xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGenTypes/LowLevelType.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //== llvm/CodeGenTypes/LowLevelType.h -------------------------- -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Implement a low-level type suitable for MachineInstr level instruction
10 /// selection.
11 ///
12 /// For a type attached to a MachineInstr, we only care about 2 details: total
13 /// size and the number of vector lanes (if any). Accordingly, there are 4
14 /// possible valid type-kinds:
15 ///
16 ///    * `sN` for scalars and aggregates
17 ///    * `<N x sM>` for vectors, which must have at least 2 elements.
18 ///    * `pN` for pointers
19 ///
20 /// Other information required for correct selection is expected to be carried
21 /// by the opcode, or non-type flags. For example the distinction between G_ADD
22 /// and G_FADD for int/float or fast-math flags.
23 ///
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_CODEGEN_LOWLEVELTYPE_H
27 #define LLVM_CODEGEN_LOWLEVELTYPE_H
28 
29 #include "llvm/ADT/DenseMapInfo.h"
30 #include "llvm/CodeGenTypes/MachineValueType.h"
31 #include "llvm/Support/Debug.h"
32 #include <cassert>
33 
34 namespace llvm {
35 
36 class Type;
37 class raw_ostream;
38 
39 class LLT {
40 public:
41   /// Get a low-level scalar or aggregate "bag of bits".
scalar(unsigned SizeInBits)42   static constexpr LLT scalar(unsigned SizeInBits) {
43     return LLT{/*isPointer=*/false, /*isVector=*/false, /*isScalar=*/true,
44                ElementCount::getFixed(0), SizeInBits,
45                /*AddressSpace=*/0};
46   }
47 
48   /// Get a low-level token; just a scalar with zero bits (or no size).
token()49   static constexpr LLT token() {
50     return LLT{/*isPointer=*/false, /*isVector=*/false,
51                /*isScalar=*/true,   ElementCount::getFixed(0),
52                /*SizeInBits=*/0,
53                /*AddressSpace=*/0};
54   }
55 
56   /// Get a low-level pointer in the given address space.
pointer(unsigned AddressSpace,unsigned SizeInBits)57   static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits) {
58     assert(SizeInBits > 0 && "invalid pointer size");
59     return LLT{/*isPointer=*/true, /*isVector=*/false, /*isScalar=*/false,
60                ElementCount::getFixed(0), SizeInBits, AddressSpace};
61   }
62 
63   /// Get a low-level vector of some number of elements and element width.
vector(ElementCount EC,unsigned ScalarSizeInBits)64   static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits) {
65     assert(!EC.isScalar() && "invalid number of vector elements");
66     return LLT{/*isPointer=*/false, /*isVector=*/true, /*isScalar=*/false,
67                EC, ScalarSizeInBits, /*AddressSpace=*/0};
68   }
69 
70   /// Get a low-level vector of some number of elements and element type.
vector(ElementCount EC,LLT ScalarTy)71   static constexpr LLT vector(ElementCount EC, LLT ScalarTy) {
72     assert(!EC.isScalar() && "invalid number of vector elements");
73     assert(!ScalarTy.isVector() && "invalid vector element type");
74     return LLT{ScalarTy.isPointer(),
75                /*isVector=*/true,
76                /*isScalar=*/false,
77                EC,
78                ScalarTy.getSizeInBits().getFixedValue(),
79                ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
80   }
81 
82   /// Get a 16-bit IEEE half value.
83   /// TODO: Add IEEE semantics to type - This currently returns a simple `scalar(16)`.
float16()84   static constexpr LLT float16() {
85     return scalar(16);
86   }
87 
88   /// Get a 32-bit IEEE float value.
float32()89   static constexpr LLT float32() {
90     return scalar(32);
91   }
92 
93   /// Get a 64-bit IEEE double value.
float64()94   static constexpr LLT float64() {
95     return scalar(64);
96   }
97 
98   /// Get a low-level fixed-width vector of some number of elements and element
99   /// width.
fixed_vector(unsigned NumElements,unsigned ScalarSizeInBits)100   static constexpr LLT fixed_vector(unsigned NumElements,
101                                     unsigned ScalarSizeInBits) {
102     return vector(ElementCount::getFixed(NumElements), ScalarSizeInBits);
103   }
104 
105   /// Get a low-level fixed-width vector of some number of elements and element
106   /// type.
