1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988
31 * The Regents of the University of California
32 * All Rights Reserved
33 *
34 * University Acknowledgment- Portions of this document are derived from
35 * software developed by the University of California, Berkeley, and its
36 * contributors.
37 */
38
39 /*
40 * The maximum supported file system size (in sectors) is the
41 * number of frags that can be represented in an int32_t field
42 * (INT_MAX) times the maximum number of sectors per frag. Since
43 * the maximum frag size is MAXBSIZE, the maximum number of sectors
44 * per frag is MAXBSIZE/DEV_BSIZE.
45 */
46 #define FS_MAX (((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE))
47
48 /*
49 * make file system for cylinder-group style file systems
50 *
51 * usage:
52 *
53 * mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options]
54 * [-o specific_options] special size
55 * [nsect ntrack bsize fsize cpg minfree rps nbpi opt apc rotdelay
56 * 2 3 4 5 6 7 8 9 10 11 12
57 * nrpos maxcontig mtb]
58 * 13 14 15
59 *
60 * where specific_options are:
61 * N - no create
62 * nsect - The number of sectors per track
63 * ntrack - The number of tracks per cylinder
64 * bsize - block size
65 * fragsize - fragment size
66 * cgsize - The number of disk cylinders per cylinder group.
67 * free - minimum free space
68 * rps - rotational speed (rev/sec).
69 * nbpi - number of data bytes per allocated inode
70 * opt - optimization (space, time)
71 * apc - number of alternates
72 * gap - gap size
73 * nrpos - number of rotational positions
74 * maxcontig - maximum number of logical blocks that will be
75 * allocated contiguously before inserting rotational delay
76 * mtb - if "y", set up file system for eventual growth to over a
77 * a terabyte
78 * -P Do not grow the file system, but print on stdout the maximal
79 * size in sectors to which the file system can be increased. The calculated
80 * size is limited by the value provided by the operand size.
81 *
82 * Note that -P is a project-private interface and together with -G intended
83 * to be used only by the growfs script. It is therefore purposely not
84 * documented in the man page.
85 * The -P option is covered by PSARC case 2003/422.
86 */
87
88 /*
89 * The following constants set the defaults used for the number
90 * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak).
91 *
92 * NSECT NTRAK
93 * 72MB CDC 18 9
94 * 30MB CDC 18 5
95 * 720KB Diskette 9 2
96 *
97 * However the defaults will be different for disks larger than CHSLIMIT.
98 */
99
100 #define DFLNSECT 32
101 #define DFLNTRAK 16
102
103 /*
104 * The following default sectors and tracks values are used for
105 * non-efi disks that are larger than the CHS addressing limit. The
106 * existing default cpg of 16 (DESCPG) holds good for larger disks too.
107 */
108 #define DEF_SECTORS_EFI 128
109 #define DEF_TRACKS_EFI 48
110
111 /*
112 * The maximum number of cylinders in a group depends upon how much
113 * information can be stored on a single cylinder. The default is to
114 * use 16 cylinders per group. This is effectively tradition - it was
115 * the largest value acceptable under SunOs 4.1
116 */
117 #define DESCPG 16 /* desired fs_cpg */
118
119 /*
120 * The following two constants set the default block and fragment sizes.
121 * Both constants must be a power of 2 and meet the following constraints:
122 * MINBSIZE <= DESBLKSIZE <= MAXBSIZE
123 * DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
124 * DESBLKSIZE / DESFRAGSIZE <= 8
125 */
126 #define DESBLKSIZE 8192
127 #define DESFRAGSIZE 1024
128
129 /*
130 * MINFREE gives the minimum acceptable percentage of file system
131 * blocks which may be free. If the freelist drops below this level
132 * only the superuser may continue to allocate blocks. This may
133 * be set to 0 if no reserve of free blocks is deemed necessary,
134 * however throughput drops by fifty percent if the file system
135 * is run at between 90% and 100% full; thus the default value of
136 * fs_minfree is 10%. With 10% free space, fragmentation is not a
137 * problem, so we choose to optimize for time.
138 */
139 #define MINFREE 10
140 #define DEFAULTOPT FS_OPTTIME
141
142 /*
143 * ROTDELAY gives the minimum number of milliseconds to initiate
144 * another disk transfer on the same cylinder. It is no longer used
145 * and will always default to 0.
146 */
147 #define ROTDELAY 0
148
149 /*
150 * MAXBLKPG determines the maximum number of data blocks which are
151 * placed in a single cylinder group. The default is one indirect
152 * block worth of data blocks.
153 */
154 #define MAXBLKPG(bsize) ((bsize) / sizeof (daddr32_t))
155
156 /*
157 * Each file system has a number of inodes statically allocated.
158 * We allocate one inode slot per NBPI bytes, expecting this
159 * to be far more than we will ever need.
160 */
161 #define NBPI 2048 /* Number Bytes Per Inode */
162 #define MTB_NBPI (MB) /* Number Bytes Per Inode for multi-terabyte */
163
164 /*
165 * Disks are assumed to rotate at 60HZ, unless otherwise specified.
166 */
167 #define DEFHZ 60
168
169 /*
170 * Cylinder group related limits.
171 *
172 * For each cylinder we keep track of the availability of blocks at different
173 * rotational positions, so that we can lay out the data to be picked
174 * up with minimum rotational latency. NRPOS is the number of rotational
175 * positions which we distinguish. With NRPOS 8 the resolution of our
176 * summary information is 2ms for a typical 3600 rpm drive.
177 */
178 #define NRPOS 8 /* number distinct rotational positions */
179
180 #ifdef DEBUG
181 #define dprintf(x) printf x
182 #else
183 #define dprintf(x)
184 #endif
185
186 /*
187 * For the -N option, when calculating the backup superblocks, do not print
188 * them if we are not really sure. We may have to try an alternate method of
189 * arriving at the superblocks. So defer printing till a handful of superblocks
190 * look good.
191 */
192 #define tprintf(x) if (Nflag && retry) \
193 (void) strncat(tmpbuf, x, strlen(x)); \
194 else \
195 (void) fprintf(stderr, x);
196
197 #define ALTSB 32 /* Location of first backup superblock */
198
199 /*
200 * range_check "user_supplied" flag values.
201 */
202 #define RC_DEFAULT 0
203 #define RC_KEYWORD 1
204 #define RC_POSITIONAL 2
205
206 /*
207 * ufs hole
208 */
209 #define UFS_HOLE -1
210
211 #ifndef STANDALONE
212 #include <stdio.h>
213 #include <sys/mnttab.h>
214 #endif
215
216 #include <stdlib.h>
217 #include <unistd.h>
218 #include <malloc.h>
219 #include <string.h>
220 #include <strings.h>
221 #include <ctype.h>
222 #include <errno.h>
223 #include <sys/param.h>
224 #include <time.h>
225 #include <sys/types.h>
226 #include <sys/sysmacros.h>
227 #include <sys/vnode.h>
228 #include <sys/fs/ufs_fsdir.h>
229 #include <sys/fs/ufs_inode.h>
230 #include <sys/fs/ufs_fs.h>
231 #include <sys/fs/ufs_log.h>
232 #include <sys/mntent.h>
233 #include <sys/filio.h>
234 #include <limits.h>
235 #include <sys/int_const.h>
236 #include <signal.h>
237 #include <sys/efi_partition.h>
238 #include "roll_log.h"
239
240 #define bcopy(f, t, n) (void) memcpy(t, f, n)
241 #define bzero(s, n) (void) memset(s, 0, n)
242 #define bcmp(s, d, n) memcmp(s, d, n)
243
244 #define index(s, r) strchr(s, r)
245 #define rindex(s, r) strrchr(s, r)
246
247 #include <sys/stat.h>
248 #include <sys/statvfs.h>
249 #include <locale.h>
250 #include <fcntl.h>
251 #include <sys/isa_defs.h> /* for ENDIAN defines */
252 #include <sys/vtoc.h>
253
254 #include <sys/dkio.h>
255 #include <sys/asynch.h>
256
257 extern offset_t llseek();
258 extern char *getfullblkname();
259 extern long lrand48();
260
261 extern int optind;
262 extern char *optarg;
263
264
265 /*
266 * The size of a cylinder group is calculated by CGSIZE. The maximum size
267 * is limited by the fact that cylinder groups are at most one block.
268 * Its size is derived from the size of the maps maintained in the
269 * cylinder group and the (struct cg) size.
270 */
271 #define CGSIZE(fs) \
272 /* base cg */ (sizeof (struct cg) + \
273 /* blktot size */ (fs)->fs_cpg * sizeof (long) + \
274 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \
275 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \
276 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
277
278 /*
279 * We limit the size of the inode map to be no more than a
280 * third of the cylinder group space, since we must leave at
281 * least an equal amount of space for the block map.
282 *
283 * N.B.: MAXIpG must be a multiple of INOPB(fs).
284 */
285 #define MAXIpG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
286
287 /*
288 * Same as MAXIpG, but parameterized by the block size (b) and the
289 * cylinder group divisor (d), which is the reciprocal of the fraction of the
290 * cylinder group overhead block that is used for the inode map. So for
291 * example, if d = 5, the macro's computation assumes that 1/5 of the
292 * cylinder group overhead block can be dedicated to the inode map.
293 */
294 #define MAXIpG_B(b, d) roundup((b) * NBBY / (d), (b) / sizeof (struct dinode))
295
296 #define UMASK 0755
297 #define MAXINOPB (MAXBSIZE / sizeof (struct dinode))
298 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
299 #define MB (1024*1024)
300 #define BETWEEN(x, l, h) ((x) >= (l) && (x) <= (h))
301
302 /*
303 * Used to set the inode generation number. Since both inodes and dinodes
304 * are dealt with, we really need a pointer to an icommon here.
305 */
306 #define IRANDOMIZE(icp) (icp)->ic_gen = lrand48();
307
308 /*
309 * Flags for number()
310 */
311 #define ALLOW_PERCENT 0x01 /* allow trailing `%' on number */
312 #define ALLOW_MS1 0x02 /* allow trailing `ms', state 1 */
313 #define ALLOW_MS2 0x04 /* allow trailing `ms', state 2 */
314 #define ALLOW_END_ONLY 0x08 /* must be at end of number & suffixes */
315
316 #define MAXAIO 1000 /* maximum number of outstanding I/O's we'll manage */
317 #define BLOCK 1 /* block in aiowait */
318 #define NOBLOCK 0 /* don't block in aiowait */
319
320 #define RELEASE 1 /* free an aio buffer after use */
321 #define SAVE 0 /* don't free the buffer */
322
323 typedef struct aio_trans {
324 aio_result_t resultbuf;
325 diskaddr_t bno;
326 char *buffer;
327 int size;
328 int release;
329 struct aio_trans *next;
330 } aio_trans;
331
332 typedef struct aio_results {
333 int max;
334 int outstanding;
335 int maxpend;
336 aio_trans *trans;
337 } aio_results;
338
339 int aio_inited = 0;
340 aio_results results;
341
342 /*
343 * Allow up to MAXBUF aio requests that each have a unique buffer.
344 * More aio's might be done, but not using memory through the getbuf()
345 * interface. This can be raised, but you run into the potential of
346 * using more memory than is physically available on the machine,
347 * and if you start swapping, you can forget about performance.
348 * To prevent this, we also limit the total memory used for a given
349 * type of buffer to MAXBUFMEM.
350 *
351 * Tests indicate a cylinder group's worth of inodes takes:
352 *
353 * NBPI Size of Inode Buffer
354 * 2k 1688k
355 * 8k 424k
356 *
357 * initcg() stores all the inodes for a cylinder group in one buffer,
358 * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM.
359 */
360 #define MAXBUF 20
361 #define MAXBUFMEM (8 * 1024 * 1024)
362
363 /*
364 * header information for buffers managed by getbuf() and freebuf()
365 */
366 typedef struct bufhdr {
367 struct bufhdr *head;
368 struct bufhdr *next;
369 } bufhdr;
370
371 int bufhdrsize;
372
373 bufhdr inodebuf = { NULL, NULL };
374 bufhdr cgsumbuf = { NULL, NULL };
375
376 #define SECTORS_PER_TERABYTE (1LL << 31)
377 /*
378 * The following constant specifies an upper limit for file system size
379 * that is actually a lot bigger than we expect to support with UFS. (Since
380 * it's specified in sectors, the file system size would be 2**44 * 512,
381 * which is 2**53, which is 8192 Terabytes.) However, it's useful
382 * for checking the basic sanity of a size value that is input on the
383 * command line.
384 */
385 #define FS_SIZE_UPPER_LIMIT 0x100000000000LL
386
387 /*
388 * Forward declarations
389 */
390 static char *getbuf(bufhdr *bufhead, int size);
391 static void freebuf(char *buf);
392 static void freetrans(aio_trans *transp);
393 static aio_trans *get_aiop();
394 static aio_trans *wait_for_write(int block);
395 static void initcg(int cylno);
396 static void fsinit();
397 static int makedir(struct direct *protodir, int entries);
398 static void iput(struct inode *ip);
399 static void rdfs(diskaddr_t bno, int size, char *bf);
400 static void wtfs(diskaddr_t bno, int size, char *bf);
401 static void awtfs(diskaddr_t bno, int size, char *bf, int release);
402 static void wtfs_breakup(diskaddr_t bno, int size, char *bf);
403 static int isblock(struct fs *fs, unsigned char *cp, int h);
404 static void clrblock(struct fs *fs, unsigned char *cp, int h);
405 static void setblock(struct fs *fs, unsigned char *cp, int h);
406 static void usage();
407 static void dump_fscmd(char *fsys, int fsi);
408 static uint64_t number(uint64_t d_value, char *param, int flags);
409 static int match(char *s);
410 static char checkopt(char *optim);
411 static char checkmtb(char *mtbarg);
412 static void range_check(long *varp, char *name, long minimum,
413 long maximum, long def_val, int user_supplied);
414 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum,
415 uint64_t maximum, uint64_t def_val, int user_supplied);
416 static daddr32_t alloc(int size, int mode);
417 static diskaddr_t get_max_size(int fd);
418 static long get_max_track_size(int fd);
419 static void block_sigint(sigset_t *old_mask);
420 static void unblock_sigint(sigset_t *old_mask);
421 static void recover_from_sigint(int signum);
422 static int confirm_abort(void);
423 static int getaline(FILE *fp, char *loc, int maxlen);
424 static void flush_writes(void);
425 static long compute_maxcpg(long, long, long, long, long);
426 static int in_64bit_mode(void);
427 static int validate_size(int fd, diskaddr_t size);
428 static void dump_sblock(void);
429
430 /*
431 * Workaround for mkfs to function properly on disks attached to XMIT 2.X
432 * controller. If the address is not aligned at 8 byte boundary, mkfs on
433 * disks attached to XMIT 2.X controller exhibts un-predictable behaviour.
434 */
435 #define XMIT_2_X_ALIGN 8
436 #pragma align XMIT_2_X_ALIGN(fsun, altfsun, cgun)
437
438 union {
439 struct fs fs;
440 char pad[SBSIZE];
441 } fsun, altfsun;
442 #define sblock fsun.fs
443 #define altsblock altfsun.fs
444
445 struct csum *fscs;
446
447 union cgun {
448 struct cg cg;
449 char pad[MAXBSIZE];
450 } cgun;
451
452 #define acg cgun.cg
453 /*
454 * Size of screen in cols in which to fit output
455 */
456 #define WIDTH 80
457
458 struct dinode zino[MAXBSIZE / sizeof (struct dinode)];
459
460 /*
461 * file descriptors used for rdfs(fsi) and wtfs(fso).
462 * Initialized to an illegal file descriptor number.
463 */
464 int fsi = -1;
465 int fso = -1;
466
467 /*
468 * The BIG parameter is machine dependent. It should be a longlong integer
469 * constant that can be used by the number parser to check the validity
470 * of numeric parameters.
471 */
472
473 #define BIG 0x7fffffffffffffffLL
474
475 /* Used to indicate to number() that a bogus value should cause us to exit */
476 #define NO_DEFAULT LONG_MIN
477
478 /*
479 * INVALIDSBLIMIT is the number of bad backup superblocks that will be
480 * tolerated before we decide to try arriving at a different set of them
481 * using a different logic. This is applicable for non-EFI disks only.
482 */
483 #define INVALIDSBLIMIT 10
484
485 /*
486 * The *_flag variables are used to indicate that the user specified
487 * the values, rather than that we made them up ourselves. We can
488 * complain about the user giving us bogus values.
489 */
490
491 /* semi-constants */
492 long sectorsize = DEV_BSIZE; /* bytes/sector from param.h */
493 long bbsize = BBSIZE; /* boot block size */
494 long sbsize = SBSIZE; /* superblock size */
495
496 /* parameters */
497 diskaddr_t fssize_db; /* file system size in disk blocks */
498 diskaddr_t fssize_frag; /* file system size in frags */
499 long cpg; /* cylinders/cylinder group */
500 int cpg_flag = RC_DEFAULT;
501 long rotdelay = -1; /* rotational delay between blocks */
502 int rotdelay_flag = RC_DEFAULT;
503 long maxcontig; /* max contiguous blocks to allocate */
504 int maxcontig_flag = RC_DEFAULT;
505 long nsect = DFLNSECT; /* sectors per track */
506 int nsect_flag = RC_DEFAULT;
507 long ntrack = DFLNTRAK; /* tracks per cylinder group */
508 int ntrack_flag = RC_DEFAULT;
509 long bsize = DESBLKSIZE; /* filesystem block size */
510 int bsize_flag = RC_DEFAULT;
511 long fragsize = DESFRAGSIZE; /* filesystem fragment size */
512 int fragsize_flag = RC_DEFAULT;
513 long minfree = MINFREE; /* fs_minfree */
514 int minfree_flag = RC_DEFAULT;
515 long rps = DEFHZ; /* revolutions/second of drive */
516 int rps_flag = RC_DEFAULT;
517 long nbpi = NBPI; /* number of bytes per inode */
518 int nbpi_flag = RC_DEFAULT;
519 long nrpos = NRPOS; /* number of rotational positions */
520 int nrpos_flag = RC_DEFAULT;
521 long apc = 0; /* alternate sectors per cylinder */
522 int apc_flag = RC_DEFAULT;
523 char opt = 't'; /* optimization style, `t' or `s' */
524 char mtb = 'n'; /* multi-terabyte format, 'y' or 'n' */
525 #define DEFAULT_SECT_TRAK_CPG (nsect_flag == RC_DEFAULT && \
526 ntrack_flag == RC_DEFAULT && \
527 cpg_flag == RC_DEFAULT)
528
529 long debug = 0; /* enable debugging output */
530
531 int spc_flag = 0; /* alternate sectors specified or */
532 /* found */
533
534 /* global state */
535 int Nflag; /* do not write to disk */
536 int mflag; /* return the command line used to create this FS */
537 int rflag; /* report the superblock in an easily-parsed form */
538 int Rflag; /* dump the superblock in binary */
539 char *fsys;
540 time_t mkfstime;
541 char *string;
542 int label_type;
543
544 /*
545 * logging support
546 */
547 int ismdd; /* true if device is a SVM device */
548 int islog; /* true if ufs or SVM logging is enabled */
549 int islogok; /* true if ufs/SVM log state is good */
550
551 static int isufslog; /* true if ufs logging is enabled */
552 static int waslog; /* true when ufs logging disabled during grow */
553
554 /*
555 * growfs defines, globals, and forward references
556 */
557 #define NOTENOUGHSPACE 33
558 int grow;
559 #define GROW_WITH_DEFAULT_TRAK (grow && ntrack_flag == RC_DEFAULT)
560
561 static int Pflag; /* probe to which size the fs can be grown */
562 int ismounted;
563 char *directory;
564 diskaddr_t grow_fssize;
565 long grow_fs_size;
566 long grow_fs_ncg;
567 diskaddr_t grow_fs_csaddr;
568 long grow_fs_cssize;
569 int grow_fs_clean;
570 struct csum *grow_fscs;
571 diskaddr_t grow_sifrag;
572 int test;
573 int testforce;
574 diskaddr_t testfrags;
575 int inlockexit;
576 int isbad;
577
578 void lockexit(int);
579 void randomgeneration(void);
580 void checksummarysize(void);
581 int checksblock(struct fs, int);
582 void growinit(char *);
583 void checkdev(char *, char *);
584 void checkmount(struct mnttab *, char *);
585 struct dinode *gdinode(ino_t);
586 int csfraginrange(daddr32_t);
587 struct csfrag *findcsfrag(daddr32_t, struct csfrag **);
588 void checkindirect(ino_t, daddr32_t *, daddr32_t, int);
589 void addcsfrag(ino_t, daddr32_t, struct csfrag **);
590 void delcsfrag(daddr32_t, struct csfrag **);
591 void checkdirect(ino_t, daddr32_t *, daddr32_t *, int);
592 void findcsfragino(void);
593 void fixindirect(daddr32_t, int);
594 void fixdirect(caddr_t, daddr32_t, daddr32_t *, int);
595 void fixcsfragino(void);
596 void extendsummaryinfo(void);
597 int notenoughspace(void);
598 void unalloccsfragino(void);
599 void unalloccsfragfree(void);
600 void findcsfragfree(void);
601 void copycsfragino(void);
602 void rdcg(long);
603 void wtcg(void);
604 void flcg(void);
605 void allocfrags(long, daddr32_t *, long *);
606 void alloccsfragino(void);
607 void alloccsfragfree(void);
608 void freefrags(daddr32_t, long, long);
609 int findfreerange(long *, long *);
610 void resetallocinfo(void);
611 void extendcg(long);
612 void ulockfs(void);
613 void wlockfs(void);
614 void clockfs(void);
615 void wtsb(void);
616 static int64_t checkfragallocated(daddr32_t);
617 static struct csum *read_summaryinfo(struct fs *);
618 static diskaddr_t probe_summaryinfo();
619
620 int
main(int argc,char * argv[])621 main(int argc, char *argv[])
622 {
623 long i, mincpc, mincpg, ibpcl;
624 long cylno, rpos, blk, j, warn = 0;
625 long mincpgcnt, maxcpg;
626 uint64_t used, bpcg, inospercg;
627 long mapcramped, inodecramped;
628 long postblsize, rotblsize, totalsbsize;
629 FILE *mnttab;
630 struct mnttab mntp;
631 char *special;
632 struct statvfs64 fs;
633 struct dk_geom dkg;
634 struct dk_cinfo dkcinfo;
635 struct dk_minfo dkminfo;
636 char pbuf[sizeof (uint64_t) * 3 + 1];
637 char *tmpbuf;
638 int width, plen;
639 uint64_t num;
640 int c, saverr;
641 diskaddr_t max_fssize;
642 long tmpmaxcontig = -1;
643 struct sigaction sigact;
644 uint64_t nbytes64;
645 int remaining_cg;
646 int do_dot = 0;
647 int use_efi_dflts = 0, retry = 0, isremovable = 0, ishotpluggable = 0;
648 int invalid_sb_cnt, ret, skip_this_sb, cg_too_small;
649 int geom_nsect, geom_ntrack, geom_cpg;
650
651 (void) setlocale(LC_ALL, "");
652
653 #if !defined(TEXT_DOMAIN)
654 #define TEXT_DOMAIN "SYS_TEST"
655 #endif
656 (void) textdomain(TEXT_DOMAIN);
657
658 while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) {
659 switch (c) {
660
661 case 'F':
662 string = optarg;
663 if (strcmp(string, "ufs") != 0)
664 usage();
665 break;
666
667 case 'm': /* return command line used to create this FS */
668 mflag++;
669 break;
670
671 case 'o':
672 /*
673 * ufs specific options.
