
10559  }
10560  
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)10561  static std::string PrettyPrintInRange(const llvm::APSInt &Value,
10562                                        IntRange Range) {
10563    if (!Range.Width) return "0";
10564  
10565    llvm::APSInt ValueInRange = Value;
10566    ValueInRange.setIsSigned(!Range.NonNegative);
10567    ValueInRange = ValueInRange.trunc(Range.Width);
10568    return toString(ValueInRange, 10);
10569  }
10570  
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)10571  static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
10572    if (!isa<ImplicitCastExpr>(Ex))
10573      return false;
10574  
10575    Expr *InnerE = Ex->IgnoreParenImpCasts();
10576    const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
10577    const Type *Source =
10578      S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
10579    if (Target->isDependentType())
10580      return false;
10581  
10582    const BuiltinType *FloatCandidateBT =
10583      dyn_cast<BuiltinType>(ToBool ? Source : Target);
10584    const Type *BoolCandidateType = ToBool ? Target : Source;
10585  
10586    return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
10587            FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
10588  }
10589  
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)10590  static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
10591                                               SourceLocation CC) {
10592    unsigned NumArgs = TheCall->getNumArgs();
10593    for (unsigned i = 0; i < NumArgs; ++i) {
10594      Expr *CurrA = TheCall->getArg(i);
10595      if (!IsImplicitBoolFloatConversion(S, CurrA, true))
10596        continue;
10597  
10598      bool IsSwapped = ((i > 0) &&
10599          IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
10600      IsSwapped |= ((i < (NumArgs - 1)) &&
10601          IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
10602      if (IsSwapped) {
10603        // Warn on this floating-point to bool conversion.
10604        DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
10605                        CurrA->getType(), CC,
10606                        diag::warn_impcast_floating_point_to_bool);
10607      }
10608    }
10609  }
10610  
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)10611  static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
10612                                     SourceLocation CC) {
10613    if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
10614                          E->getExprLoc()))
10615      return;
10616  
10617    // Don't warn on functions which have return type nullptr_t.
10618    if (isa<CallExpr>(E))
10619      return;
10620  
10621    // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
10622    const Expr *NewE = E->IgnoreParenImpCasts();
10623    bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
10624    bool HasNullPtrType = NewE->getType()->isNullPtrType();
10625    if (!IsGNUNullExpr && !HasNullPtrType)
10626      return;
10627  
10628    // Return if target type is a safe conversion.
10629    if (T->isAnyPointerType() || T->isBlockPointerType() ||
10630        T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
10631      return;
10632  
10633    SourceLocation Loc = E->getSourceRange().getBegin();
10634  
10635    // Venture through the macro stacks to get to the source of macro arguments.
10636    // The new location is a better location than the complete location that was
10637    // passed in.
10638    Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
10639    CC = S.SourceMgr.getTopMacroCallerLoc(CC);
10640  
10641    // __null is usually wrapped in a macro.  Go up a macro if that is the case.
10642    if (IsGNUNullExpr && Loc.isMacroID()) {
10643      StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
10644          Loc, S.SourceMgr, S.getLangOpts());
10645      if (MacroName == "NULL")
10646        Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
10647    }
10648  
10649    // Only warn if the null and context location are in the same macro expansion.
10650    if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
10651      return;
10652  
10653    S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
10654        << HasNullPtrType << T << SourceRange(CC)
10655        << FixItHint::CreateReplacement(Loc,
10656                                        S.getFixItZeroLiteralForType(T, Loc));
10657  }
10658  
10659  // Helper function to filter out cases for constant width constant conversion.
10660  // Don't warn on char array initialization or for non-decimal values.
isSameWidthConstantConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)10661  static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
10662                                            SourceLocation CC) {
10663    // If initializing from a constant, and the constant starts with '0',
10664    // then it is a binary, octal, or hexadecimal.  Allow these constants
10665    // to fill all the bits, even if there is a sign change.
10666    if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
10667      const char FirstLiteralCharacter =
10668          S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
10669      if (FirstLiteralCharacter == '0')
10670        return false;
10671    }
10672  
10673    // If the CC location points to a '{', and the type is char, then assume
10674    // assume it is an array initialization.
10675    if (CC.isValid() && T->isCharType()) {
10676      const char FirstContextCharacter =
10677          S.getSourceManager().getCharacterData(CC)[0];
10678      if (FirstContextCharacter == '{')
10679        return false;
10680    }
10681  
10682    return true;
10683  }
10684  
getIntegerLiteral(Expr * E)10685  static const IntegerLiteral *getIntegerLiteral(Expr *E) {
10686    const auto *IL = dyn_cast<IntegerLiteral>(E);
10687    if (!IL) {
10688      if (auto *UO = dyn_cast<UnaryOperator>(E)) {
10689        if (UO->getOpcode() == UO_Minus)
10690          return dyn_cast<IntegerLiteral>(UO->getSubExpr());
10691      }
10692    }
10693  
10694    return IL;
10695  }
10696  
DiagnoseIntInBoolContext(Sema & S,Expr * E)10697  static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
10698    E = E->IgnoreParenImpCasts();
10699    SourceLocation ExprLoc = E->getExprLoc();
10700  
10701    if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10702      BinaryOperator::Opcode Opc = BO->getOpcode();
10703      Expr::EvalResult Result;
10704      // Do not diagnose unsigned shifts.
10705      if (Opc == BO_Shl) {
10706        const auto *LHS = getIntegerLiteral(BO->getLHS());
10707        const auto *RHS = getIntegerLiteral(BO->getRHS());
10708        if (LHS && LHS->getValue() == 0)
10709          S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
10710        else if (!E->isValueDependent() && LHS && RHS &&
10711                 RHS->getValue().isNonNegative() &&
10712                 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
10713          S.Diag(ExprLoc, diag::warn_left_shift_always)
10714              << (Result.Val.getInt() != 0);
10715        else if (E->getType()->isSignedIntegerType())
10716          S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
10717      }
10718    }
10719  
10720    if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10721      const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
10722      const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
10723      if (!LHS || !RHS)
10724        return;
10725      if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
10726          (RHS->getValue() == 0 || RHS->getValue() == 1))
10727        // Do not diagnose common idioms.
10728        return;
10729      if (LHS->getValue() != 0 && RHS->getValue() != 0)
10730        S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
10731    }
10732  }
10733  
CheckImplicitConversion(Expr * E,QualType T,SourceLocation CC,bool * ICContext,bool IsListInit)10734  void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
10735                                     bool *ICContext, bool IsListInit) {
10736    if (E->isTypeDependent() || E->isValueDependent()) return;
10737  
10738    const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
10739    const Type *Target = Context.getCanonicalType(T).getTypePtr();
10740    if (Source == Target) return;
10741    if (Target->isDependentType()) return;
10742  
10743    // If the conversion context location is invalid don't complain. We also
10744    // don't want to emit a warning if the issue occurs from the expansion of
10745    // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
10746    // delay this check as long as possible. Once we detect we are in that
10747    // scenario, we just return.
10748    if (CC.isInvalid())
10749      return;
10750  
10751    if (Source->isAtomicType())
10752      Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
10753  
10754    // Diagnose implicit casts to bool.
10755    if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
10756      if (isa<StringLiteral>(E))
10757        // Warn on string literal to bool.  Checks for string literals in logical
10758        // and expressions, for instance, assert(0 && "error here"), are
10759        // prevented by a check in AnalyzeImplicitConversions().
10760        return DiagnoseImpCast(*this, E, T, CC,
10761                               diag::warn_impcast_string_literal_to_bool);
10762      if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
10763          isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
10764        // This covers the literal expressions that evaluate to Objective-C
10765        // objects.
10766        return DiagnoseImpCast(*this, E, T, CC,
10767                               diag::warn_impcast_objective_c_literal_to_bool);
10768      }
10769      if (Source->isPointerType() || Source->canDecayToPointerType()) {
10770        // Warn on pointer to bool conversion that is always true.
10771        DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
10772                                     SourceRange(CC));
10773      }
10774    }
10775  
10776    // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
10777    // is a typedef for signed char (macOS), then that constant value has to be 1
10778    // or 0.
10779    if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) {
10780      Expr::EvalResult Result;
10781      if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) {
10782        if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
10783          ObjC().adornBoolConversionDiagWithTernaryFixit(
10784              E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
10785                     << toString(Result.Val.getInt(), 10));
10786        }
10787        return;
10788      }
10789    }
10790  
10791    // Check implicit casts from Objective-C collection literals to specialized
10792    // collection types, e.g., NSArray<NSString *> *.
10793    if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
10794      ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral);
10795    else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
10796      ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral);
10797  
10798    // Strip vector types.
10799    if (isa<VectorType>(Source)) {
10800      if (Target->isSveVLSBuiltinType() &&
10801          (Context.areCompatibleSveTypes(QualType(Target, 0),
10802                                         QualType(Source, 0)) ||
10803           Context.areLaxCompatibleSveTypes(QualType(Target, 0),
10804                                            QualType(Source, 0))))
10805        return;
10806  
10807      if (Target->isRVVVLSBuiltinType() &&
10808          (Context.areCompatibleRVVTypes(QualType(Target, 0),
10809                                         QualType(Source, 0)) ||
10810           Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
10811                                            QualType(Source, 0))))
10812        return;
10813  
10814      if (!isa<VectorType>(Target)) {
10815        if (SourceMgr.isInSystemMacro(CC))
10816          return;
10817        return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar);
10818      } else if (getLangOpts().HLSL &&
10819                 Target->castAs<VectorType>()->getNumElements() <
10820                     Source->castAs<VectorType>()->getNumElements()) {
10821        // Diagnose vector truncation but don't return. We may also want to
10822        // diagnose an element conversion.
10823        DiagnoseImpCast(*this, E, T, CC,
10824                        diag::warn_hlsl_impcast_vector_truncation);
10825      }
10826  
10827      // If the vector cast is cast between two vectors of the same size, it is
10828      // a bitcast, not a conversion, except under HLSL where it is a conversion.
10829      if (!getLangOpts().HLSL &&
10830          Context.getTypeSize(Source) == Context.getTypeSize(Target))
10831        return;
10832  
10833      Source = cast<VectorType>(Source)->getElementType().getTypePtr();
10834      Target = cast<VectorType>(Target)->getElementType().getTypePtr();
10835    }
10836    if (auto VecTy = dyn_cast<VectorType>(Target))
10837      Target = VecTy->getElementType().getTypePtr();
10838  
10839    // Strip complex types.
10840    if (isa<ComplexType>(Source)) {
10841      if (!isa<ComplexType>(Target)) {
10842        if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
10843          return;
10844  
10845        return DiagnoseImpCast(*this, E, T, CC,
10846                               getLangOpts().CPlusPlus
10847                                   ? diag::err_impcast_complex_scalar
10848                                   : diag::warn_impcast_complex_scalar);
10849      }
10850  
10851      Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
10852      Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
10853    }
10854  
10855    const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
10856    const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
10857  
10858    // Strip SVE vector types
10859    if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
10860      // Need the original target type for vector type checks
10861      const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr();
10862      // Handle conversion from scalable to fixed when msve-vector-bits is
10863      // specified
10864      if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
10865                                        QualType(Source, 0)) ||
10866          Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
10867                                           QualType(Source, 0)))
10868        return;
10869  
10870      // If the vector cast is cast between two vectors of the same size, it is
10871      // a bitcast, not a conversion.
10872      if (Context.getTypeSize(Source) == Context.getTypeSize(Target))
10873        return;
10874  
10875      Source = SourceBT->getSveEltType(Context).getTypePtr();
10876    }
10877  
10878    if (TargetBT && TargetBT->isSveVLSBuiltinType())
10879      Target = TargetBT->getSveEltType(Context).getTypePtr();
10880  
10881    // If the source is floating point...
10882    if (SourceBT && SourceBT->isFloatingPoint()) {
10883      // ...and the target is floating point...
10884      if (TargetBT && TargetBT->isFloatingPoint()) {
10885        // ...then warn if we're dropping FP rank.
10886  
10887        int Order = getASTContext().getFloatingTypeSemanticOrder(
10888            QualType(SourceBT, 0), QualType(TargetBT, 0));
10889        if (Order > 0) {
10890          // Don't warn about float constants that are precisely
10891          // representable in the target type.
10892          Expr::EvalResult result;
10893          if (E->EvaluateAsRValue(result, Context)) {
10894            // Value might be a float, a float vector, or a float complex.
10895            if (IsSameFloatAfterCast(
10896                    result.Val,
10897                    Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
10898                    Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
10899              return;
10900          }
10901  
10902          if (SourceMgr.isInSystemMacro(CC))
10903            return;
10904  
10905          DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision);
10906        }
10907        // ... or possibly if we're increasing rank, too
10908        else if (Order < 0) {
10909          if (SourceMgr.isInSystemMacro(CC))
10910            return;
10911  
10912          DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion);
10913        }
10914        return;
10915      }
10916  
10917      // If the target is integral, always warn.
10918      if (TargetBT && TargetBT->isInteger()) {
10919        if (SourceMgr.isInSystemMacro(CC))
10920          return;
10921  
10922        DiagnoseFloatingImpCast(*this, E, T, CC);
10923      }
10924  
10925      // Detect the case where a call result is converted from floating-point to
10926      // to bool, and the final argument to the call is converted from bool, to
10927      // discover this typo:
10928      //
10929      //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
10930      //
10931      // FIXME: This is an incredibly special case; is there some more general
10932      // way to detect this class of misplaced-parentheses bug?
10933      if (Target->isBooleanType() && isa<CallExpr>(E)) {
10934        // Check last argument of function call to see if it is an
10935        // implicit cast from a type matching the type the result
10936        // is being cast to.
10937        CallExpr *CEx = cast<CallExpr>(E);
10938        if (unsigned NumArgs = CEx->getNumArgs()) {
10939          Expr *LastA = CEx->getArg(NumArgs - 1);
10940          Expr *InnerE = LastA->IgnoreParenImpCasts();
10941          if (isa<ImplicitCastExpr>(LastA) &&
10942              InnerE->getType()->isBooleanType()) {
10943            // Warn on this floating-point to bool conversion
10944            DiagnoseImpCast(*this, E, T, CC,
10945                            diag::warn_impcast_floating_point_to_bool);
10946          }
10947        }
10948      }
10949      return;
10950    }
10951  
10952    // Valid casts involving fixed point types should be accounted for here.
10953    if (Source->isFixedPointType()) {
10954      if (Target->isUnsaturatedFixedPointType()) {
10955        Expr::EvalResult Result;
10956        if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects,
10957                                    isConstantEvaluatedContext())) {
10958          llvm::APFixedPoint Value = Result.Val.getFixedPoint();
10959          llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T);
10960          llvm::APFixedPoint MinVal = Context.getFixedPointMin(T);
10961          if (Value > MaxVal || Value < MinVal) {
10962            DiagRuntimeBehavior(E->getExprLoc(), E,
10963                                PDiag(diag::warn_impcast_fixed_point_range)
10964                                    << Value.toString() << T
10965                                    << E->getSourceRange()
10966                                    << clang::SourceRange(CC));
10967            return;
10968          }
10969        }
10970      } else if (Target->isIntegerType()) {
10971        Expr::EvalResult Result;
10972        if (!isConstantEvaluatedContext() &&
10973            E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) {
10974          llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
10975  
10976          bool Overflowed;
10977          llvm::APSInt IntResult = FXResult.convertToInt(
10978              Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(),
10979              &Overflowed);
10980  
10981          if (Overflowed) {
10982            DiagRuntimeBehavior(E->getExprLoc(), E,
10983                                PDiag(diag::warn_impcast_fixed_point_range)
10984                                    << FXResult.toString() << T
10985                                    << E->getSourceRange()
10986                                    << clang::SourceRange(CC));
10987            return;
10988          }
10989        }
10990      }
10991    } else if (Target->isUnsaturatedFixedPointType()) {
10992      if (Source->isIntegerType()) {
10993        Expr::EvalResult Result;
10994        if (!isConstantEvaluatedContext() &&
10995            E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) {
10996          llvm::APSInt Value = Result.Val.getInt();
10997  
10998          bool Overflowed;
10999          llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
11000              Value, Context.getFixedPointSemantics(T), &Overflowed);
11001  
11002          if (Overflowed) {
11003            DiagRuntimeBehavior(E->getExprLoc(), E,
11004                                PDiag(diag::warn_impcast_fixed_point_range)
11005                                    << toString(Value, /*Radix=*/10) << T
11006                                    << E->getSourceRange()
11007                                    << clang::SourceRange(CC));
11008            return;
11009          }
11010        }
11011      }
11012    }
11013  
11014    // If we are casting an integer type to a floating point type without
11015    // initialization-list syntax, we might lose accuracy if the floating
11016    // point type has a narrower significand than the integer type.
11017    if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11018        TargetBT->isFloatingType() && !IsListInit) {
11019      // Determine the number of precision bits in the source integer type.
11020      IntRange SourceRange =
11021          GetExprRange(Context, E, isConstantEvaluatedContext(),
11022                       /*Approximate=*/true);
11023      unsigned int SourcePrecision = SourceRange.Width;
11024  
11025      // Determine the number of precision bits in the
11026      // target floating point type.
11027      unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
11028          Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11029  
11030      if (SourcePrecision > 0 && TargetPrecision > 0 &&
11031          SourcePrecision > TargetPrecision) {
11032  
11033        if (std::optional<llvm::APSInt> SourceInt =
11034                E->getIntegerConstantExpr(Context)) {
11035          // If the source integer is a constant, convert it to the target
11036          // floating point type. Issue a warning if the value changes
11037          // during the whole conversion.
11038          llvm::APFloat TargetFloatValue(
11039              Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11040          llvm::APFloat::opStatus ConversionStatus =
11041              TargetFloatValue.convertFromAPInt(
11042                  *SourceInt, SourceBT->isSignedInteger(),
11043                  llvm::APFloat::rmNearestTiesToEven);
11044  
11045          if (ConversionStatus != llvm::APFloat::opOK) {
11046            SmallString<32> PrettySourceValue;
11047            SourceInt->toString(PrettySourceValue, 10);
11048            SmallString<32> PrettyTargetValue;
11049            TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
11050  
11051            DiagRuntimeBehavior(
11052                E->getExprLoc(), E,
11053                PDiag(diag::warn_impcast_integer_float_precision_constant)
11054                    << PrettySourceValue << PrettyTargetValue << E->getType() << T
11055                    << E->getSourceRange() << clang::SourceRange(CC));
11056          }
11057        } else {
11058          // Otherwise, the implicit conversion may lose precision.