fixed_vector(unsigned NumElements,LLT ScalarTy)107   static constexpr LLT fixed_vector(unsigned NumElements, LLT ScalarTy) {
108     return vector(ElementCount::getFixed(NumElements), ScalarTy);
109   }
110 
111   /// Get a low-level scalable vector of some number of elements and element
112   /// width.
scalable_vector(unsigned MinNumElements,unsigned ScalarSizeInBits)113   static constexpr LLT scalable_vector(unsigned MinNumElements,
114                                        unsigned ScalarSizeInBits) {
115     return vector(ElementCount::getScalable(MinNumElements), ScalarSizeInBits);
116   }
117 
118   /// Get a low-level scalable vector of some number of elements and element
119   /// type.
scalable_vector(unsigned MinNumElements,LLT ScalarTy)120   static constexpr LLT scalable_vector(unsigned MinNumElements, LLT ScalarTy) {
121     return vector(ElementCount::getScalable(MinNumElements), ScalarTy);
122   }
123 
scalarOrVector(ElementCount EC,LLT ScalarTy)124   static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy) {
125     return EC.isScalar() ? ScalarTy : LLT::vector(EC, ScalarTy);
126   }
127 
scalarOrVector(ElementCount EC,uint64_t ScalarSize)128   static constexpr LLT scalarOrVector(ElementCount EC, uint64_t ScalarSize) {
129     assert(ScalarSize <= std::numeric_limits<unsigned>::max() &&
130            "Not enough bits in LLT to represent size");
131     return scalarOrVector(EC, LLT::scalar(static_cast<unsigned>(ScalarSize)));
132   }
133 
LLT(bool isPointer,bool isVector,bool isScalar,ElementCount EC,uint64_t SizeInBits,unsigned AddressSpace)134   explicit constexpr LLT(bool isPointer, bool isVector, bool isScalar,
135                          ElementCount EC, uint64_t SizeInBits,
136                          unsigned AddressSpace)
137       : LLT() {
138     init(isPointer, isVector, isScalar, EC, SizeInBits, AddressSpace);
139   }
LLT()140   explicit constexpr LLT()
141       : IsScalar(false), IsPointer(false), IsVector(false), RawData(0) {}
142 
143   explicit LLT(MVT VT);
144 
isValid()145   constexpr bool isValid() const { return IsScalar || RawData != 0; }
isScalar()146   constexpr bool isScalar() const { return IsScalar; }
isToken()147   constexpr bool isToken() const { return IsScalar && RawData == 0; };
isVector()148   constexpr bool isVector() const { return isValid() && IsVector; }
isPointer()149   constexpr bool isPointer() const {
150     return isValid() && IsPointer && !IsVector;
151   }
isPointerVector()152   constexpr bool isPointerVector() const { return IsPointer && isVector(); }
isPointerOrPointerVector()153   constexpr bool isPointerOrPointerVector() const {
154     return IsPointer && isValid();
155   }
156 
157   /// Returns the number of elements in a vector LLT. Must only be called on
158   /// vector types.
getNumElements()159   constexpr uint16_t getNumElements() const {
160     if (isScalable())
161       llvm::reportInvalidSizeRequest(
162           "Possible incorrect use of LLT::getNumElements() for "
163           "scalable vector. Scalable flag may be dropped, use "
164           "LLT::getElementCount() instead");
165     return getElementCount().getKnownMinValue();
166   }
167 
168   /// Returns true if the LLT is a scalable vector. Must only be called on
169   /// vector types.
isScalable()170   constexpr bool isScalable() const {
171     assert(isVector() && "Expected a vector type");
172     return IsPointer ? getFieldValue(PointerVectorScalableFieldInfo)
173                      : getFieldValue(VectorScalableFieldInfo);
174   }
175 
176   /// Returns true if the LLT is a fixed vector. Returns false otherwise, even
177   /// if the LLT is not a vector type.
isFixedVector()178   constexpr bool isFixedVector() const { return isVector() && !isScalable(); }
179 
180   /// Returns true if the LLT is a scalable vector. Returns false otherwise,
181   /// even if the LLT is not a vector type.