674 */
675 string = optarg;
676 while (*string != '\0') {
677 if (match("nsect=")) {
678 nsect = number(DFLNSECT, "nsect", 0);
679 nsect_flag = RC_KEYWORD;
680 } else if (match("ntrack=")) {
681 ntrack = number(DFLNTRAK, "ntrack", 0);
682 ntrack_flag = RC_KEYWORD;
683 } else if (match("bsize=")) {
684 bsize = number(DESBLKSIZE, "bsize", 0);
685 bsize_flag = RC_KEYWORD;
686 } else if (match("fragsize=")) {
687 fragsize = number(DESFRAGSIZE,
688 "fragsize", 0);
689 fragsize_flag = RC_KEYWORD;
690 } else if (match("cgsize=")) {
691 cpg = number(DESCPG, "cgsize", 0);
692 cpg_flag = RC_KEYWORD;
693 } else if (match("free=")) {
694 minfree = number(MINFREE, "free",
695 ALLOW_PERCENT);
696 minfree_flag = RC_KEYWORD;
697 } else if (match("maxcontig=")) {
698 tmpmaxcontig =
699 number(-1, "maxcontig", 0);
700 maxcontig_flag = RC_KEYWORD;
701 } else if (match("nrpos=")) {
702 nrpos = number(NRPOS, "nrpos", 0);
703 nrpos_flag = RC_KEYWORD;
704 } else if (match("rps=")) {
705 rps = number(DEFHZ, "rps", 0);
706 rps_flag = RC_KEYWORD;
707 } else if (match("nbpi=")) {
708 nbpi = number(NBPI, "nbpi", 0);
709 nbpi_flag = RC_KEYWORD;
710 } else if (match("opt=")) {
711 opt = checkopt(string);
712 } else if (match("mtb=")) {
713 mtb = checkmtb(string);
714 } else if (match("apc=")) {
715 apc = number(0, "apc", 0);
716 apc_flag = RC_KEYWORD;
717 } else if (match("gap=")) {
718 (void) number(0, "gap", ALLOW_MS1);
719 rotdelay = ROTDELAY;
720 rotdelay_flag = RC_DEFAULT;
721 } else if (match("debug=")) {
722 debug = number(0, "debug", 0);
723 } else if (match("N")) {
724 Nflag++;
725 } else if (match("calcsb")) {
726 rflag++;
727 Nflag++;
728 } else if (match("calcbinsb")) {
729 rflag++;
730 Rflag++;
731 Nflag++;
732 } else if (*string == '\0') {
733 break;
734 } else {
735 (void) fprintf(stderr, gettext(
736 "illegal option: %s\n"), string);
737 usage();
738 }
739
740 if (*string == ',') string++;
741 if (*string == ' ') string++;
742 }
743 break;
744
745 case 'V':
746 {
747 char *opt_text;
748 int opt_count;
749
750 (void) fprintf(stdout, gettext("mkfs -F ufs "));
751 for (opt_count = 1; opt_count < argc;
752 opt_count++) {
753 opt_text = argv[opt_count];
754 if (opt_text)
755 (void) fprintf(stdout, " %s ",
756 opt_text);
757 }
758 (void) fprintf(stdout, "\n");
759 }
760 break;
761
762 case 'b': /* do nothing for this */
763 break;
764
765 case 'M': /* grow the mounted file system */
766 directory = optarg;
767
768 /* FALLTHROUGH */
769 case 'G': /* grow the file system */
770 grow = 1;
771 break;
772 case 'P': /* probe the file system growing size */
773 Pflag = 1;
774 grow = 1; /* probe mode implies fs growing */
775 break;
776 case 'T': /* For testing */
777 testforce = 1;
778
779 /* FALLTHROUGH */
780 case 't':
781 test = 1;
782 string = optarg;
783 testfrags = number(NO_DEFAULT, "testfrags", 0);
784 break;
785
786 case '?':
787 usage();
788 break;
789 }
790 }
791 #ifdef MKFS_DEBUG
792 /*
793 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem
794 * that can be reproduced by setting the time to 0 and seeding
795 * the random number generator to a constant.
796 */
797 mkfstime = 0; /* reproducible results */
798 #else
799 (void) time(&mkfstime);
800 #endif
801
802 if (optind >= (argc - 1)) {
803 if (optind > (argc - 1)) {
804 (void) fprintf(stderr,
805 gettext("special not specified\n"));
806 usage();
807 } else if (mflag == 0) {
808 (void) fprintf(stderr,
809 gettext("size not specified\n"));
810 usage();
811 }
812 }
813 argc -= optind;
814 argv = &argv[optind];
815
816 fsys = argv[0];
817 fsi = open64(fsys, O_RDONLY);
818 if (fsi < 0) {
819 (void) fprintf(stderr, gettext("%s: cannot open\n"), fsys);
820 lockexit(32);
821 }
822
823 if (mflag) {
824 dump_fscmd(fsys, fsi);
825 lockexit(0);
826 }
827
828 /*
829 * The task of setting all of the configuration parameters for a
830 * UFS file system is basically a matter of solving n equations
831 * in m variables. Typically, m is greater than n, so there is
832 * usually more than one valid solution. Since this is usually
833 * an under-constrained problem, it's not always obvious what the
834 * "best" configuration is.
835 *
836 * In general, the approach is to
837 * 1. Determine the values for the file system parameters
838 * that are externally contrained and therefore not adjustable
839 * by mkfs (such as the device's size and maxtransfer size).
840 * 2. Acquire the user's requested setting for all configuration
841 * values that can be set on the command line.
842 * 3. Determine the final value of all configuration values, by
843 * the following approach:
844 * - set the file system block size (fs_bsize). Although
845 * this could be regarded as an adjustable parameter, in
846 * fact, it's pretty much a constant. At this time, it's
847 * generally set to 8k (with older hardware, it can
848 * sometimes make sense to set it to 4k, but those
849 * situations are pretty rare now).
850 * - re-adjust the maximum file system size based on the
851 * value of the file system block size. Since the
852 * frag size can't be any larger than a file system
853 * block, and the number of frags in the file system
854 * has to fit into 31 bits, the file system block size
855 * affects the maximum file system size.
856 * - now that the real maximum file system is known, set the
857 * actual size of the file system to be created to
858 * MIN(requested size, maximum file system size).
859 * - now validate, and if necessary, adjust the following
860 * values:
861 * rotdelay
862 * nsect
863 * maxcontig
864 * apc
865 * frag_size
866 * rps
867 * minfree
868 * nrpos
869 * nrack
870 * nbpi
871 * - calculate maxcpg (the maximum value of the cylinders-per-
872 * cylinder-group configuration parameters). There are two
873 * algorithms for calculating maxcpg: an old one, which is
874 * used for file systems of less than 1 terabyte, and a
875 * new one, implemented in the function compute_maxcpg(),
876 * which is used for file systems of greater than 1 TB.
877 * The difference between them is that compute_maxcpg()
878 * really tries to maximize the cpg value. The old
879 * algorithm fails to take advantage of smaller frags and
880 * lower inode density when determining the maximum cpg,
881 * and thus comes up with much lower numbers in some
882 * configurations. At some point, we might use the
883 * new algorithm for determining maxcpg for all file
884 * systems, but at this time, the changes implemented for
885 * multi-terabyte UFS are NOT being automatically applied
886 * to UFS file systems of less than a terabyte (in the
887 * interest of not changing existing UFS policy too much
888 * until the ramifications of the changes are well-understood
889 * and have been evaluated for their effects on performance.)
890 * - check the current values of the configuration parameters
891 * against the various constraints imposed by UFS. These
892 * include:
893 * * There must be at least one inode in each
894 * cylinder group.
895 * * The cylinder group overhead block, which
896 * contains the inode and frag bigmaps, must fit
897 * within one file system block.
898 * * The space required for inode maps should
899 * occupy no more than a third of the cylinder
900 * group overhead block.
901 * * The rotational position tables have to fit
902 * within the available space in the super block.
903 * Adjust the configuration values that can be adjusted
904 * so that these constraints are satisfied. The
905 * configuration values that are adjustable are:
906 * * frag size
907 * * cylinders per group
908 * * inode density (can be increased)
909 * * number of rotational positions (the rotational
910 * position tables are eliminated altogether if
911 * there isn't enough room for them.)
912 * 4. Set the values for all the dependent configuration
913 * values (those that aren't settable on the command
914 * line and which are completely dependent on the
915 * adjustable parameters). This include cpc (cycles
916 * per cylinder, spc (sectors-per-cylinder), and many others.
917 */
918
919 /*
920 * Figure out the partition size and initialize the label_type.
921 */
922 max_fssize = get_max_size(fsi);
923
924 /*
925 * Get and check positional arguments, if any.
926 */
927 switch (argc - 1) {
928 default:
929 usage();
930 /*NOTREACHED*/
931 case 15:
932 mtb = checkmtb(argv[15]);
933 /* FALLTHROUGH */
934 case 14:
935 string = argv[14];
936 tmpmaxcontig = number(-1, "maxcontig", 0);
937 maxcontig_flag = RC_POSITIONAL;
938 /* FALLTHROUGH */
939 case 13:
940 string = argv[13];
941 nrpos = number(NRPOS, "nrpos", 0);
942 nrpos_flag = RC_POSITIONAL;
943 /* FALLTHROUGH */
944 case 12:
945 string = argv[12];
946 rotdelay = ROTDELAY;
947 rotdelay_flag = RC_DEFAULT;
948 /* FALLTHROUGH */
949 case 11:
950 string = argv[11];
951 apc = number(0, "apc", 0);
952 apc_flag = RC_POSITIONAL;
953 /* FALLTHROUGH */
954 case 10:
955 opt = checkopt(argv[10]);
956 /* FALLTHROUGH */
957 case 9:
958 string = argv[9];
959 nbpi = number(NBPI, "nbpi", 0);
960 nbpi_flag = RC_POSITIONAL;
961 /* FALLTHROUGH */
962 case 8:
963 string = argv[8];
964 rps = number(DEFHZ, "rps", 0);
965 rps_flag = RC_POSITIONAL;
966 /* FALLTHROUGH */
967 case 7:
968 string = argv[7];
969 minfree = number(MINFREE, "free", ALLOW_PERCENT);
970 minfree_flag = RC_POSITIONAL;
971 /* FALLTHROUGH */
972 case 6:
973 string = argv[6];
974 cpg = number(DESCPG, "cgsize", 0);
975 cpg_flag = RC_POSITIONAL;
976 /* FALLTHROUGH */
977 case 5:
978 string = argv[5];
979 fragsize = number(DESFRAGSIZE, "fragsize", 0);
980 fragsize_flag = RC_POSITIONAL;
981 /* FALLTHROUGH */
982 case 4:
983 string = argv[4];
984 bsize = number(DESBLKSIZE, "bsize", 0);
985 bsize_flag = RC_POSITIONAL;
986 /* FALLTHROUGH */
987 case 3:
988 string = argv[3];
989 ntrack = number(DFLNTRAK, "ntrack", 0);
990 ntrack_flag = RC_POSITIONAL;
991 /* FALLTHROUGH */
992 case 2:
993 string = argv[2];
994 nsect = number(DFLNSECT, "nsect", 0);
995 nsect_flag = RC_POSITIONAL;
996 /* FALLTHROUGH */
997 case 1:
998 string = argv[1];
999 fssize_db = number(max_fssize, "size", 0);
1000 }
1001
1002 /*
1003 * Initialize the parameters in the same way as newfs so that
1004 * newfs and mkfs would result in the same file system layout
1005 * for EFI labelled disks. Do this only in the absence of user
1006 * specified values for these parameters.
1007 */
1008 if (label_type == LABEL_TYPE_EFI) {
1009 if (apc_flag == RC_DEFAULT) apc = 0;
1010 if (nrpos_flag == RC_DEFAULT) nrpos = 1;
1011 if (ntrack_flag == RC_DEFAULT) ntrack = DEF_TRACKS_EFI;
1012 if (rps_flag == RC_DEFAULT) rps = DEFHZ;
1013 if (nsect_flag == RC_DEFAULT) nsect = DEF_SECTORS_EFI;
1014 }
1015
1016 if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) ||
1017 (maxcontig == -1)) {
1018 long maxtrax = get_max_track_size(fsi);
1019 maxcontig = maxtrax / bsize;
1020
1021 } else {
1022 maxcontig = tmpmaxcontig;
1023 }
1024 dprintf(("DeBuG maxcontig : %ld\n", maxcontig));
1025
1026 if (rotdelay == -1) { /* default by newfs and mkfs */
1027 rotdelay = ROTDELAY;
1028 }
1029
1030 if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */
1031 cpg = DESCPG;
1032 }
1033 dprintf(("DeBuG cpg : %ld\n", cpg));
1034
1035 /*
1036 * Now that we have the semi-sane args, either positional, via -o,
1037 * or by defaulting, handle inter-dependencies and range checks.
1038 */
1039
1040 /*
1041 * Settle the file system block size first, since it's a fixed
1042 * parameter once set and so many other parameters, including
1043 * max_fssize, depend on it.
1044 */
1045 range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE,
1046 bsize_flag);
1047
1048 if (!POWEROF2(bsize)) {
1049 (void) fprintf(stderr,
1050 gettext("block size must be a power of 2, not %ld\n"),
1051 bsize);
1052 bsize = DESBLKSIZE;
1053 (void) fprintf(stderr,
1054 gettext("mkfs: bsize reset to default %ld\n"),
1055 bsize);
1056 }
1057
1058 if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) {
1059 (void) fprintf(stderr, gettext(
1060 "Warning: the requested size of this file system\n"
1061 "(%lld sectors) is greater than the size of the\n"
1062 "device reported by the driver (%lld sectors).\n"
1063 "However, a read of the device at the requested size\n"
1064 "does succeed, so the requested size will be used.\n"),
1065 fssize_db, max_fssize);
1066 max_fssize = fssize_db;
1067 }
1068 /*
1069 * Since the maximum allocatable unit (the frag) must be less than
1070 * or equal to bsize, and the number of frags must be less than or
1071 * equal to INT_MAX, the total size of the file system (in
1072 * bytes) must be less than or equal to bsize * INT_MAX.
1073 */
1074
1075 if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX)
1076 max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX;
1077
1078 range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1);
1079
1080 if (fssize_db >= SECTORS_PER_TERABYTE) {
1081 mtb = 'y';
1082 if (!in_64bit_mode()) {
1083 (void) fprintf(stderr, gettext(
1084 "mkfs: Warning: Creating a file system greater than 1 terabyte on a\n"
1085 " system running a 32-bit kernel. This file system will not be\n"
1086 " accessible until the system is rebooted with a 64-bit kernel.\n"));
1087 }
1088 }
1089 dprintf(("DeBuG mtb : %c\n", mtb));
1090
1091 /*
1092 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M)
1093 * commands had problems in correctly handling the "native" geometries
1094 * for various storage devices.
1095 *
1096 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style
1097 * for non-EFI disks that are larger than the CHS addressing limit
1098 * ( > 8GB approx ) and ignore the disk geometry information for
1099 * these drives. This is what is currently done for multi-terrabyte
1100 * filesystems on EFI disks.
1101 *
1102 * However if the user asked for a specific layout by supplying values
1103 * for even one of the three parameters (nsect, ntrack, cpg), honour
1104 * the user supplied parameters.
1105 *
1106 * Choosing EFI style or native geometry style can make a lot of
1107 * difference, because the size of a cylinder group is dependent on
1108 * this choice. This in turn means that the position of alternate
1109 * superblocks varies depending on the style chosen. It is not
1110 * necessary that all disks of size > CHSLIMIT have EFI style layout.
1111 * There can be disks which are > CHSLIMIT size, but have native
1112 * geometry style layout, thereby warranting the need for alternate
1113 * logic in superblock detection.
1114 */
1115 if (mtb != 'y' && (ntrack == -1 || GROW_WITH_DEFAULT_TRAK ||
1116 DEFAULT_SECT_TRAK_CPG)) {
1117 /*
1118 * "-1" indicates that we were called from newfs and ntracks
1119 * was not specified in newfs command line. Calculate nsect
1120 * and ntrack in the same manner as newfs.
1121 *
1122 * This is required because, the defaults for nsect and ntrack
1123 * is hardcoded in mkfs, whereas to generate the alternate
1124 * superblock locations for the -N option, there is a need for
1125 * the geometry based values that newfs would have arrived at.
1126 * Newfs would have arrived at these values as below.
1127 */
1128 if (label_type == LABEL_TYPE_EFI ||
1129 label_type == LABEL_TYPE_OTHER) {
1130 use_efi_dflts = 1;
1131 retry = 1;
1132 } else if (ioctl(fsi, DKIOCGGEOM, &dkg)) {
1133 dprintf(("%s: Unable to read Disk geometry", fsys));
1134 perror(gettext("Unable to read Disk geometry"));
1135 lockexit(32);
1136 } else {
1137 nsect = dkg.dkg_nsect;
1138 ntrack = dkg.dkg_nhead;
1139 #ifdef i386 /* Bug 1170182 */
1140 if (ntrack > 32 && (ntrack % 16) != 0) {
1141 ntrack -= (ntrack % 16);
1142 }
1143 #endif
1144 if (ioctl(fsi, DKIOCREMOVABLE, &isremovable)) {
1145 dprintf(("DeBuG Unable to determine if %s is"
1146 " Removable Media. Proceeding with system"
1147 " determined parameters.\n", fsys));
1148 isremovable = 0;
1149 }
1150 if (ioctl(fsi, DKIOCHOTPLUGGABLE, &ishotpluggable)) {
1151 dprintf(("DeBuG Unable to determine if %s is"
1152 " Hotpluggable Media. Proceeding with "
1153 "system determined parameters.\n", fsys));
1154 ishotpluggable = 0;
1155 }
1156 if ((((diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead *
1157 dkg.dkg_nsect) > CHSLIMIT) || isremovable ||
1158 ishotpluggable) {
1159 use_efi_dflts = 1;
1160 retry = 1;
1161 }
1162 }
1163 }
1164 dprintf(("DeBuG CHSLIMIT = %d geom = %llu\n", CHSLIMIT,
1165 (diskaddr_t)dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect));
1166 dprintf(("DeBuG label_type = %d isremovable = %d ishotpluggable = %d "
1167 "use_efi_dflts = %d\n", label_type, isremovable, ishotpluggable,
1168 use_efi_dflts));
1169
1170 /*
1171 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not
1172 * blindly follow EFI style. If the fs_version indicates a geometry
1173 * based layout, try that one first. If it fails we can always try the
1174 * other logic.
1175 *
1176 * If we were called from growfs, we will have a problem if we mix
1177 * and match the filesystem creation and growth styles. For example,
1178 * if we create using EFI style, we have to also grow using EFI
1179 * style. So follow the style indicated by the fs_version.
1180 *
1181 * Read and verify the primary superblock. If it looks sane, use the
1182 * fs_version from the superblock. If the primary superblock does
1183 * not look good, read and verify the first alternate superblock at
1184 * ALTSB. Use the fs_version to decide whether to use the
1185 * EFI style logic or the old geometry based logic to calculate
1186 * the alternate superblock locations.
1187 */
1188 if ((Nflag && use_efi_dflts) || (grow)) {
1189 if (grow && ntrack_flag != RC_DEFAULT)
1190 goto start_fs_creation;
1191 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize,
1192 (char *)&altsblock);
1193 ret = checksblock(altsblock, 1);
1194
1195 if (!ret) {
1196 if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1197 mtb = 'y';
1198 goto start_fs_creation;
1199 }
1200 use_efi_dflts = (altsblock.fs_version ==
1201 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1202 } else {
1203 /*
1204 * The primary superblock didn't help in determining
1205 * the fs_version. Try the first alternate superblock.
1206 */
1207 dprintf(("DeBuG checksblock() failed - error : %d"
1208 " for sb : %d\n", ret, SBOFF/sectorsize));
1209 rdfs((diskaddr_t)ALTSB, (int)sbsize,
1210 (char *)&altsblock);
1211 ret = checksblock(altsblock, 1);
1212
1213 if (!ret) {
1214 if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1215 mtb = 'y';
1216 goto start_fs_creation;
1217 }
1218 use_efi_dflts = (altsblock.fs_version ==
1219 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1220 }
1221 dprintf(("DeBuG checksblock() returned : %d"
1222 " for sb : %d\n", ret, ALTSB));
1223 }
1224 }
1225
1226 geom_nsect = nsect;
1227 geom_ntrack = ntrack;
1228 geom_cpg = cpg;
1229 dprintf(("DeBuG geom_nsect=%d, geom_ntrack=%d, geom_cpg=%d\n",
1230 geom_nsect, geom_ntrack, geom_cpg));
1231
1232 start_fs_creation:
1233 retry_alternate_logic:
1234 invalid_sb_cnt = 0;
1235 cg_too_small = 0;
1236 if (use_efi_dflts) {
1237 nsect = DEF_SECTORS_EFI;
1238 ntrack = DEF_TRACKS_EFI;
1239 cpg = DESCPG;
1240 dprintf(("\nDeBuG Using EFI defaults\n"));
1241 } else {
1242 nsect = geom_nsect;
1243 ntrack = geom_ntrack;
1244 cpg = geom_cpg;
1245 dprintf(("\nDeBuG Using Geometry\n"));
1246 /*
1247 * 32K based on max block size of 64K, and rotational layout
1248 * test of nsect <= (256 * sectors/block). Current block size
1249 * limit is not 64K, but it's growing soon.
1250 */
1251 range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag);
1252 /*
1253 * ntrack is the number of tracks per cylinder.
1254 * The ntrack value must be between 1 and the total number of
1255 * sectors in the file system.
1256 */
1257 range_check(&ntrack, "ntrack", 1,
1258 fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db,
1259 DFLNTRAK, ntrack_flag);
1260 }
1261
1262 range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag);
1263
1264 if (mtb == 'y')
1265 fragsize = bsize;
1266
1267 range_check(&fragsize, "fragsize", sectorsize, bsize,
1268 MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag);
1269
1270 if ((bsize / MAXFRAG) > fragsize) {
1271 (void) fprintf(stderr, gettext(
1272 "fragment size %ld is too small, minimum with block size %ld is %ld\n"),
1273 fragsize, bsize, bsize / MAXFRAG);
1274 (void) fprintf(stderr,
1275 gettext("mkfs: fragsize reset to minimum %ld\n"),
1276 bsize / MAXFRAG);
1277 fragsize = bsize / MAXFRAG;
1278 }
1279
1280 if (!POWEROF2(fragsize)) {
1281 (void) fprintf(stderr,
1282 gettext("fragment size must be a power of 2, not %ld\n"),
1283 fragsize);
1284 fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize));
1285 (void) fprintf(stderr,
1286 gettext("mkfs: fragsize reset to %ld\n"),
1287 fragsize);
1288 }
1289
1290 /* At this point, bsize must be >= fragsize, so no need to check it */
1291
1292 if (bsize < PAGESIZE) {
1293 (void) fprintf(stderr, gettext(
1294 "WARNING: filesystem block size (%ld) is smaller than "
1295 "memory page size (%ld).\nResulting filesystem can not be "
1296 "mounted on this system.\n\n"),
1297 bsize, (long)PAGESIZE);
1298 }
1299
1300 range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag);
1301 range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag);
1302 range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag);
1303
1304 /*
1305 * nbpi is variable, but 2MB seems a reasonable upper limit,
1306 * as 4MB tends to cause problems (using otherwise-default
1307 * parameters). The true limit is where we end up with one
1308 * inode per cylinder group. If this file system is being
1309 * configured for multi-terabyte access, nbpi must be at least 1MB.
1310 */
1311 if (mtb == 'y' && nbpi < MTB_NBPI) {
1312 if (nbpi_flag != RC_DEFAULT)
1313 (void) fprintf(stderr, gettext("mkfs: bad value for "
1314 "nbpi: must be at least 1048576 for multi-terabyte,"
1315 " nbpi reset to default 1048576\n"));
1316 nbpi = MTB_NBPI;
1317 }
1318
1319 if (mtb == 'y')
1320 range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI,
1321 nbpi_flag);
1322 else
1323 range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag);
1324
1325 /*
1326 * maxcpg is another variably-limited parameter. Calculate
1327 * the limit based on what we've got for its dependent
1328 * variables. Effectively, it's how much space is left in the
1329 * superblock after all the other bits are accounted for. We
1330 * only fill in sblock fields so we can use MAXIpG.
1331 *
1332 * If the calculation of maxcpg below (for the mtb == 'n'
1333 * case) is changed, update newfs as well.
1334 *
1335 * For old-style, non-MTB format file systems, use the old
1336 * algorithm for calculating the maximum cylinder group size,
1337 * even though it limits the cylinder group more than necessary.
1338 * Since layout can affect performance, we don't want to change
1339 * the default layout for non-MTB file systems at this time.
1340 * However, for MTB file systems, use the new maxcpg calculation,
1341 * which really maxes out the cylinder group size.
1342 */
1343
1344 sblock.fs_bsize = bsize;
1345 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1346
1347 if (mtb == 'n') {
1348 maxcpg = (bsize - sizeof (struct cg) -
1349 howmany(MAXIpG(&sblock), NBBY)) /
1350 (sizeof (long) + nrpos * sizeof (short) +
1351 nsect / (MAXFRAG * NBBY));
1352 } else {
1353 maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos,
1354 nsect * ntrack);
1355 }
1356
1357 dprintf(("DeBuG cpg : %ld\n", cpg));
1358 /*
1359 * Increase the cpg to maxcpg if either newfs was invoked
1360 * with -T option or if mkfs wants to create a mtb file system
1361 * and if the user has not specified the cpg.