11059          DiagnoseImpCast(*this, E, T, CC,
11060                          diag::warn_impcast_integer_float_precision);
11061        }
11062      }
11063    }
11064  
11065    DiagnoseNullConversion(*this, E, T, CC);
11066  
11067    DiscardMisalignedMemberAddress(Target, E);
11068  
11069    if (Target->isBooleanType())
11070      DiagnoseIntInBoolContext(*this, E);
11071  
11072    if (!Source->isIntegerType() || !Target->isIntegerType())
11073      return;
11074  
11075    // TODO: remove this early return once the false positives for constant->bool
11076    // in templates, macros, etc, are reduced or removed.
11077    if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11078      return;
11079  
11080    if (ObjC().isSignedCharBool(T) && !Source->isCharType() &&
11081        !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
11082      return ObjC().adornBoolConversionDiagWithTernaryFixit(
11083          E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
11084                 << E->getType());
11085    }
11086  
11087    IntRange SourceTypeRange =
11088        IntRange::forTargetOfCanonicalType(Context, Source);
11089    IntRange LikelySourceRange = GetExprRange(
11090        Context, E, isConstantEvaluatedContext(), /*Approximate=*/true);
11091    IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target);
11092  
11093    if (LikelySourceRange.Width > TargetRange.Width) {
11094      // If the source is a constant, use a default-on diagnostic.
11095      // TODO: this should happen for bitfield stores, too.
11096      Expr::EvalResult Result;
11097      if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects,
11098                           isConstantEvaluatedContext())) {
11099        llvm::APSInt Value(32);
11100        Value = Result.Val.getInt();
11101  
11102        if (SourceMgr.isInSystemMacro(CC))
11103          return;
11104  
11105        std::string PrettySourceValue = toString(Value, 10);
11106        std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11107  
11108        DiagRuntimeBehavior(E->getExprLoc(), E,
11109                            PDiag(diag::warn_impcast_integer_precision_constant)
11110                                << PrettySourceValue << PrettyTargetValue
11111                                << E->getType() << T << E->getSourceRange()
11112                                << SourceRange(CC));
11113        return;
11114      }
11115  
11116      // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11117      if (SourceMgr.isInSystemMacro(CC))
11118        return;
11119  
11120      if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64)
11121        return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32,
11122                               /* pruneControlFlow */ true);
11123      return DiagnoseImpCast(*this, E, T, CC,
11124                             diag::warn_impcast_integer_precision);
11125    }
11126  
11127    if (TargetRange.Width > SourceTypeRange.Width) {
11128      if (auto *UO = dyn_cast<UnaryOperator>(E))
11129        if (UO->getOpcode() == UO_Minus)
11130          if (Source->isUnsignedIntegerType()) {
11131            if (Target->isUnsignedIntegerType())
11132              return DiagnoseImpCast(*this, E, T, CC,
11133                                     diag::warn_impcast_high_order_zero_bits);
11134            if (Target->isSignedIntegerType())
11135              return DiagnoseImpCast(*this, E, T, CC,
11136                                     diag::warn_impcast_nonnegative_result);
11137          }
11138    }
11139  
11140    if (TargetRange.Width == LikelySourceRange.Width &&
11141        !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
11142        Source->isSignedIntegerType()) {
11143      // Warn when doing a signed to signed conversion, warn if the positive
11144      // source value is exactly the width of the target type, which will
11145      // cause a negative value to be stored.
11146  
11147      Expr::EvalResult Result;
11148      if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) &&
11149          !SourceMgr.isInSystemMacro(CC)) {
11150        llvm::APSInt Value = Result.Val.getInt();
11151        if (isSameWidthConstantConversion(*this, E, T, CC)) {
11152          std::string PrettySourceValue = toString(Value, 10);
11153          std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11154  
11155          Diag(E->getExprLoc(),
11156               PDiag(diag::warn_impcast_integer_precision_constant)
11157                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
11158                   << E->getSourceRange() << SourceRange(CC));
11159          return;
11160        }
11161      }
11162  
11163      // Fall through for non-constants to give a sign conversion warning.
11164    }
11165  
11166    if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
11167        ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
11168         (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
11169          LikelySourceRange.Width == TargetRange.Width))) {
11170      if (SourceMgr.isInSystemMacro(CC))
11171        return;
11172  
11173      if (SourceBT && SourceBT->isInteger() && TargetBT &&
11174          TargetBT->isInteger() &&
11175          Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
11176        return;
11177      }
11178  
11179      unsigned DiagID = diag::warn_impcast_integer_sign;
11180  
11181      // Traditionally, gcc has warned about this under -Wsign-compare.
11182      // We also want to warn about it in -Wconversion.
11183      // So if -Wconversion is off, use a completely identical diagnostic
11184      // in the sign-compare group.
11185      // The conditional-checking code will
11186      if (ICContext) {
11187        DiagID = diag::warn_impcast_integer_sign_conditional;
11188        *ICContext = true;
11189      }
11190  
11191      return DiagnoseImpCast(*this, E, T, CC, DiagID);
11192    }
11193  
11194    // Diagnose conversions between different enumeration types.
11195    // In C, we pretend that the type of an EnumConstantDecl is its enumeration
11196    // type, to give us better diagnostics.
11197    QualType SourceType = E->getEnumCoercedType(Context);
11198    Source = Context.getCanonicalType(SourceType).getTypePtr();
11199  
11200    if (const EnumType *SourceEnum = Source->getAs<EnumType>())
11201      if (const EnumType *TargetEnum = Target->getAs<EnumType>())
11202        if (SourceEnum->getDecl()->hasNameForLinkage() &&
11203            TargetEnum->getDecl()->hasNameForLinkage() &&
11204            SourceEnum != TargetEnum) {
11205          if (SourceMgr.isInSystemMacro(CC))
11206            return;
11207  
11208          return DiagnoseImpCast(*this, E, SourceType, T, CC,
11209                                 diag::warn_impcast_different_enum_types);
11210        }
11211  }
11212  
11213  static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11214                                       SourceLocation CC, QualType T);
11215  
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)11216  static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
11217                                      SourceLocation CC, bool &ICContext) {
11218    E = E->IgnoreParenImpCasts();
11219    // Diagnose incomplete type for second or third operand in C.
11220    if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
11221      S.RequireCompleteExprType(E, diag::err_incomplete_type);
11222  
11223    if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
11224      return CheckConditionalOperator(S, CO, CC, T);
11225  
11226    AnalyzeImplicitConversions(S, E, CC);
11227    if (E->getType() != T)
11228      return S.CheckImplicitConversion(E, T, CC, &ICContext);
11229  }
11230  
CheckConditionalOperator(Sema & S,AbstractConditionalOperator * E,SourceLocation CC,QualType T)11231  static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11232                                       SourceLocation CC, QualType T) {
11233    AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
11234  
11235    Expr *TrueExpr = E->getTrueExpr();
11236    if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
11237      TrueExpr = BCO->getCommon();
11238  
11239    bool Suspicious = false;
11240    CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
11241    CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
11242  
11243    if (T->isBooleanType())
11244      DiagnoseIntInBoolContext(S, E);
11245  
11246    // If -Wconversion would have warned about either of the candidates
11247    // for a signedness conversion to the context type...
11248    if (!Suspicious) return;
11249  
11250    // ...but it's currently ignored...
11251    if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
11252      return;
11253  
11254    // ...then check whether it would have warned about either of the
11255    // candidates for a signedness conversion to the condition type.
11256    if (E->getType() == T) return;
11257  
11258    Suspicious = false;
11259    S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC,
11260                              &Suspicious);
11261    if (!Suspicious)
11262      S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(),
11263                                E->getType(), CC, &Suspicious);
11264  }
11265  
11266  /// Check conversion of given expression to boolean.
11267  /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)11268  static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
11269    // Run the bool-like conversion checks only for C since there bools are
11270    // still not used as the return type from "boolean" operators or as the input
11271    // type for conditional operators.
11272    if (S.getLangOpts().CPlusPlus)
11273      return;
11274    if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
11275      return;
11276    S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
11277  }
11278  
11279  namespace {
11280  struct AnalyzeImplicitConversionsWorkItem {
11281    Expr *E;
11282    SourceLocation CC;
11283    bool IsListInit;
11284  };
11285  }
11286  
11287  /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
11288  /// that should be visited are added to WorkList.
AnalyzeImplicitConversions(Sema & S,AnalyzeImplicitConversionsWorkItem Item,llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> & WorkList)11289  static void AnalyzeImplicitConversions(
11290      Sema &S, AnalyzeImplicitConversionsWorkItem Item,
11291      llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
11292    Expr *OrigE = Item.E;
11293    SourceLocation CC = Item.CC;
11294  
11295    QualType T = OrigE->getType();
11296    Expr *E = OrigE->IgnoreParenImpCasts();
11297  
11298    // Propagate whether we are in a C++ list initialization expression.
11299    // If so, we do not issue warnings for implicit int-float conversion
11300    // precision loss, because C++11 narrowing already handles it.
11301    bool IsListInit = Item.IsListInit ||
11302                      (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
11303  
11304    if (E->isTypeDependent() || E->isValueDependent())
11305      return;
11306  
11307    Expr *SourceExpr = E;
11308    // Examine, but don't traverse into the source expression of an
11309    // OpaqueValueExpr, since it may have multiple parents and we don't want to
11310    // emit duplicate diagnostics. Its fine to examine the form or attempt to
11311    // evaluate it in the context of checking the specific conversion to T though.
11312    if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11313      if (auto *Src = OVE->getSourceExpr())
11314        SourceExpr = Src;
11315  
11316    if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
11317      if (UO->getOpcode() == UO_Not &&
11318          UO->getSubExpr()->isKnownToHaveBooleanValue())
11319        S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
11320            << OrigE->getSourceRange() << T->isBooleanType()
11321            << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
11322  
11323    if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
11324      if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
11325          BO->getLHS()->isKnownToHaveBooleanValue() &&
11326          BO->getRHS()->isKnownToHaveBooleanValue() &&
11327          BO->getLHS()->HasSideEffects(S.Context) &&
11328          BO->getRHS()->HasSideEffects(S.Context)) {
11329        SourceManager &SM = S.getSourceManager();
11330        const LangOptions &LO = S.getLangOpts();
11331        SourceLocation BLoc = BO->getOperatorLoc();
11332        SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO);
11333        StringRef SR = clang::Lexer::getSourceText(
11334            clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO);
11335        // To reduce false positives, only issue the diagnostic if the operator
11336        // is explicitly spelled as a punctuator. This suppresses the diagnostic
11337        // when using 'bitand' or 'bitor' either as keywords in C++ or as macros
11338        // in C, along with other macro spellings the user might invent.
11339        if (SR.str() == "&" || SR.str() == "|") {
11340  
11341          S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
11342              << (BO->getOpcode() == BO_And ? "&" : "|")
11343              << OrigE->getSourceRange()
11344              << FixItHint::CreateReplacement(
11345                     BO->getOperatorLoc(),
11346                     (BO->getOpcode() == BO_And ? "&&" : "||"));
11347          S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
11348        }
11349      }
11350  
11351    // For conditional operators, we analyze the arguments as if they
11352    // were being fed directly into the output.
11353    if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
11354      CheckConditionalOperator(S, CO, CC, T);
11355      return;
11356    }
11357  
11358    // Check implicit argument conversions for function calls.
11359    if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
11360      CheckImplicitArgumentConversions(S, Call, CC);
11361  
11362    // Go ahead and check any implicit conversions we might have skipped.
11363    // The non-canonical typecheck is just an optimization;
11364    // CheckImplicitConversion will filter out dead implicit conversions.
11365    if (SourceExpr->getType() != T)
11366      S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit);
11367  
11368    // Now continue drilling into this expression.
11369  
11370    if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
11371      // The bound subexpressions in a PseudoObjectExpr are not reachable
11372      // as transitive children.
11373      // FIXME: Use a more uniform representation for this.
11374      for (auto *SE : POE->semantics())
11375        if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
11376          WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
11377    }
11378  
11379    // Skip past explicit casts.
11380    if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
11381      E = CE->getSubExpr()->IgnoreParenImpCasts();
11382      if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
11383        S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11384      WorkList.push_back({E, CC, IsListInit});
11385      return;
11386    }
11387  
11388    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11389      // Do a somewhat different check with comparison operators.
11390      if (BO->isComparisonOp())
11391        return AnalyzeComparison(S, BO);
11392  
11393      // And with simple assignments.
11394      if (BO->getOpcode() == BO_Assign)
11395        return AnalyzeAssignment(S, BO);
11396      // And with compound assignments.
11397      if (BO->isAssignmentOp())
11398        return AnalyzeCompoundAssignment(S, BO);
11399    }
11400  
11401    // These break the otherwise-useful invariant below.  Fortunately,
11402    // we don't really need to recurse into them, because any internal
11403    // expressions should have been analyzed already when they were
11404    // built into statements.
11405    if (isa<StmtExpr>(E)) return;
11406  
11407    // Don't descend into unevaluated contexts.
11408    if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
11409  
11410    // Now just recurse over the expression's children.
11411    CC = E->getExprLoc();
11412    BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
11413    bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
11414    for (Stmt *SubStmt : E->children()) {
11415      Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
11416      if (!ChildExpr)
11417        continue;
11418  
11419      if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
11420        if (ChildExpr == CSE->getOperand())
11421          // Do not recurse over a CoroutineSuspendExpr's operand.
11422          // The operand is also a subexpression of getCommonExpr(), and
11423          // recursing into it directly would produce duplicate diagnostics.
11424          continue;
11425  
11426      if (IsLogicalAndOperator &&
11427          isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
11428        // Ignore checking string literals that are in logical and operators.
11429        // This is a common pattern for asserts.
11430        continue;
11431      WorkList.push_back({ChildExpr, CC, IsListInit});
11432    }
11433  
11434    if (BO && BO->isLogicalOp()) {
11435      Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
11436      if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11437        ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11438  
11439      SubExpr = BO->getRHS()->IgnoreParenImpCasts();
11440      if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11441        ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11442    }
11443  
11444    if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
11445      if (U->getOpcode() == UO_LNot) {
11446        ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
11447      } else if (U->getOpcode() != UO_AddrOf) {
11448        if (U->getSubExpr()->getType()->isAtomicType())
11449          S.Diag(U->getSubExpr()->getBeginLoc(),
11450                 diag::warn_atomic_implicit_seq_cst);
11451      }
11452    }
11453  }
11454  
11455  /// AnalyzeImplicitConversions - Find and report any interesting
11456  /// implicit conversions in the given expression.  There are a couple
11457  /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC,bool IsListInit)11458  static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
11459                                         bool IsListInit/*= false*/) {
11460    llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
11461    WorkList.push_back({OrigE, CC, IsListInit});
11462    while (!WorkList.empty())
11463      AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
11464  }
11465  
11466  // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
11467  // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,const PartialDiagnostic & PD)11468  static bool CheckForReference(Sema &SemaRef, const Expr *E,
11469                                const PartialDiagnostic &PD) {
11470    E = E->IgnoreParenImpCasts();
11471  
11472    const FunctionDecl *FD = nullptr;
11473  
11474    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11475      if (!DRE->getDecl()->getType()->isReferenceType())
11476        return false;
11477    } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11478      if (!M->getMemberDecl()->getType()->isReferenceType())
11479        return false;
11480    } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
11481      if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
11482        return false;
11483      FD = Call->getDirectCallee();
11484    } else {
11485      return false;
11486    }
11487  
11488    SemaRef.Diag(E->getExprLoc(), PD);
11489  
11490    // If possible, point to location of function.
11491    if (FD) {
11492      SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
11493    }
11494  
11495    return true;
11496  }
11497  
11498  // Returns true if the SourceLocation is expanded from any macro body.
11499  // Returns false if the SourceLocation is invalid, is from not in a macro
11500  // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)11501  static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
11502    if (Loc.isInvalid())
11503      return false;
11504  
11505    while (Loc.isMacroID()) {
11506      if (SM.isMacroBodyExpansion(Loc))
11507        return true;
11508      Loc = SM.getImmediateMacroCallerLoc(Loc);
11509    }
11510  
11511    return false;
11512  }
11513  
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)11514  void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
11515                                          Expr::NullPointerConstantKind NullKind,
11516                                          bool IsEqual, SourceRange Range) {
11517    if (!E)
11518      return;
11519  
11520    // Don't warn inside macros.
11521    if (E->getExprLoc().isMacroID()) {
11522      const SourceManager &SM = getSourceManager();
11523      if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
11524          IsInAnyMacroBody(SM, Range.getBegin()))
11525        return;
11526    }
11527    E = E->IgnoreImpCasts();
11528  
11529    const bool IsCompare = NullKind != Expr::NPCK_NotNull;
11530  
11531    if (isa<CXXThisExpr>(E)) {
11532      unsigned DiagID = IsCompare ? diag::warn_this_null_compare
11533                                  : diag::warn_this_bool_conversion;
11534      Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
11535      return;
11536    }
11537  
11538    bool IsAddressOf = false;
11539  
11540    if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
11541      if (UO->getOpcode() != UO_AddrOf)
11542        return;
11543      IsAddressOf = true;
11544      E = UO->getSubExpr();
11545    }
11546  
11547    if (IsAddressOf) {
11548      unsigned DiagID = IsCompare
11549                            ? diag::warn_address_of_reference_null_compare
11550                            : diag::warn_address_of_reference_bool_conversion;
11551      PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
11552                                           << IsEqual;
11553      if (CheckForReference(*this, E, PD)) {
11554        return;
11555      }
11556    }
11557  
11558    auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
11559      bool IsParam = isa<NonNullAttr>(NonnullAttr);
11560      std::string Str;
11561      llvm::raw_string_ostream S(Str);
11562      E->printPretty(S, nullptr, getPrintingPolicy());
11563      unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
11564                                  : diag::warn_cast_nonnull_to_bool;
11565      Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
11566        << E->getSourceRange() << Range << IsEqual;
11567      Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
11568    };
11569  
11570    // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
11571    if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
11572      if (auto *Callee = Call->getDirectCallee()) {
11573        if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
11574          ComplainAboutNonnullParamOrCall(A);
11575          return;
11576        }
11577      }
11578    }
11579  
11580    // Complain if we are converting a lambda expression to a boolean value
11581    // outside of instantiation.