isScalableVector()182   constexpr bool isScalableVector() const { return isVector() && isScalable(); }
183 
getElementCount()184   constexpr ElementCount getElementCount() const {
185     assert(IsVector && "cannot get number of elements on scalar/aggregate");
186     return ElementCount::get(IsPointer
187                                  ? getFieldValue(PointerVectorElementsFieldInfo)
188                                  : getFieldValue(VectorElementsFieldInfo),
189                              isScalable());
190   }
191 
192   /// Returns the total size of the type. Must only be called on sized types.
getSizeInBits()193   constexpr TypeSize getSizeInBits() const {
194     if (isPointer() || isScalar())
195       return TypeSize::getFixed(getScalarSizeInBits());
196     auto EC = getElementCount();
197     return TypeSize(getScalarSizeInBits() * EC.getKnownMinValue(),
198                     EC.isScalable());
199   }
200 
201   /// Returns the total size of the type in bytes, i.e. number of whole bytes
202   /// needed to represent the size in bits. Must only be called on sized types.
getSizeInBytes()203   constexpr TypeSize getSizeInBytes() const {
204     TypeSize BaseSize = getSizeInBits();
205     return {(BaseSize.getKnownMinValue() + 7) / 8, BaseSize.isScalable()};
206   }
207 
getScalarType()208   constexpr LLT getScalarType() const {
209     return isVector() ? getElementType() : *this;
210   }
211 
212   /// If this type is a vector, return a vector with the same number of elements
213   /// but the new element type. Otherwise, return the new element type.
changeElementType(LLT NewEltTy)214   constexpr LLT changeElementType(LLT NewEltTy) const {
215     return isVector() ? LLT::vector(getElementCount(), NewEltTy) : NewEltTy;
216   }
217 
218   /// If this type is a vector, return a vector with the same number of elements
219   /// but the new element size. Otherwise, return the new element type. Invalid
220   /// for pointer types. For pointer types, use changeElementType.
changeElementSize(unsigned NewEltSize)221   constexpr LLT changeElementSize(unsigned NewEltSize) const {
222     assert(!isPointerOrPointerVector() &&
223            "invalid to directly change element size for pointers");
224     return isVector() ? LLT::vector(getElementCount(), NewEltSize)
225                       : LLT::scalar(NewEltSize);
226   }
227 
228   /// Return a vector or scalar with the same element type and the new element
229   /// count.
changeElementCount(ElementCount EC)230   constexpr LLT changeElementCount(ElementCount EC) const {
231     return LLT::scalarOrVector(EC, getScalarType());
232   }
233 
234   /// Return a type that is \p Factor times smaller. Reduces the number of
235   /// elements if this is a vector, or the bitwidth for scalar/pointers. Does
236   /// not attempt to handle cases that aren't evenly divisible.
divide(int Factor)237   constexpr LLT divide(int Factor) const {
238     assert(Factor != 1);
239     assert((!isScalar() || getScalarSizeInBits() != 0) &&
240            "cannot divide scalar of size zero");
241     if (isVector()) {
242       assert(getElementCount().isKnownMultipleOf(Factor));
243       return scalarOrVector(getElementCount().divideCoefficientBy(Factor),
244                             getElementType());
245     }
246 
247     assert(getScalarSizeInBits() % Factor == 0);
248     return scalar(getScalarSizeInBits() / Factor);
249   }
250 
251   /// Produce a vector type that is \p Factor times bigger, preserving the
252   /// element type. For a scalar or pointer, this will produce a new vector with
253   /// \p Factor elements.
multiplyElements(int Factor)254   constexpr LLT multiplyElements(int Factor) const {
255     if (isVector()) {
256       return scalarOrVector(getElementCount().multiplyCoefficientBy(Factor),
257                             getElementType());
258     }
259 
260     return fixed_vector(Factor, *this);
261   }
262 
isByteSized()263   constexpr bool isByteSized() const {
264     return getSizeInBits().isKnownMultipleOf(8);
265   }
266 
getScalarSizeInBits()267   constexpr unsigned getScalarSizeInBits() const {
268     if (IsScalar)
269       return getFieldValue(ScalarSizeFieldInfo);
270     if (IsVector) {
271       if (!IsPointer)
272         return getFieldValue(VectorSizeFieldInfo);
273       else
274         return getFieldValue(PointerVectorSizeFieldInfo);
275     }
276     assert(IsPointer && "unexpected LLT");
277     return getFieldValue(PointerSizeFieldInfo);
278   }
279 
getAddressSpace()280   constexpr unsigned getAddressSpace() const {
281     assert(RawData != 0 && "Invalid Type");
282     assert(IsPointer && "cannot get address space of non-pointer type");
283     if (!IsVector)
284       return getFieldValue(PointerAddressSpaceFieldInfo);
285     else
286       return getFieldValue(PointerVectorAddressSpaceFieldInfo);
287   }
288 
289   /// Returns the vector's element type. Only valid for vector types.