1362 */
1363 if (cpg == -1 || (mtb == 'y' && cpg_flag == RC_DEFAULT))
1364 cpg = maxcpg;
1365 dprintf(("DeBuG cpg : %ld\n", cpg));
1366
1367 /*
1368 * mincpg is variable in complex ways, so we really can't
1369 * do a sane lower-end limit check at this point.
1370 */
1371 range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag);
1372
1373 /*
1374 * get the controller info
1375 */
1376 ismdd = 0;
1377 islog = 0;
1378 islogok = 0;
1379 waslog = 0;
1380
1381 if (ioctl(fsi, DKIOCINFO, &dkcinfo) == 0)
1382 /*
1383 * if it is an MDD (disksuite) device
1384 */
1385 if (dkcinfo.dki_ctype == DKC_MD) {
1386 ismdd++;
1387 /*
1388 * check the logging device
1389 */
1390 if (ioctl(fsi, _FIOISLOG, NULL) == 0) {
1391 islog++;
1392 if (ioctl(fsi, _FIOISLOGOK, NULL) == 0)
1393 islogok++;
1394 }
1395 }
1396
1397 /*
1398 * Do not grow the file system, but print on stdout the maximum
1399 * size in sectors to which the file system can be increased.
1400 * The calculated size is limited by fssize_db.
1401 * Note that we don't lock the filesystem and therefore under rare
1402 * conditions (the filesystem is mounted, the free block count is
1403 * almost zero, and the superuser is still changing it) the calculated
1404 * size can be imprecise.
1405 */
1406 if (Pflag) {
1407 (void) printf("%llu\n", probe_summaryinfo());
1408 exit(0);
1409 }
1410
1411 /*
1412 * If we're growing an existing filesystem, then we're about
1413 * to start doing things that can require recovery efforts if
1414 * we get interrupted, so make sure we get a chance to do so.
1415 */
1416 if (grow) {
1417 sigact.sa_handler = recover_from_sigint;
1418 sigemptyset(&sigact.sa_mask);
1419 sigact.sa_flags = SA_RESTART;
1420
1421 if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) {
1422 perror(gettext("Could not register SIGINT handler"));
1423 lockexit(3);
1424 }
1425 }
1426
1427 if (!Nflag) {
1428 /*
1429 * Check if MNTTAB is trustable
1430 */
1431 if (statvfs64(MNTTAB, &fs) < 0) {
1432 (void) fprintf(stderr, gettext("can't statvfs %s\n"),
1433 MNTTAB);
1434 exit(32);
1435 }
1436
1437 if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) {
1438 (void) fprintf(stderr, gettext(
1439 "%s file system type is not %s, can't mkfs\n"),
1440 MNTTAB, MNTTYPE_MNTFS);
1441 exit(32);
1442 }
1443
1444 special = getfullblkname(fsys);
1445 checkdev(fsys, special);
1446
1447 /*
1448 * If we found the block device name,
1449 * then check the mount table.
1450 * if mounted, and growing write lock the file system
1451 *
1452 */
1453 if ((special != NULL) && (*special != '\0')) {
1454 if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
1455 (void) fprintf(stderr, gettext(
1456 "can't open %s\n"), MNTTAB);
1457 exit(32);
1458 }
1459 while ((getmntent(mnttab, &mntp)) == NULL) {
1460 if (grow) {
1461 checkmount(&mntp, special);
1462 continue;
1463 }
1464 if (strcmp(special, mntp.mnt_special) == 0) {
1465 (void) fprintf(stderr, gettext(
1466 "%s is mounted, can't mkfs\n"),
1467 special);
1468 exit(32);
1469 }
1470 }
1471 (void) fclose(mnttab);
1472 }
1473
1474 if (directory && (ismounted == 0)) {
1475 (void) fprintf(stderr, gettext("%s is not mounted\n"),
1476 special);
1477 lockexit(32);
1478 }
1479
1480 fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666);
1481 if (fso < 0) {
1482 saverr = errno;
1483 (void) fprintf(stderr,
1484 gettext("%s: cannot create: %s\n"),
1485 fsys, strerror(saverr));
1486 lockexit(32);
1487 }
1488
1489 } else {
1490
1491 /*
1492 * For the -N case, a file descriptor is needed for the llseek()
1493 * in wtfs(). See the comment in wtfs() for more information.
1494 *
1495 * Get a file descriptor that's read-only so that this code
1496 * doesn't accidentally write to the file.
1497 */
1498 fso = open64(fsys, O_RDONLY);
1499 if (fso < 0) {
1500 saverr = errno;
1501 (void) fprintf(stderr, gettext("%s: cannot open: %s\n"),
1502 fsys, strerror(saverr));
1503 lockexit(32);
1504 }
1505 }
1506
1507 /*
1508 * Check the media sector size
1509 */
1510 if (ioctl(fso, DKIOCGMEDIAINFO, &dkminfo) != -1) {
1511 if (dkminfo.dki_lbsize != 0 &&
1512 POWEROF2(dkminfo.dki_lbsize / DEV_BSIZE) &&
1513 dkminfo.dki_lbsize != DEV_BSIZE) {
1514 fprintf(stderr,
1515 gettext("The device sector size %u is not "
1516 "supported by ufs!\n"), dkminfo.dki_lbsize);
1517 (void) close(fso);
1518 exit(1);
1519 }
1520 }
1521
1522 /*
1523 * seed random # generator (for ic_generation)
1524 */
1525 #ifdef MKFS_DEBUG
1526 srand48(12962); /* reproducible results */
1527 #else
1528 srand48((long)(time((time_t *)NULL) + getpid()));
1529 #endif
1530
1531 if (grow) {
1532 growinit(fsys);
1533 goto grow00;
1534 }
1535
1536 /*
1537 * Validate the given file system size.
1538 * Verify that its last block can actually be accessed.
1539 *
1540 * Note: it's ok to use sblock as a buffer because it is immediately
1541 * overwritten by the rdfs() of the superblock in the next line.
1542 *
1543 * ToDo: Because the size checking is done in rdfs()/wtfs(), the
1544 * error message for specifying an illegal size is very unfriendly.
1545 * In the future, one could replace the rdfs()/wtfs() calls
1546 * below with in-line calls to read() or write(). This allows better
1547 * error messages to be put in place.
1548 */
1549 rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock);
1550
1551 /*
1552 * make the fs unmountable
1553 */
1554 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1555 sblock.fs_magic = -1;
1556 sblock.fs_clean = FSBAD;
1557 sblock.fs_state = FSOKAY - sblock.fs_time;
1558 wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1559 bzero(&sblock, (size_t)sbsize);
1560
1561 sblock.fs_nsect = nsect;
1562 sblock.fs_ntrak = ntrack;
1563
1564 /*
1565 * Validate specified/determined spc
1566 * and calculate minimum cylinders per group.
1567 */
1568
1569 /*
1570 * sectors/cyl = tracks/cyl * sectors/track
1571 */
1572 sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
1573
1574 grow00:
1575 if (apc_flag) {
1576 sblock.fs_spc -= apc;
1577 }
1578 /*
1579 * Have to test for this separately from apc_flag, due to
1580 * the growfs case....
1581 */
1582 if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) {
1583 spc_flag = 1;
1584 }
1585 if (grow)
1586 goto grow10;
1587
1588 sblock.fs_nrpos = nrpos;
1589 sblock.fs_bsize = bsize;
1590 sblock.fs_fsize = fragsize;
1591 sblock.fs_minfree = minfree;
1592
1593 grow10:
1594 if (nbpi < sblock.fs_fsize) {
1595 (void) fprintf(stderr, gettext(
1596 "warning: wasteful data byte allocation / inode (nbpi):\n"));
1597 (void) fprintf(stderr, gettext(
1598 "%ld smaller than allocatable fragment size of %d\n"),
1599 nbpi, sblock.fs_fsize);
1600 }
1601 if (grow)
1602 goto grow20;
1603
1604 if (opt == 's')
1605 sblock.fs_optim = FS_OPTSPACE;
1606 else
1607 sblock.fs_optim = FS_OPTTIME;
1608
1609 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
1610 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
1611 /*
1612 * Planning now for future expansion.
1613 */
1614 #if defined(_BIG_ENDIAN)
1615 sblock.fs_qbmask.val[0] = 0;
1616 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
1617 sblock.fs_qfmask.val[0] = 0;
1618 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
1619 #endif
1620 #if defined(_LITTLE_ENDIAN)
1621 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
1622 sblock.fs_qbmask.val[1] = 0;
1623 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
1624 sblock.fs_qfmask.val[1] = 0;
1625 #endif
1626 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
1627 sblock.fs_bshift++;
1628 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
1629 sblock.fs_fshift++;
1630 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
1631 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
1632 sblock.fs_fragshift++;
1633 if (sblock.fs_frag > MAXFRAG) {
1634 (void) fprintf(stderr, gettext(
1635 "fragment size %d is too small, minimum with block size %d is %d\n"),
1636 sblock.fs_fsize, sblock.fs_bsize,
1637 sblock.fs_bsize / MAXFRAG);
1638 lockexit(32);
1639 }
1640 sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t);
1641 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1642 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
1643 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
1644 sblock.fs_fsbtodb++;
1645
1646 /*
1647 * Compute the super-block, cylinder group, and inode blocks.
1648 * Note that these "blkno" are really fragment addresses.
1649 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16,
1650 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so
1651 * important: only 1 FS block is allocated for the cg struct (fragment
1652 * numbers 24 through 31).
1653 */
1654 sblock.fs_sblkno =
1655 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
1656 sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno +
1657 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
1658 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
1659
1660 sblock.fs_cgoffset = roundup(
1661 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
1662 for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1)
1663 sblock.fs_cgmask <<= 1;
1664 if (!POWEROF2(sblock.fs_ntrak))
1665 sblock.fs_cgmask <<= 1;
1666 /*
1667 * Validate specified/determined spc
1668 * and calculate minimum cylinders per group.
1669 */
1670
1671 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
1672 sblock.fs_cpc > 1 && (i & 1) == 0;
1673 sblock.fs_cpc >>= 1, i >>= 1)
1674 /* void */;
1675 mincpc = sblock.fs_cpc;
1676
1677 /* if these calculations are changed, check dump_fscmd also */
1678 bpcg = (uint64_t)sblock.fs_spc * sectorsize;
1679 inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode),
1680 INOPB(&sblock));
1681 if (inospercg > MAXIpG(&sblock))
1682 inospercg = MAXIpG(&sblock);
1683 used = (uint64_t)(sblock.fs_iblkno + inospercg /
1684 INOPF(&sblock)) * NSPF(&sblock);
1685 mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset *
1686 (~sblock.fs_cgmask) + used, sblock.fs_spc);
1687 mincpg = roundup(mincpgcnt, mincpc);
1688 /*
1689 * Insure that cylinder group with mincpg has enough space
1690 * for block maps
1691 */
1692 sblock.fs_cpg = mincpg;
1693 sblock.fs_ipg = (int32_t)inospercg;
1694 mapcramped = 0;
1695
1696 /*
1697 * Make sure the cg struct fits within the file system block.
1698 * Use larger block sizes until it fits
1699 */
1700 while (CGSIZE(&sblock) > sblock.fs_bsize) {
1701 mapcramped = 1;
1702 if (sblock.fs_bsize < MAXBSIZE) {
1703 sblock.fs_bsize <<= 1;
1704 if ((i & 1) == 0) {
1705 i >>= 1;
1706 } else {
1707 sblock.fs_cpc <<= 1;
1708 mincpc <<= 1;
1709 mincpg = roundup(mincpgcnt, mincpc);
1710 sblock.fs_cpg = mincpg;
1711 }
1712 sblock.fs_frag <<= 1;
1713 sblock.fs_fragshift += 1;
1714 if (sblock.fs_frag <= MAXFRAG)
1715 continue;
1716 }
1717
1718 /*
1719 * Looped far enough. The fragment is now as large as the
1720 * filesystem block!
1721 */
1722 if (sblock.fs_fsize == sblock.fs_bsize) {
1723 (void) fprintf(stderr, gettext(
1724 "There is no block size that can support this disk\n"));
1725 lockexit(32);
1726 }
1727
1728 /*
1729 * Try a larger fragment. Double the fragment size.
1730 */
1731 sblock.fs_frag >>= 1;
1732 sblock.fs_fragshift -= 1;
1733 sblock.fs_fsize <<= 1;
1734 sblock.fs_nspf <<= 1;
1735 }
1736 /*
1737 * Insure that cylinder group with mincpg has enough space for inodes
1738 */
1739 inodecramped = 0;
1740 used *= sectorsize;
1741 nbytes64 = (uint64_t)mincpg * bpcg - used;
1742 inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock));
1743 sblock.fs_ipg = (int32_t)inospercg;
1744 while (inospercg > MAXIpG(&sblock)) {
1745 inodecramped = 1;
1746 if (mincpc == 1 || sblock.fs_frag == 1 ||
1747 sblock.fs_bsize == MINBSIZE)
1748 break;
1749 nbytes64 = (uint64_t)mincpg * bpcg - used;
1750 (void) fprintf(stderr,
1751 gettext("With a block size of %d %s %lu\n"),
1752 sblock.fs_bsize, gettext("minimum bytes per inode is"),
1753 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1754 sblock.fs_bsize >>= 1;
1755 sblock.fs_frag >>= 1;
1756 sblock.fs_fragshift -= 1;
1757 mincpc >>= 1;
1758 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
1759 if (CGSIZE(&sblock) > sblock.fs_bsize) {
1760 sblock.fs_bsize <<= 1;
1761 break;
1762 }
1763 mincpg = sblock.fs_cpg;
1764 nbytes64 = (uint64_t)mincpg * bpcg - used;
1765 inospercg = (uint64_t)roundup((nbytes64 / nbpi),
1766 INOPB(&sblock));
1767 sblock.fs_ipg = (int32_t)inospercg;
1768 }
1769 if (inodecramped) {
1770 if (inospercg > MAXIpG(&sblock)) {
1771 nbytes64 = (uint64_t)mincpg * bpcg - used;
1772 (void) fprintf(stderr, gettext(
1773 "Minimum bytes per inode is %d\n"),
1774 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1775 } else if (!mapcramped) {
1776 (void) fprintf(stderr, gettext(
1777 "With %ld bytes per inode, minimum cylinders per group is %ld\n"),
1778 nbpi, mincpg);
1779 }
1780 }
1781 if (mapcramped) {
1782 (void) fprintf(stderr, gettext(
1783 "With %d sectors per cylinder, minimum cylinders "
1784 "per group is %ld\n"),
1785 sblock.fs_spc, mincpg);
1786 }
1787 if (inodecramped || mapcramped) {
1788 /*
1789 * To make this at least somewhat comprehensible in
1790 * the world of i18n, figure out what we're going to
1791 * say and then say it all at one time. The days of
1792 * needing to scrimp on string space are behind us....
1793 */
1794 if ((sblock.fs_bsize != bsize) &&
1795 (sblock.fs_fsize != fragsize)) {
1796 (void) fprintf(stderr, gettext(
1797 "This requires the block size to be changed from %ld to %d\n"
1798 "and the fragment size to be changed from %ld to %d\n"),
1799 bsize, sblock.fs_bsize,
1800 fragsize, sblock.fs_fsize);
1801 } else if (sblock.fs_bsize != bsize) {
1802 (void) fprintf(stderr, gettext(
1803 "This requires the block size to be changed from %ld to %d\n"),
1804 bsize, sblock.fs_bsize);
1805 } else if (sblock.fs_fsize != fragsize) {
1806 (void) fprintf(stderr, gettext(
1807 "This requires the fragment size to be changed from %ld to %d\n"),
1808 fragsize, sblock.fs_fsize);
1809 } else {
1810 (void) fprintf(stderr, gettext(
1811 "Unable to make filesystem fit with the given constraints\n"));
1812 }
1813 (void) fprintf(stderr, gettext(
1814 "Please re-run mkfs with corrected parameters\n"));
1815 lockexit(32);
1816 }
1817 /*
1818 * Calculate the number of cylinders per group
1819 */
1820 sblock.fs_cpg = cpg;
1821 if (sblock.fs_cpg % mincpc != 0) {
1822 (void) fprintf(stderr, gettext(
1823 "Warning: cylinder groups must have a multiple "
1824 "of %ld cylinders with the given\n parameters\n"),
1825 mincpc);
1826 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
1827 (void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"),
1828 sblock.fs_cpg);
1829 }
1830 /*
1831 * Must insure there is enough space for inodes
1832 */
1833 /* if these calculations are changed, check dump_fscmd also */
1834 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1835 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock));
1836
1837 /*
1838 * Slim down cylinders per group, until the inodes can fit.
1839 */
1840 while (sblock.fs_ipg > MAXIpG(&sblock)) {
1841 inodecramped = 1;
1842 sblock.fs_cpg -= mincpc;
1843 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1844 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1845 INOPB(&sblock));
1846 }
1847 /*
1848 * Must insure there is enough space to hold block map.
1849 * Cut down on cylinders per group, until the cg struct fits in a
1850 * filesystem block.
1851 */
1852 while (CGSIZE(&sblock) > sblock.fs_bsize) {
1853 mapcramped = 1;
1854 sblock.fs_cpg -= mincpc;
1855 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1856 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1857 INOPB(&sblock));
1858 }
1859 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
1860 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
1861 (void) fprintf(stderr,
1862 gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n"));
1863 lockexit(32);
1864 }
1865 if (sblock.fs_cpg < mincpg) {
1866 (void) fprintf(stderr, gettext(
1867 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"),
1868 mincpg);
1869 lockexit(32);
1870 }
1871 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
1872 grow20:
1873 /*
1874 * Now have size for file system and nsect and ntrak.
1875 * Determine number of cylinders and blocks in the file system.
1876 */
1877 fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db);
1878 if (fssize_frag > INT_MAX) {
1879 (void) fprintf(stderr, gettext(
1880 "There are too many fragments in the system, increase fragment size\n"),
1881 mincpg);
1882 lockexit(32);
1883 }
1884 sblock.fs_size = (int32_t)fssize_frag;
1885 sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc);
1886 if (fssize_frag * NSPF(&sblock) >
1887 (uint64_t)sblock.fs_ncyl * sblock.fs_spc) {
1888 sblock.fs_ncyl++;
1889 warn = 1;
1890 }
1891 if (sblock.fs_ncyl < 1) {
1892 (void) fprintf(stderr, gettext(
1893 "file systems must have at least one cylinder\n"));
1894 lockexit(32);
1895 }
1896 if (grow)
1897 goto grow30;
1898 /*
1899 * Determine feasability/values of rotational layout tables.
1900 *
1901 * The size of the rotational layout tables is limited by the size
1902 * of the file system block, fs_bsize. The amount of space
1903 * available for tables is calculated as (fs_bsize - sizeof (struct
1904 * fs)). The size of these tables is inversely proportional to the
1905 * block size of the file system. The size increases if sectors per
1906 * track are not powers of two, because more cylinders must be
1907 * described by the tables before the rotational pattern repeats
1908 * (fs_cpc).
1909 */
1910 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
1911 sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs));
1912 sblock.fs_npsect = sblock.fs_nsect;
1913 if (sblock.fs_ntrak == 1) {
1914 sblock.fs_cpc = 0;
1915 goto next;
1916 }
1917 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short);
1918 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
1919 totalsbsize = sizeof (struct fs) + rotblsize;
1920
1921 /* do static allocation if nrpos == 8 and fs_cpc == 16 */
1922 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
1923 /* use old static table space */
1924 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
1925 (char *)(&sblock.fs_link);
1926 sblock.fs_rotbloff = &sblock.fs_space[0] -
1927 (uchar_t *)(&sblock.fs_link);
1928 } else {
1929 /* use 4.3 dynamic table space */
1930 sblock.fs_postbloff = &sblock.fs_space[0] -
1931 (uchar_t *)(&sblock.fs_link);
1932 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
1933 totalsbsize += postblsize;
1934 }
1935 if (totalsbsize > sblock.fs_bsize ||
1936 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
1937 (void) fprintf(stderr, gettext(
1938 "Warning: insufficient space in super block for\n"
1939 "rotational layout tables with nsect %d, ntrack %d, "
1940 "and nrpos %d.\nOmitting tables - file system "
1941 "performance may be impaired.\n"),
1942 sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos);
1943
1944 /*
1945 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to
1946 * ignore the positional layout table and rotational
1947 * position table.
1948 */
1949 sblock.fs_cpc = 0;
1950 goto next;
1951 }
1952 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
1953
1954
1955 /*
1956 * calculate the available blocks for each rotational position
1957 */
1958 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
1959 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
1960 fs_postbl(&sblock, cylno)[rpos] = -1;
1961 for (i = (rotblsize - 1) * sblock.fs_frag;
1962 i >= 0; i -= sblock.fs_frag) {
1963 cylno = cbtocylno(&sblock, i);
1964 rpos = cbtorpos(&sblock, i);
1965 blk = fragstoblks(&sblock, i);
1966 if (fs_postbl(&sblock, cylno)[rpos] == -1)
1967 fs_rotbl(&sblock)[blk] = 0;
1968 else
1969 fs_rotbl(&sblock)[blk] =
1970 fs_postbl(&sblock, cylno)[rpos] - blk;
1971 fs_postbl(&sblock, cylno)[rpos] = blk;
1972 }
1973 next:
1974 grow30:
1975 /*
1976 * Compute/validate number of cylinder groups.
1977 * Note that if an excessively large filesystem is specified
1978 * (e.g., more than 16384 cylinders for an 8K filesystem block), it
1979 * does not get detected until checksummarysize()
1980 */
1981 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
1982 if (sblock.fs_ncyl % sblock.fs_cpg)
1983 sblock.fs_ncg++;
1984 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
1985 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
1986 ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i);
1987 if (ibpcl >= sblock.fs_fpg) {
1988 (void) fprintf(stderr, gettext(
1989 "inode blocks/cyl group (%d) >= data blocks (%d)\n"),
1990 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
1991 sblock.fs_fpg / sblock.fs_frag);
1992 if ((ibpcl < 0) || (sblock.fs_fpg < 0)) {
1993 (void) fprintf(stderr, gettext(
1994 "number of cylinders per cylinder group (%d) must be decreased.\n"),
1995 sblock.fs_cpg);
1996 } else {
1997 (void) fprintf(stderr, gettext(
1998 "number of cylinders per cylinder group (%d) must be increased.\n"),
1999 sblock.fs_cpg);
2000 }
2001 (void) fprintf(stderr, gettext(
2002 "Note that cgsize may have been adjusted to allow struct cg to fit.\n"));
2003 lockexit(32);
2004 }
2005 j = sblock.fs_ncg - 1;
2006 if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg &&
2007 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
2008 (void) fprintf(stderr, gettext(
2009 "Warning: inode blocks/cyl group (%d) >= data "
2010 "blocks (%ld) in last\n cylinder group. This "
2011 "implies %ld sector(s) cannot be allocated.\n"),
2012 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
2013 i / sblock.fs_frag, i * NSPF(&sblock));
2014 /*
2015 * If there is only one cylinder group and that is not even
2016 * big enough to hold the inodes, exit.
2017 */
2018 if (sblock.fs_ncg == 1)
2019 cg_too_small = 1;
2020 sblock.fs_ncg--;
2021 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2022 sblock.fs_size = fssize_frag =
2023 (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc /
2024 (int64_t)NSPF(&sblock);
2025 warn = 0;
2026 }
2027 if (warn && !spc_flag) {
2028 (void) fprintf(stderr, gettext(
2029 "Warning: %d sector(s) in last cylinder unallocated\n"),
2030 sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) -
2031 (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc));
2032 }
2033 /*
2034 * fill in remaining fields of the super block
2035 */
2036
2037 /*
2038 * The csum records are stored in cylinder group 0, starting at
2039 * cgdmin, the first data block.
