1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5 * The Regents of the University of California.
6 * (c) UNIX System Laboratories, Inc.
7 * Copyright (c) 2000-2001 Robert N. M. Watson.
8 * All rights reserved.
9 *
10 * All or some portions of this file are derived from material licensed
11 * to the University of California by American Telephone and Telegraph
12 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13 * the permission of UNIX System Laboratories, Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 */
39
40 /*
41 * System calls related to processes and protection
42 */
43
44 #include <sys/cdefs.h>
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/abi_compat.h>
51 #include <sys/acct.h>
52 #include <sys/kdb.h>
53 #include <sys/kernel.h>
54 #include <sys/libkern.h>
55 #include <sys/lock.h>
56 #include <sys/loginclass.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/ptrace.h>
60 #include <sys/refcount.h>
61 #include <sys/sx.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #ifdef COMPAT_43
65 #include <sys/sysent.h>
66 #endif
67 #include <sys/sysproto.h>
68 #include <sys/jail.h>
69 #include <sys/racct.h>
70 #include <sys/rctl.h>
71 #include <sys/resourcevar.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76
77 #ifdef MAC
78 #include <security/mac/mac_syscalls.h>
79 #endif
80
81 #include <vm/uma.h>
82
83 #ifdef REGRESSION
84 FEATURE(regression,
85 "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
86 #endif
87
88 #include <security/audit/audit.h>
89 #include <security/mac/mac_framework.h>
90
91 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
92
93 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
94 "BSD security policy");
95
96 static void crfree_final(struct ucred *cr);
97
98 static inline void
groups_check_positive_len(int ngrp)99 groups_check_positive_len(int ngrp)
100 {
101 MPASS2(ngrp >= 0, "negative number of groups");
102 }
103 static inline void
groups_check_max_len(int ngrp)104 groups_check_max_len(int ngrp)
105 {
106 MPASS2(ngrp <= ngroups_max, "too many supplementary groups");
107 }
108
109 static void groups_normalize(int *ngrp, gid_t *groups);
110 static void crsetgroups_internal(struct ucred *cr, int ngrp,
111 const gid_t *groups);
112
113 static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
114 static int cr_canseeothergids(struct ucred *u1, struct ucred *u2);
115 static int cr_canseejailproc(struct ucred *u1, struct ucred *u2);
116
117 #ifndef _SYS_SYSPROTO_H_
118 struct getpid_args {
119 int dummy;
120 };
121 #endif
122 /* ARGSUSED */
123 int
sys_getpid(struct thread * td,struct getpid_args * uap)124 sys_getpid(struct thread *td, struct getpid_args *uap)
125 {
126 struct proc *p = td->td_proc;
127
128 td->td_retval[0] = p->p_pid;
129 #if defined(COMPAT_43)
130 if (SV_PROC_FLAG(p, SV_AOUT))
131 td->td_retval[1] = kern_getppid(td);
132 #endif
133 return (0);
134 }
135
136 #ifndef _SYS_SYSPROTO_H_
137 struct getppid_args {
138 int dummy;
139 };
140 #endif
141 /* ARGSUSED */
142 int
sys_getppid(struct thread * td,struct getppid_args * uap)143 sys_getppid(struct thread *td, struct getppid_args *uap)
144 {
145
146 td->td_retval[0] = kern_getppid(td);
147 return (0);
148 }
149
150 int
kern_getppid(struct thread * td)151 kern_getppid(struct thread *td)
152 {
153 struct proc *p = td->td_proc;
154
155 return (p->p_oppid);
156 }
157
158 /*
159 * Get process group ID; note that POSIX getpgrp takes no parameter.
160 */
161 #ifndef _SYS_SYSPROTO_H_
162 struct getpgrp_args {
163 int dummy;
164 };
165 #endif
166 int
sys_getpgrp(struct thread * td,struct getpgrp_args * uap)167 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
168 {
169 struct proc *p = td->td_proc;
170
171 PROC_LOCK(p);
172 td->td_retval[0] = p->p_pgrp->pg_id;
173 PROC_UNLOCK(p);
174 return (0);
175 }
176
177 /* Get an arbitrary pid's process group id */
178 #ifndef _SYS_SYSPROTO_H_
179 struct getpgid_args {
180 pid_t pid;
181 };
182 #endif
183 int
sys_getpgid(struct thread * td,struct getpgid_args * uap)184 sys_getpgid(struct thread *td, struct getpgid_args *uap)
185 {
186 struct proc *p;
187 int error;
188
189 if (uap->pid == 0) {
190 p = td->td_proc;
191 PROC_LOCK(p);
192 } else {
193 p = pfind(uap->pid);
194 if (p == NULL)
195 return (ESRCH);
196 error = p_cansee(td, p);
197 if (error) {
198 PROC_UNLOCK(p);
199 return (error);
200 }
201 }
202 td->td_retval[0] = p->p_pgrp->pg_id;
203 PROC_UNLOCK(p);
204 return (0);
205 }
206
207 /*
208 * Get an arbitrary pid's session id.
209 */
210 #ifndef _SYS_SYSPROTO_H_
211 struct getsid_args {
212 pid_t pid;
213 };
214 #endif
215 int
sys_getsid(struct thread * td,struct getsid_args * uap)216 sys_getsid(struct thread *td, struct getsid_args *uap)
217 {
218
219 return (kern_getsid(td, uap->pid));
220 }
221
222 int
kern_getsid(struct thread * td,pid_t pid)223 kern_getsid(struct thread *td, pid_t pid)
224 {
225 struct proc *p;
226 int error;
227
228 if (pid == 0) {
229 p = td->td_proc;
230 PROC_LOCK(p);
231 } else {
232 p = pfind(pid);
233 if (p == NULL)
234 return (ESRCH);
235 error = p_cansee(td, p);
236 if (error) {
237 PROC_UNLOCK(p);
238 return (error);
239 }
240 }
241 td->td_retval[0] = p->p_session->s_sid;
242 PROC_UNLOCK(p);
243 return (0);
244 }
245
246 #ifndef _SYS_SYSPROTO_H_
247 struct getuid_args {
248 int dummy;
249 };
250 #endif
251 /* ARGSUSED */
252 int
sys_getuid(struct thread * td,struct getuid_args * uap)253 sys_getuid(struct thread *td, struct getuid_args *uap)
254 {
255
256 td->td_retval[0] = td->td_ucred->cr_ruid;
257 #if defined(COMPAT_43)
258 td->td_retval[1] = td->td_ucred->cr_uid;
259 #endif
260 return (0);
261 }
262
263 #ifndef _SYS_SYSPROTO_H_
264 struct geteuid_args {
265 int dummy;
266 };
267 #endif
268 /* ARGSUSED */
269 int
sys_geteuid(struct thread * td,struct geteuid_args * uap)270 sys_geteuid(struct thread *td, struct geteuid_args *uap)
271 {
272
273 td->td_retval[0] = td->td_ucred->cr_uid;
274 return (0);
275 }
276
277 #ifndef _SYS_SYSPROTO_H_
278 struct getgid_args {
279 int dummy;
280 };
281 #endif
282 /* ARGSUSED */
283 int
sys_getgid(struct thread * td,struct getgid_args * uap)284 sys_getgid(struct thread *td, struct getgid_args *uap)
285 {
286
287 td->td_retval[0] = td->td_ucred->cr_rgid;
288 #if defined(COMPAT_43)
289 td->td_retval[1] = td->td_ucred->cr_gid;
290 #endif
291 return (0);
292 }
293
294 #ifndef _SYS_SYSPROTO_H_
295 struct getegid_args {
296 int dummy;
297 };
298 #endif
299 /* ARGSUSED */
300 int
sys_getegid(struct thread * td,struct getegid_args * uap)301 sys_getegid(struct thread *td, struct getegid_args *uap)
302 {
303
304 td->td_retval[0] = td->td_ucred->cr_gid;
305 return (0);
306 }
307
308 #ifdef COMPAT_FREEBSD14
309 int
freebsd14_getgroups(struct thread * td,struct freebsd14_getgroups_args * uap)310 freebsd14_getgroups(struct thread *td, struct freebsd14_getgroups_args *uap)
311 {
312 struct ucred *cred;
313 int ngrp, error;
314
315 cred = td->td_ucred;
316
317 /*
318 * For FreeBSD < 15.0, we account for the egid being placed at the
319 * beginning of the group list prior to all supplementary groups.
320 */
321 ngrp = cred->cr_ngroups + 1;
322 if (uap->gidsetsize == 0) {
323 error = 0;
324 goto out;
325 } else if (uap->gidsetsize < ngrp) {
326 return (EINVAL);
327 }
328
329 error = copyout(&cred->cr_gid, uap->gidset, sizeof(gid_t));
330 if (error == 0)
331 error = copyout(cred->cr_groups, uap->gidset + 1,
332 (ngrp - 1) * sizeof(gid_t));
333
334 out:
335 td->td_retval[0] = ngrp;
336 return (error);
337
338 }
339 #endif /* COMPAT_FREEBSD14 */
340
341 #ifndef _SYS_SYSPROTO_H_
342 struct getgroups_args {
343 int gidsetsize;
344 gid_t *gidset;
345 };
346 #endif
347 int
sys_getgroups(struct thread * td,struct getgroups_args * uap)348 sys_getgroups(struct thread *td, struct getgroups_args *uap)
349 {
350 struct ucred *cred;
351 int ngrp, error;
352
353 cred = td->td_ucred;
354
355 ngrp = cred->cr_ngroups;
356 if (uap->gidsetsize == 0) {
357 error = 0;
358 goto out;
359 }
360 if (uap->gidsetsize < ngrp)
361 return (EINVAL);
362
363 error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
364 out:
365 td->td_retval[0] = ngrp;
366 return (error);
367 }
368
369 #ifndef _SYS_SYSPROTO_H_
370 struct setsid_args {
371 int dummy;
372 };
373 #endif
374 /* ARGSUSED */
375 int
sys_setsid(struct thread * td,struct setsid_args * uap)376 sys_setsid(struct thread *td, struct setsid_args *uap)
377 {
378 struct pgrp *pgrp;
379 int error;
380 struct proc *p = td->td_proc;
381 struct pgrp *newpgrp;
382 struct session *newsess;
383
384 pgrp = NULL;
385
386 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
387 newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
388
389 again:
390 error = 0;
391 sx_xlock(&proctree_lock);
392
393 if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
394 if (pgrp != NULL)
395 PGRP_UNLOCK(pgrp);
396 error = EPERM;
397 } else {
398 error = enterpgrp(p, p->p_pid, newpgrp, newsess);
399 if (error == ERESTART)
400 goto again;
401 MPASS(error == 0);
402 td->td_retval[0] = p->p_pid;
403 newpgrp = NULL;
404 newsess = NULL;
405 }
406
407 sx_xunlock(&proctree_lock);
408
409 uma_zfree(pgrp_zone, newpgrp);
410 free(newsess, M_SESSION);
411
412 return (error);
413 }
414
415 /*
416 * set process group (setpgid/old setpgrp)
417 *
418 * caller does setpgid(targpid, targpgid)
419 *
420 * pid must be caller or child of caller (ESRCH)
421 * if a child
422 * pid must be in same session (EPERM)
423 * pid can't have done an exec (EACCES)
424 * if pgid != pid
425 * there must exist some pid in same session having pgid (EPERM)
426 * pid must not be session leader (EPERM)
427 */
428 #ifndef _SYS_SYSPROTO_H_
429 struct setpgid_args {
430 int pid; /* target process id */
431 int pgid; /* target pgrp id */
432 };
433 #endif
434 /* ARGSUSED */
435 int
sys_setpgid(struct thread * td,struct setpgid_args * uap)436 sys_setpgid(struct thread *td, struct setpgid_args *uap)
437 {
438 struct proc *curp = td->td_proc;
439 struct proc *targp; /* target process */
440 struct pgrp *pgrp; /* target pgrp */
441 int error;
442 struct pgrp *newpgrp;
443
444 if (uap->pgid < 0)
445 return (EINVAL);
446
447 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
448
449 again:
450 error = 0;
451
452 sx_xlock(&proctree_lock);
453 if (uap->pid != 0 && uap->pid != curp->p_pid) {
454 if ((targp = pfind(uap->pid)) == NULL) {
455 error = ESRCH;
456 goto done;
457 }
458 if (!inferior(targp)) {
459 PROC_UNLOCK(targp);
460 error = ESRCH;
461 goto done;
462 }
463 if ((error = p_cansee(td, targp))) {
464 PROC_UNLOCK(targp);
465 goto done;
466 }
467 if (targp->p_pgrp == NULL ||
468 targp->p_session != curp->p_session) {
469 PROC_UNLOCK(targp);
470 error = EPERM;
471 goto done;
472 }
473 if (targp->p_flag & P_EXEC) {
474 PROC_UNLOCK(targp);
475 error = EACCES;
476 goto done;
477 }
478 PROC_UNLOCK(targp);
479 } else
480 targp = curp;
481 if (SESS_LEADER(targp)) {
482 error = EPERM;
483 goto done;
484 }
485 if (uap->pgid == 0)
486 uap->pgid = targp->p_pid;
487 if ((pgrp = pgfind(uap->pgid)) == NULL) {
488 if (uap->pgid == targp->p_pid) {
489 error = enterpgrp(targp, uap->pgid, newpgrp,
490 NULL);
491 if (error == 0)
492 newpgrp = NULL;
493 } else
494 error = EPERM;
495 } else {
496 if (pgrp == targp->p_pgrp) {
497 PGRP_UNLOCK(pgrp);
498 goto done;
499 }
500 if (pgrp->pg_id != targp->p_pid &&
501 pgrp->pg_session != curp->p_session) {
502 PGRP_UNLOCK(pgrp);
503 error = EPERM;
504 goto done;
505 }
506 PGRP_UNLOCK(pgrp);
507 error = enterthispgrp(targp, pgrp);
508 }
509 done:
510 KASSERT(error == 0 || newpgrp != NULL,
511 ("setpgid failed and newpgrp is NULL"));
512 if (error == ERESTART)
513 goto again;
514 sx_xunlock(&proctree_lock);
515 uma_zfree(pgrp_zone, newpgrp);
516 return (error);
517 }
518
519 static int
gidp_cmp(const void * p1,const void * p2)520 gidp_cmp(const void *p1, const void *p2)
521 {
522 const gid_t g1 = *(const gid_t *)p1;
523 const gid_t g2 = *(const gid_t *)p2;
524
525 return ((g1 > g2) - (g1 < g2));
526 }
527
528 /*
529 * Final storage for supplementary groups will be returned via 'groups'.