11582    if (!inTemplateInstantiation()) {
11583      if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(E)) {
11584        if (const auto *MRecordDecl = MCallExpr->getRecordDecl();
11585            MRecordDecl && MRecordDecl->isLambda()) {
11586          Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool)
11587              << /*LambdaPointerConversionOperatorType=*/3
11588              << MRecordDecl->getSourceRange() << Range << IsEqual;
11589          return;
11590        }
11591      }
11592    }
11593  
11594    // Expect to find a single Decl.  Skip anything more complicated.
11595    ValueDecl *D = nullptr;
11596    if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
11597      D = R->getDecl();
11598    } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11599      D = M->getMemberDecl();
11600    }
11601  
11602    // Weak Decls can be null.
11603    if (!D || D->isWeak())
11604      return;
11605  
11606    // Check for parameter decl with nonnull attribute
11607    if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
11608      if (getCurFunction() &&
11609          !getCurFunction()->ModifiedNonNullParams.count(PV)) {
11610        if (const Attr *A = PV->getAttr<NonNullAttr>()) {
11611          ComplainAboutNonnullParamOrCall(A);
11612          return;
11613        }
11614  
11615        if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
11616          // Skip function template not specialized yet.
11617          if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11618            return;
11619          auto ParamIter = llvm::find(FD->parameters(), PV);
11620          assert(ParamIter != FD->param_end());
11621          unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
11622  
11623          for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
11624            if (!NonNull->args_size()) {
11625                ComplainAboutNonnullParamOrCall(NonNull);
11626                return;
11627            }
11628  
11629            for (const ParamIdx &ArgNo : NonNull->args()) {
11630              if (ArgNo.getASTIndex() == ParamNo) {
11631                ComplainAboutNonnullParamOrCall(NonNull);
11632                return;
11633              }
11634            }
11635          }
11636        }
11637      }
11638    }
11639  
11640    QualType T = D->getType();
11641    const bool IsArray = T->isArrayType();
11642    const bool IsFunction = T->isFunctionType();
11643  
11644    // Address of function is used to silence the function warning.
11645    if (IsAddressOf && IsFunction) {
11646      return;
11647    }
11648  
11649    // Found nothing.
11650    if (!IsAddressOf && !IsFunction && !IsArray)
11651      return;
11652  
11653    // Pretty print the expression for the diagnostic.
11654    std::string Str;
11655    llvm::raw_string_ostream S(Str);
11656    E->printPretty(S, nullptr, getPrintingPolicy());
11657  
11658    unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
11659                                : diag::warn_impcast_pointer_to_bool;
11660    enum {
11661      AddressOf,
11662      FunctionPointer,
11663      ArrayPointer
11664    } DiagType;
11665    if (IsAddressOf)
11666      DiagType = AddressOf;
11667    else if (IsFunction)
11668      DiagType = FunctionPointer;
11669    else if (IsArray)
11670      DiagType = ArrayPointer;
11671    else
11672      llvm_unreachable("Could not determine diagnostic.");
11673    Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
11674                                  << Range << IsEqual;
11675  
11676    if (!IsFunction)
11677      return;
11678  
11679    // Suggest '&' to silence the function warning.
11680    Diag(E->getExprLoc(), diag::note_function_warning_silence)
11681        << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
11682  
11683    // Check to see if '()' fixit should be emitted.
11684    QualType ReturnType;
11685    UnresolvedSet<4> NonTemplateOverloads;
11686    tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
11687    if (ReturnType.isNull())
11688      return;
11689  
11690    if (IsCompare) {
11691      // There are two cases here.  If there is null constant, the only suggest
11692      // for a pointer return type.  If the null is 0, then suggest if the return
11693      // type is a pointer or an integer type.
11694      if (!ReturnType->isPointerType()) {
11695        if (NullKind == Expr::NPCK_ZeroExpression ||
11696            NullKind == Expr::NPCK_ZeroLiteral) {
11697          if (!ReturnType->isIntegerType())
11698            return;
11699        } else {
11700          return;
11701        }
11702      }
11703    } else { // !IsCompare
11704      // For function to bool, only suggest if the function pointer has bool
11705      // return type.
11706      if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
11707        return;
11708    }
11709    Diag(E->getExprLoc(), diag::note_function_to_function_call)
11710        << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
11711  }
11712  
CheckImplicitConversions(Expr * E,SourceLocation CC)11713  void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
11714    // Don't diagnose in unevaluated contexts.
11715    if (isUnevaluatedContext())
11716      return;
11717  
11718    // Don't diagnose for value- or type-dependent expressions.
11719    if (E->isTypeDependent() || E->isValueDependent())
11720      return;
11721  
11722    // Check for array bounds violations in cases where the check isn't triggered
11723    // elsewhere for other Expr types (like BinaryOperators), e.g. when an
11724    // ArraySubscriptExpr is on the RHS of a variable initialization.
11725    CheckArrayAccess(E);
11726  
11727    // This is not the right CC for (e.g.) a variable initialization.
11728    AnalyzeImplicitConversions(*this, E, CC);
11729  }
11730  
CheckBoolLikeConversion(Expr * E,SourceLocation CC)11731  void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
11732    ::CheckBoolLikeConversion(*this, E, CC);
11733  }
11734  
CheckForIntOverflow(const Expr * E)11735  void Sema::CheckForIntOverflow (const Expr *E) {
11736    // Use a work list to deal with nested struct initializers.
11737    SmallVector<const Expr *, 2> Exprs(1, E);
11738  
11739    do {
11740      const Expr *OriginalE = Exprs.pop_back_val();
11741      const Expr *E = OriginalE->IgnoreParenCasts();
11742  
11743      if (isa<BinaryOperator, UnaryOperator>(E)) {
11744        E->EvaluateForOverflow(Context);
11745        continue;
11746      }
11747  
11748      if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
11749        Exprs.append(InitList->inits().begin(), InitList->inits().end());
11750      else if (isa<ObjCBoxedExpr>(OriginalE))
11751        E->EvaluateForOverflow(Context);
11752      else if (const auto *Call = dyn_cast<CallExpr>(E))
11753        Exprs.append(Call->arg_begin(), Call->arg_end());
11754      else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
11755        Exprs.append(Message->arg_begin(), Message->arg_end());
11756      else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
11757        Exprs.append(Construct->arg_begin(), Construct->arg_end());
11758      else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
11759        Exprs.push_back(Temporary->getSubExpr());
11760      else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
11761        Exprs.push_back(Array->getIdx());
11762      else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
11763        Exprs.push_back(Compound->getInitializer());
11764      else if (const auto *New = dyn_cast<CXXNewExpr>(E);
11765               New && New->isArray()) {
11766        if (auto ArraySize = New->getArraySize())
11767          Exprs.push_back(*ArraySize);
11768      }
11769    } while (!Exprs.empty());
11770  }
11771  
11772  namespace {
11773  
11774  /// Visitor for expressions which looks for unsequenced operations on the
11775  /// same object.
11776  class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
11777    using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
11778  
11779    /// A tree of sequenced regions within an expression. Two regions are
11780    /// unsequenced if one is an ancestor or a descendent of the other. When we
11781    /// finish processing an expression with sequencing, such as a comma
11782    /// expression, we fold its tree nodes into its parent, since they are
11783    /// unsequenced with respect to nodes we will visit later.
11784    class SequenceTree {
11785      struct Value {
Value__anon28c3fbb12811::SequenceChecker::SequenceTree::Value11786        explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
11787        unsigned Parent : 31;
11788        LLVM_PREFERRED_TYPE(bool)
11789        unsigned Merged : 1;
11790      };
11791      SmallVector<Value, 8> Values;
11792  
11793    public:
11794      /// A region within an expression which may be sequenced with respect
11795      /// to some other region.
11796      class Seq {
11797        friend class SequenceTree;
11798  
11799        unsigned Index;
11800  
Seq(unsigned N)11801        explicit Seq(unsigned N) : Index(N) {}
11802  
11803      public:
Seq()11804        Seq() : Index(0) {}
11805      };
11806  
SequenceTree()11807      SequenceTree() { Values.push_back(Value(0)); }
root() const11808      Seq root() const { return Seq(0); }
11809  
11810      /// Create a new sequence of operations, which is an unsequenced
11811      /// subset of \p Parent. This sequence of operations is sequenced with
11812      /// respect to other children of \p Parent.
allocate(Seq Parent)11813      Seq allocate(Seq Parent) {
11814        Values.push_back(Value(Parent.Index));
11815        return Seq(Values.size() - 1);
11816      }
11817  
11818      /// Merge a sequence of operations into its parent.
merge(Seq S)11819      void merge(Seq S) {
11820        Values[S.Index].Merged = true;
11821      }
11822  
11823      /// Determine whether two operations are unsequenced. This operation
11824      /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
11825      /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)11826      bool isUnsequenced(Seq Cur, Seq Old) {
11827        unsigned C = representative(Cur.Index);
11828        unsigned Target = representative(Old.Index);
11829        while (C >= Target) {
11830          if (C == Target)
11831            return true;
11832          C = Values[C].Parent;
11833        }
11834        return false;
11835      }
11836  
11837    private:
11838      /// Pick a representative for a sequence.
representative(unsigned K)11839      unsigned representative(unsigned K) {
11840        if (Values[K].Merged)
11841          // Perform path compression as we go.
11842          return Values[K].Parent = representative(Values[K].Parent);
11843        return K;
11844      }
11845    };
11846  
11847    /// An object for which we can track unsequenced uses.
11848    using Object = const NamedDecl *;
11849  
11850    /// Different flavors of object usage which we track. We only track the
11851    /// least-sequenced usage of each kind.
11852    enum UsageKind {
11853      /// A read of an object. Multiple unsequenced reads are OK.
11854      UK_Use,
11855  
11856      /// A modification of an object which is sequenced before the value
11857      /// computation of the expression, such as ++n in C++.
11858      UK_ModAsValue,
11859  
11860      /// A modification of an object which is not sequenced before the value
11861      /// computation of the expression, such as n++.
11862      UK_ModAsSideEffect,
11863  
11864      UK_Count = UK_ModAsSideEffect + 1
11865    };
11866  
11867    /// Bundle together a sequencing region and the expression corresponding
11868    /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
11869    struct Usage {
11870      const Expr *UsageExpr = nullptr;
11871      SequenceTree::Seq Seq;
11872  
11873      Usage() = default;
11874    };
11875  
11876    struct UsageInfo {
11877      Usage Uses[UK_Count];
11878  
11879      /// Have we issued a diagnostic for this object already?
11880      bool Diagnosed = false;
11881  
11882      UsageInfo();
11883    };
11884    using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
11885  
11886    Sema &SemaRef;
11887  
11888    /// Sequenced regions within the expression.
11889    SequenceTree Tree;
11890  
11891    /// Declaration modifications and references which we have seen.
11892    UsageInfoMap UsageMap;
11893  
11894    /// The region we are currently within.
11895    SequenceTree::Seq Region;
11896  
11897    /// Filled in with declarations which were modified as a side-effect
11898    /// (that is, post-increment operations).
11899    SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
11900  
11901    /// Expressions to check later. We defer checking these to reduce
11902    /// stack usage.
11903    SmallVectorImpl<const Expr *> &WorkList;
11904  
11905    /// RAII object wrapping the visitation of a sequenced subexpression of an
11906    /// expression. At the end of this process, the side-effects of the evaluation
11907    /// become sequenced with respect to the value computation of the result, so
11908    /// we downgrade any UK_ModAsSideEffect within the evaluation to
11909    /// UK_ModAsValue.
11910    struct SequencedSubexpression {
SequencedSubexpression__anon28c3fbb12811::SequenceChecker::SequencedSubexpression11911      SequencedSubexpression(SequenceChecker &Self)
11912        : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
11913        Self.ModAsSideEffect = &ModAsSideEffect;
11914      }
11915  
~SequencedSubexpression__anon28c3fbb12811::SequenceChecker::SequencedSubexpression11916      ~SequencedSubexpression() {
11917        for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
11918          // Add a new usage with usage kind UK_ModAsValue, and then restore
11919          // the previous usage with UK_ModAsSideEffect (thus clearing it if
11920          // the previous one was empty).
11921          UsageInfo &UI = Self.UsageMap[M.first];
11922          auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
11923          Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
11924          SideEffectUsage = M.second;
11925        }
11926        Self.ModAsSideEffect = OldModAsSideEffect;
11927      }
11928  
11929      SequenceChecker &Self;
11930      SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
11931      SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
11932    };
11933  
11934    /// RAII object wrapping the visitation of a subexpression which we might
11935    /// choose to evaluate as a constant. If any subexpression is evaluated and
11936    /// found to be non-constant, this allows us to suppress the evaluation of
11937    /// the outer expression.
11938    class EvaluationTracker {
11939    public:
EvaluationTracker(SequenceChecker & Self)11940      EvaluationTracker(SequenceChecker &Self)
11941          : Self(Self), Prev(Self.EvalTracker) {
11942        Self.EvalTracker = this;
11943      }
11944  
~EvaluationTracker()11945      ~EvaluationTracker() {
11946        Self.EvalTracker = Prev;
11947        if (Prev)
11948          Prev->EvalOK &= EvalOK;
11949      }
11950  
evaluate(const Expr * E,bool & Result)11951      bool evaluate(const Expr *E, bool &Result) {
11952        if (!EvalOK || E->isValueDependent())
11953          return false;
11954        EvalOK = E->EvaluateAsBooleanCondition(
11955            Result, Self.SemaRef.Context,
11956            Self.SemaRef.isConstantEvaluatedContext());
11957        return EvalOK;
11958      }
11959  
11960    private:
11961      SequenceChecker &Self;
11962      EvaluationTracker *Prev;
11963      bool EvalOK = true;
11964    } *EvalTracker = nullptr;
11965  
11966    /// Find the object which is produced by the specified expression,
11967    /// if any.
getObject(const Expr * E,bool Mod) const11968    Object getObject(const Expr *E, bool Mod) const {
11969      E = E->IgnoreParenCasts();
11970      if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
11971        if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
11972          return getObject(UO->getSubExpr(), Mod);
11973      } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11974        if (BO->getOpcode() == BO_Comma)
11975          return getObject(BO->getRHS(), Mod);
11976        if (Mod && BO->isAssignmentOp())
11977          return getObject(BO->getLHS(), Mod);
11978      } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
11979        // FIXME: Check for more interesting cases, like "x.n = ++x.n".
11980        if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
11981          return ME->getMemberDecl();
11982      } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11983        // FIXME: If this is a reference, map through to its value.
11984        return DRE->getDecl();
11985      return nullptr;
11986    }
11987  
11988    /// Note that an object \p O was modified or used by an expression
11989    /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
11990    /// the object \p O as obtained via the \p UsageMap.
addUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind UK)11991    void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
11992      // Get the old usage for the given object and usage kind.
11993      Usage &U = UI.Uses[UK];
11994      if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
11995        // If we have a modification as side effect and are in a sequenced
11996        // subexpression, save the old Usage so that we can restore it later
11997        // in SequencedSubexpression::~SequencedSubexpression.
11998        if (UK == UK_ModAsSideEffect && ModAsSideEffect)
11999          ModAsSideEffect->push_back(std::make_pair(O, U));
12000        // Then record the new usage with the current sequencing region.
12001        U.UsageExpr = UsageExpr;
12002        U.Seq = Region;
12003      }
12004    }
12005  
12006    /// Check whether a modification or use of an object \p O in an expression
12007    /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12008    /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12009    /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12010    /// usage and false we are checking for a mod-use unsequenced usage.
checkUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind OtherKind,bool IsModMod)12011    void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12012                    UsageKind OtherKind, bool IsModMod) {
12013      if (UI.Diagnosed)
12014        return;
12015  
12016      const Usage &U = UI.Uses[OtherKind];
12017      if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12018        return;
12019  
12020      const Expr *Mod = U.UsageExpr;
12021      const Expr *ModOrUse = UsageExpr;
12022      if (OtherKind == UK_Use)
12023        std::swap(Mod, ModOrUse);
12024  
12025      SemaRef.DiagRuntimeBehavior(
12026          Mod->getExprLoc(), {Mod, ModOrUse},
12027          SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12028                                 : diag::warn_unsequenced_mod_use)
12029              << O << SourceRange(ModOrUse->getExprLoc()));
12030      UI.Diagnosed = true;
12031    }
12032  
12033    // A note on note{Pre, Post}{Use, Mod}:
12034    //
12035    // (It helps to follow the algorithm with an expression such as
12036    //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12037    //  operations before C++17 and both are well-defined in C++17).
12038    //
12039    // When visiting a node which uses/modify an object we first call notePreUse
12040    // or notePreMod before visiting its sub-expression(s). At this point the
12041    // children of the current node have not yet been visited and so the eventual
12042    // uses/modifications resulting from the children of the current node have not
12043    // been recorded yet.
12044    //
12045    // We then visit the children of the current node. After that notePostUse or
12046    // notePostMod is called. These will 1) detect an unsequenced modification
12047    // as side effect (as in "k++ + k") and 2) add a new usage with the
12048    // appropriate usage kind.
12049    //
12050    // We also have to be careful that some operation sequences modification as
12051    // side effect as well (for example: || or ,). To account for this we wrap
12052    // the visitation of such a sub-expression (for example: the LHS of || or ,)
12053    // with SequencedSubexpression. SequencedSubexpression is an RAII object
12054    // which record usages which are modifications as side effect, and then
12055    // downgrade them (or more accurately restore the previous usage which was a
12056    // modification as side effect) when exiting the scope of the sequenced
12057    // subexpression.
12058  
notePreUse(Object O,const Expr * UseExpr)12059    void notePreUse(Object O, const Expr *UseExpr) {
12060      UsageInfo &UI = UsageMap[O];
12061      // Uses conflict with other modifications.
12062      checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
12063    }
12064  
notePostUse(Object O,const Expr * UseExpr)12065    void notePostUse(Object O, const Expr *UseExpr) {
12066      UsageInfo &UI = UsageMap[O];
12067      checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
12068                 /*IsModMod=*/false);
12069      addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
12070    }
12071  
notePreMod(Object O,const Expr * ModExpr)12072    void notePreMod(Object O, const Expr *ModExpr) {
12073      UsageInfo &UI = UsageMap[O];
12074      // Modifications conflict with other modifications and with uses.
