xref: /freebsd/sys/dev/cesa/cesa.c (revision fdafd315ad0d0f28a11b9fb4476a9ab059c62b92)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2009-2011 Semihalf.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * CESA SRAM Memory Map:
31  *
32  * +------------------------+ <= sc->sc_sram_base_va + CESA_SRAM_SIZE
33  * |                        |
34  * |          DATA          |
35  * |                        |
36  * +------------------------+ <= sc->sc_sram_base_va + CESA_DATA(0)
37  * |  struct cesa_sa_data   |
38  * +------------------------+
39  * |  struct cesa_sa_hdesc  |
40  * +------------------------+ <= sc->sc_sram_base_va
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/mutex.h>
52 #include <sys/rman.h>
53 
54 #include <machine/bus.h>
55 #include <machine/intr.h>
56 #include <machine/resource.h>
57 #include <machine/fdt.h>
58 
59 #include <dev/fdt/simplebus.h>
60 #include <dev/fdt/fdt_common.h>
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <crypto/sha1.h>
65 #include <crypto/sha2/sha256.h>
66 #include <crypto/rijndael/rijndael.h>
67 #include <opencrypto/cryptodev.h>
68 #include <opencrypto/xform.h>
69 #include "cryptodev_if.h"
70 
71 #include <arm/mv/mvreg.h>
72 #include <arm/mv/mvvar.h>
73 #include "cesa.h"
74 
75 static int	cesa_probe(device_t);
76 static int	cesa_attach(device_t);
77 static int	cesa_attach_late(device_t);
78 static int	cesa_detach(device_t);
79 static void	cesa_intr(void *);
80 static int	cesa_probesession(device_t,
81     const struct crypto_session_params *);
82 static int	cesa_newsession(device_t, crypto_session_t,
83     const struct crypto_session_params *);
84 static int	cesa_process(device_t, struct cryptop *, int);
85 
86 static struct resource_spec cesa_res_spec[] = {
87 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
88 	{ SYS_RES_MEMORY, 1, RF_ACTIVE },
89 	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
90 	{ -1, 0 }
91 };
92 
93 static device_method_t cesa_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		cesa_probe),
96 	DEVMETHOD(device_attach,	cesa_attach),
97 	DEVMETHOD(device_detach,	cesa_detach),
98 
99 	/* Crypto device methods */
100 	DEVMETHOD(cryptodev_probesession, cesa_probesession),
101 	DEVMETHOD(cryptodev_newsession,	cesa_newsession),
102 	DEVMETHOD(cryptodev_process,	cesa_process),
103 
104 	DEVMETHOD_END
105 };
106 
107 static driver_t cesa_driver = {
108 	"cesa",
109 	cesa_methods,
110 	sizeof (struct cesa_softc)
111 };
112 
113 DRIVER_MODULE(cesa, simplebus, cesa_driver, 0, 0);
114 MODULE_DEPEND(cesa, crypto, 1, 1, 1);
115 
116 static void
cesa_dump_cshd(struct cesa_softc * sc,struct cesa_sa_hdesc * cshd)117 cesa_dump_cshd(struct cesa_softc *sc, struct cesa_sa_hdesc *cshd)
118 {
119 #ifdef DEBUG
120 	device_t dev;
121 
122 	dev = sc->sc_dev;
123 	device_printf(dev, "CESA SA Hardware Descriptor:\n");
124 	device_printf(dev, "\t\tconfig: 0x%08X\n", cshd->cshd_config);
125 	device_printf(dev, "\t\te_src:  0x%08X\n", cshd->cshd_enc_src);
126 	device_printf(dev, "\t\te_dst:  0x%08X\n", cshd->cshd_enc_dst);
127 	device_printf(dev, "\t\te_dlen: 0x%08X\n", cshd->cshd_enc_dlen);
128 	device_printf(dev, "\t\te_key:  0x%08X\n", cshd->cshd_enc_key);
129 	device_printf(dev, "\t\te_iv_1: 0x%08X\n", cshd->cshd_enc_iv);
130 	device_printf(dev, "\t\te_iv_2: 0x%08X\n", cshd->cshd_enc_iv_buf);
131 	device_printf(dev, "\t\tm_src:  0x%08X\n", cshd->cshd_mac_src);
132 	device_printf(dev, "\t\tm_dst:  0x%08X\n", cshd->cshd_mac_dst);
133 	device_printf(dev, "\t\tm_dlen: 0x%08X\n", cshd->cshd_mac_dlen);
134 	device_printf(dev, "\t\tm_tlen: 0x%08X\n", cshd->cshd_mac_total_dlen);
135 	device_printf(dev, "\t\tm_iv_i: 0x%08X\n", cshd->cshd_mac_iv_in);
136 	device_printf(dev, "\t\tm_iv_o: 0x%08X\n", cshd->cshd_mac_iv_out);
137 #endif
138 }
139 
140 static void
cesa_alloc_dma_mem_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)141 cesa_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
142 {
143 	struct cesa_dma_mem *cdm;
144 
145 	if (error)
146 		return;
147 
148 	KASSERT(nseg == 1, ("Got wrong number of DMA segments, should be 1."));
149 	cdm = arg;
150 	cdm->cdm_paddr = segs->ds_addr;
151 }
152 
153 static int
cesa_alloc_dma_mem(struct cesa_softc * sc,struct cesa_dma_mem * cdm,bus_size_t size)154 cesa_alloc_dma_mem(struct cesa_softc *sc, struct cesa_dma_mem *cdm,
155     bus_size_t size)
156 {
157 	int error;
158 
159 	KASSERT(cdm->cdm_vaddr == NULL,
160 	    ("%s(): DMA memory descriptor in use.", __func__));
161 
162 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
163 	    PAGE_SIZE, 0,			/* alignment, boundary */
164 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
165 	    BUS_SPACE_MAXADDR,			/* highaddr */
166 	    NULL, NULL,				/* filtfunc, filtfuncarg */
167 	    size, 1,				/* maxsize, nsegments */
168 	    size, 0,				/* maxsegsz, flags */
169 	    NULL, NULL,				/* lockfunc, lockfuncarg */
170 	    &cdm->cdm_tag);			/* dmat */
171 	if (error) {
172 		device_printf(sc->sc_dev, "failed to allocate busdma tag, error"
173 		    " %i!\n", error);
174 
175 		goto err1;
176 	}
177 
178 	error = bus_dmamem_alloc(cdm->cdm_tag, &cdm->cdm_vaddr,
179 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &cdm->cdm_map);
180 	if (error) {
181 		device_printf(sc->sc_dev, "failed to allocate DMA safe"
182 		    " memory, error %i!\n", error);
183 
184 		goto err2;
185 	}
186 
187 	error = bus_dmamap_load(cdm->cdm_tag, cdm->cdm_map, cdm->cdm_vaddr,
188 	    size, cesa_alloc_dma_mem_cb, cdm, BUS_DMA_NOWAIT);
189 	if (error) {
190 		device_printf(sc->sc_dev, "cannot get address of the DMA"
191 		    " memory, error %i\n", error);
192 
193 		goto err3;
194 	}
195 
196 	return (0);
197 err3:
198 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
199 err2:
200 	bus_dma_tag_destroy(cdm->cdm_tag);
201 err1:
202 	cdm->cdm_vaddr = NULL;
203 	return (error);
204 }
205 
206 static void
cesa_free_dma_mem(struct cesa_dma_mem * cdm)207 cesa_free_dma_mem(struct cesa_dma_mem *cdm)
208 {
209 
210 	bus_dmamap_unload(cdm->cdm_tag, cdm->cdm_map);
211 	bus_dmamem_free(cdm->cdm_tag, cdm->cdm_vaddr, cdm->cdm_map);
212 	bus_dma_tag_destroy(cdm->cdm_tag);
213 	cdm->cdm_vaddr = NULL;
214 }
215 
216 static void
cesa_sync_dma_mem(struct cesa_dma_mem * cdm,bus_dmasync_op_t op)217 cesa_sync_dma_mem(struct cesa_dma_mem *cdm, bus_dmasync_op_t op)
218 {
219 
220 	/* Sync only if dma memory is valid */
221         if (cdm->cdm_vaddr != NULL)
222 		bus_dmamap_sync(cdm->cdm_tag, cdm->cdm_map, op);
223 }
224 
225 static void
cesa_sync_desc(struct cesa_softc * sc,bus_dmasync_op_t op)226 cesa_sync_desc(struct cesa_softc *sc, bus_dmasync_op_t op)
227 {
228 
229 	cesa_sync_dma_mem(&sc->sc_tdesc_cdm, op);
230 	cesa_sync_dma_mem(&sc->sc_sdesc_cdm, op);
231 	cesa_sync_dma_mem(&sc->sc_requests_cdm, op);
232 }
233 
234 static struct cesa_request *