getElementType()290   constexpr LLT getElementType() const {
291     assert(isVector() && "cannot get element type of scalar/aggregate");
292     if (IsPointer)
293       return pointer(getAddressSpace(), getScalarSizeInBits());
294     else
295       return scalar(getScalarSizeInBits());
296   }
297 
298   void print(raw_ostream &OS) const;
299 
300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
301   LLVM_DUMP_METHOD void dump() const;
302 #endif
303 
304   constexpr bool operator==(const LLT &RHS) const {
305     return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
306            IsScalar == RHS.IsScalar && RHS.RawData == RawData;
307   }
308 
309   constexpr bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
310 
311   friend struct DenseMapInfo<LLT>;
312   friend class GISelInstProfileBuilder;
313 
314 private:
315   /// LLT is packed into 64 bits as follows:
316   /// isScalar : 1
317   /// isPointer : 1
318   /// isVector  : 1
319   /// with 61 bits remaining for Kind-specific data, packed in bitfields
320   /// as described below. As there isn't a simple portable way to pack bits
321   /// into bitfields, here the different fields in the packed structure is
322   /// described in static const *Field variables. Each of these variables
323   /// is a 2-element array, with the first element describing the bitfield size
324   /// and the second element describing the bitfield offset.
325   ///
326   /// +--------+---------+--------+----------+----------------------+
327   /// |isScalar|isPointer|isVector| RawData  |Notes                 |
328   /// +--------+---------+--------+----------+----------------------+
329   /// |   0    |    0    |   0    |    0     |Invalid               |
330   /// +--------+---------+--------+----------+----------------------+
331   /// |   0    |    0    |   1    |    0     |Tombstone Key         |
332   /// +--------+---------+--------+----------+----------------------+
333   /// |   0    |    1    |   0    |    0     |Empty Key             |
334   /// +--------+---------+--------+----------+----------------------+
335   /// |   1    |    0    |   0    |    0     |Token                 |
336   /// +--------+---------+--------+----------+----------------------+
337   /// |   1    |    0    |   0    | non-zero |Scalar                |
338   /// +--------+---------+--------+----------+----------------------+
339   /// |   0    |    1    |   0    | non-zero |Pointer               |
340   /// +--------+---------+--------+----------+----------------------+
341   /// |   0    |    0    |   1    | non-zero |Vector of non-pointer |
342   /// +--------+---------+--------+----------+----------------------+
343   /// |   0    |    1    |   1    | non-zero |Vector of pointer     |
344   /// +--------+---------+--------+----------+----------------------+
345   ///
346   /// Everything else is reserved.
347   typedef int BitFieldInfo[2];
348   ///
349   /// This is how the bitfields are packed per Kind:
350   /// * Invalid:
351   ///   gets encoded as RawData == 0, as that is an invalid encoding, since for
352   ///   valid encodings, SizeInBits/SizeOfElement must be larger than 0.
