1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023, 2025 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111 {
112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 return NL80211_CHAN_WIDTH_20_NOHT;
114
115 /*S1G defines a single allowed channel width per channel.
116 * Extract that width here.
117 */
118 if (chan->flags & IEEE80211_CHAN_1MHZ)
119 return NL80211_CHAN_WIDTH_1;
120 else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 return NL80211_CHAN_WIDTH_2;
122 else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 return NL80211_CHAN_WIDTH_4;
124 else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 return NL80211_CHAN_WIDTH_8;
126 else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 return NL80211_CHAN_WIDTH_16;
128
129 pr_err("unknown channel width for channel at %dKHz?\n",
130 ieee80211_channel_to_khz(chan));
131
132 return NL80211_CHAN_WIDTH_1;
133 }
134 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135
ieee80211_freq_khz_to_channel(u32 freq)136 int ieee80211_freq_khz_to_channel(u32 freq)
137 {
138 /* TODO: just handle MHz for now */
139 freq = KHZ_TO_MHZ(freq);
140
141 /* see 802.11 17.3.8.3.2 and Annex J */
142 if (freq == 2484)
143 return 14;
144 else if (freq < 2484)
145 return (freq - 2407) / 5;
146 else if (freq >= 4910 && freq <= 4980)
147 return (freq - 4000) / 5;
148 else if (freq < 5925)
149 return (freq - 5000) / 5;
150 else if (freq == 5935)
151 return 2;
152 else if (freq <= 45000) /* DMG band lower limit */
153 /* see 802.11ax D6.1 27.3.22.2 */
154 return (freq - 5950) / 5;
155 else if (freq >= 58320 && freq <= 70200)
156 return (freq - 56160) / 2160;
157 else
158 return 0;
159 }
160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 u32 freq)
164 {
165 enum nl80211_band band;
166 struct ieee80211_supported_band *sband;
167 int i;
168
169 for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 sband = wiphy->bands[band];
171
172 if (!sband)
173 continue;
174
175 for (i = 0; i < sband->n_channels; i++) {
176 struct ieee80211_channel *chan = &sband->channels[i];
177
178 if (ieee80211_channel_to_khz(chan) == freq)
179 return chan;
180 }
181 }
182
183 return NULL;
184 }
185 EXPORT_SYMBOL(ieee80211_get_channel_khz);
186
set_mandatory_flags_band(struct ieee80211_supported_band * sband)187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188 {
189 int i, want;
190
191 switch (sband->band) {
192 case NL80211_BAND_5GHZ:
193 case NL80211_BAND_6GHZ:
194 want = 3;
195 for (i = 0; i < sband->n_bitrates; i++) {
196 if (sband->bitrates[i].bitrate == 60 ||
197 sband->bitrates[i].bitrate == 120 ||
198 sband->bitrates[i].bitrate == 240) {
199 sband->bitrates[i].flags |=
200 IEEE80211_RATE_MANDATORY_A;
201 want--;
202 }
203 }
204 WARN_ON(want);
205 break;
206 case NL80211_BAND_2GHZ:
207 case NL80211_BAND_LC:
208 want = 7;
209 for (i = 0; i < sband->n_bitrates; i++) {
210 switch (sband->bitrates[i].bitrate) {
211 case 10:
212 case 20:
213 case 55:
214 case 110:
215 sband->bitrates[i].flags |=
216 IEEE80211_RATE_MANDATORY_B |
217 IEEE80211_RATE_MANDATORY_G;
218 want--;
219 break;
220 case 60:
221 case 120:
222 case 240:
223 sband->bitrates[i].flags |=
224 IEEE80211_RATE_MANDATORY_G;
225 want--;
226 fallthrough;
227 default:
228 sband->bitrates[i].flags |=
229 IEEE80211_RATE_ERP_G;
230 break;
231 }
232 }
233 WARN_ON(want != 0 && want != 3);
234 break;
235 case NL80211_BAND_60GHZ:
236 /* check for mandatory HT MCS 1..4 */
237 WARN_ON(!sband->ht_cap.ht_supported);
238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 break;
240 case NL80211_BAND_S1GHZ:
241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 * mandatory is ok.
243 */
244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 break;
246 case NUM_NL80211_BANDS:
247 default:
248 WARN_ON(1);
249 break;
250 }
251 }
252
ieee80211_set_bitrate_flags(struct wiphy * wiphy)253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254 {
255 enum nl80211_band band;
256
257 for (band = 0; band < NUM_NL80211_BANDS; band++)
258 if (wiphy->bands[band])
259 set_mandatory_flags_band(wiphy->bands[band]);
260 }
261
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263 {
264 int i;
265 for (i = 0; i < wiphy->n_cipher_suites; i++)
266 if (cipher == wiphy->cipher_suites[i])
267 return true;
268 return false;
269 }
270
271 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273 {
274 struct wiphy *wiphy = &rdev->wiphy;
275 int i;
276
277 for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 switch (wiphy->cipher_suites[i]) {
279 case WLAN_CIPHER_SUITE_AES_CMAC:
280 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 return true;
284 }
285 }
286
287 return false;
288 }
289
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 int key_idx, bool pairwise)
292 {
293 int max_key_idx;
294
295 if (pairwise)
296 max_key_idx = 3;
297 else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 wiphy_ext_feature_isset(&rdev->wiphy,
300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 max_key_idx = 7;
302 else if (cfg80211_igtk_cipher_supported(rdev))
303 max_key_idx = 5;
304 else
305 max_key_idx = 3;
306
307 if (key_idx < 0 || key_idx > max_key_idx)
308 return false;
309
310 return true;
311 }
312
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 struct key_params *params, int key_idx,
315 bool pairwise, const u8 *mac_addr)
316 {
317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 return -EINVAL;
319
320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 return -EINVAL;
322
323 if (pairwise && !mac_addr)
324 return -EINVAL;
325
326 switch (params->cipher) {
327 case WLAN_CIPHER_SUITE_TKIP:
328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 if ((pairwise && key_idx) ||
330 params->mode != NL80211_KEY_RX_TX)
331 return -EINVAL;
332 break;
333 case WLAN_CIPHER_SUITE_CCMP:
334 case WLAN_CIPHER_SUITE_CCMP_256:
335 case WLAN_CIPHER_SUITE_GCMP:
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 /* IEEE802.11-2016 allows only 0 and - when supporting
338 * Extended Key ID - 1 as index for pairwise keys.
339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 * the driver supports Extended Key ID.
341 * @NL80211_KEY_SET_TX can't be set when installing and
342 * validating a key.
343 */
344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 params->mode == NL80211_KEY_SET_TX)
346 return -EINVAL;
347 if (wiphy_ext_feature_isset(&rdev->wiphy,
348 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 if (pairwise && (key_idx < 0 || key_idx > 1))
350 return -EINVAL;
351 } else if (pairwise && key_idx) {
352 return -EINVAL;
353 }
354 break;
355 case WLAN_CIPHER_SUITE_AES_CMAC:
356 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 /* Disallow BIP (group-only) cipher as pairwise cipher */
360 if (pairwise)
361 return -EINVAL;
362 if (key_idx < 4)
363 return -EINVAL;
364 break;
365 case WLAN_CIPHER_SUITE_WEP40:
366 case WLAN_CIPHER_SUITE_WEP104:
367 if (key_idx > 3)
368 return -EINVAL;
369 break;
370 default:
371 break;
372 }
373
374 switch (params->cipher) {
375 case WLAN_CIPHER_SUITE_WEP40:
376 if (params->key_len != WLAN_KEY_LEN_WEP40)
377 return -EINVAL;
378 break;
379 case WLAN_CIPHER_SUITE_TKIP:
380 if (params->key_len != WLAN_KEY_LEN_TKIP)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_CCMP:
384 if (params->key_len != WLAN_KEY_LEN_CCMP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP_256:
388 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_GCMP:
392 if (params->key_len != WLAN_KEY_LEN_GCMP)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP_256:
396 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_WEP104:
400 if (params->key_len != WLAN_KEY_LEN_WEP104)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_AES_CMAC:
404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 return -EINVAL;
418 break;
419 default:
420 /*
421 * We don't know anything about this algorithm,
422 * allow using it -- but the driver must check
423 * all parameters! We still check below whether
424 * or not the driver supports this algorithm,
425 * of course.