cesa_alloc_request(struct cesa_softc * sc)235 cesa_alloc_request(struct cesa_softc *sc)
236 {
237 	struct cesa_request *cr;
238 
239 	CESA_GENERIC_ALLOC_LOCKED(sc, cr, requests);
240 	if (!cr)
241 		return (NULL);
242 
243 	STAILQ_INIT(&cr->cr_tdesc);
244 	STAILQ_INIT(&cr->cr_sdesc);
245 
246 	return (cr);
247 }
248 
249 static void
cesa_free_request(struct cesa_softc * sc,struct cesa_request * cr)250 cesa_free_request(struct cesa_softc *sc, struct cesa_request *cr)
251 {
252 
253 	/* Free TDMA descriptors assigned to this request */
254 	CESA_LOCK(sc, tdesc);
255 	STAILQ_CONCAT(&sc->sc_free_tdesc, &cr->cr_tdesc);
256 	CESA_UNLOCK(sc, tdesc);
257 
258 	/* Free SA descriptors assigned to this request */
259 	CESA_LOCK(sc, sdesc);
260 	STAILQ_CONCAT(&sc->sc_free_sdesc, &cr->cr_sdesc);
261 	CESA_UNLOCK(sc, sdesc);
262 
263 	/* Unload DMA memory associated with request */
264 	if (cr->cr_dmap_loaded) {
265 		bus_dmamap_unload(sc->sc_data_dtag, cr->cr_dmap);
266 		cr->cr_dmap_loaded = 0;
267 	}
268 
269 	CESA_GENERIC_FREE_LOCKED(sc, cr, requests);
270 }
271 
272 static void
cesa_enqueue_request(struct cesa_softc * sc,struct cesa_request * cr)273 cesa_enqueue_request(struct cesa_softc *sc, struct cesa_request *cr)
274 {
275 
276 	CESA_LOCK(sc, requests);
277 	STAILQ_INSERT_TAIL(&sc->sc_ready_requests, cr, cr_stq);
278 	CESA_UNLOCK(sc, requests);
279 }
280 
281 static struct cesa_tdma_desc *
cesa_alloc_tdesc(struct cesa_softc * sc)282 cesa_alloc_tdesc(struct cesa_softc *sc)
283 {
284 	struct cesa_tdma_desc *ctd;
285 
286 	CESA_GENERIC_ALLOC_LOCKED(sc, ctd, tdesc);
287 
288 	if (!ctd)
289 		device_printf(sc->sc_dev, "TDMA descriptors pool exhaused. "
290 		    "Consider increasing CESA_TDMA_DESCRIPTORS.\n");
291 
292 	return (ctd);
293 }
294 
295 static struct cesa_sa_desc *
cesa_alloc_sdesc(struct cesa_softc * sc,struct cesa_request * cr)296 cesa_alloc_sdesc(struct cesa_softc *sc, struct cesa_request *cr)
297 {
298 	struct cesa_sa_desc *csd;
299 
300 	CESA_GENERIC_ALLOC_LOCKED(sc, csd, sdesc);
301 	if (!csd) {
302 		device_printf(sc->sc_dev, "SA descriptors pool exhaused. "
303 		    "Consider increasing CESA_SA_DESCRIPTORS.\n");
304 		return (NULL);
305 	}
306 
307 	STAILQ_INSERT_TAIL(&cr->cr_sdesc, csd, csd_stq);
308 
309 	/* Fill-in SA descriptor with default values */
310 	csd->csd_cshd->cshd_enc_key = CESA_SA_DATA(csd_key);
311 	csd->csd_cshd->cshd_enc_iv = CESA_SA_DATA(csd_iv);
312 	csd->csd_cshd->cshd_enc_iv_buf = CESA_SA_DATA(csd_iv);
313 	csd->csd_cshd->cshd_enc_src = 0;
314 	csd->csd_cshd->cshd_enc_dst = 0;
315 	csd->csd_cshd->cshd_enc_dlen = 0;
316 	csd->csd_cshd->cshd_mac_dst = CESA_SA_DATA(csd_hash);
317 	csd->csd_cshd->cshd_mac_iv_in = CESA_SA_DATA(csd_hiv_in);
318 	csd->csd_cshd->cshd_mac_iv_out = CESA_SA_DATA(csd_hiv_out);
319 	csd->csd_cshd->cshd_mac_src = 0;
320 	csd->csd_cshd->cshd_mac_dlen = 0;
321 
322 	return (csd);
323 }
324 
325 static struct cesa_tdma_desc *
cesa_tdma_copy(struct cesa_softc * sc,bus_addr_t dst,bus_addr_t src,bus_size_t size)326 cesa_tdma_copy(struct cesa_softc *sc, bus_addr_t dst, bus_addr_t src,
327     bus_size_t size)
328 {
329 	struct cesa_tdma_desc *ctd;
330 
331 	ctd = cesa_alloc_tdesc(sc);
332 	if (!ctd)
333 		return (NULL);
334 
335 	ctd->ctd_cthd->cthd_dst = dst;
336 	ctd->ctd_cthd->cthd_src = src;
337 	ctd->ctd_cthd->cthd_byte_count = size;
338 
339 	/* Handle special control packet */
340 	if (size != 0)
341 		ctd->ctd_cthd->cthd_flags = CESA_CTHD_OWNED;
342 	else
343 		ctd->ctd_cthd->cthd_flags = 0;
344 
345 	return (ctd);
346 }
347 
348 static struct cesa_tdma_desc *
cesa_tdma_copyin_sa_data(struct cesa_softc * sc,struct cesa_request * cr)349 cesa_tdma_copyin_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
350 {
351 
352 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa +
353 	    sizeof(struct cesa_sa_hdesc), cr->cr_csd_paddr,
354 	    sizeof(struct cesa_sa_data)));
355 }
356 
357 static struct cesa_tdma_desc *
cesa_tdma_copyout_sa_data(struct cesa_softc * sc,struct cesa_request * cr)358 cesa_tdma_copyout_sa_data(struct cesa_softc *sc, struct cesa_request *cr)
359 {
360 
361 	return (cesa_tdma_copy(sc, cr->cr_csd_paddr, sc->sc_sram_base_pa +
362 	    sizeof(struct cesa_sa_hdesc), sizeof(struct cesa_sa_data)));
363 }
364 
365 static struct cesa_tdma_desc *
cesa_tdma_copy_sdesc(struct cesa_softc * sc,struct cesa_sa_desc * csd)366 cesa_tdma_copy_sdesc(struct cesa_softc *sc, struct cesa_sa_desc *csd)
367 {
368 
369 	return (cesa_tdma_copy(sc, sc->sc_sram_base_pa, csd->csd_cshd_paddr,
370 	    sizeof(struct cesa_sa_hdesc)));
371 }
372 
373 static void
cesa_append_tdesc(struct cesa_request * cr,struct cesa_tdma_desc * ctd)374 cesa_append_tdesc(struct cesa_request *cr, struct cesa_tdma_desc *ctd)
375 {
376 	struct cesa_tdma_desc *ctd_prev;
377 
378 	if (!STAILQ_EMPTY(&cr->cr_tdesc)) {
379 		ctd_prev = STAILQ_LAST(&cr->cr_tdesc, cesa_tdma_desc, ctd_stq);
380 		ctd_prev->ctd_cthd->cthd_next = ctd->ctd_cthd_paddr;
381 	}
382 
383 	ctd->ctd_cthd->cthd_next = 0;
384 	STAILQ_INSERT_TAIL(&cr->cr_tdesc, ctd, ctd_stq);
385 }
386 
387 static int
cesa_append_packet(struct cesa_softc * sc,struct cesa_request * cr,struct cesa_packet * cp,struct cesa_sa_desc * csd)388 cesa_append_packet(struct cesa_softc *sc, struct cesa_request *cr,
389     struct cesa_packet *cp, struct cesa_sa_desc *csd)
390 {
391 	struct cesa_tdma_desc *ctd, *tmp;
392 
393 	/* Copy SA descriptor for this packet */
394 	ctd = cesa_tdma_copy_sdesc(sc, csd);
395 	if (!ctd)
396 		return (ENOMEM);
397 
398 	cesa_append_tdesc(cr, ctd);
399 
400 	/* Copy data to be processed */
401 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyin, ctd_stq, tmp)
402 		cesa_append_tdesc(cr, ctd);
403 	STAILQ_INIT(&cp->cp_copyin);
404 
405 	/* Insert control descriptor */
406 	ctd = cesa_tdma_copy(sc, 0, 0, 0);
407 	if (!ctd)
408 		return (ENOMEM);
409 
410 	cesa_append_tdesc(cr, ctd);
411 
412 	/* Copy back results */
413 	STAILQ_FOREACH_SAFE(ctd, &cp->cp_copyout, ctd_stq, tmp)
414 		cesa_append_tdesc(cr, ctd);
415 	STAILQ_INIT(&cp->cp_copyout);
416 
417 	return (0);
418 }
419 
420 static void
cesa_set_mkey(struct cesa_session * cs,int alg,const uint8_t * mkey,int mklen)421 cesa_set_mkey(struct cesa_session *cs, int alg, const uint8_t *mkey, int mklen)
422 {
423 	union authctx auth_ctx;
424 	uint32_t *hout;
425 	uint32_t *hin;
426 	int i;
427 
428 	hin = (uint32_t *)cs->cs_hiv_in;
429 	hout = (uint32_t *)cs->cs_hiv_out;
430 
431 	switch (alg) {
432 	case CRYPTO_SHA1_HMAC:
433 		hmac_init_ipad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
434 		memcpy(hin, auth_ctx.sha1ctx.h.b32,
435 		    sizeof(auth_ctx.sha1ctx.h.b32));
436 		hmac_init_opad(&auth_hash_hmac_sha1, mkey, mklen, &auth_ctx);
437 		memcpy(hout, auth_ctx.sha1ctx.h.b32,
438 		    sizeof(auth_ctx.sha1ctx.h.b32));
439 		break;
440 	case CRYPTO_SHA2_256_HMAC:
441 		hmac_init_ipad(&auth_hash_hmac_sha2_256, mkey, mklen,
442 		    &auth_ctx);
443 		memcpy(hin, auth_ctx.sha256ctx.state,
444 		    sizeof(auth_ctx.sha256ctx.state));
445 		hmac_init_opad(&auth_hash_hmac_sha2_256, mkey, mklen,
446 		    &auth_ctx);
447 		memcpy(hout, auth_ctx.sha256ctx.state,
448 		    sizeof(auth_ctx.sha256ctx.state));
449 		break;
450 	default:
451 		panic("shouldn't get here");
452 	}
453 
454 	for (i = 0; i < CESA_MAX_HASH_LEN / sizeof(uint32_t); i++) {
455 		hin[i] = htobe32(hin[i]);
456 		hout[i] = htobe32(hout[i]);
457 	}
458 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
459 }
460 
461 static int
cesa_prep_aes_key(struct cesa_session * cs,const struct crypto_session_params * csp)462 cesa_prep_aes_key(struct cesa_session *cs,
463     const struct crypto_session_params *csp)
464 {
465 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
466 	uint32_t *dkey;
467 	int i;
468 
469 	rijndaelKeySetupEnc(ek, cs->cs_key, csp->csp_cipher_klen * 8);
470 
471 	cs->cs_config &= ~CESA_CSH_AES_KLEN_MASK;
472 	dkey = (uint32_t *)cs->cs_aes_dkey;
473 
474 	switch (csp->csp_cipher_klen) {
475 	case 16:
476 		cs->cs_config |= CESA_CSH_AES_KLEN_128;
477 		for (i = 0; i < 4; i++)
478 			*dkey++ = htobe32(ek[4 * 10 + i]);
479 		break;
480 	case 24:
481 		cs->cs_config |= CESA_CSH_AES_KLEN_192;
482 		for (i = 0; i < 4; i++)
483 			*dkey++ = htobe32(ek[4 * 12 + i]);
484 		for (i = 0; i < 2; i++)
485 			*dkey++ = htobe32(ek[4 * 11 + 2 + i]);
486 		break;
487 	case 32:
488 		cs->cs_config |= CESA_CSH_AES_KLEN_256;
489 		for (i = 0; i < 4; i++)
490 			*dkey++ = htobe32(ek[4 * 14 + i]);
491 		for (i = 0; i < 4; i++)
492 			*dkey++ = htobe32(ek[4 * 13 + i]);
493 		break;
494 	default:
495 		return (EINVAL);
496 	}
497 
498 	return (0);
499 }
500 
501 static void
cesa_start_packet(struct cesa_packet * cp,unsigned int size)502 cesa_start_packet(struct cesa_packet *cp, unsigned int size)
503 {
504 
505 	cp->cp_size = size;
506 	cp->cp_offset = 0;
507 	STAILQ_INIT(&cp->cp_copyin);
508 	STAILQ_INIT(&cp->cp_copyout);
509 }
510 
511 static int
cesa_fill_packet(struct cesa_softc * sc,struct cesa_packet * cp,bus_dma_segment_t * seg)512 cesa_fill_packet(struct cesa_softc *sc, struct cesa_packet *cp,
513     bus_dma_segment_t *seg)
514 {
515 	struct cesa_tdma_desc *ctd;
516 	unsigned int bsize;
517 
518 	/* Calculate size of block copy */
519 	bsize = MIN(seg->ds_len, cp->cp_size - cp->cp_offset);
520 
521 	if (bsize > 0) {
522 		ctd = cesa_tdma_copy(sc, sc->sc_sram_base_pa +
523 		    CESA_DATA(cp->cp_offset), seg->ds_addr, bsize);
524 		if (!ctd)
525 			return (-ENOMEM);
526 
527 		STAILQ_INSERT_TAIL(&cp->cp_copyin, ctd, ctd_stq);
528 
529 		ctd = cesa_tdma_copy(sc, seg->ds_addr, sc->sc_sram_base_pa +
530 		    CESA_DATA(cp->cp_offset), bsize);
531 		if (!ctd)
532 			return (-ENOMEM);
533 
534 		STAILQ_INSERT_TAIL(&cp->cp_copyout, ctd, ctd_stq);
535 
536 		seg->ds_len -= bsize;
537 		seg->ds_addr += bsize;
538 		cp->cp_offset += bsize;
539 	}
540 
541 	return (bsize);
542 }
543 
544 static void
cesa_create_chain_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)545 cesa_create_chain_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
546 {
547 	unsigned int mpsize, fragmented;
548 	unsigned int mlen, mskip, tmlen;
549 	struct cesa_chain_info *cci;
550 	unsigned int elen, eskip;
551 	unsigned int skip, len;
552 	struct cesa_sa_desc *csd;
553 	struct cesa_request *cr;
554 	struct cryptop *crp;
555 	struct cesa_softc *sc;
556 	struct cesa_packet cp;
557 	bus_dma_segment_t seg;
558 	uint32_t config;
559 	int size;
560 
561 	cci = arg;
562 	sc = cci->cci_sc;
563 	cr = cci->cci_cr;
564 	crp = cr->cr_crp;
565 
566 	if (error) {
567 		cci->cci_error = error;
568 		return;
569 	}
570 
571 	/*
572 	 * Only do a combined op if the AAD is adjacent to the payload
573 	 * and the AAD length is a multiple of the IV length.  The
574 	 * checks against 'config' are to avoid recursing when the
575 	 * logic below invokes separate operations.
576 	 */
577 	config = cci->cci_config;
578 	if (((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC ||
579 	    (config & CESA_CSHD_OP_MASK) == CESA_CSHD_ENC_AND_MAC) &&
580 	    crp->crp_aad_length != 0 &&
581 	    (crp->crp_aad_length & (cr->cr_cs->cs_ivlen - 1)) != 0) {
582 		/*
583 		 * Data alignment in the request does not meet CESA requiremnts
584 		 * for combined encryption/decryption and hashing. We have to
585 		 * split the request to separate operations and process them
586 		 * one by one.
587 		 */
588 		if ((config & CESA_CSHD_OP_MASK) == CESA_CSHD_MAC_AND_ENC) {
589 			config &= ~CESA_CSHD_OP_MASK;
590 
591 			cci->cci_config = config | CESA_CSHD_MAC;
592 			cesa_create_chain_cb(cci, segs, nseg, 0);
593 
594 			cci->cci_config = config | CESA_CSHD_ENC;
595 			cesa_create_chain_cb(cci, segs, nseg, 0);
596 		} else {
597 			config &= ~CESA_CSHD_OP_MASK;
598 
599 			cci->cci_config = config | CESA_CSHD_ENC;
600 			cesa_create_chain_cb(cci, segs, nseg, 0);
601 
602 			cci->cci_config = config | CESA_CSHD_MAC;
603 			cesa_create_chain_cb(cci, segs, nseg, 0);
604 		}
605 
606 		return;
607 	}
608 
609 	mskip = mlen = eskip = elen = 0;
610 
611 	if (crp->crp_aad_length == 0) {
612 		skip = crp->crp_payload_start;
613 		len = crp->crp_payload_length;
614 		switch (config & CESA_CSHD_OP_MASK) {
615 		case CESA_CSHD_ENC:
616 			eskip = skip;
617 			elen = len;
618 			break;
619 		case CESA_CSHD_MAC:
620 			mskip = skip;
621 			mlen = len;
622 			break;
623 		default:
624 			eskip = skip;
625 			elen = len;
626 			mskip = skip;
627 			mlen = len;
628 			break;
629 		}
630 	} else {
631 		/*
632 		 * For an encryption-only separate request, only
633 		 * process the payload.  For combined requests and
634 		 * hash-only requests, process the entire region.
635 		 */
636 		switch (config & CESA_CSHD_OP_MASK) {
637 		case CESA_CSHD_ENC:
638 			skip = crp->crp_payload_start;
639 			len = crp->crp_payload_length;
640 			eskip = skip;
641 			elen = len;
642 			break;
643 		case CESA_CSHD_MAC:
644 			skip = crp->crp_aad_start;
645 			len = crp->crp_aad_length + crp->crp_payload_length;
646 			mskip = skip;
647 			mlen = len;
648 			break;
649 		default:
650 			skip = crp->crp_aad_start;
651 			len = crp->crp_aad_length + crp->crp_payload_length;
652 			mskip = skip;
653 			mlen = len;
654 			eskip = crp->crp_payload_start;
655 			elen = crp->crp_payload_length;
656 			break;
657 		}
658 	}
659 
660 	tmlen = mlen;
661 	fragmented = 0;
662 	mpsize = CESA_MAX_PACKET_SIZE;
663 	mpsize &= ~((cr->cr_cs->cs_ivlen - 1) | (cr->cr_cs->cs_mblen - 1));
664 
665 	/* Start first packet in chain */
666 	cesa_start_packet(&cp, MIN(mpsize, len));
667 
668 	while (nseg-- && len > 0) {
669 		seg = *(segs++);
670 
671 		/*
672 		 * Skip data in buffer on which neither ENC nor MAC operation
673 		 * is requested.