12075      checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
12076      checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
12077    }
12078  
notePostMod(Object O,const Expr * ModExpr,UsageKind UK)12079    void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
12080      UsageInfo &UI = UsageMap[O];
12081      checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
12082                 /*IsModMod=*/true);
12083      addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
12084    }
12085  
12086  public:
SequenceChecker(Sema & S,const Expr * E,SmallVectorImpl<const Expr * > & WorkList)12087    SequenceChecker(Sema &S, const Expr *E,
12088                    SmallVectorImpl<const Expr *> &WorkList)
12089        : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12090      Visit(E);
12091      // Silence a -Wunused-private-field since WorkList is now unused.
12092      // TODO: Evaluate if it can be used, and if not remove it.
12093      (void)this->WorkList;
12094    }
12095  
VisitStmt(const Stmt * S)12096    void VisitStmt(const Stmt *S) {
12097      // Skip all statements which aren't expressions for now.
12098    }
12099  
VisitExpr(const Expr * E)12100    void VisitExpr(const Expr *E) {
12101      // By default, just recurse to evaluated subexpressions.
12102      Base::VisitStmt(E);
12103    }
12104  
VisitCoroutineSuspendExpr(const CoroutineSuspendExpr * CSE)12105    void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
12106      for (auto *Sub : CSE->children()) {
12107        const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
12108        if (!ChildExpr)
12109          continue;
12110  
12111        if (ChildExpr == CSE->getOperand())
12112          // Do not recurse over a CoroutineSuspendExpr's operand.
12113          // The operand is also a subexpression of getCommonExpr(), and
12114          // recursing into it directly could confuse object management
12115          // for the sake of sequence tracking.
12116          continue;
12117  
12118        Visit(Sub);
12119      }
12120    }
12121  
VisitCastExpr(const CastExpr * E)12122    void VisitCastExpr(const CastExpr *E) {
12123      Object O = Object();
12124      if (E->getCastKind() == CK_LValueToRValue)
12125        O = getObject(E->getSubExpr(), false);
12126  
12127      if (O)
12128        notePreUse(O, E);
12129      VisitExpr(E);
12130      if (O)
12131        notePostUse(O, E);
12132    }
12133  
VisitSequencedExpressions(const Expr * SequencedBefore,const Expr * SequencedAfter)12134    void VisitSequencedExpressions(const Expr *SequencedBefore,
12135                                   const Expr *SequencedAfter) {
12136      SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12137      SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12138      SequenceTree::Seq OldRegion = Region;
12139  
12140      {
12141        SequencedSubexpression SeqBefore(*this);
12142        Region = BeforeRegion;
12143        Visit(SequencedBefore);
12144      }
12145  
12146      Region = AfterRegion;
12147      Visit(SequencedAfter);
12148  
12149      Region = OldRegion;
12150  
12151      Tree.merge(BeforeRegion);
12152      Tree.merge(AfterRegion);
12153    }
12154  
VisitArraySubscriptExpr(const ArraySubscriptExpr * ASE)12155    void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
12156      // C++17 [expr.sub]p1:
12157      //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12158      //   expression E1 is sequenced before the expression E2.
12159      if (SemaRef.getLangOpts().CPlusPlus17)
12160        VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12161      else {
12162        Visit(ASE->getLHS());
12163        Visit(ASE->getRHS());
12164      }
12165    }
12166  
VisitBinPtrMemD(const BinaryOperator * BO)12167    void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMemI(const BinaryOperator * BO)12168    void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMem(const BinaryOperator * BO)12169    void VisitBinPtrMem(const BinaryOperator *BO) {
12170      // C++17 [expr.mptr.oper]p4:
12171      //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
12172      //  the expression E1 is sequenced before the expression E2.
12173      if (SemaRef.getLangOpts().CPlusPlus17)
12174        VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12175      else {
12176        Visit(BO->getLHS());
12177        Visit(BO->getRHS());
12178      }
12179    }
12180  
VisitBinShl(const BinaryOperator * BO)12181    void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShr(const BinaryOperator * BO)12182    void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShlShr(const BinaryOperator * BO)12183    void VisitBinShlShr(const BinaryOperator *BO) {
12184      // C++17 [expr.shift]p4:
12185      //  The expression E1 is sequenced before the expression E2.
12186      if (SemaRef.getLangOpts().CPlusPlus17)
12187        VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12188      else {
12189        Visit(BO->getLHS());
12190        Visit(BO->getRHS());
12191      }
12192    }
12193  
VisitBinComma(const BinaryOperator * BO)12194    void VisitBinComma(const BinaryOperator *BO) {
12195      // C++11 [expr.comma]p1:
12196      //   Every value computation and side effect associated with the left
12197      //   expression is sequenced before every value computation and side
12198      //   effect associated with the right expression.
12199      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12200    }
12201  
VisitBinAssign(const BinaryOperator * BO)12202    void VisitBinAssign(const BinaryOperator *BO) {
12203      SequenceTree::Seq RHSRegion;
12204      SequenceTree::Seq LHSRegion;
12205      if (SemaRef.getLangOpts().CPlusPlus17) {
12206        RHSRegion = Tree.allocate(Region);
12207        LHSRegion = Tree.allocate(Region);
12208      } else {
12209        RHSRegion = Region;
12210        LHSRegion = Region;
12211      }
12212      SequenceTree::Seq OldRegion = Region;
12213  
12214      // C++11 [expr.ass]p1:
12215      //  [...] the assignment is sequenced after the value computation
12216      //  of the right and left operands, [...]
12217      //
12218      // so check it before inspecting the operands and update the
12219      // map afterwards.
12220      Object O = getObject(BO->getLHS(), /*Mod=*/true);
12221      if (O)
12222        notePreMod(O, BO);
12223  
12224      if (SemaRef.getLangOpts().CPlusPlus17) {
12225        // C++17 [expr.ass]p1:
12226        //  [...] The right operand is sequenced before the left operand. [...]
12227        {
12228          SequencedSubexpression SeqBefore(*this);
12229          Region = RHSRegion;
12230          Visit(BO->getRHS());
12231        }
12232  
12233        Region = LHSRegion;
12234        Visit(BO->getLHS());
12235  
12236        if (O && isa<CompoundAssignOperator>(BO))
12237          notePostUse(O, BO);
12238  
12239      } else {
12240        // C++11 does not specify any sequencing between the LHS and RHS.
12241        Region = LHSRegion;
12242        Visit(BO->getLHS());
12243  
12244        if (O && isa<CompoundAssignOperator>(BO))
12245          notePostUse(O, BO);
12246  
12247        Region = RHSRegion;
12248        Visit(BO->getRHS());
12249      }
12250  
12251      // C++11 [expr.ass]p1:
12252      //  the assignment is sequenced [...] before the value computation of the
12253      //  assignment expression.
12254      // C11 6.5.16/3 has no such rule.
12255      Region = OldRegion;
12256      if (O)
12257        notePostMod(O, BO,
12258                    SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12259                                                    : UK_ModAsSideEffect);
12260      if (SemaRef.getLangOpts().CPlusPlus17) {
12261        Tree.merge(RHSRegion);
12262        Tree.merge(LHSRegion);
12263      }
12264    }
12265  
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)12266    void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
12267      VisitBinAssign(CAO);
12268    }
12269  
VisitUnaryPreInc(const UnaryOperator * UO)12270    void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(const UnaryOperator * UO)12271    void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(const UnaryOperator * UO)12272    void VisitUnaryPreIncDec(const UnaryOperator *UO) {
12273      Object O = getObject(UO->getSubExpr(), true);
12274      if (!O)
12275        return VisitExpr(UO);
12276  
12277      notePreMod(O, UO);
12278      Visit(UO->getSubExpr());
12279      // C++11 [expr.pre.incr]p1:
12280      //   the expression ++x is equivalent to x+=1
12281      notePostMod(O, UO,
12282                  SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12283                                                  : UK_ModAsSideEffect);
12284    }
12285  
VisitUnaryPostInc(const UnaryOperator * UO)12286    void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(const UnaryOperator * UO)12287    void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(const UnaryOperator * UO)12288    void VisitUnaryPostIncDec(const UnaryOperator *UO) {
12289      Object O = getObject(UO->getSubExpr(), true);
12290      if (!O)
12291        return VisitExpr(UO);
12292  
12293      notePreMod(O, UO);
12294      Visit(UO->getSubExpr());
12295      notePostMod(O, UO, UK_ModAsSideEffect);
12296    }
12297  
VisitBinLOr(const BinaryOperator * BO)12298    void VisitBinLOr(const BinaryOperator *BO) {
12299      // C++11 [expr.log.or]p2:
12300      //  If the second expression is evaluated, every value computation and
12301      //  side effect associated with the first expression is sequenced before
12302      //  every value computation and side effect associated with the
12303      //  second expression.
12304      SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12305      SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12306      SequenceTree::Seq OldRegion = Region;
12307  
12308      EvaluationTracker Eval(*this);
12309      {
12310        SequencedSubexpression Sequenced(*this);
12311        Region = LHSRegion;
12312        Visit(BO->getLHS());
12313      }
12314  
12315      // C++11 [expr.log.or]p1:
12316      //  [...] the second operand is not evaluated if the first operand
12317      //  evaluates to true.
12318      bool EvalResult = false;
12319      bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12320      bool ShouldVisitRHS = !EvalOK || !EvalResult;
12321      if (ShouldVisitRHS) {
12322        Region = RHSRegion;
12323        Visit(BO->getRHS());
12324      }
12325  
12326      Region = OldRegion;
12327      Tree.merge(LHSRegion);
12328      Tree.merge(RHSRegion);
12329    }
12330  
VisitBinLAnd(const BinaryOperator * BO)12331    void VisitBinLAnd(const BinaryOperator *BO) {
12332      // C++11 [expr.log.and]p2:
12333      //  If the second expression is evaluated, every value computation and
12334      //  side effect associated with the first expression is sequenced before
12335      //  every value computation and side effect associated with the
12336      //  second expression.
12337      SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12338      SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12339      SequenceTree::Seq OldRegion = Region;
12340  
12341      EvaluationTracker Eval(*this);
12342      {
12343        SequencedSubexpression Sequenced(*this);
12344        Region = LHSRegion;
12345        Visit(BO->getLHS());
12346      }
12347  
12348      // C++11 [expr.log.and]p1:
12349      //  [...] the second operand is not evaluated if the first operand is false.
12350      bool EvalResult = false;
12351      bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12352      bool ShouldVisitRHS = !EvalOK || EvalResult;
12353      if (ShouldVisitRHS) {
12354        Region = RHSRegion;
12355        Visit(BO->getRHS());
12356      }
12357  
12358      Region = OldRegion;
12359      Tree.merge(LHSRegion);
12360      Tree.merge(RHSRegion);
12361    }
12362  
VisitAbstractConditionalOperator(const AbstractConditionalOperator * CO)12363    void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
12364      // C++11 [expr.cond]p1:
12365      //  [...] Every value computation and side effect associated with the first
12366      //  expression is sequenced before every value computation and side effect
12367      //  associated with the second or third expression.
12368      SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
12369  
12370      // No sequencing is specified between the true and false expression.
12371      // However since exactly one of both is going to be evaluated we can
12372      // consider them to be sequenced. This is needed to avoid warning on
12373      // something like "x ? y+= 1 : y += 2;" in the case where we will visit
12374      // both the true and false expressions because we can't evaluate x.
12375      // This will still allow us to detect an expression like (pre C++17)
12376      // "(x ? y += 1 : y += 2) = y".
12377      //
12378      // We don't wrap the visitation of the true and false expression with
12379      // SequencedSubexpression because we don't want to downgrade modifications
12380      // as side effect in the true and false expressions after the visition
12381      // is done. (for example in the expression "(x ? y++ : y++) + y" we should
12382      // not warn between the two "y++", but we should warn between the "y++"
12383      // and the "y".
12384      SequenceTree::Seq TrueRegion = Tree.allocate(Region);
12385      SequenceTree::Seq FalseRegion = Tree.allocate(Region);
12386      SequenceTree::Seq OldRegion = Region;
12387  
12388      EvaluationTracker Eval(*this);
12389      {
12390        SequencedSubexpression Sequenced(*this);
12391        Region = ConditionRegion;
12392        Visit(CO->getCond());
12393      }
12394  
12395      // C++11 [expr.cond]p1:
12396      // [...] The first expression is contextually converted to bool (Clause 4).
12397      // It is evaluated and if it is true, the result of the conditional
12398      // expression is the value of the second expression, otherwise that of the
12399      // third expression. Only one of the second and third expressions is
12400      // evaluated. [...]
12401      bool EvalResult = false;
12402      bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
12403      bool ShouldVisitTrueExpr = !EvalOK || EvalResult;
12404      bool ShouldVisitFalseExpr = !EvalOK || !EvalResult;
12405      if (ShouldVisitTrueExpr) {
12406        Region = TrueRegion;
12407        Visit(CO->getTrueExpr());
12408      }
12409      if (ShouldVisitFalseExpr) {
12410        Region = FalseRegion;
12411        Visit(CO->getFalseExpr());
12412      }
12413  
12414      Region = OldRegion;
12415      Tree.merge(ConditionRegion);
12416      Tree.merge(TrueRegion);
12417      Tree.merge(FalseRegion);
12418    }
12419  
VisitCallExpr(const CallExpr * CE)12420    void VisitCallExpr(const CallExpr *CE) {
12421      // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
12422  
12423      if (CE->isUnevaluatedBuiltinCall(Context))
12424        return;
12425  
12426      // C++11 [intro.execution]p15:
12427      //   When calling a function [...], every value computation and side effect
12428      //   associated with any argument expression, or with the postfix expression
12429      //   designating the called function, is sequenced before execution of every
12430      //   expression or statement in the body of the function [and thus before
12431      //   the value computation of its result].
12432      SequencedSubexpression Sequenced(*this);
12433      SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
12434        // C++17 [expr.call]p5
12435        //   The postfix-expression is sequenced before each expression in the
12436        //   expression-list and any default argument. [...]
12437        SequenceTree::Seq CalleeRegion;
12438        SequenceTree::Seq OtherRegion;
12439        if (SemaRef.getLangOpts().CPlusPlus17) {
12440          CalleeRegion = Tree.allocate(Region);
12441          OtherRegion = Tree.allocate(Region);
12442        } else {
12443          CalleeRegion = Region;
12444          OtherRegion = Region;
12445        }
12446        SequenceTree::Seq OldRegion = Region;
12447  
12448        // Visit the callee expression first.
12449        Region = CalleeRegion;
12450        if (SemaRef.getLangOpts().CPlusPlus17) {
12451          SequencedSubexpression Sequenced(*this);
12452          Visit(CE->getCallee());
12453        } else {
12454          Visit(CE->getCallee());
12455        }
12456  
12457        // Then visit the argument expressions.
12458        Region = OtherRegion;
12459        for (const Expr *Argument : CE->arguments())
12460          Visit(Argument);
12461  
12462        Region = OldRegion;
12463        if (SemaRef.getLangOpts().CPlusPlus17) {
12464          Tree.merge(CalleeRegion);
12465          Tree.merge(OtherRegion);
12466        }
12467      });
12468    }
12469  
VisitCXXOperatorCallExpr(const CXXOperatorCallExpr * CXXOCE)12470    void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
12471      // C++17 [over.match.oper]p2:
12472      //   [...] the operator notation is first transformed to the equivalent
12473      //   function-call notation as summarized in Table 12 (where @ denotes one
12474      //   of the operators covered in the specified subclause). However, the
12475      //   operands are sequenced in the order prescribed for the built-in
12476      //   operator (Clause 8).
12477      //
12478      // From the above only overloaded binary operators and overloaded call
12479      // operators have sequencing rules in C++17 that we need to handle
12480      // separately.
12481      if (!SemaRef.getLangOpts().CPlusPlus17 ||
12482          (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
12483        return VisitCallExpr(CXXOCE);
12484  
12485      enum {
12486        NoSequencing,
12487        LHSBeforeRHS,
12488        RHSBeforeLHS,
12489        LHSBeforeRest
12490      } SequencingKind;
12491      switch (CXXOCE->getOperator()) {
12492      case OO_Equal:
12493      case OO_PlusEqual:
12494      case OO_MinusEqual:
12495      case OO_StarEqual:
12496      case OO_SlashEqual:
12497      case OO_PercentEqual:
12498      case OO_CaretEqual:
12499      case OO_AmpEqual:
12500      case OO_PipeEqual:
12501      case OO_LessLessEqual:
12502      case OO_GreaterGreaterEqual:
12503        SequencingKind = RHSBeforeLHS;
12504        break;
12505  
12506      case OO_LessLess:
12507      case OO_GreaterGreater:
12508      case OO_AmpAmp:
12509      case OO_PipePipe:
12510      case OO_Comma:
12511      case OO_ArrowStar:
12512      case OO_Subscript:
12513        SequencingKind = LHSBeforeRHS;
12514        break;
12515  
12516      case OO_Call:
12517        SequencingKind = LHSBeforeRest;
12518        break;
12519  
12520      default:
12521        SequencingKind = NoSequencing;
12522        break;
12523      }
12524  
12525      if (SequencingKind == NoSequencing)
12526        return VisitCallExpr(CXXOCE);
12527  
12528      // This is a call, so all subexpressions are sequenced before the result.
12529      SequencedSubexpression Sequenced(*this);
12530  
12531      SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
12532        assert(SemaRef.getLangOpts().CPlusPlus17 &&
12533               "Should only get there with C++17 and above!");
12534        assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
12535               "Should only get there with an overloaded binary operator"
12536               " or an overloaded call operator!");
12537  
12538        if (SequencingKind == LHSBeforeRest) {
12539          assert(CXXOCE->getOperator() == OO_Call &&
12540                 "We should only have an overloaded call operator here!");
12541  
12542          // This is very similar to VisitCallExpr, except that we only have the
12543          // C++17 case. The postfix-expression is the first argument of the
12544          // CXXOperatorCallExpr. The expressions in the expression-list, if any,
12545          // are in the following arguments.
12546          //
12547          // Note that we intentionally do not visit the callee expression since
12548          // it is just a decayed reference to a function.