530 * '*groups' must be NULL on input, and if not equal to 'smallgroups'
531 * on output, must be freed (M_TEMP) *even if* an error is returned.
532 */
533 static int
kern_setcred_copyin_supp_groups(struct setcred * const wcred,const u_int flags,gid_t * const smallgroups,gid_t ** const groups)534 kern_setcred_copyin_supp_groups(struct setcred *const wcred,
535 const u_int flags, gid_t *const smallgroups, gid_t **const groups)
536 {
537 MPASS(*groups == NULL);
538
539 if (flags & SETCREDF_SUPP_GROUPS) {
540 int error;
541
542 /*
543 * Check for the limit for number of groups right now in order
544 * to limit the amount of bytes to copy.
545 */
546 if (wcred->sc_supp_groups_nb > ngroups_max)
547 return (EINVAL);
548
549 /*
550 * Since we are going to be copying the supplementary groups
551 * from userland, make room also for the effective GID right
552 * now, to avoid having to allocate and copy again the
553 * supplementary groups.
554 */
555 *groups = wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB ?
556 smallgroups : malloc(wcred->sc_supp_groups_nb *
557 sizeof(*groups), M_TEMP, M_WAITOK);
558
559 error = copyin(wcred->sc_supp_groups, *groups,
560 wcred->sc_supp_groups_nb * sizeof(*groups));
561 if (error != 0)
562 return (error);
563 wcred->sc_supp_groups = *groups;
564 } else {
565 wcred->sc_supp_groups_nb = 0;
566 wcred->sc_supp_groups = NULL;
567 }
568
569 return (0);
570 }
571
572 int
user_setcred(struct thread * td,const u_int flags,const void * const uwcred,const size_t size,bool is_32bit)573 user_setcred(struct thread *td, const u_int flags,
574 const void *const uwcred, const size_t size, bool is_32bit)
575 {
576 struct setcred wcred;
577 #ifdef MAC
578 struct mac mac;
579 /* Pointer to 'struct mac' or 'struct mac32'. */
580 void *umac;
581 #endif
582 gid_t smallgroups[CRED_SMALLGROUPS_NB];
583 gid_t *groups = NULL;
584 int error;
585
586 /*
587 * As the only point of this wrapper function is to copyin() from
588 * userland, we only interpret the data pieces we need to perform this
589 * operation and defer further sanity checks to kern_setcred(), except
590 * that we redundantly check here that no unknown flags have been
591 * passed.
592 */
593 if ((flags & ~SETCREDF_MASK) != 0)
594 return (EINVAL);
595
596 #ifdef COMPAT_FREEBSD32
597 if (is_32bit) {
598 struct setcred32 wcred32;
599
600 if (size != sizeof(wcred32))
601 return (EINVAL);
602 error = copyin(uwcred, &wcred32, sizeof(wcred32));
603 if (error != 0)
604 return (error);
605 /* These fields have exactly the same sizes and positions. */
606 memcpy(&wcred, &wcred32, &wcred32.setcred32_copy_end -
607 &wcred32.setcred32_copy_start);
608 /* Remaining fields are pointers and need PTRIN*(). */
609 PTRIN_CP(wcred32, wcred, sc_supp_groups);
610 PTRIN_CP(wcred32, wcred, sc_label);
611 } else
612 #endif /* COMPAT_FREEBSD32 */
613 {
614 if (size != sizeof(wcred))
615 return (EINVAL);
616 error = copyin(uwcred, &wcred, sizeof(wcred));
617 if (error != 0)
618 return (error);
619 }
620 #ifdef MAC
621 umac = wcred.sc_label;
622 #endif
623 /* Also done on !MAC as a defensive measure. */
624 wcred.sc_label = NULL;
625
626 /*
627 * Copy supplementary groups as needed. There is no specific
628 * alternative for 32-bit compatibility as 'gid_t' has the same size
629 * everywhere.
630 */
631 error = kern_setcred_copyin_supp_groups(&wcred, flags, smallgroups,
632 &groups);
633 if (error != 0)
634 goto free_groups;
635
636 #ifdef MAC
637 if ((flags & SETCREDF_MAC_LABEL) != 0) {
638 #ifdef COMPAT_FREEBSD32
639 if (is_32bit)
640 error = mac_label_copyin32(umac, &mac, NULL);
641 else
642 #endif
643 error = mac_label_copyin(umac, &mac, NULL);
644 if (error != 0)
645 goto free_groups;
646 wcred.sc_label = &mac;
647 }
648 #endif
649
650 error = kern_setcred(td, flags, &wcred, groups);
651
652 #ifdef MAC
653 if (wcred.sc_label != NULL)
654 free_copied_label(wcred.sc_label);
655 #endif
656
657 free_groups:
658 if (groups != smallgroups)
659 free(groups, M_TEMP);
660
661 return (error);
662 }
663
664 #ifndef _SYS_SYSPROTO_H_
665 struct setcred_args {
666 u_int flags; /* Flags. */
667 const struct setcred *wcred;
668 size_t size; /* Passed 'setcred' structure length. */
669 };
670 #endif
671 /* ARGSUSED */
672 int
sys_setcred(struct thread * td,struct setcred_args * uap)673 sys_setcred(struct thread *td, struct setcred_args *uap)
674 {
675 return (user_setcred(td, uap->flags, uap->wcred, uap->size, false));
676 }
677
678 /*
679 * CAUTION: This function normalizes groups in 'wcred'.
680 *
681 * If 'preallocated_groups' is non-NULL, it must be an already allocated array
682 * of size 'wcred->sc_supp_groups_nb' containing the supplementary groups, and
683 * 'wcred->sc_supp_groups' then must point to it.
684 */
685 int
kern_setcred(struct thread * const td,const u_int flags,struct setcred * const wcred,gid_t * preallocated_groups)686 kern_setcred(struct thread *const td, const u_int flags,
687 struct setcred *const wcred, gid_t *preallocated_groups)
688 {
689 struct proc *const p = td->td_proc;
690 struct ucred *new_cred, *old_cred, *to_free_cred;
691 struct uidinfo *uip = NULL, *ruip = NULL;
692 #ifdef MAC
693 void *mac_set_proc_data = NULL;
694 bool proc_label_set = false;
695 #endif
696 gid_t *groups = NULL;
697 gid_t smallgroups[CRED_SMALLGROUPS_NB];
698 int error;
699 bool cred_set;
700
701 /* Bail out on unrecognized flags. */
702 if (flags & ~SETCREDF_MASK)
703 return (EINVAL);
704
705 /*
706 * Part 1: We allocate and perform preparatory operations with no locks.
707 */
708
709 if (flags & SETCREDF_SUPP_GROUPS) {
710 if (wcred->sc_supp_groups_nb > ngroups_max)
711 return (EINVAL);
712 if (preallocated_groups != NULL) {
713 groups = preallocated_groups;
714 MPASS(preallocated_groups == wcred->sc_supp_groups);
715 } else {
716 if (wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB)
717 groups = smallgroups;
718 else
719 groups = malloc(wcred->sc_supp_groups_nb *
720 sizeof(*groups), M_TEMP, M_WAITOK);
721 memcpy(groups, wcred->sc_supp_groups,
722 wcred->sc_supp_groups_nb * sizeof(*groups));
723 }
724 }
725
726 if (flags & SETCREDF_MAC_LABEL) {
727 #ifdef MAC
728 error = mac_set_proc_prepare(td, wcred->sc_label,
729 &mac_set_proc_data);
730 if (error != 0)
731 goto free_groups;
732 #else
733 error = ENOTSUP;
734 goto free_groups;
735 #endif
736 }
737
738 if (flags & SETCREDF_UID) {
739 AUDIT_ARG_EUID(wcred->sc_uid);
740 uip = uifind(wcred->sc_uid);
741 }
742 if (flags & SETCREDF_RUID) {
743 AUDIT_ARG_RUID(wcred->sc_ruid);
744 ruip = uifind(wcred->sc_ruid);
745 }
746 if (flags & SETCREDF_SVUID)
747 AUDIT_ARG_SUID(wcred->sc_svuid);
748
749 if (flags & SETCREDF_GID)
750 AUDIT_ARG_EGID(wcred->sc_gid);
751 if (flags & SETCREDF_RGID)
752 AUDIT_ARG_RGID(wcred->sc_rgid);
753 if (flags & SETCREDF_SVGID)
754 AUDIT_ARG_SGID(wcred->sc_svgid);
755 if (flags & SETCREDF_SUPP_GROUPS) {
756 /*
757 * Output the raw supplementary groups array for better
758 * traceability.
759 */
760 AUDIT_ARG_GROUPSET(groups, wcred->sc_supp_groups_nb);
761 groups_normalize(&wcred->sc_supp_groups_nb, groups);
762 }
763
764 /*
765 * We first completely build the new credentials and only then pass them
766 * to MAC along with the old ones so that modules can check whether the
767 * requested transition is allowed.
768 */
769 new_cred = crget();
770 to_free_cred = new_cred;
771 if (flags & SETCREDF_SUPP_GROUPS)
772 crextend(new_cred, wcred->sc_supp_groups_nb);
773
774 #ifdef MAC
775 mac_cred_setcred_enter();
776 #endif
777
778 /*
779 * Part 2: We grab the process lock as to have a stable view of its
780 * current credentials, and prepare a copy of them with the requested
781 * changes applied under that lock.
782 */
783
784 PROC_LOCK(p);
785 old_cred = crcopysafe(p, new_cred);
786
787 /*
788 * Change user IDs.
789 */
790 if (flags & SETCREDF_UID)
791 change_euid(new_cred, uip);
792 if (flags & SETCREDF_RUID)
793 change_ruid(new_cred, ruip);
794 if (flags & SETCREDF_SVUID)
795 change_svuid(new_cred, wcred->sc_svuid);
796
797 /*
798 * Change groups.
799 */
800 if (flags & SETCREDF_SUPP_GROUPS)
801 crsetgroups_internal(new_cred, wcred->sc_supp_groups_nb,
802 groups);
803 if (flags & SETCREDF_GID)
804 change_egid(new_cred, wcred->sc_gid);
805 if (flags & SETCREDF_RGID)
806 change_rgid(new_cred, wcred->sc_rgid);
807 if (flags & SETCREDF_SVGID)
808 change_svgid(new_cred, wcred->sc_svgid);
809
810 #ifdef MAC
811 /*
812 * Change the MAC label.
813 */
814 if (flags & SETCREDF_MAC_LABEL) {
815 error = mac_set_proc_core(td, new_cred, mac_set_proc_data);
816 if (error != 0)
817 goto unlock_finish;
818 proc_label_set = true;
819 }
820
821 /*
822 * MAC security modules checks.
823 */
824 error = mac_cred_check_setcred(flags, old_cred, new_cred);
825 if (error != 0)
826 goto unlock_finish;
827 #endif
828 /*
829 * Privilege check.
830 */
831 error = priv_check_cred(old_cred, PRIV_CRED_SETCRED);
832 if (error != 0)
833 goto unlock_finish;
834
835 /*
836 * Set the new credentials, noting that they have changed.
837 */
838 cred_set = proc_set_cred_enforce_proc_lim(p, new_cred);
839 if (cred_set) {
840 setsugid(p);
841 to_free_cred = old_cred;
842 MPASS(error == 0);
843 } else
844 error = EAGAIN;
845
846 unlock_finish:
847 PROC_UNLOCK(p);
848 /*
849 * Part 3: After releasing the process lock, we perform cleanups and
850 * finishing operations.