674 		 */
675 		if (skip > 0) {
676 			size = MIN(skip, seg.ds_len);
677 			skip -= size;
678 
679 			seg.ds_addr += size;
680 			seg.ds_len -= size;
681 
682 			if (eskip > 0)
683 				eskip -= size;
684 
685 			if (mskip > 0)
686 				mskip -= size;
687 
688 			if (seg.ds_len == 0)
689 				continue;
690 		}
691 
692 		while (1) {
693 			/*
694 			 * Fill in current packet with data. Break if there is
695 			 * no more data in current DMA segment or an error
696 			 * occurred.
697 			 */
698 			size = cesa_fill_packet(sc, &cp, &seg);
699 			if (size <= 0) {
700 				error = -size;
701 				break;
702 			}
703 
704 			len -= size;
705 
706 			/* If packet is full, append it to the chain */
707 			if (cp.cp_size == cp.cp_offset) {
708 				csd = cesa_alloc_sdesc(sc, cr);
709 				if (!csd) {
710 					error = ENOMEM;
711 					break;
712 				}
713 
714 				/* Create SA descriptor for this packet */
715 				csd->csd_cshd->cshd_config = cci->cci_config;
716 				csd->csd_cshd->cshd_mac_total_dlen = tmlen;
717 
718 				/*
719 				 * Enable fragmentation if request will not fit
720 				 * into one packet.
721 				 */
722 				if (len > 0) {
723 					if (!fragmented) {
724 						fragmented = 1;
725 						csd->csd_cshd->cshd_config |=
726 						    CESA_CSHD_FRAG_FIRST;
727 					} else
728 						csd->csd_cshd->cshd_config |=
729 						    CESA_CSHD_FRAG_MIDDLE;
730 				} else if (fragmented)
731 					csd->csd_cshd->cshd_config |=
732 					    CESA_CSHD_FRAG_LAST;
733 
734 				if (eskip < cp.cp_size && elen > 0) {
735 					csd->csd_cshd->cshd_enc_src =
736 					    CESA_DATA(eskip);
737 					csd->csd_cshd->cshd_enc_dst =
738 					    CESA_DATA(eskip);
739 					csd->csd_cshd->cshd_enc_dlen =
740 					    MIN(elen, cp.cp_size - eskip);
741 				}
742 
743 				if (mskip < cp.cp_size && mlen > 0) {
744 					csd->csd_cshd->cshd_mac_src =
745 					    CESA_DATA(mskip);
746 					csd->csd_cshd->cshd_mac_dlen =
747 					    MIN(mlen, cp.cp_size - mskip);
748 				}
749 
750 				elen -= csd->csd_cshd->cshd_enc_dlen;
751 				eskip -= MIN(eskip, cp.cp_size);
752 				mlen -= csd->csd_cshd->cshd_mac_dlen;
753 				mskip -= MIN(mskip, cp.cp_size);
754 
755 				cesa_dump_cshd(sc, csd->csd_cshd);
756 
757 				/* Append packet to the request */
758 				error = cesa_append_packet(sc, cr, &cp, csd);
759 				if (error)
760 					break;
761 
762 				/* Start a new packet, as current is full */
763 				cesa_start_packet(&cp, MIN(mpsize, len));
764 			}
765 		}
766 
767 		if (error)
768 			break;
769 	}
770 
771 	if (error) {
772 		/*
773 		 * Move all allocated resources to the request. They will be
774 		 * freed later.
775 		 */
776 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyin);
777 		STAILQ_CONCAT(&cr->cr_tdesc, &cp.cp_copyout);
778 		cci->cci_error = error;
779 	}
780 }
781 
782 static int
cesa_create_chain(struct cesa_softc * sc,const struct crypto_session_params * csp,struct cesa_request * cr)783 cesa_create_chain(struct cesa_softc *sc,
784     const struct crypto_session_params *csp, struct cesa_request *cr)
785 {
786 	struct cesa_chain_info cci;
787 	struct cesa_tdma_desc *ctd;
788 	uint32_t config;
789 	int error;
790 
791 	error = 0;
792 	CESA_LOCK_ASSERT(sc, sessions);
793 
794 	/* Create request metadata */
795 	if (csp->csp_cipher_klen != 0) {
796 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC &&
797 		    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
798 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_aes_dkey,
799 			    csp->csp_cipher_klen);
800 		else
801 			memcpy(cr->cr_csd->csd_key, cr->cr_cs->cs_key,
802 			    csp->csp_cipher_klen);
803 	}
804 
805 	if (csp->csp_auth_klen != 0) {
806 		memcpy(cr->cr_csd->csd_hiv_in, cr->cr_cs->cs_hiv_in,
807 		    CESA_MAX_HASH_LEN);
808 		memcpy(cr->cr_csd->csd_hiv_out, cr->cr_cs->cs_hiv_out,
809 		    CESA_MAX_HASH_LEN);
810 	}
811 
812 	ctd = cesa_tdma_copyin_sa_data(sc, cr);
813 	if (!ctd)
814 		return (ENOMEM);
815 
816 	cesa_append_tdesc(cr, ctd);
817 
818 	/* Prepare SA configuration */
819 	config = cr->cr_cs->cs_config;
820 
821 	if (csp->csp_cipher_alg != 0 &&
822 	    !CRYPTO_OP_IS_ENCRYPT(cr->cr_crp->crp_op))
823 		config |= CESA_CSHD_DECRYPT;
824 	switch (csp->csp_mode) {
825 	case CSP_MODE_CIPHER:
826 		config |= CESA_CSHD_ENC;
827 		break;
828 	case CSP_MODE_DIGEST:
829 		config |= CESA_CSHD_MAC;
830 		break;
831 	case CSP_MODE_ETA:
832 		config |= (config & CESA_CSHD_DECRYPT) ? CESA_CSHD_MAC_AND_ENC :
833 		    CESA_CSHD_ENC_AND_MAC;
834 		break;
835 	}
836 
837 	/* Create data packets */
838 	cci.cci_sc = sc;
839 	cci.cci_cr = cr;
840 	cci.cci_config = config;
841 	cci.cci_error = 0;
842 
843 	error = bus_dmamap_load_crp(sc->sc_data_dtag, cr->cr_dmap, cr->cr_crp,
844 	    cesa_create_chain_cb, &cci, BUS_DMA_NOWAIT);
845 
846 	if (!error)
847 		cr->cr_dmap_loaded = 1;
848 
849 	if (cci.cci_error)
850 		error = cci.cci_error;
851 
852 	if (error)
853 		return (error);
854 
855 	/* Read back request metadata */
856 	ctd = cesa_tdma_copyout_sa_data(sc, cr);
857 	if (!ctd)
858 		return (ENOMEM);
859 
860 	cesa_append_tdesc(cr, ctd);
861 
862 	return (0);
863 }
864 
865 static void
cesa_execute(struct cesa_softc * sc)866 cesa_execute(struct cesa_softc *sc)
867 {
868 	struct cesa_tdma_desc *prev_ctd, *ctd;
869 	struct cesa_request *prev_cr, *cr;
870 
871 	CESA_LOCK(sc, requests);
872 
873 	/*
874 	 * If ready list is empty, there is nothing to execute. If queued list
875 	 * is not empty, the hardware is busy and we cannot start another
876 	 * execution.