426 */
427 break;
428 }
429
430 if (params->seq) {
431 switch (params->cipher) {
432 case WLAN_CIPHER_SUITE_WEP40:
433 case WLAN_CIPHER_SUITE_WEP104:
434 /* These ciphers do not use key sequence */
435 return -EINVAL;
436 case WLAN_CIPHER_SUITE_TKIP:
437 case WLAN_CIPHER_SUITE_CCMP:
438 case WLAN_CIPHER_SUITE_CCMP_256:
439 case WLAN_CIPHER_SUITE_GCMP:
440 case WLAN_CIPHER_SUITE_GCMP_256:
441 case WLAN_CIPHER_SUITE_AES_CMAC:
442 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 if (params->seq_len != 6)
446 return -EINVAL;
447 break;
448 }
449 }
450
451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 return -EINVAL;
453
454 return 0;
455 }
456
ieee80211_hdrlen(__le16 fc)457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458 {
459 unsigned int hdrlen = 24;
460
461 if (ieee80211_is_ext(fc)) {
462 hdrlen = 4;
463 goto out;
464 }
465
466 if (ieee80211_is_data(fc)) {
467 if (ieee80211_has_a4(fc))
468 hdrlen = 30;
469 if (ieee80211_is_data_qos(fc)) {
470 hdrlen += IEEE80211_QOS_CTL_LEN;
471 if (ieee80211_has_order(fc))
472 hdrlen += IEEE80211_HT_CTL_LEN;
473 }
474 goto out;
475 }
476
477 if (ieee80211_is_mgmt(fc)) {
478 if (ieee80211_has_order(fc))
479 hdrlen += IEEE80211_HT_CTL_LEN;
480 goto out;
481 }
482
483 if (ieee80211_is_ctl(fc)) {
484 /*
485 * ACK and CTS are 10 bytes, all others 16. To see how
486 * to get this condition consider
487 * subtype mask: 0b0000000011110000 (0x00F0)
488 * ACK subtype: 0b0000000011010000 (0x00D0)
489 * CTS subtype: 0b0000000011000000 (0x00C0)
490 * bits that matter: ^^^ (0x00E0)
491 * value of those: 0b0000000011000000 (0x00C0)
492 */
493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 hdrlen = 10;
495 else
496 hdrlen = 16;
497 }
498 out:
499 return hdrlen;
500 }
501 EXPORT_SYMBOL(ieee80211_hdrlen);
502
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504 {
505 const struct ieee80211_hdr *hdr =
506 (const struct ieee80211_hdr *)skb->data;
507 unsigned int hdrlen;
508
509 if (unlikely(skb->len < 10))
510 return 0;
511 hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 if (unlikely(hdrlen > skb->len))
513 return 0;
514 return hdrlen;
515 }
516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517
__ieee80211_get_mesh_hdrlen(u8 flags)518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519 {
520 int ae = flags & MESH_FLAGS_AE;
521 /* 802.11-2012, 8.2.4.7.3 */
522 switch (ae) {
523 default:
524 case 0:
525 return 6;
526 case MESH_FLAGS_AE_A4:
527 return 12;
528 case MESH_FLAGS_AE_A5_A6:
529 return 18;
530 }
531 }
532
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534 {
535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536 }
537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540 {
541 const __be16 *hdr_proto = hdr + ETH_ALEN;
542
543 if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 *hdr_proto != htons(ETH_P_AARP) &&
545 *hdr_proto != htons(ETH_P_IPX)) &&
546 !ether_addr_equal(hdr, bridge_tunnel_header))
547 return false;
548
549 *proto = *hdr_proto;
550
551 return true;
552 }
553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556 {
557 const void *mesh_addr;
558 struct {
559 struct ethhdr eth;
560 u8 flags;
561 } payload;
562 int hdrlen;
563 int ret;
564
565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 if (ret)
567 return ret;
568
569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570
571 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 &payload.eth.h_proto)))
574 hdrlen += ETH_ALEN + 2;
575 else if (!pskb_may_pull(skb, hdrlen))
576 return -EINVAL;
577 else
578 payload.eth.h_proto = htons(skb->len - hdrlen);
579
580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 switch (payload.flags & MESH_FLAGS_AE) {
582 case MESH_FLAGS_AE_A4:
583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 break;
585 case MESH_FLAGS_AE_A5_A6:
586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 break;
588 default:
589 break;
590 }
591
592 pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594
595 return 0;
596 }
597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 const u8 *addr, enum nl80211_iftype iftype,
601 u8 data_offset, bool is_amsdu)
602 {
603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 struct {
605 u8 hdr[ETH_ALEN] __aligned(2);
606 __be16 proto;
607 } payload;
608 struct ethhdr tmp;
609 u16 hdrlen;
610
611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 return -1;
613
614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 if (skb->len < hdrlen)
616 return -1;
617
618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 * header
620 * IEEE 802.11 address fields:
621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 * 0 0 DA SA BSSID n/a
623 * 0 1 DA BSSID SA n/a
624 * 1 0 BSSID SA DA n/a
625 * 1 1 RA TA DA SA
626 */
627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629
630 switch (hdr->frame_control &
631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 case cpu_to_le16(IEEE80211_FCTL_TODS):
633 if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 iftype != NL80211_IFTYPE_AP_VLAN &&
635 iftype != NL80211_IFTYPE_P2P_GO))
636 return -1;
637 break;
638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_STATION))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 if ((iftype != NL80211_IFTYPE_STATION &&
646 iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 iftype != NL80211_IFTYPE_MESH_POINT) ||
648 (is_multicast_ether_addr(tmp.h_dest) &&
649 ether_addr_equal(tmp.h_source, addr)))
650 return -1;
651 break;
652 case cpu_to_le16(0):
653 if (iftype != NL80211_IFTYPE_ADHOC &&
654 iftype != NL80211_IFTYPE_STATION &&
655 iftype != NL80211_IFTYPE_OCB)
656 return -1;
657 break;
658 }
659
660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 /* remove RFC1042 or Bridge-Tunnel encapsulation */
664 hdrlen += ETH_ALEN + 2;
665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 } else {
667 tmp.h_proto = htons(skb->len - hdrlen);
668 }
669
670 pskb_pull(skb, hdrlen);
671
672 if (!ehdr)
673 ehdr = skb_push(skb, sizeof(struct ethhdr));
674 memcpy(ehdr, &tmp, sizeof(tmp));
675
676 return 0;
677 }
678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679
680 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)681 __frame_add_frag(struct sk_buff *skb, struct page *page,
682 void *ptr, int len, int size)
683 {
684 struct skb_shared_info *sh = skb_shinfo(skb);
685 int page_offset;
686
687 get_page(page);
688 page_offset = ptr - page_address(page);
689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690 }
691
692 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 int offset, int len)
695 {
696 struct skb_shared_info *sh = skb_shinfo(skb);
697 const skb_frag_t *frag = &sh->frags[0];
698 struct page *frag_page;
699 void *frag_ptr;
700 int frag_len, frag_size;
701 int head_size = skb->len - skb->data_len;
702 int cur_len;
703
704 frag_page = virt_to_head_page(skb->head);
705 frag_ptr = skb->data;
706 frag_size = head_size;
707
708 while (offset >= frag_size) {
709 offset -= frag_size;
710 frag_page = skb_frag_page(frag);
711 frag_ptr = skb_frag_address(frag);
712 frag_size = skb_frag_size(frag);
713 frag++;
714 }
715
716 frag_ptr += offset;
717 frag_len = frag_size - offset;
718
719 cur_len = min(len, frag_len);
720
721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 len -= cur_len;
723
724 while (len > 0) {
725 frag_len = skb_frag_size(frag);
726 cur_len = min(len, frag_len);
727 __frame_add_frag(frame, skb_frag_page(frag),
728 skb_frag_address(frag), cur_len, frag_len);
729 len -= cur_len;
730 frag++;
731 }
732 }
733
734 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 int offset, int len, bool reuse_frag,
737 int min_len)
738 {
739 struct sk_buff *frame;
740 int cur_len = len;
741
742 if (skb->len - offset < len)
743 return NULL;
744
745 /*
746 * When reusing fragments, copy some data to the head to simplify
747 * ethernet header handling and speed up protocol header processing
748 * in the stack later.
749 */
750 if (reuse_frag)
751 cur_len = min_t(int, len, min_len);
752
753 /*
754 * Allocate and reserve two bytes more for payload
755 * alignment since sizeof(struct ethhdr) is 14.
756 */
757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 if (!frame)
759 return NULL;
760
761 frame->priority = skb->priority;
762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764
765 len -= cur_len;
766 if (!len)
767 return frame;
768
769 offset += cur_len;
770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771
772 return frame;
773 }
774
775 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777 {
778 __le16 *field_le = field;
779 __be16 *field_be = field;
780 u16 len;
781
782 if (hdr_type >= 2)
783 len = le16_to_cpu(*field_le);
784 else
785 len = be16_to_cpu(*field_be);
786 if (hdr_type)
787 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788
789 return len;
790 }
791
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793 {
794 int offset = 0, subframe_len, padding;
795
796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 int remaining = skb->len - offset;
798 struct {
799 __be16 len;
800 u8 mesh_flags;
801 } hdr;
802 u16 len;
803
804 if (sizeof(hdr) > remaining)
805 return false;
806
807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 return false;
809
810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 mesh_hdr);
812 subframe_len = sizeof(struct ethhdr) + len;
813 padding = (4 - subframe_len) & 0x3;
814
815 if (subframe_len > remaining)
816 return false;
817 }
818
819 return true;
820 }
821 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822
823
824 /*
825 * Detects if an MSDU frame was maliciously converted into an A-MSDU
826 * frame by an adversary. This is done by parsing the received frame
827 * as if it were a regular MSDU, even though the A-MSDU flag is set.
828 *
829 * For non-mesh interfaces, detection involves checking whether the
830 * payload, when interpreted as an MSDU, begins with a valid RFC1042
831 * header. This is done by comparing the A-MSDU subheader's destination
832 * address to the start of the RFC1042 header.
833 *
834 * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
835 * and an optional variable-length Mesh Address Extension field before
836 * the RFC1042 header. The position of the RFC1042 header must therefore
837 * be calculated based on the mesh header length.
838 *
839 * Since this function intentionally parses an A-MSDU frame as an MSDU,
840 * it only assumes that the A-MSDU subframe header is present, and
841 * beyond this it performs its own bounds checks under the assumption
842 * that the frame is instead parsed as a non-aggregated MSDU.
843 */
844 static bool
is_amsdu_aggregation_attack(struct ethhdr * eth,struct sk_buff * skb,enum nl80211_iftype iftype)845 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
846 enum nl80211_iftype iftype)
847 {
848 int offset;
849
850 /* Non-mesh case can be directly compared */
851 if (iftype != NL80211_IFTYPE_MESH_POINT)
852 return ether_addr_equal(eth->h_dest, rfc1042_header);
853
854 offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]);
855 if (offset == 6) {
856 /* Mesh case with empty address extension field */
857 return ether_addr_equal(eth->h_source, rfc1042_header);
858 } else if (offset + ETH_ALEN <= skb->len) {
859 /* Mesh case with non-empty address extension field */
860 u8 temp[ETH_ALEN];
861
862 skb_copy_bits(skb, offset, temp, ETH_ALEN);
863 return ether_addr_equal(temp, rfc1042_header);
864 }
865
866 return false;
867 }
868
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)869 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
870 const u8 *addr, enum nl80211_iftype iftype,
871 const unsigned int extra_headroom,
872 const u8 *check_da, const u8 *check_sa,
873 u8 mesh_control)
874 {
875 unsigned int hlen = ALIGN(extra_headroom, 4);
876 struct sk_buff *frame = NULL;
877 int offset = 0;
878 struct {
879 struct ethhdr eth;
880 uint8_t flags;
881 } hdr;
882 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
883 bool reuse_skb = false;
884 bool last = false;
885 int copy_len = sizeof(hdr.eth);
886
887 if (iftype == NL80211_IFTYPE_MESH_POINT)
888 copy_len = sizeof(hdr);
889
890 while (!last) {
891 int remaining = skb->len - offset;
892 unsigned int subframe_len;
893 int len, mesh_len = 0;
894 u8 padding;
895
896 if (copy_len > remaining)
897 goto purge;
898
899 skb_copy_bits(skb, offset, &hdr, copy_len);
900 if (iftype == NL80211_IFTYPE_MESH_POINT)
901 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
902 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
903 mesh_control);
904 subframe_len = sizeof(struct ethhdr) + len;
905 padding = (4 - subframe_len) & 0x3;
906
907 /* the last MSDU has no padding */
908 if (subframe_len > remaining)
909 goto purge;
910 /* mitigate A-MSDU aggregation injection attacks, to be
911 * checked when processing first subframe (offset == 0).