851 */
852
853 #ifdef MAC
854 if (mac_set_proc_data != NULL)
855 mac_set_proc_finish(td, proc_label_set, mac_set_proc_data);
856 mac_cred_setcred_exit();
857 #endif
858 crfree(to_free_cred);
859 if (uip != NULL)
860 uifree(uip);
861 if (ruip != NULL)
862 uifree(ruip);
863 free_groups:
864 if (groups != preallocated_groups && groups != smallgroups)
865 free(groups, M_TEMP); /* Deals with 'groups' being NULL. */
866 return (error);
867 }
868
869 /*
870 * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
871 * compatible. It says that setting the uid/gid to euid/egid is a special
872 * case of "appropriate privilege". Once the rules are expanded out, this
873 * basically means that setuid(nnn) sets all three id's, in all permitted
874 * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid())
875 * does not set the saved id - this is dangerous for traditional BSD
876 * programs. For this reason, we *really* do not want to set
877 * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
878 */
879 #define POSIX_APPENDIX_B_4_2_2
880
881 #ifndef _SYS_SYSPROTO_H_
882 struct setuid_args {
883 uid_t uid;
884 };
885 #endif
886 /* ARGSUSED */
887 int
sys_setuid(struct thread * td,struct setuid_args * uap)888 sys_setuid(struct thread *td, struct setuid_args *uap)
889 {
890 struct proc *p = td->td_proc;
891 struct ucred *newcred, *oldcred;
892 uid_t uid;
893 struct uidinfo *uip;
894 int error;
895
896 uid = uap->uid;
897 AUDIT_ARG_UID(uid);
898 newcred = crget();
899 uip = uifind(uid);
900 PROC_LOCK(p);
901 /*
902 * Copy credentials so other references do not see our changes.
903 */
904 oldcred = crcopysafe(p, newcred);
905
906 #ifdef MAC
907 error = mac_cred_check_setuid(oldcred, uid);
908 if (error)
909 goto fail;
910 #endif
911
912 /*
913 * See if we have "permission" by POSIX 1003.1 rules.
914 *
915 * Note that setuid(geteuid()) is a special case of
916 * "appropriate privileges" in appendix B.4.2.2. We need
917 * to use this clause to be compatible with traditional BSD
918 * semantics. Basically, it means that "setuid(xx)" sets all
919 * three id's (assuming you have privs).
920 *
921 * Notes on the logic. We do things in three steps.
922 * 1: We determine if the euid is going to change, and do EPERM
923 * right away. We unconditionally change the euid later if this
924 * test is satisfied, simplifying that part of the logic.
925 * 2: We determine if the real and/or saved uids are going to
926 * change. Determined by compile options.
927 * 3: Change euid last. (after tests in #2 for "appropriate privs")
928 */
929 if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */
930 #ifdef _POSIX_SAVED_IDS
931 uid != oldcred->cr_svuid && /* allow setuid(saved gid) */
932 #endif
933 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */
934 uid != oldcred->cr_uid && /* allow setuid(geteuid()) */
935 #endif
936 (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
937 goto fail;
938
939 #ifdef _POSIX_SAVED_IDS
940 /*
941 * Do we have "appropriate privileges" (are we root or uid == euid)
942 * If so, we are changing the real uid and/or saved uid.
943 */
944 if (
945 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */
946 uid == oldcred->cr_uid ||
947 #endif
948 /* We are using privs. */
949 priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
950 #endif
951 {
952 /*
953 * Set the real uid.
954 */
955 if (uid != oldcred->cr_ruid) {
956 change_ruid(newcred, uip);
957 setsugid(p);
958 }
959 /*
960 * Set saved uid
961 *
962 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
963 * the security of seteuid() depends on it. B.4.2.2 says it
964 * is important that we should do this.
965 */
966 if (uid != oldcred->cr_svuid) {
967 change_svuid(newcred, uid);
968 setsugid(p);
969 }
970 }
971
972 /*
973 * In all permitted cases, we are changing the euid.
974 */
975 if (uid != oldcred->cr_uid) {
976 change_euid(newcred, uip);
977 setsugid(p);
978 }
979 /*
980 * This also transfers the proc count to the new user.
981 */
982 proc_set_cred(p, newcred);
983 #ifdef RACCT
984 racct_proc_ucred_changed(p, oldcred, newcred);
985 crhold(newcred);
986 #endif
987 PROC_UNLOCK(p);
988 #ifdef RCTL
989 rctl_proc_ucred_changed(p, newcred);
990 crfree(newcred);
991 #endif
992 uifree(uip);
993 crfree(oldcred);
994 return (0);
995
996 fail:
997 PROC_UNLOCK(p);
998 uifree(uip);
999 crfree(newcred);
1000 return (error);
1001 }
1002
1003 #ifndef _SYS_SYSPROTO_H_
1004 struct seteuid_args {
1005 uid_t euid;
1006 };
1007 #endif
1008 /* ARGSUSED */
1009 int
sys_seteuid(struct thread * td,struct seteuid_args * uap)1010 sys_seteuid(struct thread *td, struct seteuid_args *uap)
1011 {
1012 struct proc *p = td->td_proc;
1013 struct ucred *newcred, *oldcred;
1014 uid_t euid;
1015 struct uidinfo *euip;
1016 int error;
1017
1018 euid = uap->euid;
1019 AUDIT_ARG_EUID(euid);
1020 newcred = crget();
1021 euip = uifind(euid);
1022 PROC_LOCK(p);
1023 /*
1024 * Copy credentials so other references do not see our changes.
1025 */
1026 oldcred = crcopysafe(p, newcred);
1027
1028 #ifdef MAC
1029 error = mac_cred_check_seteuid(oldcred, euid);
1030 if (error)
1031 goto fail;
1032 #endif
1033
1034 if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */
1035 euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */
1036 (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
1037 goto fail;
1038
1039 /*
1040 * Everything's okay, do it.
1041 */
1042 if (oldcred->cr_uid != euid) {
1043 change_euid(newcred, euip);
1044 setsugid(p);
1045 }
1046 proc_set_cred(p, newcred);
1047 PROC_UNLOCK(p);
1048 uifree(euip);
1049 crfree(oldcred);
1050 return (0);
1051
1052 fail:
1053 PROC_UNLOCK(p);
1054 uifree(euip);
1055 crfree(newcred);
1056 return (error);
1057 }
1058
1059 #ifndef _SYS_SYSPROTO_H_
1060 struct setgid_args {
1061 gid_t gid;
1062 };
1063 #endif
1064 /* ARGSUSED */
1065 int
sys_setgid(struct thread * td,struct setgid_args * uap)1066 sys_setgid(struct thread *td, struct setgid_args *uap)
1067 {
1068 struct proc *p = td->td_proc;
1069 struct ucred *newcred, *oldcred;
1070 gid_t gid;
1071 int error;
1072
1073 gid = uap->gid;
1074 AUDIT_ARG_GID(gid);
1075 newcred = crget();
1076 PROC_LOCK(p);
1077 oldcred = crcopysafe(p, newcred);
1078
1079 #ifdef MAC
1080 error = mac_cred_check_setgid(oldcred, gid);
1081 if (error)
1082 goto fail;
1083 #endif
1084
1085 /*
1086 * See if we have "permission" by POSIX 1003.1 rules.
1087 *
1088 * Note that setgid(getegid()) is a special case of
1089 * "appropriate privileges" in appendix B.4.2.2. We need
1090 * to use this clause to be compatible with traditional BSD
1091 * semantics. Basically, it means that "setgid(xx)" sets all
1092 * three id's (assuming you have privs).
1093 *
1094 * For notes on the logic here, see setuid() above.
1095 */
1096 if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */
1097 #ifdef _POSIX_SAVED_IDS
1098 gid != oldcred->cr_svgid && /* allow setgid(saved gid) */
1099 #endif
1100 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */
1101 gid != oldcred->cr_gid && /* allow setgid(getegid()) */
1102 #endif
1103 (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
1104 goto fail;
1105
1106 #ifdef _POSIX_SAVED_IDS
1107 /*
1108 * Do we have "appropriate privileges" (are we root or gid == egid)
1109 * If so, we are changing the real uid and saved gid.
1110 */
1111 if (
1112 #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */
1113 gid == oldcred->cr_gid ||
1114 #endif
1115 /* We are using privs. */
1116 priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
1117 #endif
1118 {
1119 /*
1120 * Set real gid
1121 */
1122 if (oldcred->cr_rgid != gid) {
1123 change_rgid(newcred, gid);
1124 setsugid(p);
1125 }
1126 /*
1127 * Set saved gid
1128 *
1129 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
1130 * the security of setegid() depends on it. B.4.2.2 says it
1131 * is important that we should do this.
1132 */
1133 if (oldcred->cr_svgid != gid) {
1134 change_svgid(newcred, gid);
1135 setsugid(p);
1136 }
1137 }
1138 /*
1139 * In all cases permitted cases, we are changing the egid.
1140 * Copy credentials so other references do not see our changes.
1141 */
1142 if (oldcred->cr_gid != gid) {
1143 change_egid(newcred, gid);
1144 setsugid(p);
1145 }
1146 proc_set_cred(p, newcred);
1147 PROC_UNLOCK(p);
1148 crfree(oldcred);
1149 return (0);
1150
1151 fail:
1152 PROC_UNLOCK(p);
1153 crfree(newcred);
1154 return (error);
1155 }
1156
1157 #ifndef _SYS_SYSPROTO_H_
1158 struct setegid_args {
1159 gid_t egid;
1160 };
1161 #endif
1162 /* ARGSUSED */
1163 int
sys_setegid(struct thread * td,struct setegid_args * uap)1164 sys_setegid(struct thread *td, struct setegid_args *uap)
1165 {
1166 struct proc *p = td->td_proc;
1167 struct ucred *newcred, *oldcred;
1168 gid_t egid;
1169 int error;
1170
1171 egid = uap->egid;
1172 AUDIT_ARG_EGID(egid);
1173 newcred = crget();
1174 PROC_LOCK(p);
1175 oldcred = crcopysafe(p, newcred);
1176
1177 #ifdef MAC
1178 error = mac_cred_check_setegid(oldcred, egid);
1179 if (error)
1180 goto fail;
1181 #endif
1182
1183 if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */
1184 egid != oldcred->cr_svgid && /* allow setegid(saved gid) */
1185 (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
1186 goto fail;
1187
1188 if (oldcred->cr_gid != egid) {
1189 change_egid(newcred, egid);
1190 setsugid(p);
1191 }
1192 proc_set_cred(p, newcred);
1193 PROC_UNLOCK(p);
1194 crfree(oldcred);
1195 return (0);
1196
1197 fail:
1198 PROC_UNLOCK(p);
1199 crfree(newcred);
1200 return (error);
1201 }
1202
1203 #ifdef COMPAT_FREEBSD14
1204 int
freebsd14_setgroups(struct thread * td,struct freebsd14_setgroups_args * uap)1205 freebsd14_setgroups(struct thread *td, struct freebsd14_setgroups_args *uap)
1206 {
1207 gid_t smallgroups[CRED_SMALLGROUPS_NB];
1208 gid_t *groups;
1209 int gidsetsize, error;
1210
1211 /*
1212 * Before FreeBSD 15.0, we allow one more group to be supplied to
1213 * account for the egid appearing before the supplementary groups. This
1214 * may technically allow one more supplementary group for systems that
1215 * did use the default NGROUPS_MAX if we round it back up to 1024.
1216 */
1217 gidsetsize = uap->gidsetsize;
1218 if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
1219 return (EINVAL);
1220
1221 if (gidsetsize > CRED_SMALLGROUPS_NB)
1222 groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
1223 else
1224 groups = smallgroups;
1225
1226 error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
1227 if (error == 0) {
1228 int ngroups = gidsetsize > 0 ? gidsetsize - 1 /* egid */ : 0;
1229
1230 error = kern_setgroups(td, &ngroups, groups + 1);
1231 if (error == 0 && gidsetsize > 0)
1232 td->td_proc->p_ucred->cr_gid = groups[0];
1233 }
1234
1235 if (groups != smallgroups)
1236 free(groups, M_TEMP);
1237 return (error);
1238 }
1239 #endif /* COMPAT_FREEBSD14 */
1240
1241 #ifndef _SYS_SYSPROTO_H_
1242 struct setgroups_args {
1243 int gidsetsize;
1244 gid_t *gidset;
1245 };
1246 #endif
1247 /* ARGSUSED */
1248 int
sys_setgroups(struct thread * td,struct setgroups_args * uap)1249 sys_setgroups(struct thread *td, struct setgroups_args *uap)
1250 {
1251 gid_t smallgroups[CRED_SMALLGROUPS_NB];
1252 gid_t *groups;
1253 int gidsetsize, error;
1254
1255 /*
1256 * Sanity check size now to avoid passing too big a value to copyin(),
1257 * even if kern_setgroups() will do it again.
1258 *
1259 * Ideally, the 'gidsetsize' argument should have been a 'u_int' (and it
1260 * was, in this implementation, for a long time), but POSIX standardized
1261 * getgroups() to take an 'int' and it would be quite entrapping to have
1262 * setgroups() differ.