877 	 */
878 	if (STAILQ_EMPTY(&sc->sc_ready_requests) ||
879 	    !STAILQ_EMPTY(&sc->sc_queued_requests)) {
880 		CESA_UNLOCK(sc, requests);
881 		return;
882 	}
883 
884 	/* Move all ready requests to queued list */
885 	STAILQ_CONCAT(&sc->sc_queued_requests, &sc->sc_ready_requests);
886 	STAILQ_INIT(&sc->sc_ready_requests);
887 
888 	/* Create one execution chain from all requests on the list */
889 	if (STAILQ_FIRST(&sc->sc_queued_requests) !=
890 	    STAILQ_LAST(&sc->sc_queued_requests, cesa_request, cr_stq)) {
891 		prev_cr = NULL;
892 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_POSTREAD |
893 		    BUS_DMASYNC_POSTWRITE);
894 
895 		STAILQ_FOREACH(cr, &sc->sc_queued_requests, cr_stq) {
896 			if (prev_cr) {
897 				ctd = STAILQ_FIRST(&cr->cr_tdesc);
898 				prev_ctd = STAILQ_LAST(&prev_cr->cr_tdesc,
899 				    cesa_tdma_desc, ctd_stq);
900 
901 				prev_ctd->ctd_cthd->cthd_next =
902 				    ctd->ctd_cthd_paddr;
903 			}
904 
905 			prev_cr = cr;
906 		}
907 
908 		cesa_sync_dma_mem(&sc->sc_tdesc_cdm, BUS_DMASYNC_PREREAD |
909 		    BUS_DMASYNC_PREWRITE);
910 	}
911 
912 	/* Start chain execution in hardware */
913 	cr = STAILQ_FIRST(&sc->sc_queued_requests);
914 	ctd = STAILQ_FIRST(&cr->cr_tdesc);
915 
916 	CESA_TDMA_WRITE(sc, CESA_TDMA_ND, ctd->ctd_cthd_paddr);
917 
918 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
919 	    sc->sc_soc_id == MV_DEV_88F6820 ||
920 	    sc->sc_soc_id == MV_DEV_88F6810)
921 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE | CESA_SA_CMD_SHA2);
922 	else
923 		CESA_REG_WRITE(sc, CESA_SA_CMD, CESA_SA_CMD_ACTVATE);
924 
925 	CESA_UNLOCK(sc, requests);
926 }
927 
928 static int
cesa_setup_sram(struct cesa_softc * sc)929 cesa_setup_sram(struct cesa_softc *sc)
930 {
931 	phandle_t sram_node;
932 	ihandle_t sram_ihandle;
933 	pcell_t sram_handle, sram_reg[2];
934 	void *sram_va;
935 	int rv;
936 
937 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "sram-handle",
938 	    (void *)&sram_handle, sizeof(sram_handle));
939 	if (rv <= 0)
940 		return (rv);
941 
942 	sram_ihandle = (ihandle_t)sram_handle;
943 	sram_node = OF_instance_to_package(sram_ihandle);
944 
945 	rv = OF_getencprop(sram_node, "reg", (void *)sram_reg, sizeof(sram_reg));
946 	if (rv <= 0)
947 		return (rv);
948 
949 	sc->sc_sram_base_pa = sram_reg[0];
950 	/* Store SRAM size to be able to unmap in detach() */
951 	sc->sc_sram_size = sram_reg[1];
952 
953 	if (sc->sc_soc_id != MV_DEV_88F6828 &&
954 	    sc->sc_soc_id != MV_DEV_88F6820 &&
955 	    sc->sc_soc_id != MV_DEV_88F6810)
956 		return (0);
957 
958 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
959 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
960 	if (sram_va == NULL)
961 		return (ENOMEM);
962 	sc->sc_sram_base_va = sram_va;
963 
964 	return (0);
965 }
966 
967 /*
968  * Function: device_from_node
969  * This function returns appropriate device_t to phandle_t
970  * Parameters:
971  * root - device where you want to start search
972  *     if you provide NULL here, function will take
973  *     "root0" device as root.
974  * node - we are checking every device_t to be
975  *     appropriate with this.
976  */
977 static device_t
device_from_node(device_t root,phandle_t node)978 device_from_node(device_t root, phandle_t node)
979 {
980 	device_t *children, retval;
981 	int nkid, i;
982 
983 	/* Nothing matches no node */
984 	if (node == -1)
985 		return (NULL);
986 
987 	if (root == NULL)
988 		/* Get root of device tree */
989 		if ((root = device_lookup_by_name("root0")) == NULL)
990 			return (NULL);
991 
992 	if (device_get_children(root, &children, &nkid) != 0)
993 		return (NULL);
994 
995 	retval = NULL;
996 	for (i = 0; i < nkid; i++) {
997 		/* Check if device and node matches */
998 		if (OFW_BUS_GET_NODE(root, children[i]) == node) {
999 			retval = children[i];
1000 			break;
1001 		}
1002 		/* or go deeper */
1003 		if ((retval = device_from_node(children[i], node)) != NULL)
1004 			break;
1005 	}
1006 	free(children, M_TEMP);
1007 
1008 	return (retval);
1009 }
1010 
1011 static int
cesa_setup_sram_armada(struct cesa_softc * sc)1012 cesa_setup_sram_armada(struct cesa_softc *sc)
1013 {
1014 	phandle_t sram_node;
1015 	ihandle_t sram_ihandle;
1016 	pcell_t sram_handle[2];
1017 	void *sram_va;
1018 	int rv, j;
1019 	struct resource_list rl;
1020 	struct resource_list_entry *rle;
1021 	struct simplebus_softc *ssc;
1022 	device_t sdev;
1023 
1024 	/* Get refs to SRAMS from CESA node */
1025 	rv = OF_getencprop(ofw_bus_get_node(sc->sc_dev), "marvell,crypto-srams",
1026 	    (void *)sram_handle, sizeof(sram_handle));
1027 	if (rv <= 0)
1028 		return (rv);
1029 
1030 	if (sc->sc_cesa_engine_id >= 2)
1031 		return (ENXIO);
1032 
1033 	/* Get SRAM node on the basis of sc_cesa_engine_id */
1034 	sram_ihandle = (ihandle_t)sram_handle[sc->sc_cesa_engine_id];
1035 	sram_node = OF_instance_to_package(sram_ihandle);
1036 
1037 	/* Get device_t of simplebus (sram_node parent) */
1038 	sdev = device_from_node(NULL, OF_parent(sram_node));
1039 	if (!sdev)
1040 		return (ENXIO);
1041 
1042 	ssc = device_get_softc(sdev);
1043 
1044 	resource_list_init(&rl);
1045 	/* Parse reg property to resource list */
1046 	ofw_bus_reg_to_rl(sdev, sram_node, ssc->acells,
1047 	    ssc->scells, &rl);
1048 
1049 	/* We expect only one resource */
1050 	rle = resource_list_find(&rl, SYS_RES_MEMORY, 0);
1051 	if (rle == NULL)
1052 		return (ENXIO);
1053 
1054 	/* Remap through ranges property */
1055 	for (j = 0; j < ssc->nranges; j++) {
1056 		if (rle->start >= ssc->ranges[j].bus &&
1057 		    rle->end < ssc->ranges[j].bus + ssc->ranges[j].size) {
1058 			rle->start -= ssc->ranges[j].bus;
1059 			rle->start += ssc->ranges[j].host;
1060 			rle->end -= ssc->ranges[j].bus;
1061 			rle->end += ssc->ranges[j].host;
1062 		}
1063 	}
1064 
1065 	sc->sc_sram_base_pa = rle->start;
1066 	sc->sc_sram_size = rle->count;
1067 
1068 	/* SRAM memory was not mapped in platform_sram_devmap(), map it now */
1069 	sram_va = pmap_mapdev(sc->sc_sram_base_pa, sc->sc_sram_size);
1070 	if (sram_va == NULL)
1071 		return (ENOMEM);
1072 	sc->sc_sram_base_va = sram_va;
1073 
1074 	return (0);
1075 }
1076 
1077 struct ofw_compat_data cesa_devices[] = {
1078 	{ "mrvl,cesa", (uintptr_t)true },
1079 	{ "marvell,armada-38x-crypto", (uintptr_t)true },
1080 	{ NULL, 0 }
1081 };
1082 
1083 static int
cesa_probe(device_t dev)1084 cesa_probe(device_t dev)
1085 {
1086 
1087 	if (!ofw_bus_status_okay(dev))
1088 		return (ENXIO);
1089 
1090 	if (!ofw_bus_search_compatible(dev, cesa_devices)->ocd_data)
1091 		return (ENXIO);
1092 
1093 	device_set_desc(dev, "Marvell Cryptographic Engine and Security "
1094 	    "Accelerator");
1095 
1096 	return (BUS_PROBE_DEFAULT);
1097 }
1098 
1099 static int
cesa_attach(device_t dev)1100 cesa_attach(device_t dev)
1101 {
1102 	static int engine_idx = 0;
1103 	struct simplebus_devinfo *ndi;
1104 	struct resource_list *rl;
1105 	struct cesa_softc *sc;
1106 
1107 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1108 		return (cesa_attach_late(dev));
1109 
1110 	/*
1111 	 * Get simplebus_devinfo which contains
1112 	 * resource list filled with adresses and
1113 	 * interrupts read form FDT.
1114 	 * Let's correct it by splitting resources
1115 	 * for each engine.
1116 	 */
1117 	if ((ndi = device_get_ivars(dev)) == NULL)
1118 		return (ENXIO);
1119 
1120 	rl = &ndi->rl;
1121 
1122 	switch (engine_idx) {
1123 		case 0:
1124 			/* Update regs values */
1125 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA0_TDMA_ADDR,
1126 			    CESA0_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1127 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA0_CESA_ADDR,
1128 			    CESA0_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1129 
1130 			/* Remove unused interrupt */
1131 			resource_list_delete(rl, SYS_RES_IRQ, 1);
1132 			break;
1133 
1134 		case 1:
1135 			/* Update regs values */
1136 			resource_list_add(rl, SYS_RES_MEMORY, 0, CESA1_TDMA_ADDR,
1137 			    CESA1_TDMA_ADDR + CESA_TDMA_SIZE - 1, CESA_TDMA_SIZE);
1138 			resource_list_add(rl, SYS_RES_MEMORY, 1, CESA1_CESA_ADDR,
1139 			    CESA1_CESA_ADDR + CESA_CESA_SIZE - 1, CESA_CESA_SIZE);
1140 
1141 			/* Remove unused interrupt */
1142 			resource_list_delete(rl, SYS_RES_IRQ, 0);
1143 			resource_list_find(rl, SYS_RES_IRQ, 1)->rid = 0;
1144 			break;
1145 
1146 		default:
1147 			device_printf(dev, "Bad cesa engine_idx\n");
1148 			return (ENXIO);
1149 	}
1150 
1151 	sc = device_get_softc(dev);
1152 	sc->sc_cesa_engine_id = engine_idx;
1153 
1154 	/*
1155 	 * Call simplebus_add_device only once.