912 */
913 if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype))
914 goto purge;
915
916 offset += sizeof(struct ethhdr);
917 last = remaining <= subframe_len + padding;
918
919 /* FIXME: should we really accept multicast DA? */
920 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
921 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
922 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
923 offset += len + padding;
924 continue;
925 }
926
927 /* reuse skb for the last subframe */
928 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
929 skb_pull(skb, offset);
930 frame = skb;
931 reuse_skb = true;
932 } else {
933 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
934 reuse_frag, 32 + mesh_len);
935 if (!frame)
936 goto purge;
937
938 offset += len + padding;
939 }
940
941 skb_reset_network_header(frame);
942 frame->dev = skb->dev;
943 frame->priority = skb->priority;
944
945 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
946 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
947 skb_pull(frame, ETH_ALEN + 2);
948
949 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
950 __skb_queue_tail(list, frame);
951 }
952
953 if (!reuse_skb)
954 dev_kfree_skb(skb);
955
956 return;
957
958 purge:
959 __skb_queue_purge(list);
960 dev_kfree_skb(skb);
961 }
962 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
963
964 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)965 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
966 struct cfg80211_qos_map *qos_map)
967 {
968 unsigned int dscp;
969 unsigned char vlan_priority;
970 unsigned int ret;
971
972 /* skb->priority values from 256->263 are magic values to
973 * directly indicate a specific 802.1d priority. This is used
974 * to allow 802.1d priority to be passed directly in from VLAN
975 * tags, etc.
976 */
977 if (skb->priority >= 256 && skb->priority <= 263) {
978 ret = skb->priority - 256;
979 goto out;
980 }
981
982 if (skb_vlan_tag_present(skb)) {
983 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
984 >> VLAN_PRIO_SHIFT;
985 if (vlan_priority > 0) {
986 ret = vlan_priority;
987 goto out;
988 }
989 }
990
991 switch (skb->protocol) {
992 case htons(ETH_P_IP):
993 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
994 break;
995 case htons(ETH_P_IPV6):
996 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
997 break;
998 case htons(ETH_P_MPLS_UC):
999 case htons(ETH_P_MPLS_MC): {
1000 struct mpls_label mpls_tmp, *mpls;
1001
1002 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
1003 sizeof(*mpls), &mpls_tmp);
1004 if (!mpls)
1005 return 0;
1006
1007 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
1008 >> MPLS_LS_TC_SHIFT;
1009 goto out;
1010 }
1011 case htons(ETH_P_80221):
1012 /* 802.21 is always network control traffic */
1013 return 7;
1014 default:
1015 return 0;
1016 }
1017
1018 if (qos_map) {
1019 unsigned int i, tmp_dscp = dscp >> 2;
1020
1021 for (i = 0; i < qos_map->num_des; i++) {
1022 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
1023 ret = qos_map->dscp_exception[i].up;
1024 goto out;
1025 }
1026 }
1027
1028 for (i = 0; i < 8; i++) {
1029 if (tmp_dscp >= qos_map->up[i].low &&
1030 tmp_dscp <= qos_map->up[i].high) {
1031 ret = i;
1032 goto out;
1033 }
1034 }
1035 }
1036
1037 /* The default mapping as defined Section 2.3 in RFC8325: The three
1038 * Most Significant Bits (MSBs) of the DSCP are used as the
1039 * corresponding L2 markings.
1040 */
1041 ret = dscp >> 5;
1042
1043 /* Handle specific DSCP values for which the default mapping (as
1044 * described above) doesn't adhere to the intended usage of the DSCP
1045 * value. See section 4 in RFC8325. Specifically, for the following
1046 * Diffserv Service Classes no update is needed:
1047 * - Standard: DF
1048 * - Low Priority Data: CS1
1049 * - Multimedia Conferencing: AF41, AF42, AF43
1050 * - Network Control Traffic: CS7
1051 * - Real-Time Interactive: CS4
1052 * - Signaling: CS5
1053 */
1054 switch (dscp >> 2) {
1055 case 10:
1056 case 12:
1057 case 14:
1058 /* High throughput data: AF11, AF12, AF13 */
1059 ret = 0;
1060 break;
1061 case 16:
1062 /* Operations, Administration, and Maintenance and Provisioning:
1063 * CS2
1064 */
1065 ret = 0;
1066 break;
1067 case 18:
1068 case 20:
1069 case 22:
1070 /* Low latency data: AF21, AF22, AF23 */
1071 ret = 3;
1072 break;
1073 case 24:
1074 /* Broadcasting video: CS3 */
1075 ret = 4;
1076 break;
1077 case 26:
1078 case 28:
1079 case 30:
1080 /* Multimedia Streaming: AF31, AF32, AF33 */
1081 ret = 4;
1082 break;
1083 case 44:
1084 /* Voice Admit: VA */
1085 ret = 6;
1086 break;
1087 case 46:
1088 /* Telephony traffic: EF */
1089 ret = 6;
1090 break;
1091 case 48:
1092 /* Network Control Traffic: CS6 */
1093 ret = 7;
1094 break;
1095 }
1096 out:
1097 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1098 }
1099 EXPORT_SYMBOL(cfg80211_classify8021d);
1100
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1101 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1102 {
1103 const struct cfg80211_bss_ies *ies;
1104
1105 ies = rcu_dereference(bss->ies);
1106 if (!ies)
1107 return NULL;
1108
1109 return cfg80211_find_elem(id, ies->data, ies->len);
1110 }
1111 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1112
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1113 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1114 {
1115 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1116 struct net_device *dev = wdev->netdev;
1117 int i;
1118
1119 if (!wdev->connect_keys)
1120 return;
1121
1122 for (i = 0; i < 4; i++) {
1123 if (!wdev->connect_keys->params[i].cipher)
1124 continue;
1125 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1126 &wdev->connect_keys->params[i])) {
1127 netdev_err(dev, "failed to set key %d\n", i);
1128 continue;
1129 }
1130 if (wdev->connect_keys->def == i &&
1131 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1132 netdev_err(dev, "failed to set defkey %d\n", i);
1133 continue;
1134 }
1135 }
1136
1137 kfree_sensitive(wdev->connect_keys);
1138 wdev->connect_keys = NULL;
1139 }
1140
cfg80211_process_wdev_events(struct wireless_dev * wdev)1141 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1142 {
1143 struct cfg80211_event *ev;
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&wdev->event_lock, flags);
1147 while (!list_empty(&wdev->event_list)) {
1148 ev = list_first_entry(&wdev->event_list,
1149 struct cfg80211_event, list);
1150 list_del(&ev->list);
1151 spin_unlock_irqrestore(&wdev->event_lock, flags);
1152
1153 switch (ev->type) {
1154 case EVENT_CONNECT_RESULT:
1155 __cfg80211_connect_result(
1156 wdev->netdev,
1157 &ev->cr,
1158 ev->cr.status == WLAN_STATUS_SUCCESS);
1159 break;
1160 case EVENT_ROAMED:
1161 __cfg80211_roamed(wdev, &ev->rm);
1162 break;
1163 case EVENT_DISCONNECTED:
1164 __cfg80211_disconnected(wdev->netdev,
1165 ev->dc.ie, ev->dc.ie_len,
1166 ev->dc.reason,
1167 !ev->dc.locally_generated);
1168 break;
1169 case EVENT_IBSS_JOINED:
1170 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1171 ev->ij.channel);
1172 break;
1173 case EVENT_STOPPED:
1174 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1175 break;
1176 case EVENT_PORT_AUTHORIZED:
1177 __cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1178 ev->pa.td_bitmap,
1179 ev->pa.td_bitmap_len);
1180 break;
1181 }
1182
1183 kfree(ev);
1184
1185 spin_lock_irqsave(&wdev->event_lock, flags);
1186 }
1187 spin_unlock_irqrestore(&wdev->event_lock, flags);
1188 }
1189
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1190 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1191 {
1192 struct wireless_dev *wdev;
1193
1194 lockdep_assert_held(&rdev->wiphy.mtx);
1195
1196 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1197 cfg80211_process_wdev_events(wdev);
1198 }
1199
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1200 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1201 struct net_device *dev, enum nl80211_iftype ntype,
1202 struct vif_params *params)
1203 {
1204 int err;
1205 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1206
1207 lockdep_assert_held(&rdev->wiphy.mtx);
1208
1209 /* don't support changing VLANs, you just re-create them */
1210 if (otype == NL80211_IFTYPE_AP_VLAN)
1211 return -EOPNOTSUPP;
1212
1213 /* cannot change into P2P device or NAN */
1214 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1215 ntype == NL80211_IFTYPE_NAN)
1216 return -EOPNOTSUPP;
1217
1218 if (!rdev->ops->change_virtual_intf ||
1219 !(rdev->wiphy.interface_modes & (1 << ntype)))
1220 return -EOPNOTSUPP;
1221
1222 if (ntype != otype) {
1223 /* if it's part of a bridge, reject changing type to station/ibss */
1224 if (netif_is_bridge_port(dev) &&
1225 (ntype == NL80211_IFTYPE_ADHOC ||
1226 ntype == NL80211_IFTYPE_STATION ||
1227 ntype == NL80211_IFTYPE_P2P_CLIENT))
1228 return -EBUSY;
1229
1230 dev->ieee80211_ptr->use_4addr = false;
1231 rdev_set_qos_map(rdev, dev, NULL);
1232
1233 switch (otype) {
1234 case NL80211_IFTYPE_AP:
1235 case NL80211_IFTYPE_P2P_GO:
1236 cfg80211_stop_ap(rdev, dev, -1, true);
1237 break;
1238 case NL80211_IFTYPE_ADHOC:
1239 cfg80211_leave_ibss(rdev, dev, false);
1240 break;
1241 case NL80211_IFTYPE_STATION:
1242 case NL80211_IFTYPE_P2P_CLIENT:
1243 cfg80211_disconnect(rdev, dev,
1244 WLAN_REASON_DEAUTH_LEAVING, true);
1245 break;
1246 case NL80211_IFTYPE_MESH_POINT:
1247 /* mesh should be handled? */
1248 break;
1249 case NL80211_IFTYPE_OCB:
1250 cfg80211_leave_ocb(rdev, dev);
1251 break;
1252 default:
1253 break;
1254 }
1255
1256 cfg80211_process_rdev_events(rdev);
1257 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1258
1259 memset(&dev->ieee80211_ptr->u, 0,
1260 sizeof(dev->ieee80211_ptr->u));
1261 memset(&dev->ieee80211_ptr->links, 0,
1262 sizeof(dev->ieee80211_ptr->links));
1263 }
1264
1265 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1266
1267 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1268
1269 if (!err && params && params->use_4addr != -1)
1270 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1271
1272 if (!err) {
1273 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1274 switch (ntype) {
1275 case NL80211_IFTYPE_STATION:
1276 if (dev->ieee80211_ptr->use_4addr)
1277 break;
1278 fallthrough;
1279 case NL80211_IFTYPE_OCB:
1280 case NL80211_IFTYPE_P2P_CLIENT:
1281 case NL80211_IFTYPE_ADHOC:
1282 dev->priv_flags |= IFF_DONT_BRIDGE;
1283 break;
1284 case NL80211_IFTYPE_P2P_GO:
1285 case NL80211_IFTYPE_AP:
1286 case NL80211_IFTYPE_AP_VLAN:
1287 case NL80211_IFTYPE_MESH_POINT:
1288 /* bridging OK */
1289 break;
1290 case NL80211_IFTYPE_MONITOR:
1291 /* monitor can't bridge anyway */
1292 break;
1293 case NL80211_IFTYPE_UNSPECIFIED:
1294 case NUM_NL80211_IFTYPES:
1295 /* not happening */
1296 break;
1297 case NL80211_IFTYPE_P2P_DEVICE:
1298 case NL80211_IFTYPE_WDS:
1299 case NL80211_IFTYPE_NAN:
1300 WARN_ON(1);
1301 break;
1302 }
1303 }
1304
1305 if (!err && ntype != otype && netif_running(dev)) {
1306 cfg80211_update_iface_num(rdev, ntype, 1);
1307 cfg80211_update_iface_num(rdev, otype, -1);
1308 }
1309
1310 return err;
1311 }
1312
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1313 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1314 {
1315 int modulation, streams, bitrate;
1316
1317 /* the formula below does only work for MCS values smaller than 32 */
1318 if (WARN_ON_ONCE(rate->mcs >= 32))
1319 return 0;
1320
1321 modulation = rate->mcs & 7;
1322 streams = (rate->mcs >> 3) + 1;
1323
1324 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1325
1326 if (modulation < 4)
1327 bitrate *= (modulation + 1);
1328 else if (modulation == 4)
1329 bitrate *= (modulation + 2);
1330 else
1331 bitrate *= (modulation + 3);
1332
1333 bitrate *= streams;
1334
1335 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1336 bitrate = (bitrate / 9) * 10;
1337
1338 /* do NOT round down here */
1339 return (bitrate + 50000) / 100000;
1340 }
1341
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1342 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1343 {
1344 static const u32 __mcs2bitrate[] = {
1345 /* control PHY */
1346 [0] = 275,
1347 /* SC PHY */
1348 [1] = 3850,
1349 [2] = 7700,
1350 [3] = 9625,
1351 [4] = 11550,
1352 [5] = 12512, /* 1251.25 mbps */
1353 [6] = 15400,
1354 [7] = 19250,
1355 [8] = 23100,
1356 [9] = 25025,
1357 [10] = 30800,
1358 [11] = 38500,
1359 [12] = 46200,
1360 /* OFDM PHY */
1361 [13] = 6930,
1362 [14] = 8662, /* 866.25 mbps */
1363 [15] = 13860,
1364 [16] = 17325,
1365 [17] = 20790,
1366 [18] = 27720,
1367 [19] = 34650,
1368 [20] = 41580,
1369 [21] = 45045,
1370 [22] = 51975,
1371 [23] = 62370,
1372 [24] = 67568, /* 6756.75 mbps */
1373 /* LP-SC PHY */
1374 [25] = 6260,
1375 [26] = 8340,
1376 [27] = 11120,
1377 [28] = 12510,
1378 [29] = 16680,
1379 [30] = 22240,
1380 [31] = 25030,
1381 };
1382
1383 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1384 return 0;
1385
1386 return __mcs2bitrate[rate->mcs];
1387 }
1388
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1389 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1390 {
1391 static const u32 __mcs2bitrate[] = {
1392 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1393 [7 - 6] = 50050, /* MCS 12.1 */
1394 [8 - 6] = 53900,
1395 [9 - 6] = 57750,
1396 [10 - 6] = 63900,
1397 [11 - 6] = 75075,
1398 [12 - 6] = 80850,
1399 };
1400
1401 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1402 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1403 return 0;
1404
1405 return __mcs2bitrate[rate->mcs - 6];
1406 }
1407
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1408 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1409 {
1410 static const u32 __mcs2bitrate[] = {
1411 /* control PHY */
1412 [0] = 275,
1413 /* SC PHY */
1414 [1] = 3850,
1415 [2] = 7700,
1416 [3] = 9625,
1417 [4] = 11550,
1418 [5] = 12512, /* 1251.25 mbps */
1419 [6] = 13475,
1420 [7] = 15400,
1421 [8] = 19250,
1422 [9] = 23100,
1423 [10] = 25025,
1424 [11] = 26950,
1425 [12] = 30800,
1426 [13] = 38500,
1427 [14] = 46200,
1428 [15] = 50050,
1429 [16] = 53900,
1430 [17] = 57750,
1431 [18] = 69300,
1432 [19] = 75075,
1433 [20] = 80850,
1434 };
1435
1436 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1437 return 0;
1438
1439 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1440 }
1441
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1442 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1443 {
1444 static const u32 base[4][12] = {
1445 { 6500000,
1446 13000000,
1447 19500000,
1448 26000000,
1449 39000000,
1450 52000000,
1451 58500000,
1452 65000000,
1453 78000000,
1454 /* not in the spec, but some devices use this: */
1455 86700000,
1456 97500000,
1457 108300000,
1458 },
1459 { 13500000,
1460 27000000,
1461 40500000,
1462 54000000,
1463 81000000,
1464 108000000,
1465 121500000,
1466 135000000,
1467 162000000,
1468 180000000,
1469 202500000,
1470 225000000,
1471 },
1472 { 29300000,
1473 58500000,
1474 87800000,
1475 117000000,
1476 175500000,
1477 234000000,
1478 263300000,
1479 292500000,
1480 351000000,
1481 390000000,
1482 438800000,
1483 487500000,
1484 },
1485 { 58500000,
1486 117000000,
1487 175500000,
1488 234000000,
1489 351000000,
1490 468000000,
1491 526500000,
1492 585000000,
1493 702000000,
1494 780000000,
1495 877500000,
1496 975000000,
1497 },
1498 };
1499 u32 bitrate;
1500 int idx;
1501
1502 if (rate->mcs > 11)
1503 goto warn;
1504
1505 switch (rate->bw) {
1506 case RATE_INFO_BW_160:
1507 idx = 3;
1508 break;
1509 case RATE_INFO_BW_80:
1510 idx = 2;
1511 break;
1512 case RATE_INFO_BW_40:
1513 idx = 1;
1514 break;
1515 case RATE_INFO_BW_5:
1516 case RATE_INFO_BW_10:
1517 default:
1518 goto warn;
1519 case RATE_INFO_BW_20:
1520 idx = 0;
1521 }
1522
1523 bitrate = base[idx][rate->mcs];
1524 bitrate *= rate->nss;
1525
1526 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1527 bitrate = (bitrate / 9) * 10;
1528
1529 /* do NOT round down here */
1530 return (bitrate + 50000) / 100000;
1531 warn:
1532 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1533 rate->bw, rate->mcs, rate->nss);
1534 return 0;
1535 }
1536
cfg80211_calculate_bitrate_he(struct rate_info * rate)1537 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1538 {
1539 #define SCALE 6144
1540 u32 mcs_divisors[14] = {
1541 102399, /* 16.666666... */
1542 51201, /* 8.333333... */
1543 34134, /* 5.555555... */
1544 25599, /* 4.166666... */
1545 17067, /* 2.777777... */
1546 12801, /* 2.083333... */
1547 11377, /* 1.851725... */
1548 10239, /* 1.666666... */
1549 8532, /* 1.388888... */
1550 7680, /* 1.250000... */
1551 6828, /* 1.111111... */
1552 6144, /* 1.000000... */
1553 5690, /* 0.926106... */
1554 5120, /* 0.833333... */
1555 };
1556 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1557 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1558 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1559 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1560 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1561 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1562 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1563 u64 tmp;
1564 u32 result;
1565
1566 if (WARN_ON_ONCE(rate->mcs > 13))
1567 return 0;
1568
1569 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1570 return 0;
1571 if (WARN_ON_ONCE(rate->he_ru_alloc >
1572 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1573 return 0;
1574 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1575 return 0;
1576
1577 if (rate->bw == RATE_INFO_BW_160 ||
1578 (rate->bw == RATE_INFO_BW_HE_RU &&
1579 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1580 result = rates_160M[rate->he_gi];
1581 else if (rate->bw == RATE_INFO_BW_80 ||
1582 (rate->bw == RATE_INFO_BW_HE_RU &&
1583 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1584 result = rates_996[rate->he_gi];
1585 else if (rate->bw == RATE_INFO_BW_40 ||
1586 (rate->bw == RATE_INFO_BW_HE_RU &&
1587 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1588 result = rates_484[rate->he_gi];
1589 else if (rate->bw == RATE_INFO_BW_20 ||
1590 (rate->bw == RATE_INFO_BW_HE_RU &&
1591 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1592 result = rates_242[rate->he_gi];
1593 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1594 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1595 result = rates_106[rate->he_gi];
1596 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1597 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1598 result = rates_52[rate->he_gi];
1599 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1600 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1601 result = rates_26[rate->he_gi];
1602 else {
1603 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1604 rate->bw, rate->he_ru_alloc);
1605 return 0;
1606 }
1607
1608 /* now scale to the appropriate MCS */
1609 tmp = result;
1610 tmp *= SCALE;
1611 do_div(tmp, mcs_divisors[rate->mcs]);
1612 result = tmp;
1613
1614 /* and take NSS, DCM into account */
1615 result = (result * rate->nss) / 8;
1616 if (rate->he_dcm)
1617 result /= 2;
1618
1619 return result / 10000;
1620 }
1621
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1622 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1623 {
1624 #define SCALE 6144
1625 static const u32 mcs_divisors[16] = {
1626 102399, /* 16.666666... */
1627 51201, /* 8.333333... */
1628 34134, /* 5.555555... */
1629 25599, /* 4.166666... */
1630 17067, /* 2.777777... */
1631 12801, /* 2.083333... */
1632 11377, /* 1.851725... */
1633 10239, /* 1.666666... */
1634 8532, /* 1.388888... */
1635 7680, /* 1.250000... */
1636 6828, /* 1.111111... */
1637 6144, /* 1.000000... */
1638 5690, /* 0.926106... */
1639 5120, /* 0.833333... */
1640 409600, /* 66.666666... */
1641 204800, /* 33.333333... */
1642 };
1643 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1644 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1645 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1646 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1647 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1648 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1649 u64 tmp;
1650 u32 result;
1651
1652 if (WARN_ON_ONCE(rate->mcs > 15))
1653 return 0;
1654 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1655 return 0;
1656 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1657 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1658 return 0;
1659 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1660 return 0;
1661
1662 /* Bandwidth checks for MCS 14 */
1663 if (rate->mcs == 14) {
1664 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1665 rate->bw != RATE_INFO_BW_80 &&
1666 rate->bw != RATE_INFO_BW_160 &&
1667 rate->bw != RATE_INFO_BW_320) ||
1668 (rate->bw == RATE_INFO_BW_EHT_RU &&
1669 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1670 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1671 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1672 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1673 rate->bw, rate->eht_ru_alloc);