12549          SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
12550          SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
12551          SequenceTree::Seq OldRegion = Region;
12552  
12553          assert(CXXOCE->getNumArgs() >= 1 &&
12554                 "An overloaded call operator must have at least one argument"
12555                 " for the postfix-expression!");
12556          const Expr *PostfixExpr = CXXOCE->getArgs()[0];
12557          llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
12558                                            CXXOCE->getNumArgs() - 1);
12559  
12560          // Visit the postfix-expression first.
12561          {
12562            Region = PostfixExprRegion;
12563            SequencedSubexpression Sequenced(*this);
12564            Visit(PostfixExpr);
12565          }
12566  
12567          // Then visit the argument expressions.
12568          Region = ArgsRegion;
12569          for (const Expr *Arg : Args)
12570            Visit(Arg);
12571  
12572          Region = OldRegion;
12573          Tree.merge(PostfixExprRegion);
12574          Tree.merge(ArgsRegion);
12575        } else {
12576          assert(CXXOCE->getNumArgs() == 2 &&
12577                 "Should only have two arguments here!");
12578          assert((SequencingKind == LHSBeforeRHS ||
12579                  SequencingKind == RHSBeforeLHS) &&
12580                 "Unexpected sequencing kind!");
12581  
12582          // We do not visit the callee expression since it is just a decayed
12583          // reference to a function.
12584          const Expr *E1 = CXXOCE->getArg(0);
12585          const Expr *E2 = CXXOCE->getArg(1);
12586          if (SequencingKind == RHSBeforeLHS)
12587            std::swap(E1, E2);
12588  
12589          return VisitSequencedExpressions(E1, E2);
12590        }
12591      });
12592    }
12593  
VisitCXXConstructExpr(const CXXConstructExpr * CCE)12594    void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
12595      // This is a call, so all subexpressions are sequenced before the result.
12596      SequencedSubexpression Sequenced(*this);
12597  
12598      if (!CCE->isListInitialization())
12599        return VisitExpr(CCE);
12600  
12601      // In C++11, list initializations are sequenced.
12602      SequenceExpressionsInOrder(
12603          llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()));
12604    }
12605  
VisitInitListExpr(const InitListExpr * ILE)12606    void VisitInitListExpr(const InitListExpr *ILE) {
12607      if (!SemaRef.getLangOpts().CPlusPlus11)
12608        return VisitExpr(ILE);
12609  
12610      // In C++11, list initializations are sequenced.
12611      SequenceExpressionsInOrder(ILE->inits());
12612    }
12613  
VisitCXXParenListInitExpr(const CXXParenListInitExpr * PLIE)12614    void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) {
12615      // C++20 parenthesized list initializations are sequenced. See C++20
12616      // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2.
12617      SequenceExpressionsInOrder(PLIE->getInitExprs());
12618    }
12619  
12620  private:
SequenceExpressionsInOrder(ArrayRef<const Expr * > ExpressionList)12621    void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) {
12622      SmallVector<SequenceTree::Seq, 32> Elts;
12623      SequenceTree::Seq Parent = Region;
12624      for (const Expr *E : ExpressionList) {
12625        if (!E)
12626          continue;
12627        Region = Tree.allocate(Parent);
12628        Elts.push_back(Region);
12629        Visit(E);
12630      }
12631  
12632      // Forget that the initializers are sequenced.
12633      Region = Parent;
12634      for (unsigned I = 0; I < Elts.size(); ++I)
12635        Tree.merge(Elts[I]);
12636    }
12637  };
12638  
12639  SequenceChecker::UsageInfo::UsageInfo() = default;
12640  
12641  } // namespace
12642  
CheckUnsequencedOperations(const Expr * E)12643  void Sema::CheckUnsequencedOperations(const Expr *E) {
12644    SmallVector<const Expr *, 8> WorkList;
12645    WorkList.push_back(E);
12646    while (!WorkList.empty()) {
12647      const Expr *Item = WorkList.pop_back_val();
12648      SequenceChecker(*this, Item, WorkList);
12649    }
12650  }
12651  
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)12652  void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
12653                                bool IsConstexpr) {
12654    llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
12655                                         IsConstexpr || isa<ConstantExpr>(E));
12656    CheckImplicitConversions(E, CheckLoc);
12657    if (!E->isInstantiationDependent())
12658      CheckUnsequencedOperations(E);
12659    if (!IsConstexpr && !E->isValueDependent())
12660      CheckForIntOverflow(E);
12661    DiagnoseMisalignedMembers();
12662  }
12663  
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)12664  void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
12665                                         FieldDecl *BitField,
12666                                         Expr *Init) {
12667    (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
12668  }
12669  
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)12670  static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
12671                                           SourceLocation Loc) {
12672    if (!PType->isVariablyModifiedType())
12673      return;
12674    if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
12675      diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
12676      return;
12677    }
12678    if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
12679      diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
12680      return;
12681    }
12682    if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
12683      diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
12684      return;
12685    }
12686  
12687    const ArrayType *AT = S.Context.getAsArrayType(PType);
12688    if (!AT)
12689      return;
12690  
12691    if (AT->getSizeModifier() != ArraySizeModifier::Star) {
12692      diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
12693      return;
12694    }
12695  
12696    S.Diag(Loc, diag::err_array_star_in_function_definition);
12697  }
12698  
CheckParmsForFunctionDef(ArrayRef<ParmVarDecl * > Parameters,bool CheckParameterNames)12699  bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
12700                                      bool CheckParameterNames) {
12701    bool HasInvalidParm = false;
12702    for (ParmVarDecl *Param : Parameters) {
12703      assert(Param && "null in a parameter list");
12704      // C99 6.7.5.3p4: the parameters in a parameter type list in a
12705      // function declarator that is part of a function definition of
12706      // that function shall not have incomplete type.
12707      //
12708      // C++23 [dcl.fct.def.general]/p2
12709      // The type of a parameter [...] for a function definition
12710      // shall not be a (possibly cv-qualified) class type that is incomplete
12711      // or abstract within the function body unless the function is deleted.
12712      if (!Param->isInvalidDecl() &&
12713          (RequireCompleteType(Param->getLocation(), Param->getType(),
12714                               diag::err_typecheck_decl_incomplete_type) ||
12715           RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
12716                                  diag::err_abstract_type_in_decl,
12717                                  AbstractParamType))) {
12718        Param->setInvalidDecl();
12719        HasInvalidParm = true;
12720      }
12721  
12722      // C99 6.9.1p5: If the declarator includes a parameter type list, the
12723      // declaration of each parameter shall include an identifier.
12724      if (CheckParameterNames && Param->getIdentifier() == nullptr &&
12725          !Param->isImplicit() && !getLangOpts().CPlusPlus) {
12726        // Diagnose this as an extension in C17 and earlier.
12727        if (!getLangOpts().C23)
12728          Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
12729      }
12730  
12731      // C99 6.7.5.3p12:
12732      //   If the function declarator is not part of a definition of that
12733      //   function, parameters may have incomplete type and may use the [*]
12734      //   notation in their sequences of declarator specifiers to specify
12735      //   variable length array types.
12736      QualType PType = Param->getOriginalType();
12737      // FIXME: This diagnostic should point the '[*]' if source-location
12738      // information is added for it.
12739      diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
12740  
12741      // If the parameter is a c++ class type and it has to be destructed in the
12742      // callee function, declare the destructor so that it can be called by the
12743      // callee function. Do not perform any direct access check on the dtor here.
12744      if (!Param->isInvalidDecl()) {
12745        if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
12746          if (!ClassDecl->isInvalidDecl() &&
12747              !ClassDecl->hasIrrelevantDestructor() &&
12748              !ClassDecl->isDependentContext() &&
12749              ClassDecl->isParamDestroyedInCallee()) {
12750            CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
12751            MarkFunctionReferenced(Param->getLocation(), Destructor);
12752            DiagnoseUseOfDecl(Destructor, Param->getLocation());
12753          }
12754        }
12755      }
12756  
12757      // Parameters with the pass_object_size attribute only need to be marked
12758      // constant at function definitions. Because we lack information about
12759      // whether we're on a declaration or definition when we're instantiating the
12760      // attribute, we need to check for constness here.
12761      if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
12762        if (!Param->getType().isConstQualified())
12763          Diag(Param->getLocation(), diag::err_attribute_pointers_only)
12764              << Attr->getSpelling() << 1;
12765  
12766      // Check for parameter names shadowing fields from the class.
12767      if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
12768        // The owning context for the parameter should be the function, but we
12769        // want to see if this function's declaration context is a record.
12770        DeclContext *DC = Param->getDeclContext();
12771        if (DC && DC->isFunctionOrMethod()) {
12772          if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
12773            CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
12774                                       RD, /*DeclIsField*/ false);
12775        }
12776      }
12777  
12778      if (!Param->isInvalidDecl() &&
12779          Param->getOriginalType()->isWebAssemblyTableType()) {
12780        Param->setInvalidDecl();
12781        HasInvalidParm = true;
12782        Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
12783      }
12784    }
12785  
12786    return HasInvalidParm;
12787  }
12788  
12789  std::optional<std::pair<
12790      CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
12791                                                                         *E,
12792                                                                     ASTContext
12793                                                                         &Ctx);
12794  
12795  /// Compute the alignment and offset of the base class object given the
12796  /// derived-to-base cast expression and the alignment and offset of the derived
12797  /// class object.
12798  static std::pair<CharUnits, CharUnits>
getDerivedToBaseAlignmentAndOffset(const CastExpr * CE,QualType DerivedType,CharUnits BaseAlignment,CharUnits Offset,ASTContext & Ctx)12799  getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
12800                                     CharUnits BaseAlignment, CharUnits Offset,
12801                                     ASTContext &Ctx) {
12802    for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
12803         ++PathI) {
12804      const CXXBaseSpecifier *Base = *PathI;
12805      const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
12806      if (Base->isVirtual()) {
12807        // The complete object may have a lower alignment than the non-virtual
12808        // alignment of the base, in which case the base may be misaligned. Choose
12809        // the smaller of the non-virtual alignment and BaseAlignment, which is a
12810        // conservative lower bound of the complete object alignment.
12811        CharUnits NonVirtualAlignment =
12812            Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
12813        BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
12814        Offset = CharUnits::Zero();
12815      } else {
12816        const ASTRecordLayout &RL =
12817            Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
12818        Offset += RL.getBaseClassOffset(BaseDecl);
12819      }
12820      DerivedType = Base->getType();
12821    }
12822  
12823    return std::make_pair(BaseAlignment, Offset);
12824  }
12825  
12826  /// Compute the alignment and offset of a binary additive operator.
12827  static std::optional<std::pair<CharUnits, CharUnits>>
getAlignmentAndOffsetFromBinAddOrSub(const Expr * PtrE,const Expr * IntE,bool IsSub,ASTContext & Ctx)12828  getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
12829                                       bool IsSub, ASTContext &Ctx) {
12830    QualType PointeeType = PtrE->getType()->getPointeeType();
12831  
12832    if (!PointeeType->isConstantSizeType())
12833      return std::nullopt;
12834  
12835    auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
12836  
12837    if (!P)
12838      return std::nullopt;
12839  
12840    CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
12841    if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
12842      CharUnits Offset = EltSize * IdxRes->getExtValue();
12843      if (IsSub)
12844        Offset = -Offset;
12845      return std::make_pair(P->first, P->second + Offset);
12846    }
12847  
12848    // If the integer expression isn't a constant expression, compute the lower
12849    // bound of the alignment using the alignment and offset of the pointer
12850    // expression and the element size.
12851    return std::make_pair(
12852        P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
12853        CharUnits::Zero());
12854  }
12855  
12856  /// This helper function takes an lvalue expression and returns the alignment of
12857  /// a VarDecl and a constant offset from the VarDecl.
12858  std::optional<std::pair<
12859      CharUnits,
getBaseAlignmentAndOffsetFromLValue(const Expr * E,ASTContext & Ctx)12860      CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
12861                                                             ASTContext &Ctx) {
12862    E = E->IgnoreParens();
12863    switch (E->getStmtClass()) {
12864    default:
12865      break;
12866    case Stmt::CStyleCastExprClass:
12867    case Stmt::CXXStaticCastExprClass:
12868    case Stmt::ImplicitCastExprClass: {
12869      auto *CE = cast<CastExpr>(E);
12870      const Expr *From = CE->getSubExpr();
12871      switch (CE->getCastKind()) {
12872      default:
12873        break;
12874      case CK_NoOp:
12875        return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
12876      case CK_UncheckedDerivedToBase:
12877      case CK_DerivedToBase: {
12878        auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
12879        if (!P)
12880          break;
12881        return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
12882                                                  P->second, Ctx);
12883      }
12884      }
12885      break;
12886    }
12887    case Stmt::ArraySubscriptExprClass: {
12888      auto *ASE = cast<ArraySubscriptExpr>(E);
12889      return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
12890                                                  false, Ctx);
12891    }
12892    case Stmt::DeclRefExprClass: {
12893      if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
12894        // FIXME: If VD is captured by copy or is an escaping __block variable,
12895        // use the alignment of VD's type.
12896        if (!VD->getType()->isReferenceType()) {
12897          // Dependent alignment cannot be resolved -> bail out.
12898          if (VD->hasDependentAlignment())
12899            break;
12900          return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
12901        }
12902        if (VD->hasInit())
12903          return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
12904      }
12905      break;
12906    }
12907    case Stmt::MemberExprClass: {
12908      auto *ME = cast<MemberExpr>(E);
12909      auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12910      if (!FD || FD->getType()->isReferenceType() ||
12911          FD->getParent()->isInvalidDecl())
12912        break;
12913      std::optional<std::pair<CharUnits, CharUnits>> P;
12914      if (ME->isArrow())
12915        P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
12916      else
12917        P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
12918      if (!P)
12919        break;
12920      const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
12921      uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
12922      return std::make_pair(P->first,
12923                            P->second + CharUnits::fromQuantity(Offset));
12924    }
12925    case Stmt::UnaryOperatorClass: {
12926      auto *UO = cast<UnaryOperator>(E);
12927      switch (UO->getOpcode()) {
12928      default:
12929        break;
12930      case UO_Deref:
12931        return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
12932      }
12933      break;
12934    }
12935    case Stmt::BinaryOperatorClass: {
12936      auto *BO = cast<BinaryOperator>(E);
12937      auto Opcode = BO->getOpcode();
12938      switch (Opcode) {
12939      default:
12940        break;
12941      case BO_Comma:
12942        return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
12943      }
12944      break;
12945    }
12946    }
12947    return std::nullopt;
12948  }
12949  
12950  /// This helper function takes a pointer expression and returns the alignment of
12951  /// a VarDecl and a constant offset from the VarDecl.
12952  std::optional<std::pair<
getBaseAlignmentAndOffsetFromPtr(const Expr * E,ASTContext & Ctx)12953      CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
12954                                                                         *E,
12955                                                                     ASTContext
12956                                                                         &Ctx) {
12957    E = E->IgnoreParens();
12958    switch (E->getStmtClass()) {
12959    default:
12960      break;
12961    case Stmt::CStyleCastExprClass:
12962    case Stmt::CXXStaticCastExprClass:
12963    case Stmt::ImplicitCastExprClass: {
12964      auto *CE = cast<CastExpr>(E);
12965      const Expr *From = CE->getSubExpr();
12966      switch (CE->getCastKind()) {
12967      default:
12968        break;
12969      case CK_NoOp:
12970        return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
12971      case CK_ArrayToPointerDecay:
12972        return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
12973      case CK_UncheckedDerivedToBase:
12974      case CK_DerivedToBase: {
12975        auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
12976        if (!P)
12977          break;
12978        return getDerivedToBaseAlignmentAndOffset(
12979            CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
12980      }
12981      }
12982      break;
12983    }
12984    case Stmt::CXXThisExprClass: {
12985      auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
12986      CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
12987      return std::make_pair(Alignment, CharUnits::Zero());
12988    }
12989    case Stmt::UnaryOperatorClass: {
12990      auto *UO = cast<UnaryOperator>(E);
12991      if (UO->getOpcode() == UO_AddrOf)
12992        return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
12993      break;
12994    }
12995    case Stmt::BinaryOperatorClass: {
12996      auto *BO = cast<BinaryOperator>(E);
12997      auto Opcode = BO->getOpcode();
12998      switch (Opcode) {
12999      default:
13000        break;
13001      case BO_Add:
13002      case BO_Sub: {
13003        const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
13004        if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
13005          std::swap(LHS, RHS);
13006        return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
13007                                                    Ctx);
13008      }
13009      case BO_Comma:
13010        return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
13011      }
13012      break;
13013    }
13014    }
13015    return std::nullopt;
13016  }
13017  
getPresumedAlignmentOfPointer(const Expr * E,Sema & S)13018  static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
13019    // See if we can compute the alignment of a VarDecl and an offset from it.
13020    std::optional<std::pair<CharUnits, CharUnits>> P =
13021        getBaseAlignmentAndOffsetFromPtr(E, S.Context);
13022  
13023    if (P)
13024      return P->first.alignmentAtOffset(P->second);
13025  
13026    // If that failed, return the type's alignment.
13027    return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
13028  }
13029  
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)13030  void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13031    // This is actually a lot of work to potentially be doing on every
13032    // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13033    if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13034      return;
13035  
13036    // Ignore dependent types.
13037    if (T->isDependentType() || Op->getType()->isDependentType())
13038      return;
13039  
13040    // Require that the destination be a pointer type.
13041    const PointerType *DestPtr = T->getAs<PointerType>();
13042    if (!DestPtr) return;
13043  
13044    // If the destination has alignment 1, we're done.
13045    QualType DestPointee = DestPtr->getPointeeType();
13046    if (DestPointee->isIncompleteType()) return;
13047    CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13048    if (DestAlign.isOne()) return;
13049  
13050    // Require that the source be a pointer type.
13051    const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13052    if (!SrcPtr) return;
13053    QualType SrcPointee = SrcPtr->getPointeeType();
13054  
13055    // Explicitly allow casts from cv void*.  We already implicitly
13056    // allowed casts to cv void*, since they have alignment 1.
13057    // Also allow casts involving incomplete types, which implicitly
13058    // includes 'void'.