2040 */
2041 sblock.fs_csaddr = cgdmin(&sblock, 0);
2042 sblock.fs_cssize =
2043 fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum));
2044 i = sblock.fs_bsize / sizeof (struct csum);
2045 sblock.fs_csmask = ~(i - 1);
2046 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
2047 sblock.fs_csshift++;
2048 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
2049
2050 checksummarysize();
2051 if (mtb == 'y') {
2052 sblock.fs_magic = MTB_UFS_MAGIC;
2053 sblock.fs_version = MTB_UFS_VERSION_1;
2054 } else {
2055 sblock.fs_magic = FS_MAGIC;
2056 if (use_efi_dflts)
2057 sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2;
2058 else
2059 sblock.fs_version = UFS_VERSION_MIN;
2060 }
2061
2062 if (grow) {
2063 bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize);
2064 extendsummaryinfo();
2065 goto grow40;
2066 }
2067 sblock.fs_rotdelay = rotdelay;
2068 sblock.fs_maxcontig = maxcontig;
2069 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
2070
2071 sblock.fs_rps = rps;
2072 sblock.fs_cgrotor = 0;
2073 sblock.fs_cstotal.cs_ndir = 0;
2074 sblock.fs_cstotal.cs_nbfree = 0;
2075 sblock.fs_cstotal.cs_nifree = 0;
2076 sblock.fs_cstotal.cs_nffree = 0;
2077 sblock.fs_fmod = 0;
2078 sblock.fs_ronly = 0;
2079 sblock.fs_time = mkfstime;
2080 sblock.fs_state = FSOKAY - sblock.fs_time;
2081 sblock.fs_clean = FSCLEAN;
2082 grow40:
2083
2084 /*
2085 * If all that's needed is a dump of the superblock we
2086 * would use by default, we've got it now. So, splat it
2087 * out and leave.
2088 */
2089 if (rflag) {
2090 dump_sblock();
2091 lockexit(0);
2092 }
2093 /*
2094 * Dump out summary information about file system.
2095 */
2096 (void) fprintf(stderr, gettext(
2097 "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"),
2098 fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
2099 sblock.fs_ntrak, sblock.fs_nsect);
2100 (void) fprintf(stderr, gettext(
2101 "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"),
2102 (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg,
2103 sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB,
2104 sblock.fs_ipg);
2105
2106 tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1);
2107 if (tmpbuf == NULL) {
2108 perror("calloc");
2109 lockexit(32);
2110 }
2111 if (cg_too_small) {
2112 (void) fprintf(stderr, gettext("File system creation failed. "
2113 "There is only one cylinder group and\nthat is "
2114 "not even big enough to hold the inodes.\n"));
2115 lockexit(32);
2116 }
2117 /*
2118 * Now build the cylinders group blocks and
2119 * then print out indices of cylinder groups.
2120 */
2121 tprintf(gettext(
2122 "super-block backups (for fsck -F ufs -o b=#) at:\n"));
2123 for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) {
2124 if ((grow == 0) || (cylno >= grow_fs_ncg))
2125 initcg(cylno);
2126 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2127 /*
2128 * If Nflag and if the disk is larger than the CHSLIMIT,
2129 * then sanity test the superblocks before reporting. If there
2130 * are too many superblocks which look insane, we have
2131 * to retry with alternate logic. If both methods have
2132 * failed, then our efforts to arrive at alternate
2133 * superblocks failed, so complain and exit.
2134 */
2135 if (Nflag && retry) {
2136 skip_this_sb = 0;
2137 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2138 ret = checksblock(altsblock, 1);
2139 if (ret) {
2140 skip_this_sb = 1;
2141 invalid_sb_cnt++;
2142 dprintf(("DeBuG checksblock() failed - error :"
2143 " %d for sb : %llu invalid_sb_cnt : %d\n",
2144 ret, num, invalid_sb_cnt));
2145 } else {
2146 /*
2147 * Though the superblock looks sane, verify if
2148 * the fs_version in the superblock and the
2149 * logic that we are using to arrive at the
2150 * superblocks match.
2151 */
2152 if (use_efi_dflts && altsblock.fs_version
2153 != UFS_EFISTYLE4NONEFI_VERSION_2) {
2154 skip_this_sb = 1;
2155 invalid_sb_cnt++;
2156 }
2157 }
2158 if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2159 if (retry > 1) {
2160 (void) fprintf(stderr, gettext(
2161 "Error determining alternate "
2162 "superblock locations\n"));
2163 free(tmpbuf);
2164 lockexit(32);
2165 }
2166 retry++;
2167 use_efi_dflts = !use_efi_dflts;
2168 free(tmpbuf);
2169 goto retry_alternate_logic;
2170 }
2171 if (skip_this_sb)
2172 continue;
2173 }
2174 (void) sprintf(pbuf, " %llu,", num);
2175 plen = strlen(pbuf);
2176 if ((width + plen) > (WIDTH - 1)) {
2177 width = plen;
2178 tprintf("\n");
2179 } else {
2180 width += plen;
2181 }
2182 if (Nflag && retry)
2183 (void) strncat(tmpbuf, pbuf, strlen(pbuf));
2184 else
2185 (void) fprintf(stderr, "%s", pbuf);
2186 }
2187 tprintf("\n");
2188
2189 remaining_cg = sblock.fs_ncg - cylno;
2190
2191 /*
2192 * If there are more than 300 cylinder groups still to be
2193 * initialized, print a "." for every 50 cylinder groups.
2194 */
2195 if (remaining_cg > 300) {
2196 tprintf(gettext("Initializing cylinder groups:\n"));
2197 do_dot = 1;
2198 }
2199
2200 /*
2201 * Now initialize all cylinder groups between the first ten
2202 * and the last ten.
2203 *
2204 * If the number of cylinder groups was less than 10, all of the
2205 * cylinder group offsets would have printed in the last loop
2206 * and cylno will already be equal to sblock.fs_ncg and so this
2207 * loop will not be entered. If there are less than 20 cylinder
2208 * groups, cylno is already less than fs_ncg - 10, so this loop
2209 * won't be entered in that case either.
2210 */
2211
2212 i = 0;
2213 for (; cylno < sblock.fs_ncg - 10; cylno++) {
2214 if ((grow == 0) || (cylno >= grow_fs_ncg))
2215 initcg(cylno);
2216 if (do_dot && cylno % 50 == 0) {
2217 tprintf(".");
2218 i++;
2219 if (i == WIDTH - 1) {
2220 tprintf("\n");
2221 i = 0;
2222 }
2223 }
2224 }
2225
2226 /*
2227 * Now print the cylinder group offsets for the last 10
2228 * cylinder groups, if any are left.
2229 */
2230
2231 if (do_dot) {
2232 tprintf(gettext(
2233 "\nsuper-block backups for last 10 cylinder groups at:\n"));
2234 }
2235 for (width = 0; cylno < sblock.fs_ncg; cylno++) {
2236 if ((grow == 0) || (cylno >= grow_fs_ncg))
2237 initcg(cylno);
2238 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2239 if (Nflag && retry) {
2240 skip_this_sb = 0;
2241 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2242 ret = checksblock(altsblock, 1);
2243 if (ret) {
2244 skip_this_sb = 1;
2245 invalid_sb_cnt++;
2246 dprintf(("DeBuG checksblock() failed - error :"
2247 " %d for sb : %llu invalid_sb_cnt : %d\n",
2248 ret, num, invalid_sb_cnt));
2249 } else {
2250 /*
2251 * Though the superblock looks sane, verify if
2252 * the fs_version in the superblock and the
2253 * logic that we are using to arrive at the
2254 * superblocks match.
2255 */
2256 if (use_efi_dflts && altsblock.fs_version
2257 != UFS_EFISTYLE4NONEFI_VERSION_2) {
2258 skip_this_sb = 1;
2259 invalid_sb_cnt++;
2260 }
2261 }
2262 if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2263 if (retry > 1) {
2264 (void) fprintf(stderr, gettext(
2265 "Error determining alternate "
2266 "superblock locations\n"));
2267 free(tmpbuf);
2268 lockexit(32);
2269 }
2270 retry++;
2271 use_efi_dflts = !use_efi_dflts;
2272 free(tmpbuf);
2273 goto retry_alternate_logic;
2274 }
2275 if (skip_this_sb)
2276 continue;
2277 }
2278 /* Don't print ',' for the last superblock */
2279 if (cylno == sblock.fs_ncg-1)
2280 (void) sprintf(pbuf, " %llu", num);
2281 else
2282 (void) sprintf(pbuf, " %llu,", num);
2283 plen = strlen(pbuf);
2284 if ((width + plen) > (WIDTH - 1)) {
2285 width = plen;
2286 tprintf("\n");
2287 } else {
2288 width += plen;
2289 }
2290 if (Nflag && retry)
2291 (void) strncat(tmpbuf, pbuf, strlen(pbuf));
2292 else
2293 (void) fprintf(stderr, "%s", pbuf);
2294 }
2295 tprintf("\n");
2296 if (Nflag) {
2297 if (retry)
2298 (void) fprintf(stderr, "%s", tmpbuf);
2299 free(tmpbuf);
2300 lockexit(0);
2301 }
2302
2303 free(tmpbuf);
2304 if (grow)
2305 goto grow50;
2306
2307 /*
2308 * Now construct the initial file system,
2309 * then write out the super-block.
2310 */
2311 fsinit();
2312 grow50:
2313 /*
2314 * write the superblock and csum information
2315 */
2316 wtsb();
2317
2318 /*
2319 * extend the last cylinder group in the original file system
2320 */
2321 if (grow) {
2322 extendcg(grow_fs_ncg-1);
2323 wtsb();
2324 }
2325
2326 /*
2327 * Write out the duplicate super blocks to the first 10
2328 * cylinder groups (or fewer, if there are fewer than 10
2329 * cylinder groups).
2330 */
2331 for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++)
2332 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2333 (int)sbsize, (char *)&sblock, SAVE);
2334
2335 /*
2336 * Now write out duplicate super blocks to the remaining
2337 * cylinder groups. In the case of multi-terabyte file
2338 * systems, just write out the super block to the last ten
2339 * cylinder groups (or however many are left).
2340 */
2341 if (mtb == 'y') {
2342 if (sblock.fs_ncg <= 10)
2343 cylno = sblock.fs_ncg;
2344 else if (sblock.fs_ncg <= 20)
2345 cylno = 10;
2346 else
2347 cylno = sblock.fs_ncg - 10;
2348 }
2349
2350 for (; cylno < sblock.fs_ncg; cylno++)
2351 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2352 (int)sbsize, (char *)&sblock, SAVE);
2353
2354 /*
2355 * Flush out all the AIO writes we've done. It's not
2356 * necessary to do this explicitly, but it's the only
2357 * way to report any errors from those writes.
2358 */
2359 flush_writes();
2360
2361 /*
2362 * set clean flag
2363 */
2364 if (grow)
2365 sblock.fs_clean = grow_fs_clean;
2366 else
2367 sblock.fs_clean = FSCLEAN;
2368 sblock.fs_time = mkfstime;
2369 sblock.fs_state = FSOKAY - sblock.fs_time;
2370 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
2371 isbad = 0;
2372
2373 if (fsync(fso) == -1) {
2374 saverr = errno;
2375 (void) fprintf(stderr,
2376 gettext("mkfs: fsync failed on write disk: %s\n"),
2377 strerror(saverr));
2378 /* we're just cleaning up, so keep going */
2379 }
2380 if (close(fsi) == -1) {
2381 saverr = errno;
2382 (void) fprintf(stderr,
2383 gettext("mkfs: close failed on read disk: %s\n"),
2384 strerror(saverr));
2385 /* we're just cleaning up, so keep going */
2386 }
2387 if (close(fso) == -1) {
2388 saverr = errno;
2389 (void) fprintf(stderr,
2390 gettext("mkfs: close failed on write disk: %s\n"),
2391 strerror(saverr));
2392 /* we're just cleaning up, so keep going */
2393 }
2394 fsi = fso = -1;
2395
2396 #ifndef STANDALONE
2397 lockexit(0);
2398 #endif
2399
2400 return (0);
2401 }
2402
2403 /*
2404 * Figure out how big the partition we're dealing with is.
2405 * The value returned is in disk blocks (sectors);
2406 */
2407 static diskaddr_t
get_max_size(int fd)2408 get_max_size(int fd)
2409 {
2410 struct extvtoc vtoc;
2411 dk_gpt_t *efi_vtoc;
2412 diskaddr_t slicesize;
2413
2414 int index = read_extvtoc(fd, &vtoc);
2415
2416 if (index >= 0) {
2417 label_type = LABEL_TYPE_VTOC;
2418 } else {
2419 if (index == VT_ENOTSUP || index == VT_ERROR) {
2420 /* it might be an EFI label */
2421 index = efi_alloc_and_read(fd, &efi_vtoc);
2422 label_type = LABEL_TYPE_EFI;
2423 }
2424 }
2425
2426 if (index < 0) {
2427 switch (index) {
2428 case VT_ERROR:
2429 break;
2430 case VT_EIO:
2431 errno = EIO;
2432 break;
2433 case VT_EINVAL:
2434 errno = EINVAL;
2435 }
2436 perror(gettext("Can not determine partition size"));
2437 lockexit(32);
2438 }
2439
2440 if (label_type == LABEL_TYPE_EFI) {
2441 slicesize = efi_vtoc->efi_parts[index].p_size;
2442 efi_free(efi_vtoc);
2443 } else {
2444 /*
2445 * In the vtoc struct, p_size is a 32-bit signed quantity.
2446 * In the dk_gpt struct (efi's version of the vtoc), p_size
2447 * is an unsigned 64-bit quantity. By casting the vtoc's
2448 * psize to an unsigned 32-bit quantity, it will be copied
2449 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
2450 * sign extension.
2451 */
2452
2453 slicesize = (uint32_t)vtoc.v_part[index].p_size;
2454 }
2455
2456 dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n",
2457 index, slicesize, (slicesize > FS_MAX)));
2458
2459 /*
2460 * The next line limits a UFS file system to the maximum
2461 * supported size.
2462 */
2463
2464 if (slicesize > FS_MAX)
2465 return (FS_MAX);
2466 return (slicesize);
2467 }
2468
2469 static long
get_max_track_size(int fd)2470 get_max_track_size(int fd)
2471 {
2472 struct dk_cinfo ci;
2473 long track_size = -1;
2474
2475 if (ioctl(fd, DKIOCINFO, &ci) == 0) {
2476 track_size = ci.dki_maxtransfer * DEV_BSIZE;
2477 }
2478
2479 if ((track_size < 0)) {
2480 int error = 0;
2481 int maxphys;
2482 int gotit = 0;
2483
2484 gotit = fsgetmaxphys(&maxphys, &error);
2485 if (gotit) {
2486 track_size = MIN(MB, maxphys);
2487 } else {
2488 (void) fprintf(stderr, gettext(
2489 "Warning: Could not get system value for maxphys. The value for\n"
2490 "maxcontig will default to 1MB.\n"));
2491 track_size = MB;
2492 }
2493 }
2494 return (track_size);
2495 }
2496
2497 /*
2498 * Initialize a cylinder group.
2499 */
2500 static void
initcg(int cylno)2501 initcg(int cylno)
2502 {
2503 diskaddr_t cbase, d;
2504 diskaddr_t dlower; /* last data block before cg metadata */
2505 diskaddr_t dupper; /* first data block after cg metadata */
2506 diskaddr_t dmax;
2507 int64_t i;
2508 struct csum *cs;
2509 struct dinode *inode_buffer;
2510 int size;
2511
2512 /*
2513 * Variables used to store intermediate results as a part of
2514 * the internal implementation of the cbtocylno() macros.
2515 */
2516 diskaddr_t bno; /* UFS block number (not sector number) */
2517 int cbcylno; /* current cylinder number */
2518 int cbcylno_sect; /* sector offset within cylinder */
2519 int cbsect_incr; /* amount to increment sector offset */
2520
2521 /*
2522 * Variables used to store intermediate results as a part of
2523 * the internal implementation of the cbtorpos() macros.
2524 */
2525 short *cgblks; /* pointer to array of free blocks in cg */
2526 int trackrpos; /* tmp variable for rotation position */
2527 int trackoff; /* offset within a track */
2528 int trackoff_incr; /* amount to increment trackoff */
2529 int rpos; /* rotation position of current block */
2530 int rpos_incr; /* amount to increment rpos per block */
2531
2532 union cgun *icgun; /* local pointer to a cg summary block */
2533 #define icg (icgun->cg)
2534
2535 icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun));
2536
2537 /*
2538 * Determine block bounds for cylinder group.
2539 * Allow space for super block summary information in first
2540 * cylinder group.
2541 */
2542 cbase = cgbase(&sblock, cylno);
2543 dmax = cbase + sblock.fs_fpg;
2544 if (dmax > sblock.fs_size) /* last cg may be smaller than normal */
2545 dmax = sblock.fs_size;
2546 dlower = cgsblock(&sblock, cylno) - cbase;
2547 dupper = cgdmin(&sblock, cylno) - cbase;
2548 if (cylno == 0)
2549 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
2550 cs = fscs + cylno;
2551 icg.cg_time = mkfstime;
2552 icg.cg_magic = CG_MAGIC;
2553 icg.cg_cgx = cylno;
2554 /* last one gets whatever's left */
2555 if (cylno == sblock.fs_ncg - 1)
2556 icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
2557 else
2558 icg.cg_ncyl = sblock.fs_cpg;
2559 icg.cg_niblk = sblock.fs_ipg;
2560 icg.cg_ndblk = dmax - cbase;
2561 icg.cg_cs.cs_ndir = 0;
2562 icg.cg_cs.cs_nffree = 0;
2563 icg.cg_cs.cs_nbfree = 0;
2564 icg.cg_cs.cs_nifree = 0;
2565 icg.cg_rotor = 0;
2566 icg.cg_frotor = 0;
2567 icg.cg_irotor = 0;
2568 icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link);
2569 icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long);
2570 icg.cg_iusedoff = icg.cg_boff +
2571 sblock.fs_cpg * sblock.fs_nrpos * sizeof (short);
2572 icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
2573 icg.cg_nextfreeoff = icg.cg_freeoff +
2574 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
2575 for (i = 0; i < sblock.fs_frag; i++) {
2576 icg.cg_frsum[i] = 0;
2577 }
2578 bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff);
2579 icg.cg_cs.cs_nifree += sblock.fs_ipg;
2580 if (cylno == 0)
2581 for (i = 0; i < UFSROOTINO; i++) {
2582 setbit(cg_inosused(&icg), i);
2583 icg.cg_cs.cs_nifree--;
2584 }
2585
2586 /*
2587 * Initialize all the inodes in the cylinder group using
2588 * random numbers.
2589 */
2590 size = sblock.fs_ipg * sizeof (struct dinode);
2591 inode_buffer = (struct dinode *)getbuf(&inodebuf, size);
2592
2593 for (i = 0; i < sblock.fs_ipg; i++) {
2594 IRANDOMIZE(&(inode_buffer[i].di_ic));
2595 }
2596
2597 /*
2598 * Write all inodes in a single write for performance.
2599 */
2600 awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size,
2601 (char *)inode_buffer, RELEASE);
2602
2603 bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff);
2604 bzero((caddr_t)cg_blks(&sblock, &icg, 0),
2605 icg.cg_iusedoff - icg.cg_boff);
2606 bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff);
2607
2608 if (cylno > 0) {
2609 for (d = 0; d < dlower; d += sblock.fs_frag) {
2610 setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag);
2611 icg.cg_cs.cs_nbfree++;
2612 cg_blktot(&icg)[cbtocylno(&sblock, d)]++;
2613 cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2614 [cbtorpos(&sblock, d)]++;
2615 }
2616 sblock.fs_dsize += dlower;
2617 }
2618 sblock.fs_dsize += icg.cg_ndblk - dupper;
2619 if ((i = dupper % sblock.fs_frag) != 0) {
2620 icg.cg_frsum[sblock.fs_frag - i]++;
2621 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
2622 setbit(cg_blksfree(&icg), dupper);
2623 icg.cg_cs.cs_nffree++;
2624 }
2625 }
2626
2627 /*
2628 * WARNING: The following code is somewhat confusing, but
2629 * results in a substantial performance improvement in mkfs.
2630 *
2631 * Instead of using cbtocylno() and cbtorpos() macros, we
2632 * keep track of all the intermediate state of those macros
2633 * in some variables. This allows simple addition to be
2634 * done to calculate the results as we step through the
2635 * blocks in an orderly fashion instead of the slower
2636 * multiplication and division the macros are forced to
2637 * used so they can support random input. (Multiplication,
2638 * division, and remainder operations typically take about
2639 * 10x as many processor cycles as other operations.)
2640 *
2641 * The basic idea is to take code:
2642 *
2643 * for (x = starting_x; x < max; x++)
2644 * y = (x * c) / z
2645 *
2646 * and rewrite it to take advantage of the fact that
2647 * the variable x is incrementing in an orderly way:
2648 *
2649 * intermediate = starting_x * c
2650 * yval = intermediate / z
2651 * for (x = starting_x; x < max; x++) {
2652 * y = yval;
2653 * intermediate += c
2654 * if (intermediate > z) {
2655 * yval++;
2656 * intermediate -= z
2657 * }
2658 * }
2659 *
2660 * Performance has improved as much as 4X using this code.
2661 */
2662
2663 /*
2664 * Initialize the starting points for all the cbtocylno()
2665 * macro variables and figure out the increments needed each
2666 * time through the loop.
2667 */
2668 cbcylno_sect = dupper * NSPF(&sblock);
2669 cbsect_incr = sblock.fs_frag * NSPF(&sblock);
2670 cbcylno = cbcylno_sect / sblock.fs_spc;
2671 cbcylno_sect %= sblock.fs_spc;
2672 cgblks = cg_blks(&sblock, &icg, cbcylno);
2673 bno = dupper / sblock.fs_frag;
2674
2675 /*
2676 * Initialize the starting points for all the cbtorpos()
2677 * macro variables and figure out the increments needed each
2678 * time through the loop.
2679 *
2680 * It's harder to simplify the cbtorpos() macro if there were
2681 * alternate sectors specified (or if they previously existed
2682 * in the growfs case). Since this is rare, we just revert to
2683 * using the macros in this case and skip the variable setup.
2684 */
2685 if (!spc_flag) {
2686 trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos;
2687 rpos = trackrpos / sblock.fs_nsect;
2688 trackoff = trackrpos % sblock.fs_nsect;
2689 trackoff_incr = cbsect_incr * sblock.fs_nrpos;
2690 rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos;
2691 trackoff_incr = trackoff_incr % sblock.fs_nsect;
2692 }
2693
2694 /*
2695 * Loop through all the blocks, marking them free and
2696 * updating totals kept in the superblock and cg summary.
2697 */
2698 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
2699 setblock(&sblock, cg_blksfree(&icg), bno);
2700 icg.cg_cs.cs_nbfree++;
2701
2702 cg_blktot(&icg)[cbcylno]++;
2703
2704 if (!spc_flag)
2705 cgblks[rpos]++;
2706 else
2707 cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2708 [cbtorpos(&sblock, d)]++;
2709
2710 d += sblock.fs_frag;
2711 bno++;
2712
2713 /*
2714 * Increment the sector offset within the cylinder
2715 * for the cbtocylno() macro reimplementation. If
2716 * we're beyond the end of the cylinder, update the
2717 * cylinder number, calculate the offset in the
2718 * new cylinder, and update the cgblks pointer
2719 * to the next rotational position.
2720 */
2721 cbcylno_sect += cbsect_incr;
2722 if (cbcylno_sect >= sblock.fs_spc) {
2723 cbcylno++;
2724 cbcylno_sect -= sblock.fs_spc;
2725 cgblks += sblock.fs_nrpos;
2726 }
2727
2728 /*
2729 * If there aren't alternate sectors, increment the
2730 * rotational position variables for the cbtorpos()
2731 * reimplementation. Note that we potentially
2732 * increment rpos twice. Once by rpos_incr, and one
2733 * more time when we wrap to a new track because
2734 * trackoff >= fs_nsect.