1674 return 0;
1675 }
1676 }
1677
1678 if (rate->bw == RATE_INFO_BW_320 ||
1679 (rate->bw == RATE_INFO_BW_EHT_RU &&
1680 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1681 result = 4 * rates_996[rate->eht_gi];
1682 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1684 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1685 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1686 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1687 result = 3 * rates_996[rate->eht_gi];
1688 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1689 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1690 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1691 else if (rate->bw == RATE_INFO_BW_160 ||
1692 (rate->bw == RATE_INFO_BW_EHT_RU &&
1693 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1694 result = 2 * rates_996[rate->eht_gi];
1695 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1696 rate->eht_ru_alloc ==
1697 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1698 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1699 + rates_242[rate->eht_gi];
1700 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1701 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1702 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1703 else if (rate->bw == RATE_INFO_BW_80 ||
1704 (rate->bw == RATE_INFO_BW_EHT_RU &&
1705 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1706 result = rates_996[rate->eht_gi];
1707 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1708 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1709 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1710 else if (rate->bw == RATE_INFO_BW_40 ||
1711 (rate->bw == RATE_INFO_BW_EHT_RU &&
1712 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1713 result = rates_484[rate->eht_gi];
1714 else if (rate->bw == RATE_INFO_BW_20 ||
1715 (rate->bw == RATE_INFO_BW_EHT_RU &&
1716 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1717 result = rates_242[rate->eht_gi];
1718 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1719 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1720 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1721 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1722 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1723 result = rates_106[rate->eht_gi];
1724 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1725 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1726 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1727 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1728 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1729 result = rates_52[rate->eht_gi];
1730 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1731 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1732 result = rates_26[rate->eht_gi];
1733 else {
1734 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1735 rate->bw, rate->eht_ru_alloc);
1736 return 0;
1737 }
1738
1739 /* now scale to the appropriate MCS */
1740 tmp = result;
1741 tmp *= SCALE;
1742 do_div(tmp, mcs_divisors[rate->mcs]);
1743
1744 /* and take NSS */
1745 tmp *= rate->nss;
1746 do_div(tmp, 8);
1747
1748 result = tmp;
1749
1750 return result / 10000;
1751 }
1752
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1753 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1754 {
1755 /* For 1, 2, 4, 8 and 16 MHz channels */
1756 static const u32 base[5][11] = {
1757 { 300000,
1758 600000,
1759 900000,
1760 1200000,
1761 1800000,
1762 2400000,
1763 2700000,
1764 3000000,
1765 3600000,
1766 4000000,
1767 /* MCS 10 supported in 1 MHz only */
1768 150000,
1769 },
1770 { 650000,
1771 1300000,
1772 1950000,
1773 2600000,
1774 3900000,
1775 5200000,
1776 5850000,
1777 6500000,
1778 7800000,
1779 /* MCS 9 not valid */
1780 },
1781 { 1350000,
1782 2700000,
1783 4050000,
1784 5400000,
1785 8100000,
1786 10800000,
1787 12150000,
1788 13500000,
1789 16200000,
1790 18000000,
1791 },
1792 { 2925000,
1793 5850000,
1794 8775000,
1795 11700000,
1796 17550000,
1797 23400000,
1798 26325000,
1799 29250000,
1800 35100000,
1801 39000000,
1802 },
1803 { 8580000,
1804 11700000,
1805 17550000,
1806 23400000,
1807 35100000,
1808 46800000,
1809 52650000,
1810 58500000,
1811 70200000,
1812 78000000,
1813 },
1814 };
1815 u32 bitrate;
1816 /* default is 1 MHz index */
1817 int idx = 0;
1818
1819 if (rate->mcs >= 11)
1820 goto warn;
1821
1822 switch (rate->bw) {
1823 case RATE_INFO_BW_16:
1824 idx = 4;
1825 break;
1826 case RATE_INFO_BW_8:
1827 idx = 3;
1828 break;
1829 case RATE_INFO_BW_4:
1830 idx = 2;
1831 break;
1832 case RATE_INFO_BW_2:
1833 idx = 1;
1834 break;
1835 case RATE_INFO_BW_1:
1836 idx = 0;
1837 break;
1838 case RATE_INFO_BW_5:
1839 case RATE_INFO_BW_10:
1840 case RATE_INFO_BW_20:
1841 case RATE_INFO_BW_40:
1842 case RATE_INFO_BW_80:
1843 case RATE_INFO_BW_160:
1844 default:
1845 goto warn;
1846 }
1847
1848 bitrate = base[idx][rate->mcs];
1849 bitrate *= rate->nss;
1850
1851 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1852 bitrate = (bitrate / 9) * 10;
1853 /* do NOT round down here */
1854 return (bitrate + 50000) / 100000;
1855 warn:
1856 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1857 rate->bw, rate->mcs, rate->nss);
1858 return 0;
1859 }
1860
cfg80211_calculate_bitrate(struct rate_info * rate)1861 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1862 {
1863 if (rate->flags & RATE_INFO_FLAGS_MCS)
1864 return cfg80211_calculate_bitrate_ht(rate);
1865 if (rate->flags & RATE_INFO_FLAGS_DMG)
1866 return cfg80211_calculate_bitrate_dmg(rate);
1867 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1868 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1869 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1870 return cfg80211_calculate_bitrate_edmg(rate);
1871 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1872 return cfg80211_calculate_bitrate_vht(rate);
1873 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1874 return cfg80211_calculate_bitrate_he(rate);
1875 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1876 return cfg80211_calculate_bitrate_eht(rate);
1877 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1878 return cfg80211_calculate_bitrate_s1g(rate);
1879
1880 return rate->legacy;
1881 }
1882 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1883
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1884 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1885 enum ieee80211_p2p_attr_id attr,
1886 u8 *buf, unsigned int bufsize)
1887 {
1888 u8 *out = buf;
1889 u16 attr_remaining = 0;
1890 bool desired_attr = false;
1891 u16 desired_len = 0;
1892
1893 while (len > 0) {
1894 unsigned int iedatalen;
1895 unsigned int copy;
1896 const u8 *iedata;
1897
1898 if (len < 2)
1899 return -EILSEQ;
1900 iedatalen = ies[1];
1901 if (iedatalen + 2 > len)
1902 return -EILSEQ;
1903
1904 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1905 goto cont;
1906
1907 if (iedatalen < 4)
1908 goto cont;
1909
1910 iedata = ies + 2;
1911
1912 /* check WFA OUI, P2P subtype */
1913 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1914 iedata[2] != 0x9a || iedata[3] != 0x09)
1915 goto cont;
1916
1917 iedatalen -= 4;
1918 iedata += 4;
1919
1920 /* check attribute continuation into this IE */
1921 copy = min_t(unsigned int, attr_remaining, iedatalen);
1922 if (copy && desired_attr) {
1923 desired_len += copy;
1924 if (out) {
1925 memcpy(out, iedata, min(bufsize, copy));
1926 out += min(bufsize, copy);
1927 bufsize -= min(bufsize, copy);
1928 }
1929
1930
1931 if (copy == attr_remaining)
1932 return desired_len;
1933 }
1934
1935 attr_remaining -= copy;
1936 if (attr_remaining)
1937 goto cont;
1938
1939 iedatalen -= copy;
1940 iedata += copy;
1941
1942 while (iedatalen > 0) {
1943 u16 attr_len;
1944
1945 /* P2P attribute ID & size must fit */
1946 if (iedatalen < 3)
1947 return -EILSEQ;
1948 desired_attr = iedata[0] == attr;
1949 attr_len = get_unaligned_le16(iedata + 1);
1950 iedatalen -= 3;
1951 iedata += 3;
1952
1953 copy = min_t(unsigned int, attr_len, iedatalen);
1954
1955 if (desired_attr) {
1956 desired_len += copy;
1957 if (out) {
1958 memcpy(out, iedata, min(bufsize, copy));
1959 out += min(bufsize, copy);
1960 bufsize -= min(bufsize, copy);
1961 }
1962
1963 if (copy == attr_len)
1964 return desired_len;
1965 }
1966
1967 iedata += copy;
1968 iedatalen -= copy;
1969 attr_remaining = attr_len - copy;
1970 }
1971
1972 cont:
1973 len -= ies[1] + 2;
1974 ies += ies[1] + 2;
1975 }
1976
1977 if (attr_remaining && desired_attr)
1978 return -EILSEQ;
1979
1980 return -ENOENT;
1981 }
1982 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1983
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1984 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1985 {
1986 int i;
1987
1988 /* Make sure array values are legal */
1989 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1990 return false;
1991
1992 i = 0;
1993 while (i < n_ids) {
1994 if (ids[i] == WLAN_EID_EXTENSION) {
1995 if (id_ext && (ids[i + 1] == id))
1996 return true;
1997
1998 i += 2;
1999 continue;
2000 }
2001
2002 if (ids[i] == id && !id_ext)
2003 return true;
2004
2005 i++;
2006 }
2007 return false;
2008 }
2009
skip_ie(const u8 * ies,size_t ielen,size_t pos)2010 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
2011 {
2012 /* we assume a validly formed IEs buffer */
2013 u8 len = ies[pos + 1];
2014
2015 pos += 2 + len;
2016
2017 /* the IE itself must have 255 bytes for fragments to follow */
2018 if (len < 255)
2019 return pos;
2020
2021 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
2022 len = ies[pos + 1];
2023 pos += 2 + len;
2024 }
2025
2026 return pos;
2027 }
2028
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)2029 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
2030 const u8 *ids, int n_ids,
2031 const u8 *after_ric, int n_after_ric,
2032 size_t offset)
2033 {
2034 size_t pos = offset;
2035
2036 while (pos < ielen) {
2037 u8 ext = 0;
2038
2039 if (ies[pos] == WLAN_EID_EXTENSION)
2040 ext = 2;
2041 if ((pos + ext) >= ielen)
2042 break;
2043
2044 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
2045 ies[pos] == WLAN_EID_EXTENSION))
2046 break;
2047
2048 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2049 pos = skip_ie(ies, ielen, pos);
2050
2051 while (pos < ielen) {
2052 if (ies[pos] == WLAN_EID_EXTENSION)
2053 ext = 2;
2054 else
2055 ext = 0;
2056
2057 if ((pos + ext) >= ielen)
2058 break;
2059