1263 */
1264 gidsetsize = uap->gidsetsize;
1265 if (gidsetsize > ngroups_max || gidsetsize < 0)
1266 return (EINVAL);
1267
1268 if (gidsetsize > CRED_SMALLGROUPS_NB)
1269 groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
1270 else
1271 groups = smallgroups;
1272
1273 error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
1274 if (error == 0)
1275 error = kern_setgroups(td, &gidsetsize, groups);
1276
1277 if (groups != smallgroups)
1278 free(groups, M_TEMP);
1279 return (error);
1280 }
1281
1282 /*
1283 * CAUTION: This function normalizes 'groups', possibly also changing the value
1284 * of '*ngrpp' as a consequence.
1285 */
1286 int
kern_setgroups(struct thread * td,int * ngrpp,gid_t * groups)1287 kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups)
1288 {
1289 struct proc *p = td->td_proc;
1290 struct ucred *newcred, *oldcred;
1291 int ngrp, error;
1292
1293 ngrp = *ngrpp;
1294 /* Sanity check size. */
1295 if (ngrp < 0 || ngrp > ngroups_max)
1296 return (EINVAL);
1297
1298 AUDIT_ARG_GROUPSET(groups, ngrp);
1299
1300 groups_normalize(&ngrp, groups);
1301 *ngrpp = ngrp;
1302
1303 newcred = crget();
1304 crextend(newcred, ngrp);
1305 PROC_LOCK(p);
1306 oldcred = crcopysafe(p, newcred);
1307
1308 #ifdef MAC
1309 /*
1310 * We pass NULL here explicitly if we don't have any supplementary
1311 * groups mostly for the sake of normalization, but also to avoid/detect
1312 * a situation where a MAC module has some assumption about the layout
1313 * of `groups` matching historical behavior.
1314 */
1315 error = mac_cred_check_setgroups(oldcred, ngrp,
1316 ngrp == 0 ? NULL : groups);
1317 if (error)
1318 goto fail;
1319 #endif
1320
1321 error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
1322 if (error)
1323 goto fail;
1324
1325 crsetgroups_internal(newcred, ngrp, groups);
1326 setsugid(p);
1327 proc_set_cred(p, newcred);
1328 PROC_UNLOCK(p);
1329 crfree(oldcred);
1330 return (0);
1331
1332 fail:
1333 PROC_UNLOCK(p);
1334 crfree(newcred);
1335 return (error);
1336 }
1337
1338 #ifndef _SYS_SYSPROTO_H_
1339 struct setreuid_args {
1340 uid_t ruid;
1341 uid_t euid;
1342 };
1343 #endif
1344 /* ARGSUSED */
1345 int
sys_setreuid(struct thread * td,struct setreuid_args * uap)1346 sys_setreuid(struct thread *td, struct setreuid_args *uap)
1347 {
1348 struct proc *p = td->td_proc;
1349 struct ucred *newcred, *oldcred;
1350 uid_t euid, ruid;
1351 struct uidinfo *euip, *ruip;
1352 int error;
1353
1354 euid = uap->euid;
1355 ruid = uap->ruid;
1356 AUDIT_ARG_EUID(euid);
1357 AUDIT_ARG_RUID(ruid);
1358 newcred = crget();
1359 euip = uifind(euid);
1360 ruip = uifind(ruid);
1361 PROC_LOCK(p);
1362 oldcred = crcopysafe(p, newcred);
1363
1364 #ifdef MAC
1365 error = mac_cred_check_setreuid(oldcred, ruid, euid);
1366 if (error)
1367 goto fail;
1368 #endif
1369
1370 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1371 ruid != oldcred->cr_svuid) ||
1372 (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
1373 euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
1374 (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
1375 goto fail;
1376
1377 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1378 change_euid(newcred, euip);
1379 setsugid(p);
1380 }
1381 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1382 change_ruid(newcred, ruip);
1383 setsugid(p);
1384 }
1385 if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
1386 newcred->cr_svuid != newcred->cr_uid) {
1387 change_svuid(newcred, newcred->cr_uid);
1388 setsugid(p);
1389 }
1390 proc_set_cred(p, newcred);
1391 #ifdef RACCT
1392 racct_proc_ucred_changed(p, oldcred, newcred);
1393 crhold(newcred);
1394 #endif
1395 PROC_UNLOCK(p);
1396 #ifdef RCTL
1397 rctl_proc_ucred_changed(p, newcred);
1398 crfree(newcred);
1399 #endif
1400 uifree(ruip);
1401 uifree(euip);
1402 crfree(oldcred);
1403 return (0);
1404
1405 fail:
1406 PROC_UNLOCK(p);
1407 uifree(ruip);
1408 uifree(euip);
1409 crfree(newcred);
1410 return (error);
1411 }
1412
1413 #ifndef _SYS_SYSPROTO_H_
1414 struct setregid_args {
1415 gid_t rgid;
1416 gid_t egid;
1417 };
1418 #endif
1419 /* ARGSUSED */
1420 int
sys_setregid(struct thread * td,struct setregid_args * uap)1421 sys_setregid(struct thread *td, struct setregid_args *uap)
1422 {
1423 struct proc *p = td->td_proc;
1424 struct ucred *newcred, *oldcred;
1425 gid_t egid, rgid;
1426 int error;
1427
1428 egid = uap->egid;
1429 rgid = uap->rgid;
1430 AUDIT_ARG_EGID(egid);
1431 AUDIT_ARG_RGID(rgid);
1432 newcred = crget();
1433 PROC_LOCK(p);
1434 oldcred = crcopysafe(p, newcred);
1435
1436 #ifdef MAC
1437 error = mac_cred_check_setregid(oldcred, rgid, egid);
1438 if (error)
1439 goto fail;
1440 #endif
1441
1442 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1443 rgid != oldcred->cr_svgid) ||
1444 (egid != (gid_t)-1 && egid != oldcred->cr_gid &&
1445 egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
1446 (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
1447 goto fail;
1448
1449 if (egid != (gid_t)-1 && oldcred->cr_gid != egid) {
1450 change_egid(newcred, egid);
1451 setsugid(p);
1452 }
1453 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1454 change_rgid(newcred, rgid);
1455 setsugid(p);
1456 }
1457 if ((rgid != (gid_t)-1 || newcred->cr_gid != newcred->cr_rgid) &&
1458 newcred->cr_svgid != newcred->cr_gid) {
1459 change_svgid(newcred, newcred->cr_gid);
1460 setsugid(p);
1461 }
1462 proc_set_cred(p, newcred);
1463 PROC_UNLOCK(p);
1464 crfree(oldcred);
1465 return (0);
1466
1467 fail:
1468 PROC_UNLOCK(p);
1469 crfree(newcred);
1470 return (error);
1471 }
1472
1473 /*
1474 * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1475 * uid is explicit.
1476 */
1477 #ifndef _SYS_SYSPROTO_H_
1478 struct setresuid_args {
1479 uid_t ruid;
1480 uid_t euid;
1481 uid_t suid;
1482 };
1483 #endif
1484 /* ARGSUSED */
1485 int
sys_setresuid(struct thread * td,struct setresuid_args * uap)1486 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1487 {
1488 struct proc *p = td->td_proc;
1489 struct ucred *newcred, *oldcred;
1490 uid_t euid, ruid, suid;
1491 struct uidinfo *euip, *ruip;
1492 int error;
1493
1494 euid = uap->euid;
1495 ruid = uap->ruid;
1496 suid = uap->suid;
1497 AUDIT_ARG_EUID(euid);
1498 AUDIT_ARG_RUID(ruid);
1499 AUDIT_ARG_SUID(suid);
1500 newcred = crget();
1501 euip = uifind(euid);
1502 ruip = uifind(ruid);
1503 PROC_LOCK(p);
1504 oldcred = crcopysafe(p, newcred);
1505
1506 #ifdef MAC
1507 error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1508 if (error)
1509 goto fail;
1510 #endif
1511
1512 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1513 ruid != oldcred->cr_svuid &&
1514 ruid != oldcred->cr_uid) ||
1515 (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1516 euid != oldcred->cr_svuid &&
1517 euid != oldcred->cr_uid) ||
1518 (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1519 suid != oldcred->cr_svuid &&
1520 suid != oldcred->cr_uid)) &&
1521 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1522 goto fail;
1523
1524 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1525 change_euid(newcred, euip);
1526 setsugid(p);
1527 }
1528 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1529 change_ruid(newcred, ruip);
1530 setsugid(p);
1531 }
1532 if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1533 change_svuid(newcred, suid);
1534 setsugid(p);
1535 }
1536 proc_set_cred(p, newcred);
1537 #ifdef RACCT
1538 racct_proc_ucred_changed(p, oldcred, newcred);
1539 crhold(newcred);
1540 #endif
1541 PROC_UNLOCK(p);
1542 #ifdef RCTL
1543 rctl_proc_ucred_changed(p, newcred);
1544 crfree(newcred);
1545 #endif
1546 uifree(ruip);
1547 uifree(euip);
1548 crfree(oldcred);
1549 return (0);
1550
1551 fail:
1552 PROC_UNLOCK(p);
1553 uifree(ruip);
1554 uifree(euip);
1555 crfree(newcred);
1556 return (error);
1557
1558 }
1559
1560 /*
1561 * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1562 * gid is explicit.
1563 */
1564 #ifndef _SYS_SYSPROTO_H_
1565 struct setresgid_args {
1566 gid_t rgid;
1567 gid_t egid;
1568 gid_t sgid;
1569 };
1570 #endif
1571 /* ARGSUSED */
1572 int
sys_setresgid(struct thread * td,struct setresgid_args * uap)1573 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1574 {
1575 struct proc *p = td->td_proc;
1576 struct ucred *newcred, *oldcred;
1577 gid_t egid, rgid, sgid;
1578 int error;
1579
1580 egid = uap->egid;
1581 rgid = uap->rgid;
1582 sgid = uap->sgid;
1583 AUDIT_ARG_EGID(egid);
1584 AUDIT_ARG_RGID(rgid);
1585 AUDIT_ARG_SGID(sgid);
1586 newcred = crget();
1587 PROC_LOCK(p);
1588 oldcred = crcopysafe(p, newcred);
1589
1590 #ifdef MAC
1591 error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1592 if (error)
1593 goto fail;
1594 #endif
1595
1596 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1597 rgid != oldcred->cr_svgid &&
1598 rgid != oldcred->cr_gid) ||
1599 (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1600 egid != oldcred->cr_svgid &&
1601 egid != oldcred->cr_gid) ||
1602 (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1603 sgid != oldcred->cr_svgid &&
1604 sgid != oldcred->cr_gid)) &&
1605 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1606 goto fail;
1607
1608 if (egid != (gid_t)-1 && oldcred->cr_gid != egid) {
1609 change_egid(newcred, egid);
1610 setsugid(p);
1611 }
1612 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1613 change_rgid(newcred, rgid);
1614 setsugid(p);
1615 }
1616 if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1617 change_svgid(newcred, sgid);
1618 setsugid(p);
1619 }
1620 proc_set_cred(p, newcred);
1621 PROC_UNLOCK(p);
1622 crfree(oldcred);
1623 return (0);
1624
1625 fail:
1626 PROC_UNLOCK(p);
1627 crfree(newcred);
1628 return (error);
1629 }
1630
1631 #ifndef _SYS_SYSPROTO_H_
1632 struct getresuid_args {
1633 uid_t *ruid;
1634 uid_t *euid;
1635 uid_t *suid;
1636 };
1637 #endif
1638 /* ARGSUSED */
1639 int
sys_getresuid(struct thread * td,struct getresuid_args * uap)1640 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1641 {
1642 struct ucred *cred;
1643 int error1 = 0, error2 = 0, error3 = 0;
1644
1645 cred = td->td_ucred;
1646 if (uap->ruid)
1647 error1 = copyout(&cred->cr_ruid,
1648 uap->ruid, sizeof(cred->cr_ruid));
1649 if (uap->euid)
1650 error2 = copyout(&cred->cr_uid,
1651 uap->euid, sizeof(cred->cr_uid));
1652 if (uap->suid)
1653 error3 = copyout(&cred->cr_svuid,
1654 uap->suid, sizeof(cred->cr_svuid));
1655 return (error1 ? error1 : error2 ? error2 : error3);
1656 }
1657
1658 #ifndef _SYS_SYSPROTO_H_
1659 struct getresgid_args {
1660 gid_t *rgid;
1661 gid_t *egid;
1662 gid_t *sgid;
1663 };
1664 #endif
1665 /* ARGSUSED */
1666 int
sys_getresgid(struct thread * td,struct getresgid_args * uap)1667 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1668 {
1669 struct ucred *cred;
1670 int error1 = 0, error2 = 0, error3 = 0;
1671
1672 cred = td->td_ucred;
1673 if (uap->rgid)
1674 error1 = copyout(&cred->cr_rgid,
1675 uap->rgid, sizeof(cred->cr_rgid));
1676 if (uap->egid)
1677 error2 = copyout(&cred->cr_gid,
1678 uap->egid, sizeof(cred->cr_gid));
1679 if (uap->sgid)
1680 error3 = copyout(&cred->cr_svgid,
1681 uap->sgid, sizeof(cred->cr_svgid));
1682 return (error1 ? error1 : error2 ? error2 : error3);
1683 }
1684
1685 #ifndef _SYS_SYSPROTO_H_
1686 struct issetugid_args {
1687 int dummy;
1688 };
1689 #endif
1690 /* ARGSUSED */
1691 int
sys_issetugid(struct thread * td,struct issetugid_args * uap)1692 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1693 {
1694 struct proc *p = td->td_proc;
1695
1696 /*
1697 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1698 * we use P_SUGID because we consider changing the owners as
1699 * "tainting" as well.