13059    if (SrcPointee->isIncompleteType()) return;
13060  
13061    CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
13062  
13063    if (SrcAlign >= DestAlign) return;
13064  
13065    Diag(TRange.getBegin(), diag::warn_cast_align)
13066      << Op->getType() << T
13067      << static_cast<unsigned>(SrcAlign.getQuantity())
13068      << static_cast<unsigned>(DestAlign.getQuantity())
13069      << TRange << Op->getSourceRange();
13070  }
13071  
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)13072  void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
13073                              const ArraySubscriptExpr *ASE,
13074                              bool AllowOnePastEnd, bool IndexNegated) {
13075    // Already diagnosed by the constant evaluator.
13076    if (isConstantEvaluatedContext())
13077      return;
13078  
13079    IndexExpr = IndexExpr->IgnoreParenImpCasts();
13080    if (IndexExpr->isValueDependent())
13081      return;
13082  
13083    const Type *EffectiveType =
13084        BaseExpr->getType()->getPointeeOrArrayElementType();
13085    BaseExpr = BaseExpr->IgnoreParenCasts();
13086    const ConstantArrayType *ArrayTy =
13087        Context.getAsConstantArrayType(BaseExpr->getType());
13088  
13089    LangOptions::StrictFlexArraysLevelKind
13090      StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
13091  
13092    const Type *BaseType =
13093        ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
13094    bool IsUnboundedArray =
13095        BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
13096                                   Context, StrictFlexArraysLevel,
13097                                   /*IgnoreTemplateOrMacroSubstitution=*/true);
13098    if (EffectiveType->isDependentType() ||
13099        (!IsUnboundedArray && BaseType->isDependentType()))
13100      return;
13101  
13102    Expr::EvalResult Result;
13103    if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
13104      return;
13105  
13106    llvm::APSInt index = Result.Val.getInt();
13107    if (IndexNegated) {
13108      index.setIsUnsigned(false);
13109      index = -index;
13110    }
13111  
13112    if (IsUnboundedArray) {
13113      if (EffectiveType->isFunctionType())
13114        return;
13115      if (index.isUnsigned() || !index.isNegative()) {
13116        const auto &ASTC = getASTContext();
13117        unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
13118            EffectiveType->getCanonicalTypeInternal().getAddressSpace());
13119        if (index.getBitWidth() < AddrBits)
13120          index = index.zext(AddrBits);
13121        std::optional<CharUnits> ElemCharUnits =
13122            ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
13123        // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
13124        // pointer) bounds-checking isn't meaningful.
13125        if (!ElemCharUnits || ElemCharUnits->isZero())
13126          return;
13127        llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
13128        // If index has more active bits than address space, we already know
13129        // we have a bounds violation to warn about.  Otherwise, compute
13130        // address of (index + 1)th element, and warn about bounds violation
13131        // only if that address exceeds address space.
13132        if (index.getActiveBits() <= AddrBits) {
13133          bool Overflow;
13134          llvm::APInt Product(index);
13135          Product += 1;
13136          Product = Product.umul_ov(ElemBytes, Overflow);
13137          if (!Overflow && Product.getActiveBits() <= AddrBits)
13138            return;
13139        }
13140  
13141        // Need to compute max possible elements in address space, since that
13142        // is included in diag message.
13143        llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
13144        MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
13145        MaxElems += 1;
13146        ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
13147        MaxElems = MaxElems.udiv(ElemBytes);
13148  
13149        unsigned DiagID =
13150            ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
13151                : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
13152  
13153        // Diag message shows element size in bits and in "bytes" (platform-
13154        // dependent CharUnits)
13155        DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13156                            PDiag(DiagID)
13157                                << toString(index, 10, true) << AddrBits
13158                                << (unsigned)ASTC.toBits(*ElemCharUnits)
13159                                << toString(ElemBytes, 10, false)
13160                                << toString(MaxElems, 10, false)
13161                                << (unsigned)MaxElems.getLimitedValue(~0U)
13162                                << IndexExpr->getSourceRange());
13163  
13164        const NamedDecl *ND = nullptr;
13165        // Try harder to find a NamedDecl to point at in the note.
13166        while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13167          BaseExpr = ASE->getBase()->IgnoreParenCasts();
13168        if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13169          ND = DRE->getDecl();
13170        if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13171          ND = ME->getMemberDecl();
13172  
13173        if (ND)
13174          DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13175                              PDiag(diag::note_array_declared_here) << ND);
13176      }
13177      return;
13178    }
13179  
13180    if (index.isUnsigned() || !index.isNegative()) {
13181      // It is possible that the type of the base expression after
13182      // IgnoreParenCasts is incomplete, even though the type of the base
13183      // expression before IgnoreParenCasts is complete (see PR39746 for an
13184      // example). In this case we have no information about whether the array
13185      // access exceeds the array bounds. However we can still diagnose an array
13186      // access which precedes the array bounds.
13187      if (BaseType->isIncompleteType())
13188        return;
13189  
13190      llvm::APInt size = ArrayTy->getSize();
13191  
13192      if (BaseType != EffectiveType) {
13193        // Make sure we're comparing apples to apples when comparing index to
13194        // size.
13195        uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
13196        uint64_t array_typesize = Context.getTypeSize(BaseType);
13197  
13198        // Handle ptrarith_typesize being zero, such as when casting to void*.
13199        // Use the size in bits (what "getTypeSize()" returns) rather than bytes.
13200        if (!ptrarith_typesize)
13201          ptrarith_typesize = Context.getCharWidth();
13202  
13203        if (ptrarith_typesize != array_typesize) {
13204          // There's a cast to a different size type involved.
13205          uint64_t ratio = array_typesize / ptrarith_typesize;
13206  
13207          // TODO: Be smarter about handling cases where array_typesize is not a
13208          // multiple of ptrarith_typesize.
13209          if (ptrarith_typesize * ratio == array_typesize)
13210            size *= llvm::APInt(size.getBitWidth(), ratio);
13211        }
13212      }
13213  
13214      if (size.getBitWidth() > index.getBitWidth())
13215        index = index.zext(size.getBitWidth());
13216      else if (size.getBitWidth() < index.getBitWidth())
13217        size = size.zext(index.getBitWidth());
13218  
13219      // For array subscripting the index must be less than size, but for pointer
13220      // arithmetic also allow the index (offset) to be equal to size since
13221      // computing the next address after the end of the array is legal and
13222      // commonly done e.g. in C++ iterators and range-based for loops.
13223      if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
13224        return;
13225  
13226      // Suppress the warning if the subscript expression (as identified by the
13227      // ']' location) and the index expression are both from macro expansions
13228      // within a system header.
13229      if (ASE) {
13230        SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
13231            ASE->getRBracketLoc());
13232        if (SourceMgr.isInSystemHeader(RBracketLoc)) {
13233          SourceLocation IndexLoc =
13234              SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
13235          if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
13236            return;
13237        }
13238      }
13239  
13240      unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
13241                            : diag::warn_ptr_arith_exceeds_bounds;
13242      unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
13243      QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
13244  
13245      DiagRuntimeBehavior(
13246          BaseExpr->getBeginLoc(), BaseExpr,
13247          PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
13248                        << CastMsg << CastMsgTy << IndexExpr->getSourceRange());
13249    } else {
13250      unsigned DiagID = diag::warn_array_index_precedes_bounds;
13251      if (!ASE) {
13252        DiagID = diag::warn_ptr_arith_precedes_bounds;
13253        if (index.isNegative()) index = -index;
13254      }
13255  
13256      DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13257                          PDiag(DiagID) << toString(index, 10, true)
13258                                        << IndexExpr->getSourceRange());
13259    }
13260  
13261    const NamedDecl *ND = nullptr;
13262    // Try harder to find a NamedDecl to point at in the note.
13263    while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13264      BaseExpr = ASE->getBase()->IgnoreParenCasts();
13265    if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13266      ND = DRE->getDecl();
13267    if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13268      ND = ME->getMemberDecl();
13269  
13270    if (ND)
13271      DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13272                          PDiag(diag::note_array_declared_here) << ND);
13273  }
13274  
CheckArrayAccess(const Expr * expr)13275  void Sema::CheckArrayAccess(const Expr *expr) {
13276    int AllowOnePastEnd = 0;
13277    while (expr) {
13278      expr = expr->IgnoreParenImpCasts();
13279      switch (expr->getStmtClass()) {
13280        case Stmt::ArraySubscriptExprClass: {
13281          const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
13282          CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
13283                           AllowOnePastEnd > 0);
13284          expr = ASE->getBase();
13285          break;
13286        }
13287        case Stmt::MemberExprClass: {
13288          expr = cast<MemberExpr>(expr)->getBase();
13289          break;
13290        }
13291        case Stmt::ArraySectionExprClass: {
13292          const ArraySectionExpr *ASE = cast<ArraySectionExpr>(expr);
13293          // FIXME: We should probably be checking all of the elements to the
13294          // 'length' here as well.
13295          if (ASE->getLowerBound())
13296            CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
13297                             /*ASE=*/nullptr, AllowOnePastEnd > 0);
13298          return;
13299        }
13300        case Stmt::UnaryOperatorClass: {
13301          // Only unwrap the * and & unary operators
13302          const UnaryOperator *UO = cast<UnaryOperator>(expr);
13303          expr = UO->getSubExpr();
13304          switch (UO->getOpcode()) {
13305            case UO_AddrOf:
13306              AllowOnePastEnd++;
13307              break;
13308            case UO_Deref:
13309              AllowOnePastEnd--;
13310              break;
13311            default:
13312              return;
13313          }
13314          break;
13315        }
13316        case Stmt::ConditionalOperatorClass: {
13317          const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
13318          if (const Expr *lhs = cond->getLHS())
13319            CheckArrayAccess(lhs);
13320          if (const Expr *rhs = cond->getRHS())
13321            CheckArrayAccess(rhs);
13322          return;
13323        }
13324        case Stmt::CXXOperatorCallExprClass: {
13325          const auto *OCE = cast<CXXOperatorCallExpr>(expr);
13326          for (const auto *Arg : OCE->arguments())
13327            CheckArrayAccess(Arg);
13328          return;
13329        }
13330        default:
13331          return;
13332      }
13333    }
13334  }
13335  
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)13336  static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
13337                                       Expr *RHS, bool isProperty) {
13338    // Check if RHS is an Objective-C object literal, which also can get
13339    // immediately zapped in a weak reference.  Note that we explicitly
13340    // allow ObjCStringLiterals, since those are designed to never really die.
13341    RHS = RHS->IgnoreParenImpCasts();
13342  
13343    // This enum needs to match with the 'select' in
13344    // warn_objc_arc_literal_assign (off-by-1).
13345    SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS);
13346    if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None)
13347      return false;
13348  
13349    S.Diag(Loc, diag::warn_arc_literal_assign)
13350      << (unsigned) Kind
13351      << (isProperty ? 0 : 1)
13352      << RHS->getSourceRange();
13353  
13354    return true;
13355  }
13356  
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)13357  static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
13358                                      Qualifiers::ObjCLifetime LT,
13359                                      Expr *RHS, bool isProperty) {
13360    // Strip off any implicit cast added to get to the one ARC-specific.
13361    while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13362      if (cast->getCastKind() == CK_ARCConsumeObject) {
13363        S.Diag(Loc, diag::warn_arc_retained_assign)
13364          << (LT == Qualifiers::OCL_ExplicitNone)
13365          << (isProperty ? 0 : 1)
13366          << RHS->getSourceRange();
13367        return true;
13368      }
13369      RHS = cast->getSubExpr();
13370    }
13371  
13372    if (LT == Qualifiers::OCL_Weak &&
13373        checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
13374      return true;
13375  
13376    return false;
13377  }
13378  
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)13379  bool Sema::checkUnsafeAssigns(SourceLocation Loc,
13380                                QualType LHS, Expr *RHS) {
13381    Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
13382  
13383    if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
13384      return false;
13385  
13386    if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
13387      return true;
13388  
13389    return false;
13390  }
13391  
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)13392  void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
13393                                Expr *LHS, Expr *RHS) {
13394    QualType LHSType;
13395    // PropertyRef on LHS type need be directly obtained from
13396    // its declaration as it has a PseudoType.
13397    ObjCPropertyRefExpr *PRE
13398      = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
13399    if (PRE && !PRE->isImplicitProperty()) {
13400      const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13401      if (PD)
13402        LHSType = PD->getType();
13403    }
13404  
13405    if (LHSType.isNull())
13406      LHSType = LHS->getType();
13407  
13408    Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
13409  
13410    if (LT == Qualifiers::OCL_Weak) {
13411      if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
13412        getCurFunction()->markSafeWeakUse(LHS);
13413    }
13414  
13415    if (checkUnsafeAssigns(Loc, LHSType, RHS))
13416      return;
13417  
13418    // FIXME. Check for other life times.
13419    if (LT != Qualifiers::OCL_None)
13420      return;
13421  
13422    if (PRE) {
13423      if (PRE->isImplicitProperty())
13424        return;
13425      const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13426      if (!PD)
13427        return;
13428  
13429      unsigned Attributes = PD->getPropertyAttributes();
13430      if (Attributes & ObjCPropertyAttribute::kind_assign) {
13431        // when 'assign' attribute was not explicitly specified
13432        // by user, ignore it and rely on property type itself
13433        // for lifetime info.
13434        unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
13435        if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
13436            LHSType->isObjCRetainableType())
13437          return;
13438  
13439        while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13440          if (cast->getCastKind() == CK_ARCConsumeObject) {
13441            Diag(Loc, diag::warn_arc_retained_property_assign)
13442            << RHS->getSourceRange();
13443            return;
13444          }
13445          RHS = cast->getSubExpr();
13446        }
13447      } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
13448        if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
13449          return;
13450      }
13451    }
13452  }
13453  
13454  //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
13455  
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)13456  static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
13457                                          SourceLocation StmtLoc,
13458                                          const NullStmt *Body) {
13459    // Do not warn if the body is a macro that expands to nothing, e.g:
13460    //
13461    // #define CALL(x)
13462    // if (condition)
13463    //   CALL(0);
13464    if (Body->hasLeadingEmptyMacro())
13465      return false;
13466  
13467    // Get line numbers of statement and body.
13468    bool StmtLineInvalid;
13469    unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
13470                                                        &StmtLineInvalid);
13471    if (StmtLineInvalid)
13472      return false;
13473  
13474    bool BodyLineInvalid;
13475    unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
13476                                                        &BodyLineInvalid);
13477    if (BodyLineInvalid)
13478      return false;
13479  
13480    // Warn if null statement and body are on the same line.
13481    if (StmtLine != BodyLine)
13482      return false;
13483  
13484    return true;
13485  }
13486  
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)13487  void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
13488                                   const Stmt *Body,
13489                                   unsigned DiagID) {
13490    // Since this is a syntactic check, don't emit diagnostic for template
13491    // instantiations, this just adds noise.
13492    if (CurrentInstantiationScope)
13493      return;
13494  
13495    // The body should be a null statement.
13496    const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13497    if (!NBody)
13498      return;
13499  
13500    // Do the usual checks.
13501    if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13502      return;
13503  
13504    Diag(NBody->getSemiLoc(), DiagID);
13505    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13506  }
13507  
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)13508  void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
13509                                   const Stmt *PossibleBody) {
13510    assert(!CurrentInstantiationScope); // Ensured by caller
13511  
13512    SourceLocation StmtLoc;
13513    const Stmt *Body;
13514    unsigned DiagID;
13515    if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
13516      StmtLoc = FS->getRParenLoc();
13517      Body = FS->getBody();
13518      DiagID = diag::warn_empty_for_body;
13519    } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
13520      StmtLoc = WS->getRParenLoc();
13521      Body = WS->getBody();
13522      DiagID = diag::warn_empty_while_body;
13523    } else
13524      return; // Neither `for' nor `while'.
13525  
13526    // The body should be a null statement.
13527    const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13528    if (!NBody)
13529      return;
13530  
13531    // Skip expensive checks if diagnostic is disabled.
13532    if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
13533      return;
13534  
13535    // Do the usual checks.
13536    if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13537      return;
13538  
13539    // `for(...);' and `while(...);' are popular idioms, so in order to keep
13540    // noise level low, emit diagnostics only if for/while is followed by a
13541    // CompoundStmt, e.g.:
13542    //    for (int i = 0; i < n; i++);
13543    //    {
13544    //      a(i);
13545    //    }
13546    // or if for/while is followed by a statement with more indentation
13547    // than for/while itself:
13548    //    for (int i = 0; i < n; i++);
13549    //      a(i);
13550    bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
13551    if (!ProbableTypo) {
13552      bool BodyColInvalid;
13553      unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
13554          PossibleBody->getBeginLoc(), &BodyColInvalid);
13555      if (BodyColInvalid)
13556        return;
13557  
13558      bool StmtColInvalid;
13559      unsigned StmtCol =
13560          SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
13561      if (StmtColInvalid)
13562        return;
13563  
13564      if (BodyCol > StmtCol)
13565        ProbableTypo = true;
13566    }
13567  
13568    if (ProbableTypo) {
13569      Diag(NBody->getSemiLoc(), DiagID);
13570      Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13571    }
13572  }
13573  
13574  //===--- CHECK: Warn on self move with std::move. -------------------------===//
13575  
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)13576  void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
13577                               SourceLocation OpLoc) {
13578    if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
13579      return;
13580  
13581    if (inTemplateInstantiation())
13582      return;
13583  
13584    // Strip parens and casts away.
13585    LHSExpr = LHSExpr->IgnoreParenImpCasts();
13586    RHSExpr = RHSExpr->IgnoreParenImpCasts();
13587  
13588    // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue
13589    // which we can treat as an inlined std::move
13590    if (const auto *CE = dyn_cast<CallExpr>(RHSExpr);
13591        CE && CE->getNumArgs() == 1 && CE->isCallToStdMove())
13592      RHSExpr = CE->getArg(0);
13593    else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(RHSExpr);
13594             CXXSCE && CXXSCE->isXValue())
13595      RHSExpr = CXXSCE->getSubExpr();
13596    else
13597      return;
13598  
13599    const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13600    const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13601  
13602    // Two DeclRefExpr's, check that the decls are the same.
13603    if (LHSDeclRef && RHSDeclRef) {
13604      if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13605        return;
13606      if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13607          RHSDeclRef->getDecl()->getCanonicalDecl())
13608        return;
13609  
13610      auto D = Diag(OpLoc, diag::warn_self_move)
13611               << LHSExpr->getType() << LHSExpr->getSourceRange()
13612               << RHSExpr->getSourceRange();
13613      if (const FieldDecl *F =
13614              getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
13615        D << 1 << F
13616          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
13617      else
13618        D << 0;
13619      return;
13620    }
13621  
13622    // Member variables require a different approach to check for self moves.