2060 if (!ieee80211_id_in_list(after_ric,
2061 n_after_ric,
2062 ies[pos + ext],
2063 ext == 2))
2064 pos = skip_ie(ies, ielen, pos);
2065 else
2066 break;
2067 }
2068 } else {
2069 pos = skip_ie(ies, ielen, pos);
2070 }
2071 }
2072
2073 return pos;
2074 }
2075 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2076
ieee80211_fragment_element(struct sk_buff * skb,u8 * len_pos,u8 frag_id)2077 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2078 {
2079 unsigned int elem_len;
2080
2081 if (!len_pos)
2082 return;
2083
2084 elem_len = skb->data + skb->len - len_pos - 1;
2085
2086 while (elem_len > 255) {
2087 /* this one is 255 */
2088 *len_pos = 255;
2089 /* remaining data gets smaller */
2090 elem_len -= 255;
2091 /* make space for the fragment ID/len in SKB */
2092 skb_put(skb, 2);
2093 /* shift back the remaining data to place fragment ID/len */
2094 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2095 /* place the fragment ID */
2096 len_pos += 255 + 1;
2097 *len_pos = frag_id;
2098 /* and point to fragment length to update later */
2099 len_pos++;
2100 }
2101
2102 *len_pos = elem_len;
2103 }
2104 EXPORT_SYMBOL(ieee80211_fragment_element);
2105
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2106 bool ieee80211_operating_class_to_band(u8 operating_class,
2107 enum nl80211_band *band)
2108 {
2109 switch (operating_class) {
2110 case 112:
2111 case 115 ... 127:
2112 case 128 ... 130:
2113 *band = NL80211_BAND_5GHZ;
2114 return true;
2115 case 131 ... 135:
2116 case 137:
2117 *band = NL80211_BAND_6GHZ;
2118 return true;
2119 case 81:
2120 case 82:
2121 case 83:
2122 case 84:
2123 *band = NL80211_BAND_2GHZ;
2124 return true;
2125 case 180:
2126 *band = NL80211_BAND_60GHZ;
2127 return true;
2128 }
2129
2130 return false;
2131 }
2132 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2133
ieee80211_operating_class_to_chandef(u8 operating_class,struct ieee80211_channel * chan,struct cfg80211_chan_def * chandef)2134 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2135 struct ieee80211_channel *chan,
2136 struct cfg80211_chan_def *chandef)
2137 {
2138 u32 control_freq, offset = 0;
2139 enum nl80211_band band;
2140
2141 if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2142 !chan || band != chan->band)
2143 return false;
2144
2145 control_freq = chan->center_freq;
2146 chandef->chan = chan;
2147
2148 if (control_freq >= 5955)
2149 offset = control_freq - 5955;
2150 else if (control_freq >= 5745)
2151 offset = control_freq - 5745;
2152 else if (control_freq >= 5180)
2153 offset = control_freq - 5180;
2154 offset /= 20;
2155
2156 switch (operating_class) {
2157 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */
2158 case 82: /* 2 GHz band; 20 MHz; channel 14 */
2159 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2160 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2161 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2162 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2163 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2164 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2165 case 136: /* 6 GHz band; 20 MHz; channel 2 */
2166 chandef->center_freq1 = control_freq;
2167 chandef->width = NL80211_CHAN_WIDTH_20;
2168 return true;
2169 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */
2170 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2171 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2172 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2173 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2174 chandef->center_freq1 = control_freq + 10;
2175 chandef->width = NL80211_CHAN_WIDTH_40;
2176 return true;
2177 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */
2178 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2179 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2180 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2181 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2182 chandef->center_freq1 = control_freq - 10;
2183 chandef->width = NL80211_CHAN_WIDTH_40;
2184 return true;
2185 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2186 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2187 chandef->width = NL80211_CHAN_WIDTH_40;
2188 return true;
2189 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2190 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2191 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2192 chandef->width = NL80211_CHAN_WIDTH_80;
2193 return true;
2194 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2195 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2196 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2197 chandef->width = NL80211_CHAN_WIDTH_160;
2198 return true;
2199 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2200 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2201 /* The center_freq2 of 80+80 MHz is unknown */
2202 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2203 /* 320-1 or 320-2 channelization is unknown */
2204 default:
2205 return false;
2206 }
2207 }
2208 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2209
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2210 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2211 u8 *op_class)
2212 {
2213 u8 vht_opclass;
2214 u32 freq = chandef->center_freq1;
2215
2216 if (freq >= 2412 && freq <= 2472) {
2217 if (chandef->width > NL80211_CHAN_WIDTH_40)
2218 return false;
2219
2220 /* 2.407 GHz, channels 1..13 */
2221 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2222 if (freq > chandef->chan->center_freq)
2223 *op_class = 83; /* HT40+ */
2224 else
2225 *op_class = 84; /* HT40- */
2226 } else {
2227 *op_class = 81;
2228 }
2229
2230 return true;
2231 }
2232
2233 if (freq == 2484) {
2234 /* channel 14 is only for IEEE 802.11b */
2235 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2236 return false;
2237
2238 *op_class = 82; /* channel 14 */
2239 return true;
2240 }
2241
2242 switch (chandef->width) {
2243 case NL80211_CHAN_WIDTH_80:
2244 vht_opclass = 128;
2245 break;
2246 case NL80211_CHAN_WIDTH_160:
2247 vht_opclass = 129;
2248 break;
2249 case NL80211_CHAN_WIDTH_80P80:
2250 vht_opclass = 130;
2251 break;
2252 case NL80211_CHAN_WIDTH_10:
2253 case NL80211_CHAN_WIDTH_5:
2254 return false; /* unsupported for now */
2255 default:
2256 vht_opclass = 0;
2257 break;
2258 }
2259
2260 /* 5 GHz, channels 36..48 */
2261 if (freq >= 5180 && freq <= 5240) {
2262 if (vht_opclass) {
2263 *op_class = vht_opclass;
2264 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265 if (freq > chandef->chan->center_freq)
2266 *op_class = 116;
2267 else
2268 *op_class = 117;
2269 } else {
2270 *op_class = 115;
2271 }
2272
2273 return true;
2274 }
2275
2276 /* 5 GHz, channels 52..64 */
2277 if (freq >= 5260 && freq <= 5320) {
2278 if (vht_opclass) {
2279 *op_class = vht_opclass;
2280 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2281 if (freq > chandef->chan->center_freq)
2282 *op_class = 119;
2283 else
2284 *op_class = 120;
2285 } else {
2286 *op_class = 118;
2287 }
2288
2289 return true;
2290 }
2291
2292 /* 5 GHz, channels 100..144 */
2293 if (freq >= 5500 && freq <= 5720) {
2294 if (vht_opclass) {
2295 *op_class = vht_opclass;
2296 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2297 if (freq > chandef->chan->center_freq)
2298 *op_class = 122;
2299 else
2300 *op_class = 123;
2301 } else {
2302 *op_class = 121;
2303 }
2304
2305 return true;
2306 }
2307
2308 /* 5 GHz, channels 149..169 */
2309 if (freq >= 5745 && freq <= 5845) {
2310 if (vht_opclass) {
2311 *op_class = vht_opclass;
2312 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2313 if (freq > chandef->chan->center_freq)
2314 *op_class = 126;
2315 else
2316 *op_class = 127;
2317 } else if (freq <= 5805) {
2318 *op_class = 124;
2319 } else {
2320 *op_class = 125;
2321 }
2322
2323 return true;
2324 }
2325
2326 /* 56.16 GHz, channel 1..4 */
2327 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2328 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2329 return false;
2330
2331 *op_class = 180;
2332 return true;
2333 }
2334
2335 /* not supported yet */
2336 return false;
2337 }
2338 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2339
cfg80211_wdev_bi(struct wireless_dev * wdev)2340 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2341 {
2342 switch (wdev->iftype) {
2343 case NL80211_IFTYPE_AP:
2344 case NL80211_IFTYPE_P2P_GO:
2345 WARN_ON(wdev->valid_links);
2346 return wdev->links[0].ap.beacon_interval;
2347 case NL80211_IFTYPE_MESH_POINT:
2348 return wdev->u.mesh.beacon_interval;
2349 case NL80211_IFTYPE_ADHOC:
2350 return wdev->u.ibss.beacon_interval;
2351 default:
2352 break;
2353 }
2354
2355 return 0;
2356 }
2357
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different,int radio_idx)2358 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2359 u32 *beacon_int_gcd,
2360 bool *beacon_int_different,
2361 int radio_idx)
2362 {
2363 struct cfg80211_registered_device *rdev;
2364 struct wireless_dev *wdev;
2365
2366 *beacon_int_gcd = 0;
2367 *beacon_int_different = false;
2368
2369 rdev = wiphy_to_rdev(wiphy);
2370 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2371 int wdev_bi;
2372
2373 /* this feature isn't supported with MLO */
2374 if (wdev->valid_links)
2375 continue;
2376
2377 /* skip wdevs not active on the given wiphy radio */
2378 if (radio_idx >= 0 &&
2379 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2380 continue;
2381
2382 wdev_bi = cfg80211_wdev_bi(wdev);
2383
2384 if (!wdev_bi)
2385 continue;
2386
2387 if (!*beacon_int_gcd) {
2388 *beacon_int_gcd = wdev_bi;
2389 continue;
2390 }
2391
2392 if (wdev_bi == *beacon_int_gcd)
2393 continue;
2394
2395 *beacon_int_different = true;
2396 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2397 }
2398
2399 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2400 if (*beacon_int_gcd)
2401 *beacon_int_different = true;
2402 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2403 }
2404 }
2405
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2406 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2407 enum nl80211_iftype iftype, u32 beacon_int)
2408 {
2409 /*
2410 * This is just a basic pre-condition check; if interface combinations
2411 * are possible the driver must already be checking those with a call
2412 * to cfg80211_check_combinations(), in which case we'll validate more
2413 * through the cfg80211_calculate_bi_data() call and code in
2414 * cfg80211_iter_combinations().