1700 * This is significant for procs that start as root and "become"
1701 * a user without an exec - programs cannot know *everything*
1702 * that libc *might* have put in their data segment.
1703 */
1704 td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1705 return (0);
1706 }
1707
1708 int
sys___setugid(struct thread * td,struct __setugid_args * uap)1709 sys___setugid(struct thread *td, struct __setugid_args *uap)
1710 {
1711 #ifdef REGRESSION
1712 struct proc *p;
1713
1714 p = td->td_proc;
1715 switch (uap->flag) {
1716 case 0:
1717 PROC_LOCK(p);
1718 p->p_flag &= ~P_SUGID;
1719 PROC_UNLOCK(p);
1720 return (0);
1721 case 1:
1722 PROC_LOCK(p);
1723 p->p_flag |= P_SUGID;
1724 PROC_UNLOCK(p);
1725 return (0);
1726 default:
1727 return (EINVAL);
1728 }
1729 #else /* !REGRESSION */
1730
1731 return (ENOSYS);
1732 #endif /* REGRESSION */
1733 }
1734
1735 #ifdef INVARIANTS
1736 static void
groups_check_normalized(int ngrp,const gid_t * groups)1737 groups_check_normalized(int ngrp, const gid_t *groups)
1738 {
1739 gid_t prev_g;
1740
1741 groups_check_positive_len(ngrp);
1742 groups_check_max_len(ngrp);
1743
1744 if (ngrp <= 1)
1745 return;
1746
1747 prev_g = groups[0];
1748 for (int i = 1; i < ngrp; ++i) {
1749 const gid_t g = groups[i];
1750
1751 if (prev_g >= g)
1752 panic("%s: groups[%d] (%u) >= groups[%d] (%u)",
1753 __func__, i - 1, prev_g, i, g);
1754 prev_g = g;
1755 }
1756 }
1757 #else
1758 #define groups_check_normalized(...)
1759 #endif
1760
1761 /*
1762 * Returns whether gid designates a supplementary group in cred.
1763 */
1764 bool
group_is_supplementary(const gid_t gid,const struct ucred * const cred)1765 group_is_supplementary(const gid_t gid, const struct ucred *const cred)
1766 {
1767
1768 groups_check_normalized(cred->cr_ngroups, cred->cr_groups);
1769
1770 /*
1771 * Perform a binary search of the supplementary groups. This is
1772 * possible because we sort the groups in crsetgroups().
1773 */
1774 return (bsearch(&gid, cred->cr_groups, cred->cr_ngroups,
1775 sizeof(gid), gidp_cmp) != NULL);
1776 }
1777
1778 /*
1779 * Check if gid is a member of the (effective) group set (i.e., effective and
1780 * supplementary groups).
1781 */
1782 bool
groupmember(gid_t gid,const struct ucred * cred)1783 groupmember(gid_t gid, const struct ucred *cred)
1784 {
1785
1786 groups_check_positive_len(cred->cr_ngroups);
1787
1788 if (gid == cred->cr_gid)
1789 return (true);
1790
1791 return (group_is_supplementary(gid, cred));
1792 }
1793
1794 /*
1795 * Check if gid is a member of the real group set (i.e., real and supplementary
1796 * groups).
1797 */
1798 bool
realgroupmember(gid_t gid,const struct ucred * cred)1799 realgroupmember(gid_t gid, const struct ucred *cred)
1800 {
1801 groups_check_positive_len(cred->cr_ngroups);
1802
1803 if (gid == cred->cr_rgid)
1804 return (true);
1805
1806 return (group_is_supplementary(gid, cred));
1807 }
1808
1809 /*
1810 * Test the active securelevel against a given level. securelevel_gt()
1811 * implements (securelevel > level). securelevel_ge() implements
1812 * (securelevel >= level). Note that the logic is inverted -- these
1813 * functions return EPERM on "success" and 0 on "failure".
1814 *
1815 * Due to care taken when setting the securelevel, we know that no jail will
1816 * be less secure that its parent (or the physical system), so it is sufficient
1817 * to test the current jail only.
1818 *
1819 * XXXRW: Possibly since this has to do with privilege, it should move to
1820 * kern_priv.c.
1821 */
1822 int
securelevel_gt(struct ucred * cr,int level)1823 securelevel_gt(struct ucred *cr, int level)
1824 {
1825
1826 return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1827 }
1828
1829 int
securelevel_ge(struct ucred * cr,int level)1830 securelevel_ge(struct ucred *cr, int level)
1831 {
1832
1833 return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1834 }
1835
1836 /*
1837 * 'see_other_uids' determines whether or not visibility of processes
1838 * and sockets with credentials holding different real uids is possible
1839 * using a variety of system MIBs.
1840 * XXX: data declarations should be together near the beginning of the file.
1841 */
1842 static int see_other_uids = 1;
1843 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1844 &see_other_uids, 0,
1845 "Unprivileged processes may see subjects/objects with different real uid");
1846
1847 /*-
1848 * Determine if u1 "can see" the subject specified by u2, according to the
1849 * 'see_other_uids' policy.
1850 * Returns: 0 for permitted, ESRCH otherwise
1851 * Locks: none
1852 * References: *u1 and *u2 must not change during the call
1853 * u1 may equal u2, in which case only one reference is required
1854 */
1855 static int
cr_canseeotheruids(struct ucred * u1,struct ucred * u2)1856 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1857 {
1858
1859 if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1860 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1861 return (ESRCH);
1862 }
1863 return (0);
1864 }
1865
1866 /*
1867 * 'see_other_gids' determines whether or not visibility of processes
1868 * and sockets with credentials holding different real gids is possible
1869 * using a variety of system MIBs.
1870 * XXX: data declarations should be together near the beginning of the file.
1871 */
1872 static int see_other_gids = 1;
1873 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1874 &see_other_gids, 0,
1875 "Unprivileged processes may see subjects/objects with different real gid");
1876
1877 /*
1878 * Determine if u1 can "see" the subject specified by u2, according to the
1879 * 'see_other_gids' policy.
1880 * Returns: 0 for permitted, ESRCH otherwise
1881 * Locks: none
1882 * References: *u1 and *u2 must not change during the call
1883 * u1 may equal u2, in which case only one reference is required
1884 */
1885 static int
cr_canseeothergids(struct ucred * u1,struct ucred * u2)1886 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1887 {
1888 if (see_other_gids)
1889 return (0);
1890
1891 /* Restriction in force. */
1892
1893 if (realgroupmember(u1->cr_rgid, u2))
1894 return (0);
1895
1896 for (int i = 0; i < u1->cr_ngroups; i++)
1897 if (realgroupmember(u1->cr_groups[i], u2))
1898 return (0);
1899
1900 if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) == 0)
1901 return (0);
1902
1903 return (ESRCH);
1904 }
1905
1906 /*
1907 * 'see_jail_proc' determines whether or not visibility of processes and
1908 * sockets with credentials holding different jail ids is possible using a
1909 * variety of system MIBs.
1910 *
1911 * XXX: data declarations should be together near the beginning of the file.
1912 */
1913
1914 static int see_jail_proc = 1;
1915 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1916 &see_jail_proc, 0,
1917 "Unprivileged processes may see subjects/objects with different jail ids");
1918
1919 /*-
1920 * Determine if u1 "can see" the subject specified by u2, according to the
1921 * 'see_jail_proc' policy.
1922 * Returns: 0 for permitted, ESRCH otherwise
1923 * Locks: none
1924 * References: *u1 and *u2 must not change during the call
1925 * u1 may equal u2, in which case only one reference is required
1926 */
1927 static int
cr_canseejailproc(struct ucred * u1,struct ucred * u2)1928 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1929 {
1930 if (see_jail_proc || /* Policy deactivated. */
1931 u1->cr_prison == u2->cr_prison || /* Same jail. */
1932 priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
1933 return (0);
1934
1935 return (ESRCH);
1936 }
1937
1938 /*
1939 * Determine if u1 can tamper with the subject specified by u2, if they are in
1940 * different jails and 'unprivileged_parent_tampering' jail policy allows it.
1941 *
1942 * May be called if u1 and u2 are in the same jail, but it is expected that the
1943 * caller has already done a prison_check() prior to calling it.
1944 *
1945 * Returns: 0 for permitted, EPERM otherwise
1946 */
1947 static int
cr_can_tamper_with_subjail(struct ucred * u1,struct ucred * u2,int priv)1948 cr_can_tamper_with_subjail(struct ucred *u1, struct ucred *u2, int priv)
1949 {
1950
1951 MPASS(prison_check(u1, u2) == 0);
1952 if (u1->cr_prison == u2->cr_prison)
1953 return (0);
1954
1955 if (priv_check_cred(u1, priv) == 0)
1956 return (0);
1957
1958 /*
1959 * Jails do not maintain a distinct UID space, so process visibility is
1960 * all that would control an unprivileged process' ability to tamper
1961 * with a process in a subjail by default if we did not have the
1962 * allow.unprivileged_parent_tampering knob to restrict it by default.
1963 */
1964 if (prison_allow(u2, PR_ALLOW_UNPRIV_PARENT_TAMPER))
1965 return (0);
1966
1967 return (EPERM);
1968 }
1969
1970 /*
1971 * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
1972 * policies. Determines if u1 "can see" u2 according to these policies.
1973 * Returns: 0 for permitted, ESRCH otherwise
1974 */
1975 int
cr_bsd_visible(struct ucred * u1,struct ucred * u2)1976 cr_bsd_visible(struct ucred *u1, struct ucred *u2)
1977 {
1978 int error;
1979
1980 error = cr_canseeotheruids(u1, u2);
1981 if (error != 0)
1982 return (error);
1983 error = cr_canseeothergids(u1, u2);
1984 if (error != 0)
1985 return (error);
1986 error = cr_canseejailproc(u1, u2);
1987 if (error != 0)
1988 return (error);
1989 return (0);
1990 }
1991
1992 /*-
1993 * Determine if u1 "can see" the subject specified by u2.
1994 * Returns: 0 for permitted, an errno value otherwise
1995 * Locks: none
1996 * References: *u1 and *u2 must not change during the call
1997 * u1 may equal u2, in which case only one reference is required
1998 */
1999 int
cr_cansee(struct ucred * u1,struct ucred * u2)2000 cr_cansee(struct ucred *u1, struct ucred *u2)
2001 {
2002 int error;
2003
2004 if ((error = prison_check(u1, u2)))
2005 return (error);
2006 #ifdef MAC
2007 if ((error = mac_cred_check_visible(u1, u2)))
2008 return (error);
2009 #endif
2010 if ((error = cr_bsd_visible(u1, u2)))
2011 return (error);
2012 return (0);
2013 }
2014
2015 /*-
2016 * Determine if td "can see" the subject specified by p.
2017 * Returns: 0 for permitted, an errno value otherwise
2018 * Locks: Sufficient locks to protect p->p_ucred must be held. td really
2019 * should be curthread.
2020 * References: td and p must be valid for the lifetime of the call
2021 */
2022 int
p_cansee(struct thread * td,struct proc * p)2023 p_cansee(struct thread *td, struct proc *p)
2024 {
2025 /* Wrap cr_cansee() for all functionality. */
2026 KASSERT(td == curthread, ("%s: td not curthread", __func__));
2027 PROC_LOCK_ASSERT(p, MA_OWNED);
2028
2029 if (td->td_proc == p)
2030 return (0);
2031 return (cr_cansee(td->td_ucred, p->p_ucred));
2032 }
2033
2034 /*
2035 * 'conservative_signals' prevents the delivery of a broad class of
2036 * signals by unprivileged processes to processes that have changed their
2037 * credentials since the last invocation of execve(). This can prevent
2038 * the leakage of cached information or retained privileges as a result
2039 * of a common class of signal-related vulnerabilities. However, this
2040 * may interfere with some applications that expect to be able to
2041 * deliver these signals to peer processes after having given up
2042 * privilege.
2043 */
2044 static int conservative_signals = 1;
2045 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
2046 &conservative_signals, 0, "Unprivileged processes prevented from "
2047 "sending certain signals to processes whose credentials have changed");
2048 /*-
2049 * Determine whether cred may deliver the specified signal to proc.
2050 * Returns: 0 for permitted, an errno value otherwise.
2051 * Locks: A lock must be held for proc.
2052 * References: cred and proc must be valid for the lifetime of the call.
2053 */
2054 int
cr_cansignal(struct ucred * cred,struct proc * proc,int signum)2055 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
2056 {
2057 int error;
2058
2059 PROC_LOCK_ASSERT(proc, MA_OWNED);
2060 /*
2061 * Jail semantics limit the scope of signalling to proc in the
2062 * same jail as cred, if cred is in jail.