1156 	 * It will create second cesa driver instance
1157 	 * with the same FDT node as first instance.
1158 	 * When second driver reach this function,
1159 	 * it will be configured to use second cesa engine
1160 	 */
1161 	if (engine_idx == 0)
1162 		simplebus_add_device(device_get_parent(dev), ofw_bus_get_node(dev),
1163 		    0, "cesa", 1, NULL);
1164 
1165 	engine_idx++;
1166 
1167 	return (cesa_attach_late(dev));
1168 }
1169 
1170 static int
cesa_attach_late(device_t dev)1171 cesa_attach_late(device_t dev)
1172 {
1173 	struct cesa_softc *sc;
1174 	uint32_t d, r, val;
1175 	int error;
1176 	int i;
1177 
1178 	sc = device_get_softc(dev);
1179 	sc->sc_blocked = 0;
1180 	sc->sc_error = 0;
1181 	sc->sc_dev = dev;
1182 
1183 	soc_id(&d, &r);
1184 
1185 	switch (d) {
1186 	case MV_DEV_88F6281:
1187 	case MV_DEV_88F6282:
1188 		/* Check if CESA peripheral device has power turned on */
1189 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) ==
1190 		    CPU_PM_CTRL_CRYPTO) {
1191 			device_printf(dev, "not powered on\n");
1192 			return (ENXIO);
1193 		}
1194 		sc->sc_tperr = 0;
1195 		break;
1196 	case MV_DEV_88F6828:
1197 	case MV_DEV_88F6820:
1198 	case MV_DEV_88F6810:
1199 		sc->sc_tperr = 0;
1200 		break;
1201 	case MV_DEV_MV78100:
1202 	case MV_DEV_MV78100_Z0:
1203 		/* Check if CESA peripheral device has power turned on */
1204 		if (soc_power_ctrl_get(CPU_PM_CTRL_CRYPTO) !=
1205 		    CPU_PM_CTRL_CRYPTO) {
1206 			device_printf(dev, "not powered on\n");
1207 			return (ENXIO);
1208 		}
1209 		sc->sc_tperr = CESA_ICR_TPERR;
1210 		break;
1211 	default:
1212 		return (ENXIO);
1213 	}
1214 
1215 	sc->sc_soc_id = d;
1216 
1217 	/* Initialize mutexes */
1218 	mtx_init(&sc->sc_sc_lock, device_get_nameunit(dev),
1219 	    "CESA Shared Data", MTX_DEF);
1220 	mtx_init(&sc->sc_tdesc_lock, device_get_nameunit(dev),
1221 	    "CESA TDMA Descriptors Pool", MTX_DEF);
1222 	mtx_init(&sc->sc_sdesc_lock, device_get_nameunit(dev),
1223 	    "CESA SA Descriptors Pool", MTX_DEF);
1224 	mtx_init(&sc->sc_requests_lock, device_get_nameunit(dev),
1225 	    "CESA Requests Pool", MTX_DEF);
1226 	mtx_init(&sc->sc_sessions_lock, device_get_nameunit(dev),
1227 	    "CESA Sessions Pool", MTX_DEF);
1228 
1229 	/* Allocate I/O and IRQ resources */
1230 	error = bus_alloc_resources(dev, cesa_res_spec, sc->sc_res);
1231 	if (error) {
1232 		device_printf(dev, "could not allocate resources\n");
1233 		goto err0;
1234 	}
1235 
1236 	/* Acquire SRAM base address */
1237 	if (!ofw_bus_is_compatible(dev, "marvell,armada-38x-crypto"))
1238 		error = cesa_setup_sram(sc);
1239 	else
1240 		error = cesa_setup_sram_armada(sc);
1241 
1242 	if (error) {
1243 		device_printf(dev, "could not setup SRAM\n");
1244 		goto err1;
1245 	}
1246 
1247 	/* Setup interrupt handler */
1248 	error = bus_setup_intr(dev, sc->sc_res[RES_CESA_IRQ], INTR_TYPE_NET |
1249 	    INTR_MPSAFE, NULL, cesa_intr, sc, &(sc->sc_icookie));
1250 	if (error) {
1251 		device_printf(dev, "could not setup engine completion irq\n");
1252 		goto err2;
1253 	}
1254 
1255 	/* Create DMA tag for processed data */
1256 	error = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1257 	    1, 0,				/* alignment, boundary */
1258 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1259 	    BUS_SPACE_MAXADDR,			/* highaddr */
1260 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1261 	    CESA_MAX_REQUEST_SIZE,		/* maxsize */
1262 	    CESA_MAX_FRAGMENTS,			/* nsegments */
1263 	    CESA_MAX_REQUEST_SIZE, 0,		/* maxsegsz, flags */
1264 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1265 	    &sc->sc_data_dtag);			/* dmat */
1266 	if (error)
1267 		goto err3;
1268 
1269 	/* Initialize data structures: TDMA Descriptors Pool */
1270 	error = cesa_alloc_dma_mem(sc, &sc->sc_tdesc_cdm,
1271 	    CESA_TDMA_DESCRIPTORS * sizeof(struct cesa_tdma_hdesc));
1272 	if (error)
1273 		goto err4;
1274 
1275 	STAILQ_INIT(&sc->sc_free_tdesc);
1276 	for (i = 0; i < CESA_TDMA_DESCRIPTORS; i++) {
1277 		sc->sc_tdesc[i].ctd_cthd =
1278 		    (struct cesa_tdma_hdesc *)(sc->sc_tdesc_cdm.cdm_vaddr) + i;
1279 		sc->sc_tdesc[i].ctd_cthd_paddr = sc->sc_tdesc_cdm.cdm_paddr +
1280 		    (i * sizeof(struct cesa_tdma_hdesc));
1281 		STAILQ_INSERT_TAIL(&sc->sc_free_tdesc, &sc->sc_tdesc[i],
1282 		    ctd_stq);
1283 	}
1284 
1285 	/* Initialize data structures: SA Descriptors Pool */
1286 	error = cesa_alloc_dma_mem(sc, &sc->sc_sdesc_cdm,
1287 	    CESA_SA_DESCRIPTORS * sizeof(struct cesa_sa_hdesc));
1288 	if (error)
1289 		goto err5;
1290 
1291 	STAILQ_INIT(&sc->sc_free_sdesc);
1292 	for (i = 0; i < CESA_SA_DESCRIPTORS; i++) {
1293 		sc->sc_sdesc[i].csd_cshd =
1294 		    (struct cesa_sa_hdesc *)(sc->sc_sdesc_cdm.cdm_vaddr) + i;
1295 		sc->sc_sdesc[i].csd_cshd_paddr = sc->sc_sdesc_cdm.cdm_paddr +
1296 		    (i * sizeof(struct cesa_sa_hdesc));
1297 		STAILQ_INSERT_TAIL(&sc->sc_free_sdesc, &sc->sc_sdesc[i],
1298 		    csd_stq);
1299 	}
1300 
1301 	/* Initialize data structures: Requests Pool */
1302 	error = cesa_alloc_dma_mem(sc, &sc->sc_requests_cdm,
1303 	    CESA_REQUESTS * sizeof(struct cesa_sa_data));
1304 	if (error)
1305 		goto err6;
1306 
1307 	STAILQ_INIT(&sc->sc_free_requests);
1308 	STAILQ_INIT(&sc->sc_ready_requests);
1309 	STAILQ_INIT(&sc->sc_queued_requests);
1310 	for (i = 0; i < CESA_REQUESTS; i++) {
1311 		sc->sc_requests[i].cr_csd =
1312 		    (struct cesa_sa_data *)(sc->sc_requests_cdm.cdm_vaddr) + i;
1313 		sc->sc_requests[i].cr_csd_paddr =
1314 		    sc->sc_requests_cdm.cdm_paddr +
1315 		    (i * sizeof(struct cesa_sa_data));
1316 
1317 		/* Preallocate DMA maps */
1318 		error = bus_dmamap_create(sc->sc_data_dtag, 0,
1319 		    &sc->sc_requests[i].cr_dmap);
1320 		if (error && i > 0) {
1321 			i--;
1322 			do {
1323 				bus_dmamap_destroy(sc->sc_data_dtag,
1324 				    sc->sc_requests[i].cr_dmap);
1325 			} while (i--);
1326 
1327 			goto err7;
1328 		}
1329 
1330 		STAILQ_INSERT_TAIL(&sc->sc_free_requests, &sc->sc_requests[i],
1331 		    cr_stq);
1332 	}
1333 
1334 	/*
1335 	 * Initialize TDMA:
1336 	 * - Burst limit: 128 bytes,
1337 	 * - Outstanding reads enabled,
1338 	 * - No byte-swap.
1339 	 */
1340 	val = CESA_TDMA_CR_DBL128 | CESA_TDMA_CR_SBL128 |
1341 	    CESA_TDMA_CR_ORDEN | CESA_TDMA_CR_NBS | CESA_TDMA_CR_ENABLE;
1342 
1343 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1344 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1345 	    sc->sc_soc_id == MV_DEV_88F6810)
1346 		val |= CESA_TDMA_NUM_OUTSTAND;
1347 
1348 	CESA_TDMA_WRITE(sc, CESA_TDMA_CR, val);
1349 
1350 	/*
1351 	 * Initialize SA:
1352 	 * - SA descriptor is present at beginning of CESA SRAM,
1353 	 * - Multi-packet chain mode,
1354 	 * - Cooperation with TDMA enabled.