2415 */
2416
2417 if (beacon_int < 10 || beacon_int > 10000)
2418 return -EINVAL;
2419
2420 return 0;
2421 }
2422
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2423 int cfg80211_iter_combinations(struct wiphy *wiphy,
2424 struct iface_combination_params *params,
2425 void (*iter)(const struct ieee80211_iface_combination *c,
2426 void *data),
2427 void *data)
2428 {
2429 const struct wiphy_radio *radio = NULL;
2430 const struct ieee80211_iface_combination *c, *cs;
2431 const struct ieee80211_regdomain *regdom;
2432 enum nl80211_dfs_regions region = 0;
2433 int i, j, n, iftype;
2434 int num_interfaces = 0;
2435 u32 used_iftypes = 0;
2436 u32 beacon_int_gcd;
2437 bool beacon_int_different;
2438
2439 if (params->radio_idx >= 0)
2440 radio = &wiphy->radio[params->radio_idx];
2441
2442 /*
2443 * This is a bit strange, since the iteration used to rely only on
2444 * the data given by the driver, but here it now relies on context,
2445 * in form of the currently operating interfaces.
2446 * This is OK for all current users, and saves us from having to
2447 * push the GCD calculations into all the drivers.
2448 * In the future, this should probably rely more on data that's in
2449 * cfg80211 already - the only thing not would appear to be any new
2450 * interfaces (while being brought up) and channel/radar data.
2451 */
2452 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2453 &beacon_int_gcd, &beacon_int_different,
2454 params->radio_idx);
2455
2456 if (params->radar_detect) {
2457 rcu_read_lock();
2458 regdom = rcu_dereference(cfg80211_regdomain);
2459 if (regdom)
2460 region = regdom->dfs_region;
2461 rcu_read_unlock();
2462 }
2463
2464 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2465 num_interfaces += params->iftype_num[iftype];
2466 if (params->iftype_num[iftype] > 0 &&
2467 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2468 used_iftypes |= BIT(iftype);
2469 }
2470
2471 if (radio) {
2472 cs = radio->iface_combinations;
2473 n = radio->n_iface_combinations;
2474 } else {
2475 cs = wiphy->iface_combinations;
2476 n = wiphy->n_iface_combinations;
2477 }
2478 for (i = 0; i < n; i++) {
2479 struct ieee80211_iface_limit *limits;
2480 u32 all_iftypes = 0;
2481
2482 c = &cs[i];
2483 if (num_interfaces > c->max_interfaces)
2484 continue;
2485 if (params->num_different_channels > c->num_different_channels)
2486 continue;
2487
2488 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2489 GFP_KERNEL);
2490 if (!limits)
2491 return -ENOMEM;
2492
2493 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2494 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2495 continue;
2496 for (j = 0; j < c->n_limits; j++) {
2497 all_iftypes |= limits[j].types;
2498 if (!(limits[j].types & BIT(iftype)))
2499 continue;
2500 if (limits[j].max < params->iftype_num[iftype])
2501 goto cont;
2502 limits[j].max -= params->iftype_num[iftype];
2503 }
2504 }
2505
2506 if (params->radar_detect !=
2507 (c->radar_detect_widths & params->radar_detect))
2508 goto cont;
2509
2510 if (params->radar_detect && c->radar_detect_regions &&
2511 !(c->radar_detect_regions & BIT(region)))
2512 goto cont;
2513
2514 /* Finally check that all iftypes that we're currently
2515 * using are actually part of this combination. If they
2516 * aren't then we can't use this combination and have
2517 * to continue to the next.
2518 */
2519 if ((all_iftypes & used_iftypes) != used_iftypes)
2520 goto cont;
2521
2522 if (beacon_int_gcd) {
2523 if (c->beacon_int_min_gcd &&
2524 beacon_int_gcd < c->beacon_int_min_gcd)
2525 goto cont;
2526 if (!c->beacon_int_min_gcd && beacon_int_different)
2527 goto cont;
2528 }
2529
2530 /* This combination covered all interface types and
2531 * supported the requested numbers, so we're good.
2532 */
2533
2534 (*iter)(c, data);
2535 cont:
2536 kfree(limits);
2537 }
2538
2539 return 0;
2540 }
2541 EXPORT_SYMBOL(cfg80211_iter_combinations);
2542
2543 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2544 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2545 void *data)
2546 {
2547 int *num = data;
2548 (*num)++;
2549 }
2550
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2551 int cfg80211_check_combinations(struct wiphy *wiphy,
2552 struct iface_combination_params *params)
2553 {
2554 int err, num = 0;
2555
2556 err = cfg80211_iter_combinations(wiphy, params,
2557 cfg80211_iter_sum_ifcombs, &num);
2558 if (err)
2559 return err;
2560 if (num == 0)
2561 return -EBUSY;
2562
2563 return 0;
2564 }
2565 EXPORT_SYMBOL(cfg80211_check_combinations);
2566
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2567 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2568 const u8 *rates, unsigned int n_rates,
2569 u32 *mask)
2570 {
2571 int i, j;
2572
2573 if (!sband)
2574 return -EINVAL;
2575
2576 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2577 return -EINVAL;
2578
2579 *mask = 0;
2580
2581 for (i = 0; i < n_rates; i++) {
2582 int rate = (rates[i] & 0x7f) * 5;
2583 bool found = false;
2584
2585 for (j = 0; j < sband->n_bitrates; j++) {
2586 if (sband->bitrates[j].bitrate == rate) {
2587 found = true;
2588 *mask |= BIT(j);
2589 break;
2590 }
2591 }
2592 if (!found)
2593 return -EINVAL;
2594 }
2595
2596 /*
2597 * mask must have at least one bit set here since we
2598 * didn't accept a 0-length rates array nor allowed
2599 * entries in the array that didn't exist
2600 */
2601
2602 return 0;
2603 }
2604
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2605 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2606 {
2607 enum nl80211_band band;
2608 unsigned int n_channels = 0;
2609
2610 for (band = 0; band < NUM_NL80211_BANDS; band++)
2611 if (wiphy->bands[band])
2612 n_channels += wiphy->bands[band]->n_channels;
2613
2614 return n_channels;
2615 }
2616 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2617
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2618 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2619 struct station_info *sinfo)
2620 {
2621 struct cfg80211_registered_device *rdev;
2622 struct wireless_dev *wdev;
2623
2624 wdev = dev->ieee80211_ptr;
2625 if (!wdev)
2626 return -EOPNOTSUPP;
2627
2628 rdev = wiphy_to_rdev(wdev->wiphy);
2629 if (!rdev->ops->get_station)
2630 return -EOPNOTSUPP;
2631
2632 memset(sinfo, 0, sizeof(*sinfo));
2633
2634 guard(wiphy)(&rdev->wiphy);
2635
2636 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2637 }
2638 EXPORT_SYMBOL(cfg80211_get_station);
2639
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2640 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2641 {
2642 int i;
2643
2644 if (!f)
2645 return;
2646
2647 kfree(f->serv_spec_info);
2648 kfree(f->srf_bf);
2649 kfree(f->srf_macs);
2650 for (i = 0; i < f->num_rx_filters; i++)
2651 kfree(f->rx_filters[i].filter);
2652
2653 for (i = 0; i < f->num_tx_filters; i++)
2654 kfree(f->tx_filters[i].filter);
2655
2656 kfree(f->rx_filters);
2657 kfree(f->tx_filters);
2658 kfree(f);
2659 }
2660 EXPORT_SYMBOL(cfg80211_free_nan_func);
2661
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2662 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2663 u32 center_freq_khz, u32 bw_khz)
2664 {
2665 u32 start_freq_khz, end_freq_khz;
2666
2667 start_freq_khz = center_freq_khz - (bw_khz / 2);
2668 end_freq_khz = center_freq_khz + (bw_khz / 2);
2669
2670 if (start_freq_khz >= freq_range->start_freq_khz &&
2671 end_freq_khz <= freq_range->end_freq_khz)
2672 return true;
2673
2674 return false;
2675 }
2676
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2677 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2678 {
2679 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2680 sizeof(*(sinfo->pertid)),
2681 gfp);
2682 if (!sinfo->pertid)
2683 return -ENOMEM;
2684
2685 return 0;
2686 }
2687 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2688
2689 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2690 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2691 const unsigned char rfc1042_header[] __aligned(2) =
2692 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2693 EXPORT_SYMBOL(rfc1042_header);
2694
2695 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2696 const unsigned char bridge_tunnel_header[] __aligned(2) =
2697 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2698 EXPORT_SYMBOL(bridge_tunnel_header);
2699
2700 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2701 struct iapp_layer2_update {
2702 u8 da[ETH_ALEN]; /* broadcast */
2703 u8 sa[ETH_ALEN]; /* STA addr */
2704 __be16 len; /* 6 */
2705 u8 dsap; /* 0 */
2706 u8 ssap; /* 0 */
2707 u8 control;
2708 u8 xid_info[3];
2709 } __packed;
2710
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2711 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2712 {
2713 struct iapp_layer2_update *msg;
2714 struct sk_buff *skb;
2715
2716 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2717 * bridge devices */
2718
2719 skb = dev_alloc_skb(sizeof(*msg));
2720 if (!skb)
2721 return;
2722 msg = skb_put(skb, sizeof(*msg));
2723
2724 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2725 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2726
2727 eth_broadcast_addr(msg->da);
2728 ether_addr_copy(msg->sa, addr);
2729 msg->len = htons(6);
2730 msg->dsap = 0;
2731 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2732 msg->control = 0xaf; /* XID response lsb.1111F101.