2063 */
2064 error = prison_check(cred, proc->p_ucred);
2065 if (error)
2066 return (error);
2067 #ifdef MAC
2068 if ((error = mac_proc_check_signal(cred, proc, signum)))
2069 return (error);
2070 #endif
2071 if ((error = cr_bsd_visible(cred, proc->p_ucred)))
2072 return (error);
2073
2074 /*
2075 * UNIX signal semantics depend on the status of the P_SUGID
2076 * bit on the target process. If the bit is set, then additional
2077 * restrictions are placed on the set of available signals.
2078 */
2079 if (conservative_signals && (proc->p_flag & P_SUGID)) {
2080 switch (signum) {
2081 case 0:
2082 case SIGKILL:
2083 case SIGINT:
2084 case SIGTERM:
2085 case SIGALRM:
2086 case SIGSTOP:
2087 case SIGTTIN:
2088 case SIGTTOU:
2089 case SIGTSTP:
2090 case SIGHUP:
2091 case SIGUSR1:
2092 case SIGUSR2:
2093 /*
2094 * Generally, permit job and terminal control
2095 * signals.
2096 */
2097 break;
2098 default:
2099 /* Not permitted without privilege. */
2100 error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
2101 if (error)
2102 return (error);
2103 }
2104 }
2105
2106 /*
2107 * Generally, the target credential's ruid or svuid must match the
2108 * subject credential's ruid or euid.
2109 */
2110 if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
2111 cred->cr_ruid != proc->p_ucred->cr_svuid &&
2112 cred->cr_uid != proc->p_ucred->cr_ruid &&
2113 cred->cr_uid != proc->p_ucred->cr_svuid) {
2114 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
2115 if (error)
2116 return (error);
2117 }
2118
2119 /*
2120 * At this point, the target may be in a different jail than the
2121 * subject -- the subject must be in a parent jail to the target,
2122 * whether it is prison0 or a subordinate of prison0 that has
2123 * children. Additional privileges are required to allow this, as
2124 * whether the creds are truly equivalent or not must be determined on
2125 * a case-by-case basis.
2126 */
2127 error = cr_can_tamper_with_subjail(cred, proc->p_ucred,
2128 PRIV_SIGNAL_DIFFJAIL);
2129 if (error)
2130 return (error);
2131
2132 return (0);
2133 }
2134
2135 /*-
2136 * Determine whether td may deliver the specified signal to p.
2137 * Returns: 0 for permitted, an errno value otherwise
2138 * Locks: Sufficient locks to protect various components of td and p
2139 * must be held. td must be curthread, and a lock must be
2140 * held for p.
2141 * References: td and p must be valid for the lifetime of the call
2142 */
2143 int
p_cansignal(struct thread * td,struct proc * p,int signum)2144 p_cansignal(struct thread *td, struct proc *p, int signum)
2145 {
2146
2147 KASSERT(td == curthread, ("%s: td not curthread", __func__));
2148 PROC_LOCK_ASSERT(p, MA_OWNED);
2149 if (td->td_proc == p)
2150 return (0);
2151
2152 /*
2153 * UNIX signalling semantics require that processes in the same
2154 * session always be able to deliver SIGCONT to one another,
2155 * overriding the remaining protections.
2156 */
2157 /* XXX: This will require an additional lock of some sort. */
2158 if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
2159 return (0);
2160 /*
2161 * Some compat layers use SIGTHR and higher signals for
2162 * communication between different kernel threads of the same
2163 * process, so that they expect that it's always possible to
2164 * deliver them, even for suid applications where cr_cansignal() can
2165 * deny such ability for security consideration. It should be
2166 * pretty safe to do since the only way to create two processes
2167 * with the same p_leader is via rfork(2).
2168 */
2169 if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
2170 signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
2171 return (0);
2172
2173 return (cr_cansignal(td->td_ucred, p, signum));
2174 }
2175
2176 /*-
2177 * Determine whether td may reschedule p.
2178 * Returns: 0 for permitted, an errno value otherwise
2179 * Locks: Sufficient locks to protect various components of td and p
2180 * must be held. td must be curthread, and a lock must
2181 * be held for p.
2182 * References: td and p must be valid for the lifetime of the call
2183 */
2184 int
p_cansched(struct thread * td,struct proc * p)2185 p_cansched(struct thread *td, struct proc *p)
2186 {
2187 int error;
2188
2189 KASSERT(td == curthread, ("%s: td not curthread", __func__));
2190 PROC_LOCK_ASSERT(p, MA_OWNED);
2191 if (td->td_proc == p)
2192 return (0);
2193 if ((error = prison_check(td->td_ucred, p->p_ucred)))
2194 return (error);
2195 #ifdef MAC
2196 if ((error = mac_proc_check_sched(td->td_ucred, p)))
2197 return (error);
2198 #endif
2199 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2200 return (error);
2201
2202 if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
2203 td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
2204 error = priv_check(td, PRIV_SCHED_DIFFCRED);
2205 if (error)
2206 return (error);
2207 }
2208
2209 error = cr_can_tamper_with_subjail(td->td_ucred, p->p_ucred,
2210 PRIV_SCHED_DIFFJAIL);
2211 if (error)
2212 return (error);
2213
2214 return (0);
2215 }
2216
2217 /*
2218 * Handle getting or setting the prison's unprivileged_proc_debug
2219 * value.
2220 */
2221 static int
sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)2222 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
2223 {
2224 int error, val;
2225
2226 val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
2227 error = sysctl_handle_int(oidp, &val, 0, req);
2228 if (error != 0 || req->newptr == NULL)
2229 return (error);
2230 if (val != 0 && val != 1)
2231 return (EINVAL);
2232 prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
2233 return (0);
2234 }
2235
2236 /*
2237 * The 'unprivileged_proc_debug' flag may be used to disable a variety of
2238 * unprivileged inter-process debugging services, including some procfs
2239 * functionality, ptrace(), and ktrace(). In the past, inter-process
2240 * debugging has been involved in a variety of security problems, and sites
2241 * not requiring the service might choose to disable it when hardening
2242 * systems.
2243 */
2244 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
2245 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
2246 CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
2247 "Unprivileged processes may use process debugging facilities");
2248
2249 /*
2250 * Return true if the object owner/group ids are subset of the active
2251 * credentials.
2252 */
2253 bool
cr_xids_subset(struct ucred * active_cred,struct ucred * obj_cred)2254 cr_xids_subset(struct ucred *active_cred, struct ucred *obj_cred)
2255 {
2256 int i;
2257 bool grpsubset, uidsubset;
2258
2259 /*
2260 * Is p's group set a subset of td's effective group set? This
2261 * includes p's egid, group access list, rgid, and svgid.
2262 */
2263 grpsubset = true;
2264 for (i = 0; i < obj_cred->cr_ngroups; i++) {
2265 if (!groupmember(obj_cred->cr_groups[i], active_cred)) {
2266 grpsubset = false;
2267 break;
2268 }
2269 }
2270 grpsubset = grpsubset &&
2271 groupmember(obj_cred->cr_gid, active_cred) &&
2272 groupmember(obj_cred->cr_rgid, active_cred) &&
2273 groupmember(obj_cred->cr_svgid, active_cred);
2274
2275 /*
2276 * Are the uids present in obj_cred's credential equal to
2277 * active_cred's effective uid? This includes obj_cred's
2278 * euid, svuid, and ruid.
2279 */
2280 uidsubset = (active_cred->cr_uid == obj_cred->cr_uid &&
2281 active_cred->cr_uid == obj_cred->cr_svuid &&
2282 active_cred->cr_uid == obj_cred->cr_ruid);
2283
2284 return (uidsubset && grpsubset);
2285 }
2286
2287 /*-
2288 * Determine whether td may debug p.
2289 * Returns: 0 for permitted, an errno value otherwise
2290 * Locks: Sufficient locks to protect various components of td and p
2291 * must be held. td must be curthread, and a lock must
2292 * be held for p.
2293 * References: td and p must be valid for the lifetime of the call
2294 */
2295 int
p_candebug(struct thread * td,struct proc * p)2296 p_candebug(struct thread *td, struct proc *p)
2297 {
2298 int error;
2299
2300 KASSERT(td == curthread, ("%s: td not curthread", __func__));
2301 PROC_LOCK_ASSERT(p, MA_OWNED);
2302 if (td->td_proc == p)
2303 return (0);
2304 if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
2305 return (error);
2306 if ((error = prison_check(td->td_ucred, p->p_ucred)))
2307 return (error);
2308 #ifdef MAC
2309 if ((error = mac_proc_check_debug(td->td_ucred, p)))
2310 return (error);
2311 #endif
2312 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2313 return (error);
2314
2315 /*
2316 * If p's gids aren't a subset, or the uids aren't a subset,
2317 * or the credential has changed, require appropriate privilege
2318 * for td to debug p.
2319 */
2320 if (!cr_xids_subset(td->td_ucred, p->p_ucred)) {
2321 error = priv_check(td, PRIV_DEBUG_DIFFCRED);
2322 if (error)
2323 return (error);
2324 }
2325
2326 /*
2327 * Has the credential of the process changed since the last exec()?
2328 */
2329 if ((p->p_flag & P_SUGID) != 0) {
2330 error = priv_check(td, PRIV_DEBUG_SUGID);
2331 if (error)
2332 return (error);
2333 }
2334
2335 error = cr_can_tamper_with_subjail(td->td_ucred, p->p_ucred,
2336 PRIV_DEBUG_DIFFJAIL);
2337 if (error)
2338 return (error);
2339
2340 /* Can't trace init when securelevel > 0. */
2341 if (p == initproc) {
2342 error = securelevel_gt(td->td_ucred, 0);
2343 if (error)
2344 return (error);
2345 }
2346
2347 /*
2348 * Can't trace a process that's currently exec'ing.
2349 *
2350 * XXX: Note, this is not a security policy decision, it's a
2351 * basic correctness/functionality decision. Therefore, this check
2352 * should be moved to the caller's of p_candebug().
2353 */
2354 if ((p->p_flag & P_INEXEC) != 0)
2355 return (EBUSY);
2356
2357 /* Denied explicitly */
2358 if ((p->p_flag2 & P2_NOTRACE) != 0) {
2359 error = priv_check(td, PRIV_DEBUG_DENIED);
2360 if (error != 0)
2361 return (error);
2362 }
2363
2364 return (0);
2365 }
2366
2367 /*-
2368 * Determine whether the subject represented by cred can "see" a socket.
2369 * Returns: 0 for permitted, ENOENT otherwise.
2370 */
2371 int
cr_canseesocket(struct ucred * cred,struct socket * so)2372 cr_canseesocket(struct ucred *cred, struct socket *so)
2373 {
2374 int error;
2375
2376 error = prison_check(cred, so->so_cred);
2377 if (error)
2378 return (ENOENT);
2379 #ifdef MAC
2380 error = mac_socket_check_visible(cred, so);
2381 if (error)
2382 return (error);
2383 #endif
2384 if (cr_bsd_visible(cred, so->so_cred))
2385 return (ENOENT);
2386
2387 return (0);
2388 }
2389
2390 /*-
2391 * Determine whether td can wait for the exit of p.
2392 * Returns: 0 for permitted, an errno value otherwise
2393 * Locks: Sufficient locks to protect various components of td and p
2394 * must be held. td must be curthread, and a lock must
2395 * be held for p.
2396 * References: td and p must be valid for the lifetime of the call
2397
2398 */
2399 int
p_canwait(struct thread * td,struct proc * p)2400 p_canwait(struct thread *td, struct proc *p)
2401 {
2402 int error;
2403
2404 KASSERT(td == curthread, ("%s: td not curthread", __func__));
2405 PROC_LOCK_ASSERT(p, MA_OWNED);
2406 if ((error = prison_check(td->td_ucred, p->p_ucred)))
2407 return (error);
2408 #ifdef MAC
2409 if ((error = mac_proc_check_wait(td->td_ucred, p)))
2410 return (error);
2411 #endif
2412 #if 0
2413 /* XXXMAC: This could have odd effects on some shells. */
2414 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
2415 return (error);
2416 #endif
2417
2418 return (0);
2419 }
2420
2421 /*
2422 * Credential management.
2423 *
2424 * struct ucred objects are rarely allocated but gain and lose references all
2425 * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
2426 * a significant source of cache-line ping ponging. Common cases are worked
2427 * around by modifying thread-local counter instead if the cred to operate on
2428 * matches td_realucred.
2429 *
2430 * The counter is split into 2 parts:
2431 * - cr_users -- total count of all struct proc and struct thread objects
2432 * which have given cred in p_ucred and td_ucred respectively
2433 * - cr_ref -- the actual ref count, only valid if cr_users == 0
2434 *
2435 * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
2436 * the count reaches 0 the object is freeable.
2437 * If users > 0 and curthread->td_realucred == cred, then updates are performed
2438 * against td_ucredref.
2439 * In other cases updates are performed against cr_ref.
2440 *
2441 * Changing td_realucred into something else decrements cr_users and transfers
2442 * accumulated updates.