2735 */
2736 if (!spc_flag) {
2737 trackoff += trackoff_incr;
2738 rpos += rpos_incr;
2739 if (trackoff >= sblock.fs_nsect) {
2740 trackoff -= sblock.fs_nsect;
2741 rpos++;
2742 }
2743 if (rpos >= sblock.fs_nrpos)
2744 rpos -= sblock.fs_nrpos;
2745 }
2746 }
2747
2748 if (d < dmax - cbase) {
2749 icg.cg_frsum[dmax - cbase - d]++;
2750 for (; d < dmax - cbase; d++) {
2751 setbit(cg_blksfree(&icg), d);
2752 icg.cg_cs.cs_nffree++;
2753 }
2754 }
2755 sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir;
2756 sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree;
2757 sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree;
2758 sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree;
2759 *cs = icg.cg_cs;
2760 awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)),
2761 sblock.fs_bsize, (char *)&icg, RELEASE);
2762 }
2763
2764 /*
2765 * initialize the file system
2766 */
2767 struct inode node;
2768
2769 #define LOSTDIR
2770 #ifdef LOSTDIR
2771 #define PREDEFDIR 3
2772 #else
2773 #define PREDEFDIR 2
2774 #endif
2775
2776 struct direct root_dir[] = {
2777 { UFSROOTINO, sizeof (struct direct), 1, "." },
2778 { UFSROOTINO, sizeof (struct direct), 2, ".." },
2779 #ifdef LOSTDIR
2780 { LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" },
2781 #endif
2782 };
2783 #ifdef LOSTDIR
2784 struct direct lost_found_dir[] = {
2785 { LOSTFOUNDINO, sizeof (struct direct), 1, "." },
2786 { UFSROOTINO, sizeof (struct direct), 2, ".." },
2787 { 0, DIRBLKSIZ, 0, 0 },
2788 };
2789 #endif
2790 char buf[MAXBSIZE];
2791
2792 static void
fsinit()2793 fsinit()
2794 {
2795 int i;
2796
2797
2798 /*
2799 * initialize the node
2800 */
2801 node.i_atime = mkfstime;
2802 node.i_mtime = mkfstime;
2803 node.i_ctime = mkfstime;
2804 #ifdef LOSTDIR
2805 /*
2806 * create the lost+found directory
2807 */
2808 (void) makedir(lost_found_dir, 2);
2809 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) {
2810 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
2811 }
2812 node.i_number = LOSTFOUNDINO;
2813 node.i_smode = IFDIR | 0700;
2814 node.i_nlink = 2;
2815 node.i_size = sblock.fs_bsize;
2816 node.i_db[0] = alloc((int)node.i_size, node.i_mode);
2817 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2818 IRANDOMIZE(&node.i_ic);
2819 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf);
2820 iput(&node);
2821 #endif
2822 /*
2823 * create the root directory
2824 */
2825 node.i_number = UFSROOTINO;
2826 node.i_mode = IFDIR | UMASK;
2827 node.i_nlink = PREDEFDIR;
2828 node.i_size = makedir(root_dir, PREDEFDIR);
2829 node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
2830 /* i_size < 2GB because we are initializing the file system */
2831 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2832 IRANDOMIZE(&node.i_ic);
2833 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf);
2834 iput(&node);
2835 }
2836
2837 /*
2838 * construct a set of directory entries in "buf".
2839 * return size of directory.
2840 */
2841 static int
makedir(struct direct * protodir,int entries)2842 makedir(struct direct *protodir, int entries)
2843 {
2844 char *cp;
2845 int i;
2846 ushort_t spcleft;
2847
2848 spcleft = DIRBLKSIZ;
2849 for (cp = buf, i = 0; i < entries - 1; i++) {
2850 protodir[i].d_reclen = DIRSIZ(&protodir[i]);
2851 bcopy(&protodir[i], cp, protodir[i].d_reclen);
2852 cp += protodir[i].d_reclen;
2853 spcleft -= protodir[i].d_reclen;
2854 }
2855 protodir[i].d_reclen = spcleft;
2856 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
2857 return (DIRBLKSIZ);
2858 }
2859
2860 /*
2861 * allocate a block or frag
2862 */
2863 static daddr32_t
alloc(int size,int mode)2864 alloc(int size, int mode)
2865 {
2866 int i, frag;
2867 daddr32_t d;
2868
2869 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2870 (char *)&acg);
2871 if (acg.cg_magic != CG_MAGIC) {
2872 (void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2873 lockexit(32);
2874 }
2875 if (acg.cg_cs.cs_nbfree == 0) {
2876 (void) fprintf(stderr,
2877 gettext("first cylinder group ran out of space\n"));
2878 lockexit(32);
2879 }
2880 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
2881 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
2882 goto goth;
2883 (void) fprintf(stderr,
2884 gettext("internal error: can't find block in cyl 0\n"));
2885 lockexit(32);
2886 goth:
2887 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
2888 acg.cg_cs.cs_nbfree--;
2889 sblock.fs_cstotal.cs_nbfree--;
2890 fscs[0].cs_nbfree--;
2891 if (mode & IFDIR) {
2892 acg.cg_cs.cs_ndir++;
2893 sblock.fs_cstotal.cs_ndir++;
2894 fscs[0].cs_ndir++;
2895 }
2896 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
2897 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
2898 if (size != sblock.fs_bsize) {
2899 frag = howmany(size, sblock.fs_fsize);
2900 fscs[0].cs_nffree += sblock.fs_frag - frag;
2901 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
2902 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
2903 acg.cg_frsum[sblock.fs_frag - frag]++;
2904 for (i = frag; i < sblock.fs_frag; i++)
2905 setbit(cg_blksfree(&acg), d + i);
2906 }
2907 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2908 (char *)&acg);
2909 return (d);
2910 }
2911
2912 /*
2913 * Allocate an inode on the disk
2914 */
2915 static void
iput(struct inode * ip)2916 iput(struct inode *ip)
2917 {
2918 struct dinode buf[MAXINOPB];
2919 diskaddr_t d;
2920
2921 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2922 (char *)&acg);
2923 if (acg.cg_magic != CG_MAGIC) {
2924 (void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2925 lockexit(32);
2926 }
2927 acg.cg_cs.cs_nifree--;
2928 setbit(cg_inosused(&acg), ip->i_number);
2929 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2930 (char *)&acg);
2931 sblock.fs_cstotal.cs_nifree--;
2932 fscs[0].cs_nifree--;
2933 if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
2934 (void) fprintf(stderr,
2935 gettext("fsinit: inode value out of range (%d).\n"),
2936 ip->i_number);
2937 lockexit(32);
2938 }
2939 d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number));
2940 rdfs(d, sblock.fs_bsize, (char *)buf);
2941 buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic;
2942 wtfs(d, sblock.fs_bsize, (char *)buf);
2943 }
2944
2945 /*
2946 * getbuf() -- Get a buffer for use in an AIO operation. Buffer
2947 * is zero'd the first time returned, left with whatever
2948 * was in memory after that. This function actually gets
2949 * enough memory the first time it's called to support
2950 * MAXBUF buffers like a slab allocator. When all the
2951 * buffers are in use, it waits for an aio to complete
2952 * and make a buffer available.
2953 *
2954 * Never returns an error. Either succeeds or exits.
2955 */
2956 static char *
getbuf(bufhdr * bufhead,int size)2957 getbuf(bufhdr *bufhead, int size)
2958 {
2959 bufhdr *pbuf;
2960 bufhdr *prev;
2961 int i;
2962 int buf_size, max_bufs;
2963
2964 /*
2965 * Initialize all the buffers
2966 */
2967 if (bufhead->head == NULL) {
2968 /*
2969 * round up the size of our buffer header to a
2970 * 16 byte boundary so the address we return to
2971 * the caller is "suitably aligned".
2972 */
2973 bufhdrsize = (sizeof (bufhdr) + 15) & ~15;
2974
2975 /*
2976 * Add in our header to the buffer and round it all up to
2977 * a 16 byte boundry so each member of the slab is aligned.
2978 */
2979 buf_size = (size + bufhdrsize + 15) & ~15;
2980
2981 /*
2982 * Limit number of buffers to lesser of MAXBUFMEM's worth
2983 * or MAXBUF, whichever is less.
2984 */
2985 max_bufs = MAXBUFMEM / buf_size;
2986 if (max_bufs > MAXBUF)
2987 max_bufs = MAXBUF;
2988
2989 pbuf = (bufhdr *)calloc(max_bufs, buf_size);
2990 if (pbuf == NULL) {
2991 perror("calloc");
2992 lockexit(32);
2993 }
2994
2995 bufhead->head = bufhead;
2996 prev = bufhead;
2997 for (i = 0; i < max_bufs; i++) {
2998 pbuf->head = bufhead;
2999 prev->next = pbuf;
3000 prev = pbuf;
3001 pbuf = (bufhdr *)((char *)pbuf + buf_size);
3002 }
3003 }
3004
3005 /*
3006 * Get an available buffer, waiting for I/O if necessary
3007 */
3008 wait_for_write(NOBLOCK);
3009 while (bufhead->next == NULL)
3010 wait_for_write(BLOCK);
3011
3012 /*
3013 * Take the buffer off the list
3014 */
3015 pbuf = bufhead->next;
3016 bufhead->next = pbuf->next;
3017 pbuf->next = NULL;
3018
3019 /*
3020 * return the empty buffer space just past the header
3021 */
3022 return ((char *)pbuf + bufhdrsize);
3023 }
3024
3025 /*
3026 * freebuf() -- Free a buffer gotten previously through getbuf.
3027 * Puts the buffer back on the appropriate list for
3028 * later use. Never calls free().
3029 *
3030 * Assumes that SIGINT is blocked.
3031 */
3032 static void
freebuf(char * buf)3033 freebuf(char *buf)
3034 {
3035 bufhdr *pbuf;
3036 bufhdr *bufhead;
3037
3038 /*
3039 * get the header for this buffer
3040 */
3041 pbuf = (bufhdr *)(buf - bufhdrsize);
3042
3043 /*
3044 * Put it back on the list of available buffers
3045 */
3046 bufhead = pbuf->head;
3047 pbuf->next = bufhead->next;
3048 bufhead->next = pbuf;
3049 }
3050
3051 /*
3052 * freetrans() -- Free a transaction gotten previously through getaiop.
3053 * Puts the transaction struct back on the appropriate list for
3054 * later use. Never calls free().
3055 *
3056 * Assumes that SIGINT is blocked.
3057 */
3058 static void
freetrans(aio_trans * transp)3059 freetrans(aio_trans *transp)
3060 {
3061 /*
3062 * free the buffer associated with this AIO if needed
3063 */
3064 if (transp->release == RELEASE)
3065 freebuf(transp->buffer);
3066
3067 /*
3068 * Put transaction on the free list
3069 */
3070 transp->next = results.trans;
3071 results.trans = transp;
3072 }
3073
3074 /*
3075 * wait_for_write() -- Wait for an aio write to complete. Return
3076 * the transaction structure for that write.
3077 *
3078 * Blocks SIGINT if necessary.
3079 */
3080 aio_trans *
wait_for_write(int block)3081 wait_for_write(int block)
3082 {
3083 aio_trans *transp;
3084 aio_result_t *resultp;
3085 static struct timeval zero_wait = { 0, 0 };
3086 sigset_t old_mask;
3087
3088 /*
3089 * If we know there aren't any outstanding transactions, just return
3090 */
3091 if (results.outstanding == 0)
3092 return ((aio_trans *) 0);
3093
3094 block_sigint(&old_mask);
3095
3096 resultp = aiowait(block ? NULL : &zero_wait);
3097 if (resultp == NULL ||
3098 (resultp == (aio_result_t *)-1 && errno == EINVAL)) {
3099 unblock_sigint(&old_mask);
3100 return ((aio_trans *) 0);
3101 }
3102
3103 results.outstanding--;
3104 transp = (aio_trans *)resultp;
3105
3106 if (resultp->aio_return != transp->size) {
3107 if (resultp->aio_return == -1) {
3108 /*
3109 * The aiowrite() may have failed because the
3110 * kernel didn't have enough memory to do the job.
3111 * Flush all pending writes and try a normal
3112 * write(). wtfs_breakup() will call exit if it
3113 * fails, so we don't worry about errors here.
3114 */
3115 flush_writes();
3116 wtfs_breakup(transp->bno, transp->size, transp->buffer);
3117 } else {
3118 (void) fprintf(stderr, gettext(
3119 "short write (%d of %d bytes) on sector %lld\n"),
3120 resultp->aio_return, transp->size,
3121 transp->bno);
3122 /*
3123 * Don't unblock SIGINT, to avoid potential
3124 * looping due to queued interrupts and
3125 * error handling.
3126 */
3127 lockexit(32);
3128 }
3129 }
3130
3131 resultp->aio_return = 0;
3132 freetrans(transp);
3133 unblock_sigint(&old_mask);
3134 return (transp);
3135 }
3136
3137 /*
3138 * flush_writes() -- flush all the outstanding aio writes.
3139 */
3140 static void
flush_writes(void)3141 flush_writes(void)
3142 {
3143 while (wait_for_write(BLOCK))
3144 ;
3145 }
3146
3147 /*
3148 * get_aiop() -- find and return an aio_trans structure on which a new
3149 * aio can be done. Blocks on aiowait() if needed. Reaps
3150 * all outstanding completed aio's.
3151 *
3152 * Assumes that SIGINT is blocked.
3153 */
3154 aio_trans *
get_aiop()3155 get_aiop()
3156 {
3157 int i;
3158 aio_trans *transp;
3159 aio_trans *prev;
3160
3161 /*
3162 * initialize aio stuff
3163 */
3164 if (!aio_inited) {
3165 aio_inited = 1;
3166
3167 results.maxpend = 0;
3168 results.outstanding = 0;
3169 results.max = MAXAIO;
3170
3171 results.trans = (aio_trans *)calloc(results.max,
3172 sizeof (aio_trans));
3173 if (results.trans == NULL) {
3174 perror("calloc");
3175 lockexit(32);
3176 }
3177
3178 /*
3179 * Initialize the linked list of aio transaction
3180 * structures. Note that the final "next" pointer
3181 * will be NULL since we got the buffer from calloc().
3182 */
3183 prev = results.trans;
3184 for (i = 1; i < results.max; i++) {
3185 prev->next = &(results.trans[i]);
3186 prev = prev->next;
3187 }
3188 }
3189
3190 wait_for_write(NOBLOCK);
3191 while (results.trans == NULL)
3192 wait_for_write(BLOCK);
3193 transp = results.trans;
3194 results.trans = results.trans->next;
3195
3196 transp->next = 0;
3197 transp->resultbuf.aio_return = AIO_INPROGRESS;
3198 return (transp);
3199 }
3200
3201 /*
3202 * read a block from the file system
3203 */
3204 static void
rdfs(diskaddr_t bno,int size,char * bf)3205 rdfs(diskaddr_t bno, int size, char *bf)
3206 {
3207 int n, saverr;
3208
3209 /*
3210 * In case we need any data that's pending in an aiowrite(),
3211 * we wait for them all to complete before doing a read.
3212 */
3213 flush_writes();
3214
3215 /*
3216 * Note: the llseek() can succeed, even if the offset is out of range.
3217 * It's not until the file i/o operation (the read()) that one knows
3218 * for sure if the raw device can handle the offset.
3219 */
3220 if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) {
3221 saverr = errno;
3222 (void) fprintf(stderr,
3223 gettext("seek error on sector %lld: %s\n"),
3224 bno, strerror(saverr));
3225 lockexit(32);
3226 }
3227 n = read(fsi, bf, size);
3228 if (n != size) {
3229 saverr = errno;
3230 if (n == -1)
3231 (void) fprintf(stderr,
3232 gettext("read error on sector %lld: %s\n"),
3233 bno, strerror(saverr));
3234 else
3235 (void) fprintf(stderr, gettext(
3236 "short read (%d of %d bytes) on sector %lld\n"),
3237 n, size, bno);
3238 lockexit(32);
3239 }
3240 }
3241
3242 /*
3243 * write a block to the file system
3244 */
3245 static void
wtfs(diskaddr_t bno,int size,char * bf)3246 wtfs(diskaddr_t bno, int size, char *bf)
3247 {
3248 int n, saverr;
3249
3250 if (fso == -1)
3251 return;
3252
3253 /*
3254 * Note: the llseek() can succeed, even if the offset is out of range.
3255 * It's not until the file i/o operation (the write()) that one knows
3256 * for sure if the raw device can handle the offset.
3257 */
3258 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3259 saverr = errno;
3260 (void) fprintf(stderr,
3261 gettext("seek error on sector %lld: %s\n"),
3262 bno, strerror(saverr));
3263 lockexit(32);
3264 }
3265 if (Nflag)
3266 return;
3267 n = write(fso, bf, size);
3268 if (n != size) {
3269 saverr = errno;
3270 if (n == -1)
3271 (void) fprintf(stderr,
3272 gettext("write error on sector %lld: %s\n"),
3273 bno, strerror(saverr));
3274 else
3275 (void) fprintf(stderr, gettext(
3276 "short write (%d of %d bytes) on sector %lld\n"),
3277 n, size, bno);
3278 lockexit(32);
3279 }
3280 }
3281
3282 /*
3283 * write a block to the file system -- buffered with aio
3284 */
3285 static void
awtfs(diskaddr_t bno,int size,char * bf,int release)3286 awtfs(diskaddr_t bno, int size, char *bf, int release)
3287 {
3288 int n;
3289 aio_trans *transp;
3290 sigset_t old_mask;
3291
3292 if (fso == -1)
3293 return;
3294
3295 /*
3296 * We need to keep things consistent if we get interrupted,
3297 * so defer any expected interrupts for the time being.
3298 */
3299 block_sigint(&old_mask);
3300
3301 if (Nflag) {
3302 if (release == RELEASE)
3303 freebuf(bf);
3304 } else {
3305 transp = get_aiop();
3306 transp->bno = bno;
3307 transp->buffer = bf;
3308 transp->size = size;
3309 transp->release = release;
3310
3311 n = aiowrite(fso, bf, size, (off_t)bno * sectorsize,
3312 SEEK_SET, &transp->resultbuf);
3313
3314 if (n < 0) {
3315 /*
3316 * The aiowrite() may have failed because the
3317 * kernel didn't have enough memory to do the job.
3318 * Flush all pending writes and try a normal
3319 * write(). wtfs_breakup() will call exit if it
3320 * fails, so we don't worry about errors here.
3321 */
3322 flush_writes();
3323 wtfs_breakup(transp->bno, transp->size, transp->buffer);
3324 freetrans(transp);
3325 } else {
3326 /*
3327 * Keep track of our pending writes.
3328 */
3329 results.outstanding++;
3330 if (results.outstanding > results.maxpend)
3331 results.maxpend = results.outstanding;
3332 }
3333 }
3334
3335 unblock_sigint(&old_mask);
3336 }
3337
3338
3339 /*
3340 * write a block to the file system, but break it up into sbsize
3341 * chunks to avoid forcing a large amount of memory to be locked down.
3342 * Only used as a fallback when an aio write has failed.
3343 */
3344 static void
wtfs_breakup(diskaddr_t bno,int size,char * bf)3345 wtfs_breakup(diskaddr_t bno, int size, char *bf)
3346 {
3347 int n, saverr;
3348 int wsize;
3349 int block_incr = sbsize / sectorsize;
3350
3351 if (size < sbsize)
3352 wsize = size;
3353 else
3354 wsize = sbsize;
3355
3356 n = 0;
3357 while (size) {
3358 /*
3359 * Note: the llseek() can succeed, even if the offset is
3360 * out of range. It's not until the file i/o operation
3361 * (the write()) that one knows for sure if the raw device
3362 * can handle the offset.
3363 */
3364 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3365 saverr = errno;
3366 (void) fprintf(stderr,
3367 gettext("seek error on sector %lld: %s\n"),
3368 bno, strerror(saverr));
3369 lockexit(32);
3370 }
3371
3372 n = write(fso, bf, wsize);
3373 if (n == -1) {
3374 saverr = errno;
3375 (void) fprintf(stderr,
3376 gettext("write error on sector %lld: %s\n"),
3377 bno, strerror(saverr));
3378 lockexit(32);
3379 }
3380 if (n != wsize) {
3381 saverr = errno;
3382 (void) fprintf(stderr, gettext(
3383 "short write (%d of %d bytes) on sector %lld\n"),
3384 n, size, bno);
3385 lockexit(32);
3386 }
3387
3388 bno += block_incr;
3389 bf += wsize;
3390 size -= wsize;
3391 if (size < wsize)
3392 wsize = size;
3393 }
3394 }
3395
3396
3397 /*
3398 * check if a block is available
3399 */
3400 static int
isblock(struct fs * fs,unsigned char * cp,int h)3401 isblock(struct fs *fs, unsigned char *cp, int h)
3402 {
3403 unsigned char mask;
3404
3405 switch (fs->fs_frag) {
3406 case 8:
3407 return (cp[h] == 0xff);
3408 case 4:
3409 mask = 0x0f << ((h & 0x1) << 2);
3410 return ((cp[h >> 1] & mask) == mask);
3411 case 2:
3412 mask = 0x03 << ((h & 0x3) << 1);
3413 return ((cp[h >> 2] & mask) == mask);
3414 case 1:
3415 mask = 0x01 << (h & 0x7);
3416 return ((cp[h >> 3] & mask) == mask);
3417 default:
3418 (void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
3419 return (0);
3420 }
3421 }
3422
3423 /*
3424 * take a block out of the map
3425 */
3426 static void
clrblock(struct fs * fs,unsigned char * cp,int h)3427 clrblock(struct fs *fs, unsigned char *cp, int h)
3428 {
3429 switch ((fs)->fs_frag) {
3430 case 8:
3431 cp[h] = 0;
3432 return;
3433 case 4:
3434 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
3435 return;
3436 case 2:
3437 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
3438 return;
3439 case 1:
3440 cp[h >> 3] &= ~(0x01 << (h & 0x7));
3441 return;
3442 default:
3443 (void) fprintf(stderr,
3444 gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag);
3445 return;
3446 }
3447 }
3448
3449 /*
3450 * put a block into the map
3451 */
3452 static void
setblock(struct fs * fs,unsigned char * cp,int h)3453 setblock(struct fs *fs, unsigned char *cp, int h)
3454 {
3455 switch (fs->fs_frag) {
3456 case 8:
3457 cp[h] = 0xff;
3458 return;
3459 case 4:
3460 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
3461 return;
3462 case 2:
3463 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
3464 return;
3465 case 1:
3466 cp[h >> 3] |= (0x01 << (h & 0x7));
3467 return;
3468 default:
3469 (void) fprintf(stderr,
3470 gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag);
3471 return;
3472 }
3473 }
3474
3475 static void
usage()3476 usage()
3477 {
3478 (void) fprintf(stderr,
3479 gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] "
3480 "special " /* param 0 */
3481 "size(sectors) \\ \n")); /* param 1 */
3482 (void) fprintf(stderr,
3483 "[nsect " /* param 2 */
3484 "ntrack " /* param 3 */
3485 "bsize " /* param 4 */
3486 "fragsize " /* param 5 */
3487 "cpg " /* param 6 */
3488 "free " /* param 7 */
3489 "rps " /* param 8 */
3490 "nbpi " /* param 9 */
3491 "opt " /* param 10 */
3492 "apc " /* param 11 */
3493 "gap " /* param 12 */
3494 "nrpos " /* param 13 */
3495 "maxcontig " /* param 14 */
3496 "mtb]\n"); /* param 15 */
3497 (void) fprintf(stderr,
3498 gettext(" -m : dump fs cmd line used to make this partition\n"
3499 " -V :print this command line and return\n"
3500 " -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n"
3501 " -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n"
3502 " -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n"
3503 " -o :ufs options: :mtb=%c,calcsb,calcbinsb\n"
3504 "NOTE that all -o suboptions: must be separated only by commas so as to\n"
3505 "be parsed as a single argument\n"),
3506 nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps,
3507 nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay,
3508 sblock.fs_nrpos, maxcontig, mtb);
3509 lockexit(32);
3510 }
3511
3512 /*ARGSUSED*/
3513 static void
dump_fscmd(char * fsys,int fsi)3514 dump_fscmd(char *fsys, int fsi)
3515 {
3516 int64_t used, bpcg, inospercg;
3517 int64_t nbpi;
3518 uint64_t nbytes64;
3519
3520 bzero((char *)&sblock, sizeof (sblock));
3521 rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock);
3522
3523 /*
3524 * ensure a valid file system and if not, exit with error or else
3525 * we will end up computing block numbers etc and dividing by zero
3526 * which will cause floating point errors in this routine.
3527 */
3528
3529 if ((sblock.fs_magic != FS_MAGIC) &&
3530 (sblock.fs_magic != MTB_UFS_MAGIC)) {
3531 (void) fprintf(stderr, gettext(
3532 "[not currently a valid file system - bad superblock]\n"));
3533 lockexit(32);
3534 }
3535
3536 if (sblock.fs_magic == FS_MAGIC &&
3537 (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3538 sblock.fs_version != UFS_VERSION_MIN)) {
3539 (void) fprintf(stderr, gettext(
3540 "Unknown version of UFS format: %d\n"), sblock.fs_version);
3541 lockexit(32);
3542 }
3543
3544 if (sblock.fs_magic == MTB_UFS_MAGIC &&
3545 (sblock.fs_version > MTB_UFS_VERSION_1 ||
3546 sblock.fs_version < MTB_UFS_VERSION_MIN)) {
3547 (void) fprintf(stderr, gettext(
3548 "Unknown version of UFS format: %d\n"), sblock.fs_version);
3549 lockexit(32);
3550 }
3551
3552 /*
3553 * Compute a reasonable nbpi value.