1355 	 */
1356 	CESA_REG_WRITE(sc, CESA_SA_DPR, 0);
1357 	CESA_REG_WRITE(sc, CESA_SA_CR, CESA_SA_CR_ACTIVATE_TDMA |
1358 	    CESA_SA_CR_WAIT_FOR_TDMA | CESA_SA_CR_MULTI_MODE);
1359 
1360 	/* Unmask interrupts */
1361 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1362 	CESA_REG_WRITE(sc, CESA_ICM, CESA_ICM_ACCTDMA | sc->sc_tperr);
1363 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1364 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, CESA_TDMA_EMR_MISS |
1365 	    CESA_TDMA_EMR_DOUBLE_HIT | CESA_TDMA_EMR_BOTH_HIT |
1366 	    CESA_TDMA_EMR_DATA_ERROR);
1367 
1368 	/* Register in OCF */
1369 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct cesa_session),
1370 	    CRYPTOCAP_F_HARDWARE);
1371 	if (sc->sc_cid < 0) {
1372 		device_printf(dev, "could not get crypto driver id\n");
1373 		goto err8;
1374 	}
1375 
1376 	return (0);
1377 err8:
1378 	for (i = 0; i < CESA_REQUESTS; i++)
1379 		bus_dmamap_destroy(sc->sc_data_dtag,
1380 		    sc->sc_requests[i].cr_dmap);
1381 err7:
1382 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1383 err6:
1384 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1385 err5:
1386 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1387 err4:
1388 	bus_dma_tag_destroy(sc->sc_data_dtag);
1389 err3:
1390 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1391 err2:
1392 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1393 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1394 	    sc->sc_soc_id == MV_DEV_88F6810)
1395 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1396 err1:
1397 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1398 err0:
1399 	mtx_destroy(&sc->sc_sessions_lock);
1400 	mtx_destroy(&sc->sc_requests_lock);
1401 	mtx_destroy(&sc->sc_sdesc_lock);
1402 	mtx_destroy(&sc->sc_tdesc_lock);
1403 	mtx_destroy(&sc->sc_sc_lock);
1404 	return (ENXIO);
1405 }
1406 
1407 static int
cesa_detach(device_t dev)1408 cesa_detach(device_t dev)
1409 {
1410 	struct cesa_softc *sc;
1411 	int i;
1412 
1413 	sc = device_get_softc(dev);
1414 
1415 	/* TODO: Wait for queued requests completion before shutdown. */
1416 
1417 	/* Mask interrupts */
1418 	CESA_REG_WRITE(sc, CESA_ICM, 0);
1419 	CESA_TDMA_WRITE(sc, CESA_TDMA_EMR, 0);
1420 
1421 	/* Unregister from OCF */
1422 	crypto_unregister_all(sc->sc_cid);
1423 
1424 	/* Free DMA Maps */
1425 	for (i = 0; i < CESA_REQUESTS; i++)
1426 		bus_dmamap_destroy(sc->sc_data_dtag,
1427 		    sc->sc_requests[i].cr_dmap);
1428 
1429 	/* Free DMA Memory */
1430 	cesa_free_dma_mem(&sc->sc_requests_cdm);
1431 	cesa_free_dma_mem(&sc->sc_sdesc_cdm);
1432 	cesa_free_dma_mem(&sc->sc_tdesc_cdm);
1433 
1434 	/* Free DMA Tag */
1435 	bus_dma_tag_destroy(sc->sc_data_dtag);
1436 
1437 	/* Stop interrupt */
1438 	bus_teardown_intr(dev, sc->sc_res[RES_CESA_IRQ], sc->sc_icookie);
1439 
1440 	/* Relase I/O and IRQ resources */
1441 	bus_release_resources(dev, cesa_res_spec, sc->sc_res);
1442 
1443 	/* Unmap SRAM memory */
1444 	if (sc->sc_soc_id == MV_DEV_88F6828 ||
1445 	    sc->sc_soc_id == MV_DEV_88F6820 ||
1446 	    sc->sc_soc_id == MV_DEV_88F6810)
1447 		pmap_unmapdev(sc->sc_sram_base_va, sc->sc_sram_size);
1448 
1449 	/* Destroy mutexes */
1450 	mtx_destroy(&sc->sc_sessions_lock);
1451 	mtx_destroy(&sc->sc_requests_lock);
1452 	mtx_destroy(&sc->sc_sdesc_lock);
1453 	mtx_destroy(&sc->sc_tdesc_lock);
1454 	mtx_destroy(&sc->sc_sc_lock);
1455 
1456 	return (0);
1457 }
1458 
1459 static void
cesa_intr(void * arg)1460 cesa_intr(void *arg)
1461 {
1462 	STAILQ_HEAD(, cesa_request) requests;
1463 	struct cesa_request *cr, *tmp;
1464 	struct cesa_softc *sc;
1465 	uint32_t ecr, icr;
1466 	uint8_t hash[HASH_MAX_LEN];
1467 	int blocked;
1468 
1469 	sc = arg;
1470 
1471 	/* Ack interrupt */
1472 	ecr = CESA_TDMA_READ(sc, CESA_TDMA_ECR);
1473 	CESA_TDMA_WRITE(sc, CESA_TDMA_ECR, 0);
1474 	icr = CESA_REG_READ(sc, CESA_ICR);
1475 	CESA_REG_WRITE(sc, CESA_ICR, 0);
1476 
1477 	/* Check for TDMA errors */
1478 	if (ecr & CESA_TDMA_ECR_MISS) {
1479 		device_printf(sc->sc_dev, "TDMA Miss error detected!\n");
1480 		sc->sc_error = EIO;
1481 	}
1482 
1483 	if (ecr & CESA_TDMA_ECR_DOUBLE_HIT) {
1484 		device_printf(sc->sc_dev, "TDMA Double Hit error detected!\n");
1485 		sc->sc_error = EIO;
1486 	}
1487 
1488 	if (ecr & CESA_TDMA_ECR_BOTH_HIT) {
1489 		device_printf(sc->sc_dev, "TDMA Both Hit error detected!\n");
1490 		sc->sc_error = EIO;
1491 	}
1492 
1493 	if (ecr & CESA_TDMA_ECR_DATA_ERROR) {
1494 		device_printf(sc->sc_dev, "TDMA Data error detected!\n");
1495 		sc->sc_error = EIO;
1496 	}
1497 
1498 	/* Check for CESA errors */
1499 	if (icr & sc->sc_tperr) {
1500 		device_printf(sc->sc_dev, "CESA SRAM Parity error detected!\n");
1501 		sc->sc_error = EIO;
1502 	}
1503 
1504 	/* If there is nothing more to do, return */
1505 	if ((icr & CESA_ICR_ACCTDMA) == 0)
1506 		return;
1507 
1508 	/* Get all finished requests */
1509 	CESA_LOCK(sc, requests);
1510 	STAILQ_INIT(&requests);
1511 	STAILQ_CONCAT(&requests, &sc->sc_queued_requests);
1512 	STAILQ_INIT(&sc->sc_queued_requests);
1513 	CESA_UNLOCK(sc, requests);
1514 
1515 	/* Execute all ready requests */
1516 	cesa_execute(sc);
1517 
1518 	/* Process completed requests */
1519 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_POSTREAD |
1520 	    BUS_DMASYNC_POSTWRITE);
1521 
1522 	STAILQ_FOREACH_SAFE(cr, &requests, cr_stq, tmp) {
1523 		bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap,
1524 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1525 
1526 		cr->cr_crp->crp_etype = sc->sc_error;
1527 		if (cr->cr_cs->cs_hlen != 0 && cr->cr_crp->crp_etype == 0) {
1528 			if (cr->cr_crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1529 				crypto_copydata(cr->cr_crp,
1530 				    cr->cr_crp->crp_digest_start,
1531 				    cr->cr_cs->cs_hlen, hash);
1532 				if (timingsafe_bcmp(hash, cr->cr_csd->csd_hash,
1533 				    cr->cr_cs->cs_hlen) != 0)
1534 					cr->cr_crp->crp_etype = EBADMSG;
1535 			} else
1536 				crypto_copyback(cr->cr_crp,
1537 				    cr->cr_crp->crp_digest_start,
1538 				    cr->cr_cs->cs_hlen, cr->cr_csd->csd_hash);
1539 		}
1540 		crypto_done(cr->cr_crp);
1541 		cesa_free_request(sc, cr);
1542 	}
1543 
1544 	cesa_sync_dma_mem(&sc->sc_requests_cdm, BUS_DMASYNC_PREREAD |
1545 	    BUS_DMASYNC_PREWRITE);
1546 
1547 	sc->sc_error = 0;
1548 
1549 	/* Unblock driver if it ran out of resources */
1550 	CESA_LOCK(sc, sc);
1551 	blocked = sc->sc_blocked;
1552 	sc->sc_blocked = 0;
1553 	CESA_UNLOCK(sc, sc);
1554 
1555 	if (blocked)
1556 		crypto_unblock(sc->sc_cid, blocked);
1557 }
1558 
1559 static bool