2443 */
2444 struct ucred *
crcowget(struct ucred * cr)2445 crcowget(struct ucred *cr)
2446 {
2447
2448 mtx_lock(&cr->cr_mtx);
2449 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2450 __func__, cr->cr_users, cr));
2451 cr->cr_users++;
2452 cr->cr_ref++;
2453 mtx_unlock(&cr->cr_mtx);
2454 return (cr);
2455 }
2456
2457 static struct ucred *
crunuse(struct thread * td)2458 crunuse(struct thread *td)
2459 {
2460 struct ucred *cr, *crold;
2461
2462 MPASS(td->td_realucred == td->td_ucred);
2463 cr = td->td_realucred;
2464 mtx_lock(&cr->cr_mtx);
2465 cr->cr_ref += td->td_ucredref;
2466 td->td_ucredref = 0;
2467 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2468 __func__, cr->cr_users, cr));
2469 cr->cr_users--;
2470 if (cr->cr_users == 0) {
2471 KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2472 __func__, cr->cr_ref, cr));
2473 crold = cr;
2474 } else {
2475 cr->cr_ref--;
2476 crold = NULL;
2477 }
2478 mtx_unlock(&cr->cr_mtx);
2479 td->td_realucred = NULL;
2480 return (crold);
2481 }
2482
2483 static void
crunusebatch(struct ucred * cr,u_int users,long ref)2484 crunusebatch(struct ucred *cr, u_int users, long ref)
2485 {
2486
2487 KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
2488 __func__, users, cr));
2489 mtx_lock(&cr->cr_mtx);
2490 KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
2491 __func__, cr->cr_users, users, cr));
2492 cr->cr_users -= users;
2493 cr->cr_ref += ref;
2494 cr->cr_ref -= users;
2495 if (cr->cr_users > 0) {
2496 mtx_unlock(&cr->cr_mtx);
2497 return;
2498 }
2499 KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2500 __func__, cr->cr_ref, cr));
2501 if (cr->cr_ref > 0) {
2502 mtx_unlock(&cr->cr_mtx);
2503 return;
2504 }
2505 crfree_final(cr);
2506 }
2507
2508 void
crcowfree(struct thread * td)2509 crcowfree(struct thread *td)
2510 {
2511 struct ucred *cr;
2512
2513 cr = crunuse(td);
2514 if (cr != NULL)
2515 crfree(cr);
2516 }
2517
2518 struct ucred *
crcowsync(void)2519 crcowsync(void)
2520 {
2521 struct thread *td;
2522 struct proc *p;
2523 struct ucred *crnew, *crold;
2524
2525 td = curthread;
2526 p = td->td_proc;
2527 PROC_LOCK_ASSERT(p, MA_OWNED);
2528
2529 MPASS(td->td_realucred == td->td_ucred);
2530 if (td->td_realucred == p->p_ucred)
2531 return (NULL);
2532
2533 crnew = crcowget(p->p_ucred);
2534 crold = crunuse(td);
2535 td->td_realucred = crnew;
2536 td->td_ucred = td->td_realucred;
2537 return (crold);
2538 }
2539
2540 /*
2541 * Batching.
2542 */
2543 void
credbatch_add(struct credbatch * crb,struct thread * td)2544 credbatch_add(struct credbatch *crb, struct thread *td)
2545 {
2546 struct ucred *cr;
2547
2548 MPASS(td->td_realucred != NULL);
2549 MPASS(td->td_realucred == td->td_ucred);
2550 MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
2551 cr = td->td_realucred;
2552 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2553 __func__, cr->cr_users, cr));
2554 if (crb->cred != cr) {
2555 if (crb->users > 0) {
2556 MPASS(crb->cred != NULL);
2557 crunusebatch(crb->cred, crb->users, crb->ref);
2558 crb->users = 0;
2559 crb->ref = 0;
2560 }
2561 }
2562 crb->cred = cr;
2563 crb->users++;
2564 crb->ref += td->td_ucredref;
2565 td->td_ucredref = 0;
2566 td->td_realucred = NULL;
2567 }
2568
2569 void
credbatch_final(struct credbatch * crb)2570 credbatch_final(struct credbatch *crb)
2571 {
2572
2573 MPASS(crb->cred != NULL);
2574 MPASS(crb->users > 0);
2575 crunusebatch(crb->cred, crb->users, crb->ref);
2576 }
2577
2578 /*
2579 * Allocate a zeroed cred structure.
2580 */
2581 struct ucred *
crget(void)2582 crget(void)
2583 {
2584 struct ucred *cr;
2585
2586 cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2587 mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2588 cr->cr_ref = 1;
2589 #ifdef AUDIT
2590 audit_cred_init(cr);
2591 #endif
2592 #ifdef MAC
2593 mac_cred_init(cr);
2594 #endif
2595 cr->cr_groups = cr->cr_smallgroups;
2596 cr->cr_agroups = nitems(cr->cr_smallgroups);
2597 return (cr);
2598 }
2599
2600 /*
2601 * Claim another reference to a ucred structure.
2602 */
2603 struct ucred *
crhold(struct ucred * cr)2604 crhold(struct ucred *cr)
2605 {
2606 struct thread *td;
2607
2608 td = curthread;
2609 if (__predict_true(td->td_realucred == cr)) {
2610 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2611 __func__, cr->cr_users, cr));
2612 td->td_ucredref++;
2613 return (cr);
2614 }
2615 mtx_lock(&cr->cr_mtx);
2616 cr->cr_ref++;
2617 mtx_unlock(&cr->cr_mtx);
2618 return (cr);
2619 }
2620
2621 /*
2622 * Free a cred structure. Throws away space when ref count gets to 0.
2623 */
2624 void
crfree(struct ucred * cr)2625 crfree(struct ucred *cr)
2626 {
2627 struct thread *td;
2628
2629 td = curthread;
2630 if (__predict_true(td->td_realucred == cr)) {
2631 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2632 __func__, cr->cr_users, cr));
2633 td->td_ucredref--;
2634 return;
2635 }
2636 mtx_lock(&cr->cr_mtx);
2637 KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2638 __func__, cr->cr_users, cr));
2639 cr->cr_ref--;
2640 if (cr->cr_users > 0) {
2641 mtx_unlock(&cr->cr_mtx);
2642 return;
2643 }
2644 KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2645 __func__, cr->cr_ref, cr));
2646 if (cr->cr_ref > 0) {
2647 mtx_unlock(&cr->cr_mtx);
2648 return;
2649 }
2650 crfree_final(cr);
2651 }
2652
2653 static void
crfree_final(struct ucred * cr)2654 crfree_final(struct ucred *cr)
2655 {
2656
2657 KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2658 __func__, cr->cr_users, cr));
2659 KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2660 __func__, cr->cr_ref, cr));
2661
2662 /*
2663 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2664 * credential, but don't allocate a uidinfo structure.
2665 */
2666 if (cr->cr_uidinfo != NULL)
2667 uifree(cr->cr_uidinfo);
2668 if (cr->cr_ruidinfo != NULL)
2669 uifree(cr->cr_ruidinfo);
2670 if (cr->cr_prison != NULL)
2671 prison_free(cr->cr_prison);
2672 if (cr->cr_loginclass != NULL)
2673 loginclass_free(cr->cr_loginclass);
2674 #ifdef AUDIT
2675 audit_cred_destroy(cr);
2676 #endif
2677 #ifdef MAC
2678 mac_cred_destroy(cr);
2679 #endif
2680 mtx_destroy(&cr->cr_mtx);
2681 if (cr->cr_groups != cr->cr_smallgroups)
2682 free(cr->cr_groups, M_CRED);
2683 free(cr, M_CRED);
2684 }
2685
2686 /*
2687 * Copy a ucred's contents from a template. Does not block.
2688 */
2689 void
crcopy(struct ucred * dest,struct ucred * src)2690 crcopy(struct ucred *dest, struct ucred *src)
2691 {
2692
2693 bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2694 (unsigned)((caddr_t)&src->cr_endcopy -
2695 (caddr_t)&src->cr_startcopy));
2696 dest->cr_flags = src->cr_flags;
2697 crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2698 uihold(dest->cr_uidinfo);
2699 uihold(dest->cr_ruidinfo);
2700 prison_hold(dest->cr_prison);
2701 loginclass_hold(dest->cr_loginclass);
2702 #ifdef AUDIT
2703 audit_cred_copy(src, dest);
2704 #endif
2705 #ifdef MAC
2706 mac_cred_copy(src, dest);
2707 #endif
2708 }
2709
2710 /*
2711 * Dup cred struct to a new held one.
2712 */
2713 struct ucred *
crdup(struct ucred * cr)2714 crdup(struct ucred *cr)
2715 {
2716 struct ucred *newcr;
2717
2718 newcr = crget();
2719 crcopy(newcr, cr);
2720 return (newcr);
2721 }
2722
2723 /*
2724 * Fill in a struct xucred based on a struct ucred.
2725 */
2726 void
cru2x(struct ucred * cr,struct xucred * xcr)2727 cru2x(struct ucred *cr, struct xucred *xcr)
2728 {
2729 int ngroups;
2730
2731 bzero(xcr, sizeof(*xcr));
2732 xcr->cr_version = XUCRED_VERSION;
2733 xcr->cr_uid = cr->cr_uid;
2734 xcr->cr_gid = cr->cr_gid;
2735
2736 /*
2737 * We use a union to alias cr_gid to cr_groups[0] in the xucred, so
2738 * this is kind of ugly; cr_ngroups still includes the egid for our
2739 * purposes to avoid bumping the xucred version.
2740 */
2741 ngroups = MIN(cr->cr_ngroups + 1, nitems(xcr->cr_groups));
2742 xcr->cr_ngroups = ngroups;
2743 bcopy(cr->cr_groups, xcr->cr_sgroups,
2744 (ngroups - 1) * sizeof(*cr->cr_groups));
2745 }
2746
2747 void
cru2xt(struct thread * td,struct xucred * xcr)2748 cru2xt(struct thread *td, struct xucred *xcr)
2749 {
2750
2751 cru2x(td->td_ucred, xcr);
2752 xcr->cr_pid = td->td_proc->p_pid;
2753 }
2754
2755 /*
2756 * Change process credentials.
2757 *
2758 * Callers are responsible for providing the reference for passed credentials
2759 * and for freeing old ones. Calls chgproccnt() to correctly account the
2760 * current process to the proper real UID, if the latter has changed. Returns
2761 * whether the operation was successful. Failure can happen only on
2762 * 'enforce_proc_lim' being true and if no new process can be accounted to the
2763 * new real UID because of the current limit (see the inner comment for more
2764 * details) and the caller does not have privilege (PRIV_PROC_LIMIT) to override
2765 * that.
2766 */
2767 static bool
_proc_set_cred(struct proc * p,struct ucred * newcred,bool enforce_proc_lim)2768 _proc_set_cred(struct proc *p, struct ucred *newcred, bool enforce_proc_lim)
2769 {
2770 struct ucred *const oldcred = p->p_ucred;
2771
2772 MPASS(oldcred != NULL);
2773 PROC_LOCK_ASSERT(p, MA_OWNED);
2774 KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2775 __func__, newcred->cr_users, newcred));
2776 KASSERT(newcred->cr_ref == 1, ("%s: ref %ld not 1 on cred %p",
2777 __func__, newcred->cr_ref, newcred));
2778
2779 if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo) {
2780 /*
2781 * XXXOC: This check is flawed but nonetheless the best we can
2782 * currently do as we don't really track limits per UID contrary
2783 * to what we pretend in setrlimit(2). Until this is reworked,
2784 * we just check here that the number of processes for our new
2785 * real UID doesn't exceed this process' process number limit
2786 * (which is meant to be associated with the current real UID).
2787 */
2788 const int proccnt_changed = chgproccnt(newcred->cr_ruidinfo, 1,
2789 enforce_proc_lim ? lim_cur_proc(p, RLIMIT_NPROC) : 0);
2790
2791 if (!proccnt_changed) {
2792 if (priv_check_cred(oldcred, PRIV_PROC_LIMIT) != 0)
2793 return (false);
2794 (void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2795 }
2796 }
2797
2798 mtx_lock(&oldcred->cr_mtx);
2799 KASSERT(oldcred->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2800 __func__, oldcred->cr_users, oldcred));
2801 oldcred->cr_users--;
2802 mtx_unlock(&oldcred->cr_mtx);
2803 p->p_ucred = newcred;
2804 newcred->cr_users = 1;
2805 PROC_UPDATE_COW(p);
2806 if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo)
2807 (void)chgproccnt(oldcred->cr_ruidinfo, -1, 0);
2808 return (true);
2809 }
2810
2811 void
proc_set_cred(struct proc * p,struct ucred * newcred)2812 proc_set_cred(struct proc *p, struct ucred *newcred)
2813 {
2814 bool success __diagused = _proc_set_cred(p, newcred, false);
2815
2816 MPASS(success);
2817 }
2818
2819 bool
proc_set_cred_enforce_proc_lim(struct proc * p,struct ucred * newcred)2820 proc_set_cred_enforce_proc_lim(struct proc *p, struct ucred *newcred)
2821 {
2822 return (_proc_set_cred(p, newcred, true));
2823 }
2824
2825 void
proc_unset_cred(struct proc * p,bool decrement_proc_count)2826 proc_unset_cred(struct proc *p, bool decrement_proc_count)
2827 {
2828 struct ucred *cr;
2829
2830 MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2831 cr = p->p_ucred;
2832 p->p_ucred = NULL;
2833 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2834 __func__, cr->cr_users, cr));
2835 mtx_lock(&cr->cr_mtx);
2836 cr->cr_users--;
2837 if (cr->cr_users == 0)
2838 KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2839 __func__, cr->cr_ref, cr));
2840 mtx_unlock(&cr->cr_mtx);
2841 if (decrement_proc_count)
2842 (void)chgproccnt(cr->cr_ruidinfo, -1, 0);
2843 crfree(cr);
2844 }
2845
2846 struct ucred *
crcopysafe(struct proc * p,struct ucred * cr)2847 crcopysafe(struct proc *p, struct ucred *cr)
2848 {
2849 struct ucred *oldcred;
2850 int groups;
2851
2852 PROC_LOCK_ASSERT(p, MA_OWNED);
2853
2854 oldcred = p->p_ucred;
2855 while (cr->cr_agroups < oldcred->cr_ngroups) {
2856 groups = oldcred->cr_ngroups;
2857 PROC_UNLOCK(p);
2858 crextend(cr, groups);
2859 PROC_LOCK(p);
2860 oldcred = p->p_ucred;
2861 }
2862 crcopy(cr, oldcred);
2863
2864 return (oldcred);
2865 }
2866
2867 /*
2868 * Extend the passed-in credentials to hold n groups.