13623    // MemberExpr's are the same if every nested MemberExpr refers to the same
13624    // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
13625    // the base Expr's are CXXThisExpr's.
13626    const Expr *LHSBase = LHSExpr;
13627    const Expr *RHSBase = RHSExpr;
13628    const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
13629    const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
13630    if (!LHSME || !RHSME)
13631      return;
13632  
13633    while (LHSME && RHSME) {
13634      if (LHSME->getMemberDecl()->getCanonicalDecl() !=
13635          RHSME->getMemberDecl()->getCanonicalDecl())
13636        return;
13637  
13638      LHSBase = LHSME->getBase();
13639      RHSBase = RHSME->getBase();
13640      LHSME = dyn_cast<MemberExpr>(LHSBase);
13641      RHSME = dyn_cast<MemberExpr>(RHSBase);
13642    }
13643  
13644    LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
13645    RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
13646    if (LHSDeclRef && RHSDeclRef) {
13647      if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13648        return;
13649      if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13650          RHSDeclRef->getDecl()->getCanonicalDecl())
13651        return;
13652  
13653      Diag(OpLoc, diag::warn_self_move)
13654          << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
13655          << RHSExpr->getSourceRange();
13656      return;
13657    }
13658  
13659    if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
13660      Diag(OpLoc, diag::warn_self_move)
13661          << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
13662          << RHSExpr->getSourceRange();
13663  }
13664  
13665  //===--- Layout compatibility ----------------------------------------------//
13666  
13667  static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2);
13668  
13669  /// Check if two enumeration types are layout-compatible.
isLayoutCompatible(const ASTContext & C,const EnumDecl * ED1,const EnumDecl * ED2)13670  static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1,
13671                                 const EnumDecl *ED2) {
13672    // C++11 [dcl.enum] p8:
13673    // Two enumeration types are layout-compatible if they have the same
13674    // underlying type.
13675    return ED1->isComplete() && ED2->isComplete() &&
13676           C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
13677  }
13678  
13679  /// Check if two fields are layout-compatible.
13680  /// Can be used on union members, which are exempt from alignment requirement
13681  /// of common initial sequence.
isLayoutCompatible(const ASTContext & C,const FieldDecl * Field1,const FieldDecl * Field2,bool AreUnionMembers=false)13682  static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1,
13683                                 const FieldDecl *Field2,
13684                                 bool AreUnionMembers = false) {
13685    [[maybe_unused]] const Type *Field1Parent =
13686        Field1->getParent()->getTypeForDecl();
13687    [[maybe_unused]] const Type *Field2Parent =
13688        Field2->getParent()->getTypeForDecl();
13689    assert(((Field1Parent->isStructureOrClassType() &&
13690             Field2Parent->isStructureOrClassType()) ||
13691            (Field1Parent->isUnionType() && Field2Parent->isUnionType())) &&
13692           "Can't evaluate layout compatibility between a struct field and a "
13693           "union field.");
13694    assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) ||
13695            (AreUnionMembers && Field1Parent->isUnionType())) &&
13696           "AreUnionMembers should be 'true' for union fields (only).");
13697  
13698    if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
13699      return false;
13700  
13701    if (Field1->isBitField() != Field2->isBitField())
13702      return false;
13703  
13704    if (Field1->isBitField()) {
13705      // Make sure that the bit-fields are the same length.
13706      unsigned Bits1 = Field1->getBitWidthValue(C);
13707      unsigned Bits2 = Field2->getBitWidthValue(C);
13708  
13709      if (Bits1 != Bits2)
13710        return false;
13711    }
13712  
13713    if (Field1->hasAttr<clang::NoUniqueAddressAttr>() ||
13714        Field2->hasAttr<clang::NoUniqueAddressAttr>())
13715      return false;
13716  
13717    if (!AreUnionMembers &&
13718        Field1->getMaxAlignment() != Field2->getMaxAlignment())
13719      return false;
13720  
13721    return true;
13722  }
13723  
13724  /// Check if two standard-layout structs are layout-compatible.
13725  /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(const ASTContext & C,const RecordDecl * RD1,const RecordDecl * RD2)13726  static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1,
13727                                       const RecordDecl *RD2) {
13728    // Get to the class where the fields are declared
13729    if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1))
13730      RD1 = D1CXX->getStandardLayoutBaseWithFields();
13731  
13732    if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2))
13733      RD2 = D2CXX->getStandardLayoutBaseWithFields();
13734  
13735    // Check the fields.
13736    return llvm::equal(RD1->fields(), RD2->fields(),
13737                       [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool {
13738                         return isLayoutCompatible(C, F1, F2);
13739                       });
13740  }
13741  
13742  /// Check if two standard-layout unions are layout-compatible.
13743  /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(const ASTContext & C,const RecordDecl * RD1,const RecordDecl * RD2)13744  static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1,
13745                                      const RecordDecl *RD2) {
13746    llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields;
13747    for (auto *Field2 : RD2->fields())
13748      UnmatchedFields.insert(Field2);
13749  
13750    for (auto *Field1 : RD1->fields()) {
13751      auto I = UnmatchedFields.begin();
13752      auto E = UnmatchedFields.end();
13753  
13754      for ( ; I != E; ++I) {
13755        if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) {
13756          bool Result = UnmatchedFields.erase(*I);
13757          (void) Result;
13758          assert(Result);
13759          break;
13760        }
13761      }
13762      if (I == E)
13763        return false;
13764    }
13765  
13766    return UnmatchedFields.empty();
13767  }
13768  
isLayoutCompatible(const ASTContext & C,const RecordDecl * RD1,const RecordDecl * RD2)13769  static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1,
13770                                 const RecordDecl *RD2) {
13771    if (RD1->isUnion() != RD2->isUnion())
13772      return false;
13773  
13774    if (RD1->isUnion())
13775      return isLayoutCompatibleUnion(C, RD1, RD2);
13776    else
13777      return isLayoutCompatibleStruct(C, RD1, RD2);
13778  }
13779  
13780  /// Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(const ASTContext & C,QualType T1,QualType T2)13781  static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) {
13782    if (T1.isNull() || T2.isNull())
13783      return false;
13784  
13785    // C++20 [basic.types] p11:
13786    // Two types cv1 T1 and cv2 T2 are layout-compatible types
13787    // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1),
13788    // or layout-compatible standard-layout class types (11.4).
13789    T1 = T1.getCanonicalType().getUnqualifiedType();
13790    T2 = T2.getCanonicalType().getUnqualifiedType();
13791  
13792    if (C.hasSameType(T1, T2))
13793      return true;
13794  
13795    const Type::TypeClass TC1 = T1->getTypeClass();
13796    const Type::TypeClass TC2 = T2->getTypeClass();
13797  
13798    if (TC1 != TC2)
13799      return false;
13800  
13801    if (TC1 == Type::Enum) {
13802      return isLayoutCompatible(C,
13803                                cast<EnumType>(T1)->getDecl(),
13804                                cast<EnumType>(T2)->getDecl());
13805    } else if (TC1 == Type::Record) {
13806      if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
13807        return false;
13808  
13809      return isLayoutCompatible(C,
13810                                cast<RecordType>(T1)->getDecl(),
13811                                cast<RecordType>(T2)->getDecl());
13812    }
13813  
13814    return false;
13815  }
13816  
IsLayoutCompatible(QualType T1,QualType T2) const13817  bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const {
13818    return isLayoutCompatible(getASTContext(), T1, T2);
13819  }
13820  
13821  //===-------------- Pointer interconvertibility ----------------------------//
13822  
IsPointerInterconvertibleBaseOf(const TypeSourceInfo * Base,const TypeSourceInfo * Derived)13823  bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
13824                                             const TypeSourceInfo *Derived) {
13825    QualType BaseT = Base->getType()->getCanonicalTypeUnqualified();
13826    QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified();
13827  
13828    if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() &&
13829        getASTContext().hasSameType(BaseT, DerivedT))
13830      return true;
13831  
13832    if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT))
13833      return false;
13834  
13835    // Per [basic.compound]/4.3, containing object has to be standard-layout.
13836    if (DerivedT->getAsCXXRecordDecl()->isStandardLayout())
13837      return true;
13838  
13839    return false;
13840  }
13841  
13842  //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
13843  
13844  /// Given a type tag expression find the type tag itself.
13845  ///
13846  /// \param TypeExpr Type tag expression, as it appears in user's code.
13847  ///
13848  /// \param VD Declaration of an identifier that appears in a type tag.
13849  ///
13850  /// \param MagicValue Type tag magic value.
13851  ///
13852  /// \param isConstantEvaluated whether the evalaution should be performed in
13853  
13854  /// constant context.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue,bool isConstantEvaluated)13855  static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
13856                              const ValueDecl **VD, uint64_t *MagicValue,
13857                              bool isConstantEvaluated) {
13858    while(true) {
13859      if (!TypeExpr)
13860        return false;
13861  
13862      TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
13863  
13864      switch (TypeExpr->getStmtClass()) {
13865      case Stmt::UnaryOperatorClass: {
13866        const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
13867        if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
13868          TypeExpr = UO->getSubExpr();
13869          continue;
13870        }
13871        return false;
13872      }
13873  
13874      case Stmt::DeclRefExprClass: {
13875        const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
13876        *VD = DRE->getDecl();
13877        return true;
13878      }
13879  
13880      case Stmt::IntegerLiteralClass: {
13881        const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
13882        llvm::APInt MagicValueAPInt = IL->getValue();
13883        if (MagicValueAPInt.getActiveBits() <= 64) {
13884          *MagicValue = MagicValueAPInt.getZExtValue();
13885          return true;
13886        } else
13887          return false;
13888      }
13889  
13890      case Stmt::BinaryConditionalOperatorClass:
13891      case Stmt::ConditionalOperatorClass: {
13892        const AbstractConditionalOperator *ACO =
13893            cast<AbstractConditionalOperator>(TypeExpr);
13894        bool Result;
13895        if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
13896                                                       isConstantEvaluated)) {
13897          if (Result)
13898            TypeExpr = ACO->getTrueExpr();
13899          else
13900            TypeExpr = ACO->getFalseExpr();
13901          continue;
13902        }
13903        return false;
13904      }
13905  
13906      case Stmt::BinaryOperatorClass: {
13907        const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
13908        if (BO->getOpcode() == BO_Comma) {
13909          TypeExpr = BO->getRHS();
13910          continue;
13911        }
13912        return false;
13913      }
13914  
13915      default:
13916        return false;
13917      }
13918    }
13919  }
13920  
13921  /// Retrieve the C type corresponding to type tag TypeExpr.
13922  ///
13923  /// \param TypeExpr Expression that specifies a type tag.
13924  ///
13925  /// \param MagicValues Registered magic values.
13926  ///
13927  /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
13928  ///        kind.
13929  ///
13930  /// \param TypeInfo Information about the corresponding C type.
13931  ///
13932  /// \param isConstantEvaluated whether the evalaution should be performed in
13933  /// constant context.
13934  ///
13935  /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo,bool isConstantEvaluated)13936  static bool GetMatchingCType(
13937      const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
13938      const ASTContext &Ctx,
13939      const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
13940          *MagicValues,
13941      bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
13942      bool isConstantEvaluated) {
13943    FoundWrongKind = false;
13944  
13945    // Variable declaration that has type_tag_for_datatype attribute.
13946    const ValueDecl *VD = nullptr;
13947  
13948    uint64_t MagicValue;
13949  
13950    if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
13951      return false;
13952  
13953    if (VD) {
13954      if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
13955        if (I->getArgumentKind() != ArgumentKind) {
13956          FoundWrongKind = true;
13957          return false;
13958        }
13959        TypeInfo.Type = I->getMatchingCType();
13960        TypeInfo.LayoutCompatible = I->getLayoutCompatible();
13961        TypeInfo.MustBeNull = I->getMustBeNull();
13962        return true;
13963      }
13964      return false;
13965    }
13966  
13967    if (!MagicValues)
13968      return false;
13969  
13970    llvm::DenseMap<Sema::TypeTagMagicValue,
13971                   Sema::TypeTagData>::const_iterator I =
13972        MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
13973    if (I == MagicValues->end())
13974      return false;
13975  
13976    TypeInfo = I->second;
13977    return true;
13978  }
13979  
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)13980  void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
13981                                        uint64_t MagicValue, QualType Type,
13982                                        bool LayoutCompatible,
13983                                        bool MustBeNull) {
13984    if (!TypeTagForDatatypeMagicValues)
13985      TypeTagForDatatypeMagicValues.reset(
13986          new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
13987  
13988    TypeTagMagicValue Magic(ArgumentKind, MagicValue);
13989    (*TypeTagForDatatypeMagicValues)[Magic] =
13990        TypeTagData(Type, LayoutCompatible, MustBeNull);
13991  }
13992  
IsSameCharType(QualType T1,QualType T2)13993  static bool IsSameCharType(QualType T1, QualType T2) {
13994    const BuiltinType *BT1 = T1->getAs<BuiltinType>();
13995    if (!BT1)
13996      return false;
13997  
13998    const BuiltinType *BT2 = T2->getAs<BuiltinType>();
13999    if (!BT2)
14000      return false;
14001  
14002    BuiltinType::Kind T1Kind = BT1->getKind();
14003    BuiltinType::Kind T2Kind = BT2->getKind();
14004  
14005    return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
14006           (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
14007           (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
14008           (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
14009  }
14010  
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const ArrayRef<const Expr * > ExprArgs,SourceLocation CallSiteLoc)14011  void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
14012                                      const ArrayRef<const Expr *> ExprArgs,
14013                                      SourceLocation CallSiteLoc) {
14014    const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
14015    bool IsPointerAttr = Attr->getIsPointer();
14016  
14017    // Retrieve the argument representing the 'type_tag'.
14018    unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
14019    if (TypeTagIdxAST >= ExprArgs.size()) {
14020      Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14021          << 0 << Attr->getTypeTagIdx().getSourceIndex();
14022      return;
14023    }
14024    const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
14025    bool FoundWrongKind;
14026    TypeTagData TypeInfo;
14027    if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
14028                          TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
14029                          TypeInfo, isConstantEvaluatedContext())) {
14030      if (FoundWrongKind)
14031        Diag(TypeTagExpr->getExprLoc(),
14032             diag::warn_type_tag_for_datatype_wrong_kind)
14033          << TypeTagExpr->getSourceRange();
14034      return;
14035    }
14036  
14037    // Retrieve the argument representing the 'arg_idx'.
14038    unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14039    if (ArgumentIdxAST >= ExprArgs.size()) {
14040      Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14041          << 1 << Attr->getArgumentIdx().getSourceIndex();
14042      return;
14043    }
14044    const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14045    if (IsPointerAttr) {
14046      // Skip implicit cast of pointer to `void *' (as a function argument).
14047      if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14048        if (ICE->getType()->isVoidPointerType() &&
14049            ICE->getCastKind() == CK_BitCast)
14050          ArgumentExpr = ICE->getSubExpr();
14051    }
14052    QualType ArgumentType = ArgumentExpr->getType();
14053  
14054    // Passing a `void*' pointer shouldn't trigger a warning.
14055    if (IsPointerAttr && ArgumentType->isVoidPointerType())
14056      return;
14057  
14058    if (TypeInfo.MustBeNull) {
14059      // Type tag with matching void type requires a null pointer.
14060      if (!ArgumentExpr->isNullPointerConstant(Context,
14061                                               Expr::NPC_ValueDependentIsNotNull)) {
14062        Diag(ArgumentExpr->getExprLoc(),
14063             diag::warn_type_safety_null_pointer_required)
14064            << ArgumentKind->getName()
14065            << ArgumentExpr->getSourceRange()
14066            << TypeTagExpr->getSourceRange();
14067      }
14068      return;
14069    }
14070  
14071    QualType RequiredType = TypeInfo.Type;
14072    if (IsPointerAttr)
14073      RequiredType = Context.getPointerType(RequiredType);
14074  
14075    bool mismatch = false;
14076    if (!TypeInfo.LayoutCompatible) {
14077      mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14078  
14079      // C++11 [basic.fundamental] p1:
14080      // Plain char, signed char, and unsigned char are three distinct types.
14081      //
14082      // But we treat plain `char' as equivalent to `signed char' or `unsigned
14083      // char' depending on the current char signedness mode.
14084      if (mismatch)
14085        if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14086                                             RequiredType->getPointeeType())) ||
14087            (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14088          mismatch = false;
14089    } else
14090      if (IsPointerAttr)
14091        mismatch = !isLayoutCompatible(Context,
14092                                       ArgumentType->getPointeeType(),
14093                                       RequiredType->getPointeeType());
14094      else
14095        mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14096  
14097    if (mismatch)
14098      Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14099          << ArgumentType << ArgumentKind
14100          << TypeInfo.LayoutCompatible << RequiredType
14101          << ArgumentExpr->getSourceRange()
14102          << TypeTagExpr->getSourceRange();
14103  }
14104  
AddPotentialMisalignedMembers(Expr * E,RecordDecl * RD,ValueDecl * MD,CharUnits Alignment)14105  void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14106                                           CharUnits Alignment) {
14107    MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14108  }
14109  
DiagnoseMisalignedMembers()14110  void Sema::DiagnoseMisalignedMembers() {
14111    for (MisalignedMember &m : MisalignedMembers) {
14112      const NamedDecl *ND = m.RD;
14113      if (ND->getName().empty()) {
14114        if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14115          ND = TD;
14116      }
14117      Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14118          << m.MD << ND << m.E->getSourceRange();
14119    }
14120    MisalignedMembers.clear();
14121  }
14122  
DiscardMisalignedMemberAddress(const Type * T,Expr * E)14123  void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14124    E = E->IgnoreParens();
14125    if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
14126      return;
14127    if (isa<UnaryOperator>(E) &&
14128        cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14129      auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14130      if (isa<MemberExpr>(Op)) {
14131        auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14132        if (MA != MisalignedMembers.end() &&
14133            (T->isDependentType() || T->isIntegerType() ||
14134             (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14135                                     Context.getTypeAlignInChars(
14136                                         T->getPointeeType()) <= MA->Alignment))))
14137          MisalignedMembers.erase(MA);
14138      }
14139    }
14140  }
14141  
RefersToMemberWithReducedAlignment(Expr * E,llvm::function_ref<void (Expr *,RecordDecl *,FieldDecl *,CharUnits)> Action)14142  void Sema::RefersToMemberWithReducedAlignment(
14143      Expr *E,
14144      llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14145          Action) {
14146    const auto *ME = dyn_cast<MemberExpr>(E);
14147    if (!ME)
14148      return;
14149  
14150    // No need to check expressions with an __unaligned-qualified type.