2733 * F=0 (no poll command; unsolicited frame) */
2734 msg->xid_info[0] = 0x81; /* XID format identifier */
2735 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2736 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2737
2738 skb->dev = dev;
2739 skb->protocol = eth_type_trans(skb, dev);
2740 memset(skb->cb, 0, sizeof(skb->cb));
2741 netif_rx(skb);
2742 }
2743 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2744
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2745 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2746 enum ieee80211_vht_chanwidth bw,
2747 int mcs, bool ext_nss_bw_capable,
2748 unsigned int max_vht_nss)
2749 {
2750 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2751 int ext_nss_bw;
2752 int supp_width;
2753 int i, mcs_encoding;
2754
2755 if (map == 0xffff)
2756 return 0;
2757
2758 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2759 return 0;
2760 if (mcs <= 7)
2761 mcs_encoding = 0;
2762 else if (mcs == 8)
2763 mcs_encoding = 1;
2764 else
2765 mcs_encoding = 2;
2766
2767 if (!max_vht_nss) {
2768 /* find max_vht_nss for the given MCS */
2769 for (i = 7; i >= 0; i--) {
2770 int supp = (map >> (2 * i)) & 3;
2771
2772 if (supp == 3)
2773 continue;
2774
2775 if (supp >= mcs_encoding) {
2776 max_vht_nss = i + 1;
2777 break;
2778 }
2779 }
2780 }
2781
2782 if (!(cap->supp_mcs.tx_mcs_map &
2783 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2784 return max_vht_nss;
2785
2786 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2787 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2788 supp_width = le32_get_bits(cap->vht_cap_info,
2789 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2790
2791 /* if not capable, treat ext_nss_bw as 0 */
2792 if (!ext_nss_bw_capable)
2793 ext_nss_bw = 0;
2794
2795 /* This is invalid */
2796 if (supp_width == 3)
2797 return 0;
2798
2799 /* This is an invalid combination so pretend nothing is supported */
2800 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2801 return 0;
2802
2803 /*
2804 * Cover all the special cases according to IEEE 802.11-2016
2805 * Table 9-250. All other cases are either factor of 1 or not
2806 * valid/supported.
2807 */
2808 switch (bw) {
2809 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2810 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2811 if ((supp_width == 1 || supp_width == 2) &&
2812 ext_nss_bw == 3)
2813 return 2 * max_vht_nss;
2814 break;
2815 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2816 if (supp_width == 0 &&
2817 (ext_nss_bw == 1 || ext_nss_bw == 2))
2818 return max_vht_nss / 2;
2819 if (supp_width == 0 &&
2820 ext_nss_bw == 3)
2821 return (3 * max_vht_nss) / 4;
2822 if (supp_width == 1 &&
2823 ext_nss_bw == 3)
2824 return 2 * max_vht_nss;
2825 break;
2826 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2827 if (supp_width == 0 && ext_nss_bw == 1)
2828 return 0; /* not possible */
2829 if (supp_width == 0 &&
2830 ext_nss_bw == 2)
2831 return max_vht_nss / 2;
2832 if (supp_width == 0 &&
2833 ext_nss_bw == 3)
2834 return (3 * max_vht_nss) / 4;
2835 if (supp_width == 1 &&
2836 ext_nss_bw == 0)
2837 return 0; /* not possible */
2838 if (supp_width == 1 &&
2839 ext_nss_bw == 1)
2840 return max_vht_nss / 2;
2841 if (supp_width == 1 &&
2842 ext_nss_bw == 2)
2843 return (3 * max_vht_nss) / 4;
2844 break;
2845 }
2846
2847 /* not covered or invalid combination received */
2848 return max_vht_nss;
2849 }
2850 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2851
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2852 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2853 bool is_4addr, u8 check_swif)
2854
2855 {
2856 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2857
2858 switch (check_swif) {
2859 case 0:
2860 if (is_vlan && is_4addr)
2861 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2862 return wiphy->interface_modes & BIT(iftype);
2863 case 1:
2864 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2865 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2866 return wiphy->software_iftypes & BIT(iftype);
2867 default:
2868 break;
2869 }
2870
2871 return false;
2872 }
2873 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2874
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2875 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2876 {
2877 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2878
2879 lockdep_assert_wiphy(wdev->wiphy);
2880
2881 switch (wdev->iftype) {
2882 case NL80211_IFTYPE_AP:
2883 case NL80211_IFTYPE_P2P_GO:
2884 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2885 break;
2886 default:
2887 /* per-link not relevant */
2888 break;
2889 }
2890
2891 rdev_del_intf_link(rdev, wdev, link_id);
2892
2893 wdev->valid_links &= ~BIT(link_id);
2894 eth_zero_addr(wdev->links[link_id].addr);
2895 }
2896
cfg80211_remove_links(struct wireless_dev * wdev)2897 void cfg80211_remove_links(struct wireless_dev *wdev)
2898 {
2899 unsigned int link_id;
2900
2901 /*
2902 * links are controlled by upper layers (userspace/cfg)
2903 * only for AP mode, so only remove them here for AP
2904 */
2905 if (wdev->iftype != NL80211_IFTYPE_AP)
2906 return;
2907
2908 if (wdev->valid_links) {
2909 for_each_valid_link(wdev, link_id)
2910 cfg80211_remove_link(wdev, link_id);
2911 }
2912 }
2913
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2914 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2915 struct wireless_dev *wdev)
2916 {
2917 cfg80211_remove_links(wdev);
2918
2919 return rdev_del_virtual_intf(rdev, wdev);
2920 }
2921
2922 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2923 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2924 {
2925 int i;
2926
2927 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2928 if (wiphy->iftype_ext_capab[i].iftype == type)
2929 return &wiphy->iftype_ext_capab[i];
2930 }
2931
2932 return NULL;
2933 }
2934 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2935
2936 static bool
ieee80211_radio_freq_range_valid(const struct wiphy_radio * radio,u32 freq,u32 width)2937 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2938 u32 freq, u32 width)
2939 {
2940 const struct wiphy_radio_freq_range *r;
2941 int i;
2942
2943 for (i = 0; i < radio->n_freq_range; i++) {
2944 r = &radio->freq_range[i];
2945 if (freq - width / 2 >= r->start_freq &&
2946 freq + width / 2 <= r->end_freq)
2947 return true;
2948 }
2949
2950 return false;
2951 }
2952
cfg80211_radio_chandef_valid(const struct wiphy_radio * radio,const struct cfg80211_chan_def * chandef)2953 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2954 const struct cfg80211_chan_def *chandef)
2955 {
2956 u32 freq, width;
2957
2958 freq = ieee80211_chandef_to_khz(chandef);
2959 width = cfg80211_chandef_get_width(chandef);
2960 if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2961 return false;
2962
2963 freq = MHZ_TO_KHZ(chandef->center_freq2);
2964 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2965 return false;
2966
2967 return true;
2968 }
2969 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2970
cfg80211_wdev_channel_allowed(struct wireless_dev * wdev,struct ieee80211_channel * chan)2971 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2972 struct ieee80211_channel *chan)
2973 {
2974 struct wiphy *wiphy = wdev->wiphy;
2975 const struct wiphy_radio *radio;
2976 struct cfg80211_chan_def chandef;
2977 u32 radio_mask;
2978 int i;
2979
2980 radio_mask = wdev->radio_mask;
2981 if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2982 return true;
2983
2984 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2985 for (i = 0; i < wiphy->n_radio; i++) {
2986 if (!(radio_mask & BIT(i)))
2987 continue;
2988
2989 radio = &wiphy->radio[i];
2990 if (!cfg80211_radio_chandef_valid(radio, &chandef))
2991 continue;
2992
2993 return true;
2994 }
2995
2996 return false;
2997 }
2998 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
2999