353   /// * Non-pointer scalar (isPointer == 0 && isVector == 0):
354   ///   SizeInBits: 32;
355   static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0};
356   /// * Pointer (isPointer == 1 && isVector == 0):
357   ///   SizeInBits: 16;
358   ///   AddressSpace: 24;
359   static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0};
360   static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
361       24, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
362   static_assert((PointerAddressSpaceFieldInfo[0] +
363                  PointerAddressSpaceFieldInfo[1]) <= 61,
364                 "Insufficient bits to encode all data");
365   /// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
366   ///   NumElements: 16;
367   ///   SizeOfElement: 32;
368   ///   Scalable: 1;
369   static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0};
370   static const constexpr BitFieldInfo VectorSizeFieldInfo{
371       32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
372   static const constexpr BitFieldInfo VectorScalableFieldInfo{
373       1, VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]};
374   static_assert((VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]) <= 61,
375                 "Insufficient bits to encode all data");
376   /// * Vector-of-pointer (isPointer == 1 && isVector == 1):
377   ///   NumElements: 16;
378   ///   SizeOfElement: 16;
379   ///   AddressSpace: 24;
380   ///   Scalable: 1;
381   static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0};
382   static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{
383       16,
384       PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]};
385   static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{
386       24, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]};
387   static const constexpr BitFieldInfo PointerVectorScalableFieldInfo{
388       1, PointerVectorAddressSpaceFieldInfo[0] +
389              PointerVectorAddressSpaceFieldInfo[1]};
390   static_assert((PointerVectorAddressSpaceFieldInfo[0] +
391                  PointerVectorAddressSpaceFieldInfo[1]) <= 61,
392                 "Insufficient bits to encode all data");
393 
394   uint64_t IsScalar : 1;
395   uint64_t IsPointer : 1;
396   uint64_t IsVector : 1;
397   uint64_t RawData : 61;
398 
399   static constexpr uint64_t getMask(const BitFieldInfo FieldInfo) {
400     const int FieldSizeInBits = FieldInfo[0];
401     return (((uint64_t)1) << FieldSizeInBits) - 1;
402   }
403   static constexpr uint64_t maskAndShift(uint64_t Val, uint64_t Mask,
404                                          uint8_t Shift) {
405     assert(Val <= Mask && "Value too large for field");
406     return (Val & Mask) << Shift;
407   }
408   static constexpr uint64_t maskAndShift(uint64_t Val,
409                                          const BitFieldInfo FieldInfo) {
410     return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]);
411   }
412 
413   constexpr uint64_t getFieldValue(const BitFieldInfo FieldInfo) const {
414     return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
415   }
416 
417   constexpr void init(bool IsPointer, bool IsVector, bool IsScalar,
418                       ElementCount EC, uint64_t SizeInBits,
419                       unsigned AddressSpace) {
420     assert(SizeInBits <= std::numeric_limits<unsigned>::max() &&
421            "Not enough bits in LLT to represent size");
422     this->IsPointer = IsPointer;
423     this->IsVector = IsVector;
424     this->IsScalar = IsScalar;
425     if (IsScalar)
426       RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
427     else if (IsVector) {
428       assert(EC.isVector() && "invalid number of vector elements");
429       if (!IsPointer)
430         RawData =
431             maskAndShift(EC.getKnownMinValue(), VectorElementsFieldInfo) |
432             maskAndShift(SizeInBits, VectorSizeFieldInfo) |
433             maskAndShift(EC.isScalable() ? 1 : 0, VectorScalableFieldInfo);
434       else
435         RawData =
436             maskAndShift(EC.getKnownMinValue(),
437                          PointerVectorElementsFieldInfo) |
438             maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) |
439             maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo) |
440             maskAndShift(EC.isScalable() ? 1 : 0,
441                          PointerVectorScalableFieldInfo);
442     } else if (IsPointer)
443       RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
444                 maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
445     else
446       llvm_unreachable("unexpected LLT configuration");
447   }
448 
449 public:
450   constexpr uint64_t getUniqueRAWLLTData() const {
451     return ((uint64_t)RawData) << 3 | ((uint64_t)IsScalar) << 2 |
452            ((uint64_t)IsPointer) << 1 | ((uint64_t)IsVector);
453   }
454 };
455 
456 inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
457   Ty.print(OS);
458   return OS;
459 }
460 
461 template<> struct DenseMapInfo<LLT> {
462   static inline LLT getEmptyKey() {
463     LLT Invalid;
464     Invalid.IsPointer = true;
465     return Invalid;
466   }
467   static inline LLT getTombstoneKey() {
468     LLT Invalid;
469     Invalid.IsVector = true;
470     return Invalid;
471   }
472   static inline unsigned getHashValue(const LLT &Ty) {
473     uint64_t Val = Ty.getUniqueRAWLLTData();
474     return DenseMapInfo<uint64_t>::getHashValue(Val);
475   }
476   static bool isEqual(const LLT &LHS, const LLT &RHS) {
477     return LHS == RHS;
478   }
479 };
480 
481 }
482 
483 #endif // LLVM_CODEGEN_LOWLEVELTYPE_H
484