3554 * The algorithm for "used" is copied from code
3555 * in main() verbatim.
3556 * The nbpi equation is taken from main where the
3557 * fs_ipg value is set for the last time. The INOPB(...) - 1
3558 * is used to account for the roundup.
3559 * The problem is that a range of nbpi values map to
3560 * the same file system layout. So it is not possible
3561 * to calculate the exact value specified when the file
3562 * system was created. So instead we determine the top
3563 * end of the range of values.
3564 */
3565 bpcg = sblock.fs_spc * sectorsize;
3566 inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode),
3567 INOPB(&sblock));
3568 if (inospercg > MAXIpG(&sblock))
3569 inospercg = MAXIpG(&sblock);
3570 used = (int64_t)
3571 (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
3572 used *= sectorsize;
3573 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
3574
3575 /*
3576 * The top end of the range of values for nbpi may not be
3577 * a valid command line value for mkfs. Report the bottom
3578 * end instead.
3579 */
3580 nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg));
3581
3582 (void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys);
3583 (void) fprintf(stdout, "nsect=%d,ntrack=%d,",
3584 sblock.fs_nsect, sblock.fs_ntrak);
3585 (void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,",
3586 sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree);
3587 (void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,",
3588 sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't',
3589 (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc,
3590 sblock.fs_rotdelay);
3591 (void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ",
3592 sblock.fs_nrpos, sblock.fs_maxcontig,
3593 ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n'));
3594 (void) fprintf(stdout, "%s %lld\n", fsys,
3595 fsbtodb(&sblock, sblock.fs_size));
3596
3597 bzero((char *)&sblock, sizeof (sblock));
3598 }
3599
3600 /* number ************************************************************* */
3601 /* */
3602 /* Convert a numeric string arg to binary */
3603 /* */
3604 /* Args: d_value - default value, if have parse error */
3605 /* param - the name of the argument, for error messages */
3606 /* flags - parser state and what's allowed in the arg */
3607 /* Global arg: string - pointer to command arg */
3608 /* */
3609 /* Valid forms: 123 | 123k | 123*123 | 123x123 */
3610 /* */
3611 /* Return: converted number */
3612 /* */
3613 /* ******************************************************************** */
3614
3615 static uint64_t
number(uint64_t d_value,char * param,int flags)3616 number(uint64_t d_value, char *param, int flags)
3617 {
3618 char *cs;
3619 uint64_t n, t;
3620 uint64_t cut = BIG / 10; /* limit to avoid overflow */
3621 int minus = 0;
3622
3623 cs = string;
3624 if (*cs == '-') {
3625 minus = 1;
3626 cs += 1;
3627 }
3628 if ((*cs < '0') || (*cs > '9')) {
3629 goto bail_out;
3630 }
3631 n = 0;
3632 while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
3633 n = n*10 + *cs++ - '0';
3634 }
3635 if (minus)
3636 n = -n;
3637 for (;;) {
3638 switch (*cs++) {
3639 case 'k':
3640 if (flags & ALLOW_END_ONLY)
3641 goto bail_out;
3642 if (n > (BIG / 1024))
3643 goto overflow;
3644 n *= 1024;
3645 continue;
3646
3647 case '*':
3648 case 'x':
3649 if (flags & ALLOW_END_ONLY)
3650 goto bail_out;
3651 string = cs;
3652 t = number(d_value, param, flags);
3653 if (n > (BIG / t))
3654 goto overflow;
3655 n *= t;
3656 cs = string + 1; /* adjust for -- below */
3657
3658 /* recursion has read rest of expression */
3659 /* FALLTHROUGH */
3660
3661 case ',':
3662 case '\0':
3663 cs--;
3664 string = cs;
3665 return (n);
3666
3667 case '%':
3668 if (flags & ALLOW_END_ONLY)
3669 goto bail_out;
3670 if (flags & ALLOW_PERCENT) {
3671 flags &= ~ALLOW_PERCENT;
3672 flags |= ALLOW_END_ONLY;
3673 continue;
3674 }
3675 goto bail_out;
3676
3677 case 'm':
3678 if (flags & ALLOW_END_ONLY)
3679 goto bail_out;
3680 if (flags & ALLOW_MS1) {
3681 flags &= ~ALLOW_MS1;
3682 flags |= ALLOW_MS2;
3683 continue;
3684 }
3685 goto bail_out;
3686
3687 case 's':
3688 if (flags & ALLOW_END_ONLY)
3689 goto bail_out;
3690 if (flags & ALLOW_MS2) {
3691 flags &= ~ALLOW_MS2;
3692 flags |= ALLOW_END_ONLY;
3693 continue;
3694 }
3695 goto bail_out;
3696
3697 case '0': case '1': case '2': case '3': case '4':
3698 case '5': case '6': case '7': case '8': case '9':
3699 overflow:
3700 (void) fprintf(stderr,
3701 gettext("mkfs: value for %s overflowed\n"),
3702 param);
3703 while ((*cs != '\0') && (*cs != ','))
3704 cs++;
3705 string = cs;
3706 return (BIG);
3707
3708 default:
3709 bail_out:
3710 (void) fprintf(stderr, gettext(
3711 "mkfs: bad numeric arg for %s: \"%s\"\n"),
3712 param, string);
3713 while ((*cs != '\0') && (*cs != ','))
3714 cs++;
3715 string = cs;
3716 if (d_value != NO_DEFAULT) {
3717 (void) fprintf(stderr,
3718 gettext("mkfs: %s reset to default %lld\n"),
3719 param, d_value);
3720 return (d_value);
3721 }
3722 lockexit(2);
3723
3724 }
3725 } /* never gets here */
3726 }
3727
3728 /* match ************************************************************** */
3729 /* */
3730 /* Compare two text strings for equality */
3731 /* */
3732 /* Arg: s - pointer to string to match with a command arg */
3733 /* Global arg: string - pointer to command arg */
3734 /* */
3735 /* Return: 1 if match, 0 if no match */
3736 /* If match, also reset `string' to point to the text */
3737 /* that follows the matching text. */
3738 /* */
3739 /* ******************************************************************** */
3740
3741 static int
match(char * s)3742 match(char *s)
3743 {
3744 char *cs;
3745
3746 cs = string;
3747 while (*cs++ == *s) {
3748 if (*s++ == '\0') {
3749 goto true;
3750 }
3751 }
3752 if (*s != '\0') {
3753 return (0);
3754 }
3755
3756 true:
3757 cs--;
3758 string = cs;
3759 return (1);
3760 }
3761
3762 /*
3763 * GROWFS ROUTINES
3764 */
3765
3766 /* ARGSUSED */
3767 void
lockexit(int exitstatus)3768 lockexit(int exitstatus)
3769 {
3770 if (Pflag) {
3771 /* the probe mode neither changes nor locks the filesystem */
3772 exit(exitstatus);
3773 }
3774
3775 /*
3776 * flush the dirty cylinder group
3777 */
3778 if (inlockexit == 0) {
3779 inlockexit = 1;
3780 flcg();
3781 }
3782
3783 if (aio_inited) {
3784 flush_writes();
3785 }
3786
3787 /*
3788 * make sure the file system is unlocked before exiting
3789 */
3790 if ((inlockexit == 1) && (!isbad)) {
3791 inlockexit = 2;
3792 ulockfs();
3793 /*
3794 * if logging was enabled, then re-enable it
3795 */
3796 if (waslog) {
3797 if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) {
3798 (void) fprintf(stderr, gettext(
3799 "failed to re-enable logging\n"));
3800 }
3801 }
3802 } else if (grow) {
3803 if (isbad) {
3804 (void) fprintf(stderr, gettext(
3805 "Filesystem is currently inconsistent. It "
3806 "must be repaired with fsck(1M)\nbefore being "
3807 "used. Use the following command to "
3808 "do this:\n\n\tfsck %s\n\n"), fsys);
3809
3810 if (ismounted) {
3811 (void) fprintf(stderr, gettext(
3812 "You will be told that the filesystem "
3813 "is already mounted, and asked if you\n"
3814 "wish to continue. Answer `yes' to "
3815 "this question.\n\n"));
3816 }
3817
3818 (void) fprintf(stderr, gettext(
3819 "One problem should be reported, that the summary "
3820 "information is bad.\nYou will then be asked if it "
3821 "should be salvaged. Answer `yes' to\nthis "
3822 "question.\n\n"));
3823 }
3824
3825 if (ismounted) {
3826 /*
3827 * In theory, there's no way to get here without
3828 * isbad also being set, but be robust in the
3829 * face of future code changes.
3830 */
3831 (void) fprintf(stderr, gettext(
3832 "The filesystem is currently mounted "
3833 "read-only and write-locked. "));
3834 if (isbad) {
3835 (void) fprintf(stderr, gettext(
3836 "After\nrunning fsck, unlock the "
3837 "filesystem and "));
3838 } else {
3839 (void) fprintf(stderr, gettext(
3840 "Unlock the filesystem\nand "));
3841 }
3842
3843 (void) fprintf(stderr, gettext(
3844 "re-enable writing with\nthe following "
3845 "command:\n\n\tlockfs -u %s\n\n"), directory);
3846 }
3847 }
3848
3849 exit(exitstatus);
3850 }
3851
3852 void
randomgeneration()3853 randomgeneration()
3854 {
3855 int i;
3856 struct dinode *dp;
3857
3858 /*
3859 * always perform fsirand(1) function... newfs will notice that
3860 * the inodes have been randomized and will not call fsirand itself
3861 */
3862 for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp)
3863 IRANDOMIZE(&dp->di_ic);
3864 }
3865
3866 /*
3867 * Check the size of the summary information.
3868 * Fields in sblock are not changed in this function.
3869 *
3870 * For an 8K filesystem block, the maximum number of cylinder groups is 16384.
3871 * MAXCSBUFS {32} * 8K {FS block size}
3872 * divided by (sizeof csum) {16}
3873 *
3874 * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32,
3875 * this is the only place where it's referenced.
3876 */
3877 void
checksummarysize()3878 checksummarysize()
3879 {
3880 diskaddr_t dmax;
3881 diskaddr_t dmin;
3882 int64_t cg0frags;
3883 int64_t cg0blocks;
3884 int64_t maxncg;
3885 int64_t maxfrags;
3886 uint64_t fs_size;
3887 uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */
3888
3889 /*
3890 * compute the maximum summary info size
3891 */
3892 dmin = cgdmin(&sblock, 0);
3893 dmax = cgbase(&sblock, 0) + sblock.fs_fpg;
3894 fs_size = (grow) ? grow_fs_size : sblock.fs_size;
3895 if (dmax > fs_size)
3896 dmax = fs_size;
3897 cg0frags = dmax - dmin;
3898 cg0blocks = cg0frags / sblock.fs_frag;
3899 cg0frags = cg0blocks * sblock.fs_frag;
3900 maxncg = (longlong_t)cg0blocks *
3901 (longlong_t)(sblock.fs_bsize / sizeof (struct csum));
3902
3903 maxfs_blocks = FS_MAX;
3904
3905 if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1)
3906 maxncg = ((longlong_t)maxfs_blocks /
3907 (longlong_t)sblock.fs_fpg) + 1;
3908
3909 maxfrags = maxncg * (longlong_t)sblock.fs_fpg;
3910
3911 if (maxfrags > maxfs_blocks)
3912 maxfrags = maxfs_blocks;
3913
3914
3915 /*
3916 * remember for later processing in extendsummaryinfo()
3917 */
3918 if (test)
3919 grow_sifrag = dmin + (cg0blocks * sblock.fs_frag);
3920 if (testfrags == 0)
3921 testfrags = cg0frags;
3922 if (testforce)
3923 if (testfrags > cg0frags) {
3924 (void) fprintf(stderr,
3925 gettext("Too many test frags (%lld); "
3926 "try %lld\n"), testfrags, cg0frags);
3927 lockexit(32);
3928 }
3929
3930 /*
3931 * if summary info is too large (too many cg's) tell the user and exit
3932 */
3933 if ((longlong_t)sblock.fs_size > maxfrags) {
3934 (void) fprintf(stderr, gettext(
3935 "Too many cylinder groups with %llu sectors;\n try "
3936 "increasing cgsize, or decreasing fssize to %llu\n"),
3937 fsbtodb(&sblock, (uint64_t)sblock.fs_size),
3938 fsbtodb(&sblock, (uint64_t)maxfrags));
3939 lockexit(32);
3940 }
3941 }
3942
3943 /*
3944 * checksblock() has two uses:
3945 * - One is to sanity test the superblock and is used when newfs(1M)
3946 * is invoked with the "-N" option. If any discrepancy was found,
3947 * just return whatever error was found and do not exit.
3948 * - the other use of it is in places where you expect the superblock
3949 * to be sane, and if it isn't, then we exit.
3950 * Which of the above two actions to take is indicated with the second argument.
3951 */
3952
3953 int
checksblock(struct fs sb,int proceed)3954 checksblock(struct fs sb, int proceed)
3955 {
3956 int err = 0;
3957 char *errmsg;
3958
3959 if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) {
3960 err = 1;
3961 errmsg = gettext("Bad superblock; magic number wrong\n");
3962 } else if ((sb.fs_magic == FS_MAGIC &&
3963 (sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3964 sb.fs_version != UFS_VERSION_MIN)) ||
3965 (sb.fs_magic == MTB_UFS_MAGIC &&
3966 (sb.fs_version > MTB_UFS_VERSION_1 ||
3967 sb.fs_version < MTB_UFS_VERSION_MIN))) {
3968 err = 2;
3969 errmsg = gettext("Unrecognized version of UFS\n");
3970 } else if (sb.fs_ncg < 1) {
3971 err = 3;
3972 errmsg = gettext("Bad superblock; ncg out of range\n");
3973 } else if (sb.fs_cpg < 1) {
3974 err = 4;
3975 errmsg = gettext("Bad superblock; cpg out of range\n");
3976 } else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl ||
3977 (sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) {
3978 err = 5;
3979 errmsg = gettext("Bad superblock; ncyl out of range\n");
3980 } else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) {
3981 err = 6;
3982 errmsg = gettext("Bad superblock; superblock size out of "
3983 "range\n");
3984 }
3985
3986 if (proceed) {
3987 if (err) dprintf(("%s", errmsg));
3988 return (err);
3989 }
3990
3991 if (err) {
3992 fprintf(stderr, "%s", errmsg);
3993 lockexit(32);
3994 }
3995 return (32);
3996 }
3997
3998 /*
3999 * Roll the embedded log, if any, and set up the global variables
4000 * islog, islogok and isufslog.
4001 */
4002 static void
logsetup(char * devstr)4003 logsetup(char *devstr)
4004 {
4005 void *buf, *ud_buf;
4006 extent_block_t *ebp;
4007 ml_unit_t *ul;
4008 ml_odunit_t *ud;
4009
4010 /*
4011 * Does the superblock indicate that we are supposed to have a log ?
4012 */
4013 if (sblock.fs_logbno == 0) {
4014 /*
4015 * No log present, nothing to do.
4016 */
4017 islogok = 0;
4018 islog = 0;
4019 isufslog = 0;
4020 return;
4021 } else {
4022 /*
4023 * There's a log in a yet unknown state, attempt to roll it.
4024 */
4025 islog = 1;
4026 islogok = 0;
4027 isufslog = 0;
4028
4029 /*
4030 * We failed to roll the log, bail out.
4031 */
4032 if (rl_roll_log(devstr) != RL_SUCCESS)
4033 return;
4034
4035 isufslog = 1;
4036
4037 /* log is not okay; check the fs */
4038 if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) ||
4039 (sblock.fs_clean != FSLOG))
4040 return;
4041
4042 /* get the log allocation block */
4043 buf = (void *)malloc(DEV_BSIZE);
4044 if (buf == (void *) NULL)
4045 return;
4046
4047 ud_buf = (void *)malloc(DEV_BSIZE);
4048 if (ud_buf == (void *) NULL) {
4049 free(buf);
4050 return;
4051 }
4052
4053 rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno),
4054 DEV_BSIZE, buf);
4055 ebp = (extent_block_t *)buf;
4056
4057 /* log allocation block is not okay; check the fs */
4058 if (ebp->type != LUFS_EXTENTS) {
4059 free(buf);
4060 free(ud_buf);
4061 return;
4062 }
4063
4064 /* get the log state block(s) */
4065 rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno),
4066 DEV_BSIZE, ud_buf);
4067 ud = (ml_odunit_t *)ud_buf;
4068 ul = (ml_unit_t *)malloc(sizeof (*ul));
4069 ul->un_ondisk = *ud;
4070
4071 /* log state is okay */
4072 if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) &&
4073 (ul->un_version == LUFS_VERSION_LATEST) &&
4074 (ul->un_badlog == 0))
4075 islogok = 1;
4076 free(ud_buf);
4077 free(buf);
4078 free(ul);
4079 }
4080 }
4081
4082 void
growinit(char * devstr)4083 growinit(char *devstr)
4084 {
4085 int i;
4086 char buf[DEV_BSIZE];
4087
4088 /*
4089 * Read and verify the superblock
4090 */
4091 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4092 (void) checksblock(sblock, 0);
4093 if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) {
4094 (void) fprintf(stderr,
4095 gettext("old file system format; can't growfs\n"));
4096 lockexit(32);
4097 }
4098
4099 /*
4100 * can't shrink a file system
4101 */
4102 grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size);
4103 if (fssize_db < grow_fssize) {
4104 (void) fprintf(stderr,
4105 gettext("%lld sectors < current size of %lld sectors\n"),
4106 fssize_db, grow_fssize);
4107 lockexit(32);
4108 }
4109
4110 /*
4111 * can't grow a system to over a terabyte unless it was set up
4112 * as an MTB UFS file system.
4113 */
4114 if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) {
4115 if (fssize_db >= SECTORS_PER_TERABYTE) {
4116 (void) fprintf(stderr, gettext(
4117 "File system was not set up with the multi-terabyte format.\n"));
4118 (void) fprintf(stderr, gettext(
4119 "Its size cannot be increased to a terabyte or more.\n"));
4120 } else {
4121 (void) fprintf(stderr, gettext(
4122 "Cannot convert file system to multi-terabyte format.\n"));
4123 }
4124 lockexit(32);
4125 }
4126
4127 logsetup(devstr);
4128
4129 /*
4130 * can't growfs when logging device has errors
4131 */
4132 if ((islog && !islogok) ||
4133 ((FSOKAY == (sblock.fs_state + sblock.fs_time)) &&
4134 (sblock.fs_clean == FSLOG && !islog))) {
4135 (void) fprintf(stderr,
4136 gettext("logging device has errors; can't growfs\n"));
4137 lockexit(32);
4138 }
4139
4140 /*
4141 * disable ufs logging for growing
4142 */
4143 if (isufslog) {
4144 if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) {
4145 (void) fprintf(stderr, gettext(
4146 "failed to disable logging\n"));
4147 lockexit(32);
4148 }
4149 islog = 0;
4150 waslog = 1;
4151 }
4152
4153 /*
4154 * if mounted write lock the file system to be grown
4155 */
4156 if (ismounted)
4157 wlockfs();
4158
4159 /*
4160 * refresh dynamic superblock state - disabling logging will have
4161 * changed the amount of free space available in the file system
4162 */
4163 rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4164
4165 /*
4166 * make sure device is big enough
4167 */
4168 rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4169 wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4170
4171 /*
4172 * read current summary information
4173 */
4174 grow_fscs = read_summaryinfo(&sblock);
4175
4176 /*
4177 * save some current size related fields from the superblock
4178 * These are used in extendsummaryinfo()
4179 */
4180 grow_fs_size = sblock.fs_size;
4181 grow_fs_ncg = sblock.fs_ncg;
4182 grow_fs_csaddr = (diskaddr_t)sblock.fs_csaddr;
4183 grow_fs_cssize = sblock.fs_cssize;
4184
4185 /*
4186 * save and reset the clean flag
4187 */
4188 if (FSOKAY == (sblock.fs_state + sblock.fs_time))
4189 grow_fs_clean = sblock.fs_clean;
4190 else
4191 grow_fs_clean = FSBAD;
4192 sblock.fs_clean = FSBAD;
4193 sblock.fs_state = FSOKAY - sblock.fs_time;
4194 isbad = 1;
4195 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4196 }
4197
4198 void
checkdev(char * rdev,char * bdev)4199 checkdev(char *rdev, char *bdev)
4200 {
4201 struct stat64 statarea;
4202
4203 if (stat64(bdev, &statarea) < 0) {
4204 (void) fprintf(stderr, gettext("can't check mount point; "));
4205 (void) fprintf(stderr, gettext("can't stat %s\n"), bdev);
4206 lockexit(32);
4207 }
4208 if ((statarea.st_mode & S_IFMT) != S_IFBLK) {
4209 (void) fprintf(stderr, gettext(
4210 "can't check mount point; %s is not a block device\n"),
4211 bdev);
4212 lockexit(32);
4213 }
4214 if (stat64(rdev, &statarea) < 0) {
4215 (void) fprintf(stderr, gettext("can't stat %s\n"), rdev);
4216 lockexit(32);
4217 }
4218 if ((statarea.st_mode & S_IFMT) != S_IFCHR) {
4219 (void) fprintf(stderr,
4220 gettext("%s is not a character device\n"), rdev);
4221 lockexit(32);
4222 }
4223 }
4224
4225 void
checkmount(struct mnttab * mntp,char * bdevname)4226 checkmount(struct mnttab *mntp, char *bdevname)
4227 {
4228 struct stat64 statdir;
4229 struct stat64 statdev;
4230
4231 if (strcmp(bdevname, mntp->mnt_special) == 0) {
4232 if (stat64(mntp->mnt_mountp, &statdir) == -1) {
4233 (void) fprintf(stderr, gettext("can't stat %s\n"),
4234 mntp->mnt_mountp);
4235 lockexit(32);
4236 }
4237 if (stat64(mntp->mnt_special, &statdev) == -1) {
4238 (void) fprintf(stderr, gettext("can't stat %s\n"),
4239 mntp->mnt_special);
4240 lockexit(32);
4241 }
4242 if (statdir.st_dev != statdev.st_rdev) {
4243 (void) fprintf(stderr, gettext(
4244 "%s is not mounted on %s; mnttab(4) wrong\n"),
4245 mntp->mnt_special, mntp->mnt_mountp);
4246 lockexit(32);
4247 }
4248 ismounted = 1;
4249 if (directory) {
4250 if (strcmp(mntp->mnt_mountp, directory) != 0) {
4251 (void) fprintf(stderr,
4252 gettext("%s is mounted on %s, not %s\n"),
4253 bdevname, mntp->mnt_mountp, directory);
4254 lockexit(32);
4255 }
4256 } else {
4257 if (grow)
4258 (void) fprintf(stderr, gettext(
4259 "%s is mounted on %s; can't growfs\n"),
4260 bdevname, mntp->mnt_mountp);
4261 else
4262 (void) fprintf(stderr,
4263 gettext("%s is mounted, can't mkfs\n"),
4264 bdevname);
4265 lockexit(32);
4266 }
4267 }
4268 }
4269
4270 struct dinode *dibuf = 0;
4271 diskaddr_t difrag = 0;
4272
4273 struct dinode *
gdinode(ino_t ino)4274 gdinode(ino_t ino)
4275 {
4276 /*
4277 * read the block of inodes containing inode number ino
4278 */
4279 if (dibuf == 0)
4280 dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize);
4281 if (itod(&sblock, ino) != difrag) {
4282 difrag = itod(&sblock, ino);
4283 rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize,
4284 (char *)dibuf);
4285 }
4286 return (dibuf + (ino % INOPB(&sblock)));
4287 }
4288
4289 /*
4290 * structure that manages the frags we need for extended summary info
4291 * These frags can be:
4292 * free
4293 * data block
4294 * alloc block
4295 */
4296 struct csfrag {
4297 struct csfrag *next; /* next entry */
4298 daddr32_t ofrag; /* old frag */
4299 daddr32_t nfrag; /* new frag */
4300 long cylno; /* cylno of nfrag */
4301 long frags; /* number of frags */
4302 long size; /* size in bytes */
4303 ino_t ino; /* inode number */
4304 long fixed; /* Boolean - Already fixed? */
4305 };
4306 struct csfrag *csfrag; /* state unknown */
4307 struct csfrag *csfragino; /* frags belonging to an inode */
4308 struct csfrag *csfragfree; /* frags that are free */
4309
4310 daddr32_t maxcsfrag = 0; /* maximum in range */
4311 daddr32_t mincsfrag = 0x7fffffff; /* minimum in range */
4312
4313 int
csfraginrange(daddr32_t frag)4314 csfraginrange(daddr32_t frag)
4315 {
4316 return ((frag >= mincsfrag) && (frag <= maxcsfrag));
4317 }
4318
4319 struct csfrag *
findcsfrag(daddr32_t frag,struct csfrag ** cfap)4320 findcsfrag(daddr32_t frag, struct csfrag **cfap)
4321 {
4322 struct csfrag *cfp;
4323
4324 if (!csfraginrange(frag))
4325 return (NULL);
4326
4327 for (cfp = *cfap; cfp; cfp = cfp->next)
4328 if (cfp->ofrag == frag)
4329 return (cfp);
4330 return (NULL);
4331 }
4332
4333 void
checkindirect(ino_t ino,daddr32_t * fragsp,daddr32_t frag,int level)4334 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level)
4335 {
4336 int i;
4337 int ne = sblock.fs_bsize / sizeof (daddr32_t);
4338 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)];
4339
4340 if (frag == 0)
4341 return;
4342
4343 rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize,
4344 (char *)fsb);
4345
4346 checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t));
4347
4348 if (level)
4349 for (i = 0; i < ne && *fragsp; ++i)
4350 checkindirect(ino, fragsp, fsb[i], level-1);
4351 }
4352
4353 void
addcsfrag(ino_t ino,daddr32_t frag,struct csfrag ** cfap)4354 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap)
4355 {
4356 struct csfrag *cfp, *curr, *prev;
4357
4358 /*
4359 * establish a range for faster checking in csfraginrange()
4360 */
4361 if (frag > maxcsfrag)
4362 maxcsfrag = frag;
4363 if (frag < mincsfrag)
4364 mincsfrag = frag;
4365
4366 /*
4367 * if this frag belongs to an inode and is not the start of a block
4368 * then see if it is part of a frag range for this inode
4369 */
4370 if (ino && (frag % sblock.fs_frag))
4371 for (cfp = *cfap; cfp; cfp = cfp->next) {
4372 if (ino != cfp->ino)
4373 continue;
4374 if (frag != cfp->ofrag + cfp->frags)
4375 continue;
4376 cfp->frags++;
4377 cfp->size += sblock.fs_fsize;
4378 return;
4379 }
4380 /*
4381 * allocate a csfrag entry and insert it in an increasing order into the
4382 * specified list
4383 */
4384 cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag));
4385 cfp->ino = ino;
4386 cfp->ofrag = frag;
4387 cfp->frags = 1;
4388 cfp->size = sblock.fs_fsize;
4389 for (prev = NULL, curr = *cfap; curr != NULL;
4390 prev = curr, curr = curr->next) {
4391 if (frag < curr->ofrag) {
4392 cfp->next = curr;
4393 if (prev)
4394 prev->next = cfp; /* middle element */
4395 else
4396 *cfap = cfp; /* first element */
4397 break;
4398 }
4399 if (curr->next == NULL) {
4400 curr->next = cfp; /* last element */
4401 break;
4402 }
4403 }
4404 if (*cfap == NULL) /* will happen only once */
4405 *cfap = cfp;
4406 }
4407
4408 void
delcsfrag(daddr32_t frag,struct csfrag ** cfap)4409 delcsfrag(daddr32_t frag, struct csfrag **cfap)
4410 {
4411 struct csfrag *cfp;
4412 struct csfrag **cfpp;
4413
4414 /*
4415 * free up entry whose beginning frag matches
4416 */
4417 for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) {
4418 if (frag == (*cfpp)->ofrag) {
4419 cfp = *cfpp;
4420 *cfpp = (*cfpp)->next;
4421 free((char *)cfp);
4422 return;
4423 }
4424 }
4425 }
4426
4427 /*
4428 * See whether any of the direct blocks in the array pointed by "db" and of
4429 * length "ne" are within the range of frags needed to extend the cylinder
4430 * summary. If so, remove those frags from the "as-yet-unclassified" list
4431 * (csfrag) and add them to the "owned-by-inode" list (csfragino).