2869 *
2870 * Must not be called after groups have been set.
2871 */
2872 void
crextend(struct ucred * cr,int n)2873 crextend(struct ucred *cr, int n)
2874 {
2875 size_t nbytes;
2876
2877 MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2878 MPASS2((cr->cr_flags & CRED_FLAG_GROUPSET) == 0,
2879 "groups on 'cr' already set!");
2880 groups_check_positive_len(n);
2881 groups_check_max_len(n);
2882
2883 if (n <= cr->cr_agroups)
2884 return;
2885
2886 nbytes = n * sizeof(gid_t);
2887 if (nbytes < n)
2888 panic("Too many groups (memory size overflow)! "
2889 "Computation of 'kern.ngroups' should have prevented this, "
2890 "please fix it. In the meantime, reduce 'kern.ngroups'.");
2891
2892 /*
2893 * We allocate a power of 2 larger than 'nbytes', except when that
2894 * exceeds PAGE_SIZE, in which case we allocate the right multiple of
2895 * pages. We assume PAGE_SIZE is a power of 2 (the call to roundup2()
2896 * below) but do not need to for sizeof(gid_t).
2897 */
2898 if (nbytes < PAGE_SIZE) {
2899 if (!powerof2(nbytes))
2900 /* fls*() return a bit index starting at 1. */
2901 nbytes = 1 << flsl(nbytes);
2902 } else
2903 nbytes = roundup2(nbytes, PAGE_SIZE);
2904
2905 /* Free the old array. */
2906 if (cr->cr_groups != cr->cr_smallgroups)
2907 free(cr->cr_groups, M_CRED);
2908
2909 cr->cr_groups = malloc(nbytes, M_CRED, M_WAITOK | M_ZERO);
2910 cr->cr_agroups = nbytes / sizeof(gid_t);
2911 }
2912
2913 /*
2914 * Normalizes a set of groups to be applied to a 'struct ucred'.
2915 *
2916 * Normalization ensures that the supplementary groups are sorted in ascending
2917 * order and do not contain duplicates. This allows group_is_supplementary() to
2918 * do a binary search.
2919 */
2920 static void
groups_normalize(int * ngrp,gid_t * groups)2921 groups_normalize(int *ngrp, gid_t *groups)
2922 {
2923 gid_t prev_g;
2924 int ins_idx;
2925
2926 groups_check_positive_len(*ngrp);
2927 groups_check_max_len(*ngrp);
2928
2929 if (*ngrp <= 1)
2930 return;
2931
2932 qsort(groups, *ngrp, sizeof(*groups), gidp_cmp);
2933
2934 /* Remove duplicates. */
2935 prev_g = groups[0];
2936 ins_idx = 1;
2937 for (int i = ins_idx; i < *ngrp; ++i) {
2938 const gid_t g = groups[i];
2939
2940 if (g != prev_g) {
2941 if (i != ins_idx)
2942 groups[ins_idx] = g;
2943 ++ins_idx;
2944 prev_g = g;
2945 }
2946 }
2947 *ngrp = ins_idx;
2948
2949 groups_check_normalized(*ngrp, groups);
2950 }
2951
2952 /*
2953 * Internal function copying groups into a credential.
2954 *
2955 * 'ngrp' must be strictly positive. Either the passed 'groups' array must have
2956 * been normalized in advance (see groups_normalize()), else it must be so
2957 * before the structure is to be used again.
2958 *
2959 * This function is suitable to be used under any lock (it doesn't take any lock
2960 * itself nor sleep, and in particular doesn't allocate memory). crextend()
2961 * must have been called beforehand to ensure sufficient space is available.
2962 * See also crsetgroups(), which handles that.
2963 */
2964 static void
crsetgroups_internal(struct ucred * cr,int ngrp,const gid_t * groups)2965 crsetgroups_internal(struct ucred *cr, int ngrp, const gid_t *groups)
2966 {
2967
2968 MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2969 MPASS2(cr->cr_agroups >= ngrp, "'cr_agroups' too small");
2970 groups_check_positive_len(ngrp);
2971
2972 bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2973 cr->cr_ngroups = ngrp;
2974 cr->cr_flags |= CRED_FLAG_GROUPSET;
2975 }
2976
2977 /*
2978 * Copy groups in to a credential after expanding it if required.
2979 *
2980 * May sleep in order to allocate memory (except if, e.g., crextend() was called
2981 * before with 'ngrp' or greater). Truncates the list to 'ngroups_max' if
2982 * it is too large. Array 'groups' doesn't need to be sorted. 'ngrp' must be
2983 * positive.
2984 */
2985 void
crsetgroups(struct ucred * cr,int ngrp,const gid_t * groups)2986 crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups)
2987 {
2988
2989 if (ngrp > ngroups_max)
2990 ngrp = ngroups_max;
2991 cr->cr_ngroups = 0;
2992 if (ngrp == 0) {
2993 cr->cr_flags |= CRED_FLAG_GROUPSET;
2994 return;
2995 }
2996
2997 /*
2998 * crextend() asserts that groups are not set, as it may allocate a new
2999 * backing storage without copying the content of the old one. Since we
3000 * are going to install a completely new set anyway, signal that we
3001 * consider the old ones thrown away.
3002 */
3003 cr->cr_flags &= ~CRED_FLAG_GROUPSET;
3004
3005 crextend(cr, ngrp);
3006 crsetgroups_internal(cr, ngrp, groups);
3007 groups_normalize(&cr->cr_ngroups, cr->cr_groups);
3008 }
3009
3010 /*
3011 * Same as crsetgroups() but sets the effective GID as well.
3012 *
3013 * This function ensures that an effective GID is always present in credentials.
3014 * An empty array will only set the effective GID to 'default_egid', while
3015 * a non-empty array will peel off groups[0] to set as the effective GID and use
3016 * the remainder, if any, as supplementary groups.
3017 */
3018 void
crsetgroups_and_egid(struct ucred * cr,int ngrp,const gid_t * groups,const gid_t default_egid)3019 crsetgroups_and_egid(struct ucred *cr, int ngrp, const gid_t *groups,
3020 const gid_t default_egid)
3021 {
3022 if (ngrp == 0) {
3023 cr->cr_gid = default_egid;
3024 cr->cr_ngroups = 0;
3025 cr->cr_flags |= CRED_FLAG_GROUPSET;
3026 return;
3027 }
3028
3029 crsetgroups(cr, ngrp - 1, groups + 1);
3030 cr->cr_gid = groups[0];
3031 }
3032
3033 /*
3034 * Get login name, if available.
3035 */
3036 #ifndef _SYS_SYSPROTO_H_
3037 struct getlogin_args {
3038 char *namebuf;
3039 u_int namelen;
3040 };
3041 #endif
3042 /* ARGSUSED */
3043 int
sys_getlogin(struct thread * td,struct getlogin_args * uap)3044 sys_getlogin(struct thread *td, struct getlogin_args *uap)
3045 {
3046 char login[MAXLOGNAME];
3047 struct proc *p = td->td_proc;
3048 size_t len;
3049
3050 if (uap->namelen > MAXLOGNAME)
3051 uap->namelen = MAXLOGNAME;
3052 PROC_LOCK(p);
3053 SESS_LOCK(p->p_session);
3054 len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
3055 SESS_UNLOCK(p->p_session);
3056 PROC_UNLOCK(p);
3057 if (len > uap->namelen)
3058 return (ERANGE);
3059 return (copyout(login, uap->namebuf, len));
3060 }
3061
3062 /*
3063 * Set login name.
3064 */
3065 #ifndef _SYS_SYSPROTO_H_
3066 struct setlogin_args {
3067 char *namebuf;
3068 };
3069 #endif
3070 /* ARGSUSED */
3071 int
sys_setlogin(struct thread * td,struct setlogin_args * uap)3072 sys_setlogin(struct thread *td, struct setlogin_args *uap)
3073 {
3074 struct proc *p = td->td_proc;
3075 int error;
3076 char logintmp[MAXLOGNAME];
3077
3078 CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
3079
3080 error = priv_check(td, PRIV_PROC_SETLOGIN);
3081 if (error)
3082 return (error);
3083 error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
3084 if (error != 0) {
3085 if (error == ENAMETOOLONG)
3086 error = EINVAL;
3087 return (error);
3088 }
3089 AUDIT_ARG_LOGIN(logintmp);
3090 PROC_LOCK(p);
3091 SESS_LOCK(p->p_session);
3092 strcpy(p->p_session->s_login, logintmp);
3093 SESS_UNLOCK(p->p_session);
3094 PROC_UNLOCK(p);
3095 return (0);
3096 }
3097
3098 void
setsugid(struct proc * p)3099 setsugid(struct proc *p)
3100 {
3101
3102 PROC_LOCK_ASSERT(p, MA_OWNED);
3103 p->p_flag |= P_SUGID;
3104 }
3105
3106 /*-
3107 * Change a process's effective uid.
3108 * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
3109 * References: newcred must be an exclusive credential reference for the
3110 * duration of the call.
3111 */
3112 void
change_euid(struct ucred * newcred,struct uidinfo * euip)3113 change_euid(struct ucred *newcred, struct uidinfo *euip)
3114 {
3115
3116 newcred->cr_uid = euip->ui_uid;
3117 uihold(euip);
3118 uifree(newcred->cr_uidinfo);
3119 newcred->cr_uidinfo = euip;
3120 }
3121
3122 /*-
3123 * Change a process's effective gid.
3124 * Side effects: newcred->cr_gid will be modified.
3125 * References: newcred must be an exclusive credential reference for the
3126 * duration of the call.
3127 */
3128 void
change_egid(struct ucred * newcred,gid_t egid)3129 change_egid(struct ucred *newcred, gid_t egid)
3130 {
3131
3132 newcred->cr_gid = egid;
3133 }
3134
3135 /*-
3136 * Change a process's real uid.
3137 * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
3138 * will be updated.
3139 * References: newcred must be an exclusive credential reference for the
3140 * duration of the call.
3141 */
3142 void
change_ruid(struct ucred * newcred,struct uidinfo * ruip)3143 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
3144 {
3145
3146 newcred->cr_ruid = ruip->ui_uid;
3147 uihold(ruip);
3148 uifree(newcred->cr_ruidinfo);
3149 newcred->cr_ruidinfo = ruip;
3150 }
3151
3152 /*-
3153 * Change a process's real gid.
3154 * Side effects: newcred->cr_rgid will be updated.
3155 * References: newcred must be an exclusive credential reference for the
3156 * duration of the call.
3157 */
3158 void
change_rgid(struct ucred * newcred,gid_t rgid)3159 change_rgid(struct ucred *newcred, gid_t rgid)
3160 {
3161
3162 newcred->cr_rgid = rgid;
3163 }
3164
3165 /*-
3166 * Change a process's saved uid.
3167 * Side effects: newcred->cr_svuid will be updated.
3168 * References: newcred must be an exclusive credential reference for the
3169 * duration of the call.
3170 */
3171 void
change_svuid(struct ucred * newcred,uid_t svuid)3172 change_svuid(struct ucred *newcred, uid_t svuid)
3173 {
3174
3175 newcred->cr_svuid = svuid;
3176 }
3177
3178 /*-
3179 * Change a process's saved gid.
3180 * Side effects: newcred->cr_svgid will be updated.
3181 * References: newcred must be an exclusive credential reference for the
3182 * duration of the call.
3183 */
3184 void
change_svgid(struct ucred * newcred,gid_t svgid)3185 change_svgid(struct ucred *newcred, gid_t svgid)
3186 {
3187
3188 newcred->cr_svgid = svgid;
3189 }
3190
3191 bool allow_ptrace = true;
3192 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
3193 &allow_ptrace, 0,
3194 "Deny ptrace(2) use by returning ENOSYS");
3195