cesa_cipher_supported(const struct crypto_session_params * csp)1560 cesa_cipher_supported(const struct crypto_session_params *csp)
1561 {
1562 
1563 	switch (csp->csp_cipher_alg) {
1564 	case CRYPTO_AES_CBC:
1565 		if (csp->csp_ivlen != AES_BLOCK_LEN)
1566 			return (false);
1567 		break;
1568 	default:
1569 		return (false);
1570 	}
1571 
1572 	if (csp->csp_cipher_klen > CESA_MAX_KEY_LEN)
1573 		return (false);
1574 
1575 	return (true);
1576 }
1577 
1578 static bool
cesa_auth_supported(struct cesa_softc * sc,const struct crypto_session_params * csp)1579 cesa_auth_supported(struct cesa_softc *sc,
1580     const struct crypto_session_params *csp)
1581 {
1582 
1583 	switch (csp->csp_auth_alg) {
1584 	case CRYPTO_SHA2_256_HMAC:
1585 		if (!(sc->sc_soc_id == MV_DEV_88F6828 ||
1586 		    sc->sc_soc_id == MV_DEV_88F6820 ||
1587 		    sc->sc_soc_id == MV_DEV_88F6810))
1588 			return (false);
1589 		/* FALLTHROUGH */
1590 	case CRYPTO_SHA1:
1591 	case CRYPTO_SHA1_HMAC:
1592 		break;
1593 	default:
1594 		return (false);
1595 	}
1596 
1597 	if (csp->csp_auth_klen > CESA_MAX_MKEY_LEN)
1598 		return (false);
1599 
1600 	return (true);
1601 }
1602 
1603 static int
cesa_probesession(device_t dev,const struct crypto_session_params * csp)1604 cesa_probesession(device_t dev, const struct crypto_session_params *csp)
1605 {
1606 	struct cesa_softc *sc;
1607 
1608 	sc = device_get_softc(dev);
1609 	if (csp->csp_flags != 0)
1610 		return (EINVAL);
1611 	switch (csp->csp_mode) {
1612 	case CSP_MODE_DIGEST:
1613 		if (!cesa_auth_supported(sc, csp))
1614 			return (EINVAL);
1615 		break;
1616 	case CSP_MODE_CIPHER:
1617 		if (!cesa_cipher_supported(csp))
1618 			return (EINVAL);
1619 		break;
1620 	case CSP_MODE_ETA:
1621 		if (!cesa_auth_supported(sc, csp) ||
1622 		    !cesa_cipher_supported(csp))
1623 			return (EINVAL);
1624 		break;
1625 	default:
1626 		return (EINVAL);
1627 	}
1628 	return (CRYPTODEV_PROBE_HARDWARE);
1629 }
1630 
1631 static int
cesa_newsession(device_t dev,crypto_session_t cses,const struct crypto_session_params * csp)1632 cesa_newsession(device_t dev, crypto_session_t cses,
1633     const struct crypto_session_params *csp)
1634 {
1635 	struct cesa_session *cs;
1636 	int error;
1637 
1638 	error = 0;
1639 
1640 	/* Allocate session */
1641 	cs = crypto_get_driver_session(cses);
1642 
1643 	/* Prepare CESA configuration */
1644 	cs->cs_config = 0;
1645 	cs->cs_ivlen = 1;
1646 	cs->cs_mblen = 1;
1647 
1648 	switch (csp->csp_cipher_alg) {
1649 	case CRYPTO_AES_CBC:
1650 		cs->cs_config |= CESA_CSHD_AES | CESA_CSHD_CBC;
1651 		cs->cs_ivlen = AES_BLOCK_LEN;
1652 		break;
1653 	}
1654 
1655 	switch (csp->csp_auth_alg) {
1656 	case CRYPTO_SHA1:
1657 		cs->cs_mblen = 1;
1658 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1659 		    csp->csp_auth_mlen;
1660 		cs->cs_config |= CESA_CSHD_SHA1;
1661 		break;
1662 	case CRYPTO_SHA1_HMAC:
1663 		cs->cs_mblen = SHA1_BLOCK_LEN;
1664 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA1_HASH_LEN :
1665 		    csp->csp_auth_mlen;
1666 		cs->cs_config |= CESA_CSHD_SHA1_HMAC;
1667 		if (cs->cs_hlen == CESA_HMAC_TRUNC_LEN)
1668 			cs->cs_config |= CESA_CSHD_96_BIT_HMAC;
1669 		break;
1670 	case CRYPTO_SHA2_256_HMAC:
1671 		cs->cs_mblen = SHA2_256_BLOCK_LEN;
1672 		cs->cs_hlen = (csp->csp_auth_mlen == 0) ? SHA2_256_HASH_LEN :
1673 		    csp->csp_auth_mlen;
1674 		cs->cs_config |= CESA_CSHD_SHA2_256_HMAC;
1675 		break;
1676 	}
1677 
1678 	/* Save cipher key */
1679 	if (csp->csp_cipher_key != NULL) {
1680 		memcpy(cs->cs_key, csp->csp_cipher_key,
1681 		    csp->csp_cipher_klen);
1682 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1683 			error = cesa_prep_aes_key(cs, csp);
1684 	}
1685 
1686 	/* Save digest key */
1687 	if (csp->csp_auth_key != NULL)
1688 		cesa_set_mkey(cs, csp->csp_auth_alg, csp->csp_auth_key,
1689 		    csp->csp_auth_klen);
1690 
1691 	return (error);
1692 }
1693 
1694 static int
cesa_process(device_t dev,struct cryptop * crp,int hint)1695 cesa_process(device_t dev, struct cryptop *crp, int hint)
1696 {
1697 	const struct crypto_session_params *csp;
1698 	struct cesa_request *cr;
1699 	struct cesa_session *cs;
1700 	struct cesa_softc *sc;
1701 	int error;
1702 
1703 	sc = device_get_softc(dev);
1704 	error = 0;
1705 
1706 	cs = crypto_get_driver_session(crp->crp_session);
1707 	csp = crypto_get_params(crp->crp_session);
1708 
1709 	/* Check and parse input */
1710 	if (crypto_buffer_len(&crp->crp_buf) > CESA_MAX_REQUEST_SIZE) {
1711 		crp->crp_etype = E2BIG;
1712 		crypto_done(crp);
1713 		return (0);
1714 	}
1715 
1716 	/*
1717 	 * For requests with AAD, only requests where the AAD is
1718 	 * immediately adjacent to the payload are supported.
1719 	 */
1720 	if (crp->crp_aad_length != 0 &&
1721 	    (crp->crp_aad_start + crp->crp_aad_length) !=
1722 	    crp->crp_payload_start) {
1723 		crp->crp_etype = EINVAL;
1724 		crypto_done(crp);
1725 		return (0);
1726 	}
1727 
1728 	/*
1729 	 * Get request descriptor. Block driver if there is no free
1730 	 * descriptors in pool.
1731 	 */
1732 	cr = cesa_alloc_request(sc);
1733 	if (!cr) {
1734 		CESA_LOCK(sc, sc);
1735 		sc->sc_blocked = CRYPTO_SYMQ;
1736 		CESA_UNLOCK(sc, sc);
1737 		return (ERESTART);
1738 	}
1739 
1740 	/* Prepare request */
1741 	cr->cr_crp = crp;
1742 	cr->cr_cs = cs;
1743 
1744 	CESA_LOCK(sc, sessions);
1745 	cesa_sync_desc(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1746 
1747 	if (csp->csp_cipher_alg != 0)
1748 		crypto_read_iv(crp, cr->cr_csd->csd_iv);
1749 
1750 	if (crp->crp_cipher_key != NULL) {
1751 		memcpy(cs->cs_key, crp->crp_cipher_key,
1752 		    csp->csp_cipher_klen);
1753 		if (csp->csp_cipher_alg == CRYPTO_AES_CBC)
1754 			error = cesa_prep_aes_key(cs, csp);
1755 	}
1756 
1757 	if (!error && crp->crp_auth_key != NULL)
1758 		cesa_set_mkey(cs, csp->csp_auth_alg, crp->crp_auth_key,
1759 		    csp->csp_auth_klen);
1760 
1761 	/* Convert request to chain of TDMA and SA descriptors */
1762 	if (!error)
1763 		error = cesa_create_chain(sc, csp, cr);
1764 
1765 	cesa_sync_desc(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1766 	CESA_UNLOCK(sc, sessions);
1767 
1768 	if (error) {
1769 		cesa_free_request(sc, cr);
1770 		crp->crp_etype = error;
1771 		crypto_done(crp);
1772 		return (0);
1773 	}
1774 
1775 	bus_dmamap_sync(sc->sc_data_dtag, cr->cr_dmap, BUS_DMASYNC_PREREAD |
1776 	    BUS_DMASYNC_PREWRITE);
1777 
1778 	/* Enqueue request to execution */
1779 	cesa_enqueue_request(sc, cr);
1780 
1781 	/* Start execution, if we have no more requests in queue */
1782 	if ((hint & CRYPTO_HINT_MORE) == 0)
1783 		cesa_execute(sc);
1784 
1785 	return (0);
1786 }
1787