4432 * For each such frag found, decrement the frag count pointed to by fragsp.
4433 * "ino" is the inode that contains (either directly or indirectly) the frags
4434 * being checked.
4435 */
4436 void
checkdirect(ino_t ino,daddr32_t * fragsp,daddr32_t * db,int ne)4437 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne)
4438 {
4439 int i;
4440 int j;
4441 int found;
4442 diskaddr_t frag;
4443
4444 /*
4445 * scan for allocation within the new summary info range
4446 */
4447 for (i = 0; i < ne && *fragsp; ++i) {
4448 if ((frag = *db++) != 0) {
4449 found = 0;
4450 for (j = 0; j < sblock.fs_frag && *fragsp; ++j) {
4451 if (found || (found = csfraginrange(frag))) {
4452 addcsfrag(ino, frag, &csfragino);
4453 delcsfrag(frag, &csfrag);
4454 }
4455 ++frag;
4456 --(*fragsp);
4457 }
4458 }
4459 }
4460 }
4461
4462 void
findcsfragino()4463 findcsfragino()
4464 {
4465 int i;
4466 int j;
4467 daddr32_t frags;
4468 struct dinode *dp;
4469
4470 /*
4471 * scan all old inodes looking for allocations in the new
4472 * summary info range. Move the affected frag from the
4473 * generic csfrag list onto the `owned-by-inode' list csfragino.
4474 */
4475 for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) {
4476 dp = gdinode((ino_t)i);
4477 switch (dp->di_mode & IFMT) {
4478 case IFSHAD :
4479 case IFLNK :
4480 case IFDIR :
4481 case IFREG : break;
4482 default : continue;
4483 }
4484
4485 frags = dbtofsb(&sblock, dp->di_blocks);
4486
4487 checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR);
4488 for (j = 0; j < NIADDR && frags; ++j) {
4489 /* Negate the block if its an fallocate'd block */
4490 if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE)
4491 checkindirect((ino_t)i, &frags,
4492 -(dp->di_ib[j]), j);
4493 else
4494 checkindirect((ino_t)i, &frags,
4495 dp->di_ib[j], j);
4496 }
4497 }
4498 }
4499
4500 void
fixindirect(daddr32_t frag,int level)4501 fixindirect(daddr32_t frag, int level)
4502 {
4503 int i;
4504 int ne = sblock.fs_bsize / sizeof (daddr32_t);
4505 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)];
4506
4507 if (frag == 0)
4508 return;
4509
4510 rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4511 (char *)fsb);
4512
4513 fixdirect((caddr_t)fsb, frag, fsb, ne);
4514
4515 if (level)
4516 for (i = 0; i < ne; ++i)
4517 fixindirect(fsb[i], level-1);
4518 }
4519
4520 void
fixdirect(caddr_t bp,daddr32_t frag,daddr32_t * db,int ne)4521 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne)
4522 {
4523 int i;
4524 struct csfrag *cfp;
4525
4526 for (i = 0; i < ne; ++i, ++db) {
4527 if (*db == 0)
4528 continue;
4529 if ((cfp = findcsfrag(*db, &csfragino)) == NULL)
4530 continue;
4531 *db = cfp->nfrag;
4532 cfp->fixed = 1;
4533 wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4534 bp);
4535 }
4536 }
4537
4538 void
fixcsfragino()4539 fixcsfragino()
4540 {
4541 int i;
4542 struct dinode *dp;
4543 struct csfrag *cfp;
4544
4545 for (cfp = csfragino; cfp; cfp = cfp->next) {
4546 if (cfp->fixed)
4547 continue;
4548 dp = gdinode((ino_t)cfp->ino);
4549 fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR);
4550 for (i = 0; i < NIADDR; ++i)
4551 fixindirect(dp->di_ib[i], i);
4552 }
4553 }
4554
4555 /*
4556 * Read the cylinders summary information specified by settings in the
4557 * passed 'fs' structure into a new allocated array of csum structures.
4558 * The caller is responsible for freeing the returned array.
4559 * Return a pointer to an array of csum structures.
4560 */
4561 static struct csum *
read_summaryinfo(struct fs * fsp)4562 read_summaryinfo(struct fs *fsp)
4563 {
4564 struct csum *csp;
4565 int i;
4566
4567 if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) {
4568 (void) fprintf(stderr, gettext("cannot create csum list,"
4569 " not enough memory\n"));
4570 exit(32);
4571 }
4572
4573 for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) {
4574 rdfs(fsbtodb(fsp,
4575 (uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))),
4576 (int)(fsp->fs_cssize - i < fsp->fs_bsize ?
4577 fsp->fs_cssize - i : fsp->fs_bsize), ((caddr_t)csp) + i);
4578 }
4579
4580 return (csp);
4581 }
4582
4583 /*
4584 * Check the allocation of fragments that are to be made part of a csum block.
4585 * A fragment is allocated if it is either in the csfragfree list or, it is
4586 * in the csfragino list and has new frags associated with it.
4587 * Return the number of allocated fragments.
4588 */
4589 int64_t
checkfragallocated(daddr32_t frag)4590 checkfragallocated(daddr32_t frag)
4591 {
4592 struct csfrag *cfp;
4593 /*
4594 * Since the lists are sorted we can break the search if the asked
4595 * frag is smaller then the one in the list.
4596 */
4597 for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag;
4598 cfp = cfp->next) {
4599 if (frag == cfp->ofrag)
4600 return (1);
4601 }
4602 for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag;
4603 cfp = cfp->next) {
4604 if (frag == cfp->ofrag && cfp->nfrag != 0)
4605 return (cfp->frags);
4606 }
4607
4608 return (0);
4609 }
4610
4611 /*
4612 * Figure out how much the filesystem can be grown. The limiting factor is
4613 * the available free space needed to extend the cg summary info block.
4614 * The free space is determined in three steps:
4615 * - Try to extend the cg summary block to the required size.
4616 * - Find free blocks in last cg.
4617 * - Find free space in the last already allocated fragment of the summary info
4618 * block, and use it for additional csum structures.
4619 * Return the maximum size of the new filesystem or 0 if it can't be grown.
4620 * Please note that this function leaves the global list pointers csfrag,
4621 * csfragfree, and csfragino initialized, and the caller is responsible for
4622 * freeing the lists.
4623 */
4624 diskaddr_t
probe_summaryinfo()4625 probe_summaryinfo()
4626 {
4627 /* fragments by which the csum block can be extended. */
4628 int64_t growth_csum_frags = 0;
4629 /* fragments by which the filesystem can be extended. */
4630 int64_t growth_fs_frags = 0;
4631 int64_t new_fs_cssize; /* size of csum blk in the new FS */
4632 int64_t new_fs_ncg; /* number of cg in the new FS */
4633 int64_t spare_csum;
4634 daddr32_t oldfrag_daddr;
4635 daddr32_t newfrag_daddr;
4636 daddr32_t daddr;
4637 int i;
4638
4639 /*
4640 * read and verify the superblock
4641 */
4642 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4643 (void) checksblock(sblock, 0);
4644
4645 /*
4646 * check how much we can extend the cg summary info block
4647 */
4648
4649 /*
4650 * read current summary information
4651 */
4652 fscs = read_summaryinfo(&sblock);
4653
4654 /*
4655 * build list of frags needed for cg summary info block extension
4656 */
4657 oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) +
4658 sblock.fs_csaddr;
4659 new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg);
4660 new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum));
4661 newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) +
4662 sblock.fs_csaddr;
4663 /*
4664 * add all of the frags that are required to grow the cyl summary to the
4665 * csfrag list, which is the generic/unknown list, since at this point
4666 * we don't yet know the state of those frags.
4667 */
4668 for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++)
4669 addcsfrag((ino_t)0, daddr, &csfrag);
4670
4671 /*
4672 * filter free fragments and allocate them. Note that the free frags
4673 * must be allocated first otherwise they could be grabbed by
4674 * alloccsfragino() for data frags.
4675 */
4676 findcsfragfree();
4677 alloccsfragfree();
4678
4679 /*
4680 * filter fragments owned by inodes and allocate them
4681 */
4682 grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */
4683 findcsfragino();
4684 alloccsfragino();
4685
4686 if (notenoughspace()) {
4687 /*
4688 * check how many consecutive fragments could be allocated
4689 * in both lists.
4690 */
4691 int64_t tmp_frags;
4692 for (daddr = oldfrag_daddr; daddr < newfrag_daddr;
4693 daddr += tmp_frags) {
4694 if ((tmp_frags = checkfragallocated(daddr)) > 0)
4695 growth_csum_frags += tmp_frags;
4696 else
4697 break;
4698 }
4699 } else {
4700 /*
4701 * We have all we need for the new desired size,
4702 * so clean up and report back.
4703 */
4704 return (fssize_db);
4705 }
4706
4707 /*
4708 * given the number of fragments by which the csum block can be grown
4709 * compute by how many new fragments the FS can be increased.
4710 * It is the number of csum instances per fragment multiplied by
4711 * `growth_csum_frags' and the number of fragments per cylinder group.
4712 */
4713 growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) *
4714 growth_csum_frags * sblock.fs_fpg;
4715
4716 /*
4717 * compute free fragments in the last cylinder group
4718 */
4719 rdcg(sblock.fs_ncg - 1);
4720 growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk;
4721
4722 /*
4723 * compute how many csum instances are unused in the old csum block.
4724 * For each unused csum instance the FS can be grown by one cylinder
4725 * group without extending the csum block.
4726 */
4727 spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) -
4728 sblock.fs_ncg;
4729 if (spare_csum > 0)
4730 growth_fs_frags += spare_csum * sblock.fs_fpg;
4731
4732 /*
4733 * recalculate the new filesystem size in sectors, shorten it by
4734 * the requested size `fssize_db' if necessary.
4735 */
4736 if (growth_fs_frags > 0) {
4737 diskaddr_t sect;
4738 sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf;
4739 return ((sect > fssize_db) ? fssize_db : sect);
4740 }
4741
4742 return (0);
4743 }
4744
4745 void
extendsummaryinfo()4746 extendsummaryinfo()
4747 {
4748 int64_t i;
4749 int localtest = test;
4750 int64_t frags;
4751 daddr32_t oldfrag;
4752 daddr32_t newfrag;
4753
4754 /*
4755 * if no-write (-N), don't bother
4756 */
4757 if (Nflag)
4758 return;
4759
4760 again:
4761 flcg();
4762 /*
4763 * summary info did not change size -- do nothing unless in test mode
4764 */
4765 if (grow_fs_cssize == sblock.fs_cssize)
4766 if (!localtest)
4767 return;
4768
4769 /*
4770 * build list of frags needed for additional summary information
4771 */
4772 oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4773 newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4774 /*
4775 * add all of the frags that are required to grow the cyl summary to the
4776 * csfrag list, which is the generic/unknown list, since at this point
4777 * we don't yet know the state of those frags.
4778 */
4779 for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags)
4780 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4781 /*
4782 * reduce the number of data blocks in the file system (fs_dsize) by
4783 * the number of frags that need to be added to the cyl summary
4784 */
4785 sblock.fs_dsize -= (newfrag - oldfrag);
4786
4787 /*
4788 * In test mode, we move more data than necessary from
4789 * cylinder group 0. The lookup/allocate/move code can be
4790 * better stressed without having to create HUGE file systems.
4791 */
4792 if (localtest)
4793 for (i = newfrag; i < grow_sifrag; ++i) {
4794 if (frags >= testfrags)
4795 break;
4796 frags++;
4797 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4798 }
4799
4800 /*
4801 * move frags to free or inode lists, depending on owner
4802 */
4803 findcsfragfree();
4804 findcsfragino();
4805
4806 /*
4807 * if not all frags can be located, file system must be inconsistent
4808 */
4809 if (csfrag) {
4810 isbad = 1; /* should already be set, but make sure */
4811 lockexit(32);
4812 }
4813
4814 /*
4815 * allocate the free frags. Note that the free frags must be allocated
4816 * first otherwise they could be grabbed by alloccsfragino() for data
4817 * frags.
4818 */
4819 alloccsfragfree();
4820 /*
4821 * allocate extra space for inode frags
4822 */
4823 alloccsfragino();
4824
4825 /*
4826 * not enough space
4827 */
4828 if (notenoughspace()) {
4829 unalloccsfragfree();
4830 unalloccsfragino();
4831 if (localtest && !testforce) {
4832 localtest = 0;
4833 goto again;
4834 }
4835 (void) fprintf(stderr, gettext("Not enough free space\n"));
4836 lockexit(NOTENOUGHSPACE);
4837 }
4838
4839 /*
4840 * copy the data from old frags to new frags
4841 */
4842 copycsfragino();
4843
4844 /*
4845 * fix the inodes to point to the new frags
4846 */
4847 fixcsfragino();
4848
4849 /*
4850 * We may have moved more frags than we needed. Free them.
4851 */
4852 rdcg((long)0);
4853 for (i = newfrag; i <= maxcsfrag; ++i)
4854 setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0));
4855 wtcg();
4856
4857 flcg();
4858 }
4859
4860 /*
4861 * Check if all fragments in the `csfragino' list were reallocated.
4862 */
4863 int
notenoughspace()4864 notenoughspace()
4865 {
4866 struct csfrag *cfp;
4867
4868 /*
4869 * If any element in the csfragino array has a "new frag location"
4870 * of 0, the allocfrags() function was unsuccessful in allocating
4871 * space for moving the frag represented by this array element.
4872 */
4873 for (cfp = csfragino; cfp; cfp = cfp->next)
4874 if (cfp->nfrag == 0)
4875 return (1);
4876 return (0);
4877 }
4878
4879 void
unalloccsfragino()4880 unalloccsfragino()
4881 {
4882 struct csfrag *cfp;
4883
4884 while ((cfp = csfragino) != NULL) {
4885 if (cfp->nfrag)
4886 freefrags(cfp->nfrag, cfp->frags, cfp->cylno);
4887 delcsfrag(cfp->ofrag, &csfragino);
4888 }
4889 }
4890
4891 void
unalloccsfragfree()4892 unalloccsfragfree()
4893 {
4894 struct csfrag *cfp;
4895
4896 while ((cfp = csfragfree) != NULL) {
4897 freefrags(cfp->ofrag, cfp->frags, cfp->cylno);
4898 delcsfrag(cfp->ofrag, &csfragfree);
4899 }
4900 }
4901
4902 /*
4903 * For each frag in the "as-yet-unclassified" list (csfrag), see if
4904 * it's free (i.e., its bit is set in the free frag bit map). If so,
4905 * move it from the "as-yet-unclassified" list to the csfragfree list.
4906 */
4907 void
findcsfragfree()4908 findcsfragfree()
4909 {
4910 struct csfrag *cfp;
4911 struct csfrag *cfpnext;
4912
4913 /*
4914 * move free frags onto the free-frag list
4915 */
4916 rdcg((long)0);
4917 for (cfp = csfrag; cfp; cfp = cfpnext) {
4918 cfpnext = cfp->next;
4919 if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) {
4920 addcsfrag(cfp->ino, cfp->ofrag, &csfragfree);
4921 delcsfrag(cfp->ofrag, &csfrag);
4922 }
4923 }
4924 }
4925
4926 void
copycsfragino()4927 copycsfragino()
4928 {
4929 struct csfrag *cfp;
4930 char buf[MAXBSIZE];
4931
4932 /*
4933 * copy data from old frags to newly allocated frags
4934 */
4935 for (cfp = csfragino; cfp; cfp = cfp->next) {
4936 rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size,
4937 buf);
4938 wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size,
4939 buf);
4940 }
4941 }
4942
4943 long curcylno = -1;
4944 int cylnodirty = 0;
4945
4946 void
rdcg(long cylno)4947 rdcg(long cylno)
4948 {
4949 if (cylno != curcylno) {
4950 flcg();
4951 curcylno = cylno;
4952 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4953 (int)sblock.fs_cgsize, (char *)&acg);
4954 }
4955 }
4956
4957 void
flcg()4958 flcg()
4959 {
4960 if (cylnodirty) {
4961 if (debug && Pflag) {
4962 (void) fprintf(stderr,
4963 "Assert: cylnodirty set in probe mode\n");
4964 return;
4965 }
4966 resetallocinfo();
4967 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4968 (int)sblock.fs_cgsize, (char *)&acg);
4969 cylnodirty = 0;
4970 }
4971 curcylno = -1;
4972 }
4973
4974 void
wtcg()4975 wtcg()
4976 {
4977 if (!Pflag) {
4978 /* probe mode should never write to disk */
4979 cylnodirty = 1;
4980 }
4981 }
4982
4983 void
allocfrags(long frags,daddr32_t * fragp,long * cylnop)4984 allocfrags(long frags, daddr32_t *fragp, long *cylnop)
4985 {
4986 int i;
4987 int j;
4988 long bits;
4989 long bit;
4990
4991 /*
4992 * Allocate a free-frag range in an old cylinder group
4993 */
4994 for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) {
4995 if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0))
4996 continue;
4997 rdcg((long)i);
4998 bit = bits = 0;
4999 while (findfreerange(&bit, &bits)) {
5000 if (frags <= bits) {
5001 for (j = 0; j < frags; ++j)
5002 clrbit(cg_blksfree(&acg), bit+j);
5003 wtcg();
5004 *cylnop = i;
5005 *fragp = bit + cgbase(&sblock, i);
5006 return;
5007 }
5008 bit += bits;
5009 }
5010 }
5011 }
5012
5013 /*
5014 * Allocate space for frags that need to be moved in order to free up space for
5015 * expanding the cylinder summary info.
5016 * For each frag that needs to be moved (each frag or range of frags in
5017 * the csfragino list), allocate a new location and store the frag number
5018 * of that new location in the nfrag field of the csfrag struct.
5019 * If a new frag can't be allocated for any element in the csfragino list,
5020 * set the new frag number for that element to 0 and return immediately.
5021 * The notenoughspace() function will detect this condition.