14151    if (E->getType().getQualifiers().hasUnaligned())
14152      return;
14153  
14154    // For a chain of MemberExpr like "a.b.c.d" this list
14155    // will keep FieldDecl's like [d, c, b].
14156    SmallVector<FieldDecl *, 4> ReverseMemberChain;
14157    const MemberExpr *TopME = nullptr;
14158    bool AnyIsPacked = false;
14159    do {
14160      QualType BaseType = ME->getBase()->getType();
14161      if (BaseType->isDependentType())
14162        return;
14163      if (ME->isArrow())
14164        BaseType = BaseType->getPointeeType();
14165      RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
14166      if (RD->isInvalidDecl())
14167        return;
14168  
14169      ValueDecl *MD = ME->getMemberDecl();
14170      auto *FD = dyn_cast<FieldDecl>(MD);
14171      // We do not care about non-data members.
14172      if (!FD || FD->isInvalidDecl())
14173        return;
14174  
14175      AnyIsPacked =
14176          AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14177      ReverseMemberChain.push_back(FD);
14178  
14179      TopME = ME;
14180      ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14181    } while (ME);
14182    assert(TopME && "We did not compute a topmost MemberExpr!");
14183  
14184    // Not the scope of this diagnostic.
14185    if (!AnyIsPacked)
14186      return;
14187  
14188    const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14189    const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14190    // TODO: The innermost base of the member expression may be too complicated.
14191    // For now, just disregard these cases. This is left for future
14192    // improvement.
14193    if (!DRE && !isa<CXXThisExpr>(TopBase))
14194        return;
14195  
14196    // Alignment expected by the whole expression.
14197    CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14198  
14199    // No need to do anything else with this case.
14200    if (ExpectedAlignment.isOne())
14201      return;
14202  
14203    // Synthesize offset of the whole access.
14204    CharUnits Offset;
14205    for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
14206      Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
14207  
14208    // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14209    CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
14210        ReverseMemberChain.back()->getParent()->getTypeForDecl());
14211  
14212    // The base expression of the innermost MemberExpr may give
14213    // stronger guarantees than the class containing the member.
14214    if (DRE && !TopME->isArrow()) {
14215      const ValueDecl *VD = DRE->getDecl();
14216      if (!VD->getType()->isReferenceType())
14217        CompleteObjectAlignment =
14218            std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
14219    }
14220  
14221    // Check if the synthesized offset fulfills the alignment.
14222    if (Offset % ExpectedAlignment != 0 ||
14223        // It may fulfill the offset it but the effective alignment may still be
14224        // lower than the expected expression alignment.
14225        CompleteObjectAlignment < ExpectedAlignment) {
14226      // If this happens, we want to determine a sensible culprit of this.
14227      // Intuitively, watching the chain of member expressions from right to
14228      // left, we start with the required alignment (as required by the field
14229      // type) but some packed attribute in that chain has reduced the alignment.
14230      // It may happen that another packed structure increases it again. But if
14231      // we are here such increase has not been enough. So pointing the first
14232      // FieldDecl that either is packed or else its RecordDecl is,
14233      // seems reasonable.
14234      FieldDecl *FD = nullptr;
14235      CharUnits Alignment;
14236      for (FieldDecl *FDI : ReverseMemberChain) {
14237        if (FDI->hasAttr<PackedAttr>() ||
14238            FDI->getParent()->hasAttr<PackedAttr>()) {
14239          FD = FDI;
14240          Alignment = std::min(
14241              Context.getTypeAlignInChars(FD->getType()),
14242              Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
14243          break;
14244        }
14245      }
14246      assert(FD && "We did not find a packed FieldDecl!");
14247      Action(E, FD->getParent(), FD, Alignment);
14248    }
14249  }
14250  
CheckAddressOfPackedMember(Expr * rhs)14251  void Sema::CheckAddressOfPackedMember(Expr *rhs) {
14252    using namespace std::placeholders;
14253  
14254    RefersToMemberWithReducedAlignment(
14255        rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
14256                       _2, _3, _4));
14257  }
14258  
PrepareBuiltinElementwiseMathOneArgCall(CallExpr * TheCall)14259  bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
14260    if (checkArgCount(TheCall, 1))
14261      return true;
14262  
14263    ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14264    if (A.isInvalid())
14265      return true;
14266  
14267    TheCall->setArg(0, A.get());
14268    QualType TyA = A.get()->getType();
14269  
14270    if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14271      return true;
14272  
14273    TheCall->setType(TyA);
14274    return false;
14275  }
14276  
BuiltinElementwiseMath(CallExpr * TheCall)14277  bool Sema::BuiltinElementwiseMath(CallExpr *TheCall) {
14278    QualType Res;
14279    if (BuiltinVectorMath(TheCall, Res))
14280      return true;
14281    TheCall->setType(Res);
14282    return false;
14283  }
14284  
BuiltinVectorToScalarMath(CallExpr * TheCall)14285  bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) {
14286    QualType Res;
14287    if (BuiltinVectorMath(TheCall, Res))
14288      return true;
14289  
14290    if (auto *VecTy0 = Res->getAs<VectorType>())
14291      TheCall->setType(VecTy0->getElementType());
14292    else
14293      TheCall->setType(Res);
14294  
14295    return false;
14296  }
14297  
BuiltinVectorMath(CallExpr * TheCall,QualType & Res)14298  bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res) {
14299    if (checkArgCount(TheCall, 2))
14300      return true;
14301  
14302    ExprResult A = TheCall->getArg(0);
14303    ExprResult B = TheCall->getArg(1);
14304    // Do standard promotions between the two arguments, returning their common
14305    // type.
14306    Res = UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
14307    if (A.isInvalid() || B.isInvalid())
14308      return true;
14309  
14310    QualType TyA = A.get()->getType();
14311    QualType TyB = B.get()->getType();
14312  
14313    if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
14314      return Diag(A.get()->getBeginLoc(),
14315                  diag::err_typecheck_call_different_arg_types)
14316             << TyA << TyB;
14317  
14318    if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14319      return true;
14320  
14321    TheCall->setArg(0, A.get());
14322    TheCall->setArg(1, B.get());
14323    return false;
14324  }
14325  
BuiltinElementwiseTernaryMath(CallExpr * TheCall,bool CheckForFloatArgs)14326  bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall,
14327                                           bool CheckForFloatArgs) {
14328    if (checkArgCount(TheCall, 3))
14329      return true;
14330  
14331    Expr *Args[3];
14332    for (int I = 0; I < 3; ++I) {
14333      ExprResult Converted = UsualUnaryConversions(TheCall->getArg(I));
14334      if (Converted.isInvalid())
14335        return true;
14336      Args[I] = Converted.get();
14337    }
14338  
14339    if (CheckForFloatArgs) {
14340      int ArgOrdinal = 1;
14341      for (Expr *Arg : Args) {
14342        if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(),
14343                                          Arg->getType(), ArgOrdinal++))
14344          return true;
14345      }
14346    } else {
14347      int ArgOrdinal = 1;
14348      for (Expr *Arg : Args) {
14349        if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
14350                                        ArgOrdinal++))
14351          return true;
14352      }
14353    }
14354  
14355    for (int I = 1; I < 3; ++I) {
14356      if (Args[0]->getType().getCanonicalType() !=
14357          Args[I]->getType().getCanonicalType()) {
14358        return Diag(Args[0]->getBeginLoc(),
14359                    diag::err_typecheck_call_different_arg_types)
14360               << Args[0]->getType() << Args[I]->getType();
14361      }
14362  
14363      TheCall->setArg(I, Args[I]);
14364    }
14365  
14366    TheCall->setType(Args[0]->getType());
14367    return false;
14368  }
14369  
PrepareBuiltinReduceMathOneArgCall(CallExpr * TheCall)14370  bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
14371    if (checkArgCount(TheCall, 1))
14372      return true;
14373  
14374    ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14375    if (A.isInvalid())
14376      return true;
14377  
14378    TheCall->setArg(0, A.get());
14379    return false;
14380  }
14381  
BuiltinNonDeterministicValue(CallExpr * TheCall)14382  bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) {
14383    if (checkArgCount(TheCall, 1))
14384      return true;
14385  
14386    ExprResult Arg = TheCall->getArg(0);
14387    QualType TyArg = Arg.get()->getType();
14388  
14389    if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
14390      return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14391             << 1 << /*vector, integer or floating point ty*/ 0 << TyArg;
14392  
14393    TheCall->setType(TyArg);
14394    return false;
14395  }
14396  
BuiltinMatrixTranspose(CallExpr * TheCall,ExprResult CallResult)14397  ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall,
14398                                          ExprResult CallResult) {
14399    if (checkArgCount(TheCall, 1))
14400      return ExprError();
14401  
14402    ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
14403    if (MatrixArg.isInvalid())
14404      return MatrixArg;
14405    Expr *Matrix = MatrixArg.get();
14406  
14407    auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
14408    if (!MType) {
14409      Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14410          << 1 << /* matrix ty*/ 1 << Matrix->getType();
14411      return ExprError();
14412    }
14413  
14414    // Create returned matrix type by swapping rows and columns of the argument
14415    // matrix type.
14416    QualType ResultType = Context.getConstantMatrixType(
14417        MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
14418  
14419    // Change the return type to the type of the returned matrix.
14420    TheCall->setType(ResultType);
14421  
14422    // Update call argument to use the possibly converted matrix argument.
14423    TheCall->setArg(0, Matrix);
14424    return CallResult;
14425  }
14426  
14427  // Get and verify the matrix dimensions.
14428  static std::optional<unsigned>
getAndVerifyMatrixDimension(Expr * Expr,StringRef Name,Sema & S)14429  getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
14430    SourceLocation ErrorPos;
14431    std::optional<llvm::APSInt> Value =
14432        Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
14433    if (!Value) {
14434      S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
14435          << Name;
14436      return {};
14437    }
14438    uint64_t Dim = Value->getZExtValue();
14439    if (!ConstantMatrixType::isDimensionValid(Dim)) {
14440      S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
14441          << Name << ConstantMatrixType::getMaxElementsPerDimension();
14442      return {};
14443    }
14444    return Dim;
14445  }
14446  
BuiltinMatrixColumnMajorLoad(CallExpr * TheCall,ExprResult CallResult)14447  ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
14448                                                ExprResult CallResult) {
14449    if (!getLangOpts().MatrixTypes) {
14450      Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
14451      return ExprError();
14452    }
14453  
14454    if (checkArgCount(TheCall, 4))
14455      return ExprError();
14456  
14457    unsigned PtrArgIdx = 0;
14458    Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14459    Expr *RowsExpr = TheCall->getArg(1);
14460    Expr *ColumnsExpr = TheCall->getArg(2);
14461    Expr *StrideExpr = TheCall->getArg(3);
14462  
14463    bool ArgError = false;
14464  
14465    // Check pointer argument.
14466    {
14467      ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14468      if (PtrConv.isInvalid())
14469        return PtrConv;
14470      PtrExpr = PtrConv.get();
14471      TheCall->setArg(0, PtrExpr);
14472      if (PtrExpr->isTypeDependent()) {
14473        TheCall->setType(Context.DependentTy);
14474        return TheCall;
14475      }
14476    }
14477  
14478    auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14479    QualType ElementTy;
14480    if (!PtrTy) {
14481      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14482          << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14483      ArgError = true;
14484    } else {
14485      ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
14486  
14487      if (!ConstantMatrixType::isValidElementType(ElementTy)) {
14488        Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14489            << PtrArgIdx + 1 << /* pointer to element ty*/ 2
14490            << PtrExpr->getType();
14491        ArgError = true;
14492      }
14493    }
14494  
14495    // Apply default Lvalue conversions and convert the expression to size_t.
14496    auto ApplyArgumentConversions = [this](Expr *E) {
14497      ExprResult Conv = DefaultLvalueConversion(E);
14498      if (Conv.isInvalid())
14499        return Conv;
14500  
14501      return tryConvertExprToType(Conv.get(), Context.getSizeType());
14502    };
14503  
14504    // Apply conversion to row and column expressions.
14505    ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
14506    if (!RowsConv.isInvalid()) {
14507      RowsExpr = RowsConv.get();
14508      TheCall->setArg(1, RowsExpr);
14509    } else
14510      RowsExpr = nullptr;
14511  
14512    ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
14513    if (!ColumnsConv.isInvalid()) {
14514      ColumnsExpr = ColumnsConv.get();
14515      TheCall->setArg(2, ColumnsExpr);
14516    } else
14517      ColumnsExpr = nullptr;
14518  
14519    // If any part of the result matrix type is still pending, just use
14520    // Context.DependentTy, until all parts are resolved.
14521    if ((RowsExpr && RowsExpr->isTypeDependent()) ||
14522        (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
14523      TheCall->setType(Context.DependentTy);
14524      return CallResult;
14525    }
14526  
14527    // Check row and column dimensions.
14528    std::optional<unsigned> MaybeRows;
14529    if (RowsExpr)
14530      MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
14531  
14532    std::optional<unsigned> MaybeColumns;
14533    if (ColumnsExpr)
14534      MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
14535  
14536    // Check stride argument.
14537    ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
14538    if (StrideConv.isInvalid())
14539      return ExprError();
14540    StrideExpr = StrideConv.get();
14541    TheCall->setArg(3, StrideExpr);
14542  
14543    if (MaybeRows) {
14544      if (std::optional<llvm::APSInt> Value =
14545              StrideExpr->getIntegerConstantExpr(Context)) {
14546        uint64_t Stride = Value->getZExtValue();
14547        if (Stride < *MaybeRows) {
14548          Diag(StrideExpr->getBeginLoc(),
14549               diag::err_builtin_matrix_stride_too_small);
14550          ArgError = true;
14551        }
14552      }
14553    }
14554  
14555    if (ArgError || !MaybeRows || !MaybeColumns)
14556      return ExprError();
14557  
14558    TheCall->setType(
14559        Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
14560    return CallResult;
14561  }
14562  
BuiltinMatrixColumnMajorStore(CallExpr * TheCall,ExprResult CallResult)14563  ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
14564                                                 ExprResult CallResult) {
14565    if (checkArgCount(TheCall, 3))
14566      return ExprError();
14567  
14568    unsigned PtrArgIdx = 1;
14569    Expr *MatrixExpr = TheCall->getArg(0);
14570    Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14571    Expr *StrideExpr = TheCall->getArg(2);
14572  
14573    bool ArgError = false;
14574  
14575    {
14576      ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
14577      if (MatrixConv.isInvalid())
14578        return MatrixConv;
14579      MatrixExpr = MatrixConv.get();
14580      TheCall->setArg(0, MatrixExpr);
14581    }
14582    if (MatrixExpr->isTypeDependent()) {
14583      TheCall->setType(Context.DependentTy);
14584      return TheCall;
14585    }
14586  
14587    auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
14588    if (!MatrixTy) {
14589      Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14590          << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
14591      ArgError = true;
14592    }
14593  
14594    {
14595      ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14596      if (PtrConv.isInvalid())
14597        return PtrConv;
14598      PtrExpr = PtrConv.get();
14599      TheCall->setArg(1, PtrExpr);
14600      if (PtrExpr->isTypeDependent()) {
14601        TheCall->setType(Context.DependentTy);
14602        return TheCall;
14603      }
14604    }
14605  
14606    // Check pointer argument.
14607    auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14608    if (!PtrTy) {
14609      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14610          << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14611      ArgError = true;
14612    } else {
14613      QualType ElementTy = PtrTy->getPointeeType();
14614      if (ElementTy.isConstQualified()) {
14615        Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
14616        ArgError = true;
14617      }
14618      ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
14619      if (MatrixTy &&
14620          !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
14621        Diag(PtrExpr->getBeginLoc(),
14622             diag::err_builtin_matrix_pointer_arg_mismatch)
14623            << ElementTy << MatrixTy->getElementType();
14624        ArgError = true;
14625      }
14626    }
14627  
14628    // Apply default Lvalue conversions and convert the stride expression to
14629    // size_t.
14630    {
14631      ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
14632      if (StrideConv.isInvalid())
14633        return StrideConv;
14634  
14635      StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
14636      if (StrideConv.isInvalid())
14637        return StrideConv;
14638      StrideExpr = StrideConv.get();
14639      TheCall->setArg(2, StrideExpr);
14640    }
14641  
14642    // Check stride argument.
14643    if (MatrixTy) {
14644      if (std::optional<llvm::APSInt> Value =
14645              StrideExpr->getIntegerConstantExpr(Context)) {
14646        uint64_t Stride = Value->getZExtValue();
14647        if (Stride < MatrixTy->getNumRows()) {
14648          Diag(StrideExpr->getBeginLoc(),
14649               diag::err_builtin_matrix_stride_too_small);
14650          ArgError = true;
14651        }
14652      }
14653    }
14654  
14655    if (ArgError)
14656      return ExprError();
14657  
14658    return CallResult;
14659  }
14660  
CheckTCBEnforcement(const SourceLocation CallExprLoc,const NamedDecl * Callee)14661  void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
14662                                 const NamedDecl *Callee) {
14663    // This warning does not make sense in code that has no runtime behavior.
14664    if (isUnevaluatedContext())
14665      return;
14666  
14667    const NamedDecl *Caller = getCurFunctionOrMethodDecl();
14668  
14669    if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
14670      return;
14671  
14672    // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
14673    // all TCBs the callee is a part of.
14674    llvm::StringSet<> CalleeTCBs;
14675    for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
14676      CalleeTCBs.insert(A->getTCBName());
14677    for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
14678      CalleeTCBs.insert(A->getTCBName());
14679  
14680    // Go through the TCBs the caller is a part of and emit warnings if Caller
14681    // is in a TCB that the Callee is not.
14682    for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
14683      StringRef CallerTCB = A->getTCBName();
14684      if (CalleeTCBs.count(CallerTCB) == 0) {
14685        this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
14686            << Callee << CallerTCB;
14687      }
14688    }
14689  }
14690