5022 */
5023 void
alloccsfragino()5024 alloccsfragino()
5025 {
5026 struct csfrag *cfp;
5027
5028 /*
5029 * allocate space for inode frag ranges
5030 */
5031 for (cfp = csfragino; cfp; cfp = cfp->next) {
5032 allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno);
5033 if (cfp->nfrag == 0)
5034 break;
5035 }
5036 }
5037
5038 void
alloccsfragfree()5039 alloccsfragfree()
5040 {
5041 struct csfrag *cfp;
5042
5043 /*
5044 * allocate the free frags needed for extended summary info
5045 */
5046 rdcg((long)0);
5047
5048 for (cfp = csfragfree; cfp; cfp = cfp->next)
5049 clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0));
5050
5051 wtcg();
5052 }
5053
5054 void
freefrags(daddr32_t frag,long frags,long cylno)5055 freefrags(daddr32_t frag, long frags, long cylno)
5056 {
5057 int i;
5058
5059 /*
5060 * free frags
5061 */
5062 rdcg(cylno);
5063 for (i = 0; i < frags; ++i) {
5064 setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno));
5065 }
5066 wtcg();
5067 }
5068
5069 int
findfreerange(long * bitp,long * bitsp)5070 findfreerange(long *bitp, long *bitsp)
5071 {
5072 long bit;
5073
5074 /*
5075 * find a range of free bits in a cylinder group bit map
5076 */
5077 for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit)
5078 if (isset(cg_blksfree(&acg), bit))
5079 break;
5080
5081 if (bit >= acg.cg_ndblk)
5082 return (0);
5083
5084 *bitp = bit;
5085 *bitsp = 1;
5086 for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) {
5087 if ((bit % sblock.fs_frag) == 0)
5088 break;
5089 if (isclr(cg_blksfree(&acg), bit))
5090 break;
5091 }
5092 return (1);
5093 }
5094
5095 void
resetallocinfo()5096 resetallocinfo()
5097 {
5098 long cno;
5099 long bit;
5100 long bits;
5101
5102 /*
5103 * Compute the free blocks/frags info and update the appropriate
5104 * inmemory superblock, summary info, and cylinder group fields
5105 */
5106 sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree;
5107 sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree;
5108
5109 acg.cg_cs.cs_nffree = 0;
5110 acg.cg_cs.cs_nbfree = 0;
5111
5112 bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum));
5113 bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff));
5114
5115 bit = bits = 0;
5116 while (findfreerange(&bit, &bits)) {
5117 if (bits == sblock.fs_frag) {
5118 acg.cg_cs.cs_nbfree++;
5119 cno = cbtocylno(&sblock, bit);
5120 cg_blktot(&acg)[cno]++;
5121 cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++;
5122 } else {
5123 acg.cg_cs.cs_nffree += bits;
5124 acg.cg_frsum[bits]++;
5125 }
5126 bit += bits;
5127 }
5128
5129 *(fscs + acg.cg_cgx) = acg.cg_cs;
5130
5131 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
5132 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
5133 }
5134
5135 void
extendcg(long cylno)5136 extendcg(long cylno)
5137 {
5138 int i;
5139 diskaddr_t dupper;
5140 diskaddr_t cbase;
5141 diskaddr_t dmax;
5142
5143 /*
5144 * extend the cylinder group at the end of the old file system
5145 * if it was partially allocated becase of lack of space
5146 */
5147 flcg();
5148 rdcg(cylno);
5149
5150 dupper = acg.cg_ndblk;
5151 if (cylno == sblock.fs_ncg - 1)
5152 acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
5153 else
5154 acg.cg_ncyl = sblock.fs_cpg;
5155 cbase = cgbase(&sblock, cylno);
5156 dmax = cbase + sblock.fs_fpg;
5157 if (dmax > sblock.fs_size)
5158 dmax = sblock.fs_size;
5159 acg.cg_ndblk = dmax - cbase;
5160
5161 for (i = dupper; i < acg.cg_ndblk; ++i)
5162 setbit(cg_blksfree(&acg), i);
5163
5164 sblock.fs_dsize += (acg.cg_ndblk - dupper);
5165
5166 wtcg();
5167 flcg();
5168 }
5169
5170 struct lockfs lockfs;
5171 int lockfd;
5172 int islocked;
5173 int lockfskey;
5174 char lockfscomment[128];
5175
5176 void
ulockfs()5177 ulockfs()
5178 {
5179 /*
5180 * if the file system was locked, unlock it before exiting
5181 */
5182 if (islocked == 0)
5183 return;
5184
5185 /*
5186 * first, check if the lock held
5187 */
5188 lockfs.lf_flags = LOCKFS_MOD;
5189 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5190 perror(directory);
5191 lockexit(32);
5192 }
5193
5194 if (LOCKFS_IS_MOD(&lockfs)) {
5195 (void) fprintf(stderr,
5196 gettext("FILE SYSTEM CHANGED DURING GROWFS!\n"));
5197 (void) fprintf(stderr,
5198 gettext(" See lockfs(1), umount(1), and fsck(1)\n"));
5199 lockexit(32);
5200 }
5201 /*
5202 * unlock the file system
5203 */
5204 lockfs.lf_lock = LOCKFS_ULOCK;
5205 lockfs.lf_flags = 0;
5206 lockfs.lf_key = lockfskey;
5207 clockfs();
5208 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5209 perror(directory);
5210 lockexit(32);
5211 }
5212 }
5213
5214 void
wlockfs()5215 wlockfs()
5216 {
5217
5218 /*
5219 * if no-write (-N), don't bother
5220 */
5221 if (Nflag)
5222 return;
5223 /*
5224 * open the mountpoint, and write lock the file system
5225 */
5226 if ((lockfd = open64(directory, O_RDONLY)) == -1) {
5227 perror(directory);
5228 lockexit(32);
5229 }
5230
5231 /*
5232 * check if it is already locked
5233 */
5234 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5235 perror(directory);
5236 lockexit(32);
5237 }
5238
5239 if (lockfs.lf_lock != LOCKFS_WLOCK) {
5240 lockfs.lf_lock = LOCKFS_WLOCK;
5241 lockfs.lf_flags = 0;
5242 lockfs.lf_key = 0;
5243 clockfs();
5244 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5245 perror(directory);
5246 lockexit(32);
5247 }
5248 }
5249 islocked = 1;
5250 lockfskey = lockfs.lf_key;
5251 }
5252
5253 void
clockfs()5254 clockfs()
5255 {
5256 time_t t;
5257 char *ct;
5258
5259 (void) time(&t);
5260 ct = ctime(&t);
5261 ct[strlen(ct)-1] = '\0';
5262
5263 (void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid());
5264 lockfs.lf_comlen = strlen(lockfscomment)+1;
5265 lockfs.lf_comment = lockfscomment;
5266 }
5267
5268 /*
5269 * Write the csum records and the superblock
5270 */
5271 void
wtsb()5272 wtsb()
5273 {
5274 long i;
5275
5276 /*
5277 * write summary information
5278 */
5279 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
5280 wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr +
5281 numfrags(&sblock, i))),
5282 (int)(sblock.fs_cssize - i < sblock.fs_bsize ?
5283 sblock.fs_cssize - i : sblock.fs_bsize),
5284 ((char *)fscs) + i);
5285
5286 /*
5287 * write superblock
5288 */
5289 sblock.fs_time = mkfstime;
5290 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
5291 }
5292
5293 /*
5294 * Verify that the optimization selection is reasonable, and advance
5295 * the global "string" appropriately.
5296 */
5297 static char
checkopt(char * optim)5298 checkopt(char *optim)
5299 {
5300 char opt;
5301 int limit = strcspn(optim, ",");
5302
5303 switch (limit) {
5304 case 0: /* missing indicator (have comma or nul) */
5305 (void) fprintf(stderr, gettext(
5306 "mkfs: missing optimization flag reset to `t' (time)\n"));
5307 opt = 't';
5308 break;
5309
5310 case 1: /* single-character indicator */
5311 opt = *optim;
5312 if ((opt != 's') && (opt != 't')) {
5313 (void) fprintf(stderr, gettext(
5314 "mkfs: bad optimization value `%c' reset to `t' (time)\n"),
5315 opt);
5316 opt = 't';
5317 }
5318 break;
5319
5320 default: /* multi-character indicator */
5321 (void) fprintf(stderr, gettext(
5322 "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"),
5323 limit, limit, optim);
5324 opt = 't';
5325 break;
5326 }
5327
5328 string += limit;
5329
5330 return (opt);
5331 }
5332
5333 /*
5334 * Verify that the mtb selection is reasonable, and advance
5335 * the global "string" appropriately.
5336 */
5337 static char
checkmtb(char * mtbarg)5338 checkmtb(char *mtbarg)
5339 {
5340 char mtbc;
5341 int limit = strcspn(mtbarg, ",");
5342
5343 switch (limit) {
5344 case 0: /* missing indicator (have comma or nul) */
5345 (void) fprintf(stderr, gettext(
5346 "mkfs: missing mtb flag reset to `n' (no mtb support)\n"));
5347 mtbc = 'n';
5348 break;
5349
5350 case 1: /* single-character indicator */
5351 mtbc = tolower(*mtbarg);
5352 if ((mtbc != 'y') && (mtbc != 'n')) {
5353 (void) fprintf(stderr, gettext(
5354 "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"),
5355 mtbc);
5356 mtbc = 'n';
5357 }
5358 break;
5359
5360 default: /* multi-character indicator */
5361 (void) fprintf(stderr, gettext(
5362 "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"),
5363 limit, limit, mtbarg);
5364 opt = 'n';
5365 break;
5366 }
5367
5368 string += limit;
5369
5370 return (mtbc);
5371 }
5372
5373 /*
5374 * Verify that a value is in a range. If it is not, resets it to
5375 * its default value if one is supplied, exits otherwise.
5376 *
5377 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5378 */
5379 static void
range_check(long * varp,char * name,long minimum,long maximum,long def_val,int user_supplied)5380 range_check(long *varp, char *name, long minimum, long maximum,
5381 long def_val, int user_supplied)
5382 {
5383 dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n",
5384 name, *varp, minimum, maximum, def_val));
5385
5386 if ((*varp < minimum) || (*varp > maximum)) {
5387 if (user_supplied != RC_DEFAULT) {
5388 (void) fprintf(stderr, gettext(
5389 "mkfs: bad value for %s: %ld must be between %ld and %ld\n"),
5390 name, *varp, minimum, maximum);
5391 }
5392 if (def_val != NO_DEFAULT) {
5393 if (user_supplied) {
5394 (void) fprintf(stderr,
5395 gettext("mkfs: %s reset to default %ld\n"),
5396 name, def_val);
5397 }
5398 *varp = def_val;
5399 dprintf(("DeBuG %s : %ld\n", name, *varp));
5400 return;
5401 }
5402 lockexit(2);
5403 /*NOTREACHED*/
5404 }
5405 }
5406
5407 /*
5408 * Verify that a value is in a range. If it is not, resets it to
5409 * its default value if one is supplied, exits otherwise.
5410 *
5411 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5412 */
5413 static void
range_check_64(uint64_t * varp,char * name,uint64_t minimum,uint64_t maximum,uint64_t def_val,int user_supplied)5414 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum,
5415 uint64_t def_val, int user_supplied)
5416 {
5417 if ((*varp < minimum) || (*varp > maximum)) {
5418 if (user_supplied != RC_DEFAULT) {
5419 (void) fprintf(stderr, gettext(
5420 "mkfs: bad value for %s: %lld must be between %lld and %lld\n"),
5421 name, *varp, minimum, maximum);
5422 }
5423 if (def_val != NO_DEFAULT) {
5424 if (user_supplied) {
5425 (void) fprintf(stderr,
5426 gettext("mkfs: %s reset to default %lld\n"),
5427 name, def_val);
5428 }
5429 *varp = def_val;
5430 return;
5431 }
5432 lockexit(2);
5433 /*NOTREACHED*/
5434 }
5435 }
5436
5437 /*
5438 * Blocks SIGINT from delivery. Returns the previous mask in the
5439 * buffer provided, so that mask may be later restored.
5440 */
5441 static void
block_sigint(sigset_t * old_mask)5442 block_sigint(sigset_t *old_mask)
5443 {
5444 sigset_t block_mask;
5445
5446 if (sigemptyset(&block_mask) < 0) {
5447 fprintf(stderr, gettext("Could not clear signal mask\n"));
5448 lockexit(3);
5449 }
5450 if (sigaddset(&block_mask, SIGINT) < 0) {
5451 fprintf(stderr, gettext("Could not set signal mask\n"));
5452 lockexit(3);
5453 }
5454 if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) {
5455 fprintf(stderr, gettext("Could not block SIGINT\n"));
5456 lockexit(3);
5457 }
5458 }
5459
5460 /*
5461 * Restores the signal mask that was in force before a call
5462 * to block_sigint(). This may actually still have SIGINT blocked,
5463 * if we've been recursively invoked.
5464 */
5465 static void
unblock_sigint(sigset_t * old_mask)5466 unblock_sigint(sigset_t *old_mask)
5467 {
5468 if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) {
5469 fprintf(stderr, gettext("Could not restore signal mask\n"));
5470 lockexit(3);
5471 }
5472 }
5473
5474 /*
5475 * Attempt to be somewhat graceful about being interrupted, rather than
5476 * just silently leaving the filesystem in an unusable state.
5477 *
5478 * The kernel has blocked SIGINT upon entry, so we don't have to worry
5479 * about recursion if the user starts pounding on the keyboard.
5480 */
5481 static void
recover_from_sigint(int signum)5482 recover_from_sigint(int signum)
5483 {
5484 if (fso > -1) {
5485 if ((Nflag != 0) || confirm_abort()) {
5486 lockexit(4);
5487 }
5488 }
5489 }
5490
5491 static int
confirm_abort(void)5492 confirm_abort(void)
5493 {
5494 char line[80];
5495
5496 printf(gettext("\n\nAborting at this point will leave the filesystem "
5497 "in an inconsistent\nstate. If you do choose to stop, "
5498 "you will be given instructions on how to\nrecover "
5499 "the filesystem. Do you wish to cancel the filesystem "
5500 "grow\noperation (y/n)?"));
5501 if (getaline(stdin, line, sizeof (line)) == EOF)
5502 line[0] = 'y';
5503
5504 printf("\n");
5505 if (line[0] == 'y' || line[0] == 'Y')
5506 return (1);
5507 else {
5508 return (0);
5509 }
5510 }
5511
5512 static int
getaline(FILE * fp,char * loc,int maxlen)5513 getaline(FILE *fp, char *loc, int maxlen)
5514 {
5515 int n;
5516 char *p, *lastloc;
5517
5518 p = loc;
5519 lastloc = &p[maxlen-1];
5520 while ((n = getc(fp)) != '\n') {
5521 if (n == EOF)
5522 return (EOF);
5523 if (!isspace(n) && p < lastloc)
5524 *p++ = n;
5525 }
5526 *p = 0;
5527 return (p - loc);
5528 }
5529
5530 /*
5531 * Calculate the maximum value of cylinders-per-group for a file
5532 * system with the characteristics:
5533 *
5534 * bsize - file system block size
5535 * fragsize - frag size
5536 * nbpi - number of bytes of disk space per inode
5537 * nrpos - number of rotational positions
5538 * spc - sectors per cylinder
5539 *
5540 * These five characteristic are not adjustable (by this function).
5541 * The only attribute of the file system which IS adjusted by this
5542 * function in order to maximize cylinders-per-group is the proportion
5543 * of the cylinder group overhead block used for the inode map. The
5544 * inode map cannot occupy more than one-third of the cylinder group
5545 * overhead block, but it's OK for it to occupy less than one-third
5546 * of the overhead block.
5547 *
5548 * The setting of nbpi determines one possible value for the maximum
5549 * size of a cylinder group. It does so because it determines the total
5550 * number of inodes in the file system (file system size is fixed, and
5551 * nbpi is fixed, so the total number of inodes is fixed too). The
5552 * cylinder group has to be small enough so that the number of inodes
5553 * in the cylinder group is less than or equal to the number of bits
5554 * in one-third (or whatever proportion is assumed) of a file system
5555 * block. The details of the calculation are:
5556 *
5557 * The macro MAXIpG_B(bsize, inode_divisor) determines the maximum
5558 * number of inodes that can be in a cylinder group, given the
5559 * proportion of the cylinder group overhead block used for the
5560 * inode bitmaps (an inode_divisor of 3 means that 1/3 of the
5561 * block is used for inode bitmaps; an inode_divisor of 12 means
5562 * that 1/12 of the block is used for inode bitmaps.)
5563 *
5564 * Once the number of inodes per cylinder group is known, the
5565 * maximum value of cylinders-per-group (determined by nbpi)
5566 * is calculated by the formula
5567 *
5568 * maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder)
5569 *
5570 * = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE)
5571 *
5572 * (Interestingly, the size of the file system never enters
5573 * into this calculation.)
5574 *
5575 * Another possible value for the maximum cylinder group size is determined
5576 * by frag_size and nrpos. The frags in the cylinder group must be
5577 * representable in the frag bitmaps in the cylinder overhead block and the
5578 * rotational positions for each cylinder must be represented in the
5579 * rotational position tables. The calculation of the maximum cpg
5580 * value, given the frag and nrpos vales, is:
5581 *
5582 * maxcpg_given_fragsize =
5583 * (available space in the overhead block) / (size of per-cylinder data)
5584 *
5585 * The available space in the overhead block =
5586 * bsize - sizeof (struct cg) - space_used_for_inode_bitmaps
5587 *
5588 * The size of the per-cylinder data is:
5589 * sizeof(long) # for the "blocks avail per cylinder" field
5590 * + nrpos * sizeof(short) # for the rotational position table entry
5591 * + frags-per-cylinder/NBBY # number of bytes to represent this
5592 * # cylinder in the frag bitmap
5593 *
5594 * The two calculated maximum values of cylinder-per-group will typically
5595 * turn out to be different, since they are derived from two different
5596 * constraints. Usually, maxcpg_given_nbpi is much bigger than
5597 * maxcpg_given_fragsize. But they can be brought together by
5598 * adjusting the proportion of the overhead block dedicated to
5599 * the inode bitmaps. Decreasing the proportion of the cylinder
5600 * group overhead block used for inode maps will decrease
5601 * maxcpg_given_nbpi and increase maxcpg_given_fragsize.
5602 *
5603 * This function calculates the initial values of maxcpg_given_nbpi
5604 * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead
5605 * block is used for inode bitmaps. Then it decreases the proportion
5606 * of the cg overhead block used for inode bitmaps (by increasing
5607 * the value of inode_divisor) until maxcpg_given_nbpi and
5608 * maxcpg_given_fragsize are the same, or stop changing, or
5609 * maxcpg_given_nbpi is less than maxcpg_given_fragsize.
5610 *
5611 * The loop terminates when any of the following occur:
5612 * * maxcpg_given_fragsize is greater than or equal to
5613 * maxcpg_given_nbpi
5614 * * neither maxcpg_given_fragsize nor maxcpg_given_nbpi
5615 * change in the expected direction
5616 *
5617 * The loop is guaranteed to terminate because it only continues
5618 * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching
5619 * each other. As soon they cross each other, or neither one changes
5620 * in the direction of the other, or one of them moves in the wrong
5621 * direction, the loop completes.
5622 */
5623
5624 static long
compute_maxcpg(long bsize,long fragsize,long nbpi,long nrpos,long spc)5625 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc)
5626 {
5627 int maxcpg_given_nbpi; /* in cylinders */
5628 int maxcpg_given_fragsize; /* in cylinders */
5629 int spf; /* sectors per frag */
5630 int inode_divisor;
5631 int old_max_given_frag = 0;
5632 int old_max_given_nbpi = INT_MAX;
5633
5634 spf = fragsize / DEV_BSIZE;
5635 inode_divisor = 3;
5636
5637 while (1) {
5638 maxcpg_given_nbpi =
5639 (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) /
5640 (DEV_BSIZE * ((int64_t)spc));
5641 maxcpg_given_fragsize =
5642 (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) /
5643 (sizeof (long) + nrpos * sizeof (short) +
5644 (spc / spf) / NBBY);
5645
5646 if (maxcpg_given_fragsize >= maxcpg_given_nbpi)
5647 return (maxcpg_given_nbpi);
5648
5649 /*
5650 * If neither value moves toward the other, return the
5651 * least of the old values (we use the old instead of the
5652 * new because: if the old is the same as the new, it
5653 * doesn't matter which ones we use. If one of the
5654 * values changed, but in the wrong direction, the
5655 * new values are suspect. Better use the old. This
5656 * shouldn't happen, but it's best to check.
5657 */
5658
5659 if (!(maxcpg_given_nbpi < old_max_given_nbpi) &&
5660 !(maxcpg_given_fragsize > old_max_given_frag))
5661 return (MIN(old_max_given_nbpi, old_max_given_frag));
5662
5663 /*
5664 * This is probably impossible, but if one of the maxcpg
5665 * values moved in the "right" direction and one moved
5666 * in the "wrong" direction (that is, the two values moved
5667 * in the same direction), the previous conditional won't
5668 * recognize that the values aren't converging (since at
5669 * least one value moved in the "right" direction, the
5670 * last conditional says "keep going").
5671 *
5672 * Just to make absolutely certain that the loop terminates,
5673 * check for one of the values moving in the "wrong" direction
5674 * and terminate the loop if it happens.
5675 */
5676
5677 if (maxcpg_given_nbpi > old_max_given_nbpi ||
5678 maxcpg_given_fragsize < old_max_given_frag)
5679 return (MIN(old_max_given_nbpi, old_max_given_frag));
5680
5681 old_max_given_nbpi = maxcpg_given_nbpi;
5682 old_max_given_frag = maxcpg_given_fragsize;
5683
5684 inode_divisor++;
5685 }
5686 }
5687
5688 static int
in_64bit_mode(void)5689 in_64bit_mode(void)
5690 {
5691 /* cmd must be an absolute path, for security */
5692 char *cmd = "/usr/bin/isainfo -b";
5693 char buf[BUFSIZ];
5694 FILE *ptr;
5695 int retval = 0;
5696
5697 putenv("IFS= \t");
5698 if ((ptr = popen(cmd, "r")) != NULL) {
5699 if (fgets(buf, BUFSIZ, ptr) != NULL &&
5700 strncmp(buf, "64", 2) == 0)
5701 retval = 1;
5702 (void) pclose(ptr);
5703 }
5704 return (retval);
5705 }
5706
5707 /*
5708 * validate_size
5709 *
5710 * Return 1 if the device appears to be at least "size" sectors long.
5711 * Return 0 if it's shorter or we can't read it.
5712 */
5713
5714 static int
validate_size(int fd,diskaddr_t size)5715 validate_size(int fd, diskaddr_t size)
5716 {
5717 char buf[DEV_BSIZE];
5718 int rc;
5719
5720 if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
5721 (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
5722 rc = 0;
5723 else
5724 rc = 1;
5725 return (rc);
5726 }
5727
5728 /*
5729 * Print every field of the calculated superblock, along with
5730 * its value. To make parsing easier on the caller, the value
5731 * is printed first, then the name. Additionally, there's only
5732 * one name/value pair per line. All values are reported in
5733 * hexadecimal (with the traditional 0x prefix), as that's slightly
5734 * easier for humans to read. Not that they're expected to, but
5735 * debugging happens.
5736 */
5737 static void
dump_sblock(void)5738 dump_sblock(void)
5739 {
5740 int row, column, pending, written;
5741 caddr_t source;
5742
5743 if (Rflag) {
5744 pending = sizeof (sblock);
5745 source = (caddr_t)&sblock;
5746 do {
5747 written = write(fileno(stdout), source, pending);
5748 pending -= written;
5749 source += written;
5750 } while ((pending > 0) && (written > 0));
5751
5752 if (written < 0) {
5753 perror(gettext("Binary dump of superblock failed"));
5754 lockexit(1);
5755 }
5756 return;
5757 } else {
5758 printf("0x%x sblock.fs_link\n", sblock.fs_link);
5759 printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled);
5760 printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno);
5761 printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno);
5762 printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno);
5763 printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno);
5764 printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset);
5765 printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask);
5766 printf("0x%x sblock.fs_time\n", sblock.fs_time);
5767 printf("0x%x sblock.fs_size\n", sblock.fs_size);
5768 printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize);
5769 printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg);
5770 printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize);
5771 printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize);
5772 printf("0x%x sblock.fs_frag\n", sblock.fs_frag);
5773 printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree);
5774 printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay);
5775 printf("0x%x sblock.fs_rps\n", sblock.fs_rps);
5776 printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask);
5777 printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask);
5778 printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift);
5779 printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift);
5780 printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig);
5781 printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg);
5782 printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift);
5783 printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb);
5784 printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize);
5785 printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask);
5786 printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift);
5787 printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir);
5788 printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb);
5789 printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf);
5790 printf("0x%x sblock.fs_optim\n", sblock.fs_optim);
5791 #ifdef _LITTLE_ENDIAN
5792 printf("0x%x sblock.fs_state\n", sblock.fs_state);
5793 #else
5794 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5795 #endif
5796 printf("0x%x sblock.fs_si\n", sblock.fs_si);
5797 printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew);
5798 printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]);
5799 printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]);
5800 printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr);
5801 printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize);
5802 printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize);
5803 printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak);
5804 printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect);
5805 printf("0x%x sblock.fs_spc\n", sblock.fs_spc);
5806 printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl);
5807 printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg);
5808 printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg);
5809 printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg);
5810 printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal);
5811 printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod);
5812 printf("0x%x sblock.fs_clean\n", sblock.fs_clean);
5813 printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly);
5814 printf("0x%x sblock.fs_flags\n", sblock.fs_flags);
5815 printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt);
5816 printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor);
5817 printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp);
5818 printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc);
5819
5820 /*
5821 * No macros are defined for the dimensions of the
5822 * opostbl array.
5823 */
5824 for (row = 0; row < 16; row++) {
5825 for (column = 0; column < 8; column++) {
5826 printf("0x%x sblock.fs_opostbl[%d][%d]\n",
5827 sblock.fs_opostbl[row][column],
5828 row, column);
5829 }
5830 }
5831
5832 /*
5833 * Ditto the size of sparecon.
5834 */
5835 for (row = 0; row < 51; row++) {
5836 printf("0x%x sblock.fs_sparecon[%d]\n",
5837 sblock.fs_sparecon[row], row);
5838 }
5839
5840 printf("0x%x sblock.fs_version\n", sblock.fs_version);
5841 printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno);
5842 printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim);
5843 printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2);
5844 #ifdef _LITTLE_ENDIAN
5845 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5846 #else
5847 printf("0x%x sblock.fs_state\n", sblock.fs_state);
5848 #endif
5849 printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask);
5850 printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask);
5851 printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat);
5852 printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos);
5853 printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff);
5854 printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff);
5855 printf("0x%x sblock.fs_magic\n", sblock.fs_magic);
5856
5857 /*
5858 * fs_space isn't of much use in this context, so we'll
5859 * just ignore it for now.
5860 */
5861 }
5862 }
5863